Seminário de Álgebra

Integers that are covering numbers of groups.

Martino Garonzi
UnB
31/08/18
Sexta-feira
14:30 Horas
Auditório do MAT

Abstract

For G a finite group let $s(G)$ be the minimal number of proper subgroups of G whose union is G. One of the main open conjectures about $s(G)$ is whether there are infinitely many positive integers that are NOT of the form $s(G)$ where G is a finite group (I will refer to it as "main conjecture"). To attack this problem it makes sense to try to obtain partial results by letting G vary in a given family F of finite groups, in other words given such a family F we may consider the conjecture"there are infinitely many positive integers that are not of the form $s(G)$ where G belongs to F ". By a result of Tomkinson this conjecture holds for the family of solvable groups. In a recent work joint with E. Swartz and L. Kappe, in which we obtained several results related to the main conjecture, we worked out the case in which F is the family of groups all of whose proper quotients are solvable. In this talk I will present the main ideas that allowed us to prove this, and the general techniques we like to use to attack the main conjecture.

