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Section 1. Main notions

Fix a field F . If V is a vector space of
finite dimension over F , we denote by EndV
(sometimes EndF V ) the set of all linear
transformations V → V and by GL(V )
the subset of all invertible linear transfor-
mations. It is well known that EndV is a
ring and GL(V ) is a group.

Let n = dimV . A choice of a basis in V
identifies EndV with the matrix ringM(n, F )
and GL(V ) with the group GL(n, F ) of all
non-degenerate matrices with entries in F .
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Definition 1. Let S be a set.
A representation of S into EndV is a
mapping ρ : S → EndV .

If S is a group and ρ is a group
homomorphism S → GL(V ), one says
that ρ is a group representation.

If S is a ring and ρ : S → End(V ) is a
ring homomorphism, one says that ρ is a
ring representation.

The dimension dimV of V is called the
dimension or the degree of ρ.

In other words, ρ is a group representation
if S is a group and ρ(st) = ρ(s)ρ(t) for all
s, t ∈ S and ρ(s−1) = ρ(s)−1.
To specify F one says ”F -representation”.
UsingM(n, F ) in place of EndV , one can

similarly speaks on matrix representa-
tions. This sometimes is helpful as a
matrix can be explicitly written.
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Obviously, if T is a subset of S then ρ|T :
T → GL(V ) is a representation of T . If H
is a subgroup of a group G then
ρ|H → GL(V ) is a group representation of
H .

Let W be a subspace of V .
If ρ(s)W ⊆ W for all s ∈ S then
W is called S-stable or S-invariant.

Definition 2. Let ρ : S → EndV be a
representation of a set S.
One says that ρ is reducible if there is
an S-stable subspace W such that
0 ̸= W ̸= V ;
otherwise ρ is called irreducible.

Therefore, ρ is irreducible if ρ(S) stabilizes
no subspace of V except {0} and V itself.
Otherwise ρ is reducible.
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Suppose that ρ(S)W ⊆ W . For s ∈ S
one can consider the linear transformation
ρ(s)|W : W → W obtained from ρ(s) by
the restriction of this transformation to W .
Obviously, s → ρ(s)|W defines a mapping
S → EndW .
If S is a group then the mapping s → ρ(s)|W
for s ∈ S is a group representation
S → GL(W ).

If 0 ̸= W ̸= V then ρ|W is called a
subrepresentation of ρ.
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Matrix interpretation

Let ρ be a reducible matrix representation
of S and V the underlying space of matrices
in question. Then there is a basis of V under
which ρ has a block-triangular shape with
irreducible diagonal blocks, ρ1, . . . , ρk, say.

Indeed, there exists a string

0 = W0 ⊂ W1 ⊂ W2 ⊂ ... ⊂ Wk = V

of subspaces of V , such that Wi−1 ⊂ Wi is
a minimal ρ(S)-stable subspace of V that
contains Wi−1 for every i = 1, ..., k.
Then we can choose a basis B of V such
that B ∩Wi is a basis of Wi.

Next consider the matrices of ρ(S) under
this basis. Let g ∈ S. These are of shape
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ρ(g) =


ρ1(g) ∗ ∗ ... ∗ ∗
0 ρ2(g) ∗ ... ∗ ∗
... ... ... ... ... ...
0 0 ... ρi(g) ∗ ∗
... ... ... ... ... ...
0 0 0 ... 0 ρk(g)


Suppose that S = G is a group, and g, g′ ∈

G. Then ρi(gg
′) = ρi(g)ρi(g

′). This
implies that each ρi is a representation of
G. And ρi is irreducible as otherwise there
would be a G-stable subspace W ′

i such that
Wi−1 ⊂ W ′

i ⊂ Wi.

The representations ρi are called
irreducible constituents of ρ.
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The following lemma provides a useful test
for reducibility of a representation provided
the ground field is algebraically closed.

Lemma 3. Let F be an algebraically
closed field and S a set. Let
ρ : S → M(n, F ) be a representation,
and C an (n × n)-matrix with entries in
F . Suppose that C commutes with every
matrix in ρ(S).
If C is non-scalar then ρ is reducible;
equivalently, if ρ is irreducible then C is
scalar.

Proof. Let M(n, F ) act naturally on a
vector space V = Fn.
As F is algebraically closed, there exists
a non-zero vector v ∈ V such that
Cv = λv with λ ∈ F . (This is a standard
fact of linear algebra.) Then λ is called an
eigenvalue of C on V .
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Let W = {x ∈ V : Cx = λx}. This is a
subspace of V called the eigenspace of λ.

Then W ̸= 0 as 0 ̸= v ∈ W , and W ̸= V
as C is non-scalar.

Claim: W is S-stable.

Indeed, if w ∈ W then Cw ∈ W and
Cρ(s)w = ρ(s)Cw = ρ(s)λw = λρ(s)w.

As W consists of all vectors v ∈ V such
that Cv = λv, we conclude that
ρ(s)w ∈ W . So the result follows.

Corollary 4.Assume that G is an abelian
group and F is algebraically closed.
Then every irreducible F -representation
of G is 1-dimensional.

This is true for S in place of G if all
matrices of ρ(S) commutes with each other.
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Equivalent representations

Definition 5. Let S be a set and
ρ : S → GL(V ), σ : S → GL(W ) be two
representations.
One says that ρ is equivalent to σ if
there is a vector space isomorphism
E : V → W such that for every s ∈ S
and v ∈ V one has that

E(ρ(s)v) = σ(s)(E(v)).

In other words, ρ, σ are equivalent if
ρ(s)v = (E−1σ(s)E)v for all v ∈ V .

