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CHAPTER 1

General Topology

“Point set topology is a disease which the human race will soon recover”

—attributed to H. Poincaré.

The aim of this chapter is only to fix some notations and recall important
notions of General Topology. The material covered is completely standard and
should be presented in most of (under)graduate text books on this subject. The
presentation here follows closely the references [1, 2, 3, 4].

1.1. Topological Spaces

This chapter introduces what sometimes is called point set topology. It is not
our intention to provide motivations or examples for the concepts introduced here
and neither background on metric spaces, although they should appear sooner or
latter. The goal is to conduct the discussion towards to understand and prove
compactness theorems in infinite dimensional vector spaces in some suitable weak
topologies. A lot of definitions will be required to achieve this goal and due to lack
of time, very occasionally examples are given. So we encourage the reader to take a
look at the above cited references for a “conventional” (motivation, examples and
so on...) exposition.

Definition 1.1 (Topological Space). A topological space is an ordered pair
(X, τ), where X is a set and τ is a collection of subsets of X (the topology) that
obeys three axioms:

(1) ∅, X ∈ τ ;
(2) for all U1, . . . , Un ∈ τ we have U1 ∩ . . . ∩ Un ∈ τ ;
(3) if {Uα}α∈I is an arbitrary subcollection of τ , then

⋃
α∈I Uα ∈ τ .

The sets in τ are called open sets.

When there is no danger of confusion we denote a topological space (X, τ)
simply by its underlying set X. So when we say things like, let X be a topological
space the topology will be completely clear from the context or the statement will
be valid for a general topology on X.

Proposition 1.2. Let I be an arbitrary index set. If τi, for each i ∈ I, is a
topology on X. Then the collection

τ ≡ {U ⊂ X : U ∈ τi, ∀i ∈ I}
is a topology on X. In other words, the intersection of any family of topologies on
X is a topology on X.

Definition 1.3 (Closed Sets). Let (X, τ) be a topological space. We say that
a set A ⊂ X is a closed set if Ac ≡ X \A is an open set.
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2 1. GENERAL TOPOLOGY

The proof of the following theorem is an obvious application of de Morgan’s
laws together with the definition of a topology on X, and will be omitted.

Theorem 1.4. If C is the collection of all closed sets in a topological space
(X, τ), then

i) ∅, X ∈ C ;
ii) if A1, . . . , An ∈ C , then A1 ∪ . . . ∪An ∈ C ;

iii) if I is an arbitrary index set and Aα ∈ C , ∀α ∈ I. Then
⋂
α∈I Aα ∈ C .

Conversely, given a set X and any family C of subsets of X satisfying i)– iii), the
collection of complements of members of C is a topology on X in which the family
of closed sets is exactly C .

This theorem is a result of, and illustrates, the obvious duality between the
notions of open and closed set. More formally, any result about the open sets in
a topological space becomes a result about closed sets upon replacing “open” by
“closed” and interchanging

⋃
by
⋂

.

Definition 1.5 (Closure). Let (X, τ) be a topological space and E ⊂ X. The
closure of E in (X, τ) is the set

E ≡
⋂
{A ⊂ X : A is closed and E ⊂ A}.

Note that E is the “smallest” closed set containing E, in the sense that it is
contained in every closed set containing E.

Lemma 1.6. Let (X, τ) be a topological space and A ⊂ B ⊂ X. Then A ⊂ B.

Theorem 1.7. Let (X, τ) be a topological space and P(X) the set of parts of
X. The operation P(X) 3 A 7−→ A ∈P(X) has the following properties:

i) A ⊂ A;

ii) A = A;
iii) A ∪B = A ∪B;

iv) ∅ = ∅;
v) A is closed if and only if A = A.

Moreover, if Φ : P(X) → P(X) is a set-function satisfying i)– v) and we define
the collection C of the sets satisfying v). We have that the complements of members
of C determines a topology on X, whose the closure operation is just the operation
Φ we began with.

Any operation P(X) 3 A 7−→ A ∈ P(X) in a set X satisfying i)– v) is
called a Kuratowski closure operation. Thus every Kuratowski closure operation
determines and is determined by some topology.

