Quasilinear Elliptic Problems: a variational approach

Anna Maria Candela Università degli Studi di Bari Aldo Moro (Italy)

In the last years we have investigated the existence of solutions of the quasilinear elliptic problem

(P)
$$\begin{cases} -\operatorname{div}(A(x,u)|\nabla u|^{p-2}\nabla u) + \frac{1}{p}A_t(x,u)|\nabla u|^p = g(x,u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega \end{cases}$$

with p > 1, Ω open bounded domain in \mathbb{R}^N $(N \geq 2)$, where the functions A(x,t), $A_t(x,t) = \frac{\partial A}{\partial t}(x,t)$ and g(x,t) are Carathéodory on $\Omega \times \mathbb{R}$.

Taking $G(x,t)=\int_0^t g(x,s)ds$, suitable assumptions on A(x,t) and g(x,t) set off the variational structure of (P) and its related functional is

$$\mathcal{J}(u) \ = \ \frac{1}{p} \ \int_{\Omega} A(x,u) |\nabla u|^p dx - \int_{\Omega} G(x,u) dx,$$

which is C^1 but not verifies the classical Palais–Smale condition on the Banach space $X=W^{1,p}_0(\Omega)\cap L^\infty(\Omega)$ equipped with the intersection norm $\|\cdot\|_X$.

Anyway, following an approach which exploits the interaction between $\|\cdot\|_X$ and the standard norm on $W_0^{1,p}(\Omega)$, we apply suitable generalizations of classical variational theorems to \mathcal{J} in X so to prove the existence of weak solutions of (P) by comparing the growth of $A(x,t)|\xi|^p$ with that one of G(x,t).

Recently, such results have allowed us to introduce an approximating argument for the quasilinear modified Schrödinger equation

$$-\text{div}(A(x,u)|\nabla u|^{p-2}\nabla u) + \frac{1}{n}A_t(x,u)|\nabla u|^p + V(x)|u|^{p-2}u = f(x,u) \quad \text{in } \mathbb{R}^N.$$

Under "good" hypotheses on potential $V: \mathbb{R}^N \to \mathbb{R}$, the existence of a non-trivial weak bounded solution of such a problem is stated, while if $V(x) \equiv 1$ a dichotomy result occurs.

In order to outline these results, this mini-course will be organized as follows:

- Main tools for a "classical" variational approach
- The Palais-Smale condition and its generalizations
- New setting for the Minimun Theorem and the Mountain Pass Theorem
- A good decomposition for the Sobolev space $W_0^{1,p}(\Omega)$
- \bullet Existence and multiplicity results for the quasilinear problem (P) in a bounded domain Ω
- Some results for a quasilinear modified Schrödinger equation in \mathbb{R}^N

Acknowledgements

Joint works with Giuliana Palmieri, Addolorata Salvatore and Caterina Sportelli. Supported by MUR-TNE project: "DeSK - Developing Shared Knowledge in Innovative Materials and Digital Transformation for Sustainable Economy and Green Transition".