SEMINÁRIO DE ANÁLISE

Dynamics of wave equations with degenerate memory

Ma To Fu ICMC-USP

26/05/17 10:10 Horas

Auditório do MAT

Abstract. This paper is concerned with the long-time dynamics of a semilinear wave equation with degenerate viscoelasticity

$$u_{tt} - \Delta u + \int_{-\infty}^{t} g(t-s)div[a(x)\nabla u(s)]ds + f(u) = h(x),$$

defined in a bounded domain Ω of \mathbb{R}^3 , with Dirichlet boundary condition and nonlinear forcing f(u) with critical growth. The problem is degenerate in the sense that the function $a(x) \geq 0$ in the memory term is allowed to vanish in a part of $\overline{\Omega}$. When a(x) does not degenerate and g decays exponentially it is well-known that the corresponding dynamical system has a global attractor without any extra dissipation. In the present work we consider the degenerate case and prove the existence of global attractors by adding a complementary frictional damping $b(x)u_t$, which is in certain sense arbitrarily small, such that a + b > 0 in $\overline{\Omega}$.

Referências

- M. M. Cavalcanti, L. H. Fatori and T. F. Ma, J. Differential Equations 260 (2016) 56-83.
- [2] M. M. Cavalcanti and H. Portillo-Oquendo, SIAM J. Control Optim. 42 (2003) 1310-1324.