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Resumo

Neste trabalho, estudamos unicidade, multiplicidade e também existência de

continuum de soluções positivas, no sentido loc, para problemas elípticos quasilineares

em domínios limitados do RN pN ě 2q, envolvendo operadores tanto homogêneos

quanto não-homogêneos, perturbados por um termo de reação fortemente singular em

ambos os casos local e não-local.

A partir de informações sobre existência e unicidade de soluções positivas para

problemas locais singulares, nós mostramos como quebrar essa unicidade, seja por

introduzir um termo não-local ou por considerar perturbações apropriadas deste prob-

lema singular. Nossa abordagem é baseada em técnicas de bifurcação, princípio de

comparação para sub e supersoluções no sentido loc e Teorema do Passo da Montanha

para funcionais de Szulkin.

Palavras-chave: Não-linearidades fortemente singulares, Princípio de comparação
para W 1,p

loc pΩq-sub e supersoluções, Unicidade, Problemas não-locais, Continuum de
soluções, Funcionais de Szulkin.



Abstract

In this work, we study uniqueness, multiplicity and also existence of continuum

of positive solutions in loc-sense both for quasilinear elliptic problems on bounded

domains in RN pN ě 2q involving homogeneous operators and non-homogeneous ones

perturbed by strongly-singular reaction terms both for local and non-local cases.

From information about existence and uniqueness of positive solutions for local

singular problems, we show how to break this uniqueness by either introducing non-

local terms or considering appropriate perturbations of this singular problem. Our

approach is based on bifurcation techniques, comparison principle for sub and super-

solutions in loc-sense and Mountain Pass Theorem for Szulkin functionals.

Keywords: Strongly-singular nonlinearities, Comparison principle for W 1,p
loc pΩq-sub

and supersolutions, Uniqueness, Non-local problems, Continuum of solutions, Szulkin
functionals.
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INTRODUCTION

In this thesis, we present a study on the issues related to non-existence,

existence and multiplicity of positive solutions to the following class of problems

´A
´

x,

ż

Ω

gpx, u,∇uqdx
¯

Lu “ fλ,µpx, uq in Ω, u ą 0 in Ω and u “ 0 on BΩ, (1)

where Ω Ă RN is a bounded smooth domain, L is a quasilinear operator and

t ÞÑ fλ,µpx, tq may have singular behavior at t “ 0. We are mainly interested in

the case when fλ,µ is strongly singular at t “ 0.

The class (1) includes, in particular, the problem

´∆pu “ apxqu´δ ` bpxquβ in Ω, u ą 0 in Ω, u “ 0 on BΩ (2)

with β P R and δ ą 0.

Although (2) has been much studied in recent years, up to now there are no

results in literature about existence and uniqueness of W 1,p
loc pΩq- solutions in the

case where δ can assume any positive value, 0 ă β ă p ´ 1 and a, b ı 0. Some

attempts have been done in recent years for particular cases. For example, in 2016

Canino, Sciunzi and Trombetta [14] proved that, when a and Ω satisfy suitable

conditions and b ” 0, (2) admits a unique W 1,p
loc pΩq-solution.

In this work, in addition to establish a uniqueness result for (2), we show

how this uniqueness can be broken, either by introducing non-local terms or by

13
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considering appropriate perturbations of the singular term. According to the speci-

ficities of A and fλ,µ, sub-supersolution, bifurcation and non-smooth analysis tech-

niques were employed. Next, we present precisely what was developed in each

chapter.

In Chapter 1, we study in detail the following problem (which encompasses

(2) by taking α “ 1)

pLαq

$

&

%

´∆pu “ α
´

apxqu´δ ` bpxquβ
¯

in Ω,

u ą 0 in Ω, u “ 0 on BΩ,

with respect to existence and uniqueness of solutions in W 1,p
loc pΩq sense. In this

direction, by using domain perturbation techniques and penalty arguments, we

refine the proofs of existence of solutions found in [8], [14] and [46] to include both

more general potentials a, b and a bigger range of p values. The more delicate

issue is the uniqueness of solutions in W 1,p
loc pΩq for the problem pLαq. The main

results in [13] and [14] treated about this. In [13], by exploring the linearity of

the Laplacian operator, the authors showed uniqueness of solutions to pLαq with

p “ 2, b “ 0 and a P L1pΩq, while in [14] the problem pLαq with b “ 0 was treated

with some restrictions either on the potential a or on the geometry of the domain.

In what follows, we present the result obtained by us in this direction.

Despite the next result being so classical, it is new even for the Laplacian operator

both in generality of the potentials a and b and principally by the uniqueness

of solution in the W 1,p
loc pΩq setting for very singular nonlinearities perturbed by

pp´ 1q-sublinear ones.

After the remarkable paper of Mckenna [40], in 1991, we know that a solu-

tion of the problem pLαq, with a “ 1, b “ 0 and p “ 2, still lies in H1
0 pΩq if, and

only if, 0 ă δ ă 3. Thus, for stronger singularities, we need a more general concept

of zero-boundary condition and solution. Therefore, before stating our first result,

let us clarify what we mean by the Dirichlet boundary condition and solution for

pLαq.
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Definition 0.0.1 We say that u ď 0 on BΩ if pu´ εq` P W 1,p
0 pΩq for every ε ą 0

given. Furthermore, u ě 0 if ´u ď 0 and u “ 0 on BΩ if u is non-negative and

non-positive on BΩ.

Next, we give a notion of W 1,p
loc pΩq- solution for the problem pLαq.

Definition 0.0.2 We say u is a W 1,p
loc pΩq-solution for pLαq if u ą 0 in Ω p that is,

for each Θ ĂĂ Ω given there exists a positive constant cΘ such that u ě cΘ ą 0 in

Θ q and

ż

Ω

|∇u|p´2∇u∇ϕdx “ α

ż

Ω

´

apxqu´δ ` bpxquβ
¯

ϕdx,

for all ϕ P C8c pΩq.

Theorem 0.0.3 Assume 0 ď b P Lp
p˚

β`1
q1
pΩq and 0 ď a in Ω. If one of the

assumptions below holds

ph1q: 0 ă δ ă 1 and a P Lp
p˚

1´δ
q1
pΩq;

ph2q: δ ě 1 and a P L1pΩq,

then, for each α ą 0 given, there exists a solution u “ uα P W
1,p
loc pΩq of the problem

pLαq. Moreover, if δ ď 1 then u P W 1,p
0 pΩq. Besides, the solution is unique if

a` b ą 0 in Ω.

It is worth mentioning that the Theorem 0.0.3, in addition playing a fun-

damental role in the next chapters of this thesis, also has an intrinsic importance.

Indeed, our result of uniqueness for the local problem pLαq improves the main

theorems of [13] and [14] by:

piq removing any requirement about the geometry of the domain,

piiq permitting a perturbation of the very singular term by a sublinear one,

piiq including more general potentials a and b.
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In Chapter 2, we approach the following non-local quasilinear λ-problem

pP1q

$

’

&

’

%

´

´

ż

Ω

gpx, uqdx
¯r

∆pu “ λ
´

apxqu´δ ` bpxquβ
¯

in Ω,

u ą 0 in Ω, u “ 0 on BΩ,

obtained from (1) by considering Apx, tq “ tr, gpx, t, ~vq “ gpx, tq and fλ,µpx, tq “

λ
`

apxqt´δ`bpxqtβ
˘

, where Ω Ă RNpN ě 2q is a smooth bounded domain, ´∆pu “

´divp|∇u|p´2∇uq is the p-Laplacian operator with 1 ă p ă N , δ ą 0, 0 ă β ă p´1,

λ ą 0 being a real parameter and a, b, g ě 0 are appropriate functions.

Problem pP1q is non-local due to the presence of the term
´

ż

Ω

gpx, uqdx
¯r

,

which implies that equation in pP1q is no longer a pointwise equality. In general, the

presence of such terms gives rise to some additional difficulties in approaching this

kind of problems by classical arguments. For example, many non-local problems

are non-variational, in the sense that techniques of variational methods can not be

applied in a direct way.

The non-local problems have been extensively studied in recent years and

their applications arise in various contexts, for example, in the study of systems

of particles in thermodynamical equilibrium via gravitational potential ([4], [36]),

2-D fully turbulent behavior of real flow [11], thermal runaway in Ohmic heating

([6], [15]), physics of plasmas, thermo-electric flow in a conductor [39], gravita-

tional equilibrium of polytropic stars [35], modeling of cell aggregation through

interaction with a chemical [59] and population behavior [18].

In [16], it was investigated that the equation

du

dt
´ A

´

ż

Ω

u
¯

∆u “ f (3)

describes the behavior of a population subject to some kind of spreading. In

this case, u and A represent the population density and the diffusion coefficient,

respectively. When A is a constant, the above model does not take into account

that the phenomena of crowding and isolation can change the dynamics of the

migration. Therefore, in a closer model to the reality, the coefficient A is supposed
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to depend on the entire population in the domain Ω as in (3).

The literature about non-local problems with autonomous non-local term is

vast (see, for example, [5], [10], [17], [20] and [26] ), but up to this date there is no

result in the direction of the p-Laplacian operator, when p ‰ 2, in the context of

W 1,p
loc pΩq-solutions to singular ones. About related problems with weak singularities

(0 ă δ ă 1) for Laplacian operator, we quote the works [3, 61, 62], which show

the existence of positive solutions to non-local singular problems. We remark that

the problems in above references are treated in the context of classical solutions,

except in [3], where the weak solution lies in H1
0 pΩq.

Although García-Melián and Lis [30] have not studied neither a singular

problem nor a Dirichlet boundary condition problem, we are going to highlight

their techniques to study pP1q. They showed existence of solution to the blow-up

problem

´

1`
1

|Ω|

ż

Ω

gpuqdx
¯

∆u “ λfpuq in Ω, u ą 0 in Ω, u “ 8 on BΩ, (4)

where f : r0,8q Ñ p0,8q is an appropriate continuous function, by decoupling (4)

in the system
$

’

&

’

%

∆u “ αfpuq in Ω, u “ 8 on BΩ

α “ λ
´

1` 1
|Ω|

ż

Ω

gpuqdx
¯´1 (5)

and studying the behavior of the pair pα, uq, solution of (5).

García-Melián and Lis’s strategy inspired us to obtain branches of bifurca-

tion in p0,8qˆ } ¨ }8 for the problem pP1q. By using a new Comparison Principle

for W 1,p
loc pΩq-sub and supersolutions, which we prove in Chapter 1, we explore the

α-behavior of the pair pα, uαq in the p0,8q ˆW 1,p
loc pΩq-topology, where uα is the

only solution of pLαq. Taking advantage of this approach, we present a complete

picture of the bifurcation diagram of Problem pP1q. In particular, we show how

the presence of the non-local term changes the structure of the bifurcation of the

local problem (see problem pLαq above), that emanates from p0, 0q and bifurcates

from infinity at infinity.
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Before stating the next result, we make it clear that in this context the

Dirichlet boundary condition is understood as in Definition 0.0.1 and solution is

defined as follows.

Definition 0.0.4 We say u is a W 1,p
loc pΩq-solution for pP1q if u ą 0 in Ω pfor each

Θ ĂĂ Ω given there exists a positive constant cΘ such that u ě cΘ ą 0 in Θq and

´

ż

Ω

gpx, uqdx
¯r

ż

Ω

|∇u|p´2∇u∇ϕdx “ λ

ż

Ω

´

apxqu´δ ` bpxquβ
¯

ϕdx,

for all ϕ P C8c pΩq.

Let us also fix the following assumptions

ph3q: a, b P LmpΩq for some m ą N{p,

ph4q: a, b P LmpΩq for some m ą N

and denote by

Σ “ tpλ, uq P p0,8q ˆ CpΩq : u P W 1,p
loc pΩq X CpΩq is a solution of pP1qu.

Thus, by considering

pg8q: lim
tÑ8

gpx, tqtθ8 “ g8pxq ą 0 uniformly in Ω, for some θ8 P R and g8 P CpΩq,

pg18q: lim
tÑ8

gpx, tqtθ8 “ `8 uniformly in Ω, for some θ8 P R,

pg0q: lim
tÑ0`

gpx, tqtθ0 “ g0pxq ą 0 uniformly in Ω, for some θ0 P R and g0 P CpΩq,

pg10q: lim
tÑ0`

gpx, tqtθ0 “ 8 uniformly in Ω, for some θ0 P R,

we have the following.

Theorem 0.0.5 Assume δ ą 0 and 0 ă β ă p´ 1 hold. If:

1q g P CpΩˆ r0,8q, p0,8qq and in addition
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aq ph3q, pg8q and θ8r ă p ´ 1 ´ β hold, then pP1q admits at least one

solution in Σ, for each λ ą 0 given. Besides this, the same conclusion

remains true if tr ă 0 and g8 ” 0 in pg8qu or tpg18q and r ě 0u holds.

bq ph4q, pg8q, θ8r ą p ´ 1 ´ β and θ8 ă 1 hold, then there exists 0 ă

λ˚ ă 8 such that pP1q admits at least two W 1,p
loc pΩq X CpΩq-solutions

for each λ P p0, λ˚q given, at least one solution for λ “ λ˚ and no

solution for λ ą λ˚. Furthermore, if tr ě 0 and g8 ” 0 in pg8qu or

tpg18q and r ă 0u holds, then the same conclusion is valid.

2q g P CpΩˆ p0,8q, p0,8qq, ph4q is satisfied and additionally

a) pg8q, pg0q, θ8r ă p´1´β, θ0r ą p´1` δ and θ0 ă 1 hold, then there

exists a 0 ă λ˚ ă 8 such that pP1q admits at least two W 1,p
loc pΩqXCpΩq-

solutions for λ ą λ˚, at least one for λ “ λ˚ and no solutions for

0 ă λ ă λ˚. Moreover, the conclusion is the same if we assume either

tr ą 0, pg10q and pg18qu or tr ă 0, pg0q, pg8q and g0 ” g8 ” 0u.

b) θ8r ą p ´ 1 ´ β, θ0r ą p ´ 1 ` δ and θ8, θ0 ă 1 hold, then pP1q

admits at least one W 1,p
loc pΩq X CpΩq-solution for each λ ą 0 given.

In this case, the conclusion remains true if we assume either tr ą

0, pg10q and pg8q with g8 ” 0u or tr ă 0, pg18q, and pg0q with g0 ” 0u.

Moreover, in all the cases Σ is the continuum of solutions given by a curve which:

piq emanates from 0 at λ “ 0 and bifurcates from infinity at λ “ 8 in the case

1´ aq (see Fig. 1),

piiq emanates from 0 at λ “ 0 and bifurcates from infinity at λ “ 0 in the case

1´ bq (see Fig. 2),

piiiq emanates from 0 at λ “ 8 and bifurcates from infinity at λ “ 8 in the case

2´ aq (see Fig. 3),

pivq emanates from 0 at λ “ 8 and bifurcates from infinity at λ “ 0 in the case

2´ bq (see Fig. 4),
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We draw below the p0,8q ˆ } ¨ }8-diagram of W 1,p
loc pΩq X CpΩq-solutions

obtained from the Theorem 0.0.5

λ0

}u}8

Fig. 1
λλ˚0

}u}8

Fig. 2

λλ˚0

}u}8

Fig. 3
λ0

}u}8

Fig. 4

Next, we list some of the main contributions of study of pP1q to the litera-

ture:

iq singular problems of the type pP1q involving the p-Laplacian operator with δ

taking any positive value and potentials a and b being unbounded, have not

been considered in the literature up to now,

iiq the non-local term in pP1q is not required essentially to be bounded from

below by positive constant or from above, in fact, it may be singular at

t “ 0. See for instance [29], [61] and references therein.

In the Chapter 3, we study existence, multiplicity and non-existence of pos-

itiveW 1,p
loc pΩq-solutions for the following non-autonomous and non-local λ-problem

pP2q

$

’

&

’

%

´A
´

x,

ż

Ω

uγdx
¯

∆pu “ λfpx, uq in Ω,

u ą 0 in Ω, u “ 0 on BΩ,

obtained by doing gpx, t, ~vq “ tγ in (1), where again Ω Ă RNpN ě 2q is a smooth
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bounded domain, p P p1, Nq, λ ą 0 is a real parameter, A P CpΩ ˆ r0,8q, p0,8qq

and f P CpΩˆ p0,8q, p0,8qq can be strongly (very) singular at u “ 0.

Once again, due to the lack of variational structure, non-local problems

such as pP2q are treated, in general, through topological methods. A recurrent

argument in the treatment of autonomous non-local problems is, just like the one

done by García-Melián and Lis, to relate the non-local problem to a local problem

and thereon to study the behavior of the associated local problem. This type

of argument, in general, can not be applied for non-autonomous and non-local

problems. There are few papers on the non-autonomous case, see [19], [53], [29]

and references therein. In particular, we refer to [29] where the problem pP2q is

treated via bifurcation theory with p “ 2 and fpx, uq “ uβ, for 0 ă β ă 1.

In this chapter, since A is a non-autonomous function and no monotonicity

is posed on the quotient t ÞÑ fpx, tq{tp´1, the same strategy as in Chapter 2 can not

be applied anymore. In [21], Rabinowitz et. al. studied semilinear local singular

problems in the context of classical solutions. We inspire our approach on their

ideas to obtain an unbounded ε-limit connected component of positive solutions

from ε-unbounded continuum of positive solutions for a ε-perturbed problems.

For qualitative properties about this continuum, we were inspired by the ideas

from Figueiredo-Sousa et. al. [29], where a semilinear non-local problem was

treated with non-singular (sublinear) growth. The strategies from both of the

above papers do not work in our approach, principally by the lack of the linearity

of the p-Laplacian operator and by the singularity in the Sobolev spaces setting.

To overcome these difficulties, we approached pP2q in an indirect way, since no

functional equation can be directly associated to pP2q, by combining penalization

arguments, a-priori estimates and a Comparison Principle for W 1,p
loc pΩq-sub and

supersolutions, which will be proved in the first chapter.

Before stating the main results of this chapter, we need to mimic the Defi-

nition 0.0.4 for the solution of pP2q.
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Definition 0.0.6 We say u is a W 1,p
loc pΩq-solution for pP2q if u ą 0 in Ω, that is,

for each Θ ĂĂ Ω given there exists a positive constant cΘ such that u ě cΘ ą 0 in

Θ, uγ P L1pΩq and

ż

Ω

|∇u|p´2∇u∇ϕdx “ λ

ż

Ω

fpx, uq

A
´

x,
ş

Ω
uγdx

¯ϕdx for all ϕ P C8c pΩq. (6)

Henceforth, we will always assume that f P CpΩ ˆ p0,8q, p0,8qq. Let us

set some hypotheses that we need in the next theorem.

pA0q A P CpΩˆ Rq satisfies Apx, tq ą 0 for all t ě 0 and x P Ω,

pf0q lim
tÑ0`

fpx, tq

tp´1
“ 8 uniformly in Ω,

pf8q lim
tÑ8

fpx, tq

tp´1
“ 0 uniformly in Ω.

Our first result in Chapter 3 can be stated as follows.

Theorem 0.0.7 Suppose that γ ě 0, pA0q and pf0q hold. Then, there exists an

unbounded continuum Σ Ă RˆCpΩq of positive solutions of the problem pP2q that

emanates from p0, 0q. In addition, if pf8q holds and Apx, tq ě a0 in Ω ˆ R` for

some a0 ą 0, then ProjRΣ “ p0,8q.

Below, we present more qualitative information about the continuum Σ

by relating the non-local and nonlinear terms. In this case, we need to consider

certain additional conditions:

pA8q lim
tÑ8

Apx, tqtθ “ a8pxq ě 0 uniformly in Ω, for some a8 P CpΩq,

pA18q lim
tÑ8

Apx, tqtθ “ 8 uniformly in Ω,

pf1q lim
tÑ8

fpx, tq

tβ
“ c8pxq ą 0 uniformly in Ω, for some ´8 ă β ă p ´ 1 and

c8 P CpΩq,

pf2q lim
tÑ0`

fpx, tq

tδ
“ c0pxq ą 0 uniformly in Ω, for some ´8 ă δ ă p ´ 1 and

c0 P CpΩq.

Theorem 0.0.8 Assume pA0q and that f satisfies pf1q and pf2q with δ ď β. If
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aq γ ą 0 and either tθγ “ p ´ 1 ´ β and pA18qu or tθγ ă p ´ 1 ´ β and pA8q

with a8 ą 0 in Ωu hold, then ProjRΣ “ p0,8q (see Fig. 5),

bq γ ą 0, θγ ě p´ 1´ β and pA8q hold, then ProjRΣ Ă p0, λ˚q for some

0 ă λ˚ ă 8. Furthermore, if

iq a8 ą 0 in Ω and θγ “ p´ 1´ β, then λ “ 0 can not be a bifurcation

point from 8 (see Fig. 6 or 7);

iiq a8 “ 0 in Ω, then λ “ 0 is a bifurcation point from 8 (see Fig. 8);

cq ´1 ă γ ă 0, θγ ě p´ 1´ δ and either pA18q or pA8q with 0 ă a8 hold, then

pP2q does not admit positive solution for λ ą 0 small.

Summarizing the above information, we have the following diagrams.

λ0

}u}8

Fig. 5
λ0

}u}8

Fig. 6

λ0

}u}8

Fig. 7
λ0

}u}8

Fig. 8

In the above item pcq, we stated that the problem pP2q has no solution

for λ ą 0 close to 0 when the non-local term is also singular. We note that the

issue about existence of solution is not possible to treat with the same arguments

anymore, as in the proof of Theorem 0.0.7. However, when the non-local term is

autonomous, we are also able to prove the global existence of W 1,p
loc pΩq X CpΩq-

solutions.

More precisely, we have the following result.
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Theorem 0.0.9 Assume that pf1q, pf2q with δ ď β, pA0q and either pA8q with

a8 ą 0 or pA18q hold. If θγ ą p´1´ δ and ´1 ă γ ă 0, then there exists a λ˚ ą 0

such that the problem

$

’

&

’

%

´A
´

ż

Ω

uγdx
¯

∆pu “ λfpx, uq in Ω,

u ą 0 in Ω, u “ 0 on BΩ,
(7)

admits at least oneW 1,p
loc pΩqXCpΩq-solution for λ ě λ˚ and no solution for λ ă λ˚.

By taking advantage of the ideas explored in the proofs of the above Theo-

rems, we were able to consider non-autonomous Kirchhoff-type problems as well.

For sake of the clarity, we study just a classical Kirchhoff model. Precisely, we

consider

pQ1q

$

&

%

´M
´

x, }∇u}pp
¯

∆pu “ λfpx, uq in Ω,

u ą 0 in Ω, u “ 0 on BΩ,

where M , modeled as non-homogeneous Kirchhoff term, satisfies:

(M0) Mpx, tq “ apxq ` bpxqtγ; a, b P CpΩq; apxq ě a; bpxq ě 0 in Ω

and

(Γ0) either γ ą 0 if ´ 1 ď δ ă p´ 1 or 0 ă γ ă p´1´δ
´δ´1

if ´ 2p´1
p´1

ď δ ă ´1.

Theorem 0.0.10 Assume that pf2q, pM0q and pΓ0q hold. Then there exists an

unbounded continuum Σ Ă R` ˆ CpΩq of solutions of pQ1q which emanates from

p0, 0q. Furthermore, if pf8q holds then ProjR`Σ “ p0,8q. Moreover, if γ ă 1

then Σ is unbounded vertically as well.

We remark that there are few articles dealing with Kirchhoff type problems

with singular nonlinearity. In this direction, we found some results in [41] and [42]

for weak singularities, that permitted them to approach by variational methods.

Recently, in 2018, Agarwal, O’Regal and Yan [60] studied a Kirchhoff-type problem

with nonlinearity of the form fpx, uq “ Kpxqu´δ, for δ ą 0, in the context of the
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Laplacian operator. They used principally sub-supersolution techniques to get

existence and uniqueness of classical solution.

It is worth mentioning that, as far as we know, non-autonomous and non-

local quasilinear problems with very singular nonlinearities have not yet been con-

sidered in the literature, and the same is true for Kirchhoff-type problems. Our

results contribute to the literature principally by:

iq Theorem 0.0.7 being new even in the context of local problems (and for

p “ 2), by guaranteeing the existence of a continuum of solutions for a

strongly-singular problem. Moreover, the conclusion that this continuum is

horizontally unbounded is obtained without any boundedness condition on

f , as required in Theorem 1.9 and Corollary 1.10 proved by Rabinowitz et.

al. in [21],

iiq Theorem 0.0.8 proving the principal results of Suárez et. al. [29] in the

context of strongly-singular problems as well,

iiiq Theorem 0.0.9 including singularity also in the non-local term and obtaining

global existence of solutions in W 1,p
loc pΩq X CpΩq setting. This situation was

not yet considered in the literature,

ivq Theorem 0.0.10 including non-autonomous Kirchhoff terms and capturing

the same sharp power for existence of solutions still in W 1,p
0 pΩq for the asso-

ciated local problem.

In the previous theorem, due to the techniques employed, the homogeneity

of the operator was important for the multiplicities results established. Moreover,

both Theorem 0.0.5 and Theorem 0.0.8 were directly or indirectly influenced by

the existence of solution for the strong singular problem pLαq.

In the last chapter, our main goal is still to show multiplicity of positive

solutions for a quasilinear problem when the operator is no longer homogeneous.

In the same sense of the previous results, the next ones are still linked to the

existence of solution to a singular local problem. More precisely, we deal with the
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following quasilinear problem involving the Φ-Laplacian operator

pQλ,µq

$

’

&

’

%

´M
´

ż

Φp|∇u|qdx
¯

∆Φu “ λfpx, uq ` µbpxqu´δ in Ω,

u ą 0 in Ω, u “ 0 on BΩ,

where λ, µ ą 0 are real parameters, M P Cpr0,8q, r0,8qq, f : Ωˆ r0,8q Ñ r0,8q

is a Carathéodory function not identically zero, b : Ω Ñ R is a positive function

that belongs to an appropriate Lebesgue space, 0 ă δ depends on the summability

of b and ´∆Φu “ ´divpap|∇u|q∇uq is the Φ-Laplacian operator, where Φ : RÑ R

is a N-function of the form Φptq “

ż |t|

0

φpsqds, with φ : RÑ R given by

φptq “

$

’

&

’

%

ap|t|qt if t ‰ 0

0 if t “ 0.

Inspired by [28] and using non-smooth analysis techniques, we prove how

the presence of the superlinear perturbation (at t “ 0) and the Kirchhoff term

break the uniqueness of the solution for the purely singular problem. In fact, we

have established that under appropriate conditions on f , λ and µ, the existence

of three different W 1,Φ
0 pΩq-solutions to the problem pQλ,µq is guaranteed and this

is strictly related to the existence of W 1,Φ
0 pΩq-solution to the problem

pSq

$

&

%

´∆Φu “ bpxqu´δ in Ω,

u ą 0 in Ω, u “ 0 on BΩ.

Results of this kind for singular problems have already been obtained in

[28] and [63], but with more restrictive conditions on the operator, potential b and

singularity. In the context of non-singular problems, several works (see [12], [45],

[27], [52], [63] and [64]) dealt with this issue.

The main difficulty found in our study, is the lack of variational structure

to approach the problem pQλ,µq. Notice that the functional naturally associated
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to pQλ,µq is I : W 1,Φ
0 pΩq Ñ R, given by

Ipuq “ M̂
´

ż

Ω

Φp|∇u|qdx
¯

´ λ

ż

Ω

F px, uqdx´
µ

1´ δ

ż

Ω

bpxqu1´δdx,

where M̂ptq “
ż t

0

Mpsqds and F px, tq “
ż t

0

fpx, sqds.

When 0 ă δ ă 1, the functional I is well defined in W 1,Φ
0 pΩq and, although

it is not differentiable, we can apply, in indirect way, techniques of variational

methods to study pQλ,µq. However, when 1 ď δ and less than certain sharp value,

the functional I is well defined only in a subset ofW 1,Φ
0 pΩq and when δ extrapolates

this sharp value, the functional I is not well defined in the whole W 1,Φ
0 pΩq.

By taking advantage of the technique presented by Ricceri in [50] and

Faraci-Smyrlis in [28], we show a necessary and sufficient condition for the ex-

istence of three different solutions of pQλ,µq inW 1,Φ
0 pΩq for suitable values of λ and

µ. Before stating the result obtained, let us define what we mean by solution in

this context.

Definition 0.0.11 A function u P W 1,Φ
0 pΩq is a weak solution for problem pQλ,µq

if u ą 0 a.e in Ω, bu´δϕ P L1pΩq and

M
´

ż

Ω

Φp|∇u|qdx
¯

ż

Ω

ap|∇u|q∇u∇ϕdx “
ż

Ω

rλfpx, uq ` µbu´δsϕdx,

for all ϕ P W 1,Φ
0 pΩq.

