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Tomographic characterization of three-qubit pure states with only two-qubit detectors
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A tomographic process for three-qubit pure states using only pairwise detections is presented.
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The understanding of multipartite entanglement is one
of the objectives of the quantum information community.
Bipartite entanglement is well understood for pure states,
where the Schmidt decomposition[1] plays the central
role. Also much has been learnt about mixed states in re-
cent years[2]. The problem one has to face when the num-
bers of parties grow is the consequent increasing in the
complexity of the correlations involved. Recently, a sig-
nificant progress in three-qubit correlations has been re-
ported by N. Linden, S. Popescu and W. K. Wootters[3],
who have shown that “Almost every pure state of three
qubits is completely determined by its two-particle reduced

density matrices”. It is important to emphasize the con-
text in which the work is developed which is understand-
ing how information is stored in multipartite systems.
Specifically, they show that there is no more information
on the three-party state than what is already contained
in the three reduced pair states. Their result is, at first
sight, surprising. In the case of two qubits it is not dif-
ficult to show that several global states give the same
reduced states. For bipartite pure states, the Schmidt
decomposition theorem[1] asserts that, given a vector
|Ψ〉 ∈ V⊗W, one can choose orthonormal basis {|vi〉} for
V, and {|wj〉} for W such that |Ψ〉 =

∑

k λk |vk〉 ⊗ |wk〉.
In the case of two qubits, V and W have dimension 2 and
the vector state can be written as[9]

|Ψ (θ, ϕ)〉 = cos θ |v1〉 ⊗ |w1〉 + eiϕ sin θ |v2〉 ⊗ |w2〉 , (1)

with θ ∈
[

0, π
4

]

and ϕ ∈ [0, 2π]. Writing the density
matrix in the basis {|vi〉 ⊗ |wj〉} makes it clear that the
relative phase eiϕ is locally inaccessible, i.e., for fixed
θ all reduced density matrices are equal. So, there is
more information on the full two-qubit state than on the
parts represented by the reduced states. As a clarifying
example, the two Bell states[4] |Φ±〉 = {|00〉 ± |11〉} /

√
2

originate the same local states[10].
Suppose now that an experimental physicist wants to

make tomographic measurements of three qubits with
only two detectors. Reference [3] shows that all neces-
sary information is available in the two-qubit reduced
matrices, but does not suggest any practical method to
do it. In this work we present a tomographic protocol for
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the complete characterization of generic three-qubit pure
states, based only on pairwise detections. The protocol
works whenever the result of Ref. [3] holds, i.e.: for all
pure states except for a restricted class that will be com-
ment latter (see eq. (11)). It must be said that although
coincidence measurements are allowed, only local opera-
tions should be done, i.e.: one can think of three distinct
laboratories, two of them equiped with detectors at each
time, and a classical electronic coincidence line between
them. In this sense, we are only implementing LOCC
(Local Operations with Classical Comunnication).

First of all, let us review the authors argument. Con-
sider an arbitrary pure state |ν〉 =

∑

ijk νijk |ijk〉 of three

qubits A, B, and C. A general state (pure or mixed)
that has the same reduced states of |ν〉 can be obtained
through a pure state |Ψ〉, describing three qubits plus
an environment E (this process is called a purification,
and its existence can be shown by the Schmidt decom-
position). The fact that |Ψ〉 has the same reduced states
than |ν〉 when restricted to each two-qubit subspaces puts
restrictions in its form. It is shown that for a generic
state |ν〉, these restrictions determine the form of |Ψ〉 as
|Ψ〉 =

∑

ijk νijk |ijk〉⊗|E〉, where the environment is fac-
torized. Consequently the environment state is pure, and
the three-qubit state is necessarily |ν〉. It is a very ele-
gant argument, which also allowed Linden and Wootters
to generalize this results for N qubits[5]. It is, however,
rather abstract, and gives no clue for the experimentalist
to completely characterize his three-qubit pure state.

The route we will take uses the generalization of the
well known expression for one qubit:

ρ =
1

2

3
∑

µ=0

bµσµ, (2)

where σ0 is the 2×2 identity matrix, and σi are the Pauli
matrices

σ0 =

[

1
1

]

, σ1 =

[

1
1

]

,

σ2 =

[

−i
i

]

, σ3 =

[

1
−1

]

, (3)

where we leave blank all null entries. The coefficients can
be obtained from the expression

bν = Tr {ρσν} . (4)
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It is important to observe that eq. (4) implies b0 = 1
(normalization of ρ) and that the complete characteriza-
tion of the state can be achieved with three mean value
measurements bν = 〈σν〉 (i.e.: by the three components
of the so called Bloch vector). In fact, this is a tomo-
graphic scheme for determining a spin- 1

2
state[6].