Definition 1.8 (Interior). Let (X, τ) be a topological space and E ⊂ X. The
interior of E in (X, τ) is the set

Int(E) ≡
⋃
{U ⊂ X : U is open and U ⊂ E}.

Evidently, Int(E) is an open set. It is the largest open set contained in E, in
the sense that it contains any other open set contained in E. We also remark that
it might be possible, for some sets to have Int(E) = ∅.
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The notions of interior and closure are dual to each other, in much the same
way that are “open” and “closed”. The strictly formal nature of this duality can
be brought out by observing that

X \ Int(E) = X \ E
X \ E = Int(X \ E).

Thus any theorem about closures in a topological space can be translated to a
theorem about interiors. The next results are, for example, of this duality.

Lemma 1.9. Let (X, τ) be a topological space and A ⊂ B ⊂ X. Then we have
Int(A) ⊂ Int(B).

Theorem 1.10. Let (X, τ) be a topological space and P(X) the set of parts of
X. The operation P(X) 3 A 7−→ Int(A) ∈P(X) has the following properties:

i) Int(A) ⊂ A;
ii) Int(Int(A)) = Int(A);

iii) Int(A ∩B) = Int(A) ∩ Int(B);
iv) Int(X) = X;
v) A is open if and only if A = Int(A).

Moreover, if Ψ : P(X)→P(X) is a set-function satisfying i)– iv) and we define τ
as the collection of the sets satisfying v), then τ is a topology on X. In this topology
the interior of a set A is just Ψ(A).

1.2. Neighborhoods

The characterizations we have so far to describe a topology (open sets, the
closure operation and so on) are not the most convenient, and for this reason are
rarely used. In this section we present the two most popular ways to describe
topologies.

Very often the topology we wish to present is quite “regular”, in the sense that
the open sets containing one point look no different from the open sets containing
any other(this is true for example, in the Euclidean spaces). In such cases one can
describe the topology by describing what it is look like “around” one point, or a
few points. Considerable saving of effort can result, and topologies will often be
presented this way here, so we will present in what follows a detailed discussion of
the “local” description of topologies and topological concepts.

Definition 1.11 (Neighborhoods). Let (X, τ) be a topological space and x ∈ X
an arbitrary point. A neighborhood of x is a subset U ⊂ X satisfying:

• x ∈ U ;
• there is V ∈ τ such that x ∈ V and V ⊂ U .

Clearly, U is a neighborhood of x if and only if x ∈ Int(U).

Definition 1.12 (Neighborhood System at x). Let (X, τ) be a topological
space and x ∈ X an arbitrary point. The collection

Ux ≡ {U ⊂ X : U is a neighborhood of x}

is called neighborhood system at x.
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The next result lists some fundamental properties of a neighborhood system at x
in a topological space and provides a converse which says whenever neighborhoods
has been assigned to each point of a set, satisfying these properties, one has a
topology.

Theorem 1.13. Let (X, τ) be a topological space, x ∈ X an arbitrary point,
and Ux a neighborhood system at x. Then

i) if U ∈ Ux, then x ∈ U ;
ii) if U, V ∈ Ux, then U ∩ V ∈ Ux;

iii) if U ∈ Ux, then ∃V ∈ Ux such that for each y ∈ V , we have U ∈ Uy;
iv) if U ∈ Ux and U ⊂ V , then V ∈ Ux;
v) A is open, if and only if A contains a neighborhood of each of its points.

Conversely, if in a set X a nonempty collection Ux of subsets of X is assigned to
each x ∈ X satisfying i) –iv) and v) is used to define a collection τ of subsets of X,
then τ is a topology on X, in which the neighborhood system at x ∈ X is precisely
the collection Ux.

Definition 1.14 (Neighborhood base at x). Let (X, τ) be a topological space,
x ∈ X an arbitrary point, and Ux a neighborhood system at x. A subcollection
Bx taken from Ux, having the property that each U ∈ Ux contains some V ∈ Bx

is called a neighborhood base at x. That is, Ux must be determined by Bx in the
following sense

Ux = {U ⊂ X : there exists some V ∈ Bx such that V ⊂ U}.