Throughout this chapter, we assume that Φ is an N-function, given as above,

satisfying:

(φ0): a P C1pp0,8q, p0,8qq and φ is an increasing homeomorphisms from R onto

R;

pφ1q: 0 ă a´ :“ inf
tą0

tφ1ptq

φptq
ď sup

tą0

tφ1ptq

φptq
:“ a` ă 8.

and denote by φ´ “ a´ ` 1 and φ` “ a` ` 1.
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Now, let us denote by Φ˚ the function whose inverse is given by

pΦ˚q´1ptq “

ż t

0

Φ´1
psqs´1´1{Nds. In order Φ˚ to be a N-function, we require that

ż 1

0

Φ´1
psqs´1´1{Nds ă 8 and

ż 8

1

Φ´1
psqs´1´1{Nds “ 8.

In this case, we assume that Φ˚ is the N-function represented by φ˚, namely,

Φ˚ptq “

ż |t|

0

φ˚psqds. Thus, let us also consider the following assumption:

(φ2): φ` ă φ˚´ :“ inf
tą0

tφ˚ptq

Φ˚ptq
.

With respect to M , we suppose

pMq: Mptq ě m0t
α´1 for all t ě 0 with 1 ď α ă

φ˚´
φ`

.

About the potential b, let us assume

pbq :

$

’

’

’

’

’

&

’

’

’

’

’

%

b P Lp
φ˚
´

1´δ
q1
pΩq if 0 ă δ ă 1;

b P LqpΩq for some q ą 1 if δ “ 1;

b P L1pΩq if δ ą 1

and about the nonlinearity f , we consider fpx, tq “ 0 a.e in Ω for all t ď 0

and

pf 11q: there exists an odd increasing homeomorphism h from R to R and nonneg-

ative constants a1 and a2 such that

fpx, tq ď a1 ` a2hp|t|q, @t P R and @x P Ω

and H ăă Φ˚, where Hptq “
ż |t|

0

hpsqds. We also assume the following

condition on H:

1 ă h´ :“ inf
tą0

thptq

Hptq
ď sup

tą0

thptq

Hptq
:“ h` ă 8; (8)

pf 12q: lim
tÑ0`

sup
Ω

F px, tq

tαφ`
“ 0;
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pf 13q: lim
tÑ8

sup
Ω

F px, tq

tαφ´
“ 0.

After having established all these hypotheses, we are in position to state

the main result of the last chapter.

Theorem 0.0.12 Suppose that pφ0q, pφ1q, pφ2q, pMq, pbq, pf 11q´pf 13q hold. Assume

δ ą 1 and

λ˚ “ inf

$

’

’

&

’

’

%

M̂
´

ż

Ω

Φp|∇u|q
¯

ż

Ω

F px, uqdx

: u P W 1,Φ
0 pΩq and

ż

Ω

F px, uqdx ą 0

,

/

/

.

/

/

-

.

Then, the following are equivalent:

iq there exists 0 ă u0 P W
1,Φ
0 pΩq such that

ż

Ω

bu1´δ
0 dx ă 8;

iiq the problem

pSq : ´∆Φu “ bpxqu´δ in Ω, u ą 0 in Ω and u “ 0 on BΩ

admits (unique) weak solution;

iiiq for each λ ą λ˚ there exists µλ ą 0 such that for µ P p0, µλs the problem

pQλ,µq admits at least three weak solutions.

Corollary 0.0.13 Replacing δ ą 1 with δ ď 1 and assuming the hypotheses of

above theorem, the claims iq ´ iiiq remain true independent of each other.

As a consequence of iq ùñ iiq in the previous theorem, we have the following

corollary, which relates δ to the summability of b and gives us a range of δ-values

for which the existence of solution for pSq is still assured.

Corollary 0.0.14 Assume that pφ0q and pφ1q hold. If b P LqpΩq for some 1 ă q

and

1 ă δ ă 1`
φ1`
q1

:“ δq, (9)

then pSq admits a W 1,Φ
0 pΩq-solution.
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In particular, as a consequence of Theorem 0.0.12 and Corollary 0.0.14, we

have the following.

Corollary 0.0.15 Assume that pφ0q, pφ1q, pMq and pf 11q ´ pf 13q hold. If b P LqpΩq

for some 1 ă q and δ satisfies (9), then for each λ ą λ˚ there exists µλ ą 0 such

that for µ P p0, µλs the problem pQλ,µq admits at least three weak solutions.

It is worth mentioning that the above theorem is more general than the

related results present in the literature both by the presence of the Kirchhoff

term and by the generality of the potential b, singularity δ and operator. Let us

summarize some contributions of the above results to the literature:

iq Theorem 0.0.12 establishes necessary and sufficient conditions for the exis-

tence of multiple solutions for pQλ,µq and the existence of W 1,Φ
0 pΩq solution

for pSq;

iiq Theorem 0.0.12 extends the result of Faraci et.al [28] by considering non-

homogeneous operator, more general conditions on potential and singularity

and including a Kirchhoff term;

iiiq In the proof of Theorem 0.0.12, we have also extended the result of Yijing

[54] to a non-homogeneous operator;

ivq Corollary 0.0.14 gives us an explicit range for δ, in which the existence of

a solution in W 1,Φ
0 pΩq is still guaranteed. In particular, when Φptq “ |t|p{p

and b0 ď bpxq P L8pΩq for some constant b0 ą 0, the value δq coincides with

the sharp values obtained in [32] and [40];

vq Corollary 0.0.15 complements the principal result in [28] by expliciting a

range to δ, which leads to the multiplicity result, namely,

0 ă δ ă
ppN ´ 1q

Npp´ 1q
“ δpp˚q1 .

This thesis has the following structure. In Chapter 1, we prove the existence

and uniqueness ofW 1,p
loc pΩq-solutions to the strongly singular problem pLαq inspired
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on ideas of [14] and [23]. To prove the uniqueness, a comparison principle for

W 1,p
loc pΩq-sub and supersolutions is established.

In the Chapter 2, by exploring the uniqueness ofW 1,p
loc pΩq-solutions to Prob-

lem pLαq, appropriate test functions together with a result of Boccardo and Murat

[7], we are able to prove that the operator T : p0,8q Ñ W 1,p
loc pΩq (see (2.1) below)

is well-defined and continuous. By using this fact, in the last section of the chapter

2 we conclude the proof of Theorem 0.0.5.

In Chapter 3, we present in the first section the proof of Theorem 0.0.7.

The qualitative study of the continuum obtained in the first section, will be done

in section 3, as well as the proof of Theorem 0.0.9. We conclude the section 3,

by studying the degenerate case in problem pP2q. In the last section we prove

Theorem 0.0.10.

In Chapter 4, we present in the first section basic concepts and facts about

Orlicz-Sobolev spaces. In the second section, we show the necessary tools related

to non-smooth analysis, which will be necessary to prove the main theorem of this

chapter. In the last section, we conclude the proof of Theorem 0.0.12.



NOTATION

• C,C1, C2, ¨ ¨ ¨ denote positive constants.

• For 1 ă p, we denote by p1 the conjugate of p satisfying 1{p` 1{p1 “ 1.

• RN denote the N´dimensional Euclidean Space.

• BRpx0q is the open ball centered at x0 and with radius R ą 0.

• Ω Ă RN is a smooth bounded domain.

• BΩ is the boundary of Ω.

• dpxq “ distpx, BΩq “ inf
yPBΩ

|x´ y|.

• If A Ă RN is Lebesgue measurable, then |A| denote the Lebesgue measure

of A.

• If A Ă RN , we denote χApxq “

$

’

&

’

%

1 if x P A

0 if x P A.

• supp f “ tx P Ω : fpxq ‰ 0u denote the support of the function f : Ω Ñ R.

• A ĂĂ Ω means that A Ă Ω.

• By un Ñ u we mean that un converges strongly to u.

• By un á u we mean that un converges weakly to u.

32
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• LppΩq “ tu : Ω Ñ R measurable :

ż

Ω

|u|pdx ă 8u endowed with the norm

}u}p “
´

ż

Ω

|u|pdx
¯1{p

.

• L8pΩq “ tu : Ω Ñ R measurable : esssupxPΩ|upxq| ă 8u endowed with the

norm }u}8 “ esssupxPΩ|upxq|.

• L8locpΩq “ tu P L
8pKq for all compact K Ă Ωu.

• W 1,p
0 pΩq is the usual Sobolev Space endowed with the norm }∇u}p.

• uxipxq “
Bupxq
Bxi

.

• For 1 ă p ă N , we denote by p˚ “ Np{pN ´ pq the critical exponent for the

embedding W 1,p
0 pΩq ãÑ LqpΩq.

• W 1,p
loc pΩq “ tu : Ω Ñ R : u P W 1,ppKq for all compact K Ă Ωu.

• CpΩq denote the space of continuous functions in Ω.

• Ck
0 pΩq “ tu P C

kpΩq : u|BΩ “ 0u.

• Ck
c pΩq “ tu P C

kpΩq : supp u Ă Ω is compactu.

• Ck,αpΩq is the space of functions whose k-th derivatives are α- Hölder con-

tinuous.



CHAPTER 1

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS FOR

A VERY SINGULAR LOCAL PROBLEM

We reserve this first chapter to deal with existence and uniqueness of

W 1,p
loc pΩq-solution for

pLαq

$

&

%

´∆pu “ α
´

apxqu´δ ` bpxquβ
¯

in Ω,

u “ 0 in BΩ, u ą 0 on Ω,

where Ω Ă RNpN ě 2q is a smooth bounded domain, 1 ă p ă N , δ ą 0,

0 ă β ă p´ 1, λ ą 0 is a real parameter and a, b ě 0 are appropriate functions.

For convenience of the reader, let us restate the main result of this chapter.

Theorem 0.0.3 Assume 0 ď b P Lp
p˚

β`1
q1
pΩq and 0 ď a in Ω. If one of the

assumptions below holds

ph1q: 0 ă δ ă 1 and a P Lp
p˚

1´δ
q1
pΩq;

ph2q: δ ě 1 and a P L1pΩq,

then, for each α ą 0 given, there exists a solution u “ uα P W
1,p
loc pΩq of the problem

pLαq. Moreover, if δ ď 1 then u P W 1,p
0 pΩq. Besides, the solution is unique if

a` b ą 0 in Ω.

34
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Since our arguments are independent of α, let us simply consider pL1q.

In the first section, we prove existence of W 1,p
loc pΩq-solution for pL1q. Al-

though existence results for strongly singular problems have already been estab-

lished in [8] and [46], the techniques therein are not directly applicable in our

case. In [8], the estimates obtained by the authors can not be proved here due

to the presence of the sublinear term. On the other hand, our nonlinearity does

not satisfy the hypothesis pf3q in [46]. However, by combining domain perturba-

tion technique of [46] with penalization arguments of [8], we were able to prove

existence in our case too.

The uniqueness is a more delicate issue. Since we are allowing δ to assume

any positive value, we can not expect our solutions to belong to W 1,p
0 pΩq. In

this case, the solution obtained can not be tested in the problem, which makes it

unfeasible to use classical arguments to prove the uniqueness asserted.

In the second section, by using truncation technique and the construction

of a function, with suitable decay and compact support defined in an appropriate

subset of Ω, we were able to establish a Comparison Principle for W 1,p
loc´sub and

supersolutions of pL1q without requiring any further hypothesis of regularity in

potentials a and b. As a consequence of this Comparison Principle, the uniqueness

follows in a direct way.

1.1 Existence of W 1,p
loc pΩq-solutions

In this section, let us prove the existence as stated in Theorem 0.0.3. For

this, we will consider the following auxiliary problem:

$

&

%

´∆pu “
anpxq

pu` 1
n
qδ
` bnpxqu

β in Ω,

u “ 0 in BΩ, u ą 0 on Ω
(1.1)

where anpxq “ mintapxq, nu and bnpxq “ tbpxq, nu, with n P N.

Lemma 1.1.1 For each n P N, the problem p1.1q admits a solution un P W 1,p
0 pΩqX

C1,αpΩq. Furthermore, for each compact set Θ ĂĂ Ω there exists cΘ ą 0 such that
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un ě cΘ ą 0 in Θ, for all n P N.

Proof: For each v P LppΩq, we claim that there exists a unique function ω P

W 1,p
0 pΩq such that

´∆pω “
anpxq

p|v| ` 1
n
qδ
` bnpxq|v|

β. (1.2)

In fact, consider the functional J : W 1,p
0 pΩq Ñ R defined by

Jpωq “
1

p

ż

Ω

|∇ω|pdx´
ż

Ω

anpxq

p|v| ` 1
n
qδ
ωdx´

ż

Ω

bnpxq|v|
βωdx.

We can easily verify that J is differentiable, strictly convex and coercive.

Hence J admits a unique critical point, that is, (1.2) admits a solution.

Denoting by S : LppΩq Ñ LppΩq the operator, which associates to each

v P LppΩq the unique solution w “ Spvq P LppΩq of (1.2), one can prove that S is a

continuous and compact operator. Furthermore, if ω “ λSpωq for some λ P p0, 1s

and ω P W 1,p
0 pΩq, then by Poincaré’s and Hölder inequalities

}ω}p
p
ď Cλp

ż

Ω

|∇Spωq|pdx “ Cλp
ż

Ω

” an
p 1
n
` |ω|qδ

Spωq ` bnpxq|ω|
βSpωq

ı

dx

ď Cλp´1

ż

Ω

´

n1`δ
|ω| ` n|ω|β`1

¯

dx ď C
´

}ω}p ` }ω}
β`1
p

¯

,

where C ą 0 is a cumulative constant.

Thus, by the previous inequality, there exists a positive constant R, in-

dependent of λ and ω, such that }ω}p ď R. So, by the Schaefer Fixed Point

Theorem (see Theorem A.1.1 in Appendix), there exists a un P W 1,p
0 pΩq such that

Spunq “ un.

Note that, anp|t| ` 1
n
q´δ ` bn|t|

β ď Cnp1 ` |t|
βq. Thus, since β ă p ´ 1 we

have un P L8pΩq, which by Theorem A.2.1 in Appendix implies un P C1,αpΩq

for some α P p0, 1q. Furthermore, anp|un| ` 1
n
q´δ ` bn|un|

β ě 0 allows to conclude

un ě 0, which by Theorem A.1.2 lead us to un ą 0 in Ω. Therefore, un is a

positive solution of (1.1).
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Besides, suppose that ũ1 is a solution of

´∆pu “
a1pxq

p1` uqδ
in Ω, u ą 0 in Ω and u “ 0 on Ω. (1.3)

By taking pũ1 ´ unq
` P W 1,p

0 pΩq as a test function in (1.1) and in (1.3) and using

that ´∆p is strictly monotonic, we get

0 ď

ż

Ω

´

|∇ũ1|
p´2∇ũ1 ´ |∇un|p´2∇un

¯

∇pũ1 ´ unq
`dx

ď

ż

Ω

a1

” 1

p1` ũ1q
δ
´

1

p1` unqδ

ı

pũ1 ´ unq
`dx ď 0,

which leads to pũ1 ´ unq
` “ 0, that is, ũ1 ď un in Ω.

Finally, once again by Theorem A.2.1, we conclude that ũ1 P C
1,αpΩq for

some α P p0, 1q. As a consequence, using this and the positivity of ũ1 in Ω, the

last part of the Lemma follows.

�

Proof of Theorem 0.0.3 ( Existence-Conclusion): Consider a sequence

pΩkq of smooth open sets in Ω such that Ωk Ă Ωk`1,
Ť

k

Ωk “ Ω and define δk “

inf
Ωk
ũ1 ą 0, where ũ1 is the solution of (1.3). Take ϕ “ pun´ δ1q

` as a test function

in (1.1), where un is a solution of (1.1) obtained in Lemma 1.1.1. If ph1q holds,

then using Hölder’s inequality and the embedding W 1,p
0 pΩq ãÑ Lp

˚

pΩq, we have

ż

unąδ1

|∇un|pdx “
ż

Ω

|∇un|p´2∇un∇pun ´ δ1q
`dx

“

ż

Ω

an
uδn
pun ´ δ1q

`dx`

ż

Ω

bnu
β
npun ´ δ1q

`dx

ď

ż

unąδ1

”

apun ´ δ1 ` δ1q
1´δ
` bpun ´ δ1 ` δ1q

β`1
ı

dx

ď C
”

1`

ż

Ω

arpun ´ δ1q
`
s
1´δ
` brpun ´ δ1q

`
s
β`1dx

ı

ď C
”

1` }a}
p
p˚

1´δ
q1

´

ż

Ω

rpun ´ δ1q
`
s
p˚dx

¯
1´δ
p˚

`}b}
p
p˚

β`1
q1

´

ż

Ω

rpun ´ δ1q
`
s
p˚dx

¯

β`1
p˚

ı

ď C
”

1`
´

ż

unąδ1

|∇un|pdx
¯

1´δ
p
`

´

ż

unąδ1

|∇un|pdx
¯
β`1
p
ı

.
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If ph2q holds, proceeding in a similar way, we get

ż

unąδ1

|∇un|pdx ď

ż

unąδ1

´ a

uδ´1
n

` buβ`1
n

¯

dx

ď C
”

1` δ1´δ
1

ż

Ω

adx` }b}
p
p˚

β`1
q1

´

ż

Ω

rpun ´ δ1q
`
s
p˚dx

¯
β`1
p˚

ď C
”

1`
´

ż

unąδ1

|∇un|pdx
¯
β`1
p
ı

.

Therefore,
ż

Ω1

|∇un|pdx will be bounded in any case. In addition, since

pun ´ δ1q
` P W 1,p

0 pΩq we have

ż

Ω1

un
pdx ď

ż

unąδ1

un
pdx ď C

”

1`

ż

Ω

pun ´ δ1q
`pdx

ı

ď C
”

1`

ż

unąδ1

|∇un|pdx
ı

ď C.

Thus, we conclude that punq is bounded in W 1,ppΩ1q.

Since Ωk is smooth for all k P N, there exists uΩ1 P W
1,ppΩ1q and a subse-

quence pun1
j
q of punq such that

$

’

’

’

&

’

’

’

%

un1
j
á uΩ1 weakly in W 1,ppΩ1q

and strongly in LqpΩ1q for 1 ď q ă p˚

un1
j
Ñ uΩ1 a.e in Ω1.

Proceeding as above, we can obtain subsequences punkj q of punq, where

punk`1
j
q Ă punkj q, and functions uΩk P W

1,ppΩkq such that

$

&

%

unkj á uΩk weakly in W 1,ppΩkq and strongly in LppΩkq for 1 ď q ă p˚,

unkj Ñ uΩk a.e in Ωk.

By construction, uΩk`1

ˇ

ˇ

ˇ

Ωk
“ uΩk . Defining

u “

$

&

%

uΩ1 in Ω1,

uΩk`1
in Ωk`1zΩk,
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we get u P W 1,p
loc pΩq. Further, by following close arguments as done in [46], we are

able to show that u is a positive solution of pL1q. Indeed:

i) Given ϕ P C8c pΩq, we can fix k1 ě 1 such that supp ϕ Ă Ωk1 . In this case,

considering the subsequence pu
n
k1
j
q we have

ż

Ω

|∇u
n
k1
j
|
p´2∇u

n
k1
j
∇ϕdx “

ż

Ω

” a
n
k1
j
ϕ

pu
n
k1
j
` 1

n
k1
j

qδ
` b

n
k1
j
uβ
n
k1
j

ı

ϕdx.

As we have seen, u
n
k1
j
Ñ u a.e in Ωk1 . Moreover, when β ě 1 we can easily

verify that 1 ă p˚β
β`1

ă p˚. In this case, it follows from the compact embedding

of W 1,p
0 pΩk1q in the Lebesgue space L

p˚β
β`1 pΩk1q and Theorem A.1.3 that, up

to subsequence, u
n
k1
j
ď h for some h P L

p˚β
β`1 pΩk1q, which gives |b

n
k1
j
uβ
n
k1
j

ϕ| ď

Cbhβ P L1pΩk1q.

On the other hand, when β ă 1, by using the compact embedding of

W 1,p
0 pΩk1q into L

p˚

β`1 pΩk1q, Theorem A.1.3 and Lemma 1.1.1, we get

|b
n
k1
j
uβ
n
k1
j

ϕ| “ bu
n
k1
j
uβ´1

n
k1
j

|ϕ| ď bhpinf
Ωk1

ũ1q
β´1
|ϕ| P L1

pΩk1q for some

h P L
p˚

β`1 pΩk1q.

In any case, it follows from the Dominated Convergence Theorem that

ż

Ω

” a
n
k1
j

pu
n
k1
j
` 1

n
k1
j

qδ
` b

n
k1
j
uβ
n
k1
j

ı

ϕdxÑ

ż

Ω

´ a

uδ
` buβ

¯

ϕdx as j Ñ 8. (1.4)

Moreover, once again using Lemma 1.1.1 and defining by Θ :“ supp ϕ, we

get

ż

Ω

” a
n
k1
j

pu
n
k1
j
` 1

n
k1
j

qδ
` b

n
k1
j
uβ
n
k1
j

ı

ϕdx ď }ϕ}8

´

ż

Ω

a

inf
Θ
ũδ1
dx

¯

` CΘ}ϕ}8}b}p p˚
1`β

q1

´

ż

Ωk1

up
˚

n
k1
j

dx
¯

β
p˚

ď CΘ}ϕ}8

”

1`
´

ż

Ωk1

|∇u
n
k1
j
|
pdx

¯
β
p
ı

ď CΘ}ϕ}8,
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for some cumulative constant CΘ, where in the last inequality we use the

boundedness of
´

ż

Ωk1

|∇u
n
k1
j
|
p
¯
β
p . Hence, it follows immediately from The-

orem A.1.4 that ∇u
n
k1
j
Ñ ∇u strongly in pLqpΩk1qq

N , for any q ă p. In par-

ticular, ∇u
n
k1
j
Ñ ∇u a.e in Ωk1 and |∇u

n
k1
j
|p´1 ď h, for some h P L1pΩk1q.

In this way, we conclude

ż

Ω

|∇u
n
k1
j
|
p´2∇u

n
k1
j
∇ϕdxÑ

ż

Ω

|∇u|p´2∇u∇ϕdx as j Ñ 8,

which together with (1.4) leads to

ż

Ω

|∇u|p´2∇u∇ϕdx “
ż

Ω

´ a

uδ
` buβ

¯

ϕdx for all ϕ P C8c pΩq.

ii) Fixe ε ą 0. By taking pun ´ εq` as a test function in (1.1) and proceeding

as in the proof of the item´iq, we can show that pun ´ εq` is a bounded

sequence in W 1,p
0 pΩq.

Thus, there exists v P W 1,p
0 pΩq such that pun ´ εq` converges weakly in

W 1,p
0 pΩq to some v P W 1,p

0 pΩq, up to subsequence. However, we have proved

in item´iq that un Ñ u a.e in Ω, so v “ pu´ εq` P W 1,p
0 pΩq.

By iq and iiq, we conclude u P W 1,p
loc pΩq is a solution of pL1q and satisfies the

considered boundary condition.

To finish the proof, let us note that when δ ď 1, by taking un as test

function in (1.1) and following similar arguments as above, one can conclude that

punq is bounded in W 1,p
0 pΩq. Therefore, u defined as above belongs to W 1,p

0 pΩq. �

1.2 Comparison principle for sub and

supersolutions in W 1,p
loc pΩq

Now, we are going to prove a Comparison Principle for W 1,p
loc pΩq´sub and

supersolutions, whereof will follow the uniqueness stated in Theorem 0.0.3. Besides
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this result being important in itself, will be a fundamental tool in the other chapters

of this thesis.

Before stating the main result of this section, let us define subsolution and

supersolution to the problem

pL1q

$

&

%

´∆pu “ apxqu´δ ` bpxquβ in Ω,

u ą 0 in BΩ, u ą 0 on Ω.

Definition 1.2.1 A function v P W 1,p
loc pΩq is a subsolution of pL1q if:

iq there is a positive constant cΘ such that v ě cΘ in Θ for each Θ ĂĂ Ω given;

iiq the inequality

ż

Ω

|∇v|p´2∇v∇ϕdx ď
ż

Ω

´apxq

vδ
` bpxqvβ

¯

ϕdx (1.5)

holds for all 0 ď ϕ P C8c pΩq.

A function v P W 1,p
loc pΩq satisfying iq and the reversed inequality in p1.5q, is

called a supersolution of pL1q.

Theorem 1.2.2 (W 1,p
loc pΩq-Comparison Principle) Suppose b P Lp

p˚

β`1
q1
pΩq and

a` b ą 0 in Ω. Assume that one of the following holds

ph1q: 0 ă δ ă 1 and a P Lp
p˚

1´δ
q1
pΩq;

ph12q: δ ą 1 and a P L1pΩq,

ph22q: δ “ 1 and a P LspΩq for some s ą 1.

If v, v P W 1,p
loc pΩq are subsolution and supersolution of pL1q, respectively, with v ď 0

in BΩ, then v ď v a.e. in Ω. In addition, if v, v P W 1,p
0 pΩq and (1.5) is satisfied

for all 0 ď ϕ P W 1,p
0 pΩq, then the same conclusion holds even for a P L1pΩq in

ph22q.

To prove Theorem 1.2.2, let us consider for each ε ą 0 given, the functional

Jε : W 1,p
0 pΩq Ñ R defined by
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Jεpωq “
1

p

ż

Ω

|∇ω|pdx´
ż

Ω

Fεpx, ωqdx,

where Fεpx, ωq “
ż ω

0

fεpx, sqds with

fεpx, sq “

$

’

&

’

%

apxqps` εq´δ ` bpxqps` εqβ if s ě 0

apxqε´δ ` bpxqεβ if s ă 0.

Also denote by C the convex and closed set

C “ tω P W 1,p
0 pΩq : 0 ď ω ď vu,

where v P W 1,p
loc pΩq is a supersolution to the problem pL1q.

Lemma 1.2.3 If b P Lp
p˚

β`1
q1
pΩq and one of the hypotheses ph1q, ph12q or ph22q holds,

then the functional Jε is coercive and weakly lower semicontinuous on C.

Proof: Set ω P C. First, we note that if ph22q holds, then there exists a Cε ą 0

such that ln |z` ε| ď Cεpz` εq
t for all z ě 0 and for a fix t “ mintp˚{s1, p´1u ą 0.

Thus, by using either this fact, ph1q or ph12q and Sobolev embedding, we obtain

Jεpωq ě

$

’

’

’

’

&

’

’

’

’

%

1
p
}∇ω}pp ´ C

”

}a}
p
p˚

1´δ
q1
}ω}1´δp˚ ` }b}

p
p˚

1`β
q1
}ω}β`1

p˚ ` 1
ı

if 0 ă δ ă 1,

1
p
}∇ω}pp ´ C

”

}a}s}ω}
t
p˚ ` }b}p p˚

1`β
q1
}ω}β`1

p˚ ` 1
ı

if δ “ 1,

1
p
}∇ω}pp ´ C

”

}b}
p
p˚

1`β
q1
}ω}β`1

p˚ ` 1
ı

if δ ą 1

which leads to the coerciveness of Jε in all the cases.

Next, let us show that Jε is weakly lower semicontinuous on C. Let pωnq Ă C

such that ωn á ω in W 1,p
0 pΩq.

Suppose first that 0 ă δ ă 1 and consider a positive constant C1 such that
´

ż

Ω

pωn ` εq
p˚dx

¯
1´δ
p˚

ď C1. We claim that

ż

Ω

ż ωn

0

apxqps` εq´δdsdxÝÑ

ż

Ω

ż ω

0

apxqps` εq´δdsdx as nÑ 8. (1.6)
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In fact, since a P L
´

p˚

1´δ

¯1

pΩq it follows from the absolute continuity of the Lebesgue

integral that for given ε1 ą 0, there exists δ1 ą 0 such that

ż

A

apxq
p˚

p˚`δ´1dx ď
´ ε1

C1

¯
p˚

p˚`δ´1
,

for all measurable subset A of Ω such that |A| ă δ1. Thus,

ż

A

apxqpωn ` εq
1´δdx ď

´

ż

A

apxq
p˚

p˚`δ´1dx
¯
p˚`δ´1
p˚

´

ż

Ω

pωn ` εq
p˚dx

¯
1´δ
p˚

ď ε1,

that is, pωnq has uniformly absolutely continuous integrals over Ω. If δ “ 1, we

can redo the above arguments. Hence, in both cases our claim follows by applying

Vitali’s Convergence Theorem (see Theorem A.1.5).

