Seminário De Geometria

The prescribed mean curvature equation in Minkowski 3-space: asymptotics of isolated singularities

Asun Jiménez
UFF

07/04/17
14:00 Horas
Auditório do MAT

Abstract

In this talk we will study non-removable isolated singularities of the following quasilinear, non-uniformly elliptic PDE in two variables:

$$
\left(1-z_{y}^{2}\right) z_{x x}+2 z_{x} z_{y} z_{x y}+\left(1-z_{x}^{2}\right) z_{y y}=2 \mathcal{H}\left(1-z_{x}^{2}-z_{y}^{2}\right)^{3 / 2}
$$

where $\mathcal{H}=\mathcal{H}(x, y, z)$ is a positive function and $z=z(x, y)$ satisfies the ellipticity condition $z_{x}^{2}+z_{y}^{2}<1$. The solutions of this equation have a geometric interpretation, since they represent spacelike graphs of prescribed mean curvature \mathcal{H} in the Lorentz-Minkowski space \mathbb{L}^{3}.

More specifically, we will consider elliptic solutions $z(x, y)$ that are C^{2} on a certain punctured disk

$$
\Omega=\left\{(x, y):\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}<\rho^{2}\right\} \subset \mathbb{R}^{2}
$$

and do not extend smoothly to the puncture $\left(x_{0}, y_{0}\right)$. We will describe the asymptotic behavior around such a non-removable isolated singularity, and to classify the associated moduli space.

