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Resumo

Neste trabalho, estudamos unicidade, multiplicidade e também existéncia de
continuum de solugoes positivas, no sentido loc, para problemas elipticos quasilineares
em dominios limitados do RY (N > 2), envolvendo operadores tanto homogéneos
quanto nao-homogéneos, perturbados por um termo de reacao fortemente singular em
ambos os casos local e nao-local.

A partir de informagoes sobre existéncia e unicidade de solugbes positivas para
problemas locais singulares, nés mostramos como quebrar essa unicidade, seja por
introduzir um termo nao-local ou por considerar perturbagoes apropriadas deste prob-
lema singular. Nossa abordagem ¢é baseada em técnicas de bifurcagao, principio de
comparagao para sub e supersolugoes no sentido loc e Teorema do Passo da Montanha

para funcionais de Szulkin.

Palavras-chave: Nao-linearidades fortemente singulares, Principio de comparacao
para Vng(Q)-sub e supersolugoes, Unicidade, Problemas nao-locais, Continuum de
solugoes, Funcionais de Szulkin.



Abstract

In this work, we study uniqueness, multiplicity and also existence of continuum
of positive solutions in loc-sense both for quasilinear elliptic problems on bounded
domains in RY (N > 2) involving homogeneous operators and non-homogeneous ones
perturbed by strongly-singular reaction terms both for local and non-local cases.

From information about existence and uniqueness of positive solutions for local
singular problems, we show how to break this uniqueness by either introducing non-
local terms or considering appropriate perturbations of this singular problem. Our
approach is based on bifurcation techniques, comparison principle for sub and super-

solutions in loc-sense and Mountain Pass Theorem for Szulkin functionals.

Keywords: Strongly-singular nonlinearities, Comparison principle for T/Vkl)’f(ﬂ)—sub
and supersolutions, Uniqueness, Non-local problems, Continuum of solutions, Szulkin
functionals.
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INTRODUCTION

In this thesis, we present a study on the issues related to non-existence,

existence and multiplicity of positive solutions to the following class of problems
- A(m,f g(x,u,Vu)dx)/Ju = fHip(z,w)in Q, u>0in Q and u = 0 on 09, (1)
Q

where Q2 < R¥ is a bounded smooth domain, £ is a quasilinear operator and
t — fru(z,t) may have singular behavior at ¢ = 0. We are mainly interested in
the case when fy , is strongly singular at ¢ = 0.

The class includes, in particular, the problem
—Aju=a(@)u +b(x)u’ in Q, u>0in Q, u=0on N (2)

with € R and 6 > 0.

Although has been much studied in recent years, up to now there are no
results in literature about existence and uniqueness of W,'?(€)- solutions in the
case where 0 can assume any positive value, 0 < 8 < p—1 and a,b # 0. Some
attempts have been done in recent years for particular cases. For example, in 2016
Canino, Sciunzi and Trombetta [I4] proved that, when a and  satisfy suitable
conditions and b = 0, |) admits a unique VVli)’f(Q)—solution.

In this work, in addition to establish a uniqueness result for , we show

how this uniqueness can be broken, either by introducing non-local terms or by

13
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considering appropriate perturbations of the singular term. According to the speci-
ficities of A and f) ,, sub-supersolution, bifurcation and non-smooth analysis tech-
niques were employed. Next, we present precisely what was developed in each
chapter.

In Chapter 1, we study in detail the following problem (which encompasses

by taking oo = 1)

—Ayu = oz(a(x)u_‘S + b(x)uﬁ) in Q,
u>01in Q, u =0 on 012,

(La)

with respect to existence and uniqueness of solutions in W,2”(Q) sense. In this
direction, by using domain perturbation techniques and penalty arguments, we
refine the proofs of existence of solutions found in [8], [14] and [46] to include both
more general potentials a, b and a bigger range of p values. The more delicate
issue is the uniqueness of solutions in W,-”(2) for the problem (L,). The main
results in [13] and [14] treated about this. In [I3], by exploring the linearity of
the Laplacian operator, the authors showed uniqueness of solutions to (L,) with
p=2,b=0andae L'(Q), while in [14] the problem (L,) with b = 0 was treated
with some restrictions either on the potential a or on the geometry of the domain.

In what follows, we present the result obtained by us in this direction.
Despite the next result being so classical, it is new even for the Laplacian operator
both in generality of the potentials a and b and principally by the uniqueness
of solution in the W,-"(Q) setting for very singular nonlinearities perturbed by
(p — 1)-sublinear ones.

After the remarkable paper of Mckenna [40], in 1991, we know that a solu-
tion of the problem (L,), with a = 1, b = 0 and p = 2, still lies in H}(Q) if, and
only if, 0 < § < 3. Thus, for stronger singularities, we need a more general concept
of zero-boundary condition and solution. Therefore, before stating our first result,

let us clarify what we mean by the Dirichlet boundary condition and solution for

(La)-
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Definition 0.0.1 We say that u < 0 on 0 if (u —€)* € WyP(Q) for every e > 0
giwven. Furthermore, u = 0 if —u < 0 and u = 0 on 052 if u is non-negative and

non-positive on 052.

Next, we give a notion of W,-*(2)- solution for the problem (L,).

Definition 0.0.2 We say u is a W,22(Q)-solution for (Ly) if u > 0 in Q ( that is,
for each © cc Q given there exists a positive constant co such that u = cg > 0 in

© ) and

f VulP"2VuVpds = af <a(:v)u_‘S + b(x)uﬁ>g0dx,
Q Q
for all e CF(Q).

Theorem 0.0.3 Assume 0 < b € L(ﬁ)/(Q) and 0 < a in Q. If one of the

assumptions below holds
(h1): 0 <6 <1 and a e LT (Q);
(hy): 6 =1 and a € L*(Q),

then, for each o > 0 given, there exists a solution u = u, € VVZIOCP(Q) of the problem

(Ls). Moreover, if § < 1 then u € WyP(Q). Besides, the solution is unique if
a+b>0in .

It is worth mentioning that the Theorem [0.0.3] in addition playing a fun-
damental role in the next chapters of this thesis, also has an intrinsic importance.
Indeed, our result of uniqueness for the local problem (L,) improves the main

theorems of [I3] and [14] by:
(1) removing any requirement about the geometry of the domain,
(74) permitting a perturbation of the very singular term by a sublinear one,

(74) including more general potentials a and b.
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In Chapter 2, we approach the following non-local quasilinear A-problem

u>01in Q, u =0 on 012,

(P1)

obtained from by considering A(z,t) = t", g(z,t,7) = g(x,t) and f) ,(z,t) =
Aa(z)t=° +b(x)t?), where Q < RY(N > 2) is a smooth bounded domain, —A,u =
—div(|]Vu|P~2Vu) is the p-Laplacian operator with1 <p < N, 6 > 0,0 < 3 < p—1,
A > 0 being a real parameter and a, b, g > 0 are appropriate functions.

Problem (P;) is non-local due to the presence of the term (J g(z, u)da:)r,
which implies that equation in (P;) is no longer a pointwise equality. Igrzl general, the
presence of such terms gives rise to some additional difficulties in approaching this
kind of problems by classical arguments. For example, many non-local problems
are non-variational, in the sense that techniques of variational methods can not be
applied in a direct way.

The non-local problems have been extensively studied in recent years and
their applications arise in various contexts, for example, in the study of systems
of particles in thermodynamical equilibrium via gravitational potential ([4], [36]),
2-D fully turbulent behavior of real flow [11], thermal runaway in Ohmic heating
([6], [15]), physics of plasmas, thermo-electric flow in a conductor [39], gravita-
tional equilibrium of polytropic stars [35], modeling of cell aggregation through
interaction with a chemical [59] and population behavior [I§].

In [I6], it was investigated that the equation

%—A(Lu)Au=f (3)

describes the behavior of a population subject to some kind of spreading. In
this case, u and A represent the population density and the diffusion coefficient,
respectively. When A is a constant, the above model does not take into account
that the phenomena of crowding and isolation can change the dynamics of the

migration. Therefore, in a closer model to the reality, the coefficient A is supposed
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to depend on the entire population in the domain  as in (3)).

The literature about non-local problems with autonomous non-local term is
vast (see, for example, [5], [10], [I7], [20] and [26] ), but up to this date there is no
result in the direction of the p-Laplacian operator, when p # 2, in the context of
I/Vllof(Q)-solutions to singular ones. About related problems with weak singularities
(0 < 0 < 1) for Laplacian operator, we quote the works [3], 6], [62], which show
the existence of positive solutions to non-local singular problems. We remark that
the problems in above references are treated in the context of classical solutions,
except in [3], where the weak solution lies in HJ ().

Although Garcia-Melian and Lis [30] have not studied neither a singular
problem nor a Dirichlet boundary condition problem, we are going to highlight

their techniques to study (P;). They showed existence of solution to the blow-up

problem

1
(1 + @ g(u)da:>Au =Af(u)inQ, u>0 in§, u=0w on 0, (4)
Q

where f : [0,20) — (0,0) is an appropriate continuous function, by decoupling
in the system
Au=af(u) in Q, u=o0 on 0

a= A(l + & JQg(u)dx)_l

and studying the behavior of the pair («,u), solution of (5.

(5)

Garcia-Melian and Lis’s strategy inspired us to obtain branches of bifurca-
tion in (0,00) X || - | for the problem (P;). By using a new Comparison Principle
for I/Vllo’f(Q)—sub and supersolutions, which we prove in Chapter 1, we explore the
a-behavior of the pair (a, u,) in the (0,00) x W,2P(Q)-topology, where u, is the
only solution of (L,). Taking advantage of this approach, we present a complete
picture of the bifurcation diagram of Problem (P;). In particular, we show how
the presence of the non-local term changes the structure of the bifurcation of the
local problem (see problem (L,) above), that emanates from (0,0) and bifurcates

from infinity at infinity.
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Before stating the next result, we make it clear that in this context the
Dirichlet boundary condition is understood as in Definition and solution is

defined as follows.

Definition 0.0.4 We say u is a W,2"(Q)-solution for (Py) if u > 0 in Q (for each

© cc Q) given there exists a positive constant cg such that u = cg > 0 in ©) and

<Jﬂ g(x, u)dx)r fﬂ VulP2VuVedr = A JQ (a(x)u_5 + b(x)u6>g0dx,
for all e CF(Q).
Let us also fix the following assumptions
(h3): a,be L™(Q) for some m > N /p,
(hg): a,be L™(Q) for some m > N

and denote by

Y = {(\u) e (0,00) x C(Q) : ue WP(Q) n C(Q) is a solution of (P;)}.

loc

Thus, by considering
(goo): }E& g(x,t)t" = g, (x) > 0 uniformly in €, for some 6, € R and g, € C(Q),
(95.): tli_)rg) g(x, )t = +00 uniformly in €, for some 6., € R,
(g0): tlir(% g(z, )" = go(2) > 0 uniformly in Q, for some fy € R and gy € C(Q),

(90): lim g(x, t)t% = oo uniformly in Q, for some 6, € R,
t—0

we have the following.

Theorem 0.0.5 Assume 6 >0 and 0 < 8 <p—1 hold. If:

1) ge C(2 x [0,90),(0,0)) and in addition
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a) (hs3), (9o0) and Oyxr < p—1— (3 hold, then (Py) admits at least one
solution in X, for each A > 0 given. Besides this, the same conclusion

remains true if {r < 0 and g, =0 in (95)} or {(g),) andr = 0} holds.

b) (ha), (9oo), O > p—1— B and 0, < 1 hold, then there exists 0 <
\* < o0 such that (Py) admits at least two WP (Q) n C(Q)-solutions
for each X\ € (0, \*) given, at least one solution for X = \* and no
solution for X > X*. Furthermore, if {r = 0 and go = 0 in (9o)} or

{(g.,) and r < 0} holds, then the same conclusion is valid.
2) ge C(Q x (0,:0),(0,:)), (hy) is satisfied and additionally

a) (9goo), (90), O <p—1—03, Oor > p—1+6 and 6y < 1 hold, then there
exists a0 < \* < o0 such that (Py) admits at least two WP (Q) nC()-
solutions for X > \*, at least one for A = \* and no solutions for

0 < A < X*. Moreover, the conclusion is the same if we assume either
{r>0,(g0) and (g,)} or {r <0,(g0), (9e0) and go = g = 0}.

b) Opor > p—1—=0, Ogr > p—1+0 and 04,00 < 1 hold, then (P;)
admits at least one W,oP(0) n C(Q)-solution for each X > 0 given.

In this case, the conclusion remains true if we assume either {r >

0, (g4) and (go) with g, = 0} or {r <0,(g.,), and (go) with go = 0}.
Moreover, in all the cases ¥ is the continuum of solutions given by a curve which:

(1) emanates from 0 at A = 0 and bifurcates from infinity at A\ = oo in the case

1 —a) (see Fig. 1),

(i) emanates from 0 at X\ = 0 and bifurcates from infinity at A = 0 in the case

1 —b) (see Fig. 2),

(1i1) emanates from 0 at A = o0 and bifurcates from infinity at A\ = oo in the case

2 —a) (see Fig. 3),

(1v) emanates from 0 at X = oo and bifurcates from infinity at A\ = 0 in the case

2—10) (see Fig. 4),
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We draw below the (0,00) x | - |p-diagram of W,2"(€2) n C(Q)-solutions
obtained from the Theorem [0.0.5]

Jufloo oo
0 A 0 A* A
Fig. 1 Fig. 2
Jufle ufle
0 A* A 0 A
Fig. 3 Fig. 4

Next, we list some of the main contributions of study of (P;) to the litera-

ture:

i) singular problems of the type (P;) involving the p-Laplacian operator with §
taking any positive value and potentials a and b being unbounded, have not

been considered in the literature up to now,

i1) the non-local term in (Py) is not required essentially to be bounded from
below by positive constant or from above, in fact, it may be singular at

t = 0. See for instance [29], [61] and references therein.

In the Chapter 3, we study existence, multiplicity and non-existence of pos-

itive I/Vlf)’f(Q)—solutions for the following non-autonomous and non-local A-problem

—A(:}:,J u”dw) Apu = Af(z,u) in Q,
Q

u>01in €, u =0 on 012,

(P2)

obtained by doing g(z,t,¥) = ¢ in (I, where again Q = R¥(N > 2) is a smooth
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bounded domain, p € (1, N), A > 0 is a real parameter, A € C(Q x [0, %), (0,0))
and f e C(Q x (0,0), (0,90)) can be strongly (very) singular at u = 0.

Once again, due to the lack of variational structure, non-local problems
such as (P,) are treated, in general, through topological methods. A recurrent
argument in the treatment of autonomous non-local problems is, just like the one
done by Garcia-Melian and Lis, to relate the non-local problem to a local problem
and thereon to study the behavior of the associated local problem. This type
of argument, in general, can not be applied for non-autonomous and non-local
problems. There are few papers on the non-autonomous case, see [19], [53], [29]
and references therein. In particular, we refer to [29] where the problem () is
treated via bifurcation theory with p = 2 and f(z,u) = v, for 0 < 8 < 1.

In this chapter, since A is a non-autonomous function and no monotonicity
is posed on the quotient ¢ — f(x,t)/tP~!, the same strategy as in Chapter 2 can not
be applied anymore. In [21], Rabinowitz et. al. studied semilinear local singular
problems in the context of classical solutions. We inspire our approach on their
ideas to obtain an unbounded e-limit connected component of positive solutions
from e-unbounded continuum of positive solutions for a e-perturbed problems.
For qualitative properties about this continuum, we were inspired by the ideas
from Figueiredo-Sousa et. al. [29], where a semilinear non-local problem was
treated with non-singular (sublinear) growth. The strategies from both of the
above papers do not work in our approach, principally by the lack of the linearity
of the p-Laplacian operator and by the singularity in the Sobolev spaces setting.
To overcome these difficulties, we approached (P,) in an indirect way, since no
functional equation can be directly associated to (P,), by combining penalization
arguments, a-priori estimates and a Comparison Principle for I/Vliﬁ’(Q)—sub and
supersolutions, which will be proved in the first chapter.

Before stating the main results of this chapter, we need to mimic the Defi-

nition for the solution of (P).
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Definition 0.0.6 We say u is a WL (Q)-solution for (Py) if u > 0 in Q, that is,
for each ©® cc Q given there exists a positive constant co such that u = cg > 0 in

0, u e L' () and

f(z,v)
A<x, $o qu.x)

J (VulP2VuVpdr = AJ odx for all p € CF(Q). (6)
0 0

Henceforth, we will always assume that f € C(€2 x (0,0),(0,00)). Let us

set some hypotheses that we need in the next theorem.

(Ay) Ae C(Q x R) satisfies A(z,t) > 0 forall £ >0 and z € Q,

(fo) lim+ ft(f’lt) = o0 uniformly in Q,
t—0

(fo) tlim ft(f’lt> = 0 uniformly in €.
—00

Our first result in Chapter 3 can be stated as follows.

Theorem 0.0.7 Suppose that v = 0, (Ag) and (fy) hold. Then, there exists an

unbounded continuum X < R x C(Q) of positive solutions of the problem (Py) that
emanates from (0,0). In addition, if (fy) holds and A(x,t) = ag in Q x Rt for

some ag > 0, then ProjgX = (0,00).

Below, we present more qualitative information about the continuum X
by relating the non-local and nonlinear terms. In this case, we need to consider

certain additional conditions:

(Ay) lim A(z,t)t” = ay(x) = 0 uniformly in Q, for some ay, € C(Q),

t—00

(A%) lim A(z,t)t’ = oo uniformly in Q,

00
t —
(f1) tlirn % = Coo(x) > 0 uniformly in €2, for some —0 < f < p — 1 and
—0

¢ € C(Q),

[, t)
(fQ) tliré t6

co € C(R2).

= co(z) > 0 uniformly in Q, for some —o < § < p — 1 and

Theorem 0.0.8 Assume (Ag) and that f satisfies (f1) and (fy) with § < B. If
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a) v > 0 and either {0y =p—1—( and (AL,))} or {0y <p—1— 0 and (Ay)
with a,, > 0 in Q} hold, then ProjrX = (0,0) (see Fig. 5),

b) v > 0, 0y = p—1—p0 and (Ay) hold, then Projry < (0,\*) for some

0 < \* < o0. Furthermore, if

i) ayp >0 in Q and 6y = p—1— 3, then A\ = 0 can not be a bifurcation
point from o (see Fig. 6 or 7);

ii) aw = 0 in Q, then A = 0 is a bifurcation point from o (see Fig. 8);

c) -1 <vy<0,0y=p—1-4 and either (Al,) or (Ayx) with 0 < ay hold, then

(P,) does not admit positive solution for X > 0 small.

Summarizing the above information, we have the following diagrams.

ufle Jufle
0 A 0 A
Fig. 5 Fig. 6
oo g Jufloo
0 A 0 A
Fig. 7 Fig. 8

In the above item (c), we stated that the problem (F;) has no solution
for A > 0 close to 0 when the non-local term is also singular. We note that the
issue about existence of solution is not possible to treat with the same arguments
anymore, as in the proof of Theorem [0.0.7] However, when the non-local term is

autonomous, we are also able to prove the global existence of W,"?(Q) n C(Q)-

solutions.

More precisely, we have the following result.
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Theorem 0.0.9 Assume that (f1), (f2) with § < B, (Ag) and either (Ay) with
ayp >0 or (AL) hold. If 0y >p—1—06 and —1 < <0, then there exists a \* > 0
such that the problem

—A(J Iﬂdl’) Apu = Af(z,u) in Q,
Q

u>01inQ, u=0 ondf,

(7)

admits at least one W,5P(Q) 0 C(Q)-solution for X = X\* and no solution for A < \*.

loc

By taking advantage of the ideas explored in the proofs of the above Theo-
rems, we were able to consider non-autonomous Kirchhoff-type problems as well.
For sake of the clarity, we study just a classical Kirchhoff model. Precisely, we

consider

—M(:C, HVuHﬁ) Apu = Af(z,u) in Q,
u>0in Q, u =0 on 0,

(Q1)

where M, modeled as non-homogeneous Kirchhoff term, satisfies:

(My) M(z,t) = a(z) + b(x)t7; a,be C(Q);a(x) = a; b(z) =0 in Q

and

(To) eitherfy>Oif—1<5<p—10r0<fy<p__51__15if—25__11<(5<—1.

Theorem 0.0.10 Assume that (fs), (My) and (T'y) hold. Then there exists an
unbounded continuum ¥ < R x C(Q) of solutions of (Q1) which emanates from
(0,0). Furthermore, if (fy) holds then Projg+> = (0,00). Moreover, if v < 1

then X is unbounded vertically as well.

We remark that there are few articles dealing with Kirchhoff type problems
with singular nonlinearity. In this direction, we found some results in [41] and [42]
for weak singularities, that permitted them to approach by variational methods.
Recently, in 2018, Agarwal, O'Regal and Yan [60] studied a Kirchhoff-type problem

with nonlinearity of the form f(x,u) = K(x)u™°, for § > 0, in the context of the
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Laplacian operator. They used principally sub-supersolution techniques to get
existence and uniqueness of classical solution.

It is worth mentioning that, as far as we know, non-autonomous and non-
local quasilinear problems with very singular nonlinearities have not yet been con-
sidered in the literature, and the same is true for Kirchhoff-type problems. Our

results contribute to the literature principally by:

i) Theorem being new even in the context of local problems (and for
p = 2), by guaranteeing the existence of a continuum of solutions for a
strongly-singular problem. Moreover, the conclusion that this continuum is
horizontally unbounded is obtained without any boundedness condition on
f, as required in Theorem 1.9 and Corollary 1.10 proved by Rabinowitz et.
al. in [21],

i1) Theorem proving the principal results of Suarez et. al. [29] in the

context of strongly-singular problems as well,

i7i) Theorem including singularity also in the non-local term and obtaining
global existence of solutions in WL?(Q) n C(Q) setting. This situation was

not yet considered in the literature,

iv) Theorem [0.0.10] including non-autonomous Kirchhoff terms and capturing
the same sharp power for existence of solutions still in VVO1 P(Q) for the asso-

ciated local problem.

In the previous theorem, due to the techniques employed, the homogeneity
of the operator was important for the multiplicities results established. Moreover,
both Theorem and Theorem [0.0.8 were directly or indirectly influenced by
the existence of solution for the strong singular problem (L,).

In the last chapter, our main goal is still to show multiplicity of positive
solutions for a quasilinear problem when the operator is no longer homogeneous.
In the same sense of the previous results, the next ones are still linked to the

existence of solution to a singular local problem. More precisely, we deal with the
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following quasilinear problem involving the ®-Laplacian operator

—M(J@(!Vu])dx) Agu = \f(z,u) + pb(z)u™ in €,
(QA,M)
u>0in €, u =0 on 012,

where \, u > 0 are real parameters, M € C([0, ), [0,0)), f: Q x [0,0) — [0, x0)
is a Carathéodory function not identically zero, b : 2 — R is a positive function
that belongs to an appropriate Lebesgue space, 0 < § depends on the summability
of band —Agu = —div(a(|Vu|)Vu) is the ®-Laplacian operator, where  : R — R
is a N-function of the form ®(¢) = ﬁt ¢(s)ds, with ¢ : R — R given by

0

a(lt)t ift #0
o(t) =
0 ift=0.

Inspired by [28] and using non-smooth analysis techniques, we prove how
the presence of the superlinear perturbation (at ¢t = 0) and the Kirchhoff term
break the uniqueness of the solution for the purely singular problem. In fact, we
have established that under appropriate conditions on f, A and pu, the existence
of three different W, '*(92)-solutions to the problem (Q, ) is guaranteed and this

is strictly related to the existence of VVO1 ®(Q)-solution to the problem

—Agu = b(z)u% in Q,
u>01in Q, u =0 on 0f.

(5)

Results of this kind for singular problems have already been obtained in
[28] and [63], but with more restrictive conditions on the operator, potential b and
singularity. In the context of non-singular problems, several works (see [12], [45],
[27], [52], [63] and [64]) dealt with this issue.

The main difficulty found in our study, is the lack of variational structure

to approach the problem (@, ,). Notice that the functional naturally associated
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to (Qx,) is I : Wy *(Q) — R, given by

I(u) = M(Jﬂ (I>(|Vu|)dx> —A fg F(z,u)dx — IL—(S . b(z)u'dr,
R ¢ ¢
where M(t) = J M(s)ds and F(x,t) = J f(z,s)ds.

When 0 2 d < 1, the functional I i(;, well defined in W,'®(€2) and, although
it is not differentiable, we can apply, in indirect way, techniques of variational
methods to study (@Q»,). However, when 1 < § and less than certain sharp value,
the functional I is well defined only in a subset of VVO1 ®(Q) and when § extrapolates
this sharp value, the functional I is not well defined in the whole W,'® ().