In the case δ ą 1, the convergence (1.6) follows from the classical Lebesgue’s

Theorem.

Following close arguments as above, we obtain

ż

Ω

ż ωn

0

bpxqps` εqβdsdxÑ

ż

Ω

ż ω

0

bpxqps` εqβdsdx as nÑ 8.

as well. This finishes the proof of the Lemma. �

Since C is convex and closed in theW 1,p
0 pΩq-topology, it follows from Lemma

1.2.3 that there exists a ω0 P C such that

Jεpω0q “ inf
ωPC

Jεpωq.

Lemma 1.2.4 For all ϕ ě 0 in C8c pΩq, we have

ż

Ω

|∇ω0|
p´2∇ω0∇ϕdx ě

ż

Ω

”

apω0 ` εq
´δ
` bpω0 ` εq

β
ı

ϕdx.

Proof: First, given a non-negative ϕ P C8c pΩq, for each t ą 0 let us define

vt :“ mintω0`tϕ, vu and ωt :“ pω0`tϕ´vq
`. As ω0 ď v, we conclude that vt “ ω0

and ωt “ 0 in Ωzsupp ϕ. Moreover, since v P W 1,ppsupp ϕq and 0 ď vt ď v, we
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have vt P C. Besides, since v ą 0 (see definition 1.2.1), we can find a t ą 0 small

enough such that tϕ ď 2v ´ ω0, that is, ωt P C as well.

We define σ : r0, 1s Ñ R by σpsq “ Jε

´

svt ` p1´ sqω0

¯

. Then

0 ď lim
sÑ0`

σpsq ´ σp0q

s
“ lim

sÑ0`

Jε

´

svt ` p1´ sqω0

¯

´ Jεp0q

s

“

ż

Ω

|∇ω0|
p´2∇ω0∇pvt ´ ω0qdx´

ż

Ω

apxqpω0 ` εq
´δ
pvt ´ ω0qdx

´

ż

Ω

bpxqpω0 ` εq
β
pvt ´ ω0qdx.

Hence, using vt ´ ω0 “ tϕ´ ωt and the previous inequality, we get

0 ď t

ż

Ω

”

|∇ω0|
p´2∇ω0∇ϕ´ apxqpω0 ` εq

´δϕ´ bpxqpω0 ` εq
βϕ

ı

dx

´

ż

Ω

”

|∇ω0|
p´2∇ω0∇ωt ´ apxqpω0 ` εq

´δωt ´ bpxqpω0 ` εq
βωt

ı

dx. (1.7)

However, since v is a supersolution of pL1q and 0 ď ωt P W
1,p
0 pΩq X L8locpΩq (note

that ωt ď tϕ), by the classical density arguments one obtains

ż

Ω

|∇v|p´2∇v∇ωtdx ě
ż

Ω

´

apxqv´δ ` bpxqvβ
¯

ωtdx. (1.8)

Dividing both the sides of (1.7) by t ą 0 and using (1.8), we get

0 ď

ż

Ω

”

|∇ω0|
p´2∇ω0∇ϕ´ apxqpω0 ` εq

´δϕ´ bpxqpω0 ` εq
β
ı

dx

`
1

t

ż

Ω

´

|∇v|p´2∇v ´ |∇ω0|
p´2∇ω0

¯

∇ωtdx (1.9)

`
1

t

ż

Ω

”

apxq
´

pω0 ` εq
´δ
´ v´δ

¯

` bpxq
´

pω0 ` εq
β
´ vβ

¯ı

ωtdx.

Let us estimate now the last two integrals in (1.9). First, by using ωt Ñ 0 a.e

in Ω as tÑ 0`, the limit |supp ωt|
tÑ0`
ÝÑ 0 and the monotonicity of the p-Laplacian

operator, we obtain
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1

t

ż

Ω

´

|∇ω0|
p´2∇ω0 ´ |∇v|p´2∇v

¯

∇ωtdx

“
1

t

ż

suppωt

´

|∇ω0|
p´2∇ω0 ´ |∇v|p´2∇v

¯

∇pω0 ´ vqdx

`

ż

supp ωt

´

|∇ω0|
p´2∇ω0 ´ |∇v|p´2∇v

¯

∇ϕdx

ě

ż

supp ωt

´

|∇ω0|
p´2∇ω0 ´ |∇v|p´2∇v

¯

∇ϕdxÑ0 as tÑ 0.

To last integral, noting that ω0 ď v, we have

1

t

ż

supp ωt

”

apxq
´

v´δ ´ pω0 ` εq
´δ
¯

` bpxq
´

vβ ´ pω0 ` εq
β
¯ı

ωtdx

ě ´

ż

supp ωt

”

apxq
ˇ

ˇ

ˇ
v´δ ´ pω0 ` εq

´δ
ˇ

ˇ

ˇ
` bpxq

ˇ

ˇ

ˇ
vβ ´ pω0 ` εq

β
ˇ

ˇ

ˇ

ı

ϕdxÑ0 as tÑ 0.

Hence, by using these information in (1.9), we conclude the proof.

�

Proof of Theorem 1.2.2-Conclusion: Let us set

Oε :“ tx P Ω : vpxq ą ω0pxq ` εu and Onε “ Oε X tx P Ω : vpxq ă nu

for given ε ą 0 and n P N. Thus, Oε “
Ť

nPNOnε .

Assume that |Oε| ą 0, for some ε ą 0. Then, it is clear that |Onε | ą 0

for all n ě n10 for some n10 P N, because Onε Ă On`1
ε . Let us fix one of this n.

We claim that there exists a ball BRpx0q ĂĂ Ω such that |BRpx0q X Onε | ą 0.

Indeed, from the compactness of Ω, we can find an open set B Ă RN such that

|B X Onε | ą 0. Denote this measure by |B X Onε | “ 2δ1 ą 0. If B X BΩ ‰ H,

set Ωε0 “ tx P Ω : distpx, BΩq ă ε0u, where ε0 ą 0 is taken in such a way that

|B X Ωε0 | ă δ1. In this case, |B X ΩC
ε0
X Onε | ą δ1. So our claim follows from the

fact that B X ΩC
ε0

is a compact set.

Set φ P C8c pΩ, r0, 1sq such that supp φ Ă BR`rpx0q, φ “ 1 in BRpx0q

and |∇φ| ď Cr´τ in BR`rpx0qzBRpx0q for an appropriate τ ą 0, which will be
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determined later. Thus, it is a consequence of this construction that 0 ‰ ϕ1, ϕ2 P

L8c pΩq, where

ϕ1 :“ φ
”

vpn ´ pω0 ` εq
p
ı`

v1´p
n and ϕ2 :“ φ

”

vpn ´ pω0 ` εq
p
ı`

pω0 ` εq
1´p,

with vn :“ mintv, nu.

Hence,

∇ϕ1 “ φ
”

∇vn ´ p
pω0 ` εq

p´1

vp´1
n

∇pω0 ` εq ` pp´ 1q
pω0 ` εq

p

vpn
∇vn

ı

χrvněω0`εs

`

”vpn ´ pω0 ` εq
p

vp´1
n

ı`

∇φ

and

∇ϕ2 “ φ
” pvp´1

n

pω0 ` εqp´1
∇vn ´∇pω0 ` εq ´ pp´ 1q

vpn
pω0 ` εqp

∇pω0 ` εq
ı

χrvněω0`εs

`

”vpn ´ pω0 ` εq
p

pω0 ` εqp´1

ı`

∇φ,

which leads to |∇ϕ1|, |∇ϕ2| P L
ppΩq, because 0 ă cΘ ď vn ď n in Θ “ supp φ.

Since ϕ1, ϕ2 ě 0 and ϕ1, ϕ2 P W
1,p
0 pΩqXL8c pΩq, we get by density arguments

that

ż

Ω

|∇v|p´2∇v∇ϕ1dx ď

ż

Ω

´

apxqv´δ ` bpxqvβ
¯

ϕ1dx

and

ż

Ω

|∇ω0|
p´2∇ω0∇ϕ2dx ě

ż

Ω

”

apxqpω0 ` εq
´δ
` bpxqpω0 ` εq

β
ı

ϕ2dx

hold, where ω0 is as in Lemma 1.2.4.

Therefore, by calculating and using the above inequalities, we obtain
ż

Ω

´

apxqv´δ ` bpxqvβ
¯

ϕ1dx ě

ż

rvďns

|∇v|p´2∇v∇
”vp ´ pω0 ` εq

p

vp´1

ı`

φdx

`

ż

Ω

|∇v|p´2∇v∇φ
”vpn ´ pω0 ` εq

p

vp´1
n

ı`

dx

´p

ż

rvąns

|∇v|p´2∇v
”

pω0 ` εq
p´1∇pω0 ` εq

np´1

ı

χrω0`εănsφdx
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and

ż

Ω

”

apxqpω0 ` εq
´δ
` bpxqpω0 ` εq

β
ı

ϕ2dx ď

ż

Ω

|∇ω0|
p´2∇ω0∇φ

”vpn ´ pω0 ` εq
p

pω0 ` εqp´1

ı`

dx

`

ż

rvďns

|∇ω0|
p´2∇ω0∇

”vp ´ pω0 ` εq
p

pω0 ὲqp´1

ı`

φdx`

ż

rvąns

|∇ω0|
p´2∇ω0∇

”np ´ pω0 ` εq
p

pω0 ` εqp´1

ı`

φdx.

Hence, by combining the previous inequalities we have

ż

Ω

|∇v|p´2∇v∇φ
”vpn ´ pω0 ` εq

p

vp´1
n

ı`

dx`

ż

rvďns

|∇v|p´2∇v∇
”vp ´ pω0 ` εq

p

vp´1

ı`

φdx

´p

ż

rvąns

|∇v|p´2∇v
”

pω0 ` εq
p´1∇pω0 ` εq

np´1

ı

χrω0`εănsφdx

´

ż

Ω

|∇ω0|
p´2∇ω0∇φ

”vpn ´ pω0 ` εq
p

pω0 ` εqp´1

ı`

dx

´

ż

rvďns

|∇ω0|
p´2∇ω0∇

”vp ´ pω0 ` εq
p

pω0 ` εqp´1

ı`

φdx

´

ż

rvąns

|∇ω0|
p´2∇ω0∇

”np ´ pω0 ` εq
p

pω0 ` εqp´1

ı`

φdx

“

ż

Ω

|∇v|p´2∇v∇ϕ1dx´

ż

Ω

|∇ω0|
p´2∇ω0∇ϕ2dx

ď

ż

Ω

apxq
” v´δ

vp´1
n

´
pω0 ` εq

´δ

pω0 ` εqp´1

ı

rvpn ´ pω0 ` εq
p
s
`φdx

`

ż

Ω

bpxq
” vβ

vp´1
n

´
pω0 ` εq

β

pω0 ` εqp´1

ı

rvpn ´ pω0 ` εq
p
s
`φdx.

Since

´

ż

rvąns

|∇ω0|
p´2∇ω0∇

”np ´ pω0 ` εq
p

pω0 ` εqp´1

ı

φdx “

ż

rvąns

|∇ω0|
p
”

1`
nppp´ 1q

pω0 ` εqp

ı

dx ě 0,

by using the previous inequalities and the classical Picone’s Identity (see Theorem

A.1.6), we get

0 ď

ż

rvďns

|∇v|p´2∇v∇
”vp ´ pω0 ` εq

p

vp´1

ı`

φdx

´

ż

rvďns

|∇ω0|
p´2∇ω0∇

”vp ´ pω0 ` εq
p

pω0 ` εqp´1

ı`

φdx

ď
p

np´1

ż

rvąns

|∇v|p´1
|∇ω0|pω0 ` εq

p´1χrω0`εănsφdx
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`

ż

BR`rzBR

|∇v|p´1
|∇φ|

”vpn ´ pω0 ` εq
p

vp´1
n

ı`

dx

`

ż

BR`rzBR

|∇ω0|
p´1
|∇φ|

”vpn ´ pω0 ` εq
p

pω0 ` εqp´1

ı`

dx

`

ż

Ω

apxq
” v´δ

vp´1
n

´
pω0 ` εq

´δ

pω0 ` εqp´1

ı

rvpn ´ pω0 ` εq
p
s
`φdx

`

ż

Ω

bpxq
” vβ

vp´1
n

´
pω0 ` εq

β

pω0 ` εqp´1

ı

rvpn ´ pω0 ` εq
p
s
`φdx. (1.10)

Next, let us estimate the integrals in (1.10).

For the last two integrals, we can deduce by the assumption a` b ą 0, the

inequality v´δ ď v´δn pn P Nq and Lebesgue’s Theorem, that

´4ε1 ą

ż

Ω

apxq
” v´δ

vp´1
n0

´
pω0 ` εq

´δ

pω0 ` εqp´1

ı

rvpn0
´ pω0 ` εq

p
s
`φdx

`

ż

Ω

b
´ vβ

vp´1
n0

´
pω0 ` εq

β

pω0 ` εqp´1

¯”

vpn0
´ pω0 ` εq

p
ı`

φdx,

holds for some ε1 ą 0 and n0 ą 1 large.

Now, let us consider the first integral in the second line. We claim that

|rv ą ns|
nÑ8
ÝÑ 0. Indeed, otherwise would exists δ1 ą 0 and a subsequence N1 Ă N

such that |rpv ´ εq` ą n ´ εs| “ |rv ą ns| ą δ1, for all n P N1. By using that

pv ´ εq` P W 1
0 pΩq, we would have

pn´ εqδ1 ă

ż

rpv´εq`ąn´εs

pv´ εq`dx ď

ż

Ω

pv´ εq`dx ď C}∇pv´ εq`}p ă 8, @n P N1,

which is absurd. Therefore, as |rv ą ns|
nÑ8
ÝÑ 0 and n0 was taking sufficiently large,

we obtain

ˇ

ˇ

ˇ
p

ż

rvąn0s

|∇v|p´2∇v
”

pω0 ` εq
p´1∇pω0 ` εq

n0
p´1

ı

χrω0`εăn0sφdx
ˇ

ˇ

ˇ
ď

´

ż

rvąn0s

|∇v|pφp
¯

p´1
p
}∇ω0}p

ď ε1.

To estimate the first integral on BR`rzBR, we note that the choice of φ
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leads to

ż

BR`rzBR

|∇v|p´1
|∇φ|

”vpn0
´ pω0 ` εq

p

vp´1
n0

ı`

dx ď

ż

BR`rzBR

|∇v|p´1
|∇φ|n0dx

ď Cn0}∇φ}LppBR`rzBRq

ď Cn0r
´τ
|BR`rzBR|

1
p ď C1n0r

´τ` 1
p .

By taking a τ ă 1{p, we can choose r ą 0 sufficiently small such that

ż

BR`rzBR

|∇v|p´1
|∇φ|

”vpn0
´ pω0 ` εq

p

vn0n
p´1

ı`

dx ă ε1.

In a similar way, we can infer

ż

BR`δzBR

|∇ω0|
p´1
|∇φ|

”vpn0
´ pω0 ` εq

p

pω0 ` εqp´1

ı`

dx ă ε1

as well.

Hence, getting back to the inequality (1.10) and using the above informa-

tion, we get

0 ď

ż

rvďn0s

|∇v|p´2∇v∇
´vp ´ pω0 ` εq

p

vp´1

¯

φdx

´

ż

rvďn0s

|∇ω0|
p´2∇ω0∇

´vp ´ pω0 ` εq
p

pω0 ` εqp´1

¯

φdx ă 0,

which is an absurd. Therefore |Onε | “ 0 for all n, which implies |Oε| “ 0 and so

v ď ω0 ` ε ď v ` ε a.e in Ω for all ε ą 0, whence v ď v.

To finish the proof, let us assume that v, v P W 1,p
0 pΩq and (1.5) is satisfied

for all 0 ď ϕ P W 1,p
0 pΩq. If we suppose pv ´ vq` ‰ 0, then by defining vεnpxq :“

mintvpxq ` ε, nu, vεnpxq :“ mintvpxq ` ε, nu and the test functions

ϕ1 “

”

pvεnq
p
´ pvεnq

p
ı`

pvεnq
1´p and ϕ2 “

”

pvεnq
p
´ pvεnq

p
ı`

pvεnq
1´p,
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we obtain

ż

rv`εąn,v`εďns

´

´ |∇v|p´2∇v∇v pv ` εq
p´1p

np´1
` |∇v|p ` pp´ 1qnp|∇v|p

pv ` εqp

¯

dx

`

ż

rv`εďv`εďns

´

|∇v|p ´ p
´v ` ε

v ` ε

¯p´1

|∇v|p´2∇v∇v ` pp´ 1q
´v ` ε

v ` ε

¯p

|∇v|p

`|∇v|p ´ p
´v ` ε

v ` ε

¯p´1

|∇v|p´2∇v∇v ` pp´ 1q
´v ` ε

v ` ε

¯p

|∇v|p
¯

dx

“

ż

Ω

|∇v|p´2∇v∇ϕ1dx´

ż

Ω

|∇v|p´2∇v∇ϕ2dx

ď

ż

Ω

a
” v´δ

pvεnq
p´1

´
v´δ

pvεnq
p´1

ı

rpvεnq
p
´ pvεnq

p
s
`dx

`

ż

Ω

b
” vβ

pvεnq
p´1

´
vβ

pvεnq
p´1

ı

rpvεnq
p
´ pvεnq

p
s
`dx.

Denoting by

I “

ż

rv`εďv`εďns

´

|∇v|p ´ p
´v ` ε

v ` ε

¯p´1

|∇v|p´2∇v∇v ` pp´ 1q
´v ` ε

v ` ε

¯p

|∇v|p

`|∇v|p ´ p
´v ` ε

v ` ε

¯p´1

|∇v|p´2∇v∇v ` pp´ 1q
´v ` ε

v ` ε

¯p

|∇v|p
¯

dx

and using the previous inequality along with the Picone’s Identity (Theorem

A.1.6), we have

0 ď I ď

ż

rv`εąn,v`εďns

|∇v|p´1
|∇v|dx`

ż

Ω

a
” v´δ

pvεnq
p´1

´
v´δ

pvεnq
p´1

ı

rpvεnq
p
´ pvεnq

p
s
`dx

`

ż

rv`εąn,v`εďns

b
” vβ

np´1
´

vβ

pv ` εqp´1

ı

rnp ´ pv ` εqpsdx

`

ż

rv`εďv`εďns

b
” vβ

pv ` εqp´1
´

vβ

pv ` εqp´1

ı

rpv ` εqp ´ pv ` εqpsdx. (1.11)

Let us consider each one of the integrals in (1.11).

First, note that the Dominated Convergence Theorem implies that

ż

rv`εąn,v`εďns

|∇v|p´1
|∇v|dxÑ0 as nÑ 8. (1.12)
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By manipulating the second integral in (1.11), we obtain

ż

Ω

a
” v´δ

pvεnq
p´1

´
v´δ

pvεnq
p´1

ı

rpvεnq
p
´ pvεnq

p
s
`dx ď 0 (1.13)

for all n P N and ε ą 0. By Dominated Convergence Theorem once again, we also

get

ż

rv`εąn,v`εďns

b
” vβ

np´1
´

vβ

pv ` εqp´1

ı

rnp ´ pv ` εqpsdx

ď

ż

rv`εąn,v`εďns

b
”

vβpv ` εq ` vβpv ` εq
ı

dxÑ0 as nÑ 8. (1.14)

For the last integral, since

b
” vβ

pv ` εqp´1
´

vβ

pv ` εqp´1

ı

rpv` εqp´ pv` εqps` ď
”

vβpv` εq ` vβpv` εq
ı

P L1
pΩq,

it follows from the Fatou’s Lemma that

lim sup
εÑ0

ż

rv`εďv`εďns

b
” vβ

pv ` εqp´1
´

vβ

pv ` εqp´1

ı

rpv ` εqp ´ pv ` εqpsdx

ď

ż

rv`εďv`εďns

b
” vβ

vp´1
´

vβ

vp´1

ı

rvp ´ vpsdx ď 0, for all n P N. (1.15)

Hence, going back to (1.11) and using (1.12), (1.13), (1.14) and (1.15), we

get

0 ď lim sup
εÑ0`

lim inf
nÑ8

I ď lim sup
εÑ0`

lim inf
nÑ8

´

ż

Ω

a
” v´δ

pvεnq
p´1

´
v´δ

pvεnq
p´1

ı

rpvεnq
p
´ pvεnq

p
s
`dx

`

ż

rv`εąn,v`εďns

b
” vβ

np´1
´

vβ

pv ` εqp´1

ı

rnp ´ pv ` εqpsdx

`

ż

rv`εďv`εďns

b
” vβ

pv ` εqp´1
´

vβ

pv ` εqp´1

ı

rpv ` εqp ´ pv ` εqpsdx
¯

.

Since we are assuming that pv ´ vq` ‰ 0 and a` b ą 0, it follows from the

previous inequality that

0 ď lim sup
εÑ0`

lim inf
nÑ8

I ă 0,
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which is absurd. Therefore, pv ´ vq` “ 0 and this ends the proof. �

Following the proof of the above Theorem, we have the next result.

Corollary 1.2.5 Suppose that ´8 ă θ1 ď θ2 ă p´1, a1`a2 ą 0 in Ω and a1 ď a2

in Ω hold. Assume that the pair pθi, aiq satisfies one of the following conditions:

• ´1 ă θi ă p´ 1 and ai P L
p

p˚

p˚´1´θi
q
pΩq,

• θi ă ´1 and ai P L1pΩq,

• θi “ ´1 and ai P LspΩq for some s ą 1

for i P t1, 2u.

If v, v P W 1,p
loc pΩq are subsolution and supersolution, respectively, of

$

&

%

´∆pu “ a1pxqu
θ1χruăas ` a2pxqu

θ2χruěas in Ω,

u ą 0 in BΩ, u ą 0 on Ω,

with v ď 0 in BΩ and 0 ď a ă 1, then v ď v a.e. in Ω.

Proof: It is sufficient to revisit the proof of Theorem 1.2.2 and observe that, under

the contradictory assumption |rpup ´ vpq`φ ą 0s| ą 0, we also obtain

ż

ruěvs

”a1pxqu
θ1χruăas ` a2pxqu

θ2χruěas
up´1

ı

pup ´ vpqϕdx

´

ż

ruěvs

”a1pxqv
θ1χrvăas ` a2pxqv

θ2χrvěas
vp´1

ı

pup ´ vpqϕdx ă 0,

which leads us to a similar contradiction, as in the proof of Theorem 1.2.2.

�

Proof of Theorem 0.0.3 (Uniqueness): In any case, by the Theorem 1.2.2 we

get u ď v and v ď u, which results in u “ v. �



CHAPTER 2

BREAKING THE UNIQUENESS OF SOLUTIONS OF A VERY

SINGULAR PROBLEM BY NON-LOCAL TERMS

In this chapter, we are going to study

pP1q

$

’

&

’

%

´

´

ż

Ω

gpx, uqdx
¯r

∆pu “ λ
´

apxqu´δ ` bpxquβ
¯

in Ω,

u ą 0 in Ω, u “ 0 on BΩ,

where Ω Ă RNpN ě 2q is a smooth bounded domain, 1 ă p ă N , δ ą 0,

0 ă β ă p´ 1, λ ą 0 is a real parameter and a, b, g ě 0 are appropriate functions.

As we saw in the previous chapter, in the local case pr “ 0q, the problem

pP1q admits a unique solution. However, as we shall see shortly, by introducing

the non-local term, this behavior may change completely. In fact, we will see that

there are situations in which global multiplicity is guaranteed.

This chapter has the following structure. In the first section, by exploring

the uniqueness of W 1,p
loc pΩq-solutions to Problem pLαq, we will prove how these

solutions behave with respect to the parameter α. It enables us to prove that the

operator T : p0,8q Ñ W 1,p
loc pΩq (see (2.1) below) is well-defined and continuous.

In Section 2.2, we conclude the proof of Theorem 0.0.5.

Below, let us rewrite the hypotheses that will be considered in this chapter.

53
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ph3q: a, b P LmpΩq for some m ą N{p,

ph4q: a, b P LmpΩq for some m ą N

pg8q: lim
tÑ8

gpx, tqtθ8 “ g8pxq ą 0 uniformly in Ω, for some θ8 P R and g8 P CpΩq,

pg18q: lim
tÑ8

gpx, tqtθ8 “ `8 uniformly in Ω, for some θ8 P R,

pg0q: lim
tÑ0`

gpx, tqtθ0 “ g0pxq ą 0 uniformly in Ω, for some θ0 P R and g0 P CpΩq,

pg10q: lim
tÑ0`

gpx, tqtθ0 “ 8 uniformly in Ω, for some θ0 P R

2.1 W 1,p
loc pΩq-continuity and a α-behavior for a

solution application

Throughout this section, we are going to assume the hypotheses of Theorem

0.0.3. Thus, it is well-defined the solution application T : p0,8q Ñ W 1,p
loc pΩq given

by

T pαq “ uα, (2.1)

where uα P W 1,p
loc pΩq is the unique solution of Problem pLαq given by Theorem

0.0.3.

Besides, the Proposition below it is an immediate consequence of Theorem

1.2.2.

Proposition 2.1.1 The application T is non-decreasing.

Next, let us prove that T is a “W 1,p
loc pΩq-continuous application", i.e.

if αn Ñ α in R, then T pαnq Ñ T pαq in W 1,ppUq for each U ĂĂ Ω given.

In what follows, ΦH1 P W
1,p
0 pΩq will denote the positive normalized eigen-

function associated to

´∆pΦH1 “ λ1H1pxqΦH1

p´1 in Ω, ΦH1 |BΩ “ 0 (2.2)
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where H1pxq :“ mintapxq, bpxqu ě 0 and λ1 ą 0 is the first eigenvalue of (2.2) (see

[22] for more details about (2.2)). If ph3q is satisfied, then by [38] one can conclude

that ΦH1 P CpΩq. Moreover, if ph4q holds, then ΦH1 belongs to the interior of the

positive cone in C1
0pΩq (see Theorem A.2.2) and hence for some positive constant

C, one has

Cdpxq ď ΦH1pxq in Ω, (2.3)

where dpxq stands for the distance between x P Ω and the boundary BΩ.

Similarly, defining H2pxq :“ maxtapxq, bpxqu ě 0 and denoting the unique

positive solution of

´∆pu “ H2pxq in Ω, u|BΩ “ 0

by eH2 P W
1,p
0 pΩq, it follows from ph3q and [38] that eH2 P CpΩq.

Lemma 2.1.2 (T pαq-behavior for small α ą 0) Suppose that ph3q is satisfied.

Then T pαq P ruα, uαs for all α P p0, 1s, where uα :“ m1α
τΦH1 and uα :“ m2α

τetH2
,

with τ “ 1
p´1`δ

, t “ p´1
p´1`δ

and m1, m2 appropriate positive constants independent

of α. In particular, T pαq P W 1,p
loc pΩq X CpΩq for all α P p0, 1s.

Proof: Let α ą 0. Since τ “ 1
p´1`δ

holds, by fixing m1 “

´

1{λ1}Φ
1{τ
H1
}8

¯τ

we

have m1{τ
1 supΩ Φ

1{τ
H1
λ1H1pxq ď apxq in Ω. Thus,

´∆puα ď λ1α
τpp´1qH1pxq sup

Ω

Φp´1
H1

ď
α1´τδ

sup
Ω

Φδ
H1

apxq “ α
apxq

uδα
ď α

´apxq

uδα
` bpxquβα

¯

holds true.

To the supersolution, define uα “ m2α
τetH2

, where t “ p´1
p´1`δ

, τ “ 1
p´1`δ

and m2 will be chosen later. Hence, by using 0 ă t ă 1 we obtain

ż

Ω

|∇uα|p´2∇uα∇ϕdx ě

ż

Ω

|∇eH2 |
p´2∇eH2∇

”

ϕpατm2e
t´1
H2
tqp´1

ı

dx

“

ż

Ω

H2pxq
”

ϕpατm2e
t´1
H2
tqp´1

ı

dx
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for all ϕ ě 0 in C8c pΩq.

To verify that uα is a supersolution for pLαq for α P p0, 1s, by the previous

inequality it is enough to show that

pατm2tq
p´1

ě αmaxt1, }e
tpβ`δq
H2

}8upm
´δ
2 α´τδ `mβ

2α
τβ
q,

for some m2 appropriate. Therefore, if we take

m2 “ max
!

1,
´3 maxt1, }e

tpβ`δq
H2

}8u

tp´1

¯1{pp´1´βq)

,

since α P p0, 1s the previous inequality holds. Hence, for this choice of m2 and

α P p0, 1s, uα is a supersolution for pLαq.

As uα is simultaneously a sub and supersolution to pLαq, the inclusion

T pαq Ă ruα, uαs is a consequence of the comparison principle proved in Theorem

1.2.2.