In matrix interpretation, representations
ρ : S → GL(n, F ), σ : S → GL(m,F )
are equivalent if m = n and there exists a
non-degenerate matrix E such that ρ(s) =
E−1σ(s)E. In other words, ρ and σ are
equivalent if there are bases in V and W
relative to which the matrix of ρ(s) coincides
with the matrix of σ(s) for every s ∈ S.
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Lemma 6. (Schur’s lemma) Let F be
a field, ρ : S → EndV , σ : S → EndW be
irreducible representations of S. Let C :
V → W be a linear mapping.
Suppose that for every s ∈ S and
v ∈ V one has C(ρ(s)v) = σ(s)(C(v)).
Then either C = 0 or C is invertible.
In the latter case ρ and σ are equivalent.

Proof. Let V1 = kerC and W1 = CV.
Then V1 is ρ(G)-stable and W1 is τ (G)-
stable. Indeed, let g ∈ G. Then

Cρ(g)V1 = σ(g)CV1 = 0
and σ(g)CV = Cρ(g)V = W1. Let C ̸= 0.
Then W1 ̸= 0 and V1 ̸= V. Then W1 = W
as σ is irreducible. Hence C is surjective.

We have V1 = 0 as ρ is irreducible. Hence
C is injective. Therefore, C is bijective so
C−1 exists. Then C−1σ(g)C = ρ(g) so ρ
and σ are equivalent.
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Section 2: Averaging

From now on G is a finite group. We
denote by |G| the order of G.

Let ρ : G → GL(V ) be a representation
of G. Define

V G = {v ∈ V : hv = v for all h ∈ G.}
The subspace V G is often called the fixed
point subspace of G in V , or the space
of G-invariants in V .

Consider the mapping µ : V → V defined
for v ∈ V as follows: µ(v) =

∑
g∈G ρ(g)v.

Let p ≥ 0 be the characteristic of the
ground field F .
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Lemma 7. (1) µ(V ) ⊆ V G.

(2) If |G| is not a multiple of |p| then
µ(V ) = V G.

Proof. (1) Let h ∈ G. Then the mapping
G → G defined by g → hg for g ∈ G is
bijective. Therefore,

ρ(h)
∑
g∈G

ρ(g)v =
∑
g∈G

ρ(hg)v =
∑
g∈G

ρ(g)v.

(2) Take v ∈ V G. Then gv = v for every
g ∈ G. So µ(v) = v + ... + v = |G| · v.
The right hand side is non-zero as |G| is

not a multiple of p. Then

v = |G|−1µ(v) = µ(|G|−1v).
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Let V,W be two vector spaces and let
ρ : G → GL(V ), σ : G → GL(W ) be two
representations of a finite group G.

For a linear mapping T : V → W we set

T̃ =
∑
g∈G

ρ(g)Tσ(g−1).

In matrix terms this can be expressed as
follows.

Let ρ : G → GL(n, F ), σ : G → GL(m,F )
be two matrix representations of G.

Let T be an (n×m)-matrix. Then

T̃ =
∑
g∈G

ρ(g)Tσ(g−1).

IfM(n×m,F ) denote the set of all (n×m)-
matrices then T̃ is a linear transformation of
the vector space M(n×m,F ).
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Theorem 8. Let h ∈ G. Then
ρ(h)T̃ = T̃ σ(h).

Proof. Let h ∈ G. As in Lemma 7,

ρ(h)T̃ = ρ(h)
∑
g∈G

ρ(g)Tσ(g−1) =

=
∑
g∈G

ρ(hg)Tσ(g−1) =

=
∑
g∈G

ρ(hg)Tσ(g−1h−1h) =

=
∑
g∈G

ρ(hg)Tσ(g−1h−1)σ(h) =

=
( ∑
g∈G

ρ(hg)Tσ((hg)−1)
)
σ(h) =

=
( ∑
g∈G

ρ(g)Tσ(g−1)
)
σ(h) = T̃ σ(h).

This argument mimics the proof of Lemma 7.
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Theorem 9. Let ρ : G → GL(n, F ) and
σ : G → GL(m,F ) be irreducible
representations of a finite group G.

(1) If ρ and σ are not equivalent then
T̃ = 0 for any matrix T ∈ M(n×m,F ).

(2) Suppose that F is algebraically closed.
If ρ = σ then T̃ is scalar. In addition, if
T̃ = λ · Id then nλ = |G| · Trace (T ).

Proof. (1) follows from Theorem 8 and
Schur’s lemma 6.

(2) Similarly, the first assertion in (2)
follows from Theorem 8 and Lemma 3.

To obtain the formula for λ, compute the
trace of the both sides of the equality

T̃ =
∑

g∈G ρ(g)Tρ(g−1).

We have nλ = |G| ·Trace (T ) as the trace
of ρ(g)Tρ(g−1) is equal to the trace of T .
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Section 3: Orthogonality relations

Theorem 10.Let ρ : G → GL(n, F ) and
σ : G → GL(m,F ) be non-equivalent
irreducible representations of G,
and g ∈ G. Let

ρ(g) =

f11(g) · · · f1n(g)
· · · · · · · · ·

fn1(g) · · · fnn(g)


and

σ(g) =

 t11(g) · · · t1m(g)
· · · · · · · · ·

tm1(g) · · · tmm(g)

 .

Then ∑
g∈G

fij(g)tkl(g
−1) = 0

for all choices i, j, k, l where 1 ≤ i, j ≤ n,
1 ≤ k, l ≤ m.
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Proof. Let Ejk denote the (n×m)-matrix
with (j, k)-entry equal to 1 and 0 elsewhere.
Here 1 ≤ j ≤ n, 1 ≤ k ≤ m.

0 · · · 0 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 0 · · · 0
0 · · · 0 1jk 0 · · · 0
0 · · · 0 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 0 · · · 0


.