By taking advantage of the technique presented by Ricceri in [50] and
Faraci-Smyrlis in [28], we show a necessary and sufficient condition for the ex-
istence of three different solutions of (Q, ,,) in Wy'® () for suitable values of A and
1. Before stating the result obtained, let us define what we mean by solution in

this context.

Definition 0.0.11 A function u € Wy'*(Q) is a weak solution for problem (Qx.,.)
ifu>0 a.einQ, bu=’pe L*(Q) and

M(L @(\Vu\)dx) L a(|Vu|)VuVedr = L[)\f(:v,u) + pbu~?pdz,

for all o € W*(Q).

Throughout this chapter, we assume that ® is an N-function, given as above,

satisfying:

(¢o): a € C'((0,0),(0,00)) and ¢ is an increasing homeomorphisms from R onto

R.

Y

. (1) te'(t)
B o) S S5

and denote by ¢_ =a_+ 1 and ¢, =ay + 1.

(f1): 0 <a_ :=

= a+ < Q0.
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Now, let us denote by ®* the function whose inverse is given by

t
(@*)7L(t) = J d1(s)s 17N ds. In order ®* to be a N-function, we require that
0

1 o
f O 1(s)s 1Y Nds < 0 and J O 1(s)s 1 VNds = 0.
0

1

In this case, we assume that ®* is the N-function represented by ¢*, namely,
It|

O*(t) = ¢*(s)ds. Thus, let us also consider the following assumption:
0

(¢2): by < ¢* := inf iﬁ*((;)

With respect to M, we suppose
*
(M): M(t) = mot* ! forallt >0 with1 < a < i—;

About the potential b, let us assume

-

o*
be L) (Q) if 0 <0 <1;

(D) : S be LYQ) for some ¢ > 1 if § = 1;

be LY(Q) if 6 > 1

and about the nonlinearity f, we consider f(x,t) = 0 a.e in Q for all t < 0

and

(f1): there exists an odd increasing homeomorphism A from R to R and nonneg-

ative constants a; and ay such that
fz,t) < ay + agh(]t]), VteR and YreQ

It
and H << ®,, where H(t) = J h(s)ds. We also assume the following
0

condition on H:

(f5): lim S ——
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sup F'(z, 1)
(f): lim 21— =0.

t—00 tad)_

After having established all these hypotheses, we are in position to state

the main result of the last chapter.

Theorem 0.0.12 Suppose that (¢o), (¢1), (¢2), (M), (b), (f1)—(f5) hold. Assume
0>1 and

it( | @(vu))

A* = inf
J F(z,u)dz
Q

ue W*(Q) and f F(z,u)dz >0
Q

Then, the following are equivalent:

i) there exists 0 < ug € Wy'®(Q) such that f bup~’dr < oo;
Q

i1) the problem
(9) : ~Apu=bz)u™® inQ, u>0 inQ and u=0 on N

admits (unique) weak solution,

iii) for each A > X\* there exists puy > 0 such that for p € (0, uy] the problem

(Qxp) admits at least three weak solutions.

Corollary 0.0.13 Replacing 6 > 1 with 6 < 1 and assuming the hypotheses of

above theorem, the claims i) — iii) remain true independent of each other.

As a consequence of i) == i) in the previous theorem, we have the following
corollary, which relates 6 to the summability of b and gives us a range of d-values

for which the existence of solution for () is still assured.

Corollary 0.0.14 Assume that (¢o) and (¢1) hold. If b e LI(Q) for some 1 < g

and
¢
q

then (S) admits a W,® (Q)-solution.
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In particular, as a consequence of Theorem and Corollary [0.0.14] we

have the following.

Corollary 0.0.15 Assume that (¢o), (¢1), (M) and (f]) — (f4) hold. If b e L1()

for some 1 < q and 6 satisfies @, then for each A > \* there exists py > 0 such

that for p € (0, uy] the problem (Q»,) admits at least three weak solutions.

It is worth mentioning that the above theorem is more general than the

related results present in the literature both by the presence of the Kirchhoff

term and by the generality of the potential b, singularity § and operator. Let us

summarize some contributions of the above results to the literature:

i)

i)

i)

iv)

Theorem (0.0.12] establishes necessary and sufficient conditions for the exis-
tence of multiple solutions for (@) and the existence of W, ®(Q) solution

for (9);

Theorem [0.0.12 extends the result of Faraci et.al [28] by considering non-
homogeneous operator, more general conditions on potential and singularity

and including a Kirchhoff term;

In the proof of Theorem [0.0.12] we have also extended the result of Yijing

[54] to a non-homogeneous operator;

Corollary [0.0.14] gives us an explicit range for §, in which the existence of
a solution in W, ®(Q) is still guaranteed. In particular, when ®(t) = [t[?/p
and by < b(z) € L*(Q) for some constant by > 0, the value §, coincides with

the sharp values obtained in [32] and [40];

Corollary [0.0.15| complements the principal result in [28] by expliciting a
range to d, which leads to the multiplicity result, namely,

p(N —1)

0<d<——-<2
N(p—-1)

= Oy

This thesis has the following structure. In Chapter 1, we prove the existence

and uniqueness of W7 (Q)-solutions to the strongly singular problem (L) inspired
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on ideas of [I4] and [23]. To prove the uniqueness, a comparison principle for
WLP(Q)-sub and supersolutions is established.

In the Chapter 2, by exploring the uniqueness of Wﬁf(Q)—solutions to Prob-
lem (L,), appropriate test functions together with a result of Boccardo and Murat
[7], we are able to prove that the operator T : (0,00) — WLP(Q) (sce below)
is well-defined and continuous. By using this fact, in the last section of the chapter
2 we conclude the proof of Theorem [0.0.5]

In Chapter 3, we present in the first section the proof of Theorem [0.0.7
The qualitative study of the continuum obtained in the first section, will be done
in section 3, as well as the proof of Theorem We conclude the section 3,
by studying the degenerate case in problem (P). In the last section we prove
Theorem [0.0.10L

In Chapter 4, we present in the first section basic concepts and facts about
Orlicz-Sobolev spaces. In the second section, we show the necessary tools related

to non-smooth analysis, which will be necessary to prove the main theorem of this

chapter. In the last section, we conclude the proof of Theorem [0.0.12



NOTATION

C,C4,Cy, - -+ denote positive constants.

For 1 < p, we denote by p’ the conjugate of p satisfying 1/p + 1/p’ = 1.
RY denote the N—dimensional Euclidean Space.

Br(xp) is the open ball centered at xy and with radius R > 0.

Q < RY is a smooth bounded domain.

0€) is the boundary of (2.

d(x) = dist(x,08) = yienag |z —yl.

If A< RY is Lebesgue measurable, then |A| denote the Lebesgue measure

of A.

lifze A
If AcRY, we denote ya(z) =

0if x € A.

supp f ={z € Q : f(x) # 0} denote the support of the function f : Q — R.
A cc Q means that A < Q.
By u, — u we mean that wu,, converges strongly to u.

By u,, — u we mean that u, converges weakly to u.
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LP(Q) = {u : Q — R measurable : f |ulPdr < oo} endowed with the norm
Q

fuly = ( | fupaz)™”

L*(Q) = {u: Q — R measurable : esssup,.q|u(z)| < 0} endowed with the

norm |[ulle, = esssup,.q|u(z)|.

LOO

2(Q) = {ue L*(K) for all compact K < Q}.
W, ?(Q) is the usual Sobolev Space endowed with the norm ||Vul,.

ou(x
Uy, (x) = (99(:1-)'

For 1 < p < N, we denote by px = Np/(N — p) the critical exponent for the

embedding W, () < L9(€).
WoP(Q) = {u:Q—-R : ue W (K) for all compact K < Q}.

loc

C'(Q2) denote the space of continuous functions in €.
CEQ) = {ue CkQ) : uls = 0}.
CHQ) = {ue CF(Q) : supp u = Q is compact}.

C*2(Q) is the space of functions whose k-th derivatives are a- Holder con-

tinuous.



CHAPTER 1

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS FOR
A VERY SINGULAR LOCAL PROBLEM

We reserve this first chapter to deal with existence and uniqueness of

WP (Q)-solution for

loc

—Ayu = a(a(w)u‘6 + b(x)u5> in Q,
u=01in 02, u > 0 on €,

(La)

where Q@ < RY(N > 2) is a smooth bounded domain, 1 < p < N, § > 0,
0< B <p—1, x> 0is areal parameter and a,b > 0 are appropriate functions.

For convenience of the reader, let us restate the main result of this chapter.

p* ’
Theorem 0.0.3) Assume 0 < b € L) (Q) and 0 < a in Q. If one of the

assumptions below holds
(h): 0 <6 <1 and a e LT (Q);
(ho): 6 =1 and a € L'(9),

then, for each o > 0 given, there exists a solution u = u, € WbP(Q) of the problem
(Ly). Moreover, if 6 < 1 then u € Wy(Q). Besides, the solution is unique if
a+b>0 .

34
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Since our arguments are independent of «, let us simply consider (L1).

In the first section, we prove existence of W,-”(Q)-solution for (L;). Al-
though existence results for strongly singular problems have already been estab-
lished in [8] and [46], the techniques therein are not directly applicable in our
case. In [§|, the estimates obtained by the authors can not be proved here due
to the presence of the sublinear term. On the other hand, our nonlinearity does
not satisfy the hypothesis (f3) in [46]. However, by combining domain perturba-
tion technique of [46] with penalization arguments of [8], we were able to prove
existence in our case too.

The uniqueness is a more delicate issue. Since we are allowing ¢ to assume
any positive value, we can not expect our solutions to belong to I/VO1 P(Q). In
this case, the solution obtained can not be tested in the problem, which makes it
unfeasible to use classical arguments to prove the uniqueness asserted.

In the second section, by using truncation technique and the construction
of a function, with suitable decay and compact support defined in an appropriate
subset of ), we were able to establish a Comparison Principle for VVlif—sub and
supersolutions of (L;) without requiring any further hypothesis of regularity in
potentials @ and b. As a consequence of this Comparison Principle, the uniqueness

follows in a direct way.

1.1 Existence of W,*”(Q)-solutions

In this section, let us prove the existence as stated in Theorem [0.0.3] For

this, we will consider the following auxiliary problem:

—Ayu = (Z:(f;é + bp(z)u” in Q,

u=01in 02, u>0on
where a,(x) = min{a(x),n} and b,(z) = {b(z),n}, with n e N.

Lemma 1.1.1 For eachn € N, the problem (1.1)) admits a solution u, € Wy ()N

CY*(Q). Furthermore, for each compact set © cc ) there exists co > 0 such that
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loc

Uy = co > 01 O, for alln e N.

Proof: For each v € LP(Q2), we claim that there exists a unique function w €

W,y P(€) such that

an(x)

A = —
T o+ Ly

+ by ()]0]?. (1.2)
In fact, consider the functional .J : W,”(Q) — R defined by

_1! wlPdr — —an(x) wdxr — x)|v|"wdx
e = | werd L(IUH%V = | s

We can easily verify that J is differentiable, strictly convex and coercive.
Hence J admits a unique critical point, that is, admits a solution.

Denoting by S : LP(2) — LP(§2) the operator, which associates to each
v € LP(2) the unique solution w = S(v) € LP(Q) of (L.2)), one can prove that S is a
continuous and compact operator. Furthermore, if w = AS(w) for some A € (0, 1]

and w € W, ?(Q), then by Poincaré’s and Holder inequalities

Qn

], <<M{wa@mwx=0vﬁi 5&@+¢4@@W&@}m

(5 + 1w
<cW“£x””M+mM“ﬁW<C@WVHW?Q

where C' > 0 is a cumulative constant.

Thus, by the previous inequality, there exists a positive constant R, in-
dependent of A and w, such that |w|, < R. So, by the Schaefer Fixed Point
Theorem (see Theorem in Appendix), there exists a u,, € W, ?(2) such that
S(up) = Up.

Note that, a,([t| + )7 + b,|t]? < C,(1 + [t°). Thus, since 8 < p — 1 we
have u, € L*(Q2), which by Theorem in Appendix implies u, € Ct%(Q)
for some « € (0,1). Furthermore, a,(Ju,| + )™ + by|u,|? = 0 allows to conclude

u, = 0, which by Theorem lead us to u, > 0 in Q. Therefore, u, is a
positive solution of (1.1)).
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Besides, suppose that @, is a solution of

—Ayu = () in Q, u>01in Q and u = 0 on . (1.3)
(14 u)

By taking (i, — u,)* € WyP(Q) as a test function in (1.1)) and in (1.3) and using

that —A, is strictly monotonic, we get

0 < J (IVnlr=2Viiy — [V >V, ) V(i — ) d
Q

<L“1[< T ) <0

L+a1) (14 wu,)

which leads to (4, —u,)" = 0, that is, @; < u, in Q.
Finally, once again by Theorem |A.2.1] we conclude that i, € Ch(Q) for
some « € (0,1). As a consequence, using this and the positivity of @; in €, the

last part of the Lemma follows.

Proof of Theorem ( Ezistence-Conclusion): Consider a sequence
(Q) of smooth open sets in §2 such that Q) < Qgiq1, Q% = Q and define 6, =
ISIZlkf @, > 0, where @ is the solution of . Take p = (z]jn —d1)" as a test function
in (1.1), where w, is a solution of obtained in Lemma [1.1.1] If (hy) holds,
then using Holder’s inequality and the embedding Wy * () < LP*(2), we have

r

|Vu,|[Pdr = J 'V, [P 2Vu,V (u, — &) " dx
Q

Jun>1
r
— a—’;(un — o)) dr + J bt (u, — 6,) T dx
Ja Up Q
r
< [a(un — 81+ 00+ b(un — 61 + 51)ﬂ+1]dx
Jun>51
< cl1+ f a[(un—51)+]1-5+b[(un—51)+]ﬂ+1dx]
_ . . N
< Cl1+ \a\(p*),<J [(wn — 01)F]P d:c) P +]b|(p*),<f [(n — 61)"]P dx) P ]
L 1—-6 Q B+1 Q
) 1-s B+1
< C|1+ J Vu,|Pdz) © + J Vu,|Pdz) © |.
- ( un>61| | ) ( un>61| ’ > ]
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If (hs) holds, proceeding in a similar way, we get
+1

f |Vu,|Pde < f (6 ﬁ“)da:
Un>01 Un>01 u

< c[1+ot f adz + o]z, ( f [t — 6)* 1" dr)
Q ﬂ Q

< C[1+<J

un>51

\Vun\pdx) ]

Therefore, J |Vu,|[Pdz will be bounded in any case. In addition, since
1951

(un — 61)* € WyP(Q) we have

J uPdr < f uPdr < 1—|—f n—01) +pda:]
951 Up >0 Q

< c[1+f qun\pdx]

un>61
Thus, we conclude that (u,) is bounded in W1P(Q).
Since €2, is smooth for all k € N, there exists ug, € WHP(€;) and a subse-
quence (unjl) of (u,) such that

o, weakly in W1P(Qy)

Upt — U
and strongly in L4(€) for 1 < g < p*
Uyt — Ug, a.ein §2y.

J

Proceeding as above, we can obtain subsequences (u,r) of (u,), where
J

(Un;ﬁl) c (un;?), and functions ug, € W?(€,) such that

Upk — Ugy, weakly in W1P(€Qy) and strongly in LP(€),) for 1 < g < p*,

Uyl — Ugqy G-€ in .

By construction, ugq, ., o, = Usy Defining
k

ug, in Qy,

Uy, in Q1 \Qy,
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we get u € I/Vlf)cp(Q) Further, by following close arguments as done in [46], we are

able to show that u is a positive solution of (L;). Indeed:

i) Given ¢ € C*(Q), we can fix k; > 1 such that supp ¢ < Qf,. In this case,

considering the subsequence (u,_r, ) we have
J

a kl()p
Vu & [P2Vu dezj[n;—i—b u’ ] dz.
L| "§1| Ui o L(um + =) mt v
J n;

As we have seen, u_r — u a.e in (). Moreover, when 8 > 1 we can easily
i

verify that 1 < % < p*. In this case, it follows from the compact embedding

of WP (Q,) in the Lebesgue space L%(le) and Theorem |A.1.3|that, up

p*s . .
to subsequence, u_r, < h for some h € L5 (), which gives |b v, o] <
I nj 1/ ”j nh
J

CbhP e L (Qy,).

On the other hand, when § < 1, by using the compact embedding of
Wy (Q,) into Lﬁ(ﬁkl), Theorem |A.1.3| and Lemma [1.1.1, we get

bl ol = bunu’el < bh(inf@1)” M| € L'(,) for some
gy iy k1

*
he L7 ().

In any case, it follows from the Dominated Convergence Theorem that

Cth a

S N B]daf(—jtbﬁ)d oo, (14

L[(Wﬁr%)‘s i |Pdr= | 05+ 0w Jed as (1.4)
J n;

Moreover, once again using Lemma and defining by © := supp ¢, we
get

ankl 3 a
s b, fpde < (J )
i et < woe([ 5

J J
%
Colilolbl e (| o)
k1 J

C@HSOHoo[l + (f |Vun§1|”dx)

Qg

B
PE

_|_

B
P

N

]

< Colple,
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for some cumulative constant Cg, where in the last inequality we use the

8
boundedness of <f

[Vu k[P > " Hence, it follows immediately from The-
e, J

orem|A.1.4that Vu _», — Vu strongly in (L4(Q%,))YN, for any ¢ < p. In par-
J

ticular, Vu r — Vu a.e in Q, and [Vu_, [P~" < h, for some h € L'(Q, ).
J J

In this way, we conclude
J Vu i P2V, Vgpdma[ IVuP2VuVedr as j — o,
Q J J Q
which together with (1.4]) leads to

f VUl AV i = J (% + buﬁ)godx for all € C2(Q).
Q Q U

ii) Fixe € > 0. By taking (u, — €)" as a test function in (1.1)) and proceeding

+

as in the proof of the item—i), we can show that (u, — €)* is a bounded

sequence in W, ?(Q).

Thus, there exists v € Wy*(Q) such that (u, — €)* converges weakly in
Wy P (Q) to some v e W,P(Q), up to subsequence. However, we have proved

in item—3) that u, — u a.e in Q, so v = (u—€)* € W, "(Q).

By i) and ii), we conclude u € W_L?(Q) is a solution of (L) and satisfies the
considered boundary condition.

To finish the proof, let us note that when § < 1, by taking u, as test
function in and following similar arguments as above, one can conclude that

(1) is bounded in Wy P(Q). Therefore, u defined as above belongs to W,”(Q2). B

1.2 Comparison principle for sub and

supersolutions in W,7(Q)

Now, we are going to prove a Comparison Principle for T/Vli’f(Q)—sub and

supersolutions, whereof will follow the uniqueness stated in Theorem [0.0.3] Besides
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this result being important in itself, will be a fundamental tool in the other chapters

of this thesis.
Before stating the main result of this section, let us define subsolution and

supersolution to the problem

—Ayu = a(z)u™ + b(z)uf in Q,
(L1)
u>0in 0X2, u > 0 on €.

Definition 1.2.1 A function v € WLP(Q) is a subsolution of (L) if:
i) there is a positive constant ce such that v = cg in © for each © cc §) given;

i1) the inequality

L |Vu|P2VuVpds < L <&;§) + b(m)yﬁ)apdm (1.5)

holds for all 0 < p € CF(Q).
A function v € VV&?(Q) satisfying i) and the reversed inequality in (1.5), is

called a supersolution of (Ly).

Theorem 1.2.2 (W,.?(Q)-Comparison Principle) Suppose b e L3 (Q) and

loc

a+b>01in Q. Assume that one of the following holds
(h): 0 <6 <1 andae LED(Q);

(hy): 6 > 1 and a € L*(9),

(h%): 0 =1 and a € L*(Q) for some s > 1.

Ifv,v € I/Vllof(Q) are subsolution and supersolution of (Ly), respectively, with v < 0
in 052, then v < U a.e. in Q. In addition, if v, U € Wol’p(Q) and is satisfied
for all 0 < ¢ € WyP(Q), then the same conclusion holds even for a € L'(Q) in

(h3).

To prove Theorem [1.2.2] let us consider for each € > 0 given, the functional
J.: Wy?(Q) — R defined by
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J |Vw|1”cl:17—fQ (2, w)dx,

where F,(z,w) = f fe(x, s)ds with
0

fens) = a(x)(s+e)° +b(z)(s+e€)f if s=0
o a(x)e™® +b(z)e® if s<0.

Also denote by C the convex and closed set
—{weW,P(Q):0<w<T},

where € TW,L?(Q) is a supersolution to the problem (L;).

Lemma 1.2.3 Ifbe L3 (Q) and one of the hypotheses (hy), (h}) or (h}) holds,

then the functional J. is coercive and weakly lower semicontinuous on C.

Proof: Set w € C. First, we note that if (h4) holds, then there exists a C. > 0
such that In |z +¢€| < C.(z+¢€)! for all z = 0 and for a fix ¢ = min{p*/s’,p—1} > 0.

Thus, by using either this fact, (hy) or (h}) and Sobolev embedding, we obtain

L9wlz = Clal g el + [0l e Jeld +1] i 0<6 <1,
Jo@) = 2IVwlz = C|lallJwll + o], g kuﬁ“ﬂ} if 5 =1,
LVwlp = C[ 10 2. ||wuﬁ“+1] if 3> 1

which leads to the coerciveness of J, in all the cases.
Next, let us show that J, is weakly lower semicontinuous on C. Let (w,) < C
such that w, — w in W, (Q).

Suppose first that 0 < § < 1 and consider a positive constant C such that
1-9

(f (wn, +€)P dx) 7 < Cy. We claim that

J f (s+e) 5dsdm—>J f (5 + €)dsdr as n — 0. (1.6)
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*

In fact, since a € L<1pj5> () it follows from the absolute continuity of the Lebesgue

integral that for given ¢’ > 0, there exists ¢’ > 0 such that

*

_ €\ pFremt
a(x)rF+i-idr < <—> ,
A Ch

for all measurable subset A of Q such that |A| < ¢’. Thus,

* P*+5—1

JA a(z)(wn + €)' da < (JA a(x)zﬂ’“iﬁdx> ” (Jg(wn + e)p*dx) "<E,

that is, (w,) has uniformly absolutely continuous integrals over . If 6 = 1, we
can redo the above arguments. Hence, in both cases our claim follows by applying
Vitali’s Convergence Theorem (see Theorem .

In the case § > 1, the convergence follows from the classical Lebesgue’s
Theorem.

Following close arguments as above, we obtain

Jf s+eﬁdsd:v—>JJ s+eﬁdsd:vasn—>oo

as well. This finishes the proof of the Lemma. |

Since C is convex and closed in the VVO1 P(Q)-topology, it follows from Lemma

that there exists a wy € C such that
Je(wp) = inf Jo(w).
weC
Lemma 1.2.4 For all ¢ = 0 in CL(Q), we have

J |Vwo|P2VwoVipdr = f [a(wo + 6)75 + b(wo + e)ﬁ] edx.
Q

Q

Proof: First, given a non-negative ¢ € C*(Q)), for each ¢ > 0 let us define
v = min{wy+1tp, T} and wy := (wo+tp—7)". Aswy < U, we conclude that v, = wy

and w; = 0 in Q\supp ¢. Moreover, since v € WP (supp ¢) and 0 < v; < U, we
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have v, € C. Besides, since 7 > 0 (see definition [1.2.1)), we can find a ¢t > 0 small
enough such that tp < 2v — wy, that is, w; € C as well.

We define o : [0,1] — R by o(s) = J. (svt + (1 - s)w()). Then

Je|sve + (1 —s)wo ) — Je(0
b @) o) A (= 9e) —2(0)

s—07F S s—07t S

= J Vo P2 VwoV (v — wo)dx — J a(z)(wo + €) 7 (vy — wo)da
Q 0

- L b(z)(wo + €)°(vy — wp)da.

Hence, using vy — wy = tp — w; and the previous inequality, we get

0 < tf [[Vwolp_ZVwOVgo — a(x)(wo + €) ¢ — b(z) (wo + e)ﬁgp] dx
Q

= | [Vl 2V Ve = o) on + ) = o) + . (1.7)

However, since T is a supersolution of (L;) and 0 < w; € Wy P(Q) n LE,

(Q) (note

that w; < tp), by the classical density arguments one obtains
J IVo|P2VoVwdr = f (a(:v)@“s + b(m)6’3> widz. (1.8)
Q Q
Dividing both the sides of ((1.7)) by ¢ > 0 and using (1.8]), we get

0 < L [|Vw0|p_2Vw0Vg0 — a(z)(wo + €)% — b(z)(wo + e)ﬂ] dx

1
—i——f (]VUV’*ZVE - ]Vwolp”Vwo) Vwdz (1.9)
t Jo

o7 ] [a@) (o+ 07 =577) bia) (w0 + 07 = 77) Jiac

Let us estimate now the last two integrals in (1.9)). First, by using w; — 0 a.e
in Q ast — 07, the limit [supp wy| 207 0 and the monotonicity of the p-Laplacian

operator, we obtain
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loc

1
; f (|Vw0|p_2Vw0 — |VU|p_2V6> thdlt
Q

1

= - J (wao!”‘QVwo — |V@\p‘2V@)V(wo —0)dx
t Suppwt

+ J <|Vw0|p_2Vw0 - |V5|p_2VE> Vdz
supp wt

> J <|Vw0|p_2Vw0 - |V5|p_2V@> Vpdxr—0 as t — 0.
supp wy

To last integral, noting that wy < v, we have

%me . [a(l“) (5_5 — (wo + e)—5> + b(x) (U’B — (wo + €)B>]wtdx

WV

—f @)% — @0+ 7| + b(@) |7 — (o + 7| a0 a5 £ — 0.
Supp we

Hence, by using these information in ([1.9)), we conclude the proof.