Once a neighborhood base at x has been chosen (there are many to choose
from, all producing the same neighborhood system at x) its elements are called
basic neighborhoods. Obviously, a neighborhood system at x is itself always a neigh-
borhood base at x. In general, we are interested in smaller basis.

We turn now to the problem of specifying a topology by giving a collection of
basic neighborhoods at each point of the space.

The following theorem is used much more often than the corresponding Theo-
rem 1.13 about neighborhood systems.

Theorem 1.15. Let (X, τ) be a topological space and for each x ∈ X, let Bx

be a neighborhood base at x. Then

i) if V ∈ Bx, then x ∈ V ;
ii) if V1, V2 ∈ Bx, then ∃V3 ∈ Bx such that V3 ⊂ V1 ∩ V2;

iii) if V ∈ Bx, there is some V0 ∈ Bx such that for each y ∈ V0 there is some
W ∈ By with W ⊂ V ;

iv) A ⊂ X is open if and only if A contains a basic neighborhood of each of its
points.

Conversely, in a set X if a collection Bx of subsets of X is assigned to each x ∈ X
satisfying i)– iii) and if we define a collection τ by using v), then τ is a topology
on X in which Bx is a neighborhood base at x, for each x ∈ X.

Since neighborhood bases are important descriptive devices in dealing with
topologies, it will be useful to have neighborhood characterizations of all concepts
so far introduced for topological spaces.

Theorem 1.16. Let (X, τ) be a topological space and suppose that Bx, for each
x ∈ X, is a fixed neighborhood base at x. Then
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i) A ⊂ X is open if and only if for each x ∈ A there is some U ∈ Bx such that
U ⊂ A;

ii) A ⊂ X is closed if and only if for each point x ∈ X \ A there is U ∈ Bx such
that A ∩ U = ∅;

iii) A = {x ∈ X : ∀U ∈ Bx we have U ∩A 6= ∅};
iv) Int(A) = {x ∈ X : ∃U ∈ Bx satisfying U ⊂ A};
v) ∂A = {x ∈ X : ∀U ∈ Bx we have U ∩A 6= ∅ and U ∩ (X \A) 6= ∅}.

Roughly speaking the next theorem states that “small neighborhoods make
large topologies”. This is intuitive since, smaller the neighborhoods in a space are,
the easier it is for a set to contain neighborhoods of all its points and then the more
open sets there will be.

Theorem 1.17 (Hausdorff Criterion). For each x ∈ X let B1
x be a neighborhood

base at x for a topology τ1 on X, and B2
x be a neighborhood base at x for a topology

τ2 on X. Then τ1 ⊂ τ2 if and only if for each x ∈ X given B1 ∈ B1
x there is some

B2 ∈ B2
x such that B2 ⊂ B1.

We close this section by introducing a concept that will play a major role in
the subsequent sections.

Definition 1.18 (Accumulation point). An accumulation point of a set A in
a topological space (X, τ) is a point x ∈ X such that each neighborhood (basic
neighborhood, if you prefer) of x contains some point of A, other than x. The set
of all accumulation points of A is denoted by A′ and sometimes called derived set
of A.

Theorem 1.19. Let (X, τ) be a topological space. Then for any A ⊂ X we
have A = A ∪A′.

Definition 1.20 (Cluster point). Let (X, τ) be a topological space. A point
x ∈ X is a cluster point of a sequence (xn)n∈N if for any open set A 3 x and any
N ∈ N there exists n ≥ N so that xn ∈ A.

Note that the notions of cluster and accumulation points are, in general, dif-
ferent. For example, consider the topological space (X, τ), where X = {0}∪ {n−1 :
n ≥ 1} and τ is the discrete topology on X. Let (xn)n∈N be a constant sequence
on X given by xn = x 6= 0, for all n ∈ N. Then x is a cluster point of (xn)n∈N, but
x is not an accumulation point of A = (xn)n∈N.

1.3. Bases and subbases

As we observed in last section, we can specify the neighborhood system at a
point x of a topological space (X, τ) by giving a somewhat smaller collection of
sets, that is, a neighborhood base at x. In much the same way, the idea of a base
for a topology τ will be a way to specify it without the needing of describe each
and every of its open sets.

