Seminário de Álgebra

Indecomposable, free and separating O(n)-invariants of several matrices

Artem Lopatin UNICAMP

> 08/06/18 14:30 Horas

Auditório do MAT

Abstract. All vector spaces are over an infinite field \mathbb{F} of the characteristic $p = \operatorname{char} \mathbb{F} \neq 2$. To define the algebra of O(n)-invariants of matrices, consider the polynomial algebra

$$R = R_n = \mathbb{F}[x_{ij}(k) \mid 1 \le i, j \le n, \ 1 \le k \le d]$$

together with $n \times n$ generic matrices

$$X_k = \begin{pmatrix} x_{11}(k) & \cdots & x_{1n}(k) \\ \vdots & & \vdots \\ x_{n1}(k) & \cdots & x_{nn}(k) \end{pmatrix}.$$

Denote by $\sigma_t(A)$ the t^{th} coefficient of the characteristic polynomial of A. As an example, $\operatorname{tr}(A) = \sigma_1(A)$ and $\operatorname{det}(A) = \sigma_n(A)$. The action of the orthogonal group

$$O(n) = \{A \in M_n \mid AA^T = I_n\}$$

over R is defined by the formula: $g \cdot x_{ij}(k) = (g^{-1}X_kg)_{ij}$, where $(A)_{ij}$ stands for the $(i, j)^{\text{th}}$ entry of an matrix A, M_n is the space of all $n \times n$ matrices over \mathbb{F} . The set of all elements of R that are stable with the respect of the given action is called the algebra of O(n)-invariants of matrices and is denoted by $R^{O(n)}$. This algebra is generated by $\sigma_t(b)$, where $1 \leq t \leq n$ and b runs over all monomials in the generic matrices X_1, \ldots, X_d and the transposed generic matrices.

Note that in case $\mathbb{F} = \mathbb{R}, \mathbb{C}$ the O(n)-orbits of $M(n)^{\oplus d}$ are separated by elements of $R^{O(n)}$. In the case of an arbitrary characteristic $p \neq 2$ the ideal of relations between generators of $R^{O(n)}$ was described in [3, 4]. Sets of generators of orthogonal invariants of matrices and some generalization of them were considered in [1, 2, 5] in case $n \leq 4$. Denote by $D_{\max}(R^{O(n)})$ the maximal degree of *indecomposable* invariants, i.e., the maximal degree of elements of a minimal generating set for $R^{O(n)}$. We obtained that

- the algebra $R^{O(n)}$ is not a polynomial for all d > 1;
- $D_{\max}(\mathbb{R}^{O(n)}) \to \infty$ when $d \to \infty$, in case $2 < \operatorname{char} \mathbb{F} \le n$;
- a minimal separating set in case of skew-symmetric 3×3 matrices is described (together with Ronaldo Ferreira).

References

- A.A. Lopatin, Orthogonal invariants of skew-symmetric matrices, Linear and Multilinear Algebra 59 (2011), 851–862.
- [2] A.A. Lopatin, On minimal generating systems for matrix O(3)-invariants, Linear and Multilinear Algebra 59, (2011) 87–99.
- [3] A.A. Lopatin, Relations between O(n)-invariants of several matrices, Algebras and Representation Theory 15 (2012), 855–882.
- [4] A.A. Lopatin, *Free relations for matrix invariants in the modular case*, Journal of Pure and Applied Algebra **216** (2012), 427–437.
- [5] A.A. Lopatin, Minimal system of generators for O(4)-invariants of two skewsymmetric matrices, Linear and Multilinear Algebra, **66** (2018), no. 2, 347–356.