Finally, it follows from the hypothesis ph3q, the fact that T pαq P ruα, uαs

and Corollary 8.1 in [38] that uα P CpΩq for α P p0, 1s. As uα and uα P CpΩq and

uα|BΩ “ uα|BΩ “ 0, the required regularity follows.

�

Following close arguments as done above, we can prove the next Lemma.

Lemma 2.1.3 (T pαq-behavior for large α ą 0) Suppose that ph3q is satisfied.

Then T pαq P ruα, uαs for all α P p1,8q, where uα :“ m1α
τΦH1 and uα :“ m2α

τetH2
,

with τ “ 1
p´1´β

, t “ p´1
p´1`δ

and m1, m2 appropriate positive constants independent

of α. In particular, T pαq P W 1,p
loc pΩq X CpΩq for all α ą 1.

After the above Lemmas, we obtain that

T pp0,8qq Ă W 1,p
loc pΩq X CpΩq

when ph3q holds. Now, we are in position to prove the continuity of T .
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Lemma 2.1.4 Suppose ph3q holds. Then T is a continuous application in the

W 1,p
loc pΩq topology as well as in CpΩq.

Proof: First let us prove the continuity of T in the W 1,p
loc pΩq-topology.

Consider αn Ñ α ą 0 in R. Then, it follows from Lemmas 2.1.2, 2.1.3 and

monotonicity established in the Proposition 2.1.1, that there exist 0 ă α ă 1 and

α ą 1 such that

α1{pp´1`δqm1ΦH1 ď uα ď uαn ď uα ď α1{pp´1´βqm2e
t
H2

in Ω, for all n P N. (2.4)

Take an open set U ĂĂ Ω and ξ P C8c pΩq such that 0 ď ξ ď 1 and ξ “ 1

in U . By using uαnξp as a test functions in pLαnq, we obtain

ż

Ω

|∇uαn |pξpdx` p
ż

Ω

|∇uαn |p´2∇uαn∇ξuαnξp´1dx

“ αn

ż

Ω

”

apxqu´δ`1
αn ` bpxquβ`1

αn

ı

ξpdx. (2.5)

Thus, it follows from the boundedness of punq in L8pΩq and Young’s in-

equality that

ż

Ω

|∇uαn |p´2∇uαn∇ξuαnξp´1dx ď

ż

Ω

|∇uαn |p´1
|∇ξ|uαnξp´1dx

ď ε

ż

Ω

`

|∇uαn |p´1ξp´1
˘

p
p´1 dx`Cpεq

ż

Ω

upαn |∇ξ|
pdx

ď ε

ż

Ω

ξp|∇uαn |pdx` Cpεq, (2.6)

where Cpεq is a cumulative positive constant.

Hence, by using (2.4) and (2.6) in (2.5), we obtain

ż

U

|∇uαn |pdx ď
ż

Ω

|∇uαn |pξpdx ď Cpεq,

which implies that puαnq is bounded in W 1,p
loc pΩq. So, there exists u P W

1,p
loc pΩq such
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that
$

’

’

’

&

’

’

’

%

uαn á u in W 1,ppUq

uαn Ñ u in LqpUq for all 1 ď q ă p˚

uαnpxq Ñ upxq a.e in Ω,

(2.7)

for each U ĂĂ Ω given.

By using (2.4) and applying Theorem A.1.4, we obtain

∇uαn Ñ ∇u, in pLqpΩqqN for any q ă p.

As a consequence, for each ϕ P C8c pΩq we get

ż

Ω

p|∇uαn |p´2∇uαn ´ |∇upxq|qp´2∇uq∇ϕdxÑ 0.

Moreover, if Θ denote the support of ϕ, we have

ˇ

ˇ

ˇ

´ a

uδαn
`buβαn

¯

ϕ
ˇ

ˇ

ˇ
ď

¨

˝

a

pα1{pp´1`δqm1 inf
Θ

ΦH1q
δ
` bαβ{pp´1´βqm2 sup

Θ
etβH2

˛

‚}ϕ}8 P L
1
pΘq,

whence using the Dominated Convergence Theorem, we get

αn

ż

Ω

´ a

uδαn
` buβαn

¯

ϕdxÑ α

ż

Ω

´ a

uδ
` buβ

¯

ϕdx as nÑ 8.

Hence, we conclude that

ż

Ω

|∇u|p´2∇u∇ϕ “ α

ż

Ω

´ a

uδ
` buβ

¯

ϕ, @ ϕ P C8c pΩq.

Since uαn satisfy (2.4), we have α1{pp´1`δqm1ΦH1 ď u ď α1{pp´1´βqm2e
t
H2
.

Thus, as ΦH1 and eH2 P CpΩq we obtain 0 ď pu´εq` ď pα1{pp´1´βqm2e
t
H2
´εq`, that

is, pu´ εq` P W 1,p
0 pΩq for each ε ą 0. Therefore, u satisfies the boundary condition

of Definition 0.0.1. Hence, by applying the uniqueness of W 1,p
loc pΩq-solutions to

Problem pLαq claimed in Theorem 0.0.3, we have u “ uα.

For the CpΩq-continuity, it follows from (2.4) and [38] that the sequence
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puαnq is bounded in CαpΘq for some α P p0, 1q and in each compact Θ Ă Ω.

So it follows from Arzelà-Ascoli’s Theorem and (2.7), that uαn Ñ u in CpΩq.

Furthermore, by using (2.4), we obtain u P CpΩq and uαn Ñ u in CpΩq.

�

2.2 Existence and multiplicity of

W 1,p
loc pΩq-solutions for a non-local problem

Now we are able to prove Theorem 0.0.5. Before that, we will introduce the

applications G : DpGq Ă W 1,p
loc pΩq Ñ r0,8q and H : p0,8q Ñ p0,8q defined by

Gpuq “
´

ż

Ω

gpx, uqdx
¯r

and Hpαq “ αGpT pαqq,

where DpGq “ t0 ď u P W 1,p
loc pΩq : Gpuq ă 8u.

In addition, let us consider the system

$

’

&

’

%

ż

Ω

|∇u|p´2∇u∇ϕdx “ α

ż

Ω

´

apxqu´δ ` bpxquβ
¯

ϕdx

αGpuq “ λ,
(2.8)

remind that

Σ “ tpλ, uq P p0,8q ˆ CpΩq : u P W 1,p
loc pΩq is solution of pP1qu

and set

Σ1“tpHpαq, uαq P p0,8qˆCpΩq : α P p0,8q and uα P W 1,p
loc pΩq is a solution of pLαqu.

As a consequence of Lemma 2.1.4, we can prove the next result.

Lemma 2.2.1 Suppose one of the following item holds:

piq ph3q is satisfied and g P CpΩˆ r0,8q, p0,8qq;



2.2. Existence and multiplicity of W 1,p
loc pΩq-solutions for a non-local problem 60

piiq ph4q is satisfied, g P CpΩ ˆ p0,8q, p0,8qq and lim
tÑ0`

gpx, tqtθ0 “ g0pxq ě 0

uniformly in Ω, for some g0 P CpΩq and 0 ă θ0 ă 1.

Then T
`

p0,8q
˘

Ă DpGq and, in particular, H is well-defined. Besides this, H is

a continuous function.

Proof: Take α ą 0. It follows from Lemmas 2.1.2, 2.1.3 and the monotonicity

established in Proposition 2.1.1, we can find 0 ă α “ αpαq ă 1 and α “ αpαq ą 1

such that

α1{pp´1`δqm1ΦH1 ď uα ď α1{pp´1´βqm2e
t
H2

in Ω, (2.9)

where m1 and m2 are given in Lemma 2.1.2 and Lemma 2.1.3, respectively.

First, let us assume piiq holds. So, by choosing an ε, t0 ą 0 sufficiently

small such that α1{pp´1´βqm2e
t
H2
ă t0 for all x P Ωε “ tx P Ω : distpx, BΩq ă εu, we

obtain from (2.3), (2.9) and hypothesis piiq, that 0 ă gpx, uαq ď Cdpxq´θ0 in Ωε

for some positive constant C. Since θ0 ă 1, it follows from [40] and the previous

inequality that gpx, uαq P L1pΩεq, which proves that H is well-defined in this case.

About the case piq, the result follows directly from the fact that eH2 is a

bounded function. So, in both cases, we showed that T pαq P DpGq for each α ą 0

given.

To show the continuity, consider αn Ñ α ą 0. By an analogous argument

as in first part, we can conclude that in any case there exists a hpxq P L1pΩq such

that gpx, uαnq ď hpxq, for all x P Ω and n P N. Thus, the continuity follows from

the Lemma 2.1.4 and Convergence Dominated Theorem.

�

After this Lemma, by using the uniqueness claimed in Theorem 0.0.3, we

obtain the next one.

Lemma 2.2.2 Let λ ą 0. Then Problem pP1q admits a W 1,p
loc pΩq-solution if, and

only if, there exist pα, uq “ pαλ, uλq P p0,8q ˆ W 1,p
loc pΩq solution of p2.8q. In

particular, Problem pP1q admits a W 1,p
loc pΩq-solution if, and only if, λ P Hpp0,8qq.
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As a rereading of the above Lemma and a consequence of Lemma 2.1.4, we

conclude that

Σ “ tpHpαq, uαq P p0,8qˆCpΩq : α P p0,8q and uα P W 1,p
loc pΩq is a solution of pLαqu

is the continuum of solutions to Problem pP1q given by a curve.

Now, let us recall the Theorem 0.0.5 and prove it.

Theorem 0.0.5 Assume δ ą 0 and 0 ă β ă p´ 1 hold. If:

1q g P CpΩˆ r0,8q, p0,8qq and in addition

aq ph3q, pg8q and θ8r ă p ´ 1 ´ β hold, then pP1q admits at least one

solution in Σ, for each λ ą 0 given. Besides this, the same conclusion

remains true if tr ă 0 and g8 ” 0 in pg8qu or tpg18q and r ě 0u holds.

bq ph4q, pg8q, θ8r ą p ´ 1 ´ β and θ8 ă 1 hold, then there exists 0 ă

λ˚ ă 8 such that pP1q admits at least two W 1,p
loc pΩq X CpΩq-solutions

for each λ P p0, λ˚q given, at least one solution for λ “ λ˚ and no

solution for λ ą λ˚. Furthermore, if tr ě 0 and g8 ” 0 in pg8qu or

tpg18q and r ă 0u holds, then the same conclusion is valid.

2q g P CpΩˆ p0,8q, p0,8qq, ph4q is satisfied and additionally

a) pg8q, pg0q, θ8r ă p´1´β, θ0r ą p´1` δ and θ0 ă 1 hold, then there

exists a 0 ă λ˚ ă 8 such that pP1q admits at least two W 1,p
loc pΩqXCpΩq-

solutions for λ ą λ˚, at least one for λ “ λ˚ and no solutions for

0 ă λ ă λ˚. Moreover, the conclusion is the same if we assume either

tr ą 0, pg10q and pg18qu or tr ă 0, pg0q, pg8q and g0 ” g8 ” 0u.

b) θ8r ą p ´ 1 ´ β, θ0r ą p ´ 1 ` δ and θ8, θ0 ă 1 hold, then pP1q

admits at least one W 1,p
loc pΩq X CpΩq-solution for each λ ą 0 given.

In this case, the conclusion remains true if we assume either tr ą

0, pg10q and pg8q with g8 ” 0u or tr ă 0, pg18q, and pg0q with g0 ” 0u.

Moreover, in all the cases Σ is the continuum of solutions given by a curve which:
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piq emanates from 0 at λ “ 0 and bifurcates from infinity at λ “ 8 in the case

1´ aq,

piiq emanates from 0 at λ “ 0 and bifurcates from infinity at λ “ 0 in the case

1´ bq,

piiiq emanates from 0 at λ “ 8 and bifurcates from infinity at λ “ 8 in the case

2´ aq,

pivq emanates from 0 at λ “ 8 and bifurcates from infinity at λ “ 0 in the case

2´ bq.

Proof of Theorem 0.0.5-Completed : Since the additional part in each item

follows analogously, we will prove only the first part in each one of them.

1-a) Firstly, note that by the continuity of g and Lemma 2.1.2, we get

lim
αÑ0

Hpαq “ 0. We will split the proof in two cases:

iq case 1: r ě 0. By taking U ĂĂ Ω and using pg8q together with Lemma

2.1.3, we obtain

ż

Ω

gpx, uαqdx ě

ż

U

gpx, uαqdx ě Cα´θ8{pp´1´βq

for all α sufficiently large. Since θ8r ă p´ 1´ β, we get

Hpαq “ α

ˆ
ż

Ω

gpx, uαqdx

˙r

ě Cα1´rθ8{pp´1´βq
Ñ 8 as αÑ 8.

ii) case 2: r ă 0. Consider the case θ8 ě 0. By the hypothesis pg8q

and the continuity of g, we obtain
ż

Ω

gpx, uαqdx ď C, that is, Hpαq ě

CrαÑ 8 as αÑ 8.

Analogously, when θ8 ă 0, we obtain by the Lemma 2.1.3 and the

hypothesis pg8q that

Hpαq ě Cα
´

1` α´θ8{pp´1´βq
¯r

“ C
´

α
1
r ` α

1
r
´

θ8
p´1´β

¯r

,
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showing that Hpαq Ñ 8 as αÑ 8 because θ8r ă p´ 1´ β. Hence, in

all cases we have Hpαq Ñ 0 as αÑ 0 and Hpαq Ñ 8 as αÑ 8. Since

H is continuous (see Lemma 2.2.1), our claim follows.

To finish the proof, it just remains to show the behavior of the continuum Σ

at λ “ 0 and λ “ 8. For λ “ 0, let us take ε ą 0 and define δ “ inf
rε,8q

Hpαq.

Since Hpαq Ñ 8 as α Ñ 8, it follows from the Lemma 2.2.1 that δ ą 0

and p0, δq Ă Hpp0, εqq, that is, for each λn P p0, δq, there exists an αn P p0, εq

such that Hpαnq “ λn. Thus, if λn Ñ 0, then αn Ñ 0, which implies by the

Lemma 2.1.2 that }uαn}8 Ñ 0.

For λ “ 8, define m “ max
r0,Ms

Hpαq for each M ą 0 given. Then m ă 8 and

pm,8q Ă HppM,8qq, that is, for each λn P pm,8q, there exists αn P pM,8q

such that λn “ Hpαnq. Hence, if λn Ñ 8, then αn Ñ 8 and so by using

Lemma 2.1.3, we obtain that }uαn}8 Ñ 8. See picture Fig. 1.

1-b) Initially, suppose that r ą 0. In this case θ8 ą 0, because we are assuming

θ8r ą p´ 1´ β ą 0.

By the hypothesis pg8q and continuity of g in Ωˆr0,8q, we obtain gpx, tq ď

C1t
´θ8 for all t ą 0 and for some C1 ą 0.

Since we are assuming ph4q, we have Cdpxq ď ΦH1pxq in Ω, which together

with Lemma 2.1.3 leads to
ż

Ω

gpx, uαqdx ď C2α
´θ8{pp´1´βq for α ą 1. Thus,

as we are assuming θ8r ą p´ 1´ β, we obtain

Hpαq ď C3α
1´θ8r{pp´1´βq

Ñ 0 as αÑ 8.

Let us now consider the case when r ă 0. In this case, by our hypothesis

on θ8 and r, we necessarily have θ8 ă 0. Hence, proceeding analogously as

above, we can prove Hpαq ď Cα1´θ8r{pp´1´βq Ñ 0 as αÑ 8.

In any case, as we have proved, we obtain lim
αÑ8

Hpαq “ 0. On the other

hand, Hpαq Ñ 0 as α Ñ 0. Therefore, by taking λ˚ “ sup
R`

Hpαq, the result

follows.
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Next, let us study the behavior of Σ. Letting pλ, uq P Σ, it is clear that

λ ď λ˚. Since lim
αÑ0

Hpαq “ lim
αÑ8

Hpαq “ 0, we get p0, δq Ă Hpp0, εqq X

HppM,8qq for each ε ą 0 small and M ą 0 large, where 0 ă δ “ min
rε,Ms

Hpαq.

Thus, for each λn P p0, δq there exists α1
n P p0, εq and α2

n P pM,8q such that

λn “ Hpα1
nq “ Hpα2

nq. So, λn Ñ 0 imply α1
n Ñ 0 and α2

n Ñ 8, which lead

us to conclude that }uα1
n
}8 Ñ 0 and }uα2

n
}8 Ñ 8 after to use Lemmas 2.1.2

and 2.1.3 again. See Fig. 2.

2-a) Initially assume r ą 0. In this case θ0 ą 0, because θ0r ą p ´ 1 ` δ ą 0.

Then, by using the hypothesis pg0q, Lemma 2.1.2 and taking U ĂĂ Ω, we

get

Hpαq ě Cα

ˆ
ż

U

1

αθ0{pp´1`δqeH2pxq
tθ0
dx

˙r

“ Cα1´rθ0{pp´1`δq (2.10)

for some C ą 0 cumulative constant and α ą 0 small enough. As θ0r ą

p ´ 1 ` δ ą 0, we obtain from (2.10) that Hpαq Ñ `8 as α Ñ 0`. In the

same way, when r, θ0 ă 0, by the hypothesis pg0q and Lemma 2.1.2 we obtain

Hpαq Ñ `8 as αÑ 0`.

On the other hand, by following the same idea as in the proof of the item

1 ´ aq, we can verify that Hpαq Ñ 8 as α Ñ 8. Thus, by considering

λ˚ “ inf
αPR`

Hpαq, the result follows.

2-b) By the same argument as in the proof the items 1 ´ bq and 2 ´ aq, we can

verify that Hpαq αÑ8ÝÑ 0 and Hpαq αÑ0`
ÝÑ 8, whence the result follows again.

These ends the proof of Theorem 0.0.5.

Similarly to the cases 1 ´ aq and 1 ´ bq, we are able to verify that the

continuum Σ behaves as in the figures Fig.3 (item 2´aq) and Fig. 4 (item 2´ bq),

respectively. �



CHAPTER 3

CONTINUUMS OF POSITIVE SOLUTIONS FOR

NON-AUTONOMOUS NON-LOCAL STRONGLY-SINGULAR

PROBLEMS

In this chapter, we show the existence of continuums of positive solutions

for the following non-local quasilinear problem

pP2q

$

’

&

’

%

´A
´

x,

ż

Ω

uγdx
¯

∆pu “ λfpx, uq in Ω,

u ą 0 in Ω, u “ 0 on BΩ,

where Ω Ă RNpN ě 2q is a smooth bounded domain, p P p1, Nq, λ ą 0 is a real

parameter, A P CpΩˆr0,8q, p0,8qq and f P CpΩˆp0,8q, p0,8qq can be strongly

(very) singular at u “ 0.

We approach this problem by applying the Bifurcation Theory to the cor-

responding ε-perturbed problems and using a comparison principle for W 1,p
loc pΩq-

sub and supersolutions (see Theorem 1.2.2) to obtain qualitative properties of

the ε-continuum limit. Moreover, this technique empowers us to study existence

of a continuum of positive solutions to the following strongly-singular and non-

65
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homogeneous Kirchhoff problem

pQ1q

$

&

%

´M
´

x, }∇u}ppq∆pu “ λfpx, uq in Ω,

u ą 0 in Ω, u “ 0 on BΩ,

where Ω Ă RNpN ě 2q is a smooth bounded domain, p P p1, Nq, λ ą 0 is a real

parameter, M P CpΩˆ r0,8q, p0,8qq and f P CpΩˆ p0,8q, p0,8qq.

It is worth mentioning that in Chapter 2, since a monotonicity condition

on fpx, tq{tp´1 was assumed, a uniqueness result was shown and as a consequence

of this, the analysis of the behavior of the continuum was done by studying the

parameter-solution application. Here, the same strategy can not be applied any-

more, because A is a non-autonomous function and no monotonicity is posed on

the quotient fpx, tq{tp´1.

This chapter follows the following structure. In the first section, we present

the proof of Theorem 0.0.7. In Section 3.2, we establish the fundamental tools to

study the behavior of Σ. The qualitative study of the continuum obtained in the

first section will be done in Section 3.3, as well the proof of Theorem 0.0.9. We

conclude the Section 3.3, by studying the degenerate case in problem pP2q. In the

last section we prove Theorem 0.0.10. For convenience, all the results mentioned

will be restated in their corresponding sections. However, for completeness, below

we recall once again all the assumptions required throughout this chapter.

pA0q A P CpΩˆ Rq satisfies Apx, tq ą 0 for all t ě 0 and x P Ω,

pA8q lim
tÑ8

Apx, tqtθ “ a8pxq ě 0 uniformly in Ω, for some a8 P CpΩq,

pA18q lim
tÑ8

Apx, tqtθ “ 8 uniformly in Ω,

pf8q lim
tÑ8

fpx, tq

tp´1
“ 0 uniformly in Ω,

pf0q lim
tÑ0`

fpx, tq

tp´1
“ 8 uniformly in Ω,

pf1q lim
tÑ8

fpx, tq

tβ
“ c8pxq ą 0 uniformly in Ω, for some ´8 ă β ă p ´ 1 and

c8 P CpΩq,
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pf2q lim
tÑ0`

fpx, tq

tδ
“ c0pxq ą 0 uniformly in Ω, for some ´8 ă δ ă p ´ 1 and

c0 P CpΩq,

(M0) Mpx, tq “ apxq ` bpxqtγ, a, b P CpΩq, apxq ě a and bpxq ě 0 in Ω,

(Γ0) γ ą 0 if ´ 1 ď δ ă p´ 1 and 0 ă γ ă p´1´δ
´δ´1

if ´ 2p´1
p´1

ď δ ă ´1.

3.1 Existence of a continuum of W 1,p
loc pΩq X CpΩq-

solutions

Throughout this section, we will denote by e1 P C
1
0pΩq the unique positive

solution of

´∆pu “ 1 in Ω, u|BΩ “ 0

and by Φ1 P C
1
0pΩq the first positive normalized eigenfunction associated to the

first positive eigenvalue of p´∆p,W
1,p
0 pΩqq, that is,

´∆pΦ1 “ λ1Φp´1
1 in Ω, Φ1|BΩ “ 0.

For each ε ą 0 given, let us introduce the following ε-perturbed problem

pPεq

$

’

&

’

%

´A
´

x,

ż

Ω

uγdx
¯

∆pu “ λfpx, u` εq in Ω,

u ą 0 in Ω, u “ 0 on BΩ

and show that pPεq admits an unbounded ε-continuum of positive solutions by using

the Rabinowitz Global Bifurcation Theorem (see Theorem A.1.7 in Appendix).

Lemma 3.1.1 Suppose that γ ě 0 and pA0q hold. Then, there exists an unbounded

continuum Σε Ă R`ˆCpΩq of positive solutions of pPεq that emanates from p0, 0q,

for each ε ą 0 given.

Proof: It follows from the classical theory of existence and regularity for elliptic
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equations and hypothesis pA0q that the problem

´ A
´

x,

ż

Ω

|v|γdx
¯

∆pu “ λfpx, |v| ` εq in Ω, u “ 0 on BΩ (3.1)

admits a unique solution u P C1,αpΩq, for some α P p0, 1q and for each pλ, vq P

R` ˆ CpΩq (see Theorem A.2.1). Thus, the operator T : R` ˆ CpΩq Ñ CpΩq,

which associates each pair pλ, vq P R` ˆ CpΩq to the only weak solution of (3.1),

is well-defined.

It is classical to show that T is a compact operator, using Arzelà-Ascoli’s

Theorem. Hence, we are able to apply Theorem A.1.7 to get an unbounded ε-

continuum Σε Ă R` ˆ CpΩq of solutions of

T pλ, uq “ u. (3.2)

Moreover, as by the definition T p0, vq “ 0 and if T pλ, 0q “ 0 implies λ “ 0, we can

conclude that Σεztp0, 0qu is formed by nontrivial solutions of (3.2).

Finally, using that 0 ă fpx, |v| ` εq{A
´

x,
ş

Ω
|v|γ

¯

P L8pΩq for each given

v P CpΩq and classical strong maximum principle (see Theorem A.1.2), we obtain

that T ppR`zt0uq ˆ CpΩqq Ă CpΩq`, where CpΩq` “ tu P CpΩq : u ą 0 in Ωu.

Therefore, Σε is a ε-continuum of positive solutions of pPεq, for each ε ą 0 given.

This ends the proof. �

As a consequence of the result we just proved, for every ε ą 0 and for each

bounded open set U Ă R ˆ CpΩq containing p0, 0q, there exists a pair pλε, uεq P

Σε X BU . An essential argument in our approach is to show that if εn Ñ 0` and

λn Ñ λ, then λ ą 0 and tuεnu converges in CpΩq to a function u P W 1,p
loc pΩqXCpΩq,

where pλ, uq is a solution of pP2q.

To prove this, let us begin with the following result which is motivated by

the arguments of Crandall, Rabinowitz and Tartar [21].

Lemma 3.1.2 Admit that pA0q and pf0q hold. Let U Ă R ˆ CpΩq be a bounded
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open set containing p0, 0q, a positive constant K and a pair pλε, uεq P
´

p0,8q ˆ

pCpΩq XW 1,p
0 pΩqq

¯

X BU of solution of pPεq satisfying λε ď K and uε ď K in Ω.

Then, there exist constants K1 “ K1pK,Uq ą 0, K2 “ K2pk,Kq ą 0 and ε0 ą 0

such that

λ
1
p´1
ε K1pK,UqΦ1 ď uε ď k ` λ

1
p´1
ε K2pk,Kq

1
p´1 e1 in Ω, (3.3)

for each k P p0, Ks fixed and for all 0 ă ε ă ε0.

Proof: Let K ą 0 as above. Besides this, define 0 ă aK “ min
Ωˆr0, |Ω|Kγ s

Apx, tq and

K2pk,Kq “ max
!fpx, tq

aK
: x P Ω and k ď t ď K ` 1

)

,

where k is a fixed number on p0, Ks. Thus, K2pk, ¨q is non-decreasing for each k

fixed.

To show the second inequality in (3.3), let us consider the open set Ok “

tx P Ω : uε ą ku. Then, it follows from the definition of K2 that

´∆p

´

k ` λ
1
p´1
ε K2pk,Kq

1
p´1 e1

¯

“ λεK2pk,Kq ě
λε
aK

fpx, uε ` εq

ě
λε

A
´

x,
ş

Ω
uγε
¯fpx, uε ` εq “ ´∆puε in Ok.

Since k ` λ
1
p´1
ε K2pk,Kq

1
p´1 e1 ´ uε “ λ

1
p´1
ε K2pk,Kq

1
p´1 e1 ě 0 on BOk, the second

inequality in (3.3) is valid in Ok by classical comparison principle. Now, using the

above fact together with the definition of Ok, we conclude that

uε ď k ` λ
1
p´1
ε K2pk,Kq

1
p´1 e1 in Ω.

Now, we are going to prove the first inequality in (3.3). Let us denote by

δ1 “ distpBU, p0, 0qq ą 0. We claim that

λε ą C˚ :“ min
! 1

K2pδ1{4, Kq

´ δ1

4}e1}8

¯p´1

,
δ1

4

)

.

In fact, otherwise by taking k “ δ1{4 in the second inequality in (3.3), we conclude

that pλε, uεq P B3δ1{4p0, 0q Ă Rˆ CpΩq, which is an absurd as pλε, uεq P BU.
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Now, by defining uε “ λ
1
p´1
ε K1pK,UqΦ1, where K1pK,Uq will be chosen

later, it follows from Picone’s inequality (Theorem A.1.6), hypothesis pA0q and

the fact that pλε, uεq is a solution of pPεq, that

0 ď

ż

Ω

|∇uε|p´2∇uε∇
´

puε ` εq
p ´ puε ` εq

p

puε ` εq
p´1

¯`

dx

´|∇uε|p´2∇uε∇
´

puε ` εq
p ´ puε ` εq

p

puε ` εqp´1

¯`

dx

ď λε

ż

Ω

” λ1Kp´1
1 Φp´1

1

pλ
1{pp´1q
ε K1Φ1 ` εqp´1

´
fpx, uε ` εq

puε ` εqp´1AK

ı´

puε ` εq
p
´ puε ` εq

p
¯`

dx

ď λε

ż

Ω

”λ1

λε
´

fpx, uε ` εq

puε ` εqp´1AK

ı´

puε ` εq
p
´ puε ` εq

p
¯`

dx, (3.4)

where AK “ maxΩˆr0,Kγ |Ω|sA.

