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Abstract.
A group-word is a non trivial element w = w(x1, . . . , xs) of the free group F on free
generators x1, . . . , xs. An example of group-word is the Engel word, that is a word w in
two variables x, y such that

w = w(x, y) = [x, sy] = [x, y, . . . , y︸ ︷︷ ︸
s times

]

for some positive integer s. Given a group G, a group-word w = w(x1, . . . , xs) can be seen
as a function defined in the cartesian product Gs taking values in G, and the subgroup of
G generated by all w-values is denote by w(G) and it is called the verbal subgroup of G
corresponding to w.

In 2014 B. Baumslag and J. Wiegold [1] established that the following property char-
acterizes the nilpotency of a finite group G when w = x:

P: “If a and b are w-values of coprime orders |a| and |b|, respectively, then the order of
ab is the product of |a| and |b|”.

Later in 2017 R. Bastos, C. Monetta and P. Shumyatsky proved that P characterizes the
nilpotency of w(G) when w is a lower central word and G is a finite group (see [2]). Going
further, one could ask what happens for other group-words.

The aim of this talk is to discuss the property P when w is the Engel word and G is
a residually finite group.
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