Definition 1.21 (Base for a topology). Let (X, τ) be a topological space. A
collection B ⊂ τ is a base for τ if

τ =

{ ⋃
U∈C

U : C ⊂ B

}
.
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As we can see if B is a base for a topology τ on X, then the topology can be
recovered from B by taking all possible unions of subcollections from B.

Proposition 1.22. A collection B is a base for (X, τ) if and only if whenever
A is a open set and x ∈ A is an arbitrary point, there is some U ∈ B such that
x ∈ U ⊂ A.

The following theorem is similar to theorems 1.7, 1.10, 1.13, and 1.15. That is,
it list a few properties that a bases enjoy and provides the converse assertion: any
collection of subsets of X enjoying these properties provides a topology on X.

Theorem 1.23. A collection B of subsets of a set X is a base for a topology
τ(B) =

{⋃
U∈C U : C ⊂ B

}
on X if and only if

i) X =
⋃
U∈B U ;

ii) for any pair U1, U2 ∈ B with x ∈ U1 ∩ U2, there exists U3 ∈ B such that
x ∈ U3 ⊂ U1 ∩ U2.

The reader might well suspected that more than a casual similarity exists be-
tween the idea of a neighborhood base at each point of X on the one hand and
the notion of a base for the topology of X on the other hand. Indeed, as the
next theorem make clear, the only real difference between the two notions is that
neighborhoods bases need not consist of open sets.

Theorem 1.24. If B is a collection of open sets in (X, τ), B is a base for τ if
and only if for each x ∈ X, the collection Bx ≡ {U ∈ B : x ∈ U} is a neighborhood
base at x.

We can go one step further in reducing the size of the collection we must specify
to describe a topology. Recall that the reduction from topology to a base was
accomplished essentially by dropping the requirement that any union of elements
of τ belongs to τ . The further reduction to subbase is accomplished essentially by
dropping the requirement that any finite intersection of elements of τ belongs to τ .

Definition 1.25 (Subbase). If (X, τ) is a topological space, a subbase for τ
is a collection C ⊂ τ such that the collection of all finite intersections of elements
from C forms a base for τ .

Theorem 1.26. Any collection C of subsets of X is a subbase for some topology
τ(C ) on X. Moreover,

τ(C ) ≡
⋂
τ⊃C

τ is a topology on X

τ,

that is, the smallest topology on X containing C .

1.4. Subspaces

A subset of a topological space inherits a topology of its own, in a obvious way.
This topology and some of its easily developed properties will be presented here.

Definition 1.27 (Subspace). Let (X, τ) be a topological space and Y ⊂ X.
The collection τY ≡ {U ∩Y : U ∈ τ} is a topology on Y , called relative topology for
Y . The fact that a subset of X is being given this topology is signified by referring
to it as a subspace of X.
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Note that any subspace of a discrete topological space is discrete and any
subspace of a trivial space is trivial. A subspace of a subspace is a subspace. That
is, if Z ⊂ Y ⊂ X, then the relative topology induced on Z by the relative topology
of Y is just the relative topology of Z in X.

The open sets in a subspace Y of X are the intersections with Y of the open
sets in X. Most, but no all, of the related topological notions are introduced into
Y in the same way, by intersection, as the following theorem shows.

Theorem 1.28. If (Y, τY ) is a subspace of (X, τ) then

i) V ⊂ Y is open in (Y, τY ) if and only if V = U ∩ Y , where U is open in (X, τ);
ii) B ⊂ Y is closed in (Y, τY ) if and only if B = A ∩ Y , where A is closed in

(X, τ);
iii) If A ⊂ Y , then ClY (A) = Y ∩ ClX(A), where ClY (A) is the closure of A in

(Y, τY ).
iv) if x ∈ Y , then V is a neighborhood of x in (Y, τY ) if and only if V = U ∩ Y ,

where U is a neighborhood of x in (X, τ).
v) if x ∈ Y , and Bx is neighborhood base at x in (X, τ), then {U ∩ Y : U ∈ Bx},

is a neighborhood base at x in (Y, τY ).
vi) if B is a base for τ , then {U ∩ Y : U ∈ B} is a base for τY .

1.5. Continuous Functions

It is the aim this section to define continuous functions on a topological space
and establish their elementary properties.