To complete the proof, let us argue by contradiction. First, let us fix K̃ ą
`

λ1AK
˘

{C˚ and conclude from hypothesis pf0q that there exists a ą 0 small enough

such that fpx, tq ě K̃tp´1, for all x P Ω and 0 ă t ă a. Hence, by choosing

K1pK,Uq “ a{
´

4K
1
p´1 }Φ1}8

¯

, we claim that ruε ą uεs has zero measure for every

ε ă ε0 :“ a{4 given. Otherwise, if we assume |ruε ą uεs| ą 0 for some 0 ă ε ă ε0,

we get

uε ` ε ď uε ` ε ă
a

2
on ruε ą uεs.

Therefore, by going back to (3.4) and using λ1{λε ď λ1{C˚, we have

0 ď λε

ż

Ω

”λ1

λε
´

fpx, uε ` εq

puε ` εqp´1AK

ı´

puε ` εq
p
´ puε ` εq

p
¯`

dx

ď λε

ż

Ω

” λ1

C˚
´

K̃puε ` εq
p´1

puε ` εqp´1AK

ı´

puε ` εq
p
´ puε ` εq

p
¯`

dx ă 0,

which is an absurd. Hence, λ
1
p´1
ε K1pK,UqΦ1 ď uε in Ω for all 0 ă ε ă ε0, as we

claimed.

�

Theorem 0.0.7 Suppose that γ ě 0, pA0q and pf0q hold. Then, there exists an

unbounded continuum Σ Ă RˆCpΩq of positive solutions of the problem pP2q that
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emanates from p0, 0q. In additional, if pf8q holds and Apx, tq ě a0 in Ωˆ R` for

some a0 ą 0, then ProjRΣ “ p0,8q.

Proof:

For each i P N given, define

Fi“
!

pλ, uq P R`ˆCpΩq that solves pP2q :
λ

1
p´1

i
Φ1pxqďupxqďk`λ

1
p´1K2pk, iq

1
p´1 e1pxq

in Ω for each k P p0, is
)

,

where K2pk, iq was introduced in the Lemma 3.1.2.

To end the proof, it suffices to set

F “
ď

iPN

Fi Y tp0, 0qu Ă R` ˆ CpΩq (3.5)

and prove that there is an unbounded connected component Σ Ă F . By Theorem

2 in [56] (see also [58]), the existence of Σ is a consequence of the following two

claims:

Claim 1: For each U Ă R ˆ CpΩq bounded neighborhood of p0, 0q in R ˆ CpΩq,

there is a solution pλ, uq P BU X F .

Claim 2: Closed and bounded (in Rˆ CpΩqq subsets of F are compact.

Let us prove each of the above claims one by one.

Proof of Claim 1: Consider U Ă R ˆ CpΩq be a bounded neighborhood of

p0, 0q in R ˆ CpΩq and a sequence εn Ñ 0`. By the Lemma 3.1.1, there exists

pλn, unq “ pλεn , uεnq P BU X
´

p0,8qˆW 1,p
0 pΩq

¯

a solution of pPεnq, for each n P N.

Moreover, as U is a bounded set, we can find a positive constant K ą 0 such that

0 ď λn ď K and 0 ď un ď K in Ω. Thus, by the Lemma 3.1.2, we obtain

λ
1
p´1
n K1pK,UqΦ1 ď un ď k ` λ

1
p´1
n K2pk,Kq

1
p´1 e1 in Ω, (3.6)

for all n P N sufficiently large and for each k P p0, Ks given.

Suppose that λn Ñ λ ě 0. If λ “ 0, we conclude by (3.6) that un Ñ 0
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in CpΩq, that is, pλn, unq Ñ p0, 0q in R ˆ CpΩq. Since pλn, unq P BU and U is

a bounded neighborhood of p0, 0q, we obtain a contradiction. Therefore λ ą 0,

which implies that 0 ă λ ´ δ1 ă λn ă λ ` δ1 for n sufficiently large and some

δ1 ą 0.

Consider a sequence pΩlq of open sets in Ω such that Ωl Ă Ωl`1 and
Ť

l Ωl “

Ω and define δl “ min
Ωl

pλ´δ1q
1
p´1K1pK,UqΦ1, for each l P N. Taking ϕ “ pun´δ1q

`

as a test function in pPεnq, using (3.6) and the hypothesis pA0q, we obtain

ż

runěδ1s

|∇un|pdx “ λn

ż

runěδ1s

fpx, un ` εnq

A
´

x,
ş

Ω
uγn
¯ pun ´ δ1q

`dx ď C1,

where C1 ą 0 is a real constant independent of n. Thus, it follows from the previous

inequality that tunu is bounded in W 1,ppΩ1q. Hence, there exists uΩ1 P W
1,ppΩ1q

and a subsequence tun1
j
u of tunu such that

$

&

%

un1
j
á uΩ1 weakly in W 1,ppΩ1q and strongly in LqpΩ1q for 1 ď q ă p˚

un1
j
Ñ uΩ1 a.e. in Ω1.

Proceeding as above, we can obtain subsequences tunlju of tunu, with tunl`1
j
u Ă

tunlju, and functions uΩl P W
1,ppΩlq such that

$

&

%

unlj á uΩl , weakly in W 1,ppΩlq and strongly in LppΩlq for 1 ď q ă p˚

unlj Ñ uΩl a.e. in Ωl.

By construction, we have uΩl`1

ˇ

ˇ

ˇ

Ωl
“ uΩl . Hence, by defining

u “

$

&

%

uΩ1 in Ω1,

uΩl`1
in Ωl`1zΩl,

we obtain that u P W 1,p
loc pΩq and satisfies (3.6). In particular, by choosing i ą K
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large enough and using that K2pk, ¨q is non-decreasing, we have that

λ
1
p´1

i
Φ1pxq ď upxq ď k ` λ

1
p´1K2pk, iq

1
p´1 e1pxq (3.7)

holds for each k P p0, is.

Furthermore, we claim that pλ, uq is a solution for pP2q. Indeed, by taking

ϕ P C8c pΩq and using Theorem A.1.4, we have

ż

Ω

|∇un|p´2∇un∇ϕdxÑ
ż

Ω

|∇u|p´2∇u∇ϕdx, (3.8)

up to a subsequence. On the other side, by using the continuity of f , the inequality

(3.6) and the hypothesis pA0q, we obtain from Lebesgue Dominated Convergence

Theorem that

λn

ż

Ω

fpx, un ` εnq

A
´

x,
ş

Ω
uγn
¯ ϕdxÑ λ

ż

Ω

fpx, uq

A
´

x,
ş

Ω
uγ
¯ϕdx. (3.9)

Thus, from (3.8) and (3.9) it is evident that pλ, uq satisfies (6). Also, by (3.7) we

obtain that u ą 0 (in the sense of Definition 0.0.6 ). To verify that u satisfies the

boundary condition (see Definition 0.0.1), it suffices to note that the arguments

used above lead us to the fact that the sequence pun ´ εq` is bounded in W 1,p
0 pΩq

as well. Therefore, pu´ εq` P W 1,p
0 pΩq for each ε ą 0 given.

Finally, by the continuity of f , hypothesis pA0q and (3.6), we obtain from

Theorem A.2.3 and Arzelà-Ascoli’s Theorem that u P CpΩq and un Ñ u in CpΘq,

for each compact set Θ Ă Ω given. Thus, by using this fact and (3.6), we obtain

that pλn, unq Ñ pλ, uq in R ˆ CpΩq, which on combining with (3.7) implies that

pλ, uq P BU X Fi Ă BU X F , as required.

Proof of Claim 2: Let tpλn, unqu Ă F be a bounded sequence (in R ˆ CpΩqq. We

aim to prove that tpλn, unqu admits a subsequence that converges to some element

of F .

Initially, let us suppose that finitely many terms of tpλn, unqu belongs to Rˆ
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CpΩqzBδ1p0, 0q, for each δ1 ą 0 given. In this case, p0, 0q would be an accumulation

point of the sequence and our claim will hold. Otherwise, let us assume that

infinitely many terms of tpλn, unqu belongs to RˆCpΩqzBδ1p0, 0q, for some δ1 ą 0.

Since tpλn, unqu is bounded by a constant K ą 0, the second inequality in (3.3) is

true. Apart from this, since }pλn, unq}RˆCpΩq ě δ1 (just for the subsequence in our

assumption), the first inequality in (3.3) holds true as well. Hence, by fixing i P N

sufficiently large, we get that tpλn, unqu Ă Fi for that subsequence.

Let us fix such subsequence. By the boundedness of tλnu Ă R and pλn, unq Ă

Fi X
´

`

R ˆ CpΩq
˘

zBδ1p0, 0q
¯

, it follows that λn Ñ λ ą 0, up to subsequence. As

a consequence of this, we get

λ1{pp´1q

2i
Φ1 ď un ď K in Ω (3.10)

for n P N large enough.

Let U ĂĂ Ω and ϕ P C8c pΩq such that 0 ď ϕ ď 1, ϕ “ 1 in U with

U Ă Θ :“ supp ϕ. Thus, by (3.10), we have a uniform bound of pfpx, unqq on

Θˆrk,Ks, where k :“ minΘ
λ1{pp´1q

2i
Φ1 ą 0. Hence, using this information together

with boundedness of pλn, unq in RˆCpΩqq, Hölder’s inequality and the hypothesis

pA0q, we have

1

2p

ż

Θ

|∇pϕunq|pdx “
1

2p

ż

Θ

|∇ϕun `∇unϕ|pdx ď
ż

Θ

|∇ϕ|punpdx`
ż

Θ

|∇un|pϕpdx

ď C1

ż

Θ

|∇ϕ|pdx`
ż

Θ

|∇un|p´2∇un∇unϕpdx´
ż

Θ

|∇un|p´2∇un∇ϕppϕp´1unqdx

ď C1

ż

Θ

|∇ϕ|pdx` λn
ż

Θ

fpx, unqun

A
´

x,

ż

Ω

uγn

¯

ϕpdx` C2

ż

Θ

|∇un|p´1
|∇ϕ|ϕp´1undx

ďC3

”

1`
´

ż

Θ

|ϕ∇un|pdx
¯
p´1
p
´

ż

Θ

p|un∇ϕ|qpdx
¯

1
p
ı

pusing pA0qq

ď C4

”

1`
´

ż

Θ

|∇pϕunq|pdx
¯
p´1
p
ı

,

where C4 is a positive constant, independent of n. Thus, tϕunu is bounded in

W 1,p
0 pΘq and as a consequence of this, tunu is bounded in W 1,ppUq. By using the
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arbitrariness of U and proceeding as in the proof of the Claim 1, we obtain a

function u P W 1,p
loc pΩq X CpΩq such that

$

’

’

’

&

’

’

’

%

un á u weakly in W 1,ppUq for each U ĂĂ Ω,

un Ñ u in CpΩq,
λ

1
p´1

i
Φ1pxq ď upxq ď k ` λ

1
p´1K2pk, iq

1
p´1 e1pxq in Ω for all k P p0, is

(3.11)

for i as fixed before.

From the last inequality in (3.11), it follows that pu´εq` P W 1,p
0 pΩq for each

ε ą 0 given, as noted in Claim 1. Hence, to complete the proof of the existence

of the continuum, we just need to show that pλ, uq satisfies the equation in pP2q,

that is, (6). Since pλn, unq solves pPεnq, it follows from density arguments, (3.10)

and (3.11) that

ż

Ω

|∇un|p´2∇un∇
´

ϕpun ´ uq
¯

dx “ λn

ż

Ω

fpx, unq

A
´

x,
ş

Ω
uγn
¯ϕpun ´ uqdxÑ 0 (3.12)

for all ϕ P C8c pΩq.

Since tunu is a bounded sequence in W 1,p
loc pΩq, we obtain

ˇ

ˇ

ˇ

ż

Ω

|∇un|p´2∇un∇ϕpun ´ uqdx
ˇ

ˇ

ˇ
ď C}un ´ u}p Ñ 0 (3.13)

by using the Hölder’s inequality. Therefore, it follows from (3.12) and (3.13) that

ż

Ω

ϕ
´

|∇un|p´2∇un ´ |∇u|p´2∇u
¯

∇pun ´ uqdxÑ 0,

up to subsequence, which implies that ∇un Ñ ∇u a.e. in Ω.

Thus, proceeding as in proof of the Claim 1, we obtain that pλ, uq P Fi Ă F ,

which concludes the proof of the existence of an unbounded continuum of positive

solutions for pP2q.

In order to finish the proof of later part of the Theorem 0.0.7, let us assume

pf8q and Apx, tq ą a0 in ΩˆR` holds for some a0 ą 0. Assume by contradiction

that ProjRΣ Ă r0, λ˚s for some 0 ă λ˚ ă 8, that is, 0 ď λ ď λ˚ whenever
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pλ, uq P Σ. Hence, by taking R ą 0 and εn “ 1{n (n P N), we obtain by Lemma

3.1.1 that there exists pλn, unq “ pλn,R, un,Rq P Σn X BBRp0, 0q, where Σn is the

unbounded εn-continuum of positive solutions of pPεnq .

We claim that there exists R0 ą 0 such that λn ě λ˚ ` 1 for all n P N

and R ą R0. Otherwise, we can find a sequence Rl Ñ 8 and a subsequence tunlu

satisfying

}unl}8 “ Rl ´ λnl ě Rl ´ λ
˚
´ 1. (3.14)

However, by Lemma 3.1.2 we have }unl}8 ď 1`K2p1, Rlq
1{pp´1qpλ˚`1q1{pp´1q}e1}8,

where K2p1, Rlq “ max
!

fpx,tq
aRl

: x P Ω and 1 ď t ď Rl ` 1
)

with aRl “

min
Ωˆr0,Rγl |Ω|s

A ě a0 by our assumption. Hence, it follows from the hypothesis pf8q

that for each ε ą 0 there exists a positive constant C1
ε such that K2p1, Rlq ď

C1
ε `

ε
a0
Rp´1
l holds for all l P N sufficiently large. As a consequence of these

information, we obtain

}unl}8 ď 1`
´

C1
ε `

ε

a0

Rp´1
l

¯1{pp´1q

pλ˚`1q1{pp´1q
}e1}8 ď C2

ε `C2ε
1{pp´1qRl, (3.15)

for l large enough and for some positive constants C2
ε and C2, where C2 is inde-

pendent of ε.

Let ε ą 0 be such that 1 ´ ε1{pp´1qC2 ą 0. Since Rl Ñ 8, we can take a

l large enough such that Rl ą Cε`λ˚`1
2 {p1´ ε1{pp´1qC2q. Thus, by going back to

(3.15), we obtain for such l that }unl}8 ď C2
ε ` C2ε

1{pp´1qRl ă Rl ´ λ˚ ´ 1 holds,

but this contradicts (3.14).

Therefore, by fixing R ą R0 ą 0 and proceeding as in the proof of the

Claim 1, we obtain that pλn, unq “ pλn,R, un,Rq converges in R ˆ CpΩq to a pair

pλ, uq P Σ X BBRp0, 0q, which implies that λ ě λ˚ ` 1, but this is not possible by

the contrary hypothesis of ProjR`Σ Ă r0, λ˚s. This ends the proof. �
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3.2 W 1,p
loc pΩq-behavior to a parameter for

pp´ 1q-sublinear problems

Let us present some results which are important in itself and are required to

overcome some obstacles on the strategies of Rabinowitz [48] and Figueiredo-Sousa

[29], in order to approach non-autonomous non-local singular problems involving

p-Laplacian operator in the setting of W 1,p
loc pΩq-solutions.

The next Lemma brings out an important parametric behavior of the solu-

tion of pp´ 1q-sublinear problem. This result is crucial in our approach.

Lemma 3.2.1 Assume that pf1q and pf2q are satisfied with c0, c8 ą 0 in Ω and

δ ď β. Then, there exist α0, α8,m1,m2 ą 0 such that any positive solution u P

W 1,p
loc pΩq of

´∆pu “ αfpx, uq in Ω, u|BΩ “ 0, (3.16)

(see definition 0.0.6 with A ” 1) satisfies

ατm1Φ1 ď u ď ατm2e
t
1 in Ω, (3.17)

where t “ mint1, pp´ 1q{pp´ 1´ δqu,

aq τ “ 1{pp´ 1´ δq for all α P p0, α0q and bq τ “ 1{pp´ 1´ βq for all α ą α8.

Proof: Let u P W 1,p
loc pΩq X CpΩq be a solution of (3.16). It follows from pf1q and

pf2q that there exist constants m,M ą 0 such that

m
´

uδχruăas ` u
βχruěas

¯

ď fpx, uq ďM
´

uδ ` uβ
¯

holds for some 0 ă a ă 1 small enough, that is, u P W 1,p
loc pΩqXCpΩq is a subsolution

for

´∆pu “ αM
´

uδ ` uβ
¯

(3.18)
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and a supersolution for

´∆pu “ αm
´

uδχruăas ` u
βχruěas

¯

. (3.19)

Now, we build a positive supersolution for (3.18) and a positive subsolution

for (3.19), as required by Theorem 1.2.2. First, let us define uα “ m2α
τet1, α ą 0,

with t “ mint1, pp´ 1q{pp´ 1´ δqu and τ,m2 ą 0 being constants independent

of α, to be chosen later. Thus, using that 0 ă t ď 1, we have

ż

Ω

|∇uα|p´2∇uα∇ϕdxě
ż

Ω

|∇e|p´2∇e∇
”

ϕpατm2e
t´1tqp´1

ı

dx “

ż

Ω

ϕpατm2e
t´1tqp´1dx

for each 0 ď ϕ P C8c pΩq given.

To verify that uα is a supersolution for (3.18), it is enough to show that

pατm2tq
p´1

ě αM maxt1, }e
tpβ´δq
1 }8u

´

mδ
2α

τδ
`mβ

2α
τβ
¯

(3.20)

holds, for some appropriately chosen τ,m2 ą 0.

To do this, let us fix m2 “ max
!

1,
´

3M maxt1,}e
tpβ´δq
1 }8u

tp´1

¯1{pp´1´βq)

and con-

sider two cases on the size of α. If α ă 1, we obtain that the inequality (3.20)

holds by choosing τ “ 1{pp ´ 1 ´ δq, while for α ě 1 we obtain (3.20) by taking

τ “ 1{pp´ 1´ βq. Therefore, in both the cases uα is a supersolution for (3.18) for

every α ą 0.

Next, we build a subsolution for (3.19) as follows. Setting uα “ ατm1Φ1,

α ą 0, we have that uα will be a subsolution for (3.19) if

pm1α
τ
q
pp´1qλ1Φp´1

1 ď αm
´

mδ
1α

τδΦδ
1χrm1ατφ1ăas `m

β
1α

τβΦβ
1χrm1ατΦ1ěas

¯

(3.21)

is satisfied, for some τ,m1 ą 0 independent of α.

Again, let us consider two cases on α. First, let 0 ă α ă λ1a
p´1´δ{m. By

taking τ “ 1{pp´1´δq andm1 “

´

m{λ1}Φ
1{τ
1 }8

¯τ

“ m1{pp´1´δq{p}Φ1}8λ
1{pp´1´δq
1 q,

the inequality (3.21) holds. On the other hand, for α ě λ1a
p´1´δ{m, let us take

τ “ 1{pp ´ 1 ´ βq and m1 “

´

m{λ1}Φ
1{τ
1 }8

¯τ

“ m1{pp´1´βq{p}Φ1}8λ
1{pp´1´βq
1 q to
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obtain the inequality (3.21) again. Therefore, in both the cases, we have that uα
is a subsolution of (3.19) for each α ą 0 given.

Fix

α0 “ min
!

1,
λ1a

p´1´δ

m

)

and α8 “ max
!

1,
λ1a

p´1´δ

m

)

.

Now, using u as a subsolution of (3.18) and uα “ ατm2e
t
1 as a supersolution of

(3.18), for τ “ 1{pp´ 1´ δq and α ă α0, together with Theorem 1.2.2, we get the

second inequality in the item´aq.

Moreover, using u as a supersolution of (3.19) and uα “ ατm1Φ1 as a

subsolution of (3.19), for τ “ 1{pp ´ 1 ´ δq and α ă α0, together with Corollary

1.2.5, we get the first inequality in item´aq.

Similarly, for α ą α8 and τ “ 1{pp´ 1´ βq, arguing as before we get both

the inequalities in item´bq.

�

As immediate consequence of the proof of the previous Lemma, we have

the following Corollary.

Corollary 3.2.2 Assume that ´8 ă δ ď β ă p´ 1. If there exist M,m ą 0 and

0 ă u, v P W 1,p
loc pΩq X CpΩq such that:

piq the inequality

´∆pu ď αMpuδ ` uβq in Ω and u ď 0 on BΩ (3.22)

holds, then u satisfies the second inequality in (3.17), for some m2 indepen-

dent of α ą 0, where τ is given in the items aq ´ bq of the Lemma 3.2.1. In

particular, if u satisfies ´∆pu ď Lpuδ ` uβq for some L ą 0 and u ď 0 on

BΩ, then }u}8 ď CpLq,

piiq the inequality

´∆pv ě αmpvδχrvăas ` v
βχrvěasq in Ω (3.23)
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holds for some 0 ă a ă 1, then v satisfies the first inequality in (3.17), for

some m1 independent of α ą 0, where τ is given in the items aq ´ bq of the

Lemma 3.2.1.

Proof: It remains only to prove the particular case in item ´iq. Without loss of

generality, we can assume that L ą α8. Thus, by identifying α “ L and M “ 1

in (3.22), it follows from the first part of the proof of the above Lemma that

u ď m2L
1{pp´1´βqet1, wherem2 “ max

!

1,
´

3 maxt1,}e
tpβ´δq
1 }8u

tp´1 u

¯1{pp´1´βq)

. Therefore,

}u}8 ď m2L
1{pp´1´βq}et1}8 :“ CpLq.

�

3.3 Qualitative information of the continuum

In this section, we prove Theorems 0.0.8 and 0.0.9. We also prove an exis-

tence and non-existence result for the degenerate problem (i.e. Apx, 0q “ 0 in Ω)

in Theorem 3.3.2. We begin with Theorem 0.0.8.

Theorem 0.0.8 Assume pA0q and that f satisfies pf1q and pf2q with δ ď β. If

aq γ ą 0 and either tθγ “ p ´ 1 ´ β and pA18qu or tθγ ă p ´ 1 ´ β and pA8q

with a8 ą 0 in Ωu hold, then ProjRΣ “ p0,8q (see Fig. 5),

bq γ ą 0, θγ ě p´ 1´ β and pA8q hold, then ProjRΣ Ă p0, λ˚q for some

0 ă λ˚ ă 8. Furthermore, if

iq a8 ą 0 in Ω and θγ “ p´ 1´ β, then λ “ 0 can not be a bifurcation

point from 8 (see Fig. 6 or 7);

iiq a8 “ 0 in Ω, then λ “ 0 is a bifurcation point from 8 (see Fig. 8);

cq ´1 ă γ ă 0, θγ ě p´ 1´ δ and either pA18q or pA8q with 0 ă a8 hold, then

pP2q does not admit positive solution for λ ą 0 small.



3.3. Qualitative information of the continuum 81

Proof: First, we note that under the hypotheses pA0q and pf2q, we are able

to apply Theorem 0.0.7 to guarantee the existence of an unbounded continuum Σ

of positive W 1,p
loc pΩq X CpΩq-solutions for pP2q.

a) Let us prove just the case tθγ “ p´ 1´ β and pA18qu, because the other one

is similar. Assume by contradiction that Σ is horizontally bounded. Then,

there exists a sequence pλn, unq Ă Σ and 0 ă λ˚ ă 8 such that λn ď λ˚ and

}un}8 Ñ 8. We claim that
ş

Ω
uγndx Ñ 8. Otherwise, it would follow from

pA0q, pf1q and pf2q that

´∆pun ď L
´

uδn ` u
β
n

¯

holds, up to a subsequence, for some L ą 0 independent of n. Using this

information and Corollary 3.2.2´iq, we obtain }un}8 ď CpLq but this con-

tradicts the fact that }un}8 Ñ 8.

Now, for t “ mint1, pp´ 1q{pp´ 1´ δqu, fix m2 P p0, mint1, p
ş

Ω
etγ1 dxq

´1{γuq

and C1 ą 0 such that

λ˚

C1

ď
mp´1´δ

2 tp´1

2 maxt1, }e1}
t|β´δ|
8 u

. (3.24)

First, we note that as a consequence of
ş

Ω
uγndx Ñ 8 and the hypothesis

(A18), for n large we have A
´

x,
ş

Ω
uγndx

¯´

ş

Ω
uγndx

¯θ

ě C1 ą 0 which leads

us to

´∆pun “
λnp

ş

Ω
uγndxq

θfpx, unq

A
´

x,
ş

Ω
uγndx

¯´

ş

Ω
uγndx

¯θ
ď
λ˚

C1

λ̃n

´

uδn ` u
β
n

¯

,

where λ̃n “
´

ş

Ω
uγndx

¯θ

.

Next, let us define un “ m2λ̃
τ
ne
t
1, with τ “ pp ´ 1 ´ βq´1. By proceeding as

in the proof of Lemma 3.2.1´bq and using (3.24), we have

´∆pun ě
λ˚

C1

λ̃n

´

uδn ` u
β
n

¯
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for n sufficiently large.

Therefore, by Theorem 1.2.2 we obtain un ď m2

´

ş

Ω
uγn

¯θτ

et1, which results

in
ż

Ω

uγndx ď
´

ż

Ω

uγndx
¯θτγ

mγ
2

ż

Ω

etγ1 dx.

As θγ “ p´1´β, it follows from the previous inequality that 1 ď mγ
2

ş

Ω
etγ1 dx,

but this is a contradiction by our choice of m2 ă p
ş

Ω
etγ1 dxq

´1{γ.

b) Assume that there exists a sequence pλn, unq of solutions of pP2q such that

λn Ñ 8. We claim that
ş

Ω
uγndx Ñ 8. Otherwise, by the hypotheses pf1q

and pf2q there exist constants C1 ą 0 and 0 ă a ă 1 such that

´∆pun ě C1λn

´

uδnχrunăas ` u
β
nχruněas

¯

(3.25)

holds, up to a subsequence. Thus, we obtain from (3.25) and Corollary

3.2.2´iiq that λτnm1φ1 ď un for some m1 ą 0 independent of n, τ “ pp ´

1 ´ βq´1 and n large enough. Hence, from this we get C ě
ş

Ω
uγndx ě

λτγn
ş

Ω
Φγ

1dxÑ 8, which is a contradiction.

From the above claim and the hypothesis 0 ď a8 ă 8 on Ω, we obtain

A
´

x,

ż

Ω

uγndx
¯´

ż

Ω

uγndx
¯θ

ď C2

for some constant C2 ą 0 and, as a consequence of this, we have

´∆pun ě C3λn

´

ż

Ω

uγndx
¯θ´

uδnχrunăas ` u
β
nχruněas

¯

for some C3 ą 0 independent of n.

Now, by taking m “ C3 and α “ λn

´

ş

Ω
uγndx

¯θ

in (3.23), it follows from

Corollary 3.2.2´iiq that λτn
´

ş

Ω
uγndx

¯τθ

m1Φ1 ď un, for some m1 ą 0 inde-

pendent of n, τ “ pp´ 1´ βq´1 and n sufficiently large. Thus, we conclude

that λγτn ď C4

´

ż

Ω

uγndx
¯1´τθγ

“ C4 for some C4 ą 0, where in the last

equality we used τθγ “ 1. But this is a contradiction, since γτ ą 0 and
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λn Ñ 8.

Below, let us prove the items iq ´ iiq.

iq Assume that there exists a sequence pλn, unq Ă Σ such that λn Ñ 0

and }un}8 Ñ 8. In the same way as proved in the item ´aq above, we

get
ş

Ω
uγndx Ñ 8. Using this fact and the hypothesis a8 ą 0 in Ω, we

obtain

´∆pun ď C1λn

´

ż

Ω

uγndx
¯θ

puδn ` u
β
nq,

which implies that λn

´

ş

Ω
uγndx

¯θ

Ñ 8. If not, we would have

C1λn

´

ş

Ω
uγndx

¯θ

ď C2 for some C2 large, hence by Corollary 3.2.2´iq

we get }un}8 ď CpC2q. However, this is a contradiction because we are

supposing that }un}8 Ñ 8.