Then the (i, k)-entry of ρ(g)Ejkσ(g
−1) equals

fij(g)tkl(g
−1).
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Set

Ẽjk =
∑
g∈G

τ (g)Ejkρ(g
−1).

By Theorem 8, τ (h)Ẽjk = Ẽjkρ(h) for
each h ∈ G.
By Lemma 6, Ẽjk is the zero matrix

so the (i, l)-entry of it is equal to 0.
Therefore∑

g∈G
fij(g)tkl(g

−1) = 0.

As i, l and j, k are arbitrary, the formula

holds for every choice of i, j, k, l.
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Theorem 11. (Orthogonality relations for
the matrix entries of an irreducible
representation)

Let G be a group of finite order d and
let ρ : G → GL(n, F ) be an irreducible
representation. For g ∈ G we write

ρ(g) =

f11(g) · · · f1n(g)
· · · · · · · · ·

fn1(g) · · · fnn(g)

 .

Assume that F is an algebraically closed
field either of characteristic 0 or of
characteristic p ̸= 0 coprime to d. Then

∑
g∈G

fij(g)fkl(g
−1) =

{
0 if (i, j) ̸= (l, k)
d
n otherwise.

In addition, n is coprime to p.
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Proof. For 1 ≤ i ≤ n let Ejk denote
the (n × n)-matrix with (j, k)-entry 1 and
0 elsewhere. Set

N = Ẽjk =
∑
g∈G

ρ(g)Ejkρ(g
−1).

By Theorem 8, ρ(h)N = Nρ(h) for each
h ∈ G. By Schur’s lemma, N = λ · Id .
By Theorem 9, the trace of N is equal to
nλ = d·Trace (Ejk), where d = |G|. Clearly,
Trace (Ejk) = 0 if j ̸= k and d otherwise.
Therefore, if j ̸= k then

Nil = 0 =
∑

g∈G fij(g)fkl(g
−1).

Let j = k. Then Nil = 0 if i ̸= l. Let i =
l. Then Trace (Ejk) = 1 and nλ = d. This
is an equality in F , so n ̸= 0 as an element
in F . In particular, p does not divide n.
Furthermore,∑

g∈G fij(g)fji(g
−1) = Nii = λ = d/n.
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Corollary 12.Assume F,G to be as in
Theorem 11.
Let ρ = ρ(1), . . . , ρ(k) be pairwise non-
equivalent irreducible representations of

G, and let f
(l)
ij (g) be the (i, j)-entry

function of ρ(l).

Then f
(l)
ij (g) are linear independent as

functions on G.

Proof. Suppose the contrary, that there
are clij ∈ F such that

∑
ijl c

l
ijf

l
ij(g) = 0,

where at least one of the coefficients, say,

cl
′
i′j′ is not 0. Then

0 =
∑
g

(
∑
ijl

clijf
l
ij(g)f

l′
j′i′(g

−1)) =

=
∑
ijl

clij(
∑
g

f lij(g)f
l′
j′i′(g

−1)) = cl
′
i′j′d/n,

which is a contradiction.
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Let F(G) denote the vector space of all
functions on a finite group G.
Then dimF(G) = |G|. Therefore, the total
number of the functions f

(l)
ij (g) does not

exceed |G| as they are linear independent
by Corollary 12.
The number of these functions is equal to

(dim ρ1)
2 + · · · + (dim ρl)

2.

It follows that

(*) the sum of squares of the dimensions
of pairwise non-equivalent irreducible
representations of G over a field F does not
exceed |G|.
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Section 4: Characters of representations

Definition 13. Let ρ : G → GL(n, F ) be
a representation and let

ρ(g) =

f11(g) · · · f1n(g)
· · · · · · · · ·

fn1(g) · · · fnn(g)

 .

The function χ : G → F defined by

χ(g) = f11(g) + f22(g) + · · · + fnn(g)

is called the character of ρ.

Note that χ(g) is the trace of the matrix
ρ(g).

Observe that characters are constant on
the conjugacy classes of G.
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Lemma 14.The characters of equivalent
representations coincide.

Proof. If ρ, σ are equivalent representa-
tions then we can assume that

ρ(G), σ(G) ∈ GL(n, F ) and ρ(g) = Xσ(g)X−1

for some invertible matrix X ∈ GL(n, F ).
It is well known that the traces of similar
matrices coincide, whence the result.

(One can also argue as follows.
If ρ : G → GL(V ) and σ : G → GL(W )
are equivalent then there are bases in V,W
relative to which the matrices ρ(g) and σ(g)
coincide for every g ∈ G.)

The term ”irreducible character” means the
character of an irreducible representation.
Note that the character theory is the same

for arbitrary algebraically closed field F of
characteristic 0, so one can choose F = C
with no generality lost.
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Orthogonality relations
for irreducible characters

In this section and later G is a group of
order d and F is an algebraically closed field
of characteristic 0 or p > 0 coprime to d.

Let F(G) be the space of all functions
G → F . Functions on G that are constant
on every conjugacy class of G are called
class functions. They form a subspace of
F(G); the dimension of it equals the num-
ber of conjugacy classes of G.
Given two functions s, t ∈ F(G), we set

⟨s, t⟩ = 1

d

∑
g∈G

s(g)t(g−1).

This defines a mapping F(G)×F(G) → F
called the inner product of the functions s
and t. Note that ⟨·, ·⟩ is a bilinear form on
F(G).
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Theorem 15. (Orthogonality relations for
irreducible characters)

Let χ, η be irreducible characters of a
finite group G. Let d be the order of G.
Then

⟨χ, η⟩ = 1

d

∑
g∈G

χ(g)η(g−1) =

{
0 if χ ̸= η,

1 otherwise.
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Proof. Let ρ, σ be representations whose
characters are χ, η, respectively, and n,m
their dimensions. Let fij, tkl denote the
matrix entry functions of ρ and σ,
respectively. Then

χ = f11 + f22 + · · · + fnn,
η = t11 + t22 + · · · + tmm

so ⟨χ, η⟩ =
∑

ij⟨fii, tjj⟩.
If ρ, σ are not equivalent then ⟨fii, tjj⟩ = 0
by Theorem 10 and the result follows.

