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Abstract

This short note is just a expanded version of [1], where it was obtained a
simple proof of Cayley-Hamilton’s Theorem via Cauchy’s Integral Formula.
We remark that non content here is new.

1 Introduction

The aim of this paper is twofold, to introduce the generalization of the Cauchy’s
Integral Formula for polynomial functions taking values in a square matrix space
and show the Cayley-Hamilton’s Theorem using this generalization of Cauchy’s
Integral Formula.

In the first section, we setup the notation and present the integral representa-
tion for polynomials of matrices that generalizes the Cauchy’s Integral Formula.
The proof of this integral representation it was divided in three lemmas. The
first and the second lemmas, as stated, are standard in the context of linear alge-
bra. We observe that the results still valid, with slight modifications for complex
functions taking values in any Banach algebra. The third lemma is about holo-
morphic functions in the complex plane. The Cayley-Hamilton Theorem is stated
and finally proved in the section 2, using the Lemma 3.

2 Integral Representation

We denote by Mn×n(C) the set of all n×nmatrices with complex entries. Through-
out this paper the identity matrix in Mn×n(C) is simply denoted by 1. If p(z) is
a polynomial with complex coefficients given by

p(z) =
n∑

j=0

ajz
j ,

it make sense to talk about p(A) for any A ∈ Mn×n(C), just by replacing the
complex variable z for the matrix A, obtaining

p(A) =
n∑

j=0

ajA
j .
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We will consider Mn×n(C) as a normed vector space, with the norm of A ∈
Mn×n(C), notation ‖A‖, given by

‖A‖ = max
1≤r,s≤n

|Ars|.

note that ‖A‖ is the standard maximum norm.

If Γ ⊂ C is a smooth curve and for w ∈ C the function

w 7→M(w) ∈Mn×n(C)

determines n2 holomorphic functions Mrs(w), where r, s ∈ {1, . . . , n}, then we can
define the integral of M(w) along Γ, as being an element of Mn×n(C), where for
all pairs of indexes r, s ∈ {1, . . . , n},(∫

Γ
M(w)dw

)
rs

=
∫

Γ
Mr,s(w)dw.

Lemma 1. Let be A ∈ Mn×n(C) and w ∈ {z ∈ C; |z| ≥ 2n‖A‖} then the matrix
series

∞∑
j=0

1
wj+1

Aj

converge in the maximum norm for a matrix L(w) ∈ Mn×n(C). Moreover each
one of its entries converge absolutely and uniformly( with respect to w), i.e. given
any ε > 0 there is k0 ∈ N such that, if k > k0 then∣∣∣∣∣∣Lrs(w)−

k∑
j=0

(Aj)rs

wj+1

∣∣∣∣∣∣ < ε

for all r, s ∈ {1, . . . , n} and w such that |w| ≥ 2n‖A‖.

Proof: It follows from the properties of the maximum norm that for any M,N ∈
Mn×n(C) we have the following inequality

‖M ·N‖ ≤ n‖M‖‖N‖.

Applying this inequality iteratively we obtain for all k ∈ N the inequality

‖Ak‖ ≤ nk‖A‖k. (1)

Fix r, s ∈ {1, . . . , n} and consider w ∈ {z ∈ C; |z| ≥ 2n‖A‖}. By the Triangular
Inequality, definition of maximum norm and (1) we have∣∣∣∣∣∣

k∑
j=0

(Aj)rs

wj+1

∣∣∣∣∣∣ ≤
k∑

j=0

|(Aj)rs|
|w|j+1

≤
k∑

j=0

nj‖A‖j

|w|j+1
≤ 1
|w|

k∑
j=0

(
n‖A‖
|w|

)j

. (2)
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Taking the limit when k goes to infinity we get from (2) that∣∣∣∣∣∣
∞∑

j=0

(Aj)rs

wj+1

∣∣∣∣∣∣ ≤ 1
|w|

∞∑
j=0

(
n‖A‖
|w|

)j

=
1
|w|
· 1

1− n‖A‖
|w|

=
1

|w| − n‖A‖

≤ 1
n‖A‖

.

Given ε > 0 and a pair of indexes r, s ∈ {1, . . . , n} and w ∈ {z ∈ C; |z| ≥ 2n‖A‖},
it follows from the above inequality that there exist k0(r, s) ∈ N(independent of
w) and a complex number Lr,s(w) such that, if k > k0(r, s)∣∣∣∣∣∣Lrs(w)−

k∑
j=0

(Aj)rs

wj+1

∣∣∣∣∣∣ < ε (3)

Let be k0 ≡ max
1≤r,s≤n

k0(r, s) and w ∈ {z ∈ C; |z| ≥ 2n‖A‖}, from (3) we have

∥∥∥∥∥∥L(w)−
k∑

j=0

Aj

wj+1

∥∥∥∥∥∥ = max
1≤r,s≤n

∣∣∣∣∣∣Lrs(w)−
k∑

j=0

(Aj)rs

wj+1

∣∣∣∣∣∣ < ε

if k > k0. Taking the limit when k goes to infinity in the above inequality we
obtain ∥∥∥∥∥∥L(w)−

∞∑
j=0

Aj

wj+1

∥∥∥∥∥∥ = lim
k→∞

∥∥∥∥∥∥L(w)−
k∑

j=0

Aj

wj+1

∥∥∥∥∥∥ ≤ ε
since ε is arbitrary positive number, we can take the limit when ε goes to zero and
the lemma is proved.

