Stochastic half-space theorems for minimal surfaces and *H*-surfaces of \mathbb{R}^3

Leandro F. Pessoa Universidade Federal do Piauí - UFPI

Joint work with G. Pacelli Bessa and Luquésio P. Jorge Universidade Federal do Ceará - UFC

Resumo

In this talk we present a version of the strong half-space theorem between the classes of recurrent minimal surfaces and complete minimal surfaces with bounded curvature of \mathbb{R}^3 We also show that any minimal hypersurface immersed with bounded curvature in $M \times \mathbb{R}_+$ equals some $M \times \{s\}$ provided M is a complete, recurrent *n*-dimensional Riemannian manifold with $\operatorname{Ric}_M \geq 0$ and whose sectional curvatures are bounded from above. For H-surfaces we prove that a stochastically complete surface M can not be in the mean convex side of a H-surface N embedded in \mathbb{R}^3 with bounded curvature if $\sup |H_M| < H$, or dist(M, N) = 0 when $\sup |H_M| = H$. Finally, a maximum principle at infinity is shown assuming M has non-empty boundary.