If ρ, σ are equivalent then we can assume
that ρ = σ (see Lemma 14). Then n is
coprime to p and

⟨fii, fjj⟩ =

{
0 if i ̸= j

1/n if i = j,

by Theorem 11. So

⟨χ, η⟩ =
∑n

i ⟨fii, fii⟩ = 1.
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Theorem 16. Let χ1, . . . , χk be the
characters of non-equivalent irreducible
representations of G. Then χ1, . . . , χk
are linear independent functions on G.

Proof. Suppose the contrary, that
f = a1χ1 + · · · + akχk = 0 for some
a1, . . . , ak ∈ F and ai ̸= 0 for some i with
1 ≤ i ≤ k. Then

0 = ⟨f, χi⟩ = ⟨χi, χi⟩ = ai ̸= 0,

by Theorem 15. This is a contradiction.

Observation: The character of a reducible
representation ρ is the sum of the characters
of the irreducible constituents of ρ.

This is clear from a matrix shape of a
reducible representation. Indeed, we have
seen that a reducible representation can be
written in a matrix interpretation as
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ρ(g) =


ρ1(g) ∗ ∗ ... ∗ ∗
0 ρ2(g) ∗ ... ∗ ∗
... ... ... ... ... ...
0 0 ... ρi(g) ∗ ∗
... ... ... ... ... ...
0 0 0 ... 0 ρk(g)


So the trace of ρ(g) is the sum of the traces

of ρ1(g), . . . , ρk(g).

Let σ be some irreducible representation
of G.
The numberm of terms in the set ρ1, . . . , ρk
that are equivalent to σ is called the
multiplicity of σ in ρ.
If none of ρ1, . . . , ρk is equivalent to σ, one
says that the multiplicity of σ in ρ is 0.
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Lemma 17. Suppose that F is of charac-
teristic 0. Let ρ, σ be representations of
G and let χ, ν be their characters.
Suppose that τ is irreducible. Then the
multiplicity of σ in ρ is equal to ⟨χ, ν⟩.

Proof. ρ can be transformed to a block-
triangular shape with irreducible diagonal
constituents, ρ1, . . . , ρk, say. Then
χ = χ1+ · · ·+χk where χj is the character
of ρj for j = 1, . . . , k.
Equivalent representations have the same
characters. Therefore, if m constituents are
equivalent to σ then χ = mν+ the
characters χj of the constituents that are
not equivalent to σ. By Theorem 15,

⟨χ, ν⟩ =
∑

j⟨χj, ν⟩ = m.

If F is of characteristic p > 0 then ⟨χ, ν⟩
cannot be interpreted as the multiplicity of
σ in ρ which is a natural number.
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Section 5: Properties of characters

Regular representation

We need the notion of a regular character.
For this consider the permutation
representation π of G on itself, given by

π(g) : h → gh (h ∈ G).
Let V be a vector space with basis bh (h ∈

G) on which g acts by sending bh to bgh.
Then the representation ρreg : G → GL(V )
given by bh → bgh is called the regular
representation of G.
We denote by χreg the character of ρreg.
The matrices of ρreg permute the basis

elements bh of V , and if g ̸= 1 then gbh ̸= bh
for every bh as gh ̸= h, and hence
gbh = bgh ̸= bh.
In this basis the matrices of ρreg(G) are so
called permutational matrices. Their
entries are 0, 1, and every row and every
column has exactly one entry equal to 1.
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Lemma 18. Let g ∈ G. Then

χreg(g) =

{
|G| if g = 1

0 otherwise.

Thus, χreg vanishes on G \ 1.

Theorem 19. Let F be an algebraically
closed field of characteristic 0.
Then every irreducible representation ρ
of G is a constituent of the regular
representation ρreg of G; the multiplicity
of ρ in ρreg is equal to dim ρ.

Proof. Let χ be the character of ρ and
d = |G|. Then

⟨χreg, χ⟩ =
1

d

∑
g∈G

χreg(g)χ(g) =

=
1

d
χreg(1)χ(1) = χ(1),

and the result follows.
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Theorem 20.Let F be an an algebraically
closed field of characteristic 0. Let
m1, . . . ,mk be the dimensions of the
irreducible representations ρ1, . . . , ρk of G.
Then

m2
1 + · · · +m2

k = |G|.
Proof. As |G| is the dimension of the

regular representation of G, we have |G| =
m2

1 + · · · +m2
k.
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Irreducible character basis
in the space of class functions

Let F be an algebraically closed field of char-
acteristic 0, and let F(G) be the set of all
functions G → F .
Recall that F(G) is a vector space over F .

Let ρ1, . . . , ρk be a maximal set of
irreducible representations ofG such that ρi

and ρj are non-equivalent for i ̸= j.
Let m1, . . . ,mk be their dimensions.

Theorem 21.The matrix entry functions
ρlij (1 ≤ i, j ≤ ml, l = 1, . . . , k) of these

representations constitute a basis in F(G).

Proof. By Corollary 12, the matrix entries
of ρ1, . . . , ρk are linear independent func-
tions on G. The number of these is equal
to m2

1 + · · · +m2
k = d where d = |G| (see

Theorem 20). As dimF(G) = d, the claim
follows.
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The number of irreducible characters

Lemma 22. Let ρ, τ : G → GLn(F ) be
equivalent irreducible representations of
G. Then each τij(g) is a linear combi-
nation of ρkl(g) for 1 ≤ i, j, k, l ≤ n.
In other words, the subspaces spanned by
ρij(g) and by τij(g) coincide.

