Seminário de Álgebra

Graded Algebras whose Neutral Component is Commutative

Antonio Marcos Duarte de França[†] UnB

25/05/1814:30 Horas

Auditório do MAT

Abstract. Let \mathfrak{A} be an associative algebra over a field \mathbb{F} which is graded by a group G. It is well known that if G is finite and \mathfrak{A}_e is a PI-algebra, then \mathfrak{A} is also a PI-algebra, where e is the unity of G. We have studied a specific case of this result and we have answered the following question: what can we say about \mathfrak{A} when \mathfrak{A}_e is a commutative algebra, where \mathfrak{A} is an associative \mathbb{F} -algebra with a G-grading? In this sense, we have studied the G-graded variety generated by the G-graded polynomial $[x^{(e)}, y^{(e)}]$, where G is a finite abelian group and $char(\mathbb{F}) = 0$. Given an odd order group G and a G-graded finite dimensional associative algebra \mathfrak{A} over a field of characteristic zero which satisfies the G-graded identity $[x^{(e)}, y^{(e)}]$, we have proved that $\mathsf{E}^{\mathsf{G}}(\mathfrak{A})$, the G-graded Grassmann Envepole of \mathfrak{A} , is GPI-equivalent to a G-graded semiprime algebra. Among other results, we have exhibited a complete description, in the language of a carrier, of the variety of all algebras graded by an odd order group whose neutral component is commutative.

This is a joint work with Irina Sviridova (MAT/UnB).

References

- J. Bergen and M. Cohen, Actions of commutative Hopf algebras, Bulletin of the London Mathematical Society, 18(2):159–164, 1986,
- [2] Yu.A. Bahturin and A. Giambruno and D.M. Riley, Group-graded algebras with polynomial identities, Israel J. Math, 104:145–155, 1998
- [3] I.Yu. Sviridova, *Identities of PI-algebras graded by a finite abelian group*, Communications in algebra, 39(9):3462–3490, 2011
- [4] E. Aljadeff and A. Kanel-Belov, Representability and Specht problem for G-graded algebras, Advances in Mathematics, 225(5):2391–2428, 2010

2010 MSC: 13A02; 16R10; 16R20; 16W50.

[†]Suporte financeiro: CAPES, CNPQ ; Email: mardua13@gmail.com .

Keywords: G-graded algebra, GPI-algebra, graded identities, neutral component, commutative.