Proof of Theorem [1.2.2-Conclusion: Let us set
O ={reQ:v(x) >wy(r)+e€ and O =0, n{xe:v(xr)<n}

for given e > 0 and n € N. Thus, O, = (, . OF.

Assume that |O.] > 0, for some ¢ > 0. Then, it is clear that |O?| > 0
for all n > n{ for some ny € N, because O" < O, Let us fix one of this n.
We claim that there exists a ball Bg(zg) << € such that |Bgr(zg) n O > 0.
Indeed, from the compactness of Q, we can find an open set B — RY such that
|B n O > 0. Denote this measure by |[B n O = 2§ > 0. If Bn dQ # ,
set Q, = {x € Q : dist(z,00) < €}, where ¢y > 0 is taken in such a way that
|B " Q| < ¢ In this case, |m N O > ¢'. So our claim follows from the
fact that Wﬁg is a compact set.

Set ¢ € CF(£,]0,1]) such that supp ¢ < Bgri(29), ¢ = 1 in Bg(zo)
and |Vo¢| < Cr™" in Bpri,(29)\Br(zo) for an appropriate 7 > 0, which will be
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determined later. Thus, it is a consequence of this construction that 0 # ¢, s €

L*(QY), where

+ +
or = 0o — (wn + ] 0P and gy = 0k — (o + 7] (e + ',

with v, 1= min{v, n}.

Hence,
wo + €)P~1 wo +€)P
Vo, = ¢[an - p( OUp_l) V(WO + 5) + (p - 1)(Ov—p)vvn]X[vn>wo+s]
vl — (wo + €)P1+
[ 'Ugil ] ng

and
v P Gy v )y

Y2 = (b[W v, — V(wo +¢€) = (p— )m (wo + E)]X[UnZUJo-i-G]

AL e

which leads to V1], |Vpa| € LP(2), because 0 < co < v, < n in © = supp ¢.
Since @1, @z = 0and @y, Yy € Wi P (Q)NLP(Q), we get by density arguments
that

f |V2|p—2vyvg01dl’ < f <CL({L’)Q_6 + b(l‘)yﬁ)gpldx
Q Q

and

J |VwolP > VweVpadr > J [a(m)(u}o + €)% + b(z)(wy + e)ﬁ]QOQd:r
Q Q

hold, where wy is as in Lemma [1.2.4]

Therefore, by calculating and using the above inequalities, we obtain

P — (wo + €)P
Gl

]+q§d:c

- P __ P+
+J |Vy‘p2vyv¢[vn(p++e)] da
Q v

n

f (a(az:)y*‘S + b(x)yﬂ)wlda: >J |Vy\p*2VyV[
Q [v<n]

[(wo + )PV (wo + €)

e ]X [wo+e<n] Pdx

—pf VulP*Vy
[

v>n]
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and

Jﬂ[a(x)(wg +€)7° + b(z)(wo + e)ﬂ Poda <f Vewo|P~ 2VW0V¢[%] I

+f[ |VWO|p_QVWOV[W]§Zd$ +f[ |Vwo|p_2Vw0V[#]¢dx

v<n] Wo _|_€)p71 v>n] wo + e)p !

Hence, by combining the previous inequalities we have

f|wp 2VUV¢[M] dx+f[ Vol 2VUV[M] dda

p—1 1
Un v<n)| P

_ wo + €)P IV (wp + €
- f[ vl R e T | N
v>n

(WO + 6)
+ €)p~1

(wo
vP (w0+€)p]+¢dx

o
. waoyp—Qwovgb[ n

JQ

]daz

:
. |w0|p*2wov[

J[w<n] ( wo + E)p_l

o n? — (wo + €)P
_ ’Vwolp Von[—( o + )P

' d
| oda
[Vu|P™ QVUVSOlde—f |V wo P2 VwoVipada

(wo + 6) é
[ E] 0
Un (WO + E)p

(v
< [2 Jien = (wn + 7] bda

! L ble) [gl - <f§§°ﬁ5§i |1z = o + 1 o

Since

p_ P P(p—1
—J |Vw0|p_2Vw0V[m]¢dI - J |Vw0|p[1+m]dx >0,
[u>n] [u>n] (

(wo + €)1 Wo + €)P

by using the previous inequalities and the classical Picone’s Identity (see Theorem

A.1.6), we get

0 < J Vol 2VuV[M] dz
[v<n] vPT

— (wo + €)?

(wo + €)P~1 ] ¢dz

- J Vol 2Vw0V[
[u<n]

p _ _
f[ T8 ol o+ P Nt
v>n

np—1
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+ LR+,.\BR Vo~ |Vl [%] dx

o v [t

[ a2 - D ur — o+ o)

+Lb [vp _ é‘:‘f;me ~(wo+ &P Tda.  (1.10)

Next, let us estimate the integrals in (1.10)).
For the last two integrals, we can deduce by the assumption a + b > 0, the

inequality v=° < v,° (n € N) and Lebesgue’s Theorem, that

-8

—4e > L a(a:)[ C— (wo + ) ][vp (wo + €)P] " pdx

vt (wo + )Pt

b [ o( - I, o+ ] o

bt (wo + )Pt

holds for some ¢ > 0 and ny > 1 large.

Now, let us consider the first integral in the second line. We claim that
[v > n]| == 0. Indeed, otherwise would exists &' > 0 and a subsequence N’ < N
such that [[(v —€)" > n—¢€]| = |[u > n]| > ¢, for all n € N'. By using that

(v—€)t € Wi(Q), we would have
(n—e)d < f (v—e€)tdr < J (v—e)Tdz < C|V(w—€)"|, <0, VneN,
[(v—€)T>n—¢] QO

which is absurd. Therefore, as |[v > n]| "= 0 and ny was taking sufficiently large,

we obtain

‘pJ ]VQV’QVQ[(WO + )PV (wo + €>:|X[wo+€<no]¢dx‘ < <f[ ]V’z_)\pcbp> ﬁ’vonp

—1
[u>n0] noe? v>ng]

/
< €.

To estimate the first integral on Bg,,\Bg, we note that the choice of ¢
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leads to

p _ + P4+
f \Vy|p‘1|V¢|[U”° (pwol 6)] dz < J Y|P~V é|noda
BRr+r\Br U BRr4+\Br

no

< Cno| V| vy, \Br)

1

< Cnor ™| Brys\Br|? < Cingr 5.

By taking a 7 < 1/p, we can choose r > 0 sufficiently small such that

f v vl e 0 g e
Bryr\Br B U”Onp_1

In a similar way, we can infer

p + Pq+
J \Vwo!p*1|V¢|[U"° (o _f) ] dr < €
Brys\Br (wo + e)p

as well.
Hence, getting back to the inequality (1.10) and using the above informa-

tion, we get

P — (wo + €)P

b s J[U@w] ‘Vyyp_zvgv <T>¢d$
J[Ugno] |Vwo| Von< e )gbdx <0,

which is an absurd. Therefore |O?| = 0 for all n, which implies |O,] = 0 and so
v<wy+€e<T+e€aein () for all € >0, whence v < 7.

To finish the proof, let us assume that v, T € W,"(Q) and is satisfied
for all 0 < ¢ € WyP(Q). If we suppose (v — 7)™ # 0, then by defining v¢(z) :=

min{v(z) + €,n}, T (x) := min{v(z) + €,n} and the test functions

o =[5 — @] @) and o = [s) - @] @),
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we obtain

(T+e)P'p
p—1

(p— 1)np\V5!”>

— [VuP?VuVo -
(U +e)p

f + | VTP +
[v+e>n,T+e<n]

b U+ e\r-1 - 3 ., T4 enp ,

f (v w1 () v
_p [ teNrtl o VAR L p—

+| vl p(me) Vo2V + (p 1)(“6) |Vv|>dx

= J ‘VQ’pQVQV(,Dld.T—J Vo [P2VoV poda
Q 0

v0 79
S L CL[(y:n)i”—l B (Ef_b)p—l:l[(y';)p — (vy,)P] dx
+Lb[( L - ][w — (U,)"] " d.

vt ()t

Denoting by

s Lﬁqﬁq} (1ver () 9er 299+ (o= 1) () [ oep
+|VolP — P(% i 2>p_1|V@|p2VFVy +(p—1) (% i Z>p|V17|p>dx

and using the previous inequality along with the Picone’s Identity (Theorem

A.1.6), we have

_ _ v? v° € —€
0 < ] < J;UJre>n §+e|<zy|p 1|Vv|dl‘ " J;) a[(U:)p_l B (Ue )p—1:| [(Qn)p B (Un)p]+d$
B VP b
[v+e>n,T+e<n]
VP g _
' f[ ] b[(v +_6)P—1 (4 6)?-1][@ T = @+ eflde (L11)
vtesvtesn =

Let us consider each one of the integrals in (1.11]).

First, note that the Dominated Convergence Theorem implies that

J V[P~ Vo|dr—0 as n — 0. (1.12)
[v+e>n,T+e<n]
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By manipulating the second integral in (|1.11f), we obtain

v 0 ) — (@) de < 0 1.13
for all n € N and € > 0. By Dominated Convergence Theorem once again, we also
get

B P
f e et | L GO 2

[v+e>n,T+e<n] nk— ('U + E)pi

< f b Qﬂ(y+e)+65(6+e)]d1‘—>0 as n — o0. (1.14)
[v+e>n,T+e<n]
For the last integral, since

b[ v ][(v e — (T+ o] < [vﬁ(v +e) wﬁ(me)] e LY(Q)
(v+ept (T4eptl— I ’

it follows from the Fatou’s Lemma that

li b o’ v’ P ap]
1m su — — vt+e) —(v+e T
e—0 P J[v+e<v+e<n] [(Q +eprt v+ €>p_1] R /]
v? o?
< f b[ 1 _pfl][yp —0P)dx <0, forallmneN. (1.15)
[o+e<vtesn] U v

Hence, going back to (1.11)) and using (1.12)), (1.13]), (1.14) and (1.15)), we

get
o0 79
0 < liiiljp ligi(gf I < liiigp li}lriicgf (JQ a[(y:n)l’—l — (U;)p—l] [(vS)? — (T)P] " dx
B P
+f b[yl— Y 1][np—(v+e)z>]dx
[v+e>n,T+e<n] nk— (U + E)p_

V8 P
’ f[v+e<v+e<n] b[(y +_6)P—1 NCE ] [(v+e)f — @+ e)p]dx>.

Since we are assuming that (v — )" # 0 and a + b > 0, it follows from the
previous inequality that

0 < limsupliminf 7 < 0,
e—0t n—a
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which is absurd. Therefore, (v — )% = 0 and this ends the proof. |

Following the proof of the above Theorem, we have the next result.

Corollary 1.2.5 Suppose that —o0 < 01 < 0y < p—1, a1+as > 0inQ and a; < as

in Q2 hold. Assume that the pair (0;,a;) satisfies one of the following conditions:
o —1<f,<p—1anda;c L(P*fii‘)i)(ﬂ),
e 0, < —1 anda; € L'(Q),
e 0;=—1 and a; € L*(Q) for some s > 1

forie{1,2}.

Ifv,ve I/Vlicp(Q) are subsolution and supersolution, respectively, of

—Ayu = a; (x)u91X[u<a] + a2(x)u92x[u>a] in €,

u>01in 0, u>0 on,

withv <0 i 0 and 0 < a <1, thenv <0 a.e. in ().

Proof: It is sufficient to revisit the proof of Theorem and observe that, under

the contradictory assumption |[(u? — vP)*¢ > 0]| > 0, we also obtain

J 01 (2) " Xfu<a) + 32(2)1" X[z
=

i ] (uP — oP)dz

](up — P )dr < 0,

N f [al(fc)v"lxwa]+a2($)“92><[v>a1
[u>0] v

which leads us to a similar contradiction, as in the proof of Theorem [1.2.2]

Proof of Theorem (Uniqueness): In any case, by the Theorem we

get u < v and v < u, which results in u = v. |



CHAPTER 2

BREAKING THE UNIQUENESS OF SOLUTIONS OF A VERY
SINGULAR PROBLEM BY NON-LOCAL TERMS

In this chapter, we are going to study

~( ] st war) a0 = A(atwyu? + b’ n

u>01in Q, u =0 on 012,

(P1)

where Q@ < RY(N > 2) is a smooth bounded domain, 1 < p < N, § > 0,
0<fB<p—1,A>0is areal parameter and a, b, g > 0 are appropriate functions.

As we saw in the previous chapter, in the local case (r = 0), the problem
(Py) admits a unique solution. However, as we shall see shortly, by introducing
the non-local term, this behavior may change completely. In fact, we will see that
there are situations in which global multiplicity is guaranteed.

This chapter has the following structure. In the first section, by exploring
the uniqueness of W,?(2)-solutions to Problem (L,), we will prove how these
solutions behave with respect to the parameter «. It enables us to prove that the
operator T : (0,00) — W.2P(Q) (see below) is well-defined and continuous.

In Section 2.2, we conclude the proof of Theorem [0.0.5]

Below, let us rewrite the hypotheses that will be considered in this chapter.

93
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(h3): a,be L™(Q) for some m > N/p,

(hy): a,be L™(Q) for some m > N
(Gon): tlirg g(x, )" = g, (x) > 0 uniformly in €, for some 6, € R and g, € C(Q),

(95:): tlir& g(x,t)t? = +oo uniformly in Q, for some 6,, € R,

(90): lim g(z,t)t% = go(2) > 0 uniformly in Q, for some 6y € R and gy € C(Q),

t—07t

(90): lim+ g(x, t)t% = oo uniformly in Q, for some 6, € R
t—0

2.1 W)'P(Q)-continuity and a a-behavior for a

ocC

solution application

Throughout this section, we are going to assume the hypotheses of Theorem

. Thus, it is well-defined the solution application T": (0,0) — W,2?(2) given
by

T(a) = uq, (2.1)

where u, € WP(Q) is the unique solution of Problem (L,) given by Theorem

loc
0.0.3

Besides, the Proposition below it is an immediate consequence of Theorem

122
Proposition 2.1.1 The application T is non-decreasing.
Next, let us prove that T is a “VVlif(Q)-continuous application", i.e.
if @, — a in R, then T'(av,) — T'(«) in WP (U) for each U cc Q given.

In what follows, ®p, € W, (Q) will denote the positive normalized eigen-

function associated to

_qu)Hl = AlHl(ZE)(I)Hlpil in Q, CDH1|@Q =0 (22)
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where Hy(z) := min{a(z),b(x)} = 0 and A\; > 0 is the first eigenvalue of (2.2)) (see
[22] for more details about (2.2))). If (h3) is satisfied, then by [38] one can conclude
that ®5, € C(Q). Moreover, if (hy) holds, then ®p, belongs to the interior of the
positive cone in C(2) (see Theorem and hence for some positive constant

C, one has
Cd(z) < &y, (x) in Q, (2.3)

where d(x) stands for the distance between z € €2 and the boundary 0.
Similarly, defining Hs(z) := max{a(z),b(x)} = 0 and denoting the unique

positive solution of
—Ayu = Hy(x) in Q, ulog=0

by en, € WyP(Q), it follows from (hs) and [38] that ey, € C(Q).

Lemma 2.1.2 (T'(a)-behavior for small a > 0) Suppose that (hs) is satisfied.

Then T'(a) € [ug, Ua] for all a € (0,1], where u, := mia™®p, and Uy 1= moa’ely

_ _p=1
1+57t p—1+6

of a. In partzcular, T(a) e WEP(Q) n C(Q) for all o€ (0,1].

with T = and my, ma appropriate positive constants independent

Proof: Let o« > 0. Since 7 =

—— holds, by fixing my = (1/)\1“@1/7]\ ) we
have m./" supg @Z:AlHl () < a(x) in 2. Thus,

1—76
_ _ a a(x) a(x)
—Ayu, < \a™ PV H (z) sup 9% < aarza—\a<—~|—bxu5>
PZo 1 1( ) ﬁp H, sup (I)6H ( ) gg ug ( )—a
holds true.
To the supersolution, define u, = mgofe;h, where t = pfi(s, T = piw

and msy will be chosen later. Hence, by using 0 < ¢t < 1 we obtain

f VT P2VE, Vpde > f yv%yp—?v%v[ G 1](19;
Q Q

JQ Hj(x) [(p(angeRIt)p’l] dx
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for all ¢ = 0 in CX(Q).
To verify that %, is a supersolution for (L, ) for o € (0, 1], by the previous

inequality it is enough to show that

t(B+6

(a"mat)’™" = amax(1, e .0} (my°

a0 4 mga“ﬁ),

for some my appropriate. Therefore, if we take

I

3max{1, e o0} 1/(p15>}

Mo = max {1, < pr

since a € (0,1] the previous inequality holds. Hence, for this choice of my and
a € (0,1], u, is a supersolution for (L,).

As wu, is simultaneously a sub and supersolution to (L,), the inclusion
T(«a) < [u,, U] is a consequence of the comparison principle proved in Theorem
L.2.2

Finally, it follows from the hypothesis (h3), the fact that T'(«) € [u,,Uq]

and Corollary 8.1 in [38] that u, € C(2) for o € (0,1]. As u, and @, € C(2) and

U, |o0 = Taloa = 0, the required regularity follows.

Following close arguments as done above, we can prove the next Lemma.

Lemma 2.1.3 (T(«)-behavior for large o > 0) Suppose that (hs) is satisfied.

Then T(a) € (U, Ta] for alla € (1,0), where u, := mia” @y, and U, = myaTely,

1 = _p1
p—1-p3" p—1+406

of a. In particular, T(a) € WP(Q) n C(Q) for all a > 1.

loc

with T = and my, mo appropriate positive constants independent

After the above Lemmas, we obtain that
T((0,0)) = W, () n C()

when (h3) holds. Now, we are in position to prove the continuity of 7.
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Lemma 2.1.4 Suppose (h3) holds. Then T is a continuous application in the

W,hP(Q) topology as well as in C(Q).

loc

Proof: First let us prove the continuity of T in the W” (Q)-topology.

loc

Consider o, — a > 0 in R. Then, it follows from Lemmas [2.1.2] and
monotonicity established in the Proposition 2.1.1] that there exist 0 < a < 1 and

@ > 1 such that
T oy < U < Uy, < Uy < @ mgely, in Q, for all ne N (2.4)

Take an open set U cc Q and £ € CP () such that 0 < { < 1and £ =1

in U. By using u,, & as a test functions in (L, ), we obtain

J |V, [PEPdx +pf |Vita, [PV, VEu,, & dr
Q Q

= ap L [a(x)u;f“ + b(x)ufl:l]ﬁpdx. (2.5)

Thus, it follows from the boundedness of (u,) in L*(2) and Young’s in-

equality that

f Vg, P2V, VEu,, & Hdr < J|Vuan|p_1|V§\uan§p_ldx
Q Q
< ef(]Vuan\p_lfp_l)P%da:+0(e)fugn\V§\pd:U
Q Q

< e f |V, [Pdz + C(e), (2.6)
Q

where C(€) is a cumulative positive constant.

Hence, by using (2.4)) and (2.6 in (2.5)), we obtain
f |V, [Pdx < J |V, [PPdx < C(e),
U Q

which implies that (ug,) is bounded in W,2”(Q). So, there exists u € W,2?(Q) such

loc loc
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that
Uy, — u in WHP(U)

Uy, — u in LIY(U) forall 1<q<p* (2.7)
Ug, () — u(x) a.e in Q,

for each U cc () given.

By using and applying Theorem , we obtain
Vi, — Vu, in (L1(Q))Y for any ¢ < p.
As a consequence, for each p € CX(Q2) we get
L(|Vuan|p_2Vuan — |Vu(x)|)P2Vu)Vpdr — 0.

Moreover, if © denote the support of ¢, we have

‘(L—Fbuﬁ ¢

< + b P 1By sup € e L'(0),
ub,, %)‘P) (/0= 1+m, inf @)’ 250 <ty [l € L(O)

whence using the Dominated Convergence Theorem, we get

anf <i+bu§ )@dxﬁaf <ﬁ+bu’8>g0dx as n — o0.
o \ud, " o \uf

Hence, we conclude that

J IVulP?VuVyp = a J (% + bu6>gp, Vo e CF(Q).
Q Q \u

Since u,, satisfy (2.4), we have /P~ "40m oy < u < @V myel,
Thus, as @y, and ep, € C(Q) we obtain 0 < (u—e)* < (@/P1"Pmyel, —e)*, that
is, (u—e)* € Wy (Q) for each € > 0. Therefore, u satisfies the boundary condition
of Definition m Hence, by applying the uniqueness of I/Vllof(Q)-solutions to
Problem (L,) claimed in Theorem [0.0.3] we have u = u,.

For the C(Q)-continuity, it follows from (2.4) and [38] that the sequence
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(Uq,, ) is bounded in C*(©) for some a € (0,1) and in each compact © < €.
So it follows from Arzela-Ascoli’'s Theorem and (2.7), that u,, — w in C(Q).
Furthermore, by using (2.4)), we obtain u € C'(Q) and u,, — u in C(Q).

|

2.2 Existence and multiplicity of

W P(Q)-solutions for a non-local problem

Now we are able to prove Theorem Before that, we will introduce the
applications G : D(G) € W,2P(9) — [0,%0) and H : (0,90) — (0,0) defined by

Gw) = ( L gew)dz) and  H(0) = aG(T(0).

where D(G) = {0 < ue W-P(Q) : G(u) < o}

In addition, let us consider the system

J VulP2VuVedr = aJ <a(x)u75 + b(x)u5><pdx
Q Q
aG(u) = A,

(2.8)

remind that

> = {(\u) € (0,00) x C(Q) : ue W'P(Q) is solution of (P;)}

loc

and set

Y ={(H(a),uq) € (0,00)xC(Q) : a € (0,0) and u, € W P(Q) is a solution of (L,)}.

loc

As a consequence of Lemma [2.1.4] we can prove the next result.

Lemma 2.2.1 Suppose one of the following item holds:

(1) (hs) is satisfied and g € C(Q x [0, 0), (0,0));
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(i1) (hy) is satisfied, g € C(Q x (0,0),(0,%)) and th%i glz, )t = go(x) = 0
uniformly in Q, for some gy € C(Q) and 0 < 6y < 1.

Then T((0,%0)) < D(G) and, in particular, H is well-defined. Besides this, H is

a continuous function.

Proof: Take a > 0. It follows from Lemmas and the monotonicity
established in Proposition [2.1.1] we can find 0 < a = a(a) < 1 and @ = a@(a) > 1
such that

Ql/(pflJr(S)ml@Hl < Ug, < al/(pflfﬂ)rnaet[:b n Q, (29)

where m; and msy are given in Lemma and Lemma [2.1.3] respectively.

First, let us assume (ii) holds. So, by choosing an €,t, > 0 sufficiently
small such that @"/P~1=Fmyel, < 1, for all z € Q. = {x € Q : dist(z, 0Q) < €}, we
obtain from , and hypothesis (ii), that 0 < g(x,u,) < Cd(x)~% in Q.
for some positive constant C'. Since 6y < 1, it follows from [40] and the previous
inequality that g(x,u,) € L' (), which proves that H is well-defined in this case.

About the case (i), the result follows directly from the fact that ey, is a
bounded function. So, in both cases, we showed that T'(«) € D(G) for each o« > 0
given.

To show the continuity, consider a,, — o > 0. By an analogous argument
as in first part, we can conclude that in any case there exists a h(x) € L'(Q) such
that g(x, u,,) < h(z), for all z € 2 and n € N. Thus, the continuity follows from

the Lemma [2.1.4] and Convergence Dominated Theorem.
|

After this Lemma, by using the uniqueness claimed in Theorem we

obtain the next one.

Lemma 2.2.2 Let A > 0. Then Problem (Py) admits a W22 (Q)-solution if, and
only if, there exist (o, u) = (ax,uy) € (0,0) x WP(Q) solution of (2.8). In

loc

particular, Problem (Py) admits a WP () -solution if, and only if, A € H((0,0)).
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As a rereading of the above Lemma and a consequence of Lemma [2.1.4] we

conclude that

S = {(H(a),ua) € (0,00)xC(Q) : a € (0,0) and uq € WLP(Q) is a solution of (La)}

loc

is the continuum of solutions to Problem (P;) given by a curve.