Proof. As ρ and τ are equivalent, there is
a non-degenerate matrixA such that ρ(g) =
Aτ (g)A−1. So the claim follows.

Keep F to be an algebraically closed field
of characteristic 0.
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Lemma 23. Let ρ(1), . . . , ρ(k) be a
maximal set of irreducible representations
of G such that ρ(i) and ρ(j) are
non-equivalent for i ̸= j.

Let Fi(G) denote the F-span of ρ
(i)
kl (g) in

F(G) (where 1 ≤ k, l ≤ dim ρ(i)). Then

F(G) = F1(G)⊕ · · · ⊕ Fk(G)

(the direct sum of subspaces).

Moreover, if f (g) ∈ Fi(G) and h ∈ G
then f (hgh−1) ∈ Fi(G).

Proof. The first claim follows from
Theorem 21 as functions ρ

(i)
kl (g) are linear

independent.
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The second one follows from Lemma 22.
Indeed,

f (hgh−1) =
∑
kl

c
(i)
kl ρ

(i)
kl (hgh

−1) =

=
∑
kl

c
(i)
kl (ρ

(i)(hgh−1))kl =

=
∑
kl

c
(i)
kl (ρ

(i)(h)ρ(i)(g)(ρ(i)(h)−1))kl.

As h is fixed here, the mapping

g → (ρ(i)(h)ρ(i)(g)(ρ(i)(h)−1))

is a representation of G equivalent to ρ(i),
whence the claim.
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Lemma 24. Let f ∈ F(G) be a class
function. Express f =

∑
fi where fi ∈

Fi(G) ( see Lemma 23). Then each fi is
a class function.

Proof. Let h ∈ G. As f is a class function,
f (g) = f (hgh−1). So

0 = f (g)−f (hgh−1) =
∑
i

(fi(g)−fi(hgh
−1)).

Set f ′i = fi(g)− fi(hgh
−1). By Lemma 23,

f ′i ∈ Fi(G) whence f ′i = 0 as F(G) is the
direct sum of Fi(G) (1 ≤ i ≤ k). Hence
f (g) = f (hgh−1) for any h ∈ G, that is,
fi(g) is a class function.

Let f11(x), f12(x), . . . , fnn(x) denote the
entries of a matrix x ∈ M(n,C). We wish
to view fij as a mapping M(n, F ) → F
which corresponds fij(x) to every matrix x.
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If ρ : G → GL(n, F ) is a representation
then fij(g) can be viewed as the composi-
tion of the mappings ρ : G → GL(n, F )
and x → fij(x). The advantage of this
viewpoint is that for g, g′ ∈ G the expres-
sion fij(ρ(g) + ρ(g′)) is not meaningless.

In Lemma 25 we shall use a particular
case of Theorem 9 which states that T̃ =
|G|
n TraceT · Id, where T is a matrix and T̃ is∑
h∈G ρ(h)Tρ(h−1). For T = ρ(g) we have

T̃ =
|G|
n χ(g) · Id where χ is the character of

ρ.

Lemma 25. Let ρ : G → GL(n, F ) be
an irreducible representation with entry
functions f11(g), f12(g), . . . , fnn(g).
Let α be a class function on G such that
α =

∑
i,j cijfij(g) with cij ∈ F .

Then α(g) = cχρ(g) for some c ∈ F ,
where χρ is the character of ρ.
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Proof. Compute 1
|G|

∑
h∈Gα(hgh−1) for

h ∈ G. Clearly, it is equal to α(g) as α is a
conjugacy class function. So

α(g) =
1

|G|
∑
h∈G

∑
i,j

cijfij(hgh
−1) =

=
1

|G|
∑
h∈G

∑
i,j

cij(ρ(hgh
−1))ij

=
1

|G|
∑
i,j

cij(
∑
h∈G

ρ(hgh−1))ij.

The internal sum
∑

h∈G ρ(hgh−1) is a ma-
trix Tg, say, which commute with every ρ(t)
for t ∈ G (Theorem 8). As ρ is irreducible,
by Schur’s Lemma Tg is scalar, say, Tg =
λ(g) · Id. Therefore, (Tg)ij = 0 if i ̸= j
while (Tg)ii = λ(g).

41



Hence∑
ij

cij(
∑
h∈G

ρ(hgh−1))ij =

=
∑
ij

cij(
∑
h∈G

ρ(h)ρ(g)ρ(h−1))ij =

=
∑
i

ciiλ(g) = λ(g) ·
∑
i

cii.

We use an abbreviature ”tr” for ”trace”. Let
d = |G|. Observe that

tr(Tg) = nλ(g) =
∑

h∈G tr(ρ(hgh−1)) = d · χ(g)
(Theorem 9). Therefore,

α(g) =
1

d
(
∑
i

cii)·
d

n
χ(g) =

1

|n|
(
∑
i

cii)·χ(g)

as desired.
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Theorem 26.The characters of
non-equivalent irreducible representations
of G form a basis in the vector space of
class functions.

Proof. Let f be a class function. By The-
orem 21 and Lemma 24, f =

∑
fi where

fi ∈ Fi(G). By Lemma 25, fi(g) = ciχi(g)
where χi is the character of ρi and c ∈ C.
Therefore, f =

∑
i ciχi. Thus, the space of

class functions is spanned by the irreducible
characters. So the result follows as the irre-
ducible characters are linear independent.

The following fact is another arithmetic
property of irreducible characters which is
valid for arbitarary finite group.

