Rigidity of complete minimal submanifolds in a Hyperbolic space

Hudson Pina de Oliveira * Universidade Federal de Mato Grosso - CUA

> Xia Changyu [†] Universidade de Brasília

Resumo

We prove some gap theorem for complete immersed minimal submanifold of dimension no less than six or four, depending on the codi- mension, in a hyperbolic space $\mathbb{H}^{n+m}(-1)$. That is, we show that a high dimensional complete immersed minimal submanifold M in $\mathbb{H}^{n+m}(-1)$ is totally geodesic if the L^d norm of |A|, for some d, on geodesic balls centered at some point $p \in M$ has less than quadratic growth and if either $\sup_{x \in M} |A|^2$ is not too large or the L^n norm of |A| on M is finite, were, A is the second fundamental form of M.

Referências

- S. Montiel: An integral inequality for compact spacelike hypersurfaces in the de Sitter space and applications to the case of constant mean curvature, Indiana Univ. Math. J. 37 (1988) 909-917.
- [2] N. M. B. Neto, Q. Wang and C. Xia: Rigidity of complete minimal hypersurfaces in a hyperbolic space, Ann. Acad. Sci. Fenn. Math. 40 (2015) 659-668.
- [3] H.O. Pina, C. Xia: Rigidity of complete minimal submanifolds in a hyperbolic space, Manuscripta Math. pp.1-10 (2018).
- Y. B. Shen, X. H. Zhu: On stable complete minimal hypersurfaces in Rⁿ⁺¹. Amer. J. Math. 120, 1998, 103-116.
- [5] S.-Y. Cheng and S.-T. Yau: Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces, Annals of Mathematics, 104 (1976), 407-419.
- [6] S. T. Yau: Submanifolds with constant mean curvature. Amer. J. Math. 96, 346-366(1974).

 $^{^{*}}hudsonpina@ufmt.br$

[†]xia@mat.unb.br