Now, let us recall the Theorem [0.0.5| and prove it.

Theorem [0.0.5] Assume 6 >0 and 0 < 3 < p—1 hold. If:
1) ge C(Q x [0,),(0,%)) and in addition

a) (hs3), (9o) and Oyxr < p—1— 3 hold, then (Py) admits at least one
solution in X, for each A > 0 given. Besides this, the same conclusion
remains true if {r < 0 and g, =0 in (95)} or {(g),) andr = 0} holds.

b) (ha), (9oo), O > p—1— p and 0, < 1 hold, then there exists 0 <
\* < o0 such that (Py) admits at least two WP (Q) n C(Q)-solutions
for each X\ € (0, \*) given, at least one solution for X = \* and no
solution for X > A\*. Furthermore, if {r = 0 and g» = 0 in (9)} or

{(g.,) and r < 0} holds, then the same conclusion is valid.
2) ge C(Q x (0,:),(0,0)), (hy) is satisfied and additionally

a) (9oo), (90), Oor <p—1—05, Oor > p—1+6 and 6y < 1 hold, then there
exists a0 < \* < o0 such that (Py) admits at least two WP (Q) nC(Q)-
solutions for X > X*, at least one for A = \* and no solutions for
0 < A < X*. Moreover, the conclusion is the same if we assume either
{r>0,(g0) and (gi5)} or {r <0,(g0), (9c) and go = g = 0}.

b) or > p—1—0, bgr > p—1+40 and 0,60y < 1 hold, then (P)
admits at least one W,2(Q) n C(Q)-solution for each X > 0 given.
In this case, the conclusion remains true if we assume either {r >

0,(g5) and (ge) with g = 0} or {r <0,(g.,), and (go) with go = 0}.

Moreover, in all the cases Y is the continuum of solutions given by a curve which:
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(1) emanates from 0 at A = 0 and bifurcates from infinity at A\ = o in the case

1—a),

(i) emanates from 0 at X\ = 0 and bifurcates from infinity at A = 0 in the case

1—-10),

(1i1) emanates from 0 at A = o0 and bifurcates from infinity at X\ = oo in the case

2—a),

(1v) emanates from 0 at A = oo and bifurcates from infinity at A\ = 0 in the case

2 - ).

Proof of Theorem [0.0.5-Completed : Since the additional part in each item

follows analogously, we will prove only the first part in each one of them.

1-a) Firstly, note that by the continuity of ¢ and Lemma [2.1.2] we get
lim H(a) = 0. We will split the proof in two cases:

a—0
i) case 1: r = 0. By taking U cc Q and using (g4 ) together with Lemma

2.1.3 we obtain

J g(x,uy)dx = J g(x,uy)dx > C o b=/ (p—1-5)
Q U

for all « sufficiently large. Since 0,7 <p—1— 3, we get
H(a) =« (J 9($>Ua)d$) > Cal™=/P=1-8) _ o0 as ar — 0.
Q

i1) case 2: r < 0. Consider the case 6, = 0. By the hypothesis (gy)
and the continuity of g, we obtain f g(z,uy)de < C, that is, H(a) =
C'a — 0 as a — 0. ’
Analogously, when 6., < 0, we obtain by the Lemma and the

hypothesis (g, ) that

H(a) = C(Jz(l + Oz_aw/(p_l_ﬁ)) = C(a% + oﬁf%) ’
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1-b)

showing that H(«) — 00 as a — 0 because 0,1 < p— 1 — 3. Hence, in
all cases we have H(a) — 0 as @ — 0 and H(«) — o0 as & — 0. Since

H is continuous (see Lemma [2.2.1]), our claim follows.

To finish the proof, it just remains to show the behavior of the continuum X
at A =0 and A = 0. For A =0, let us take ¢ > 0 and define 6 = [iegg)H(a).
Since H(a) — o as a — o0, it follows from the Lemma that § > 0
and (0,9) < H((0,¢)), that is, for each \, € (0,9), there exists an «a,, € (0, €)
such that H(a,) = \,. Thus, if \,, — 0, then «,, — 0, which implies by the
Lemma [2.1.2] that |uq,, [ — 0.

For A = o0, define m = %%ﬁH(a) for each M > 0 given. Then m < oo and
(m,0) < H((M,x0)), that is, for each A, € (m, ), there exists a,, € (M, o)
such that A\, = H(«,). Hence, if A\, — oo, then a,, — o0 and so by using

Lemma [2.1.3] we obtain that |u,, || — 0. See picture Fig. 1.

Initially, suppose that » > 0. In this case 6, > 0, because we are assuming
Opr >p—1—05>0.

By the hypothesis (g,,) and continuity of g in Q x [0, 0), we obtain g(z,t) <
Cyt7% for all ¢+ > 0 and for some C; > 0.

Since we are assuming (hy), we have Cd(z) < ®p, () in €2, which together

with Lemma [2.1.3] leads to J gz, ua)dr < Coa /P15 for o > 1. Thus,
Q

as we are assuming 0,7 > p — 1 — (3, we obtain

H(a) < C3at~0%=m/0=1=8) 0 as o — 0.

Let us now consider the case when r < 0. In this case, by our hypothesis
on 6, and r, we necessarily have 6, < 0. Hence, proceeding analogously as

above, we can prove H(a) < Cal=%="/?=1=6) _ 0 as o — o0.

In any case, as we have proved, we obtain lim H(a) = 0. On the other
a—0

hand, H(«a) — 0 as o« — 0. Therefore, by taking A* = sup H(«), the result
R+

follows.
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Next, let us study the behavior of 3. Letting (\,u) € X, it is clear that
A < M. Since iif,%H(a) = JLHOIOH(O() = 0, we get (0,9) < H((0,¢€)) n
H((M,0)) for each € > 0 small and M > 0 large, where 0 < § = [r:n]{ﬁ H(a).
Thus, for each )\, € (0,9) there exists al € (0,¢) and o2 € (M, ) such that
A = H(a)) = H(a2). So, A, — 0 imply o} — 0 and a? — oo, which lead

us to conclude that |uq [ — 0 and [ug2 | — o after to use Lemmas m

and [2.1.3] again. See Fig. 2.

2-a) Initially assume r > 0. In this case 6y > 0, because Ogr > p—1+ 4§ > 0.
Then, by using the hypothesis (gy), Lemma and taking U cc Q, we
get

1 ' _ 1—r0/(p—1+96)
H(a) = Ca (JU T T e ()7 d:v) =Ca ™™ (2.10)

for some C' > 0 cumulative constant and « > 0 small enough. As fyr >
p—1+6 > 0, we obtain from (2.10)) that H(or) — +o0 as @ — 0. In the
same way, when r, 6y < 0, by the hypothesis (¢go) and Lemma we obtain

H(a) > 40 as o — 0.

On the other hand, by following the same idea as in the proof of the item
1 — a), we can verify that H(ow) — o0 as o — 0. Thus, by considering

A* = inf H(«), the result follows.

aeR*
2-b) By the same argument as in the proof the items 1 — b) and 2 — a), we can

verify that H(a) =3 0 and H(«) py o0, whence the result follows again.

These ends the proof of Theorem [0.0.5]

Similarly to the cases 1 —a) and 1 — b), we are able to verify that the
continuum 3 behaves as in the figures Fig.3 (item 2 —a)) and Fig. 4 (item 2 —)),
respectively. |



CHAPTER 3

CONTINUUMS OF POSITIVE SOLUTIONS FOR
NON-AUTONOMOUS NON-LOCAL STRONGLY-SINGULAR
PROBLEMS

In this chapter, we show the existence of continuums of positive solutions

for the following non-local quasilinear problem

—A(x,J u”dm) Apu = Af(z,u) in Q,
Q

u>01in Q, u =0 on 012,

()

where Q < RY(N > 2) is a smooth bounded domain, p € (1, N), A > 0 is a real
parameter, A € C(Q x [0,0), (0,20)) and f € C(Q x (0,0), (0,0)) can be strongly
(very) singular at u = 0.

We approach this problem by applying the Bifurcation Theory to the cor-
responding e-perturbed problems and using a comparison principle for I/Vllof(Q)-
sub and supersolutions (see Theorem to obtain qualitative properties of
the e-continuum limit. Moreover, this technique empowers us to study existence

of a continuum of positive solutions to the following strongly-singular and non-

65
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homogeneous Kirchhoff problem

—M(m, IVul2) Ay = Af(x, ) in 2,
u>0in Q, u =0 on 0,

(@Q1)

where Q < RY(N > 2) is a smooth bounded domain, p € (1, N), A > 0 is a real
parameter, M € C(Q2 x [0,0), (0,00)) and f e C(Q x (0, 0), (0,0)).

It is worth mentioning that in Chapter 2, since a monotonicity condition
on f(x,t)/tP~1 was assumed, a uniqueness result was shown and as a consequence
of this, the analysis of the behavior of the continuum was done by studying the
parameter-solution application. Here, the same strategy can not be applied any-
more, because A is a non-autonomous function and no monotonicity is posed on
the quotient f(x,t)/tP~1.

This chapter follows the following structure. In the first section, we present
the proof of Theorem [0.0.7 In Section 3.2, we establish the fundamental tools to
study the behavior of 3. The qualitative study of the continuum obtained in the
first section will be done in Section 3.3, as well the proof of Theorem [0.0.9, We
conclude the Section 3.3, by studying the degenerate case in problem (P,). In the
last section we prove Theorem [0.0.10] For convenience, all the results mentioned
will be restated in their corresponding sections. However, for completeness, below

we recall once again all the assumptions required throughout this chapter.
(Ay) Ae C(Q x R) satisfies A(x,t) > 0 forall t > 0 and z € Q,

(Ay) lim A(z, )t = ay(x) = 0 uniformly in €, for some a,, € C(€),

t—0

(A”) lim A(z,t)t’ = co uniformly in Q,

t—00

. f(ﬂf,t) _ : 0O

(foo) tli)rg) s 0 uniformly in €,

(fo) lim+ ft(f’lt) = o0 uniformly in Q,
t—0

(f1) tlirn % = co(z) > 0 uniformly in Q, for some —0 < 8 < p — 1 and
)

ce € C(Q),
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(f2) lim flz,?)

t—0+ t5

Cp € C(Q),

= co(x) > 0 uniformly in Q, for some —0 < § < p — 1 and

(My) M(xz,t) = a(x) + b(2)t?, a,be C(Q),a(r) = a and b(z) = 0 in Q,

(Fo) y>0if —1<d<p—Tland0<y<Pif — 25 <5< 1.

3.1 Existence of a continuum of W.?(Q2) n C(Q)-

solutions

Throughout this section, we will denote by e; € C(£2) the unique positive

solution of

—Apu =1 in Q7 U’ag =0

and by ®, € C}(Q) the first positive normalized eigenfunction associated to the

first positive eigenvalue of (—A,, I/VO1 P(€)), that is,
—A,®; = NP in Q, §ylaq = 0.
For each € > 0 given, let us introduce the following e-perturbed problem

(P) —A(x, fQ u%lx)Apu = Af(z,u+¢€)in Q,

u>01in Q, u =0 on 0N

and show that (P,) admits an unbounded e-continuum of positive solutions by using

the Rabinowitz Global Bifurcation Theorem (see Theorem in Appendix).

Lemma 3.1.1 Suppose that~y = 0 and (Ap) hold. Then, there exists an unbounded

continuum %, < R x C(Q) of positive solutions of (P.) that emanates from (0,0),

for each € > 0 given.

Proof: It follows from the classical theory of existence and regularity for elliptic
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equations and hypothesis (Ay) that the problem
- A(x,f |v|7da:)Apu = A(z,|v]+€)inQ, u=0o0n 0 (3.1)
Q

admits a unique solution u € C**(Q), for some a € (0,1) and for each (A, v) €
R* x C(Q) (see Theorem . Thus, the operator T : R* x C(Q) — C(Q),
which associates each pair (\,v) € RT x C(Q) to the only weak solution of ,
is well-defined.

It is classical to show that T is a compact operator, using Arzela-Ascoli’s
Theorem. Hence, we are able to apply Theorem to get an unbounded e-

continuum . < RT x C(Q) of solutions of
T(\u) = u. (3.2)

Moreover, as by the definition 7'(0,v) = 0 and if T'(\,0) = 0 implies A = 0, we can
conclude that X\{(0,0)} is formed by nontrivial solutions of (3.2).

Finally, using that 0 < f(z,|v] + € /A( o o] ) e L*(Q) for each given
v e C(Q) and classical strong maximum principle (see Theorem |A.1.2)), we obtain
that T((R*\{0}) x C(Q)) = C(Q),, where C(Q); = {u e C(Q) : u > 0in Q}.
Therefore, ¥, is a e-continuum of positive solutions of (F,), for each € > 0 given.

This ends the proof. |

As a consequence of the result we just proved, for every ¢ > 0 and for each
bounded open set U < R x C(Q) containing (0, 0), there exists a pair (A, u.) €
Y n 0U. An essential argument in our approach is to show that if ¢, — 07 and
An — A, then A > 0 and {u,, } converges in C(2) to a function u € W,2(Q) nC(Q),
where (A, u) is a solution of (FPs).

To prove this, let us begin with the following result which is motivated by

the arguments of Crandall, Rabinowitz and Tartar [21].

Lemma 3.1.2 Admit that (Ag) and (fo) hold. Let U = R x C(S2) be a bounded
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open set containing (0,0), a positive constant K and a pair (A, u.) € ((0, ) X
(C(Q) n Wol’p(Q))> N oU of solution of (P.) satisfying A\c < K and u, < K in Q.
Then, there exist constants K1 = K1(K,U) > 0, Ky = Ko(k, K) > 0 and ¢g > 0
such that

NG (K, U)®y < u, < b+ AT Kok, K)7rer in Q, (3.3)

for each k € (0, K| fized and for all 0 < € < €.

Proof: Let K > 0 as above. Besides this, define 0 < ax = min  A(x,t) and
ax[0, QK]
¢ _
Kok, K) = max{f(x’ ) cxef) andk<t< K+ 1},
ag

where k is a fixed number on (0, K]. Thus, Ko(k,-) is non-decreasing for each k
fixed.

To show the second inequality in , let us consider the open set O, =
{z € Q:u.> k}. Then, it follows from the definition of Ky that

1 A
—Ap(k: + AT (ks K)p%ﬁ) = Ao(k ) = 2 f (e +)
Ae

A(m, So uZ)

flz,ue +€) = —Ayue in O.

=

Since k + )\é’%lng(k:,K)Tilel — U = )\é’%lng(k:,K)ﬁel > 0 on 00, the second
inequality in is valid in Oy, by classical comparison principle. Now, using the
above fact together with the definition of O, we conclude that
Ue < k + /\é’%lng(k,K)Tilel in Q.

Now, we are going to prove the first inequality in . Let us denote by
¢ = dist(dU, (0,0)) > 0. We claim that

A= Coi= mm{l@(é’}ll, K) (4"5100);;-17 %}

In fact, otherwise by taking k& = §’/4 in the second inequality in (3.3)), we conclude

that (A, ue) € Bsya(0,0) € R x C'(€), which is an absurd as (A, u.) € 0U.
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Now, by defining u, = \"'KC; (K, U)®;, where KC;(K,U) will be chosen
later, it follows from Picone’s inequality (Theorem [A.1.6]), hypothesis (Ay) and
the fact that (A, u) is a solution of (P,), that

p_ P\ +
0 < J ‘Vﬂg‘p_2VQEV((ge + 6) (uﬁ + 6) >
Q

(u, + e)p1
— p—2 (u + €)P — (ue + €)P\ +
|V, Vu6V< o >
DYV G f(z, ue + €) ) N
- f [ui/wzcl@l Tt (ot e>p—1AK] (e + € = (we+ ) da
< M flzucte) ) Ny y
<0 - arga (o - o) o .4

where Ag = maxg, o o A-

To complete the proof, let us argue by contradiction. First, let us fix K>
(MAg)/C, and conclude from hypothesis (fo) that there exists a > 0 small enough
such that f(z,t) > Kt*~! for all z € Q and 0 < ¢t < a. Hence, by choosing
Ki(K,U) =a/ (4Kp%1||(1>1\|00>, we claim that [u, > u.] has zero measure for every
€ < € := a/4 given. Otherwise, if we assume |[u, > u.]| > 0 for some 0 < € < €,
we get

a
u6+6<y€+6<§on[ge>ue].

Therefore, by going back to (3.4) and using A\;/Ac < A\1/C, we have

0 < A L [% - %]((%4—6)1’— (ue +e)p>+d:v

N R+ o o
< )\6 J;Z |:C’* (U€ + E)p_lAK:l ((ﬂe + E) (Ue + E) > dr < O’

which is an absurd. Hence, A2 'Ky (K, U)®; < u, in Q for all 0 < € < ¢, as we

claimed.

Theorem Suppose that v = 0, (Ag) and (fy) hold. Then, there exists an

unbounded continuum 3 < R x C(§2) of positive solutions of the problem (Py) that
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emanates from (0,0). In additional, if (f,) holds and A(z,t) = ag in Q x RT for

some ag > 0, then Projg¥ = (0,00).
Proof:

For each i € N given, define

1
Ap—T

Fi= {()\, u) € R*xC(Q) that solves (P,) : Oy (z) <u(r) < k+)\FlllC2(k, i)ﬁel(:v)

in  for each k e (O,z’]},

where Ky (k, i) was introduced in the Lemma [3.1.2]
To end the proof, it suffices to set

F=JF u{0,0} =R xC@Q) (3.5)

1€N
and prove that there is an unbounded connected component > < F. By Theorem
2 in [56] (see also [58]), the existence of ¥ is a consequence of the following two

claims:

Claim 1: For each U = R x C(Q) bounded neighborhood of (0,0) in R x C(Q),
there is a solution (\,u) € U n F.

Claim 2: Closed and bounded (in R x C'(2)) subsets of F are compact.

Let us prove each of the above claims one by one.

Proof of Claim 1: Consider U ¢ R x C(f2) be a bounded neighborhood of
(0,0) in R x C(Q) and a sequence ¢, — 0*. By the Lemma [3.1.1} there exists
(Anstn) = (Ae,,, Ue,) € U N <(0, 0) X Wol’p(Q)) a solution of (FP,,), for each n € N.
Moreover, as U is a bounded set, we can find a positive constant K > 0 such that

0< A\, <Kand0O<u, <K in Q. Thus, by the Lemma [3.1.2] we obtain
1 _1_ 1
MUK, U)P < up <k 4+ M Kok, K)rTep in Q, (3.6)

for all n € N sufficiently large and for each k € (0, K] given.
Suppose that A, - A > 0. If A = 0, we conclude by (3.6) that u,, — 0
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in C(Q), that is, (\,,u,) — (0,0) in R x C(£2). Since (\,,u,) € oU and U is
a bounded neighborhood of (0,0), we obtain a contradiction. Therefore A > 0,
which implies that 0 < A — ¢ < A\, < A + ¢ for n sufficiently large and some
6 > 0.

Consider a sequence (€;) of open sets in  such that €, < @,y and |, =
Q and define § = min(A—d)7 7K, (K, U)®,, for each I € N. Taking ¢ = (un — ;)"
as a test function iil (P,,), using and the hypothesis (Ag), we obtain

J |V, |[Pdx = )\nf M(un —0y) dx < Oy,
[un>61] [un=61] A(x, SQ u%)

where ('] > 0 is a real constant independent of n. Thus, it follows from the previous
inequality that {u,} is bounded in W?(Q;). Hence, there exists ug, € WHP(Qy)

and a subsequence {un;} of {u,} such that

U, — g, weakly in W1P(€Q,) and strongly in L(£2;) for 1 < ¢ < p*

U1 — Ug, a.e.in .
J

Proceeding as above, we can obtain subsequences {u,, } of {u,}, with {u i+1}
J J

{u,; }, and functions ug, € WP(€;) such that

L — ug,, weakly in WhP(£);) and strongly in LP(£;) for 1 < g < p*

J

U,

Uy, = Ug, a.c. in Q.

By construction, we have ug,,,| = ugq,. Hence, by defining
Q

ug, in Q,

ug,,, i i\,

we obtain that u € W,'?(Q) and satisfies (3.6). In particular, by choosing i > K

loc
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large enough and using that Ko(k, -) is non-decreasing, we have that

1
AP

0

Oy(z) < ulz) <k + A\ 1Ky(k,i)7 e (z) (3.7)

holds for each k € (0, 7].
Furthermore, we claim that (A, ) is a solution for (P). Indeed, by taking
p e CX(Q) and using Theorem we have

J IV, [P Vu, Vodr —>J IVulP?VuVpdz, (3.8)
0 0

up to a subsequence. On the other side, by using the continuity of f, the inequality
(3.6) and the hypothesis (Ag), we obtain from Lebesgue Dominated Convergence
Theorem that

A, [ L@t g )\f G0N (3.9)
0 A

"o A(x, S u%) (x, $o u“f)

Thus, from (3.8) and (3.9) it is evident that (A, u) satisfies @ Also, by (3.7]) we
obtain that u > 0 (in the sense of Definition ). To verify that u satisfies the

boundary condition (see Definition , it suffices to note that the arguments
used above lead us to the fact that the sequence (u, — €)* is bounded in W, (Q)
as well. Therefore, (u — €)™ € W, ?(Q) for each € > 0 given.

Finally, by the continuity of f, hypothesis (4y) and (3.6), we obtain from
Theorem and Arzela-Ascoli’s Theorem that u € C'(Q2) and u,, — u in C(0©),
for each compact set © < €2 given. Thus, by using this fact and , we obtain
that (An,u,) — (A, u) in R x C(2), which on combining with implies that
(A, u) € 0U n F; < 0U n F, as required.

Proof of Claim 2: Let {(An,u,)} < F be a bounded sequence (in R x C'(€2)). We
aim to prove that {(\,, u,)} admits a subsequence that converges to some element
of F.

Initially, let us suppose that finitely many terms of {(\,, u, )} belongs to R x
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C(Q)\By(0,0), for each &' > 0 given. In this case, (0,0) would be an accumulation
point of the sequence and our claim will hold. Otherwise, let us assume that
infinitely many terms of {(\,, u,)} belongs to R x C(2)\Bs (0, 0), for some §" > 0.
Since {(\,, u,)} is bounded by a constant K > 0, the second inequality in (3.3) is
true. Apart from this, since [[(An, un)|gxc@) = ¢ (just for the subsequence in our
assumption), the first inequality in holds true as well. Hence, by fixing i € N
sufficiently large, we get that {(\,,u,)} = F; for that subsequence.

Let us fix such subsequence. By the boundedness of {\,} = Rand (A, u,)
Fin <(]R x C(Q))\Bs (0, O)), it follows that A, — A > 0, up to subsequence. As

a consequence of this, we get

A/ (=1
21

¢ <wu, < Kin (3.10)

for n € N large enough.
Let U cc Q and ¢ € CP(Q2) such that 0 < ¢ < 1, ¢ = 1 in U with
U < © := supp . Thus, by (3.10), we have a uniform bound of (f(z,u,)) on

© x [k, K], where k := ming Al/;pfm ®; > 0. Hence, using this information together
7

with boundedness of (\,, u,) in R x C(2)), Holder’s inequality and the hypothesis
(Ap), we have

1 1
—J |V (pu,)Pde = — ﬁchun + Vu,pPdr < J|Vgp|punpd:p + f |Vu, |PePdx
2P Jo 2r Jo e e

< J |Vo|Pdx —I—f ]Vun\p_QVunVungopdx —J \Vun\p_2Vuan0(pgpp_lun)da:
e e e

[z, un)uy,

© A(a:,f u)
0

p—1

<calt+ ([ levumlran) ™ ([ (unelrac)]  (wsing (o)

< C'lf |VlPde + A, oPdr + ng IV u,|P~ Vol tu,de
S} (€]

p—1

<Oy [1 + (J@ |V(<pun)\pdx>7]7

where C} is a positive constant, independent of n. Thus, {pu,} is bounded in

W,"(0) and as a consequence of this, {u,} is bounded in W'?(U). By using the
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arbitrariness of U and proceeding as in the proof of the Claim 1, we obtain a

function u € W,'?(Q) n C(Q) such that

loc

u, — u weakly in  WP(U) for each U cc Q,

U, — u in C(Q), (3.11)
)\,,?1 Oy (z) <ulx) <k+ /\Tilng(k,i)ﬁel(x) in Q for all k € (0, 1]

for 7 as fixed before.

From the last inequality in (3.11)), it follows that (u—e)* € W, ?(Q) for each
€ > 0 given, as noted in Claim 1. Hence, to complete the proof of the existence
of the continuum, we just need to show that (A, u) satisfies the equation in (P),
that is, (6). Since (A,,un) solves (P.,
and that

), it follows from density arguments, (3.10)

L IVun\Hvunv(gp(un _ u))dx _ Anj @)

) m@(un —u)dr — 0 (3.12)

for all p € CP(Q).