Corollary 27.The number of irreducible
characters of G is equal to the number of
conjugacy classes in G.
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Character values

Observation. Let χ be a character of a
finite group G, n = χ(1) and g ∈ G. Then
χ(g) is a sum of n |g|-roots of unity.
Proof. Let H be the cyclic group

generated by g, so |H| = |g|. Let ρ be a
representation afforded by χ, and let τ be
the restriction of ρ to H . Then τ is a rep-
resentation of a cyclic group H .
To prove the observation, we can include
the ground field F to an algebraically closed
field and assume F algebraically closed. So
τ can be assumed to have an upper triangle
form
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τ (g) =


τ1(g) ∗ ∗ ... ∗ ∗
0 τ2(g) ∗ ... ∗ ∗
... ... ... ... ... ...
0 0 ... τi(g) ∗ ∗
... ... ... ... ... ...
0 0 0 ... 0 τk(g)


where τ1, . . . , τk are irreducible constituents
of τ . As H is abelian, every irreducible
representation of H is one dimensional.
In particular, dim τ1 = ... = dim τk = 1.
Then we conclude that it suffices to prove
the observation for a one dimensional repre-
sentation.
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Consider τ1 : H → GL1(F ). If |g| = m,
say, then τ1(g

m) = τ1(1) = 1 and τ1(g
m) =

τ1(g)
m as τ1 is group homomorphism. Hence

τ1(g)
m = 1. So τ1(g) is an m-root of unity.

This completes the proof.

Recall that the fact that every irreducible
representation of an abelian group is one di-
mensional is true for infinite abelian group
as well, and it is also true when S consists
of pairwise commuting matrices. Therefore,
a well known theorem of linear algebra say-
ing that every matrix over an algebraically
closed field is similar to an upper triangular
matrix follows from Schur’s lemma.
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Character table

Let G be a finite group of order d. If one
fixes an ordering of the group elements as,
say, g1, . . . , gd, then a character χ of G can
be viewed simply as a row of the values
χ(g1), . . . , χ(gd). However, there could be
a lot of repetitions in this row as
characters are constant on the conjugacy
classes.
Let C1, . . . , Ck be the conjugacy classes of
G. We can write χ(C1), . . . , χ(Ck) instead
of χ(g1), . . . , χ(gk), where χ(Ci) = χ(g) for
g ∈ Ci.
Let χ1, . . . , χk be the distinct irreducible
characters of G.
In both the cases k is the same as the
number of irreducible characters equals the
number of conjugacy classes of G.
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We can build a matrix X(G) with entris
χi(Cj) with 1 ≤ i, j ≤ k. This matrix is
called the character table of G.

The character table depends on ordering
both of the conjugacy classes and of the
irreducible characters.

There is no canonical ordering except that
the first row is reserved for the trivial
character and the first column for the
character values at the group identity.

X(G) =


1 1 · · · 1

χ2(1) χ2(g2) · · · χ2(gk)
· · · · · · · · · · · ·
χk(1) χk(g2) · · · χk(gk)

 .

To perform a computation of the inner
product of two characters χ, χ′ in a simpler
way, one needs to hold in mind the size di
of each conjugacy class Ci, i = 1, . . . , k.
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⟨χ, χ′⟩ =
∑
g∈G

χ(g)χ′(g−1) =

=

k∑
i=1

diχ(gi)χ
′(g−1

i )

where gi ∈ Ci.

Sometimes one adds to the character table
some extra rows or columns in which some
additional information is recorded. The row
d1, . . . , dk of the class sizes is one of the
most useful.

There is a large format book with title
”Atlas of finite group” which contains near
100 character tables for most important
finite groups. The largest character table ex-
posed there consists of 247 rows and columns.
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Example. Let G = S3 be the symmet-
ric group. There are 3 conjugacy classes
C1, C2, C3 and 3 irreducible characters
χ1, χ2, χ3. According to the above conven-
tion, C1 is the class of the identity element,
and χ1 is the trivial character. Then

X(G) =

1 1 1
1 −1 1
2 0 −1

 .

The character table with extra information
is often given as follows (where the first row
records the sizes of Ci:

1 3 2
C1 C2 C3

χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1
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Here is more complex example forG = S5,
the symmetric group of 5 letters. This group
has 7 conjugacy classes, so the table is a
(7× 7)-matrix.

1 1 1 1 1 1 1
1 -1 1 1 -1 -1 1
4 2 0 1 -1 0 -1
4 -2 0 1 1 0 -1
5 -1 1 -1 -1 -1 0
5 1 1 -1 1 -1 0
6 0 -2 0 0 0 1

To this, one can add a row with the order
of elements in each of 7 conjgacy classes of
S5; these are 1, 2, 3, 4, 5, 6, 10; and the sizes
di of them which are 1, 10, 15, 20, 20, 30, 24.
In an additional column one can record the
lable (or the number) of a character, say,
χ1, . . . , χ7.
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Let

D =


d1 0 · · · 0
0 d2 · · · 0
· · · · · · · · · · · ·
0 0 · · · dk


be the diagonal matrix with d1, . . . , dk at
the diagonal. (Recall that these are the sizes
of the conjugacy classes.) In addition, define
X(G)∗ to be the matrix with (i, j)-entries
χj(g

−1
i )). In other words,

X(G)∗ =


1 χ2(1) χ2(1) · · · χk(1)

1 χ2(g
−1
2 ) χ3(g

−1
2 ) · · · χk(g

−1
2 )

· · · · · · · · · · · ·
1 χ2(g

−1
k ) χ3(g

−1
k ) · · · χk(g

−1
k )

 .

Then the orthogonal relations for
irreducible characters can be converted to
the matrix form as follows:
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X(G)DX(G)∗ = |G| · Id .
It follows that the matrix X(G) is
non-degenerate hence invertible. Therefore,

X(G)∗X(G) = |G| ·D−1,

which is called the
second orthogonality relations
for the irreducible characters. Observe that
the right hand side matrix is diagonal with
diagonal entries ci = d/di for i = 1, . . . , k.
The second orthogonality relations can be

expressed as follows:

k∑
i=1

χi(g
−1)χi(h) =

{
ci if g, h ∈ Ci

0 otherwise.