Therefore, by taking M “ C1 and α “ λn

´

ş

Ω
uγndx

¯θ

in (3.22) and

applying Corollary 3.2.2´iq, we get un ď m2λ
τ
n

´

ş

Ω
uγndx

¯τθ

et1 for some

m2 independent of n, τ “ pp´ 1´ βq´1 and n large enough, which lead

us to conclude that 1 “
´

ş

Ω
uγndx

¯1´τθγ

ď Cλτγn Ñ 0 by the choice of

θ, which is impossible.

iiq Assume that there exists a sequence pλn, unq Ă Σ such that λn Ñ

λ˚ ą 0 and }un}8 Ñ 8. Then, by the same idea as used to prove

the item ´aq above, we have that
ş

Ω
uγndx Ñ 8. Thus, for a given

ε ą 0, we obtain from the hypothesis a8 ” 0 that 0 ă λ˚{2 ă λn and

A
´

x,
ş

Ω
uγndx

¯´

ş

Ω
uγndx

¯θ

ă ε for all n as large as required. From this

we obtain that ´∆pun ě
λ˚C1

2ε

´

ş

Ω
uγndx

¯θ

puδnχrunďas ` uβnχrunąasq, for

some C1 independent of n and ε ą 0.

Hence, taking m “ C1 and α “ λ˚

2ε

´

ş

Ω
uγndx

¯θ

in (3.23), we get by

the Corollary 3.2.2´iiq that
´

λ˚

2ε

¯τ´
ş

Ω
uγndx

¯θτ

m1Φ1 ď un for some m1

independent of n, τ “ pp´1´βq´1 and n large. As a consequence of this

information and by θγ ě p´1´β, we obtain 1 ě
´

ş

Ω
uγndx

¯1´τγθ

ě C
ετ
,

which is an absurd for ε ą 0 small enough, as C is independent of ε.
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c) Assume that there exists a pair pλn, unq which solves pP q with λn Ñ 0`.

Then
ş

Ω
uγndxÑ 8 must occur, otherwise

´∆pun ď C1λn

´

uδn ` u
β
n

¯

holds, up to subsequence. By taking M “ C1 and α “ λn in (3.22), we

get by Corollary 3.2.2´iq that un ď m2λ
τ
ne
t
1 for some m2 independent of n,

τ “ pp ´ 1 ´ δq´1 and t as defined before. As a consequence of this fact

and ´1 ă γ ă 0, we have C ě
ş

Ω
uγndx ě mγ

2λ
γτ
n

ş

Ω
etγ1 dx Ñ 8, which is

an absurd. Therefore,
ş

Ω
uγndxÑ 8 which implies λn

´

ş

Ω
uγndx

¯θ

Ñ 0, since

θ ă 0.

Hence, by using this information together with the hypothesis on A, we

obtain

´∆pun ď C2λn

´

ż

Ω

uγndx
¯θ

puδn ` u
β
nq

for some C2 independent of n.

Next, by fixing M “ C2 and α “ λn

´

ş

Ω
uγndx

¯θ

in (3.22), we obtain by

Corollary 3.2.2´iq that un ď m2λ
τ
n

´

ş

Ω
uγndx

¯θτ

et1 for τ “ pp ´ 1 ´ δq´1, for

some m2 ą 0 independent of n and for n appropriately large. Therefore,

for the choice of θ, we have C3 ě C3

´

ş

Ω
uγndx

¯1´τθγ

ě λτγn Ñ 8 for some

C3 ą 0, which leads us to a contradiction again.

This ends the proof of Theorem. �

To prove Theorem 0.0.9, let us take advantage of Theorem 0.0.7 to get an

unbounded continuum Σ0 of positive W 1,p
loc pΩq X CpΩq-solutions of

$

&

%

´∆pu “ αfpx, uq in Ω,

u ą 0 in Ω, u “ 0 on BΩ,

with ProjR`Σ0 “ p0,8q. This allows us to define an appropriated map Hλ on Σ0

such that its zeros are connected with the solutions of (7). More precisely, a pair
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pλ, uq P p0,8qˆW 1,p
loc pΩq XCpΩq is a solution of (7) if and only if pα, uq P Σ0 with

α “ λ
”

A
´

ż

Ω

uγdx
¯ı´1

, which is equivalent to the pair pα, uq P Σ0 being a zero of

the map

Hλpα, uq “ α´ λ
”

A
´

ż

Ω

uγdx
¯ı´1

“

´

Ψpα, uq ´ λ
¯”

A
´

ż

Ω

uγdx
¯ı´1

, pα, uq P Σ0,

where Ψpα, uq “ αA
´

ż

Ω

uγdx
¯

.

Now, we prove the next proposition, which assists us to prove a global

existence result for (7).

Proposition 3.3.1 Assume that ´1 ă γ ă 0 and pA0q. If

lim sup
αÑ0`

pα,uqPΣ0

Ψpα, uq “ 8 and lim sup
αÑ8

pα,uqPΣ0

Ψpα, uq “ 8 (3.26)

hold, then there exists a λ˚ ą 0 such that p7q has at least one solution for each

λ P rλ˚,8q and no solution for λ ă λ˚.

Proof: As revealed in the proofs of the Claim 1 and Claim 2 of Theorem 0.0.7,

we have Σ0 Ă F , where F is defined at (3.5). As a consequence, we conclude that

the function Ψ (as above) is well-defined and continuous on Σ0. Let us define

λ˚ “ inftΨpα, uq : pα, uq P Σ0u.

First, we claim that λ˚ ą 0. If not, there exists a sequence tpαn, unqu Ă Σ0

such that αnA
´

ş

Ω
uγndx

¯

Ñ 0, which implies by (3.26) that there are positive

constants C1 and C2 satisfying C1 ď αn ď C2. It follows from this fact and Corol-

lary 3.2.2´iiq that C3Φ1 ď un in Ω, for some positive constant C3 independent

of n, which results in A
´

ş

Ω
uγndx

¯

ě C4 ą 0. As a consequence of this fact and

C1 ď αn ď C2, we have C5 ď αnA
´

ş

Ω
uγndx

¯

for some C5 ą 0, but this contradicts

the fact that αnA
´

ş

Ω
uγndx

¯

Ñ 0.

Next, let us set λ ą λ˚. By definition of λ˚, we can find a pair pα˚, u˚q P Σ0

satisfying λ˚ ă Ψpα˚, u˚q ă λ. On the other hand, it follows from (3.26) that there
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exists pα˚˚, u˚˚q P Σ0 such that Ψpα˚˚, u˚˚q ą λ. In particular, we have proven

that Hλpα
˚, u˚q ă 0 and Hλpα

˚˚, u˚˚q ą 0. Thus, by Theorem A.1.8 we get the

existence of at least one zero of Hλ in Σ0.

Now, we prove that (7) admits at least one solution to λ “ λ˚. For this,

it is enough to show that there is a pair pα, uq P Σ0 such that Ψpα, uq “ λ˚.

However, by the definition of λ˚, we can find a sequence pαn, unq Ă Σ0 satisfying

Ψpαn, unq Ñ λ˚. Using the hypothesis (3.26), we again conclude that C1 ď αn ď

C2, up to subsequence, for some positive constants C1 and C2. Thus, following the

same argumentation of the proof of the Theorem 0.0.7, we obtain that pαn, unq Ñ

pα, uq P Σ0 in RˆCpΩq. As Ψ is a continuous application in Σ0, we get Ψpα, uq “ λ˚

as we wanted.

Finally, the non-existence of solutions to λ ă λ˚ is a consequence of the

definition of λ˚. This ends the proof.

�

Through the previous proposition, we are able to prove the Theorem 0.0.9.

Proof of Theorem 0.0.9-Completion: It suffices to verify the hypotheses

at (3.26) and apply the above Proposition. To begin with, we prove the first

limit at (3.26). We recall that by Lemma 3.2.1´aq, the inequality u ď ατm2e
t
1

holds true whenever pα, uq P Σ0 with α ă α0, for some m2 ą 0 independent of α,

τ “ 1{pp´ 1´ δq and t “ pp´ 1q{pp´ 1´ δq. By using this inequality and γ ă 0,

we get

lim sup
αÑ0`

pα,uqPΣ0

ż

Ω

uγ “ 8. (3.27)

Thus, as either pA18q or pA8q with 0 ă a8 holds, it follows from (3.27) that

Ψpα, uq “ αA
´

ż

Ω

uγdx
¯

ě C1α
´

ż

Ω

uγdx
¯´θ

ě Cα1´τθγ



3.3. Qualitative information of the continuum 87

for α small. Since θγ ą p´ 1´ δ, we get

lim sup
αÑ0`

pα,uqPΣ0

Ψpα, uq “ 8.

Now, let us prove the second limit at (3.26). By Lemma 3.2.1´bq, we know

that ατm1Φ1 ď u for some m1 ą 0 independent of α and for τ “ 1{pp ´ 1 ´ βq,

whenever pα, uq P Σ0 with α ą α8. As a result, since γ ă 0, we have

lim sup
αÑ8

pα,uqPΣ0

ż

Ω

uγ “ 0. (3.28)

Therefore, by continuity and positivity of A at t “ 0 and (3.28), we obtain

lim sup
αÑ8

pα,uqPΣ0

Ψpα, uq “ 8.

This ends the proof. �

Again, let us be benefited by our tools and follow the strategy of [29] to

approach the problem pP2q for the degenerate case, that is, when Apx, 0q “ 0.

This procedure allows us to complement the results in [29] both to p-Laplacian

operator, with 1 ă p ă 8, and strongly-singular non-linearities.

Theorem 3.3.2 (Degenerate case: A(x, 0) = 0) Assume that γ ą 0 and f

satisfies pf1q, pf2q with δ ď β. If A P CpΩˆ r0,8q, r0,8qq with Apx, 0q “ 0 in Ω,

θγ “ p´ 1´ β and:

aq pA18q holds, then pP2q has at least one solution for each λ ą 0.

bq pA8q holds with 0 ă a8 in Ω, then pP2q has at least one solution for λ small

and no solution for λ large.
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Proof: For each n P N, consider

pP1{nq

$

’

&

’

%

´An

´

x,

ż

Ω

uγdx
¯

∆pu “ λfpx, uq in Ω,

u ą 0 in Ω, u “ 0 on BΩ,

where Anpx, tq “ Apx, tq ` 1{n. Since lim
tÑ8

Anpx, tqt
θ
“ 8, with θγ “ p ´ 1 ´ β, it

follows from the item aq of Theorem 0.0.8 that pP1{nq has at least one solution for

each λ ą 0. Thus, given a λ ą 0, denote by un one such solution of pP1{nq. From

this, let us prove the items aq and bq above.

a) The proof of this item is a consequence of the following claims:

iq

ż

Ω

uγndxÛ 0 and iiq

ż

Ω

uγndxÛ 8. (3.29)

Let us prove the first claim in (3.29). Suppose by contradiction, that
ş

Ω
uγndxÑ

0. Since Apx, 0q “ 0 and A is a continuous function, for given C ą 0 suf-

ficiently large there exists n0 P N such that An
´

x,
ş

Ω
uγndx

¯

ă 1{C for all

n ą n0. Thus, we get ´∆pun ě λCfpx, unq, which implies by Corollary

3.2.2´iiq that un ě pλCqτm1Φ1 for n large, where τ “ pp´ 1´βq´1. Hence,

from this inequality we get 0 ă pλCqτγmγ
1

ş

Ω
Φγ

1dx ď
ş

Ω
uγndx Ñ 0, which is

an absurd.

Now we will prove the second claim in (3.29). Again, suppose by contradic-

tion that
ş

Ω
uγndx Ñ 8. From (A18), for each C ą 0 large enough , we have

A
´

x,
ş

Ω
uγndx

¯´

ş

Ω
uγndx

¯θ

ą C for all n big enough. In this case, we obtain

´∆pun ď
λ
C

´

ş

Ω
uγndx

¯θ

fpx, unq, which by the Corollary 3.2.2´iq and simple

calculations implies

´

ż

Ω

uγndx
¯1´τθγ

ď

´ λ

C

¯τ

mγ
2 , (3.30)

where τ “ pp´1´βq´1. As θγ “ p´1´β and C ą 0 was taken large enough,

the inequality (3.30) results into 1 ď
´

λ
C

¯τ

mτ
2 ă 1. This is an absurd and

from this the Claim in iiq is proved.
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Observe that from claims in iq ´ iiq, we get 0 ă C1 ď
ş

Ω
uγndx ď C2, for

some positive constants C1 and C2. Thus, proceeding as in the proof of the

Claim 2 in Theorem 0.0.7, we can show that un converge inW 1,p
loc pΩq for some

u P W 1,p
loc pΩq X CpΩq, which is a solution of pP2q. It concludes the proof of

item´aq.

b) As in the item´aq, the proof here follows from the following assertions:

iq

ż

Ω

uγndxÛ 0 and iiq

ż

Ω

uγndxÛ 8, for each λ ą 0 small. (3.31)

The proof of the first Claim in (3.31) is the same as in item´aq.

Let us prove iiq. As a8 ą 0 in Ω, defining C “ pinfΩ a8q{2, there exists

t0 ą 0 such that Apx, tqtθ ě C ą 0 for all t ą t0. Thus, if we suppose that
ş

Ω
uγndx Ñ 8, we obtain ´∆pun ď

λ
C

´

ş

Ω
uγndx

¯θ

fpx, unq, which again by

Corollary 3.2.2´iq implies in un ď
´

λ
C

¯τ´
ş

Ω
uγndx

¯θτ

m2e
t
1 for some m2 ą 0,

τ “ pp ´ 1 ´ βq´1, t “ pp ´ 1q{pp ´ 1 ´ δq and n appropriately large. As

a consequence of this, we obtain
´

ş

Ω
uγndx

¯1´θγτ

ď

´

λ
C

¯γτ

mγ
2

ş

Ω
etγ1 dx. Since

θγ “ p ´ 1 ´ β, we get by the last inequality that 1 ď
´

λ
C

¯γτ

mγ
2

ş

Ω
etγ1 dx.

However this is a contradiction for λ ă C
´

mγ
2

ş

Ω
etγ1 dx

¯´1{γτ

“ λ˚. Therefore,
ş

Ω
uγndxÛ 8 for 0 ă λ ă λ˚.

From iq ´ iiq, by the same argument as in item´aq we conclude that pP2q

admits at least one positive solutions for 0 ă λ ă λ˚. To justify that pP2q

does not have solution for λ large, just follow the same argument as in item

b) of Theorem 0.0.8, using θγ “ p´ 1´ β.

This proves the Theorem.

�



3.4. A strongly-singular non-autonomous Kirchhoff problem 90

3.4 A strongly-singular non-autonomous

Kirchhoff problem

In this section, we prove Theorem 0.0.10 which deals with a non-autonomous

Kirchhoff problem, defined in pQ1q, with strongly-singular nonlinearity.

The proof of Theorem 0.0.10 follows the same steps of Theorem 0.0.7 with

small adaptations. Recall that in the proof of Lemma 3.1.2 we used that }uε}γ ď C

for some C independent of ε, where pλε, uεq is a solution of perturbed problem pPεq

and belongs to the boundary of an open bounded set containing p0, 0q. Here, due

to the presence of }∇u}p in the Kirchhoff term, we need a similar estimate on

}∇uε}p, which is crucial in our argument. To avoid repetition, we present a sketch

of each step while giving attention to the notable points. Corresponding to pQ1q,

we introduce the following perturbed problem

pQεq

$

&

%

´M
´

x, }∇u}pp
¯

∆pu “ λfpx, u` εq in Ω,

u ą 0 in Ω, u “ 0 on BΩ.

About pQεq, we have the following result.

Lemma 3.4.1 Suppose that γ ą 0 and M satisfies pM0q. Then, for each ε ą 0

there exists an unbounded ε-continuum Σε Ă R` ˆ CpΩq of positive solutions of

pQεq emanating from p0, 0q.

Proof: Consider for each λ,R ą 0 and v P CpΩq, the auxiliary problem

$

&

%

´Mpx,Rq∆pu “ λfpx, |v| ` εq in Ω,

u ą 0 in Ω, u “ 0 on BΩ.
(3.32)

As Mpx, tq “ apxq ` bpxqtγ with apxq ě a ą 0 and f is continuous, (3.32) admits

a unique solution uR P C1,αpΩq XW 1,p
0 pΩq, for some α P p0, 1q. Thus

ż

Ω

|∇uR|pdx “
ż

Ω

λfpx, |v| ` εquR
Mpx,Rq

dx.
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Define h : R` Ñ R` by hpRq “

ż

Ω

λfpx, |v| ` εquR
Mpx,Rq

dx. Note that h is

continuous and hp0q ą 0. Moreover, observe that h is non-increasing. Indeed, if

R1 ă R2 then

´∆puR2 “
λfpx, |v| ` εq

Mpx,R2q
ď
λfpx, |v| ` εq

Mpx,R1q
“ ´∆puR1 .

Also, as uR1 |BΩ “ uR2 |BΩ, from classical comparison principle, we have uR2 ď uR1

and as a consequence we conclude that hpR2q ď hpR1q. Thus, there exists a unique

solution (say R̃) of hpRq “ R, that is,

R̃ “

ż

Ω

λfpx, |v| ` εquR̃
Mpx, R̃q

dx “

ż

Ω

|∇uR̃|
pdx.

Hence, uR̃ is a solution of

$

&

%

´M
´

x, }∇u}ppq∆pu “ λfpx, |v| ` εq in Ω,

u ą 0 in Ω, u “ 0 on BΩ.
(3.33)

We claim that (3.33) has a unique solution. In fact, suppose that u ‰ w P

W 1,p
0 pΩq are two solutions of (3.33). If

ş

Ω
|∇u|pdx “

ş

Ω
|∇w|pdx, then u “ w in

Ω. On the other hand, if R1 “
ş

Ω
|∇u|pdx ă

ş

Ω
|∇w|pdx “ R2, we have uR2 ď uR1

and as a consequence

R2 “

ż

Ω

|∇w|pdx “
ż

Ω

fpx, |v| ` εquR2

Mpx,R2q
dx ď

ż

Ω

fpx, |v| ` εquR1

Mpx,R1q
dx “

ż

Ω

|∇u|pdx “ R1.

Therefore, in any case we get a contradiction, which proves that (3.33) has only

one solution. Now, we consider the operator T : R` ˆ CpΩq Ñ CpΩq which

associates each pair pλ, vq P R` ˆ CpΩq to the only solution of (3.33). Since

Mpx, tq ě a ą 0 P Ω, the rest of the proof follows from Lemma 3.1.1, in a similar

way.

�

In order to study the limit behavior of the components Σε, we prove the
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following Lemma.

Lemma 3.4.2 Suppose pf2q, pM0q and pΓ0q holds. Let U Ă RˆCpΩq be a bounded

open set containing p0, 0q and pλε, uεq be a solution of pQεq such that pλε, uεq P

ΣεX

´

p0,8qˆW 1,p
0 pΩqq

¯

XBU . Then, for some positive constant CpUq, independent

of ε, we have }∇uε}p ď CpUq.

Proof: Consider pλε, uεq P Σε X BU , then λε ď K, }uε}8 ď K for some positive

constant K depending only on U . Taking uε as a test function in pQεq and using

pf2q we get

}∇uε}pp ď C1λε

´

ż

Ω

puε ` εq
δ`1dx` 1

¯

. (3.34)

If δ ě ´1, then by (3.34) the required boundedness follows trivially from the fact

that λε ď K, }uε}8 ď K. Now, suppose that δ P
´

´
2p´1
p´1

,´1
¯

. As }uε}8 ď K, by

the continuity of f we can find a C2 ą 0 independent of ε such that fpuε ` εq ě

C2puε ` εq
δ. Thus, uε ` ε is a supersolution of

´∆pu “
λεC2u

δ

max
Ω

a`max
Ω

b}∇uε}γpp
. (3.35)

On the other hand, take u “ sΦ
p

p´1´δ

1 , where s ą 0 will be fixed later, then a simple

calculation shows that

´∆pu “

´ sp

p´ 1´ δ

¯p´1

Φ
δp

p´1´δ

1

”

p´δ ´ 1qpp´ 1q

p´ 1´ δ
|∇Φ1|

p
` λ1Φp

1

ı

ď C3

´ sp

p´ 1´ δ

¯p´1

Φ
δp

p´1´δ

1 “ C3s
p´1´δ

´ p

p´ 1´ δ

¯p´1

uδ,

where C3 “ max
Ω

”

p´δ ´ 1qpp´ 1q

p´ 1´ δ
|∇Φ1|

p
` λ1Φp

1

ı

. Therefore, if we choose

s “ C4

´ λε
max

Ω
a`max

Ω
b}∇uε}γpp

¯
1

p´1´δ
,

where C4 “

”

C2pp´1´δqp´1

C3pp´1

ı
1

p´1´δ
, then u is a subsolution of (3.35) and by the The-
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orem 1.2.2 we get

uε ` ε ě C4

´ λε
max

Ω
a`max

Ω
b}∇uε}γpp

¯
1

p´1´δ
Φ

p
p´1´δ

1 . (3.36)

Now, coming back to (3.34) and using (3.36) together with δ P
´

´
2p´1
p´1

,´1
¯

, we

obtain

}∇uε}pp ď C5

´

1` }∇uε}
´
γppδ`1q
p´1´δ

p

¯

.

Since γ ă p´1´δ
´1´δ

, it follows from the last inequality that }∇uε}p ď CpUq, where

CpUq is independent of ε.

�

In the light of above result, we prove the following Lemma, similar to

Lemma 3.1.2. We highlight only the principal points in the proof.

Lemma 3.4.3 Admit that f , M and γ satisfy pf2q, pM0q and pΓ0q, respectively.

Let U Ă R ˆ CpΩq be a bounded open set containing p0, 0q and a pair pλε, uεq P

Σε X

´

p0,8q ˆ pCpΩq X W 1,p
0 pΩqq

¯

X BU be a solution of pQεq satisfying λε ď

K, }uε}8 ď K. Then, there are positive constants K1 “ K1pK,Uq, K2 “ K2pk,Kq

and ε0 ą 0 such that

λ
1
p´1
ε K1pK,UqΦ1 ď uε ď k ` λ

1
p´1
ε K2pk,Kq

1
p´1 e1 in Ω (3.37)

for each k P p0, Ks fixed and for all 0 ă ε ă ε0.

Proof: Define K2pk,Kq “ max
!

fpx,tq
a

x P Ω : k ď t ď K ` 1
)

, where k P p0, Ks.

For this constant, a second inequality in (3.37) holds.

To obtain the first inequality, we must proceed as in the proof of the first

inequality in Lemma 3.1.2. To get the constant K1pK,Uq, in (3.4) we choose

A1U :“ maxtMpx, tq : x P Ω and 0 ď t ď CpUqpu instead of AK , where CpUq is

given in the Lemma 3.4.2.

�
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Now we are ready to prove the Theorem 0.0.10.

Theorem 0.0.10 Assume that pf2q, pM0q and pΓ0q hold. Then there exists an

unbounded continuum Σ Ă R` ˆ CpΩq of solutions of pQ1q which emanates from

p0, 0q. Furthermore, if pf8q holds then ProjR`Σ “ p0,8q. Moreover, if γ ă 1

then Σ is unbounded vertically as well.

Proof: Suppose that εn Ñ 0` and denote by Σn Ă R` ˆCpΩq the compo-

nent associated with the problem pQεnq. Let U Ă RˆCpΩq be an open neighbor-

hood of p0, 0q. As Σn is unbounded, there exists pλn, unq P ΣnXBU andK ą 0 such

that λn ď K, }un}8 ď K. Moreover, from Lemma 3.4.2 we can assume, without

loss of generality, that }∇un}pp ď K and from Lemma 3.4.3 that λn Ñ λ ą 0`, up

to a subsequence. As a consequence, for δ1 ą 0 small there exists n0 P N such that

0 ă λ ´ δ1 ă λn ă λ ` δ1 for all n ě n0, which implies again by the Lemma 3.4.3

that

pλ´ δ1q1{pp´1qK1pK,UqΦ1 ď un ď k`pλ` δ1q1{pp´1qK2pk,Kq
1{pp´1qe1 in Ω, (3.38)

for each k P p0, Ks.

From Lemma 3.4.2, tunu being bounded in W 1,p
0 pΩq, there exists u “ uλ P

W 1,p
0 pΩq such that un á u in W 1,p

0 pΩq weakly. Proceeding as in the proof of

Theorem 0.0.7, we conclude by (3.38) that u satisfies

ż

Ω

|∇u|p´2∇u∇ϕdx “ λ

ż

Ω

fpx, uq

Mpx, }∇u}ppq
ϕdx, for all ϕ P C8c pΩq. (3.39)

Let us prove that (3.39) holds also for ϕ P W 1,p
0 pΩq. For this, take ϕ P W 1,p

0 pΩq.

Then, by the density results, there exists a sequence tϕnu P C8c pΩq such that ϕn Ñ

ϕ in W 1,p
0 pΩq. Now, for each ε ą 0 the function φ “

a

ε2 ` |ϕn ´ ϕk|2` ε P C
1
c pΩq

and hence taking φ as a test function in (3.39), we obtain

λ

ż

Ω

fpx, uq

Mpx, }∇u}ppq

´

a

ε2 ` |ϕn ´ ϕk|2 ´ ε
¯

dx “

ż

Ω

|∇u|p´2∇u |ϕn ´ ϕk|∇pϕn ´ ϕkqa

ε2 ` |ϕn ´ ϕk|2
dx
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ď

ż

Ω

|∇u|p´1
|∇pϕn ´ ϕkq|dx

ď C}∇u}p´1
p }∇pϕn ´ ϕkq}p.

Applying the Fatou’s Lemma, we obtain by the previous inequality

λ

ż

Ω

fpx, uq

Mpx, }∇u}ppq
|ϕn ´ ϕk|dx ď lim inf

εÑ0`
λ

ż

Ω

fpx, uq

Mpx, }∇u}ppq

´

a

ε2 ` |ϕn ´ ϕk|2 ´ ε
¯

dx

ď C}∇u}p´1
p }∇pϕn ´ ϕkq}p.

Letting n, k Ñ 8 in the previous inequality we obtain

λ

ż

Ω

fpx, uq

Mpx, }∇u}ppq
|ϕn ´ ϕk|dxÑ 0.

Thus, we have

ż

Ω

fpx, uq

Mpx, }∇u}ppq
ϕndxÝÑλ

ż

Ω

fpx, uq

Mpx, }∇u}ppq
ϕdx as nÑ 8. (3.40)

By the classical density arguments, we also have

ż

Ω

|∇u|p´2∇u∇ϕndxÝÑ
ż

Ω

|∇u|p´2∇u∇ϕdx as nÑ 8. (3.41)

Therefore, joining (3.40) and (3.41) we obtain that u P W 1,p
0 pΩqXCpΩq is solution

of pQq and satisfies (3.38).

Now, if we consider F as in the proof of Theorem 0.0.7, then in a similar

way we can show that closed and bounded (in RˆCpΩqq subsets of F are compacts

and this ends the proof of existence of the unbounded continuum Σ.

The proof of ProjR`Σ “ p0,8q if pf8q holds, is the same as done in the

proof of Theorem 0.0.7.

Now, suppose that there exists a constant C ą 0, independent of λ and u,

such that }u}8 ď C whenever pλ, uq P Σ. Then, let us take pλ, uq P Σ with λ ą 1.

So u satisfies

´∆pu ě
λC1

max
Ω

apxq `max
Ω

bpxq}∇u}pγp
uδ.
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Besides this, for ε ą 0 small u “
´

ελ

max
Ω

apxq `max
Ω

bpxq}∇u}pγp

¯1{pp´1´δq

Φ
p

p´1´δ

1

satisfies

´∆pu ď
λC1

max
Ω

apxq `max
Ω

bpxq}∇u}pγp
uδ,

and so we get by Theorem 1.2.2 that u ě u. Taking u as a test function in pQq

and using λ ą 1, u ě u and }u}8 ď C, we obtain that

$

’

&

’

%

ż

Ω

|∇u|pdx ď C1λ if δ ě ´1
ż

Ω

|∇u|pdx ď Cλ
p

p´1´δ p}∇u}
pp´δ´1qγ
p´1´δ

p ` 1q if ´
2p´ 1

p´ 1
ă δ ă ´1.

(3.42)

Without loss of generality, let us assume that }∇u}p ą 1, otherwise we would get

C ě u ě u ě
´ ελ

max
Ω

apxq `max
Ω

bpxq

¯1{pp´1´δq

Φ
p

p´1´δ

1 for all λ ą 0.

Then, coming back to (3.42) and using }∇u}p ą 1, we obtain for ´2p´1
p´1

ă δ ă ´1

that }∇u}p ď Cλ
1

p`pδ`1qpγ´1q . Thus, as u ě u we have

u ě C
´ λ

1` λ
pγ

p`pδ`1qpγ´1q

¯1{pp´1´δq

Φ
p

p´1´δ

1 . (3.43)

Also, when δ ě ´1, by (3.42) we get

u ě C
´ λ

1` λγ

¯1{pp´1´δq

Φ
p

p´1´δ

1 . (3.44)

Then, from (3.43) and (3.44) with γ ă 1, it follows that }u}8Ñ8 as λ Ñ 8,

contradicting the fact that }u}8 ď C. �



CHAPTER 4

THREE SOLUTIONS TO A STRONGLY-SINGULAR

QUASILINEAR KIRCHHOFF PROBLEM

4.1 Orlicz–Sobolev setting

In order to study the problem pQλ,µq, let us introduce the functional spaces

where it will be discussed. We will give just a brief review of some basic concepts

and facts of the theory of Orlicz and Orlicz-Sobolev spaces, useful for what follows.