Since {u,} is a bounded sequence in W,'?(Q2), we obtain

‘ J VP> Vu, Vo (u, — u)dx‘ < Cluy —ul, =0 (3.13)
0

by using the Holder’s inequality. Therefore, it follows from (3.12]) and (3.13)) that

J @(\Vun]p*QVun - ]Vu]p’2Vu>V(un —u)dz — 0,
Q

up to subsequence, which implies that Vu,, — Vu a.e. in Q.

Thus, proceeding as in proof of the Claim 1, we obtain that (\, u) € F; < F,
which concludes the proof of the existence of an unbounded continuum of positive
solutions for (P2).

In order to finish the proof of later part of the Theorem[0.0.7] let us assume
(f) and A(z,t) > ap in Q x RT holds for some ay > 0. Assume by contradiction

that Projg < [0, \*] for some 0 < A* < oo, that is, 0 < A < A* whenever
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(A, u) € ¥. Hence, by taking R > 0 and ¢, = 1/n (n € N), we obtain by Lemma
that there exists (A, u,) = (Mg, Unr) € X N 0BR(0,0), where X, is the
unbounded €,-continuum of positive solutions of () .

We claim that there exists Ry > 0 such that A\, > A\* + 1 for all n € N
and R > Rj. Otherwise, we can find a sequence R; — oo and a subsequence {u,, }
satisfying

tnylloo = Bi — Ay = Ry — A — 1. (3.14)

However, by Lemma [3.1.2/ we have ||[uy, |o < 1+Ka(1, R)YED (A + 1)YE=D ey,
where Ky(1,R)) = max{%}a’t) crx e Qand 1 <t < R + 1} with ap, =
1
min A > ag by our assumption. Hence, it follows from the hypothesis (f)
Qx[0,R]|9]
that for each ¢ > 0 there exists a positive constant C! such that Ko(1, R;) <
cl + in ~! holds for all [ € N sufficiently large. As a consequence of these

information, we obtain
1, € p\ VD 1/(p—1) 2 1/(p—1)
fun oo < 1+ (€ ZRE) T £ YO D ey, < O2 4G OIR, (3.15)
0

for [ large enough and for some positive constants C? and Cy, where Cy is inde-
pendent of e.

Let € > 0 be such that 1 — e/®=DC, > 0. Since R, — o, we can take a
[ large enough such that R, > C5™ " *1/(1 — /(=1 (). Thus, by going back to
(3.15), we obtain for such [ that [jup,|o < C? + Coe/®VR; < Ry — X\* — 1 holds,

but this contradicts ((3.14)).
Therefore, by fixing R > Ry > 0 and proceeding as in the proof of the

Claim 1, we obtain that (\,,u,) = (An.r, Un.r) converges in R x C(Q) to a pair
(A, u) € ¥ n dBg(0,0), which implies that A = A* + 1, but this is not possible by

the contrary hypothesis of Projg+Y < [0, \*]. This ends the proof. |
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loc

3.2 W, ?(Q)-behavior to a parameter for

(p — 1)-sublinear problems

Let us present some results which are important in itself and are required to
overcome some obstacles on the strategies of Rabinowitz [48] and Figueiredo-Sousa
[29], in order to approach non-autonomous non-local singular problems involving
p-Laplacian operator in the setting of I/Vli’f(Q)—solutions.

The next Lemma brings out an important parametric behavior of the solu-

tion of (p — 1)-sublinear problem. This result is crucial in our approach.

Lemma 3.2.1 Assume that (f1) and (fs) are satisfied with co,coo > 0 in Q and
0 < B. Then, there exist ag, as, my, mg > 0 such that any positive solution u €

WhP(Q) of

loc

—Apu = af(z,u) inQ, ulsp =0, (3.16)

(see definition with A = 1) satisfies

a"mi P < u < a"moel in Q, (3.17)
where t = min{l, (p —1)/(p — 1 = 0)},
a)T=1/(p—1—=90) foralaec (0,00) and b)T=1/(p—1—05) for alla > ay.

Proof: Let u e W,'(Q) n C(Q) be a solution of (3.16). It follows from (f;) and
(f2) that there exist constants m, M > 0 such that

m(“6X[u<a] + uﬁX[@a]) < flz,u) < M<u‘5 + uﬂ)

holds for some 0 < a < 1 small enough, that is, u € W, () nC(Q) is a subsolution

for

— Ayu=aM <u5 + u6> (3.18)
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loc

and a supersolution for

— Ayu=am <u5x[u<a] + uﬂx[u%]). (3.19)

Now, we build a positive supersolution for (3.18]) and a positive subsolution
for (3.19)), as required by Theorem [1.2.2| First, let us define U, = msa”e}, a > 0,
with ¢ = min{l,(p—1)/(p — 1 =)} and 7,my > 0 being constants independent

of a, to be chosen later. Thus, using that 0 < < 1, we have

f ]Vﬂa|p_2Vﬂan0dx>J |Ve|p_2VeV[go(ofmget_lt)p_l]dx = J o(a"moe! )P dx
Q 0 Q

for each 0 < ¢ € CF(Q) given.
To verify that @, is a supersolution for (3.18]), it is enough to show that

(@"mot)?' = aM max{1, [¢)"~V| )} <mgof‘5 + mgofﬂ> (3.20)

holds, for some appropriately chosen 7, ms > 0.

t(B—9) 1/(p—1-p)
To do this, let us fix my = max {1, (3Mmax{1’uel H"O}> } and con-

tp—1

sider two cases on the size of a. If a < 1, we obtain that the inequality
holds by choosing 7 = 1/(p — 1 — §), while for a > 1 we obtain by taking
7 =1/(p — 1 — (). Therefore, in both the cases %, is a supersolution for for
every a > 0.

Next, we build a subsolution for as follows. Setting u, = a"m; P,

a > 0, we have that u, will be a subsolution for (3.19) if
(mya™) P~ D\ PP < am(m‘fa”s(l)fx[mmwlm] + mfozTﬁq)fX[mlaTq,lZa]) (3.21)

is satisfied, for some 7, m; > 0 independent of a.

Again, let us consider two cases on a. First, let 0 < a < A\ja?~1=%/m. By
taking 7 = 1/(p~1-8) and my = (m/A [8}/7]..) " = mV010 /(@] oAV #10)
the inequality holds. On the other hand, for a > A\ja?~'7°/m, let us take
r= 11— 8) and my = (/@1 7]) " = m D@y o
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loc

obtain the inequality (3.21) again. Therefore, in both the cases, we have that u,
is a subsolution of (3.19)) for each o > 0 given.
Fix

Alap—1—5

Alap—l—ﬁ
m }

aozmin{l, } and ozoozmax{l,

m

Now, using u as a subsolution of and T, = a"mge! as a supersolution of
(3-18), for 7 = 1/(p — 1 — §) and o < ay, together with Theorem we get the
second inequality in the item—a).

Moreover, using u as a supersolution of and u, = a"mP; as a
subsolution of (3.19), for 7 = 1/(p — 1 — §) and & < ay, together with Corollary
, we get the first inequality in item—a).

Similarly, for & > oy, and 7 = 1/(p — 1 — ), arguing as before we get both
the inequalities in item—b).

As immediate consequence of the proof of the previous Lemma, we have

the following Corollary.

Corollary 3.2.2 Assume that —o0 < § < 8 <p— 1. If there exist M, m > 0 and

0 <u,veWrP(Q) nC(Q) such that:

loc

(1) the inequality
— Apu < aM @’ +u?) in Q and u <0 on 09 (3.22)

holds, then u satisfies the second inequality in , for some mqy indepen-
dent of a > 0, where T is given in the items a) — b) of the Lemma |(3.2.1. In
particular, if u satisfies —Ayu < L(u® + u?) for some L > 0 and u < 0 on

082, then |ulo < C(L),

(7i) the inequality
— Ay = am(v5X[U<a] + v/BX[v%]) m Q (3.23)
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holds for some 0 < a < 1, then v satisfies the first inequality in , for
some my independent of a > 0, where T is given in the items a) — b) of the

Lemmal3.2.1.

Proof: It remains only to prove the particular case in item —i). Without loss of
generality, we can assume that L > a.. Thus, by identifying « = L and M =1
in (3.22)), it follows from the first part of the proof of the above Lemma that
u < mo LY P17t where my = max {1, <3max{1’Het1wi5)H°°}}> 1/(1)15)}. Therefore,

tp—1
[l < Mo LY== el o := O(L).

3.3 Qualitative information of the continuum

In this section, we prove Theorems [0.0.8 and [0.0.9. We also prove an exis-

tence and non-existence result for the degenerate problem (i.e. A(z,0) =0 in Q)

in Theorem We begin with Theorem [0.0.8|
Theorem Assume (Ag) and that f satisfies (f1) and (f2) with § < 3. If

a) v > 0 and either {0y =p—1— 0 and (A)} or {0y <p—1—p and (Ay)
with a, > 0 in Q} hold, then Projgy = (0,0) (see Fig. 5),

b) v > 0, 0y = p—1—0 and (Ay) hold, then Projr¥x < (0,\*) for some

0 < \* < oo0. Furthermore, if

i) ayp >0 in Q and 6y = p—1— B, then A = 0 can not be a bifurcation
point from o (see Fig. 6 or 7);
ii) aw = 0 in Q, then A = 0 is a bifurcation point from o (see Fig. 8);

c) -1 <y<0,0y=p—1—06 and either (AL,) or (Ay) with 0 < ay hold, then

(P,) does not admit positive solution for A > 0 small.
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Proof: First, we note that under the hypotheses (Ag) and (f3), we are able
to apply Theorem to guarantee the existence of an unbounded continuum
of positive WL7(Q) n C(Q)-solutions for (P).

a) Let us prove just the case {6y = p—1—F and (A’,)}, because the other one
is similar. Assume by contradiction that ¥ is horizontally bounded. Then,
there exists a sequence (\,, u,) € ¥ and 0 < \* < oo such that A, < \* and

|tn e — 00. We claim that §, u}dz — co. Otherwise, it would follow from

(Ao), (f1) and (fs) that
—Apup, < L(Ui + ui)

holds, up to a subsequence, for some L > 0 independent of n. Using this
information and Corollary [3.2.2-i), we obtain |u,|, < C(L) but this con-

tradicts the fact that |u,| ., — o0.

Now, for ¢ = min{1, (p — 1)/(p — 1 — 0)}, fix my € (0, min{1, ({, e]"dz)""})
and C] > 0 such that

* p—1-0,p—1
A my

Ci " 2max{1, e, |

(3.24)

First, we note that as a consequence of SQ uldr — oo and the hypothesis
0
(AL), for n large we have A(x, $o u%dx) (SQ u;{dx) > (, > 0 which leads

us to

)\n 7d 0 " *
Ay, = (§g undz)’ f (z, uy) < )\—)\n<u5 +uﬁ>7

A (x, Yo u%dz) < So u%dx) "G T
- 0
where )\, = (SQ u%dm) :

Next, let us define @, = myA7e!, with 7 = (p — 1 — §)~!. By proceeding as

in the proof of Lemma b) and using ({3.24)), we have

A* <
—AT, > EA" <ﬂi + ﬂﬁ)
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for n sufficiently large.

or
Therefore, by Theorem [1.2.2| we obtain u,, < mq ( S u%) e!, which results

o 0 ty
g g
uldr < < unda:> my | e'dx.
Q Q Q

As 0y = p—1—, it follows from the previous inequality that 1 < mj] §, eldx,

n

but this is a contradiction by our choice of my < (§, e1’dx) /.

Assume that there exists a sequence (A, u,) of solutions of (P,) such that
An — 0. We claim that {;, u}dr — co. Otherwise, by the hypotheses (f1)

and (f2) there exist constants C; > 0 and 0 < a < 1 such that

- Apun = Cl)\n (uiX[un<a] + ng[uHZa]> (325)

holds, up to a subsequence. Thus, we obtain from (3.25) and Corollary
i1) that \Tmy¢; < u, for some m; > 0 independent of n, 7 = (p —
1 — B8)7! and n large enough. Hence, from this we get C' > SQ wdr >

At §o ®]dx — oo, which is a contradiction.

From the above claim and the hypothesis 0 < a,, < o0 on £, we obtain

A (x, fﬂ u%dm) < JQ u%dm) ' < Oy

for some constant C5 > 0 and, as a consequence of this, we have

)
—Ayu, = 03/\n<f uZdw) (uiX[un@] + uﬁX[u@a])

Q

for some C'5 > 0 independent of n.

0
Now, by taking m = C5 and a = /\n<SQ u%dm) in (3.23), it follows from

70
Corollary [3.2.213) that /\;(SQ u%da:) m1 P, < u,, for some m; > 0 inde-

pendent of n, 7 = (p — 1 — 8)~! and n sufficiently large. Thus, we conclude

that A7 < 04( f
Q
equality we used 70y = 1. But this is a contradiction, since y7 > 0 and

1—70v
u%dx) = (}y for some Cy > 0, where in the last
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Ay — 0.

Below, let us prove the items i) — 7).

i)

i)

Assume that there exists a sequence (\,,u,) < X such that A, — 0
and |u, | — 0. In the same way as proved in the item —a) above, we
get SQ uldx — oo. Using this fact and the hypothesis a, > 0 in Q, we

obtain

0
—Ayu, < C’l)\n(f u%dm) (ud +u?),
Q

0
which implies that )\n(SQ ugdx) — . If not, we would have

0
CiA < SQ undx> < Oy for some Cy large, hence by Corollary [3.2.21—1)

we get |[u, | < C(Cy). However, this is a contradiction because we are

supposing that |u, |, — .

0
Therefore, by taking M = C} and a = A"(XQ u%d:c) in (3.22) and
70
applying Corollary [3.2.21), we get u,, < mMﬁ(SQ u%dw) el for some

my independent of n, 7 = (p—1— 3)~! and n large enough, which lead

1—70

us to conclude that 1 = (S u dm) ! < CA77 — 0 by the choice of

Q
#, which is impossible.

Assume that there exists a sequence (\,,u,) < > such that \, —
A* > 0 and |uylle — 0. Then, by the same idea as used to prove
the item —a) above, we have that {,uldz — oco. Thus, for a given
e > 0, we obtain from the hypothesis a,, = 0 that 0 < A\*/2 < A, and

0
A(x, $o u%dx) (SQ uxdx) < € for all n as large as required. From this

o
we obtain that —Ayu, > 2% <SQ u%dx) (WX [un<a] + WX [un>a])s for

some (] independent of n and € > 0.

. 0
Hence, taking m = C} and a = ’;—(SQ zﬂdx> in (3.23)), we get by

07
the Corollary [3.2.2—4i) that < ) (SQ u”dx) m1 P, < u, for some m;

independent of n, 7 = (p—1—8)"! and n large. As a consequence of this

1—7~6
information and by 6y > p—1— 3, we obtain 1 > <SQ u%dm) > <

€T

which is an absurd for € > 0 small enough, as C' is independent of e.
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c) Assume that there exists a pair (\,,u,) which solves (P) with A, — 0%.

Then {, u)dz — o must occur, otherwise
—Apu, < Ci\, <qu + uﬁ)

holds, up to subsequence. By taking M = C; and a = A, in (3.22)), we
get by Corollary z) that u, < meAle! for some msy independent of n,
7= (p—1-—06)""! and t as defined before. As a consequence of this fact
and —1 < v < 0, we have C > § uldz > mI\)" { e’dx — oo, which is
an absurd. Therefore, {, u;dx — oo which implies A, ( So ugdx)e — 0, since

6 < 0.

Hence, by using this information together with the hypothesis on A, we
obtain

0
—Apu, < O\, (J uZdw) (ud + u?)

Q

for some (5 independent of n.

0
Next, by fixing M = (5 and o = An(SQ u%dx) in (3.22)), we obtain by

ot
Corollary [3.2.2—i) that u, < mQ)\ZL<SQ u;{dx) el fort=(p—1-4)"" for

some mo > 0 independent of n and for n appropriately large. Therefore,
1—710v
for the choice of 6, we have (5 > Cg(SQ uZLd:U) > A7 — oo for some

C5 > 0, which leads us to a contradiction again.

This ends the proof of Theorem. |

To prove Theorem [0.0.9] let us take advantage of Theorem [0.0.7] to get an

unbounded continuum Yy of positive W,-7(€) n C(Q)-solutions of

—Ayu = af(zr,u) in Q,
u>0in Q, u =0 on 012,

with Projg+>¢ = (0,00). This allows us to define an appropriated map Hy on ¥

such that its zeros are connected with the solutions of . More precisely, a pair
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(A, u) € (0,00) x W2P(Q) n C(Q) is a solution of (7)) if and only if (a,u) € £ with

-1
a = A[A(f u”d:z)] , which is equivalent to the pair (o, u) € 3y being a zero of
Q

the map

Hy(a,u) = a— A[A(L u”d:c)]_l = <\I/(a,u) - )\> [A(L u”dx)]_l, (v, u) € X,

where V(a,u) = aA(J
Q
Now, we prove the next proposition, which assists us to prove a global

u”dx).

existence result for .

Proposition 3.3.1 Assume that —1 <y <0 and (Ay). If

limsup ¥(a,u) =0 and limsup ¥V(o,u) = o (3.26)
a—0~t a0

(a,u)EX0 (a,u)eXp

hold, then there exists a A\* > 0 such that has at least one solution for each

A € [A*,0) and no solution for A < \*.

Proof: As revealed in the proofs of the Claim 1 and Claim 2 of Theorem [0.0.7]
we have X5 < F, where F is defined at (3.5). As a consequence, we conclude that

the function ¥ (as above) is well-defined and continuous on Y. Let us define
A =inf{U(a,u) : (a,u) € Xo}.

First, we claim that A\* > 0. If not, there exists a sequence {(a,,u,)} < o

such that anA(SQ u%dx) — 0, which implies by (3.26 that there are positive

constants C; and Cs satisfying C' < a,, < Cs. It follows from this fact and Corol-
lary zz) that C3®; < u, in €, for some positive constant C5 independent
of n, which results in A(XQ u%dm) > (Cy > 0. As a consequence of this fact and
Ch < oy, < Oy, we have (5 < oznA< SQ u%dm) for some C5 > 0, but this contradicts
the fact that anA< S0 ugd:ﬁ) — 0.

Next, let us set A > A*. By definition of A\*, we can find a pair (o*, u*) € 3

satisfying \* < W(a*, u*) < A. On the other hand, it follows from (3.26|) that there
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exists (a**,u**) € Yy such that U(a™ u*) > A\. In particular, we have proven
that Hy(a*, u*) < 0 and Hy(a**,u**) > 0. Thus, by Theorem we get the
existence of at least one zero of H in Y.

Now, we prove that admits at least one solution to A = A*. For this,
it is enough to show that there is a pair (a,u) € Xy such that U(a,u) = A,.
However, by the definition of \*, we can find a sequence («,,u,) © ¥y satisfying
U (e, u,) — A*. Using the hypothesis , we again conclude that C < «,, <
Cy, up to subsequence, for some positive constants C'; and Cs. Thus, following the
same argumentation of the proof of the Theorem we obtain that (a,, u,) —
(o, u) € ¥y in RxC(2). As U is a continuous application in Xy, we get U(a, u) = \*
as we wanted.

Finally, the non-existence of solutions to A < A* is a consequence of the
definition of A\*. This ends the proof.

|

Through the previous proposition, we are able to prove the Theorem [0.0.9
Proof of Theorem [0.0.9-Completion: It suffices to verify the hypotheses
at (3.26) and apply the above Proposition. To begin with, we prove the first
limit at . We recall that by Lemma a), the inequality u < a"mae!
holds true whenever (o, u) € ¥ with a < «g, for some my > 0 independent of a,
T=1/(p—1-9)andt = (p—1)/(p—1—0). By using this inequality and v < 0,

we get
limsupf u) = 0. (3.27)

a0t JO

(a,u)eXp

Thus, as either (Al,) or (Ay) with 0 < a4 holds, it follows from (3.27)) that

U(a,u) = ozA(J

Q

u”dx) > Cm(f u”a&) B > Cal™ 07
Q
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for o small. Since 0y >p—1— 9, we get

lim sup ¥(o, u) = o0.
(@)

Now, let us prove the second limit at (3.26)). By Lemma b), we know
that a”m;®; < u for some m; > 0 independent of a and for 7 = 1/(p — 1 — ),

whenever (o, u) € ¥ with @ > ay. As a result, since v < 0, we have

limsup | «” = 0. (3.28)

a— 0
(a,u)eXp

Therefore, by continuity and positivity of A at ¢ = 0 and (3.28]), we obtain

lim sup ¥ (a, u) = .
(04?15?20

This ends the proof. [ |

Again, let us be benefited by our tools and follow the strategy of [29] to
approach the problem (P,) for the degenerate case, that is, when A(z,0) = 0.
This procedure allows us to complement the results in [29] both to p-Laplacian

operator, with 1 < p < oo, and strongly-singular non-linearities.

Theorem 3.3.2 (Degenerate case: A(x, 0) = 0) Assume that v > 0 and f

satisfies (f1), (f2) with 6 < B. If Ae C(Q x [0,0),[0,00)) with A(z,0) =0 in €,
Oy =p—1—p7 and:

a) (Al) holds, then (Py) has at least one solution for each \ > 0.

b) (Aw) holds with 0 < a, in Q, then (P;) has at least one solution for \ small

and no solution for X\ large.
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Proof: For each n € N, consider

—A, (x,f u”dw) Apu = Af(z,u) in Q,
Q

u>01in €, u =0 on 012,

(Pl/n)

where A, (z,t) = A(z,t) + 1/n. Since tlim Ap(z, )t = oo, with 0y = p—1— 3, it
—00

follows from the item a) of Theorem that (Py/,) has at least one solution for

each A > 0. Thus, given a A > 0, denote by w,, one such solution of (P;,). From

this, let us prove the items a) and b) above.

a) The proof of this item is a consequence of the following claims:

z)f uldr -0 and m)f u)dx - o0. (3.29)
Q Q

Let us prove the first claim in . Suppose by contradiction, that SQ u)dr —
0. Since A(z,0) = 0 and A is a continuous function, for given C' > 0 suf-
ficiently large there exists ng € N such that A, <:r;, $o u%dw) < 1/C for all
n > ng. Thus, we get —Ayu, > ACf(z,u,), which implies by Corollary
zz) that u,, = (AC)"m;®, for n large, where 7 = (p —1— 3)~!. Hence,
from this inequality we get 0 < (AC)™'m] {, ®]dx < {,u}dr — 0, which is
an absurd.

Now we will prove the second claim in . Again, suppose by contradic-

tion that §, u)dx — oo. From (Al)), for each C' > 0 large enough , we have

9
A(m, So u%dx) (SQ u%dx) > (' for all n big enough. In this case, we obtain

0
—Apu, < %(XQ u%dm) f(z,u,), which by the Corollary |3.2.2—i) and simple

calculations implies

<JQ uxda:) o < (%)Tm;, (3.30)

where 7 = (p—1—8)"1. As 0y = p—1— and C > 0 was taken large enough,

the inequality (3.30)) results into 1 < (%) mj < 1. This is an absurd and

from this the Claim in 4i) is proved.
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Observe that from claims in i) — 4), we get 0 < Cy < [ uldr < Cs, for
some positive constants C; and C5. Thus, proceeding as in the proof of the
Claim 2 in Theorem [0.0.7, we can show that u,, converge in W,"?(Q2) for some
u € WEP(Q) n C(Q), which is a solution of (Py). Tt concludes the proof of

item—a).

As in the item—a), the proof here follows from the following assertions:

z)f uydr -0 and u)f u)dx - oo, for each A > 0 small. (3.31)
Q Q

The proof of the first Claim in (3.31)) is the same as in item—a).

Let us prove 7). As ay > 0 in £, defining C' = (infq a.)/2, there exists
to > 0 such that A(x,t)t’ = C > 0 for all t > t;. Thus, if we suppose that

o
Squldez — oo, we obtain —Aju, < %(XQ u%daz) f(z,uy,), which again by

T or
Corollary [3.2.21—7) implies in u,, < (%) <SQ u%dm) mae} for some my > 0,

T=(p-1-p)"1t=(p—1)/(p—1—0) and n appropriately large. As
a consequence of this, we obtain (SQ u%dx) o < (%)ng S e{dz. Since
0y = p—1— 3, we get by the last inequality that 1 < <%>ng SQ ethd:c.
However this is a contradiction for A < C (m;’ S e?’dm) o = A\*. Therefore,

S updr - oo for 0 < X < A*.

From i) — éi), by the same argument as in item—a) we conclude that (Py)
admits at least one positive solutions for 0 < A < A\*. To justify that (P»)

does not have solution for A large, just follow the same argument as in item

b) of Theorem [0.0.8, using 0y =p—1— .

This proves the Theorem.
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3.4 A strongly-singular non-autonomous

Kirchhoff problem

In this section, we prove Theorem[0.0.10]which deals with a non-autonomous
Kirchhoff problem, defined in (Q1), with strongly-singular nonlinearity.