This can be viewed as relations between the
columns of matrix X(G).

53



The numbers ci are the orders of certain
subgroups of G. Namely, set
CG(g) = {x ∈ G : xg = gx}.
This is a subgroup called the centralizer
of g in G.

Observe that the conjugacy classes are the
orbits of G in its conjugacy action on itself.

Indeed, for x ∈ G define a permutation
α(x) : G → G by α(x)g = xgx−1. Then
the action in question is the homomorphism
x → α(x).
As xg = gx is equivalent to xgx−1 = g,
the group CG(g) is the stabilizer of g in
G under the conjugation action. It follows
that di · |CG(gi)| = |G| for any gi ∈ Ci so
|CG(g)| = d/di = ci.
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Product of conjugacy classes

Recall that a polynomial with leading co-
efficient equal to 1 is called monic.

Definition 28.A complex number is called
an algebraic integers is it is a root of
a monic polynomial with integer
coefficients.

Below Z denote the ring of integers, and

C the complex number field.

Lemma 29. Let a, b1, . . . , bm ∈ C be
non-zero integers. Suppose that

abi =

m∑
v=1

zijbj

for each i = 1, . . . ,m and for some
zij ∈ Z. Then a is an algebraic integer.
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Proof. Set M = (zij) so M is a (m×m)-
matrix. Denote by B the column vector
with coordinates b1, . . . , bm.
The equalities in the lemma can be expressed
as (a ·Idm−M)B = 0 where Idm stands for
the identity (m×m)-matrix.
It is known from linear algebra that this is
only possible if det(a · Idm−M) = 0.
It follows that a is a root of the
characteristic polynomial of M which is
obviously monic and with coefficients in Z.
Lemma 30. Let r, t ∈ C be two algebraic
integers. Let rn ∈

∑n−1
i=0 Z ri and tm ∈∑m−1

i=0 Z tj. Then

K :=

n−1∑
i=0

m−1∑
j=0

Z ritj

is a subring of C, and K consists of
algebraic integers.
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Proof. It is quite clear that one has only
to check that rK ⊆ and tK ⊆ K which
is obvious. It follows that from Lemma 29
thatK consists of algebraic integers (choose
{ritj}0≤i<n,0≤j<m for b1, . . . , bk and
a ∈ K).

Theorem 31.Algebraic integers form a
subring of C.

Proof. Let r, t be algebraic integers. Let
n,m,K be as in Lemma 29, in particular,
K is a subring ofC and r, t ∈ K. As−r, r+
t, rt ∈ K, the result follows.
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Lemma 32. Let χ be a character of a
finite group G. Then the values χ(g) are
algebraic integers for every g ∈ G.

Proof. We already know that χ(g) is a
sum of |g|-roots of unity. As algebraic
integers form a ring, the lemma follows.

Lemma 33. Let Q denote the set of
rational numbers. Then algebraic
integers in Q are ordinary integers.

Proof. Let q ∈ Q be an algebraic
integer. Write q = l/m where l,m are
ordinary integers coprime to each other.
Suppose m ̸= ±1. As
qn = zn−1q

n−1 + · · · + z1q + z0 for some
n and integers zn−1, . . . , z0, it follows that
ln
m = zn−1l

n−1+ · · ·+mn−2z1l+mn−1z0.
Then the right hand side is an integer and
the left hand side is not.
This is a contradiction.
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Let C1, . . . , Ck be the conjugacy classes
of G. For classes Ci, Cj and g ∈ G
denote by Cij(g) the set of all pairs (x, y)
such that x ∈ Ci, y ∈ Cj and xy = g.

Let mij(g) be the number of elements in
Cij(g). Then the function g → mij(g) is
constant on the conjugacy classes.

Indeed, if g′ = hgh−1 then Cij(g
′) con-

sists of (hxh−1, hyh−1), and the mapping
(x, y) → (hxh−1, hyh−1) yields a
bijection between Cij(g) and Cij(g

′).
Therefore, one can replace mij(g) by ml

ij
as the former number depends on Cl rather
than on g ∈ Cl. (One can think of ml

ij as

the multiplicity of Cl in CiCj.)
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Lemma 34.Let F be an algebraically closed
field. Let ρ be an irreducible
representation of G of dimension n.
For gi ∈ Ci set Θi =

∑
x∈Ci

ρ(x).

(1) Θi = θi · Id where θi =
diχ(gi)

n .

(2) ΘiΘj =
∑k

l=1m
l
ijΘl and

θiθj =

k∑
l=1

ml
ijθl.

(3) Suppose that F is of characteristic
0. Then θ1, . . . , θk are algebraic integers.

Proof. Set ci = |CG(g)| and di = |Ci| for
g ∈ Ci, so cidi = |G|.
(1) Let T = ρ(g) and

T̃ =
∑

h∈G ρ(h)ρ(g)ρ(h)−1 =
∑

h∈G ρ(hgh−1).

Let g ∈ Ci. Then T̃ = ciΘi. By Theorem

9, T̃ =
|G|·χ(g)

n · Id. As di = |G|/ci, the
result follows.
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(2) ΘiΘj =
∑

x∈Ci,y∈Cj
ρ(x)ρ(y) =

=
∑

x∈Ci,y∈Cj
ρ(xy) =

∑
lm

l
ij

∑
g∈Cl

ρ(g)

=
∑

lm
l
ijΘl.

(3) This follows from Lemma 29 if one
takes θi = a and θ1 = b1, . . . , θk = bk.

Theorem 35.The dimension of every ir-
reducible representation of G divides |G|.