Definition 1.29. Let (X, τX) and (Y, τY ) be topological spaces. A function
f : X → Y is continuous at x0 ∈ X if and only if for each neighborhood V of f(x0)
in Y , there is a neighborhood U of x0 in X such that f(U) ⊂ V . We say that f is
continuous on X if f is continuous at each x0 ∈ X.

Is left to the reader as exercise to verify that the concept of continuous is not
altered if we replace neighborhoods by basic neighborhoods throughout.

In the sequel we see an alternative, and somewhat surprising set of character-
izations of continuity. This theorem, in one or another of its form, is more often
used to check “global” continuity than the alternative, that is, check continuity
at each point of X individually. The fourth characterization, although not often
used as a test for continuity, is interesting. It provide us with description of the
continuous functions f : X → Y as precisely those functions which take the points
close to a set E in X close it its image in Y .

Theorem 1.30. If (X, τX) and (Y, τY ) are topological spaces and f : X → Y .
Then the following are all equivalent:

i) f is continuous;
ii) for each open set V ⊂ Y , we have that f−1(V ) is open in X;

iii) for each closed set B ⊂ Y , we have that f−1(B) is closed in X;

iv) for each set A ⊂ X, we have that f(A) ⊂ f(A).

Theorem 1.31. Let (X, τX) and (Y, τY ) be a topological spaces and f : X → Y
a function. If C is a subbase for the topology τY and f−1(S) is an open set in X,
for any S ∈ C , then f is a continuous function.
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Proof. Let us first note that if the topology of the range space Y is given by
a basis B, then to prove continuity of f it suffices to show that the inverse image
of every basis element is open. Indeed, an arbitrary open set V ⊂ Y can be written
as a union of basis elements

V =
⋃
i∈I

Wi.

Therefore

f−1(V ) = f−1
( ⋃
i∈I

Wi

)
=
⋃
i∈I

f−1(Wi),

and so f is continuous.
Since C is a subbase of τY we have that and arbitrary base element W ∈ τY

can be written as a finite intersection W = S1∩ . . .∩Sn of subbase elements. From
the elementary properties of functions we have

f−1(W ) = f−1(S1) ∩ . . . ∩ f−1(Sn).

Thus proving that the inverse image of any base element of τY is open set in X.
From the observation at the beginning of this proof, we get that f is continuous. �

The following result is intuitive, easily proved and surprisingly important.

Theorem 1.32. If X,Y and Z are topological spaces and f : X → Y and
g : Y → Z are continuous functions, then g ◦ f : X → Z is continuous.

Definition 1.33. Let f : X → Y be a function and A ⊂ X. The restriction of
f to A is a function from A to Y , denoted by f |A, given by f |A(a) = f(a) for all
a ∈ A.

Theorem 1.34. Let (X, τ) be a topological space, A ⊂ X be a generic subset
endowed with the relative topology τA and f : X → Y is a continuous function.
Then f |A : A→ Y is a continuous function.

Proof. If V is a open set in Y , then f |−1
A (V ) = A∩ f−1(V ), and the latter is

open in the relative topology on A. �

Proposition 1.35. If (A, τA) is a subspace of a topological space (X, τ), then
the inclusion function j : A→ X is a continuous function.

Lemma 1.36 (Local Formulation of Continuity). Let (X, τX) and (Y, τY ) be
general topological spaces. Suppose that X = ∪α∈ΓAα, where Aα ∈ τX , for all
α ∈ Γ. If f : X → Y is a function such that for all α ∈ Γ we have f |Aα is
continuous, then f is continuous.

Proof. Suppose that Aα is an open set for each α ∈ Γ. If V is an open set in
(Y, τY ), then follows from basic properties of inverse image that

f−1(V ) =
⋃
α∈Γ

(f |Aα
)−1(V ).

From hypothesis, for each α ∈ Γ, we have that (f |Aα)−1(V ) ∈ τAα , the relative
topology. Since Aα is open in X it follows that τAα

⊂ τ and so (f |Aα
)−1(V ) ∈ τ ,

thus finishing the proof. �
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When we write f : X → Y , we specified the domain of f as being X, but
the image of f is not determined, except that it must be contained in Y . The
next theorem says essentially, that is not necessary to modify this procedure when
dealing with continuous functions.