The proof of Theorem follows the same steps of Theorem with
small adaptations. Recall that in the proof of Lemma[3.1.2) we used that |u[, < C
for some C' independent of €, where (A, u.) is a solution of perturbed problem (F,)
and belongs to the boundary of an open bounded set containing (0,0). Here, due
to the presence of |Vul, in the Kirchhoff term, we need a similar estimate on
|Vue|,, which is crucial in our argument. To avoid repetition, we present a sketch
of each step while giving attention to the notable points. Corresponding to (@),

we introduce the following perturbed problem

—M(:B, HVUH§> Apu = Af(z,u+¢€)in Q,
u>0in Q, u =0 on 0f.

(Qe)

About (Q.), we have the following result.

Lemma 3.4.1 Suppose that v > 0 and M satisfies (My). Then, for each € > 0

there exists an unbounded e-continuum ¥, < R* x C(Q) of positive solutions of

(Q.) emanating from (0,0).

Proof: Consider for each \, R > 0 and v € C(Q), the auxiliary problem

—M(z, R)Apu = Af(z, |v| + €) in Q,
u>01in Q, u =0 on 0f.

(3.32)

As M(x,t) = a(z) + b(z)t” with a(z) = a > 0 and f is continuous, (3.32)) admits

a unique solution ug € C*(Q) N W, (), for some o € (0,1). Thus

Mz, |v] + €)ug
p —
JQNUR‘ dx L @) dx.
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|| + €)ur
(z, R)
continuous and h(0) > 0. Moreover, observe that h is non-increasing. Indeed, if

Rl < RQ then

dz. Note that h is

Define i : R* — R* by h(R) = f A
0 M

M (z,|v] + ¢€) _ M (z,|v] + ¢€) _
M(z,Ry) —  M(x, Ry)

_APURQ =

Also, as ug,|on = Ug,|oq, from classical comparison principle, we have ug, < ug,
and as a consequence we conclude that h(R2) < h(R;). Thus, there exists a unique

solution (say R) of h(R) = R, that is,

sz M (x, ]v\+e)u,~%d$
Q

— = J \Vug|Pde.
M (z, R) Q

Hence, up is a solution of

—M |z, |Vu|P)A,u = Af(z, |v| + €) in €,
(= IVulf) Ap = Af el + ) .
u>0in €, u =0 on 0.

We claim that (3.33) has a unique solution. In fact, suppose that u # w €
Wy () are two solutions of (3.33). If §, |Vu[Pdz = §, |Vw[Pdz, then u = w in
Q. On the other hand, if Ry = {, [VulPdz < {, |Vw[’dz = R,, we have ug, < ug,

and as a consequence

J |Vw|7’dx _J f |U| + € uRQd J f |U| + € URld J ‘VU|de' _ Rl-
Q

M (z, Ry) M(x, Ry)

Therefore, in any case we get a contradiction, which proves that has only
one solution. Now, we consider the operator 7' : R* x C(Q) — C(Q) which
associates each pair (A,v) € Rt x C(Q) to the only solution of . Since
M(z,t) = a > 0 € Q, the rest of the proof follows from Lemma [3.1.1] in a similar
way.

In order to study the limit behavior of the components 3., we prove the
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following Lemma.

Lemma 3.4.2 Suppose (f2), (M) and (I'g) holds. Let U < RxC(£2) be a bounded
open set containing (0,0) and (A, u.) be a solution of (Q.) such that (A, uc) €
Een <(07 w0) X Wol’p(Q))> noU. Then, for some positive constant C'(U), independent
of €, we have |Vu|, < C(U).

Proof: Consider (A, u.) € X, n U, then A\, < K, |Jucll, < K for some positive

constant K depending only on U. Taking u. as a test function in (Q).) and using

(f2) we get

Vuclp < G J (e + )M+ 1). (3.34)

)
If 6 > —1, then by (3.34)) the required boundedness follows trivially from the fact
that A\ < K, |uc| < K. Now, suppose that § € (— 2;’%11, - ) As |uc|o < K, by

the continuity of f we can find a Cy > 0 independent of € such that f(u. + €¢) >

Co(ue + €)°. Thus, u, + € is a supersolution of

)\e Cgué

max a + max b||Vu|)?
Q Q

— Ay =

P

(3.35)

On the other hand, take u = s®?~'~°, where s > 0 will be fixed later, then a simple

calculation shows that

s G e
< aT) e — o ()

—-0—1)(p—1
where C3 = max [< 1>(p5 )\Vq)l\p + )\1@110]. Therefore, if we choose
Q p—1—

>\€ p*}*é
S = 04( ’Yp) )
max a + max b Vu,|)
Q Q

where C; = [%ﬂw] pflfa, then u is a subsolution of (3.35) and by the The-
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orem [[.2.2 we get

)\E P717 71)7
uc+e= |W,) ) (3.36)
p

max a + max b| Vi,
0 Q

Now, coming back to (3.34) and using (3.36| together with o € ( — 2};”%11, — ), we

obtain

_w(tﬁ?
Vet < G5 (1+ [Tuel, 7).

Since v < p:f:f, it follows from the last inequality that |Vu.|, < C(U), where

C(U) is independent of .
]

In the light of above result, we prove the following Lemma, similar to

Lemma [3.1.2 We highlight only the principal points in the proof.

Lemma 3.4.3 Admit that f, M and v satisfy (f2), (Mo) and (I'y), respectively.
Let U < R x C(Q) be a bounded open set containing (0,0) and a pair (A, u.) €
YN ((0,00) x (C(Q) N Wol’p(Q))> N oU be a solution of (Q¢) satisfying A\e <
K, |uc|w < K. Then, there are positive constants Ky = K1 (K,U), Ko = Kq(k, K)

and €y > 0 such that
1 1 1
NTRU(K,U)P S ue < b+ N7 Ko(k, K)rTep in Q (3.37)

for each k € (0, K| fized and for all 0 < € < €.

Proof: Define KCy(k, K) = max{@ reQ: k<t< K+ 1}, where k € (0, K.
For this constant, a second inequality in holds.

To obtain the first inequality, we must proceed as in the proof of the first
inequality in Lemma [3.1.2] To get the constant K;(K,U), in we choose
Ay = max{M(z,t) : x € Q and 0 < t < O(U)?} instead of A, where C(U) is
given in the Lemma [3.4.2
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Now we are ready to prove the Theorem [0.0.10]

Theorem [0.0.10] Assume that (f3), (My) and (T'g) hold. Then there exists an
unbounded continuum ¥ < R x C(Q) of solutions of (Q1) which emanates from
(0,0). Furthermore, if (fy) holds then Projg+> = (0,00). Moreover, if v < 1

then X is unbounded vertically as well.

Proof: Suppose that ¢, — 07 and denote by 3, ¢ R* x C(Q) the compo-
nent associated with the problem (Q,, ). Let U < R x C(Q) be an open neighbor-
hood of (0,0). As ¥, is unbounded, there exists (A, u,,) € ¥, noU and K > 0 such
that A\, < K, |u,|o < K. Moreover, from Lemma we can assume, without
loss of generality, that |Vu, [l < K and from Lemma m that A\, - A\ > 0", up
to a subsequence. As a consequence, for &' > 0 small there exists ng € N such that
0<A—0 <X, <A+ for all n = ng, which implies again by the Lemma [3.4.3]
that

A=Y UECH(K,U)D; < up < b+ (A + )YV (R, K)YP Ve in Q, (3.38)

for each k € (0, K].
From Lemma [3.4.2, {u,} being bounded in W, ?(Q), there exists u = u, €
WyP(Q) such that u, — u in W,”(Q) weakly. Proceeding as in the proof of

Theorem we conclude by (3.38) that u satisfies

f \VulP2VuVpdr = J ﬁ%g&d% for all ¢ € CX(Q). (3.39)

Let us prove that (3.39) holds also for ¢ € W,?(Q). For this, take ¢ € WP ().
Then, by the density results, there exists a sequence {¢,} € CP () such that ¢, —

@ in Wy P(Q). Now, for each e > 0 the function ¢ = /€2 + @, — @i|2 + € € CH(Q)
and hence taking ¢ as a test function in (3.39), we obtain

[on — 1 Vpn — o)
€2 + |on — il — (—: dac f |VulP~2Vu dx
f M (x |V Mz, [VulB) (\/ A€ + [on — x]?
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L VP!V (en — or)|da
< O|VulE Y V(en — i),

Applying the Fatou’s Lemma, we obtain by the previous inequality

|<Pn opldr < liminf)\J ( €+ |pn — <pk]2—€>dx
JM uv ) e HV e Team Y

e—0t

< O|Vulr~ 1\|v<son @) lp-

Letting n, k — o0 in the previous inequality we obtain

]gpn or|dz — 0.
JM ]Vqu

Thus, we have

cpndx J cpdx as n — 0. (3.40)
J M (x HVUHp M(z HVUHp
By the classical density arguments, we also have
J |Vu]p2VuV<pndx—>J |VulP?VuVpdr as n — 0. (3.41)
Q Q

Therefore, joining and we obtain that u € Wy *(Q) n C(Q) is solution
of (Q) and satisfies (3.38).

Now, if we consider F as in the proof of Theorem then in a similar
way we can show that closed and bounded (in R x C'(Q2)) subsets of F are compacts
and this ends the proof of existence of the unbounded continuum 3.

The proof of Projg+3 = (0,00) if (fy) holds, is the same as done in the
proof of Theorem

Now, suppose that there exists a constant C' > 0, independent of A and w,
such that |[u], < C whenever (A, u) € ¥. Then, let us take (A, u) € ¥ with A > 1.

So u satisfies
)\Cl u6
~ maxa(z) + max b(z)| Vul2

Q Q
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. . o ex p—1-5
Besides this, for € > 0 small u = (maxa(x) T maxb(x)|Vu|§7> DF
Q Q
satisfies
AC
A< 1 5

max a(x) + max b(z) [Vu[
Q Q

and so we get by Theorem that u > u. Taking u as a test function in (Q)

and using A > 1, u > u and |u], < C, we obtain that

f |VulPde < C1A if § = —1
Q)

» p(=6—1)y I —1
f VulPds < AP (Va4 1) if — 2P
Q

Without loss of generality, let us assume that |Vul, > 1, otherwise we would get

e )1/(13—1—6)

(mgx a(x) + max b(x)

Czu>u>= o~ for all A > 0.

Then, coming back to (3.42)) and using |Vu|, > 1, we obtain for —% << -1

1
that |[Vu|, < CA»*@+0G-D. Thus, as u > u we have

1/(p—1-96)
us O( A ) T (3.43)
1 4 A\PFEDE-D

Also, when § > —1, by (3.42)) we get

N \Np-1-6) _»
u > C<1 + M) T (3.44)

Then, from (3.43) and (3.44) with v < 1, it follows that |u|,—o0 as A — o,
contradicting the fact that |ul, < C. [ ]




CHAPTER 4

THREE SOLUTIONS TO A STRONGLY-SINGULAR
QUASILINEAR KIRCHHOFF PROBLEM

4.1 Orlicz—Sobolev setting

In order to study the problem (@5 ), let us introduce the functional spaces
where it will be discussed. We will give just a brief review of some basic concepts
and facts of the theory of Orlicz and Orlicz-Sobolev spaces, useful for what follows.

For more information about this issue, we refer [1, [34], [37] and [49].

4.1.1 Orlicz spaces

Definition 4.1.1 We say that ® : R — [0,00) is an N-function (or Young func-
[¢]

tion), if ®(t) = | ¢(s)ds where ¢ : [0,00) — [0,00) has the following properties:
0

it) ¢(s) >0 for s > 0;

iii) ¢ is right-continuous to any s = 0, that is, lim+ o(t) = o(s);

t—s

iv) ¢ is nondecreasing in [0, 0);

v) lim ¢(s) = oo.

§—00

97



4.1. Orlicz—Sobolev setting 98

Example 4.1.2 Ezamples of N-functions:
o Oy(t) = [t]"/p, pe (1,%0);
o Dy(t) =€’ —1;
o O3(t) = (1 +[t))in(1 + |t]) — |t].

Definition 4.1.3 (Complementary N-function) Let ® be a N-function. Then

d(t) := sup{st — ®(s)}

520

1s called the complementary N-function of ®.

We list some useful properties of the Young functions below.

Proposition 4.1.4 Let ® be a N-function and ® the complementary N-function

of ®. The following statements are true:
i) ®(t) < tp(t) for allt > 0;
ii) D((1)) < 2(2t);
iii) (Young inequality) ts < ®(t) + Cf(s), for all t,s € R.
Now, let us introduce the class of N-functions appropriate for the proposed
study. Consider a : (0,00) — (0,0), with a € C*(0,00), such that ¢ : R - R

defined by

a(lt)t if t+0
o(t) =
0if t=0

is an increasing homeomorphism from R onto itself, with inverse denoted by ¢~ :

R — R. From ¢, we can define
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In this case, the N-function represented by ¢!, that is,

It

o(t) = 0 ¢~ (s)ds,

is the Young functions complementary to .

Throughout this chapter, we assume the following condition on ®

, L t(t) te'(t)
(@0 0= a—=Il 00y <5250

and denote ¢p_ =a_+ 1 and ¢, = a; + 1.

The Orlicz class defined by the N-function @ is the set

£2Q) = {u:0 >R J D(u(a) yda < o0

Q

and the Orlicz space L?(Q) is then defined as the linear hull of the set £®().
However, under the condition (¢;), the Orlicz space L®()) coincides with the
Orlicz class L*(9).

The space L*(Q2) endowed with the Luxemburg norm, defined by

|ule = inf{a >0 : Lq)<@>d$ 1},

is a Banach space and since (¢1) is satisfied, L?(Q) is also reflexive and separable

space. Moreover, if u € L®(Q) and v € L®(12), then

N

f wodr < 2|ufe|v]s (Holder inequality)
Q

The next proposition gives us an alternative way to verify convergence in

L2(Q).

Proposition 4.1.5 Let ® be a N-function satisfying (¢1). Then, u, — u in LT(Q)
if and only if
f O (|uy(z) — u(x)])dx — 0.
Q

Proposition 4.1.6 Let Q = RY be a bounded domain, ® a N-function satisfying
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(1) and (u,) = L2(Q) such that u, — uin L*(QY). Then there exists a subsequence

(un,) and a function h e L*(Q) satisfying:
o u, (z) = u(z) a.e in Q;
o |uy,, (z)| < h(z) a.ein Q.
The inclusion between Orlicz spaces are generalized in following way.

Definition 4.1.7 Let ®; and ®5 be N-functions. We say that ®1 dominates P,,
and write Py < Py, if there exists positive constants o and to such that ®o(t) <
O (at), for all t = tg. We say that Oy increases essentially more slowly than @4

(@5 << @), if limy o, 22 =0 for all o > 0.

Proposition 4.1.8 Let Q) = RN a bounded domain, ®; and ®, be N-functions.
Then L*1(Q) — L*2(Q) if, and only if, 5 < ®;.

4.1.2 Orlicz-Sobolev spaces

We denote by W1®(Q) the Orlicz-Sobolev space corresponding to @ defined
by
W1,<I>(Q) = {u € L<I>(Q) DUy, € L¢(Q)7 i=1,-- ,N}.

This is a Banach spaces with respect to the norm
lulie = llule + [Vule

and again, since we are assuming (¢;), the Orlicz-Sobolev space W1®(Q) is
reflexive and separable.

Denote by Wy'®(Q) the closure of C*(2) in W®(Q), that is, Wy *(Q) =
COO—(Q)H.”LKI).

[

Proposition 4.1.9 (Poincaré Inequality) Suppose Q = RY is a bounded domain

with smooth boundary 0S). Then, there exists a positive constant S such that

lule < SIVule,  Yue Wy ().
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By Proposition [4.1.9, we know that |u|; ¢ and |Vulle are equivalent norms
on W?(Q). We will use ||[Vu|s to replace ||lul|; ¢ in the following discussions.
0 b
Now, let us introduce the Orlicz-Sobolev conjugate @, of ®, whose inverse

is given by

t @—1
d(t) = J fo)ds, for t > 0,

*
0 SN
where we are supposing that

1 (I)fl 0 <I)fl
f fo)ds <o  and J (s )ds = 40o0. (4.1)
0 1

N+1
S N

In the case ®(t) = |t|/p, (4.1) holds if and only if N > p.

Proposition 4.1.10 Let Q < RY be a bounded and smooth domain and ® a N-
function satisfying and (¢1). Then

o WH(Q) L L (0);

comp
>

o WH2(Q) LY(Q) whenever ¥ << ®,;

o WHoH(Q) > WHB(Q) < Who-(Q).

4.1.3 Consequences of condition (¢)

We reserve this section to present some essential consequences of the hy-

pothesis (¢1). Throughout this section, let us denote ¢_ =a_+1and ¢, = a, +1.

Lemma 4.1.11 Suppose that ® is a N-function satisfying (¢1), with complemen-
tary N-function given by ®. Then

i) min{t?-, 1%+ }®(s) < B(ts) < max{t?-, t9+}d(s), Vs, t > 0;

i) min{lulg, Jul§7} < §, @(u)de < max{ul, Jul§"}, Vue L*(9);

iid) min{| Va3, [Vul§") < §o@(Vul)de < max{|[ Va3, [Val§}, Yu e Wi (9);

6 Sy . ~ B N
iv) min{tﬁ,tﬁtl}@(s) < P(ts) < max{t"’:l,t"’;l}@(s), Vs, t > 0;
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o by ¢ P4 -
Tl <y Bupde < max{lull L Jull T} Ve LYQ).

v) min{|ul
As a consequence of item—i) of the Lemma above, we have the following result.

Lemma 4.1.12 Let ® be a N-function satisfying (¢1). Then, there exists C > 0
such that
P(s+1) < C(CID(S) + q)(t)), for all s,t > 0.

Lemma 4.1.13 If ® is a N-function satisfying (¢1), then:

ta'(t ta'(t
i) a_—1=infa—()<supm=a+—1<oo;
0 a(t) =0 a(t)

i) min{t®=~1 7+ 1a(s) < a(st) < max{t*=' t*"'}a(s), for all s,t > 0.

It is well known that the Sobolev spaces W, #(Q) (1 < p < o0) are uniformly
convex, so

GF , — u in Wy P(Q) andf |Vu,|Pde — J |VulPdz, then u, — u in W,P(Q).”

’ ’ (4.2)

Next, we show that if ¢ satisfies (¢;), then property remains valid. Before

presenting this result, we need to introduce the following concepts.

Definition 4.1.14 A N-function ® is said to be uniformly convex, if for every

€ > 0, there exists 6 > 0 such that

s+t P(s) + (1)

)<0-0=—

|s — t| < emax{s,t} or @(‘

for all s,t = 0.

An alternative way to verify that an N-function is uniformly convex, is given

by the following proposition, which is proved in Proposition 6, page 284 in [49].

Proposition 4.1.15 Let ® be a N-function. Then ® is uniformly convex if, and

only if, for each € > 0, there exists constants K. > 1 and s(e) > 0 such that

P'((1+€)s) = K (xs), for all s> s(e).



4.1. Orlicz—Sobolev setting

103

Lemma 4.1.16 If ® is a N-function satisfying (¢1), then ® is uniformly convex.

Proof: Given ¢ > 0, by Lemma [4.1.13| we have

O'((1+€)s) _ o((1 +¢€)s) _ a((L+¢€)s)(1 +€)s > (146 >1, forall s> 0,

®'(s) ¢(s) a(s)s

so the result follows directly from the above proposition. [ |

Proposition 4.1.17 Let ® be a N-function satisfying (¢1). If un, — u in Wy (Q)
and §, ®(|Vu,|)dr — §, ®(|Vul)dz, then u, — u in Wy ().

Proof: By using the hypothesis (¢;), we obtain from the lemma above that ®
is uniformly convex. Thus, the result follows from Theorem 2.4.11 and Lemma

2.4.17 in [25). |

Finally, let us introduce the functional P : W, (Q) — R defined by

P(u) = f O(|Vul)de. (4.3)
Q
The next Lemma lists some properties of P.

Lemma 4.1.18 Suppose ® satisfies (¢o) and (¢1), then the following statements

are true:

i) PeCY W% (Q),R) and

(P'(u), ) = L a(|Vu|)VuVedz  for all p € WOI’Q(Q);

i1) P is sequentially weakly lower semicontinuous, that is, if u, — u in Wol’q)(Q)

then lim inf P(u,) = P(u);
n—0o0

iii) P’ is strictly monotone, i.e,

P'(u) —P'v),u—v)>0, VuveWy®(Q), u+uv;
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iv) P’ is of type (Sy), that is,

“if iy — u and lim sup(P’(u,), un, — u) < 0, then u, — u in Wy*(Q)”.

n—0o0

4.2 Preliminary results in the setting of

non-smooth analysis in Orlicz Sobolev spaces

In this section, we present some preliminary results which will assist us in
the proof of the main result of this chapter.

We start by presenting some concepts and facts of non-smooth analysis
that will be important for what follows. For more information on this subject, we
request the reader to refer [55].

Let W, ®(Q) be the Orlicz-Sobolev space associated to ® and ¥, : Wy *(Q) —
(—o0, 0] a convex, lower semicontinuous and proper (W, # +00) functional. The

set Dom(U,) = {ue W, (Q) : Wy(u) < oo} is called the effective domain of Ws.

Definition 4.2.1 Consider I = U, + Uy with ¥, € CY (W, (Q),R) and ¥, :
Wy P(Q) - (—0,0] a convex, lower semicontinuous and proper functional. A

point u € Dom(Vy) is said to be a critical point of I if
(W (), v — u) + Uy(v) — Uy(u) = 0, Yo e W*(Q).

In this context, the (PS) condition is understood in the following sense.

Definition 4.2.2 We say that I satisfies the Palais-Smale condition if the follow-
ing holds:

“If (uy,) is a sequence such that I(u,) — c € R and

(T (1), v = ) + Uo(0) = Talttn) = —ea| V(0 = wn) o, Vv & Wy (€)

2

where €, — 0%, then (u,) possesses a convergent subsequence.
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The proof of Theorem stems from the following result due to Szulkin.

Theorem A Suppose that I : Wol’q)(Q) — (—o0,00] is defined by I = Uy + Uy,
where Wy € CYWyP(Q),R) and ¥y : Wy*(Q) — (—o0,0] is a convez, lower
semicontinuous and proper functional. If I satisfies (PS) and admits two local

minima, then it has at least three critical points.
Proof: See Corollary 3.3 in [55]. [

In order to apply the above theorem to get our result, let us first construct

the appropriate functional setting.
t

Thus, consider M(t) := J M(s)ds and Jy(u) := M(P(u)), where P was de-
0

fined in (4.3). In addition, let .J, : Wy'®(Q) — R be given by Jo(u) = f F(z,u)dz,
Q
t
where F(z,t) = J f(z,s)ds.
0
Before announcing the next lemma, let us recall the hypothesis (f]), which

is given by

(f1): there exists an odd increasing homeomorphism A from R to R and nonneg-

ative constants a; and ay such that

fz,t) < ay + azh(]t]), VteR and Vo eQ

lt]
and H << ®,, where H(t) := J h(s)ds satisfies

0

Lemma 4.2.3 Suppose (¢o), (¢1) and (f]) holds. Then:

i) Jy e CY (W P(Q),R) and

(Ti (). 0y = M(P(w) j o[ Vul)VuVpds Vo e WE(Q):
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i) Jye CY Wy *(Q),R) and
(), ) = f fla,u)pde Vi e Wh®(Q);
Q

i11) Ji is of type (Sy), that is,

” .,

“if tp — w and lim sup (J}(up), up — uy <0, then u, — u in Wy'*(Q)";
n—00

W) If uy — u in Wy*(Q), then (J}(un), ty — u) — 0;
w) If u, — w in Wy*(Q), then Jy(u,) — Jo(u);
v) Jy is sequentially weakly lower semicontinuous in Wy'* ().
Proof:
i) This assertion follows directly from Lemma [4.1.18-7) and chain rule.

i1) Noting that
1
;[F(x,u +tp) — F(z,u)] - f(z,u)p ast — 0 for all z € Q

and by (f])

t

1
< f F(x,u+ st)lolds < arlgl + azh(lul + o))
0

< ailp| + ashy H(Ju| + |p]) € L)

holds, the result follows from dominated convergence.

i) If u, — u, then {u,} is bounded in W, ®(Q) and, passing to a subsequence,
if necessary, we may assume that P(u,) — to for some to > 0. If ¢, = 0,
then u, — 0 and, except if u = 0 a.e in €2, it leads us to a contradiction
because u,, — u a.e in 2. On the other hand, if ¢; > 0, then it follows from

the continuity of the function M that M (P(un)> — M (ty) > 0, whence for
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our assumptions we get

lim sup(P’(uy), u, — uy < 0,

n—o0

which by Lemma {4.1.184v) implies in u, — u in W, "*(Q). Repeating the
same argument, we conclude every subsequence of (u,) admits a subsequence

converging to u. Therefore u,, — u, as desired.

iv) Suppose that u, — u. Then, u,, — w a.e in Q and, since (f]) is satisfied, we

have

|f(z,un) (up —u)| < ar|u, —u| + ash(|u, — ul + |u])|u, —u

< O(lug —ul + H(|uy — ul + [ul)).