For more information about this issue, we refer [1], [34], [37] and [49].

4.1.1 Orlicz spaces

Definition 4.1.1 We say that Φ : R Ñ r0,8q is an N-function (or Young func-

tion), if Φptq “

ż |t|

0

φpsqds where φ : r0,8q Ñ r0,8q has the following properties:

iq φp0q “ 0;

iiq φpsq ą 0 for s ą 0;

iiiq φ is right-continuous to any s ě 0, that is, lim
tÑs`

φptq “ φpsq;

ivq φ is nondecreasing in r0,8q;

vq lim
sÑ8

φpsq “ 8.

97
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Example 4.1.2 Examples of N-functions:

• Φ1ptq “ |t|
p{p, p P p1,8q;

• Φ2ptq “ et
2
´ 1;

• Φ3ptq “ p1` |t|qlnp1` |t|q ´ |t|.

Definition 4.1.3 (Complementary N-function) Let Φ be a N-function. Then

Φ̃ptq :“ sup
sě0
tst´ Φpsqu

is called the complementary N-function of Φ.

We list some useful properties of the Young functions below.

Proposition 4.1.4 Let Φ be a N-function and Φ̃ the complementary N-function

of Φ. The following statements are true:

iq Φptq ă tφptq for all t ą 0;

iiq Φ̃pφptqq ď Φp2tq;

iiiq (Young inequality) ts ď Φptq ` Φ̃psq, for all t, s P R.

Now, let us introduce the class of N-functions appropriate for the proposed

study. Consider a : p0,8q Ñ p0,8q, with a P C1p0,8q, such that φ : R Ñ R

defined by

φptq “

$

’

&

’

%

ap|t|qt if t ‰ 0

0 if t “ 0

is an increasing homeomorphism from R onto itself, with inverse denoted by φ´1 :

RÑ R. From φ, we can define

Φptq “

ż |t|

0

φpsqds.
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In this case, the N-function represented by φ´1, that is,

Φ̃ptq “

ż |t|

0

φ´1
psqds,

is the Young functions complementary to Φ.

Throughout this chapter, we assume the following condition on Φ

pφ1q: 0 ă a´ :“ inf
tą0

tφ1ptq

φptq
ď sup

tą0

tφ1ptq

φptq
:“ a` ă 8.

and denote φ´ “ a´ ` 1 and φ` “ a` ` 1.

The Orlicz class defined by the N-function Φ is the set

LΦ
pΩq :“

!

u : Ω Ñ R :

ż

Ω

Φp|upxq|qdx ă 8
)

and the Orlicz space LΦpΩq is then defined as the linear hull of the set LΦpΩq.

However, under the condition pφ1q, the Orlicz space LΦpΩq coincides with the

Orlicz class LΦpΩq.

The space LΦpΩq endowed with the Luxemburg norm, defined by

}u}Φ :“ inf
!

α ą 0 :

ż

Ω

Φ
´

|upxq|

α

¯

dx ď 1
)

,

is a Banach space and since pφ1q is satisfied, LΦpΩq is also reflexive and separable

space. Moreover, if u P LΦpΩq and v P LΦ̃pΩq, then

ż

Ω

uvdx ď 2}u}Φ}v}Φ̃ (Hölder inequality)

The next proposition gives us an alternative way to verify convergence in

LΦpΩq.

Proposition 4.1.5 Let Φ be a N-function satisfying pφ1q. Then, un Ñ u in LΦpΩq

if and only if
ż

Ω

Φp|unpxq ´ upxq|qdxÑ 0.

Proposition 4.1.6 Let Ω Ă RN be a bounded domain, Φ a N-function satisfying
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pφ1q and punq Ă LΦpΩq such that un Ñ u in LΦpΩq. Then there exists a subsequence

punkq and a function h P LΦpΩq satisfying:

• unkpxq Ñ upxq a.e in Ω;

• |unkpxq| ď hpxq a.e in Ω.

The inclusion between Orlicz spaces are generalized in following way.

Definition 4.1.7 Let Φ1 and Φ2 be N-functions. We say that Φ1 dominates Φ2,

and write Φ2 ă Φ1, if there exists positive constants α and t0 such that Φ2ptq ď

Φ1pαtq, for all t ě t0. We say that Φ2 increases essentially more slowly than Φ1

pΦ2 ăă Φ1q, if limtÑ8
Φ2pαtq
Φ1ptq

“ 0 for all α ą 0.

Proposition 4.1.8 Let Ω Ă RN a bounded domain, Φ1 and Φ2 be N-functions.

Then LΦ1pΩq ãÑ LΦ2pΩq if, and only if, Φ2 ă Φ1.

4.1.2 Orlicz-Sobolev spaces

We denote byW 1,ΦpΩq the Orlicz-Sobolev space corresponding to Φ defined

by

W 1,Φ
pΩq “

!

u P LΦ
pΩq : uxi P L

Φ
pΩq, i “ 1, ¨ ¨ ¨ , N

)

.

This is a Banach spaces with respect to the norm

}u}1,Φ “ }u}Φ ` }∇u}Φ

and again, since we are assuming pφ1q, the Orlicz-Sobolev space W 1,ΦpΩq is

reflexive and separable.

Denote by W 1,Φ
0 pΩq the closure of C8c pΩq in W 1,ΦpΩq, that is, W 1,Φ

0 pΩq “

C8c pΩq
}¨}1,Φ

.

Proposition 4.1.9 (Poincaré Inequality) Suppose Ω Ă RN is a bounded domain

with smooth boundary BΩ. Then, there exists a positive constant S such that

}u}Φ ď S}∇u}Φ, @u P W 1,Φ
0 pΩq.
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By Proposition 4.1.9, we know that }u}1,Φ and }∇u}Φ are equivalent norms

on W 1,Φ
0 pΩq. We will use }∇u}Φ to replace }u}1,Φ in the following discussions.

Now, let us introduce the Orlicz-Sobolev conjugate Φ˚ of Φ, whose inverse

is given by

Φ´1
˚ ptq :“

ż t

0

Φ´1psq

s
N`1
N

ds, for t ą 0,

where we are supposing that

ż 1

0

Φ´1psq

s
N`1
N

ds ă 8 and
ż 8

1

Φ´1psq

s
N`1
N

ds “ `8. (4.1)

In the case Φptq “ |t|{p, (4.1) holds if and only if N ą p.

Proposition 4.1.10 Let Ω Ă RN be a bounded and smooth domain and Φ a N-

function satisfying (4.1) and pφ1q. Then

• W 1,ΦpΩq
cont
ãÑ LΦ˚pΩq;

• W 1,ΦpΩq
comp

ãÑ LΨpΩq whenever Ψ ăă Φ˚;

• W 1,φ`pΩq ãÑ W 1,ΦpΩq ãÑ W 1,φ´pΩq.

4.1.3 Consequences of condition pφ1q

We reserve this section to present some essential consequences of the hy-

pothesis pφ1q. Throughout this section, let us denote φ´ “ a´`1 and φ` “ a``1.

Lemma 4.1.11 Suppose that Φ is a N-function satisfying pφ1q, with complemen-

tary N-function given by Φ̃. Then

iq minttφ´ , tφ`uΦpsq ď Φptsq ď maxttφ´ , tφ`uΦpsq, @s, t ą 0;

iiq mint}u}
φ´
Φ , }u}

φ`
Φ u ď

ş

Ω
Φpuqdx ď maxt}u}

φ´
Φ , }u}

φ`
Φ u, @u P L

ΦpΩq;

iiiq mint}∇u}φ´Φ , }∇u}φ`Φ u ď
ş

Ω
Φp|∇u|qdx ď maxt}∇u}φ´Φ , }∇u}φ`Φ u, @u PW

1,Φ
0 pΩq;

ivq mintt
φ´
φ´´1 , t

φ`
φ`´1 uΦ̃psq ď Φ̃ptsq ď maxtt

φ´
φ´´1 , t

φ`
φ`´1 uΦ̃psq, @s, t ą 0;
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vq mint}u}

φ´
φ´´1

Φ̃
, }u}

φ`
φ`´1

Φ̃
u ď

ş

Ω
Φ̃puqdx ď maxt}u}

φ´
φ´´1

Φ̃
, }u}

φ`
φ`´1

Φ̃
u, @u P LΦ̃pΩq.

As a consequence of item´iq of the Lemma above, we have the following result.

Lemma 4.1.12 Let Φ be a N-function satisfying pφ1q. Then, there exists C ą 0

such that

Φps` tq ď C
´

Φpsq ` Φptq
¯

, for all s, t ą 0.

Lemma 4.1.13 If Φ is a N-function satisfying pφ1q, then:

iq a´ ´ 1 “ inf
tą0

ta1ptq

aptq
ď sup

tą0

ta1ptq

aptq
“ a` ´ 1 ă 8;

iiq mintta´´1, ta`´1uapsq ď apstq ď maxtta´´1, ta`´1uapsq, for all s, t ą 0.

It is well known that the Sobolev spacesW 1,p
0 pΩq p1 ă p ă 8q are uniformly

convex, so

“if un á u in W 1,p
0 pΩq and

ż

Ω

|∇un|pdxÑ
ż

Ω

|∇u|pdx, then un Ñ u in W 1,p
0 pΩq.”

(4.2)

Next, we show that if Φ satisfies pφ1q, then property (4.2) remains valid. Before

presenting this result, we need to introduce the following concepts.

Definition 4.1.14 A N-function Φ is said to be uniformly convex, if for every

ε ą 0, there exists δ ą 0 such that

|s´ t| ď εmaxts, tu or Φ
´ˇ

ˇ

ˇ

s` t

2

ˇ

ˇ

ˇ

¯

ď p1´ δq
Φpsq ` Φptq

2
,

for all s, t ě 0.

An alternative way to verify that an N-function is uniformly convex, is given

by the following proposition, which is proved in Proposition 6, page 284 in [49].

Proposition 4.1.15 Let Φ be a N-function. Then Φ is uniformly convex if, and

only if, for each ε ą 0, there exists constants Kε ą 1 and spεq ą 0 such that

Φ1pp1` εqsq ě KεΦ
1
pxsq, for all s ě spεq.



4.1. Orlicz–Sobolev setting 103

Lemma 4.1.16 If Φ is a N-function satisfying pφ1q, then Φ is uniformly convex.

Proof: Given ε ą 0, by Lemma 4.1.13 we have

Φ1pp1` εqsq

Φ1psq
“
φpp1` εqsq

φpsq
“
app1` εqsqp1` εqs

apsqs
ě p1` εqa´ ą 1, for all s ą 0,

so the result follows directly from the above proposition. �

Proposition 4.1.17 Let Φ be a N-function satisfying pφ1q. If un á u in W 1,Φ
0 pΩq

and
ş

Ω
Φp|∇un|qdxÑ

ş

Ω
Φp|∇u|qdx, then un Ñ u in W 1,Φ

0 pΩq.

Proof: By using the hypothesis pφ1q, we obtain from the lemma above that Φ

is uniformly convex. Thus, the result follows from Theorem 2.4.11 and Lemma

2.4.17 in [25]. �

Finally, let us introduce the functional P : W 1,Φ
0 pΩq Ñ R defined by

Ppuq “
ż

Ω

Φp|∇u|qdx. (4.3)

The next Lemma lists some properties of P .

Lemma 4.1.18 Suppose Φ satisfies pφ0q and pφ1q, then the following statements

are true:

iq P P C1pW 1,Φ
0 pΩq,Rq and

xP 1puq, ϕy “
ż

Ω

ap|∇u|q∇u∇ϕdx for all ϕ P W 1,Φ
0 pΩq;

iiq P is sequentially weakly lower semicontinuous, that is, if un á u in W 1,Φ
0 pΩq

then lim
nÑ8

inf Ppunq ě Ppuq;

iiiq P 1 is strictly monotone, i.e,

xP 1puq ´ P 1pvq, u´ vy ą 0, @ u, v P W 1,Φ
0 pΩq, u ‰ v;
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ivq P 1 is of type pS`q, that is,

“ if un á u and lim
nÑ8

supxP 1punq, un ´ uy ď 0, then un Ñ u in W 1,Φ
0 pΩq”.

4.2 Preliminary results in the setting of

non-smooth analysis in Orlicz Sobolev spaces

In this section, we present some preliminary results which will assist us in

the proof of the main result of this chapter.

We start by presenting some concepts and facts of non-smooth analysis

that will be important for what follows. For more information on this subject, we

request the reader to refer [55].

LetW 1,Φ
0 pΩq be the Orlicz-Sobolev space associated to Φ and Ψ2 : W 1,Φ

0 pΩq Ñ

p´8,8s a convex, lower semicontinuous and proper (Ψ2 ı `8) functional. The

set DompΨ2q “ tu P W
1,Φ
0 pΩq : Ψ2puq ă 8u is called the effective domain of Ψ2.

Definition 4.2.1 Consider I “ Ψ1 ` Ψ2 with Ψ1 P C1pW 1,Φ
0 pΩq,Rq and Ψ2 :

W 1,Φ
0 pΩq Ñ p´8,8s a convex, lower semicontinuous and proper functional. A

point u P DompΨ2q is said to be a critical point of I if

xΨ1
1puq, v ´ uy `Ψ2pvq ´Ψ2puq ě 0, @v P W 1,Φ

0 pΩq.

In this context, the pPSq condition is understood in the following sense.

Definition 4.2.2 We say that I satisfies the Palais-Smale condition if the follow-

ing holds:

“ If punq is a sequence such that Ipunq Ñ c P R and

xΨ1
1punq, v ´ uny `Ψ2pvq ´Ψ2punq ě ´εn}∇pv ´ unq}Φ, @v P W 1,Φ

0 pΩq

where εn Ñ 0`, then punq possesses a convergent subsequence. ”
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The proof of Theorem 0.0.12 stems from the following result due to Szulkin.

Theorem A Suppose that I : W 1,Φ
0 pΩq Ñ p´8,8s is defined by I “ Ψ1 ` Ψ2,

where Ψ1 P C1pW 1,Φ
0 pΩq,Rq and Ψ2 : W 1,Φ

0 pΩq Ñ p´8,8s is a convex, lower

semicontinuous and proper functional. If I satisfies pPSq and admits two local

minima, then it has at least three critical points.

Proof: See Corollary 3.3 in [55]. �

In order to apply the above theorem to get our result, let us first construct

the appropriate functional setting.

Thus, consider M̂ptq :“

ż t

0

Mpsqds and J1puq :“ M̂pPpuqq, where P was de-

fined in (4.3). In addition, let J2 : W 1,Φ
0 pΩq Ñ R be given by J2puq “

ż

Ω

F px, uqdx,

where F px, tq “
ż t

0

fpx, sqds.

Before announcing the next lemma, let us recall the hypothesis pf 11q, which

is given by

pf 11q: there exists an odd increasing homeomorphism h from R to R and nonneg-

ative constants a1 and a2 such that

fpx, tq ď a1 ` a2hp|t|q, @t P R and @x P Ω

and H ăă Φ˚, where Hptq :“

ż |t|

0

hpsqds satisfies

1 ă h´ :“ inf
tą0

thptq

Hptq
ď sup

tą0

thptq

Hptq
:“ h` ă 8. p8q

Lemma 4.2.3 Suppose pφ0q, pφ1q and pf 11q holds. Then:

iq J1 P C
1pW 1,Φ

0 pΩq,Rq and

xJ 11puq, ϕy “MpPpuqq
ż

Ω

ap|∇u|q∇u∇ϕdx @ϕ P W 1,Φ
0 pΩq;
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iiq J2 P C
1pW 1,Φ

0 pΩq,Rq and

xJ 12puq, ϕy “

ż

Ω

fpx, uqϕdx @ϕ P W 1,Φ
0 pΩq;

iiiq J 11 is of type pS`q, that is,

“if un á u and lim
nÑ8

sup xJ 11punq, un ´ uy ď 0, then un Ñ u in W 1,Φ
0 pΩq”;

ivq If un á u in W 1,Φ
0 pΩq, then xJ 12punq, un ´ uy Ñ 0;

ivq If un á u in W 1,Φ
0 pΩq, then J2punq Ñ J2puq;

vq J1 is sequentially weakly lower semicontinuous in W 1,Φ
0 pΩq.

Proof:

iq This assertion follows directly from Lemma 4.1.18´iq and chain rule.

iiq Noting that

1

t
rF px, u` tϕq ´ F px, uqs Ñ fpx, uqϕ as tÑ 0 for all x P Ω

and by pf 11q

ˇ

ˇ

ˇ

ˇ

F px, u` tϕq ´ F px, uq

t

ˇ

ˇ

ˇ

ˇ

ď

ż 1

0

fpx, u` stϕq|ϕ|ds ď a1|ϕ| ` a2hp|u| ` |ϕ|q|ϕ|

ď a1|ϕ| ` a2h`Hp|u| ` |ϕ|q P L
1
pΩq

holds, the result follows from dominated convergence.

iiiq If un á u, then tunu is bounded in W 1,Φ
0 pΩq and, passing to a subsequence,

if necessary, we may assume that Ppunq Ñ t0 for some t0 ě 0. If t0 “ 0,

then un Ñ 0 and, except if u “ 0 a.e in Ω, it leads us to a contradiction

because un Ñ u a.e in Ω. On the other hand, if t0 ą 0, then it follows from

the continuity of the function M that M
´

Ppunq
¯

ÑMpt0q ą 0, whence for
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our assumptions we get

lim
nÑ8

supxP 1punq, un ´ uy ď 0,

which by Lemma 4.1.18´ivq implies in un Ñ u in W 1,Φ
0 pΩq. Repeating the

same argument, we conclude every subsequence of punq admits a subsequence

converging to u. Therefore un Ñ u, as desired.

ivq Suppose that un á u. Then, un Ñ u a.e in Ω and, since pf 11q is satisfied, we

have

|fpx, unqpun ´ uq| ď a1|un ´ u| ` a2hp|un ´ u| ` |u|q|un ´ u|

ď Cp|un ´ u| `Hp|un ´ u| ` |u|qq.

Hence, by using the compact embedding W 1,Φ
0 pΩq ãÑ LHpΩq, the last in-

equality and Theorem A.1.3, we get |fpx, unqpun ´ uq| ď gpxq, for some

g P L1pΩq. Thus,once again by dominated convergence we get the result.

vq As in the previous item, by using pf 11q and dominated convergence the result

follows.

viq If un á u, then by Lemma 4.1.18´iiq one has lim
nÑ8

inf Ppunq ě Ppuq. More-

over, as M̂ is a continuous and increasing function in r0,8q, then

lim
nÑ8

inf M̂
´

Ppunq
¯

ě M̂
´

lim
nÑ8

inf Ppunq
¯

ě M̂
´

Ppuq
¯

.

�

Defining Ψ1 : W 1,Φ
0 pΩq Ñ R by

Ψ1puq “ J1puq ´ λJ2puq,

as a direct consequence of the previous Lemma, we can derive the following prop-

erties to Ψ1.
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Lemma 4.2.4 If pφ0q, pφ1q and pf 11q hold. Then the functional Ψ1 P

C1pW 1,Φ
0 pΩq,Rq is sequentially weakly lower semicontinuous and Ψ1

1 is of type pS`q.

Proof: From items iq´iiq in the above lemma, we conclude Ψ1 P C
1pW 1,Φ

0 pΩq,Rq.

By iiiq´ivq, one has Ψ1
1 is of type pS`q. The last part is obtained by using vq´viq.

�

Next, let us assume

pbq :

$

’

’

’

’

’

&

’

’

’

’

’

%

b P Lp
φ˚
´

1´δ
q1
pΩq if 0 ă δ ă 1;

b P LqpΩq for some q ą 1 if δ “ 1;

b P L1pΩq if δ ą 1.

and define G : Ωˆ RÑ p´8,8s by

a) Gpx, tq “

$

’

&

’

%

´bpxqt1´δ

1´δ
if x P Ω and t ě 0

`8 if x P Ω and t ă 0

if 0 ă δ ă 1;

b) Gpx, tq “

$

’

&

’

%

´bpxq lnptq if x P Ω and t ą 0

`8 if x P Ω and t ď 0

if δ “ 1;

c) Gpx, tq “

$

’

&

’

%

bpxqt1´δ

δ´1
if x P Ω and t ą 0

`8 if x P Ω and t ď 0

if δ ą 1.

Note that, when 0 ă δ ă 1, we have bu1´δ P L1pΩq for all 0 ď u inW 1,Φ
0 pΩq,

because in this situation we are supposing b P Lp
φ˚
´

1´δ
q1
pΩq. In the case δ ą 1, one

has Gpx, uq ě 0 in Ω, @u ě 0 in W 1,Φ
0 pΩq. Finally, when δ “ 1, let us decompose

G as Gpx, uq “ ´bpxq lnpuq.χr0ăuă1s ´ bpxq lnpuq.χruě1s and fix s P
´

0,
φ˚´
q1

¯

, where

q1 is the conjugate of q. Since lnptq{ts Ñ 0 as t Ñ `8, we can find C ą 0 such

that lnptq ď Cts for all t ě 1. By using this fact, we obtain

Gpx, uq ě ´bpxq lnpuq.χruě1s ě ´Cbpxqu
sχruě1s,

in which bus P L1pΩq by our choice of s.
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Combining all the information, we can conclude that in any case
ż

Ω

Gpx, uqdx ‰ ´8 for all u ą 0 in W 1,Φ
0 pΩq.

Now, we can define the functional Ψ2 : W 1,Φ
0 pΩq Ñ p´8,8s given by

Ψ2puq “

$

’

&

’

%

ż

Ω

Gpx, uqdx if Gp¨, up¨qq P L1
pΩq

`8 if Gp¨, up¨qq R L1pΩq.

Regarding Ψ2, we have the following result.

Lemma 4.2.5 Assume that pbq holds. If either δ ą 1 and

pSq : ´∆Φu “ bpxqu´δ in Ω, u ą 0 in Ω and u “ 0 on BΩ

admits solution in W 1,Φ
0 pΩq or δ ď 1, then Ψ2 is proper, convex and sequentially

weakly lower semicontinuous.

Proof: First, let us prove that Ψ2 is proper, that is, the effective domain DompΨ2q

of Ψ2 is non-empty. In fact, when 0 ă δ ă 1, every non-negative function u P

W 1,Φ
0 pΩq belongs to DompΨ2q. If δ ą 1 and u0 P W

1,Φ
0 pΩq is a solution of pSq, then

u0 P DompΨ2q, which proves that DompΨ2q ‰ H in this cases.

For the case δ “ 1 define the problem

´∆φ`u “
bpxq

us`1
in Ω, u ą 0 in Ω and u|BΩ “ 0, (4.4)

where 0 ă s ă φ`pq´1q
qpφ`´1q

, in which q is given by pbq.

From Corollary 0.0.14, which will be proved later, for chosen s the problem

(4.4) admits a solution 0 ă u0 P W
1,φ`
0 pΩq ãÑ W 1,Φ

0 pΩq (see Proposition 4.1.10).

Now, let us prove that u0 P DompΨ2q. Indeed, by using that lnptq ď C1t
s for all

t ě 1 and for some positive constants C1, one has

ż

Ω

Gpx, u0qdx “

ż

Ω

Gpx, u0qχr0ău0ă1sdx`

ż

Ω

Gpx, u0qχru0ě1sdx

“

ż

Ω

b ln
´ 1

u0

¯

χr0ău0ă1sdx´

ż

Ω

b lnpu0qχru0ě1sdx
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ď C1

ż

Ω

b

us0
χr0ău0ă1sdx ď C1

ż

Ω

|∇u0|
φ`dx ă 8.

Therefore, u0 P DompΨ2q.

Next, let us verify that Ψ2 is convex. For this, it suffices note that for every

x P Ω, Gpx, ¨q P C1p0,8q and G1px, tq “ ´bpxqt´δ, which is increasing in t ą 0.

Finally, to show that Ψ2 is sequentially weakly lower semicontinuous, let us

take un á u. When 0 ă δ ă 1, by using the embedding W 1,Φ
0 pΩq ãÑ Lφ

˚
´pΩq and

proceeding exactly as in the proof of Lemma 1.2.3, we get the result. For the case

δ ą 1, the claim follows directly from Fatou’s Lemma.

In the last case, when δ “ 1, we observe that by Fatou’s Lemma

´

ż

Ω

bpxq lnpuqχruď1sdx ď lim
nÑ8

inf ´

ż

Ω

bpxq lnpunqχrunď1sdx.

On the other hand, by fixing s P
´

0,
φ˚´
q1

¯

, we have lnptq ď Cts for all t ě 1 and for

some C ą 0. So by using this information together with the compact embedding

W 1,Φ
0 pΩq ãÑãÑ Lτ pΩq for all 1 ă τ ă φ˚´, we get by dominated convergence

´

ż

Ω

bpxq lnpunqχruně1sdxÑ

ż

Ω

bpxq lnpuqχruě1sdx as nÑ 8.

Therefore, from this two information, the result follows also for the case δ “ 1. �

Now, we can define the appropriate functional to apply the Theorem A. Let

I : W 1,Φ
0 pΩq Ñ p´8,8s be the functional given by

Ipuq “ Ψ1puq ` µΨ2puq.

By the Lemma 4.2.4 we have Ψ1 P C
1pW 1,Φ

0 pΩq,Rq. Moreover, by Lemma 4.2.5,

we know that Ψ2 is proper, convex and lower semicontinuous.

Next, we will prove that I satisfies pPSq. Let us recall the following hy-

potheses before stating the next lemma:

(φ2): φ` ă φ˚´ :“ inf
tą0

tφ˚ptq

Φ˚ptq
;
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pMq: Mptq ě m0t
α´1, for all t ě 0, with 1 ď α ă

φ˚´
φ`

;

pf 13q: lim
tÑ8

sup
Ω

F px, tq

tαφ´
“ 0.

Lemma 4.2.6 Suppose pφ0q ´ pφ2q, pMq, pbq, pf 11q, pf 13q hold. In addition, when

δ ą 1, assume pSq admits a W 1,Φ
0 pΩq´solution as well. Then I satisfies the pPSq

condition.

Proof: Let punq Ă W 1,Φ
0 pΩq and pεnq Ă p0,8q be sequences such that Ipunq Ñ c P

R, εn Ñ 0 and

xΨ1
1punq, ϕ´uny`µ

´

Ψ2pϕq´Ψ2punq
¯

ě ´εn}∇pun´ϕq}Φ, for all ϕ P W 1,Φ
0 pΩq, n ě 1.

(4.5)

First, let us show that punq is bounded in W 1,Φ
0 pΩq. For this, is enough

prove that I is coercive. In fact, by pMq and Lemma 4.1.11, we obtain

M̂
´

Ppuq
¯

ě
m0

α
}∇u}αφ´Φ , for all u P W 1,Φ

0 pΩq with }∇u}Φ ě 1.

Moreover, it follows from pf 11q and pf 13q that for given ε ą 0 small enough,

there exists C1 ą 0 such that F px, tq ď C1 ` ε|t|
αφ´ for all x P Ω and t P R.

Therefore, by the above informations and the embeddingW 1,Φ
0 pΩq ãÑ Lαφ´pΩq,

which follows from the hypothesis pφ2q, we conclude

Ψ1puq ě
m0

α
}∇u}αφ´Φ ´ λ

´

C1|Ω| ` ε

ż

Ω

|u|αφ´ds
¯

ě
m0

α
}∇u}αφ´Φ ´ λ

´

C1|Ω| ` εC2}∇u}αφ´Φ

¯

,

whence, by taking ε ą 0 small enough, the previous inequality leads us to

Ψ1puq ě C3

´

}∇u}αφ´Φ ´ 1
¯

(4.6)

for some C3 ą 0.

Besides this, it follows from the inclusion W 1,Φ
0 pΩq ãÑ Lφ

˚
´pΩq that
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Ψ2puq ě ´C4}b}
p
φ˚
´

1´δ
q1
}∇u}1´δΦ , for 0 ă δ ă 1 . For δ ą 1 we have Ψ2puq ě 0

and for δ “ 1, by taking s P
´

0,mint
φ˚´
q1
, αφ´u

¯

, we obtain

Ψ2puq ě ´

ż

Ω

bpxq lnpuqχruě1sdx ě ´C5}b}q}u}
s
sq1 ě ´C5}b}q}∇u}sΦ

for some cumulative constant C5 ą 0, where the last inequality follows from the

fact that W 1,Φ
0 pΩq ãÑ Lsq

1

pΩq.