Lemma 2. Let be A ∈Mn×n(C) if w ∈ {z ∈ C; |z| ≥ 2n‖A‖}, then there exist the
inverse of (w1−A) and it satisfies

(w1−A)−1 =
∞∑

j=0

Aj

wj+1
(4)

Proof: By the Lemma 2, the series (4) converge in maximum norm to L(w) ∈
Mn×n(C). To show that L(w) = (w1−A)−1, since we are dealing with matrices,
it is enough to show that

(w1−A)
(
1

w
+

A

w2
+
A2

w3
+ . . .

)
= 1.
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This identity is obtained by expanding the product and using the convergence in
the maximum norm as follow

(w1−A)
(
1

w
+

A

w2
+
A2

w3
+ . . .

)
=
(
1 +

A

w
+
A2

w2
+ . . .

)
−
(
A

w
+
A2

w2
+ . . .

)
= 1.

Lemma 3. Let be A ∈ Mn×n(C) and Γ = {z ∈ C; |z| = 2n‖A‖}, then for all
k ∈ N we have

Ak =
1

2πi

∫
Γ
wk(w1−A)−1dw.

Proof: From the Lemma 2 we have

wk(w1−A)−1 = wk

(
1

w
+

A

w2
+
A2

w3
+ . . .

)

=
(
wk−11 + wk−2A+ . . .+

Ak

w
+
Ak+1

w2
+ . . .

)
.

Integrating both sides in Γ, diving by 2πi and using the uniform convergence to
change the order of the sum and the integral, we obtain

1
2πi

∫
Γ
wk(w1−A)−1dw =

1
2πi

∞∑
j=0

∫
Γ

Ak+1

wj−k+1
dw

=
∞∑

j=0

Ak+1 1
2πi

∫
Γ

1
wj−k+1

dw. (5)

Notice that for j ∈ {0, . . . , k − 1} the function 1/(wj−k+1) is holomorphic in the
open ball {z ∈ C; |z| < 2n‖A‖} (this function is in fact a polynomial so an entire
function), hence by the Morera’s Theorem we have

1
2πi

∫
Γ

1
wj−k+1

dw = 0.

For the other hand, if j = k we have

1
2πi

∫
Γ

1
wj−k+1

dw =
1

2πi

∫
Γ

1
w
dw = 1

and if j > k it follows from the Cauchy Integral Formula, for derivatives that

1
2πi

∫
Γ

1
wj−k+1

dw = 0.

Taking this integrations in account we get

∞∑
j=0

Ak+1 1
2πi

∫
Γ

1
wj−k+1

dw = Ak
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replacing the above equality in (5) it follows that

Ak =
1

2πi

∫
Γ
wk(w1−A)−1dw.

Theorem 4 (Cauchy’s Integral Formula). Let be A ∈ Mn×n(C) and Γ = {z ∈
C; |z| = 2n‖A‖} then

p(A) =
1

2πi

∫
Γ
p(w)(w1−A)−1dw

Proof: Apply the Lemma 3 and use the linearity of the integral.

3 Cayley-Hamilton Theorem

Theorem 5 (Cayley-Hamilton). Let A ∈ Mn×n(C) and p(z) = det(z1 − A) the
characteristic polynomial of A then

p(A) = 0.

Proof: If w ∈ {z ∈ C; |z| < 2n‖A‖}, then we can express the elements (w1−A)−1
rs

as follow

(w1−A)−1
rs =

1
det(w1−A)

Crs(w),

where Crs(w) is the cofactor matrix of w1 − A. Recall that each Crs(w) is a
polynomial of degree at most n− 1 in the variable w, this fact will be used at the
end of the proof.

Applying the Cauchy integral Formula for the characteristic polynomial of A,
p(z) = det(z1−A), we get

p(A) =
1

2πi

∫
Γ

det(w1−A)(w1−A)−1dw.

We know that p(A)rs = 〈er, p(A)es〉, where 〈·, ·〉 is the canonical inner product of
vectors in Cn and {e1, . . . , en} is the standard base of Cn. By the linearity of the
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integral we have

p(A)rs = 〈er, p(A)es〉 =
〈
er,

1
2πi

(∫
Γ

det(w1−A)(w1−A)−1dw

)
es

〉

= − 1
2πi

〈
er,

(∫
Γ

det(w1−A)(w1−A)−1dw

)
es

〉

= − 1
2πi

∫
Γ

det(w1−A)
〈
er, (w1−A)−1es

〉
dw

= − 1
2πi

∫
Γ

det(w1−A)(w1−A)−1
rs dw

= − 1
2πi

∫
Γ

det(w1−A)
1

det(w1−A)
Crs(w)dw

= − 1
2πi

∫
Γ
Crs(w)dw

= 0.

since this identity is valid for all r, s ∈ {1, . . . , n} the theorem is proved.
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