Hence, by using the compact embedding Wy'®() < L¥(Q), the last in-
equality and Theorem we get |f(x,u,)(u, —u)| < g(z), for some

g € L'(Q). Thus,once again by dominated convergence we get the result.

v) As in the previous item, by using (f{) and dominated convergence the result

follows.

vi) If w, — w, then by Lemma [4.1.18—4i) one has lim inf P(u,) = P(u). More-

n—o0

over, as M is a continuous and increasing function in [0, 0), then
tim inf N (P(1s,)) = M ( i inf Plun)) > ¥ (P(w)).
n—aoo n—0oo
Defining ¥, : W, (Q) — R by
\Ifl(U) = Jl(U) — )\JQ(U),

as a direct consequence of the previous Lemma, we can derive the following prop-

erties to WUy.
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Lemma 4.2.4 If (¢o), (1) and (f]) hold.  Then the functional Vi €

CY Wy ®(),R) is sequentially weakly lower semicontinuous and W' is of type (S..).

Proof: From items i) —ii) in the above lemma, we conclude ¥y € C*(W;*(Q), R).
By iii) —iv), one has W/ is of type (S;). The last part is obtained by using v) —vi).
[

Next, let us assume

-

o*
be L) (Q) if 0 <0 < 1;

(0) © {be LUQ) for some ¢ > 1 if § = 1;

be LY(Q) if 6 > 1.

and define G : Q x R — (—o0, 0] by

-

2 itz eQand t >0
a) G(z,t) = < if0 <o <1;

4o fzeQandt <0

—b(z)In(t) f zeQand t >0
b) G(z,t) = < if 0 =1;

40 fzeQandt <0

b(x)t!—9
5—1

fzeQandt>0

c) G(x,t) =< if 0 > 1.

4o fzeQandt <0

Note that, when 0 < § < 1, we have bu'~% € L'(Q) for all 0 < u in W, *(Q),
because in this situation we are supposing b € L(%)'(Q). In the case 6 > 1, one
has G(z,u) = 0in Q, Yu = 0 in Wol’q)(Q). Finally, when § = 1, let us decompose
G as G(z,u) = —b(z) In(u).X[o<u<1] — b(x) In(u).X[u=1] and fix s € (0, i—?), where
¢’ is the conjugate of ¢. Since In(t)/t* — 0 as t — +o0, we can find C' > 0 such
that In(t) < Ct* for all ¢ > 1. By using this fact, we obtain

G(z,u) = —b(x) In(u). Xus1 = —Cb(x)u’ X1

in which bu® € L'(Q) by our choice of s.
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Combining all the information, we can conclude that in any case
f G(z,u)dr # —oo for all u > 0 in Wy *(Q).
Q

Now, we can define the functional W, : Wy'*(Q) — (—o0, 0] given by

f G(z,u)dr  if G(-,u(-)) e L*(Q)
\Ifg(u) = Q

+oo it G(+u(v)) ¢ LY(Q).
Regarding ¥,, we have the following result.

Lemma 4.2.5 Assume that (b) holds. If either § > 1 and
(S): —NApu=bz)u™® nQ, u>0 nQ and u="0 on Q

admits solution in Wol’(b(Q) or 0 < 1, then Wy is proper, convex and sequentially

weakly lower semicontinuous.

Proof: First, let us prove that W, is proper, that is, the effective domain Dom(¥5)
of Uy is non-empty. In fact, when 0 < 6 < 1, every non-negative function u €
Wy ®(€) belongs to Dom(W,). If § > 1 and uy € Wy'* () is a solution of (S), then
up € Dom(¥s), which proves that Dom(¥s) # ¢J in this cases.

For the case § = 1 define the problem

b
— Ay, u = ugﬂ inQ, u>0 inQ and ulsq =0, (4.4)
where 0 < s < f@(fj;, in which ¢ is given by (b).

From Corollary [0.0.14] which will be proved later, for chosen s the problem
(4.4) admits a solution 0 < uy € Wy ** (Q) — Wy *(Q) (see Proposition |4.1.10)).
Now, let us prove that ug € Dom(¥;). Indeed, by using that In(¢) < C;t* for all

t > 1 and for some positive constants C7, one has

f G(x,up)dr = J G(a:,uo)X[0<u0<1]dx+J G(x, ug) Xuy=11dx
Q Q

Q

1
= f bln <—)X[0<u0<1]dl’ —J bIn(uo)X[ue=11dT
Q Q

Uop
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b
< C1J —5 X[0<up<1]dT < Clj (V| d < oo.
Q Up Q

Therefore, ug € Dom(Vs).
Next, let us verify that W, is convex. For this, it suffices note that for every
reQ, G(z,-) e CY0,0) and G'(x,t) = —b(x)t°, which is increasing in t > 0.
Finally, to show that ¥, is sequentially weakly lower semicontinuous, let us
take 1, — u. When 0 < § < 1, by using the embedding Wy'*(Q) — L?*(Q) and
proceeding exactly as in the proof of Lemma [I.2.3] we get the result. For the case
0 > 1, the claim follows directly from Fatou’s Lemma.

In the last case, when § = 1, we observe that by Fatou’s Lemma

n—0o0

_J b(z) In(u)Xu<de < lim inf —f b(x) In(un) X[u.<17d.
Q 0

On the other hand, by fixing s € (O, %), we have In(t) < Ct* for all t > 1 and for
some C' > (0. So by using this information together with the compact embedding

Wy ®(Q) —>— L7(Q) for all 1 < 7 < ¢*, we get by dominated convergence

J b(z) In(un) X[, >11de — J b(z) In(u)Xus1jde as n — .
Q Q

Therefore, from this two information, the result follows also for the case 6 = 1. B

Now, we can define the appropriate functional to apply the Theorem A. Let
I:W®(Q) — (—o, 0] be the functional given by

I(u) = Uy (u) + pWs(u).

By the Lemma we have Wy € C'(W,*(),R). Moreover, by Lemma [4.2.5]
we know that Wy is proper, convex and lower semicontinuous.
Next, we will prove that I satisfies (PS). Let us recall the following hy-

potheses before stating the next lemma:

. oo 107(E)
(¢2): ¢4 < ¢ = inf 0k
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(M): M(t) = mot* !, for all t > 0, with 1 < a < %;
sup F'(z,1)
(f4): lim 2L——— = 0.

t—o0 tad-

Lemma 4.2.6 Suppose (¢o) — (¢2), (M), (b), (f1), (f}) hold. In addition, when
6 > 1, assume (S) admits a Wy '*(Q)—solution as well. Then I satisfies the (PS)

condition.

Proof: Let (u,) € Wy (Q) and (e,) < (0,0) be sequences such that I(u,) — ¢ €
R, €, — 0 and

(W (1), 9=ty (Wa(9) = Wa(t) ) = —€a [V (=), for all € W (), n > 1.
(4.5)
First, let us show that (u,) is bounded in W;®(Q). For this, is enough
prove that I is coercive. In fact, by (M) and Lemma [1.1.11] we obtain

~

M(P(u)) > 0702 for all u e WE(Q) with [Vaule > 1.
(8%

Moreover, it follows from (f]) and (f3) that for given € > 0 small enough,
there exists O] > 0 such that F(z,t) < C; + €[t|*®- for all z € Q and t € R.
Therefore, by the above informations and the embedding Wy'® (Q) — L~ (),

which follows from the hypothesis (¢2), we conclude

m oaQ_— oaQ_—
W) = vy —A(Cl|Q\+ef uf**-ds)
Q

m aQp— (670
> 2 Vul = A(GQl + ol Vul3),
whence, by taking € > 0 small enough, the previous inequality leads us to
Wy (u) = Gy (IVulg> — 1) (4.6)

for some C5 > 0.

Besides this, it follows from the inclusion Wy*(Q) < L#*(Q) that
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Uy(u) = —C’4||b||(¢a_< ),HVUH<11>_67 for 0 <0 < 1. For 06 > 1 we have Uy(u) = 0

1-6

and for 6 = 1, by taking s € (0, min{%, oab,}), we obtain

Wy(u) = — L b() In(u) Xpuz1jde = —Cs bl 4|uly = —Cs[bl[Vullg
for some cumulative constant C5 > 0, where the last inequality follows from the
fact that W, ®(Q) — L3 (9Q).

Considering all of these information together with (4.6), we get

(
(Il — 10l ox |Vuli® = 1) W0 <5 <1
1—

=)

1) =y e (1vulg® - el Ivuly) ifo =1

| CIVulg™ it 6> 1,

whence [(u) — o as |Vu|e — o0, that is, I is coercive.
. . . . . 1.9
Since [ is coercive and I(u,) — ¢, we conclude (u,) is bounded in W™ ().
As a consequence, passing to a subsequence, if necessary, we may assume that u,, —

u. By Lemma[4.2.4)and [£.2.5], one gets I sequentially weakly lower semicontinuous,

so I(u) < lim inf I(u,) = ¢ < 0. Therefore, Uy(u) < oo and by taking ¢ = u in
n—00

(4.5]) we obtain
W (1), — 1) < ,u(\llg(u) - %(W)) +en|V(tn —u)]o forneN.

Thus, once again by using the fact that W, is a lower semicontinuous func-
tional and last inequality, we get lim sup{W/(u,), u, —u) < 0, which by Lemma
n—0o0

implies u,, — u in W, "*(Q). This concludes the Lemma. |

Henceforth, our aim is to show that I has two local minima, as required by

Theorem A. The next proposition allows us to accomplish this task.
Proposition 4.2.7 Assume (¢o) — (¢2), (M), (f1) and (f}). Then any strict local

minimum of the functional ¥, = J; — AJy in the strong topology of Wol’cb(Q) 18 SO
in the weak topology.
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Proof: We just need to verify that, under these assumptions, the conditions of
Theorem in Appendix are met.

First, note that W, ’LP(Q) is reflexive and separable by (¢;). Besides this, it
follows from Lemma [.2.3] that J; and Jy are sequentially weakly lower semicon-
tinuous and by the functional ¥, is also coercive. Therefore, to conclude the
proof, we need only to check that J; € WW&@, that is,

“if u, — w and 7}21()10 inf Jy(u,) < Ji(u), then (u,) has a subsequence
converging strongly to w.”

Suppose u, — u and ng}o inf Jy(u,) < Ji(u). Since the functional J; is
sequentially weakly lower semicontinuous, there exists a subsequence of (u,,), still
denoted by (u,) such that 7}1_{150 Ji(u,) = Ji(u). As t — M(t) is continuous and

strictly increasing in ¢ > 0, the previous limit give us lim P(u,) = P(u). There-
n—0o0

fore, as lim P(u,) = P(u) and u, — wu, it follows from Proposition [4.1.17| that
n—o0

U, — u in Wy*(Q). |

Let us show that I admits two local minima in VVO1 ’CD(Q) for suitable values
of A\ and p. Before, let us recall that
sup F'(z,1)
(f3): lim 2——— —0.

L0+ tod+

Lemma 4.2.8 Suppose (¢o)—(¢2), (b), (M) and (f])—(f3) hold. In addition, when

6 > 1, assume (S) admits a Wy'*(Q)-solution. Then I has two local minima.

Proof: Fix A > A*. Since WU, is lower semicontinuous and coercive (see
Lemma and ), there exists uy € Wy'*(Q) a global minimum of ¥,
in WOI’(D(Q). Moreover, as A > \*, by using the definition of A\*, we obtain
Uy (ug) = Ji(ug) — AJa(ug) < 0.

Let us denote by C' the constant of the immersion Wy,5® (Q) < L+ (),
that is, |ulas, < C|Vule for all u e Wy *(Q). So by taking € < %:{m, it follows

from (f}) and (f}) that F(z,t) < et®+ for all t € (0,m) U (M, 0), for some m > 0

small enough and M > 0 large enough.



4.2. Preliminary results in the setting of non-smooth analysis in Orlicz

Sobolev spaces

114

On the other hand, if we suppose that |[Vu|e < €, then

maed+

1/ap™
[méuéM]‘ < (J[ . u“¢+dx) < |ullag, < C|Vulle < C€,
MUK

which implies in ‘[m <u < M]’ < C¢ /mao+.

Therefore, since (f]) is also satisfied, if € > 0 is enough small we have

J F(z,u)dz = J F(x,u)dx + J F(z,u)dx + J F(x,u)dx
Q [u<m] [u>M] [m<u<M]

u*t dr + f F(z,u)dx

[m<usM]

J
Q\[m<usM]

C /
u*tdx + sup F(x,t) ‘

EJ o <€J u dx,
O\[m<u<M] m<t<M mee+ Q

that is, Ja(u) < eHuHiii By using this fact, hypothesis (M) and Lemma {4.1.11}

we obtain

mo

Uyi(u) = M(P(u)) — )\L F(z,u)dx > ;p(u)a _ GAHuHam

agy

mo ’fTL()C'mz>+
> IVl = Aeuligl = = ——ulogl — Aeful5 > 0 = ¥, (0)

whenever |[Vule < €. Hence, 0 is a strict local minimum of ¥ in the strong
topology, which by Proposition[4.2.7]leads us to conclude that 0 is a strict minimum
of ¥y in the weak topology as well, i.e, there exists a weak neighborhood V,, of 0
such that

0=Uy(0) < Uy(u) for all ue V,\{0}.

Next, since ¥, is lower semicontinuous and coercive, W, ((—o0, 7]) is weakly
compact for every 7 € R. In particular, ¥ '((—o0,0]) is weakly compact. Thus,
by defining the disjoint weak compact sets A; = {0} and Ay = ¥ ((—o0,0])\V,, =
U ((—o0,0])\{0}, we have

e 0]

Ui ((—o0,1/n]) = U7 ((—0,0]) = Ay U Ay,

n=1
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Hence, by using Theorem in appendix, we can find ng € N and
disjoint weakly compact sets B; 2 A;,7 = 1,2, such that

U ((—o0,1/ng]) = By U By,

where 0 € By and uy € By (remember that W;(ug) < 0). Since B; and B, are
disjoint weakly compact sets, we can find C} and Cy disjoint weakly open sets, and
therefore open with respect to the strong topology also, such that B; < C;,i = 1, 2.

Through these sets, we can define
Di = {u € Cz . \Dl(U) < 1/71,0} C Bi7 1= 1,2,

where 0 € D; and ug € Dy. In addition, as W, is a continuous operator, the sets
Dy and D, are also open in the strong topology. Since 0 € D; and uy € Do, by
taking @ € Dom(W¥s) (remember that, under our hypotheses, W, is proper) and
using that ¢t — G(z,-) is increasing, we conclude for € enough small, et € Dy and
ug + €t € Do, that is, D; n Dom(¥s) # &, i = 1,2.

Therefore, as ¥, is sequentially weakly lower semicontinuous and B; is
sequentially weakly compact sets, the infimum of ¥, on B;,i = 1,2, is attained.
In this way, we can define

Uy (u) — min Wy
a; = inf b :u€ Dy n Dom(Wy) », 1=1,2.

Thus, by taking gy > 0 such that py, = 1/max{aq, as}, for p € (0, ) we have
1/p > o for i = 1,2, which by the definition of «; gives
1

— > ,
iz nal — Uy (w;)

‘Pz(wl) — min \1/2
B;
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for some w; € D; n Dom(W¥s), i.e

1
= > I(w) — pminWy, =12 4.7
n0> (w;) pmin Wy, i (4.7)

On the other hand, again by using that B; is sequentially weakly compact
and [ sequentially weakly lower semicontinuous, we can find @; € B; n Dom(WV,),
1 = 1,2, such that

minl = I(w;), i=1,2.
B;

By contradiction, assume W1(&;) = 1/ng for some ¢ = 1,2. Then, by (4.7)

we obtain

1 1
n}giinl =I(@) = o + u¥s(w;) = o —l—urrgin\llg > I(w;), i=1,2,

which is absurd. Therefore, W (@;) < 1/ng, that is, @; € D; for i = 1, 2.
Finally, by using that D; is an open set, @; € D; and Dy n Dy = (F, we

conclude that @; and @y are distinct local minima of 1. [ |

Corollary 4.2.9 Suppose (¢o) — (¢2), (b), (M) and (f]) — (f}) hold. In addition,
when § > 1, assume (S) admits a Wy'*(Q)-solution. Then I has three critical

points.

Proof: It follows directly from Theorem A, Lemma 4.2.6| and Lemma [4.2.8. 1

4.3 Necessary and sufficient condition to a

multiplicity result

In this section, we will present the proof of the main result of this chapter.
In addition to obtaining necessary and sufficient conditions for multiplicity
of solutions for (@) ,), the proof we will exhibit also brings us relevant information

about the pure singular problem obtained by taking f =0 and M = 1in (Q»,).
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Theorem [0.0.12] Suppose that (¢o), (¢1), (P2), (M), (b), (f1)— (f5) hold. Assume
0>1 and

M(ch(wup)

A* = inf
f F(z,u)dx
Q

cue Wy*(Q) and J F(z,u)dz >0
0

Then, the following are equivalent:

i) there exists 0 < ug € Wy'*(Q) such that J bup 0 dx < o;
Q

i1) the problem
(S): ~Agu=b(x)u™® inQ, u>0 inQ and u=0 on Q

admits (unique) weak solution;

i1i) for each X > N\* there exists py > 0 such that for u € (0, uy] the problem

(Qxp) admits at least three weak solutions.

Proof:

If J bui~°dx < oo for some 0 < ug € W, ®(Q), then
Q

A= fue W) - f

b(z)ul b dz < oo}
Q

is non-empty.

Let us define the following sets

N = {u e Wy*(Q) : JQ (a(|Vu|)|Vu|2 - b(:):)|u|1_5>dx > 0},

N* = {u e Wh(Q) : JQ (a(|vu|)\vu|2 . b(x)|u|1*5)dx - o}

and the functional J : Wy'*(Q) — R given by

J(u) = L O(|Vu|)dz + 5711 L b(z)|u| Oda.
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Henceforth, we will prove that J admits a minimum in A and that this

minimum is the sought solution. To ensure this, we need to establish the following

claims.

Claim 1: N* and N are non-empty sets and A is an unbounded set.

To prove this assertion, let us take u € A and define the function

t1—6
o(t) := J(tu) = J O (t|Vul)dx + J b(x)|u|'"°dx, t > 0.
Q 0—1Jg
Then, for ¢ > 0 one has
o' (t) = J o(t|Vul)|Vuldr —t°b(z)|ul'°dx
Q
and
o(t) = J & (V) [V ul2da + 5t~ J b()u[ ' da
Q Q
By using (¢;) and Lemma [4.1.11}-7), we get
J o(t|Vu|)|Vu|dr = %f O(t|Vul)dr = ¢ min{t¢‘1,t¢+1}f O(|Vul)dx
Q Q Q
(4.8)
and
f o(t|Vu|)|Vuldx < Q;—JFJ O(t|Vu|)dr < ¢— max{t‘z’_l,td’*_l}f O (|Vul)de.
Q Q Q
(4.9)

Thus, as a consequence of we conclude that o'(t) — o ast — ®©
and by we obtain ¢’(t) — —oo as ¢ — 0. On the other hand, since ¢ is
increasing, we get ¢”(t) > 0 for all ¢ > 0, which implies ¢’ is also an increasing
function. Therefore, joining all these information, we conclude that there exists
a unique t, = t,(u) (which is a global minimum of o) such that ¢'(t,) = 0 and

o'(t) = 0 for all ¢t > 0 large enough, that is,

f b (£ |Vl | Vaulde — t;—éf b()|ul " dz = 0
Q Q
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and
f o(t|Vu|)t|Vu|de — tl_(sf b(z)|u|'°dx =0, for all t > 0 large.
Q Q

Thus, tyu € N* and N is unbounded and our claim is proved.
Claim 2: N is a closed set.

Indeed, suppose (u,,) = N and u, — u in Wy *(Q). By Lemma {4.1.18/-7)
we obtain (P’'(u,),u,y — (P'(u),u) as n — oo. Besides this, by Fatou’s Lemma

J b(z)u|'%dr < lim ian b(x)|u,|'°dx. Thus, by taking advantage of this
Q n—w Q

information and using J o(|Vug|) | Vuy|dx — f b(x)|u,|*°dx = 0 for all n € N,
0 0

we conclude that u e N.
Claim 3: 0 is not an accumulation point of N.

Assume on the contrary that there exists (u,) < A such that u, — 0 in

Wy ®(€). Then, by Theorem and since § > 1, one has

wo>C > ¢+J

Q

> b(x)dx ' |u,|dz S wasn— o
> (], ) ( ] unlar)
Q Q

which is clearly impossible. Hence, there is C; > 0 such that |Vule = C for all

ueN.

d(|Vu,|)dr >J b(x)|u,| 0 dx
Q

Claim 4: J is a coercive and lower semi-continuous functional.

Note that, by Lemma [4.1.11}-4ii) we have J(u) — © as |[Vuls — oo, that
is, J is a coercive functional. Moreover, by Lemma zz) and Fatou’s Lemma,
we conclude that J is lower semi-continuous, which proves the Claim 4.

From the Claims 1, 2 and 4, the assumptions of the Ekeland Variational
Principle (see Theorem in appendix) are assured. So, taking the mini-
mizing sequence (u,) < N corresponding to i/I\lff J, the following conditions are

satisfied:
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: . 1
i) J(u,) < 1/I\1[fJ +

i) J(up) < J(w) + L|V(u, —w)|e, YweN.

As J(|un|) = J(u,), we can assume u,, = 0. Moreover, if we suppose u,, = 0

in a measurable set Qy < 2, with || > 0, then since u,, € N and b(z) > 0 a.e in

Q, we obtain again by Theorem

0>, JQ O(|Vuy,|)dr = JQ b(x)ul™ > (JQ b(:zc)l/‘sdac>6<fQ |un|dx> . o0,

0

which is an absurd. Thus, u,(z) > 0 a.e in (.

Since J(u,) — i/r\l/f J =0, we have

win{ [V 5, [Vua 37} < [ @(Vuade < e+ inf 7
Q

for all n large enough. Hence, |[Vu,|e < Cy for suitable constant Cy and this

implies, by Proposition [4.1.10| that (up to subsequence)

]
U — Uy in Wy *(Q);

3 Un — Uy strongly in LY (Q) for all N-function G << ®,;

Uy, — Uy a.€ In
\

for some u, € Wy * ().
By the Fatou’s Lemma one has inf J > J(uy), which impliesf b(x)ul=’dr <
Q
o0, that is, us € A. Thus, it follows from the proof of Claim 1 that t,u, € N*,

where t, = t,(u,) is the minimum of ¢ — J(tu,). Therefore,

i/I\lffJ = lim inf J(u,) = J(us) = J(teu,) = inf J > i/I\l/fJ

n—00 N*
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which results in J(uy) = i/r\l[f J, that is

J () s
Q

L (V| dr+
(4.10)

J b(@) | ’Z%OJ (V| )dart
Q

5—1 o 5—1

On the another side, by Fatou’s Lemma and Lemma [4.1.18~17i), one has

J(I)(|Vu*|)d:v< lim inff (V)
Q n—00

Q

and

J b(l’)|u*‘176dg; < lim inff b(x)|un’175dx,
@ Q

n—o0

whence joining this information with (4.10), we conclude that

lim | ®(|Vu,|)dx = f O(|V,ul|)de,
0

n—aoo0 Q

which by Proposition implies
. 1,0
Up, — Uy in Wy (92). (4.11)

Next, we will prove that u, is a solution of (S). The proof will be split into

two cases.

Case 1: Infinite terms of (u,) belong to N\N*.
In this case, by fixing 0 < ¢ € W)"*(Q), as u, € N\N*, we obtain

fb(x)mnﬂgo)lédm J b )ul s < J (V) [V |dz for all ¢ > 0,
Q Q

Q

so (u, + tp) € N for t > 0 enough small. Thus, by item—ii) above we have

J(un) — J(u,, + tp) < n7H[tVp|s and from this we get

1 ®(|Vu,, + tVo|) — ®(|Vu, 1
wpter [ 2 £l = 0wy, , L
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which together with Fatou’s Lemma leads us to conclude that

P(|Vu, + tVe|)— o(|Vu,
—|W<1>+f (|Vun|)VUnV90dx——HVs0Hq>+hm inf f (Vi + VfD (V)
Q

1 ul™0 — (up, + tp)=°
e s
> J b(z)u, pd. (4.12)

Q

Once again by Fatou’s Lemma, (4.12]), the convergence in (4.11]) and Lemma
4.1.18—1), letting n tend to infinity we obtain

f a(|Vug|)Vu, Vdr = J b(x)u,’pdr. (4.13)
Q Q

Case 2: Finite terms of (u,) belong to N\N*.