Theorem 1.37. Suppose that (Y, τY ) ⊂ (Z, τZ) and f : X → Y is a function.

Then f is a continuous map from X to Y if and only if f̃ : X → Z given by
f̃(x) = f(x), for all x ∈ X, is a continuous function.

Lemma 1.38 (The pasting Lemma). Let (X, τX) and (Y, τY ) be topological
spaces and A,B ⊂ X closed sets in (X, τ) such that A ∪ B = X. Let f : A → Y
and g : B → Y be continuous functions. If f(x) = g(x) for all x ∈ A ∩ B, then f
and g can be used to construct a new continuous function h : X → Y given by

h(x) =

{
f(x), if x ∈ A;

g(x), if x ∈ B \A.

Proof. Let C be a closed subset of (Y, τY ). From the elementary properties
of inverse image we get that

h−1(C) = f−1(C) ∪ g−1(C)

Since f is continuous, f−1(C) is a closed set in A and, therefore closed in X, see
Theorem 1.28 item iii). Similarly, g−1(C) is closed in B and therefore closed in X.
Their union h−1(C) is thus closed in X. �

Summarizing we have discussed the following techniques to construct continu-
ous functions:

• Inclusion (Proposition 1.35).
• Compositions (Theorem 1.32).
• Restricting the domain (Theorem 1.34).
• Restricting or expanding the range (Theorem 1.37).
• Local formulation of Continuity (Lemma 1.36).
• The pasting lemma (Lemma 1.38).

1.6. Homeomorphisms

A function from a topological space (X, τX) to a topological space (Y, τY ) can
make “information” disappear in two ways. The first in set-theoretical sense, which
means Y will have fewer (or at least, no more) points than X. The second is
topological, meaning that the topological space (Y, τY ) will have fewer (or at least,
no more) open sets than (X, τX), in the sense that each open V ∈ Y is the image
of an open set (for example, U = f−1(V ) ) in X, but there may well be open
sets U ∈ τX such that f(U) is not open in (Y, τY ). The maps which preserve X
set-theoretically and topologically are called homeomorphisms.

Definition 1.39 (Homeomorphism). Let (X, τX) and (Y, τY ) be topological
spaces. A function f : X → Y is called a homeomorphism between X and Y , if f is
injective, surjective (or onto) and continuous, and f−1 : Y → X is also continuous.

Definition 1.40 (Embedding). Let (X, τX) and (Y, τY ) be topological spaces.
A function f : X → Y is called a embedding of X into Y , if f is injective and
continuous, and f−1 : f(X)→ X is also continuous.
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Note that X is embedded into Y by f if and only if the function f is a home-
omorphism between X and some subspace of Y .

Evidently, a continuous map f : X → Y is a homeomorphism if and only if
there is a continuous map g : Y → X such that the compositions g ◦ f and f ◦ g
are the identity maps on X and Y , respectively.

The reader can easily verify the next theorem as a direct consequence of The-
orem 1.30

Theorem 1.41. Let (X, τX) and (Y, τY ) be topological spaces and f : X → Y
a bijection. The following are equivalent:

i) f is a homeomorphism;
ii) if U ⊂ X, then f(U) is open in Y if and only if U is open in X;

iii) if A ⊂ X, then f(A) is closed in Y if and only if A is closed in X;

iv) if A ⊂ X, then f(A) = f(A).

Homeomorphic topological spaces are, for the purposes of a topologist, the
same. That is, there is nothing about homeomorphic spaces X and Y having to
do only with their respective topologies which we can use to distinguish them. If
we denote “X is homeomorphic to Y ” by X ∼ Y , then “∼” defines an equivalence
relation. Indeed,

i) X ∼ X;
ii) if X ∼ Y , then Y ∼ X;

iii) if X ∼ Y and Y ∼ Z, then X ∼ Z.

In general, to prove that two spaces are homeomorphic, one constructs a home-
omorphism. To establish that two spaces are not homeomorphic, one must find a
topological property possessed by one and not the other. The definition of “topo-
logical property” makes it clear why this work. A topological property is a property
of topological spaces which, if possessed by X, is possessed by all spaces homeo-
morphic to X.
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