To generalize eq. (4) for three qubits, let us define

Sγµν = σγ ⊗ σµ ⊗ σν , (5)

and denote the state of three qubits by

ρ =

(

1

2

)3

aγµνSγµν , (6)

where we have adopted the convention of summation over
repeated indexes throghout the paper (latin indexes from
1 to 3; greek indexes from 0 to 3). Once again, the co-
efficients aγµν can be obtained tomographically by the
relation

aγµν = Tr {ρSγµν} . (7)

A first important consequence of eq. (7) is that a000 =
1. As Pauli matrices are traceless, the reduced density
operators are given by

ρBC = TrA(ρABC) =
1

4
a0µνSµν , (8a)

ρAC = TrB(ρABC) =
1

4
aγ0νSγν , (8b)

ρAB = TrC(ρABC) =
1

4
aγµ0Sγµ, (8c)

where Sµν = σµ ⊗ σν .
To directly determine ρ through eq. (7) one needs to

evaluate sixty three mean values. Nine of them (3 × 3)
are the three components of each Bloch vector (ai00, a0j0,
a00k), and can be determined by individual detections.
Twenty seven (3 × 9) are the pair correlations (aij0, ai0k,
a0jk) and must be obtained through two-qubit coinci-
dence measurements. The remaining twenty seven are
three-qubit correlations, and are directly available only
through three-qubit coincidence detections. For a general
mixed state the number of mean values to be determined
is exactly the same as the number of coefficients in the
density operator. However, any previous knowledge on
the state of the system is expected to reduce the number
of parameters needed. In particular, for pure states we
can use the idempotency relation,

ρ2 = ρ, (9)

to obtain the coefficients aijk from those available in the
pair states. From expression (9) we get 64 equations,
which can be organized in four sets: the first set consists
of one solely equation

∑

ijk

(a2
i00+a

2
0j0+a

2
00k+a2

ij0+a
2
i0k+a2

0jk+a2
ijk) = 7, (10a)

the second set is given by

3ai00 = aij0a0j0 + ai0ka00k + aijka0jk, (10b)

with similar equations under permutations of indexes.

The third set is consituted of

3aij0 = ai00a0j0 + a00kaijk + a0jkai0k − 1

2
ǫiltǫjmualm0atu0 −

1

2
ǫiltǫjmuatukalmk, (10c)

together with analogous equations under cyclic permutations, and where we use the Levi-Civitta symbol ǫijk for the
totally antisymmetric tensor. Finally, the fourth group

3aijk = ai00a0jk + a0j0ai0k + a00kaij0 − ǫiltǫjmuatu0almk − ǫiltǫknvat0valjn − ǫjmuǫknva0uvaimn. (10d)

The tomographic process is thus constituted by the
thirty six mean values measured in individual and two-
qubit coincidences, and the sixty four equations (10),
that must be solved for aijk. The Linden, Popescu and
Wootters’ result guarantee the generic solution of the
whole set of equations.

Anyhow, the last set (10d) gives 27 linear equations
on the 27 unknowns aijk. In case they are linearly inde-
pendent, this specific set can give the complete solution.
We numerically checked such independence in all of hun-
dreds of random choices. However, as pointed out by the
authors of Ref. [3], there are exceptions, for states like

|GHZ (θ, ϕ)〉 = cos θ |000〉 + eiϕ sin θ |111〉 , (11)

with θ ∈
(

0, π
2

)

, in which the phase eiϕ is pairwise inac-
cessible, in the same sense as its analog in the two-qubit
states (1). Thus, all the exceptions are the states that,
for some choice of local basis, can be written as (11), since
for any other state, all the phases can be obtained with-
out involving triorthogonal basis vectors. In such case,
eqs. (10d) can not be linearly independent, but we con-
jecture that a more geometrical argument can show the
generic independence, and also point out the exceptions
(11).

A parameter counting shows how rare the exceptions
are. A vector in C

2⊗C
2⊗C

2 is given by 8 complex num-
bers (i.e.: 16 real numbers). Normalization and global
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phase reduce it to 14 real numbers. Local unitary oper-
ations are given by the action of SU (2) group in each
qubit[11]. SU (2) is parametrized by 3 real numbers (the
3 Euler angles, or the 3 components of a vector ~v for the
Lie algebraic parametrization U (~v) = exp {i~v · ~σ}), so
the orbit space has real dimension 5 (i.e.: 14− 3× 3)[7].
As the fase ϕ in (11) can be changed by local unitarities,
the GHZ family has just one parameter, θ. So it is like a
regular curve in a five dimensional manifold.

The protocol here presented can be described in the
following steps: first two-qubit measurements determine
the 36 mean values characterizing all the two-qubit re-
duced states (i.e.: the coefficients ai00, a0j0, a00k, aij0,
ai0k, and a0jk); then this experimental data is used as in-
put on the 27 linear equations (10d), and their solution
generically determines the 27 remaining coefficients aijk,
i.e.: generic three-qubit pure states are completely char-
acterized by these 27 calculated coefficients plus the 36
directly measured ones. In fact, we can check for the pu-
rity of the measured state using the obtained coefficients
to test the remaining 37 equations (10a, 10b, 10c). If any
of these “testing” equations is not satisfied (within exper-
imental precision), one should conclude that the original
state is mixed, and can not be determined with only 36
mean values.

Some other questions can be raised on this issue. Is
there any other tomographic process, restricted to two-
qubit detections, that can determine the state with fewer
measurements, without introducing new exceptions? Is

the optimal number of measurements, 14, achievable with
this kind of restriction? Recently Diósi [8] pointed out
that a generic tripartite pure state can be determined by
the knowledge of any two constituent pairs. Again this is
a generic result in which interesting exceptions arise. For
example, for three qubits, if an experimentalist decides
to directly access ρAB and ρBC , and the prepared state is
|ψ〉 = 1√

3
(|000〉+ |010〉 + eiϕ |111〉), it will be impossible

to determine the phase ϕ. It would be available, however,
at ρAC . In fact, it is an interesting problem to classify
the multipartite pure states by the partial information
necessary to completely determine them. Such a classi-
fication could help understanding the curious geometric
structure behind pure states.

In this paper we provide for a feasible experimental
prescription to completely characterize a generic three-
qubit pure state using only two-qubit detectors.
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