In this case, infinite terms of (u,) belong to N*. By fixing again 0 < ¢ €
Wy ?(€), we obtain J b(z) (u, + tp) dr < f o(|Vu,|)|Vu,|dx < o for each
t = 0, which implies (%n + tp) € A. Once agai% by the proof of Claim 1, there
exists unique f, ,(t) > 0 such that f, ,(¢)(u, + tp) € N*, that is

J O(fr,o (V)| VU +tV @) fr.0(t) [V, +tVo|dz— nl;,‘;(t)f ()|t +tV | 0dz = 0.
Q Q

(4.14)

Since we are supposing that u,, € N*, we get f, ,(0) = 1. Besides this, we

claim that f, is a continuous function in [0,00). Indeed, if 0 < t; — ¢, then by

(4.14)), hypothesis (¢1) and Lemma [4.1.11}-i) we have

b mm{f¢ L), f ¢++5 L <17

()|, + tro| 0de

{bb >
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and
J B(| Vi + Vo)
6 max { £457 7 (1), S50 (1) | >1,  (4.15)

(tk)} J b(z)|u, + trol'Oda

hence f, ,(t;) is a bounded sequence, so f, ,(tx) — s = 0 up to subsequence. Note
that, from and dominated convergence, it follows that s # 0, which again by
dominated convergence and results in s(u, + tp) € N*, whence s = f,, ,(t)
and this concludes the proof of our assertion.

Next, let us define s, , := tl_igl+ (fnp(t) — 1)/t € [—o0,0]. If this limit does
not exist, we can replace t — 0 by t, — 0% as k — o0, for some suitable sequence
(tx)-

By using and f,,(0) =1, one has

t

- [ o[t e st

0 - J [a(fn,w(t)IVun HV ) [ (1) Vun + Vo] —a(IVunD!VunIz]dx
Q

so, by taking t — 0" in the previous equality we obtain

Vu,Vp
|V,

0= B (190]) 5,51V +

]yvunﬁdm +2 fa(\vun\)[sn,@wun\? + Vu,Vldz
Q

+(0 — 1)L[b(:v)sn,g(,u,ll‘S + b(z)u, S pldr = sn,wfga’(\Vun\ﬂVun\ + a(\VuM)) \Vu,|*dx

+sn,¢f (a1 )V + (5 — V)bl ) + zf o[V ) Vi Veoda
Q Q

+ L <a,(|Vun|)|Vun|VunV<p +(6— 1)b(:)3)u;5¢> d.

Therefore, by Lemma and the previous equality, we get

=0 =0
s - =~ f_/%
snie | (€ 0V DIV + al(F0,])) (VP 45,8 | bk
Q Q

N

C | ovuVelde < € | (8(6(VunD) + (D) dr (Prop. EIFi
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< (JL (®(Vul) + ©(Ve]))dr,  (Prop. [T

for some cumulative constant C' > 0, whence using the boundedness of (u,) in
VVO1 ®(Q) and the last inequality, we conclude that Spe # 400 and, in addition,
Sn,p < C3, for some C5 > 0.

Now, we will prove that s, , # —o0 and s,, , is bounded below by a constant
independent of n.

Suppose by contradiction that s, , = —oo. In this case, for ¢ > 0 enough

small f, ,(t) < 1. Thus, again by Theorem |A.1.10| one has

tf, ot 1
Vuals + L2010 > LTua(1 — fuplt) 1oVl

1- fmp (t)
n n

> () = I slt)wn + 1) = |

1
O(|Vuy,|)dx + —J b(z) |up| 0 d
Q 0—1Jq

| 0
— | ©(fn,o(t)|Vu, +tVe|)dr — Inp A
Q

1-5
51 L b(x)|u, + tp| °dx.

So rearranging the terms and dividing the previous inequality by ¢ > 0, we get

() [Volo o frel®) =1[Vunlo +J (| Vun)) = 2(funs ()| Vitn + 19¢0]))
Q

n t n t
1-6 t n +t 1-6 _ ,,1-6
R VY e D it
51, /
_ Jup(t) =1 [Vun[e +J C([Vun|) = 2(fuo()[Vun + tV9l)) |
t n Q t
1 ng(fnm(t”vun + Vo) fu o) Vun + V| — Qb(|vun|)|vun|daj
5 —1J)q t ’

(4.16)

where the last equality was obtained using f, ,(t)(u, + t¢) € N*. Thus, as t —
o(t)t (t > 0) is increasing and 0 < f,, ,(t) < 1, one has

(fno OV tn + IV E|) fr o () Vun + 1V < O([Vun + 1V @])[Vu, + Ve,
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which in turn using (4.16|) gives us
-1 o -
o)l 5 JuslQ) =[Pl | [ DVt = 201V 1),
’ n t n Q t
[| AT TV + = VT,
t
Taking ¢ — 0" and using Lemma 4.1.13| we get
IVelle [Vun o Vu, Ve
- = Sp . Q¢(|Vun])[sn7¢|Vun| + Vo ]dx
1
e [a’(|Vun|)|Vun| + 2a(|Vun|)]Vuan0d:v
—1lJa
Vu,
_ SW(| tn|la —J |V, )| Vet [
n Q
1
(1 aé * )f o[V ]) |Vt [Vio|de. (4.17)
Q

Clearly, the left hand side of (4.17)) goes to zero as n — c0. On the other hand, since
b min{| V|5, [V |37} < S a1V ua)) | Vun Pz < 64 max] [V |4, [V |57},
|Vun|e < Cy and s, , — —o0, using the Claim 3 above we can conclude that the
right hand side of tends to infinity as n — oo, which is absurd. Thus
Spe # —o0 and s, , = Cy for some C4 € R independent of n. Therefore, putting
together all the information obtained so far, we conclude that |s,, ,| < Cs, for some
Cs > 0 independent of n.

Now, we will prove that also holds true in this case. For this, we will
use the Theorem one more time to get

|HVuan> tfw(t)HV@H@

11— fre(t) = J(un) = J(fapo(t)(un + t9))
1
_ L<1>(|vun|)dx+ﬁ b(x)ul~dr — ng> fro(®)|Vu, + tVep|)dx
1-6 t
_—g’i(l) JQb( ) (u, + to) Odx + 5 1Jﬂb (un + tp)' ~0dx
1

- 1-5
1), b(x)(u, + tp) °dz.

Rearranging the terms and dividing both sides of the previous inequality by ¢ > 0,
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we still obtain

1/11—=f, O(f, Vu, +tVep|) — @(|Vu,
i "’;"””’|Vun|q>+fw uwnq>) [RUslOlT e + 1) = 8T,

t
L[ )+ t9)'0 — ba)u 1 Ll = f )
— d — |b nt+t — P 74
= : vt s [Hed e,
which by taking ¢ — 0" leads us to
1 i Vu,Vp
L (lsnel IVunlo +196ls) > = | 609w |snol Vel + 52|

+ ,J b(z)u, pd + Sn, f b(z)uloda
0 Q

= _J a(|Vun\)Vuanodx+J b(x)u,’pdr,
Q 0

where in the last equality we use that u,, € N*. So, by Fatou’s Lemma, (4.11)) and

using that |s, ,| < C5, we get again

f a(|Vug|)Vu, Vdr = J b(x)u,’pd.
Q Q

Therefore, in any case

J a(|Vug|)Vu,Vodr = J b(z)uy’pd. (4.18)
Q 0

By replacing ¢ in by u,, we conclude that u, € N. Besides this, as inf J =
J(uy), then t,(uy) = 1 (see Claim 1 above) and consequently u, € N* and u, > 0
in €.

Now, we can prove that u, € W, (Q) is the desired solution of (S). For
this, let us fix e > 0 and ¢ € W, (Q). By taking (u, + ep)* € Wy *(Q) as a test

function in (4.18]), we obtain

0 < f <a(|vu*|)vu*wu*+e¢)—b(x)u;5(u*+e¢)>dm
[us+ep=0]

L - f[u reoco) <a(|Vu*|)Vu*V(u* + €d) — b(x)u,’ (uy + 6(b))dx
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= € JQ <a(|Vu*|)Vu*ng5 — b(x)u;égb) dx

- f (a(\Vu*\)Vu*V(u* +ed) — b(a)uTd (us + e¢)>dx (s € N¥)
[us+ep<0]

< ef <a(|Vu*|)Vu*ng - b(x)u;%) dz — e f a(|Vu,|) Vu, Vdz
Q [us+ep<0]
—J a(|Vug|) |V |2 dz + J b(z)u’ (uy + €p)dx
[us+ep<0] [usx+ep<0]
< ef <a(|Vu*|)Vu*V¢ - b(:c)u;%) dz — ef a(|Vus|) Vi, Véda,
Q [usg+ep<0]

which dividing both sides by € > 0 and taking ¢ — 07, gives

J a(|Vug|)Vu Vodr > J b(x)u,’ pdz.
Q 0

By the arbitrariness of ¢ € Wy'*(Q2), we conclude that w, is W,'®(Q)-solution of
(9).

(15 = i)

By Corollary [£.2.9] to conclude the desired result it suffices to show that
any critical point of I is a solution of (@, ).

Let u € Dom(W¥s) be a critical point of I, that is,
(U (u), 0 — ) + u(wz(v) . xpg(u)> >0, Yoe Wh(Q). (4.19)

Since u € Dom(WV;), we have J |G(z,u)|dx < oo, which implies G(-,u(-)) finite
Q

almost everywhere. Therefore, by the definition of G when § > 1, we necessarily

have u > 0 a.e in €.

Next, we will prove that bu=%¢p € L*(Q) and

M(P(u)) f a(|Vu|)VuVedr — )\f flx,u)pdr — uf bu~pdx = 0,
0 Q Q

for all 0 < ¢ € Wy *(Q).
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So let us take 0 < p € Wol’q)(Q). Putting v = u + t@ in (4.19), one has

o JQ [G(x, Ol C;(x’ v tgp)]dm < M(P(u)) LSL(|Vu|)VuV<,0dm - A fgf(m, u)pdx.

By using that G(x,-) is a decreasing function once again and applying Fatou’s

Lemma with ¢ — 07 in the previous inequality, we get

i L b(x)u’pdr < M<73(u)> L a(|Vu|)VuVedr — A L flx,u)pdr.  (4.20)

Therefore, bu=%¢p € L*(Q).
Next, we will prove that the integral equality in Definition [0.0.11] holds.
So for t € (0,1), let us set v = (1 — t)u in (4.19) to obtain

dzx.

0 <-21(P(w) [a(VuDIVuPde + A [ flowude 1 p [FEEZIIZ Y

Thus, for some 7 = 7(t) € (0,t) we have
0 < M (Pw) L o(|Vul) [ Vul2dz + A L Fa uyudz + p(1 — 7)~° L b )u—*da,
which by passing the limit as ¢ — 0% give us
0 < M (Pw) L o(|Vu])|Vul2dz + A L o uyudz + L b(w)u—dz. (4.21)
Putting ¢ = v in and combining this with , we conclude
0= M (Pw) L o(|Vul)| Vuldz + A L (o wyudz + L b(x)u~dr. (4.22)

Therefore, by fixing ¢ € Wy *(Q), as 0 < (u + ep)™ € W, *(Q), taking (u + ep)*
as a test function in (4.20) and using (4.22)), we obtain
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0 < M(P(u)) L a(|Vu|)VuV(u + ep) " dr — )\L flz,u)(u+ ep)tdr
— L b(z)u™ (u + ep) T dx
= E[M (P(u)) JQ a(|Vu|)VuVeds — A JQ flz,u)pdr — p JQ b(x)ufagodx]
— [M (P(u)) f[ a(|Vu|)VuV (u + ep)dr — )\f[ f(z,u)(u+ ep)dr

u+ep<0] u+ep<0]

—,uf b(x)u™’ (u + ego)dx]
[u+ep<0]

N

E[M (P(u)) L a(|Vu|)VuVeds — A L flz,u)pdr — p L b(x)u"sgodx]

—eM(P(u)) J[ a(|Vu|)VuVedz.

u+ep<0]

By noting that f a(|Vu|)VuVedr — 0 as € — 0%, let us divide the
[u+ep<0]
previous inequality by € and take the limit as € — 0 to get

0< M(P(u)) L a(|Vu|)VuVedr — A L flx,u)pdr — p L b(x)u " pd.

Since ¢ was chosen arbitrarily, we conclude that the integral equality in Definition
is satisfied and this conclude the proof of the implication (ii = 7).
If 0 < ug € W, ®(Q) is a solution of (Q5,), then in particular ug € Dom(Ws),

that is, f bup~dx < 0. |
Q

Corollary [0.0.13| Replacing 6 > 1 with 6 < 1 and assuming the hypotheses of

above theorem, the claims i) — iii) remains true independent of each other.

Proof: Let us assume § < 1 and prove that the claims ¢) — iii) holds true.
Since we are assuming (b), by Lemma we have Dom(¥,) # ¢, which
prove the item 7). The proof of ii), is similar to that done in the Theorem [0.0.3]

so we will omit it.
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For the last item, Corollary guarantees the existence of three critical
points for I. Thus, it remains to show that any critical point of I is solution of
(Qk,u)-

Then, let u € I/VO1 ’CI)(Q) be a critical point of I. The integral equality in
Definition and the fact that bu=%p e L'(Q) for all ¢ € W, *(Q), follows
from exactly the same argument made in the proof of implication (ii = i)
above.

To conclude the proof, we just need to check that « > 0 in 2. Indeed, since
u € Dom(¥,), we have (|G (z,u)|dx < oo, which results in G(-, u(-)) finite almost
everywhere. Therefore, by the definition of G, we necessarily have u > 0 a.e in €
when 0 <9 <1 and u > 0 a.e in 2 when § = 1.

Now, let us exclude the possibility of u to be zero in a set of positive measure
when 0 < § < 1. For this, consider 0 < § < 1 and suppose that u = 0 in 2y, for
some Qo < Q with [ > 0. By taking 0 < ¢ € Wy'*(Q), € > 0 small enough and
replacing v by u + €p in (4.19)), we get

0 < 6M(P(u)> JQ a(|Vu|)VuVedr — eX JQ f(z,u)edz

+,uf G(z,ep)dr + uf
Qo

[G(a:, u+ep) — Gz, u)]dw,
2\

whence, by using G(z.-) is a decreasing function in [0, 00) and dividing both the

sides of the previous inequality by €, we have

0 < M<73(u)> L a(|Vu|)VuVedr — )\L f(z,u)pdx
5

e b(z)p'Pdr — —0 ase— 0T
1 -9 Jg,
which is absurd. Therefore, u > 0 a.e in ) and this ends the proof. [ ]

In [40], Lazer and Mckenna has proven that, when 0 < by < b e L*(£2) and
®(t) = |t|P/p in (S), with p = 2, then (S) admits solution in HJ () if and only if
d < 3. Mohammed also proved in [44] that in the case where ®(¢) = |t[’/p (p > 1),
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the sharp power is given by (2p —1)/(p — 1). Through the Theorem [0.0.12 we are
able to show the existence of ¢, > 1, which depends on the summability L9(€2) of

b, such that for § < 4, the existence of solution in W,"*(Q) to (S) is still ensured,

and this is the content of the next corollary.

Corollary [0.0.14] Assume that (¢o) and (¢1) hold. If b € LY(Q) for some 1 < q

1<5<1+¢——5q, @)
q

then (S) admits a W)'® (Q)-solution.

and

Proof: By implication (i = ii) in Theorem [0.0.12] it suffices to show that there
exists ug € Wy '®(Q) such that J bup ~°dx < 0. Let us construct such ug.

First, since € is a smoo%h domain, we can find ¢ > 0 sufficiently small
such that d € C%(Qy) and |Vd(x)| = 1 in Qq, where d(z) := dist(z, ) and

={r e : d(x) < 2e}. So, by fixing this € > 0, let us define

-

d(z)? ifd(z) < e

d(z) 2¢ — ty 2/(¢-—1)
up(z) = { € + f 0’1 <€—> dt ife<d(z) < 2e

€

2¢
e — 1 2/(6-—1)
e’ + J 96071(6—) dt if e <d(x) < 2e
\ € €

where 0 < § < 1 will be chosen later.

A simple calculation gives us

(ed( )-IVd(z) it d( ) <

2/(¢
Vug(z) =1 0 (26 dle ) d(z) ife<d(x)<2e
)

0 ife<d(x)<2e

\

In order to ug € W, "*(Q), it is enough that

J B(0d(x)"|Vd(z)|)dz < . (4.23)
Qe
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But, by Lemma {4.1.11}-7) we have

0
®(0d(x)? V) dx < (Jf d(z) 0=V dx.
Qe

Qe
Thus, if (§ —1)¢, > —1, by [40] we get J d(z) Y%+ dz < oo and consequently
Qe
(4.23) will be satisfied.
On the other hand, in order to J b(x)ug(2)0dx < oo, it is enough that

Q

f b(2)d(x)* 1 Ddy < oo, (4.24)
Qe

Since we are assuming b € L(€), if J d(2)°0=97 4z < oo holds, then (4.24) will
Qe

occur. So once again by [40], if % > —1, the condition (4.24)) will be satisfied.

Therefore, if 1 — i < q(qé;_ll), that is, 0 < § < %, by taking 6 €

<1 — i, min {1, q&;_ll)}) the function ug, defined as above, satisfies the condition

of item 4) in Theorem [0.0.12 which finishes the proof. [ |

Corollary Assume that (¢0), (1), (92), (M) and (f}) — (f3) hold. If b e
L1(Q) for some 1 < q and 6 satisfies @, then for each A\ > \* there exists puy > 0

such that for e (0, py] the problem (Qx,) admits at least three weak solutions.

Proof: It follows from the previous corollary and Theorem [0.0.12] [ |

Remark 4.3.1 Although we do not know if 6, = 1 + d;—lf is the sharp value for the

20, —1
p+—1

reobtains the sharp values obtained by [40] and [{4)], for the cases ®(t) = [t|*/2 and

existence of solution in Wol’q)(Q), we observe that 1+ q;—,* — as q — oo, which

O(t) = |t|P/p (p > 1), respectively.



APPENDIX

1 General Results

Theorem A.1.1 (Schaeffer’s Fized Point Theorem): Let X be a Banach

space and S : X — X be a continuous and compact mapping. If the set

{re X :x=\S(x) for some X € [0,1]}

1s bounded, then S has a fixed point.

Proof: See Theorem 11.3 in [31]. |

Theorem A.1.2 (See [57]): Let u € C*() be a nonnegative function that sat-

isfies —Apu = 0 a.e in Q. If u does not vanish identically it is positive everywhere

in €.

Theorem A.1.3 Let (u,) be a sequence in LP(2) and let u € LP(QY) be such that
|un, —ul, — 0. Then, there exists a subsequence (un,) and a function h € LP(Q)

such that:
i) Un, () = u(x) a.e on Q,

i1) |, (x)| < h(z) for all k, a.e on .

133
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Proof: See Theorem 4.9 in [9]. |

Theorem A.1.4 (See [7]): Consider de equation
—Apu, = g, in D'(Q)

and assume that w, — u weakly in WHP(Q), strongly in L}, (Q) and a.e in €.
Moreover, assume that g, € W=7 (Q) (p' = p/(p — 1)) and g, is bounded in the

space of Radon measures, i.e.

( L pdgn,

where Cg is a constant which depends on the compact set ©. Then

< Col¢llw, for any ¢ € D(Q) with supp ¢ < O,

N
Du,, — Du strongly in (Lq(Q)> , for any q < p.

Theorem A.1.5 (Vitali): Let u be a finite positive measure on a measure space
X. A sequence {u,} € L'(u) is said to have uniformly absolutely continuous inte-

grals if to each € > 0 there is corresponds § > 0 such that u(E) < § implies

‘Jund,u‘<e (n=1,2,3,---).
E

If {u,} has uniformly absolutely continuous integrals and if u,(x) — u(z) a.e.,

then v e L'(pn) and

lim und,uzf ud .
b's X

n—0o0

Theorem A.1.6 (Picone’s Identity): Let v > 0 and u = 0 be weakly differ-

entiable. Denote

-1

- VoP?Vu - Vo.

up

up
_ P _ p_
L(u,v) = |Vul’ + (p = 1) 2| Vo’ = p_=

Then L(u,v) = 0 and L(u,v) = 0 a.e on  if and only if u = v for some constant

a in each component of €.
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Proof: See [2]. |

Theorem A.1.7 Let X be a Banach space and T : RT x X — X a compact map
such that T(0,u) = 0 for all w e X. Then the equation uw = T(\,u) possesses an

unbounded continuum ¥ < RY x X of solutions with (0,0) € X.

Proof: See Theorem 3.2 in [4§]. |

Theorem A.1.8 (Bolzano’s Theorem): Let X be a Banach space and let h
be a continuous function in a continuum Yy < [0,00) x X and suppose that there
exist (aq,uy), (g, ug) € 3o such that h(aq,uy) - h(ag,ug) < 0. Then there exists

(a,u) € Xg such that h(a,u) = 0.

Theorem A.1.9 (Reverse Holder inequality): Assume that p € (0,00) and
Q c RY is a subset with finite measure. If f and g are measurable functions such

that g(x) # 0 a.e in Q, then

Ifals = [ fllplall-1/m-1)-

Theorem A.1.10 ( Ekeland’s Variational Principle): Let (M,d) be a com-
plete metric space and J a lower semicontinuos functional (s.c.i) bounded below in

M. If ¢ = infy J, then for each € > 0 there exists u. € M such that

c<J(u) <c+e

J(u) — J(ue) + ed(u,ue) >0 for all u e M,u # u.

Proof: See Lemma 6.8 in [33], page 162. |

Theorem A.1.11 If X s a real Banach space, we denote by Wx the class of all
functionals J : X — R possessing the following property: “if {u,} is a sequence
in X converging weakly to w € X and lim,_, inf J(u,) < J(u), then {u,} has a

subsequence converging strongly to u”.
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Let X be a reflexive and separable real Banach space, let J, I : X — R be
two sequentially weakly lower semicontinuous functionals with J; belonging to Wx.
Assume that

lim (J(z)+ I(x)) = +c0.

|l —-+a0
Then, any strict local minimum of the functional J + I in the strong topology is so

in the weak topology.

Proof: See Theorem C in [51]. |

Theorem A.1.12 Let X be a Hausdorff topological space and {©,} be a sequence
of nonempty compact subsets of X such that ©,,1 < O, for alln € N and

0
ﬂ@n:DIUD27 Dy n Dy =,
n=1

where D1, Dy are nonempty and compact. Then, there exist ng € N and Cy, Cy

nonempty compact sets such that
@n0201UCQ, 01002:@, DlgCl, DQQCQ.

Proof: See [28]. [ |

2  Regularity

Theorem A.2.1 (See [43]): Consider

(R) divA(z,u, Vu) + B(x,u, Vu) =0 in Q,

u =0 on 0,

with (a”) = (0.A"/dp;).
Let a, A\, A, My be positive constants with o < 1 and A = X\, kK a nonnegative

constant, Q be a domain in RN with C** boundary. Suppose A and B satisfy the
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following conditions:

(H1) a"(x,2,p)&& = Mk + [p|)™ €],

(Hz) |a"(z,z,p)| < A(s + [p])™,

(Hs) [A(z,2,p) = Aly, w,p)| < AL+ [p))" |z =yl + |2 — w[],
(Hi) |B(x, 2 p)| < AL+ [p])"+

for all (z,z,p) € 00 x [—My, My] x RY, all (y,w) in Q x [—My, My| and all
€ e RY. Ifu is a bounded weak solutions of (R) with |u| < My in Q, then
there is a positive constant 3 = B(a, A/X\,m, N) such that u € C*#(Q), moreover
lul15 < C(a, A/JN,m, My, N, Q).

Theorem A.2.2 (See [47]): Consider

(B) —Ayu = g(x) in Q,

u =0 on 0.

Suppose g € L™(Q) for some m > N. Then (R) has a unique weak solution

ue CLQ). If in addition g = 0 is nontrivial, then
u>01inQ, ou/dv on N,

where v s the interior unit normal on oOf).

Theorem A.2.3 (See Theorem 2 in [2])]): Consider
(R) — Ayu+ B(z,u,Vu) =0 in D'(Q),

where p > 1 and |B(z,u, Vu)| < C(|VulP + ¢(x)) for some ¢ € LY (Q) with
q>p'N. Let ue W,-P(Q) n LE(Q) be a local weak solution of (R). Consider Q' a
subdomain of Q0 such that @ < Q and let M = ess supg|u|. Then x — Vu(x) is

locally Holder continuous in S, i.e, for every compact © < €, there exist constants
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Cy and o € (0,1), depending only upon C,p, N, M and dist(©, ), such that

|U$l(l‘) _ufl(yﬂ < Cl|x_y|a’ T,y e @7 1= 172aN
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