Proof. Let ρ be an irreducible representa-
tion of G, χ character of ρ and n = dim ρ.
By orthogonality relations ⟨χ, χ⟩ = 1 whence
|G| =

∑
g∈G χ(g)χ(g−1) =

∑
diχ(gi)χ(g

−1
i ).

Dividing the both sides by n, we get∑ diχ(gi)

n
χ(g−1

i ) =
|G|
n

.

The right hand side is a rational number.
As algebraic integers form a ring, the left
hand side is an algebraic integer. Hence it
is an ordinary integer.
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Maschke’s theorem

The method of averaging is used for
proving another important result of
representation theory of finite groups.

Theorem 36. (Maschke’s theorem) Let
G ⊂ GL(n, F ) be a finite group of
order d. Suppose that characteristic of F
is either 0 or coprime to d.
Then every G-stable subspace has a G-
stable complement.

Proof. Let W be a G-stable subspace of
V = Fn. If k = dimW , we can choose a
basis b1, . . . , bn of V such that b1, . . . , bk ∈
W . Under this basis the matrices of G are

of shape

(
g11 g12
0 g22

)
which entries are

submatrices of an appropriate size.
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Set P =

(
Id 0
0 0

)
and P̃ =

∑
g∈G gPg−1.

Observe that gPg−1 =

(
Id ∗
0 0

)
with some

matrix at the ∗-position. Therefore,

P̃ =

(
d · Id Y
0 0

)
for some

matrix Y and d ̸= 0 by determinant reason.

As the inverse of M =

(
Id Y
0 Id

)
is equal to(

Id −Y
0 Id

)
, one has

MP̃M−1 = N =:

(
d · Id 0
0 0

)
.

By Lemma 8, gP̃ = P̃ g for every g ∈ G.
Therefore, the matrices of MGM−1

commute with N .
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A straightforward computations shows that
every matrix commuting with N is of shape(
∗ 0
0 ∗

)
hence stabilizes the space U of

vectors with first d coordinates equal to 0.
So MGM−1 stabilizes U . Clearly, U is
a complement to W , and so is MU . As
MGM−1 stabilizes MU , we have obtains a
G-stable complement of W .

Remark. Let P̃1 = P̃ − d · Id. One can
observe that MU = (P̃ − d · Id)V . There-
fore, one can find the G-stable complement
to W to be the space (P̃ − d · Id)V .
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Permutation representations

Let Ω be a finite set of n elements which
we identify with the set {1, . . . , n}. Let Sn
denote the group of all permutations of Ω.

Let Pn ⊂ GL(n, F ) denote the group of
all permutation matrices. We assume that
Pn acts in Fn by permuting the standard
basis elements b1, . . . , bn. We identify Sn
with Pn by obvious way. Namely, given s ∈
Sn, we identify it with the matrix x ∈ Pn
sending each bi to bs(i).

Definition 37. Let G be a group.
A homomorphism ρ : G → Pn is called
a permutation representation of G.

Thus, ρ(G) is a subgroup of Pn ⊂ GL(n, F ).
Permutation representations constitute an
important class of matrix representations of
groups.

65



Example. Let G = {1, g, g2} be a group
of order 3 so g3 = 1. Set ρ(1) = Id,

ρ(g) =

0 0 1
1 0 0
0 1 0

, ρ(g2) =

0 1 0
0 0 1
0 1 0

.

Then ρ is a permutation representation of
G.

Exercise. Let |G| = 2. Show that there
are exactly 4 permutation representations
G → P3. Show that three of them are
equivalent to each other.

If H is a subgroup of G, one can
decompose G as a union of the cosets

G = H ∪ g2H ∪ · · · ∪ gmH .
The left multiplication permutes the cosets.
Therefore, the set of the cosets can be taken
as a permutation set for G to obtain a
permutation representation.
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It is easy to compute the character of a
permutation representation in terms of the
action of G on Ω = {1, . . . , n}.

Theorem 38. Let ρ : G → Pn be a
permutation representation and let χ be
the character of ρ. Let g ∈ G.
Then χ(g) is equal to the number of points
i ∈ Ω fixed by g.

Proof. The diagonal entries of ρ(g)ii are
non-zero if and only if ρ(g)bi = bi.
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Lemma 39. Let a finite group G act by
permutations on finite set Ω partitioning
it in k orbits. For g ∈ G let |Ωg| denote
the number of elements of Ω fixed by g.
Then

∑
g∈G |Ωg| = k · |G|.

Proof. It suffices to prove the lemma for
k = 1.
Compute the number m of pairs (g, ω) :
gω = ω in two ways.
On one hand m =

∑
g∈G |Ωg|.

On the other hand,m =
∑

ω∈Ω |Gω|, where
Gω = {g ∈ G : gω = ω}. The latter
number is equal to |G| as |G| = |Ω| · |Gω|
for each ω ∈ Ω. Hence

∑
ω∈O |Gω| = |G|,

and the result follows.
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Theorem 40. Let ρ : G → Pn be a
permutation representation. Then the
multiplicity of 1G in ρ is equal to the
number of the orbits of G on Ω.

Proof. Let χ1 denote the character of the
trivial representation of G. Compute the
inner product ⟨χ, χ1⟩, where χ is the
character of ρ.

⟨χ, χ1⟩ =
1

|G|
∑

χ(g).

By Theorem 38, χ(g) = |Ωg| where Ω =
{1, . . . , n}. In addition,

∑
g∈G |Ωg| = k ·

|G| by Lemma 39 where k is the number of
the orbits. Hence ⟨χ, χ1⟩ = k, as stated.
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Handbooks for further reading

W. Feit, The characters of finite groups,
1967 (or later editions)
I.M. Isaacs, Character theory of finite groups,

1976 (or later editions)
G. James and M. Liebeck, Representation

and characters of groups, 2001.
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