On minimal coverings and pairwise generation of some primitive groups of wreath product type

Júlia Arêdes de Almeida

UnB

Abstract: The covering number of a finite noncyclic group G, denoted $\sigma(G)$, is the smallest positive integer k such that G is a union of k proper subgroups. If G is 2-generated, let $\omega(G)$ be the maximal size of a subset S of G with the property that $\langle x, y \rangle = G$ whenever $x, y \in S$ and $x \neq y$. Since any proper subgroup of G can contain at most one element of such a set S, we have $\omega(G) \leq \sigma(G)$. For a family of primitive groups G with a unique minimal normal subgroup N isomorphic to A_n^m and G/N cyclic, we calculate $\sigma(G)$ for n divisible by 6 and $m \ge 2$. This is a generalization of a result of E. Swartz concerning the symmetric groups, which corresponds to the case m = 1. For the above family of primitive groups G, we also prove a result concerning pairwise generation: for fixed $m \ge 2$ and n even, we calculate asymptotically the value of $\omega(G)$ when $n \to \infty$ and show that $\omega(G)/\sigma(G)$ tends to 1 as $n \to \infty$. This talk is based on a joint work with Martino Garonzi (UnB).

References

 J. Almeida, M. Garonzi, On minimal coverings and pairwise generation of some primitive groups of wreath product type. Preprint. The complete work is available at arXiv:2301.03691.