Considering all of these information together with (4.6), we get

Ipuq ě

$

’

’

’

’

’

&

’

’

’

’

’

%

C
´

}∇u}αφ´Φ ´ }b}
p
φ˚
´

1´δ
q1
}∇u}1´δΦ ´ 1

¯

if 0 ă δ ă 1

C
´

}∇u}αφ´Φ ´ }b}q}∇u}sΦ
¯

if δ “ 1

C}∇u}αφ´Φ if δ ą 1,

whence Ipuq Ñ 8 as }∇u}Φ Ñ 8, that is, I is coercive.

Since I is coercive and Ipunq Ñ c, we conclude punq is bounded inW 1,Φ
0 pΩq.

As a consequence, passing to a subsequence, if necessary, we may assume that un á

u. By Lemma 4.2.4 and 4.2.5, one gets I sequentially weakly lower semicontinuous,

so Ipuq ď lim
nÑ8

inf Ipunq “ c ă 8. Therefore, Ψ2puq ă 8 and by taking ϕ “ u in

(4.5) we obtain

xΨ1
1punq, un ´ uy ď µ

´

Ψ2puq ´Ψ2punq
¯

` εn}∇pun ´ uq}Φ for n P N.

Thus, once again by using the fact that Ψ2 is a lower semicontinuous func-

tional and last inequality, we get lim
nÑ8

supxΨ1
1punq, un ´ uy ď 0, which by Lemma

4.2.4 implies un Ñ u in W 1,Φ
0 pΩq. This concludes the Lemma. �

Henceforth, our aim is to show that I has two local minima, as required by

Theorem A. The next proposition allows us to accomplish this task.

Proposition 4.2.7 Assume pφ0q´pφ2q, pMq, pf 11q and pf 13q. Then any strict local

minimum of the functional Ψ1 “ J1 ´ λJ2 in the strong topology of W 1,Φ
0 pΩq is so

in the weak topology.
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Proof: We just need to verify that, under these assumptions, the conditions of

Theorem A.1.11 in Appendix are met.

First, note that W 1,Φ
0 pΩq is reflexive and separable by pφ1q. Besides this, it

follows from Lemma 4.2.3 that J1 and J2 are sequentially weakly lower semicon-

tinuous and by (4.6) the functional Ψ1 is also coercive. Therefore, to conclude the

proof, we need only to check that J1 PWW 1,Φ
0

, that is,

“ if un á u and lim
nÑ8

inf J1punq ď J1puq, then punq has a subsequence

converging strongly to u.”

Suppose un á u and lim
nÑ8

inf J1punq ď J1puq. Since the functional J1 is

sequentially weakly lower semicontinuous, there exists a subsequence of punq, still

denoted by punq such that lim
nÑ8

J1punq “ J1puq. As t ÞÑ M̂ptq is continuous and

strictly increasing in t ě 0, the previous limit give us lim
nÑ8
Ppunq “ Ppuq. There-

fore, as lim
nÑ8
Ppunq “ Ppuq and un á u, it follows from Proposition 4.1.17 that

un Ñ u in W 1,Φ
0 pΩq. �

Let us show that I admits two local minima in W 1,Φ
0 pΩq for suitable values

of λ and µ. Before, let us recall that

pf 12q: lim
tÑ0`

sup
Ω

F px, tq

tαφ`
“ 0.

Lemma 4.2.8 Suppose pφ0q´pφ2q, pbq, pMq and pf 11q´pf 13q hold. In addition, when

δ ą 1, assume pSq admits a W 1,Φ
0 pΩq-solution. Then I has two local minima.

Proof: Fix λ ą λ˚. Since Ψ1 is lower semicontinuous and coercive (see

Lemma 4.2.4 and (4.6)), there exists u0 P W 1,Φ
0 pΩq a global minimum of Ψ1

in W 1,Φ
0 pΩq. Moreover, as λ ą λ˚, by using the definition of λ˚, we obtain

Ψ1pu0q “ J1pu0q ´ λJ2pu0q ă 0.

Let us denote by C the constant of the immersion W0,
1,Φ pΩq ãÑ Lαφ`pΩq,

that is, }u}αφ` ď C}∇u}Φ for all u P W 1,Φ
0 pΩq. So by taking ε ă m0C

αφ`

λα
, it follows

from pf 12q and pf 13q that F px, tq ď εtαφ` for all t P p0,mqY pM,8q, for some m ą 0

small enough and M ą 0 large enough.
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On the other hand, if we suppose that }∇u}Φ ă ε1, then

mαφ`
ˇ

ˇ

ˇ
rm ď u ďM s

ˇ

ˇ

ˇ
ď

´

ż

rmďuďMs

uαφ`dx
¯1{αφ`

ď }u}αφ` ď C}∇u}Φ ď Cε1,

which implies in
ˇ

ˇ

ˇ
rm ď u ďM s

ˇ

ˇ

ˇ
ď Cε1{mαφ` .

Therefore, since pf 11q is also satisfied, if ε1 ą 0 is enough small we have

ż

Ω

F px, uqdx “

ż

ruăms

F px, uqdx`

ż

ruąMs

F px, uqdx`

ż

rmďuďMs

F px, uqdx

ď ε

ż

ΩzrmďuďMs

uαφ`dx`

ż

rmďuďMs

F px, uqdx

ď ε

ż

ΩzrmďuďMs

uαφ`dx` sup
mďtďM

F px, tq
Cε1

mαφ`
ď ε

ż

Ω

uαφ`dx,

that is, J2puq ď ε}u}αφ
`

αφ`
. By using this fact, hypothesis pMq and Lemma 4.1.11,

we obtain

Ψ1puq “ M̂
´

Ppuq
¯

´ λ

ż

Ω

F px, uqdx ě
m0

α
Ppuqα ´ ελ}u}αφ`αφ`

ě
m0

α
}∇u}αφ`Φ ´ λε}u}

αφ`
αφ`

ě
m0C

αφ`

α
}u}

αφ`
αφ`

´ λε}u}
αφ`
αφ`

ą 0 “ Ψ1p0q

whenever }∇u}Φ ă ε1. Hence, 0 is a strict local minimum of Ψ1 in the strong

topology, which by Proposition 4.2.7 leads us to conclude that 0 is a strict minimum

of Ψ1 in the weak topology as well, i.e, there exists a weak neighborhood Vw of 0

such that

0 “ Ψ1p0q ă Ψ1puq for all u P Vwzt0u.

Next, since Ψ1 is lower semicontinuous and coercive, Ψ´1
1 pp´8, τ sq is weakly

compact for every τ P R. In particular, Ψ´1
1 pp´8, 0sq is weakly compact. Thus,

by defining the disjoint weak compact sets A1 “ t0u and A2 “ Ψ´1
1 pp´8, 0sqzVw “

Ψ´1
1 pp´8, 0sqzt0u, we have

8
č

n“1

Ψ´1
1 pp´8, 1{nsq “ Ψ´1

1 pp´8, 0sq “ A1 Y A2.
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Hence, by using Theorem A.1.12 in appendix, we can find n0 P N and

disjoint weakly compact sets Bi Ě Ai, i “ 1, 2, such that

Ψ´1
1 pp´8, 1{n0sq “ B1 YB2,

where 0 P B1 and u0 P B2 (remember that Ψ1pu0q ă 0). Since B1 and B2 are

disjoint weakly compact sets, we can find C1 and C2 disjoint weakly open sets, and

therefore open with respect to the strong topology also, such that Bi Ă Ci, i “ 1, 2.

Through these sets, we can define

Di :“ tu P Ci : Ψ1puq ă 1{n0u Ă Bi, i “ 1, 2,

where 0 P D1 and u0 P D2. In addition, as Ψ1 is a continuous operator, the sets

D1 and D2 are also open in the strong topology. Since 0 P D1 and u0 P D2, by

taking û P DompΨ2q (remember that, under our hypotheses, Ψ2 is proper) and

using that t ÞÑ Gpx, ¨q is increasing, we conclude for ε enough small, εû P D1 and

u0 ` εû P D2, that is, Di XDompΨ2q ‰ H, i “ 1, 2.

Therefore, as Ψ2 is sequentially weakly lower semicontinuous and Bi is

sequentially weakly compact sets, the infimum of Ψ2 on Bi, i “ 1, 2, is attained.

In this way, we can define

αi “ inf

$

&

%

Ψ2puq ´min
Bi

Ψ2

n´1
0 ´Ψ1puq

: u P Di XDompΨ2q

,

.

-

, i “ 1, 2.

Thus, by taking µλ ą 0 such that µλ “ 1{maxtα1, α2u, for µ P p0, µλq we have

1{µ ą αi for i “ 1, 2, which by the definition of αi gives

1

µ
ą

Ψ2pωiq ´min
Bi

Ψ2

n´1
0 ´Ψ1pωiq

,



4.3. Necessary and sufficient condition to a multiplicity result 116

for some ωi P Di XDompΨ2q, i.e

1

n0

ą Ipωiq ´ µmin
Bi

Ψ2, i “ 1, 2. (4.7)

On the other hand, again by using that Bi is sequentially weakly compact

and I sequentially weakly lower semicontinuous, we can find ω̃i P Bi XDompΨ2q,

i “ 1, 2, such that

min
Bi

I “ Ipω̃iq, i “ 1, 2.

By contradiction, assume Ψ1pω̃iq ě 1{n0 for some i “ 1, 2. Then, by (4.7)

we obtain

min
Bi

I “ Ipω̃iq ě
1

n0

` µΨ2pω̃iq ě
1

n0

` µmin
Bi

Ψ2 ą Ipωiq, i “ 1, 2,

which is absurd. Therefore, Ψ1pω̃iq ă 1{n0, that is, ω̃i P Di for i “ 1, 2.

Finally, by using that Di is an open set, ω̃i P Di and D1 X D2 “ H, we

conclude that ω̃1 and ω̃2 are distinct local minima of I. �

Corollary 4.2.9 Suppose pφ0q ´ pφ2q, pbq, pMq and pf 11q ´ pf 13q hold. In addition,

when δ ą 1, assume pSq admits a W 1,Φ
0 pΩq-solution. Then I has three critical

points.

Proof: It follows directly from Theorem A, Lemma 4.2.6 and Lemma 4.2.8. �

4.3 Necessary and sufficient condition to a

multiplicity result

In this section, we will present the proof of the main result of this chapter.

In addition to obtaining necessary and sufficient conditions for multiplicity

of solutions for pQλ,µq, the proof we will exhibit also brings us relevant information

about the pure singular problem obtained by taking f ” 0 and M ” 1 in pQλ,µq.
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Theorem 0.0.12 Suppose that pφ0q, pφ1q, pφ2q, pMq, pbq, pf 11q´pf 13q hold. Assume

δ ą 1 and

λ˚ “ inf

$

’

’

&

’

’

%

M̂
´

ż

Ω

Φp|∇u|q
¯

ż

Ω

F px, uqdx

: u P W 1,Φ
0 pΩq and

ż

Ω

F px, uqdx ą 0

,

/

/

.

/

/

-

.

Then, the following are equivalent:

iq there exists 0 ă u0 P W
1,Φ
0 pΩq such that

ż

Ω

bu1´δ
0 dx ă 8;

iiq the problem

pSq : ´∆Φu “ bpxqu´δ in Ω, u ą 0 in Ω and u “ 0 on BΩ

admits (unique) weak solution;

iiiq for each λ ą λ˚ there exists µλ ą 0 such that for µ P p0, µλs the problem

pQλ,µq admits at least three weak solutions.

Proof:

pi ùñ iiq

If
ż

Ω

bu1´δ
0 dx ă 8 for some 0 ă u0 P W

1,Φ
0 pΩq, then

A :“
!

u P W 1,Φ
0 pΩq :

ż

Ω

bpxq|u|1´δdx ă 8
)

is non-empty.

Let us define the following sets

N :“
!

u P W 1,Φ
0 pΩq :

ż

Ω

´

ap|∇u|q|∇u|2 ´ bpxq|u|1´δ
¯

dx ě 0
)

,

N ˚ :“
!

u P W 1,Φ
0 pΩq :

ż

Ω

´

ap|∇u|q|∇u|2 ´ bpxq|u|1´δ
¯

dx “ 0
)

and the functional J : W 1,Φ
0 pΩq Ñ R given by

Jpuq “

ż

Ω

Φp|∇u|qdx` 1

δ ´ 1

ż

Ω

bpxq|u|1´δdx.
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Henceforth, we will prove that J admits a minimum in N and that this

minimum is the sought solution. To ensure this, we need to establish the following

claims.

Claim 1: N ˚ and N are non-empty sets and N is an unbounded set.

To prove this assertion, let us take u P A and define the function

σptq :“ Jptuq “

ż

Ω

Φpt|∇u|qdx` t1´δ

δ ´ 1

ż

Ω

bpxq|u|1´δdx, t ą 0.

Then, for t ą 0 one has

σ1ptq “

ż

Ω

φpt|∇u|q|∇u|dx´ t´δbpxq|u|1´δdx

and

σ2ptq “

ż

Ω

φ1pt|∇u|q|∇u|2dx` δt´δ´1

ż

Ω

bpxq|u|1´δdx

By using pφ1q and Lemma 4.1.11´iq, we get

ż

Ω

φpt|∇u|q|∇u|dx ě φ´
t

ż

Ω

Φpt|∇u|qdx ě φ´ minttφ´´1, tφ`´1
u

ż

Ω

Φp|∇u|qdx

(4.8)

and

ż

Ω

φpt|∇u|q|∇u|dx ď φ`
t

ż

Ω

Φpt|∇u|qdx ď φ´ maxttφ´´1, tφ`´1
u

ż

Ω

Φp|∇u|qdx.

(4.9)

Thus, as a consequence of (4.8) we conclude that σ1ptq Ñ 8 as t Ñ 8

and by (4.9) we obtain σ1ptq Ñ ´8 as t Ñ 0`. On the other hand, since φ is

increasing, we get σ2ptq ą 0 for all t ą 0, which implies σ1 is also an increasing

function. Therefore, joining all these information, we conclude that there exists

a unique t˚ “ t˚puq (which is a global minimum of σ) such that σ1pt˚q “ 0 and

σ1ptq ě 0 for all t ą 0 large enough, that is,

ż

Ω

φpt˚|∇u|qt˚|∇u|dx´ t1´δ˚

ż

Ω

bpxq|u|1´δdx “ 0
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and

ż

Ω

φpt|∇u|qt|∇u|dx´ t1´δ
ż

Ω

bpxq|u|1´δdx ě 0, for all t ą 0 large.

Thus, t˚u P N ˚ and N is unbounded and our claim is proved.

Claim 2: N is a closed set.

Indeed, suppose punq Ă N and un Ñ u in W 1,Φ
0 pΩq. By Lemma 4.1.18´iq

we obtain xP 1punq, uny Ñ xP 1puq, uy as n Ñ 8. Besides this, by Fatou’s Lemma
ż

Ω

bpxq|u|1´δdx ď lim
nÑ8

inf

ż

Ω

bpxq|un|
1´δdx. Thus, by taking advantage of this

information and using
ż

Ω

φp|∇un|q|∇un|dx ´
ż

Ω

bpxq|un|
1´δdx ě 0 for all n P N,

we conclude that u P N .

Claim 3: 0 is not an accumulation point of N .

Assume on the contrary that there exists punq Ă N such that un Ñ 0 in

W 1,Φ
0 pΩq. Then, by Theorem A.1.9 and since δ ą 1, one has

8 ą C ą φ`

ż

Ω

Φp|∇un|qdxě
ż

Ω

bpxq|un|
1´δdx

ě

´

ż

Ω

bpxq1{δdx
¯δ´

ż

Ω

|un|dx
¯1´δ

Ñ 8 as nÑ 8

which is clearly impossible. Hence, there is C1 ą 0 such that }∇u}Φ ě C1 for all

u P N .

Claim 4: J is a coercive and lower semi-continuous functional.

Note that, by Lemma 4.1.11´iiiq we have Jpuq Ñ 8 as }∇u}Φ Ñ 8, that

is, J is a coercive functional. Moreover, by Lemma 4.1.18´iiq and Fatou’s Lemma,

we conclude that J is lower semi-continuous, which proves the Claim 4.

From the Claims 1, 2 and 4, the assumptions of the Ekeland Variational

Principle (see Theorem A.1.10 in appendix) are assured. So, taking the mini-

mizing sequence punq Ă N corresponding to inf
N
J , the following conditions are

satisfied:
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iq Jpunq ď inf
N
J `

1

n
;

iiq Jpunq ď Jpwq ` 1
n
}∇pun ´ wq}Φ, @w P N .

As Jp|un|q “ Jpunq, we can assume un ě 0. Moreover, if we suppose un “ 0

in a measurable set Ω0 Ă Ω, with |Ω0| ą 0, then since un P N and bpxq ą 0 a.e in

Ω, we obtain again by Theorem A.1.9

8 ą φ`

ż

Ω

Φp|∇un|qdx ě
ż

Ω0

bpxqu1´δ
n ě

´

ż

Ω0

bpxq1{δdx
¯δ´

ż

Ω0

|un|dx
¯1´δ

“ 8,

which is an absurd. Thus, unpxq ą 0 a.e in Ω.

Since Jpunq Ñ inf
N
J ě 0, we have

mint}∇un}φ´Φ , }∇un}φ`Φ u ď

ż

Ω

Φp|∇un|qdx ď ε` inf
N
J

for all n large enough. Hence, }∇un}Φ ď C2 for suitable constant C2 and this

implies, by Proposition 4.1.10, that (up to subsequence)

$

’

’

’

’

’

&

’

’

’

’

’

%

un á u˚ in W 1,Φ
0 pΩq;

un Ñ u˚ strongly in LGpΩq for all N-function G ăă Φ˚;

un Ñ u˚ a.e in Ω

for some u˚ P W 1,Φ
0 pΩq.

By the Fatou’s Lemma one has infN J ě Jpu˚q, which implies
ż

Ω

bpxqu1´δ
˚ dx ă

8, that is, u˚ P A. Thus, it follows from the proof of Claim 1 that t˚u˚ P N ˚,

where t˚ “ t˚pu˚q is the minimum of t ÞÑ Jptu˚q. Therefore,

inf
N
J “ lim

nÑ8
inf Jpunq ě Jpu˚q ě Jpt˚u˚q ě inf

N˚
J ě inf

N
J
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which results in Jpu˚q “ inf
N
J , that is

ż

Ω

Φp|∇un|qdx`
1

δ ´ 1

ż

Ω

bpxq|un|
1´δdx

nÑ8
ÝÑ

ż

Ω

Φp|∇u˚|qdx`
1

δ ´ 1

ż

Ω

bpxq|u˚|
1´δdx.

(4.10)

On the another side, by Fatou’s Lemma and Lemma 4.1.18´iiq, one has

ż

Ω

Φp|∇u˚|qdx ď lim
nÑ8

inf

ż

Ω

Φp|∇un|qdx

and
ż

Ω

bpxq|u˚|
1´δdx ď lim

nÑ8
inf

ż

Ω

bpxq|un|
1´δdx,

whence joining this information with (4.10), we conclude that

lim
nÑ8

ż

Ω

Φp|∇un|qdx “
ż

Ω

Φp|∇˚u|qdx,

which by Proposition 4.1.17 implies

un Ñ u˚ in W 1,Φ
0 pΩq. (4.11)

Next, we will prove that u˚ is a solution of pSq. The proof will be split into

two cases.

Case 1: Infinite terms of punq belong to N zN ˚.

In this case, by fixing 0 ď ϕ P W 1,Φ
0 pΩq, as un P N zN ˚, we obtain

ż

Ω

bpxqpun ` tϕq
1´δdx ď

ż

Ω

bpxqu1´δ
n dx ă

ż

Ω

φp|∇un|q|∇un|dx for all t ą 0,

so pun ` tϕq P N for t ą 0 enough small. Thus, by item´iiq above we have

Jpunq ´ Jpun ` tϕq ď n´1}t∇ϕ}Φ and from this we get

1

n
}∇ϕ}Φ`

ż

Ω

Φp|∇un ` t∇ϕ|q ´ Φp|∇un|q
t

dx ě
1

δ ´ 1

ż

Ω

bpxq
”u1´δ

n ´ pun ` tϕq
1´δ

t

ı

dx,
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which together with Fatou’s Lemma leads us to conclude that

1

n
}∇ϕ}Φ `

ż

Ω

ap|∇un|q∇un∇ϕdx“
1

n
}∇ϕ}Φ ` lim

tÑ0`
inf

ż

Ω

Φp|∇un ` t∇ϕ|q́ Φp|∇un|q
t

dx

ě
1

δ ´ 1
lim
tÑ0`

inf

ż

Ω

bpxq
”u1´δ

n ´ pun ` tϕq
1´δ

t

ı

dx

ě

ż

Ω

bpxqu´δn ϕdx. (4.12)

Once again by Fatou’s Lemma, (4.12), the convergence in (4.11) and Lemma

4.1.18´iq, letting n tend to infinity we obtain

ż

Ω

ap|∇u˚|q∇u˚∇ϕdx ě
ż

Ω

bpxqu´δ˚ ϕdx. (4.13)

Case 2: Finite terms of punq belong to N zN ˚.

In this case, infinite terms of punq belong to N ˚. By fixing again 0 ď ϕ P

W 1,Φ
0 pΩq, we obtain

ż

Ω

bpxqpun ` tϕq1´δdx ď

ż

Ω

φp|∇un|q|∇un|dx ă 8 for each

t ě 0, which implies pun ` tϕq P A. Once again by the proof of Claim 1, there

exists unique fn,ϕptq ą 0 such that fn,ϕptqpun ` tϕq P N ˚, that is
ż

Ω

φpfn,ϕptq|∇un`t∇ϕ|qfn,ϕptq|∇un`t∇ϕ|dx´f 1´δ
n,ϕ ptq

ż

Ω

bpxq|un`t∇ϕ|1´δdx “ 0.

(4.14)

Since we are supposing that un P N ˚, we get fn,ϕp0q “ 1. Besides this, we

claim that fn is a continuous function in r0,8q. Indeed, if 0 ď tk Ñ t, then by

(4.14), hypothesis pφ1q and Lemma 4.1.11´iq we have

φ´ min
!

fφ´`δ´1
n,ϕ ptkq, f

φ``δ´1
n,ϕ ptkq

)

ż

Ω

Φp|∇un ` tk∇ϕ|qdx
ż

Ω

bpxq|un ` tkϕ|
1´δdx

ď 1,
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and

φ´ max
!

fφ´`δ´1
n,ϕ ptkq, f

φ``δ´1
n,ϕ ptkq

)

ż

Ω

Φp|∇un ` tk∇ϕ|qdx
ż

Ω

bpxq|un ` tkϕ|
1´δdx

ě 1, (4.15)

hence fn,ϕptkq is a bounded sequence, so fn,ϕptkq Ñ s ě 0 up to subsequence. Note

that, from (4.15) and dominated convergence, it follows that s ‰ 0, which again by

dominated convergence and (4.14) results in spun ` tϕq P N ˚, whence s “ fn,ϕptq

and this concludes the proof of our assertion.

Next, let us define sn,ϕ :“ lim
tÑ0`

pfn,ϕptq ´ 1q{t P r´8,8s. If this limit does

not exist, we can replace tÑ 0` by tk Ñ 0` as k Ñ 8, for some suitable sequence

ptkq.

By using (4.14) and fn,ϕp0q “ 1, one has

0 “

ż

Ω

”apfn,ϕptq|∇un t̀∇ϕ|qf 2
n,ϕptq|∇un ` t∇ϕ|2 ´ ap|∇un|q|∇un|2

t

ı

dx

´

ż

Ω

bpxq
”fn,ϕptq

1´δ|un ` tϕ|
1´δ ´ |un|

1´δ

t

ı

dx

so, by taking tÑ 0` in the previous equality we obtain

0 “

ż

a1p|∇un|q
”

sn,ϕ|∇un| `
∇un∇ϕ
|∇un|

ı

|∇un|2dx` 2

ż

Ω

ap|∇un|qrsn,ϕ|∇un|2 `∇un∇ϕsdx

`pδ ´ 1q

ż

Ω

rbpxqsn,ϕu
1´δ
n ` bpxqu´δn ϕsdx “ sn,ϕ

ż

Ω

´

a1p|∇un|q|∇un| ` ap|∇un|q
¯

|∇un|2dx

`sn,ϕ

ż

Ω

´

ap|∇un|q|∇un|2 ` pδ ´ 1qbpxqu1´δ
n

¯

dx` 2

ż

Ω

ap|∇un|q∇un∇ϕdx

`

ż

Ω

´

a1p|∇un|q|∇un|∇un∇ϕ` pδ ´ 1qbpxqu´δn ϕ
¯

dx.

Therefore, by Lemma 4.1.13 and the previous equality, we get

sn,ϕ

ě0
hkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkj

ż

Ω

´

a1p|∇un|q|∇un| ` ap|∇un|q
¯

|∇un|2dx`sn,ϕδ

ě0
hkkkkkkkikkkkkkkj

ż

Ω

bpxqu1´δ
n dx

ď C

ż

Ω

φp|∇un|q|∇ϕ|dx ď C

ż

Ω

´

Φ̃pφp|∇un|qq ` Φp|∇ϕ|q
¯

dx (Prop. 4.1.4-iii)
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ď C

ż

Ω

´

Φp|∇un|q ` Φp|∇ϕ|q
¯

dx, (Prop. 4.1.4-ii)

for some cumulative constant C ą 0, whence using the boundedness of punq in

W 1,Φ
0 pΩq and the last inequality, we conclude that sn,ϕ ‰ `8 and, in addition,

sn,ϕ ď C3, for some C3 ą 0.

Now, we will prove that sn,ϕ ‰ ´8 and sn,ϕ is bounded below by a constant

independent of n.

Suppose by contradiction that sn,ϕ “ ´8. In this case, for t ą 0 enough

small fn,ϕptq ă 1. Thus, again by Theorem A.1.10 one has

1´ fn,ϕptq

n
}∇un}Φ `

tfn,ϕptq

n
}∇ϕ}Φ ě

1

n
}∇unp1´ fn,ϕptqq ´ tfn,ϕptq∇ϕ}Φ

ě Jpunq ´ Jpfn,ϕptqpun ` tϕqq “

ż

Ω

Φp|∇un|qdx`
1

δ ´ 1

ż

Ω

bpxq|un|
1´δdx

´

ż

Ω

Φpfn,ϕptq|∇un ` t∇ϕ|qdx´
f 1´δ
n,ϕ ptq

δ ´ 1

ż

Ω

bpxq|un ` tϕ|
1´δdx.

So rearranging the terms and dividing the previous inequality by t ą 0, we get

fn,ϕptq
}∇ϕ}Φ
n

ě
fn,ϕptq ´ 1

t

}∇un}Φ
n

`

ż

Ω

Φp|∇un|q ´ Φpfn,ϕptq|∇un ` t∇ϕ|qq
t

dx

´
1

δ ´ 1

ż

Ω

bpxq
f 1´δ
n,ϕ ptq|un ` tϕ|

1´δ ´ u1´δ
n

t
dx

“
fn,ϕptq ´ 1

t

}∇un}Φ
n

`

ż

Ω

Φp|∇un|q ´ Φpfn,ϕptq|∇un ` t∇ϕ|qq
t

dx

´
1

δ ´ 1

ż

Ω

φpfn,ϕptq|∇un ` t∇ϕ|qfn,ϕptq|∇un ` t∇ϕ| ´ φp|∇un|q|∇un|
t

dx,

(4.16)

where the last equality was obtained using fn,ϕptqpun ` tϕq P N ˚. Thus, as t ÞÑ

φptqt pt ą 0q is increasing and 0 ă fn,ϕptq ă 1, one has

φpfn,ϕptq|∇un ` t∇ϕ|qfn,ϕptq|∇un ` t∇ϕ| ď φp|∇un ` t∇ϕ|q|∇un ` t∇ϕ|,
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which in turn using (4.16) gives us

fn,ϕptq
}∇ϕ}Φ
n

ě
fn,ϕptq ´ 1

t

}∇un}Φ
n

`

ż

Ω

Φp|∇un|q ´ Φpfn,ϕptq|∇un ` t∇ϕ|qq
t

dx

´
1

δ ´ 1

ż

Ω

φp|∇un ` t∇ϕ|q|∇un ` t∇ϕ| ´ φp|∇un|q|∇un|
t

dx.

Taking tÑ 0` and using Lemma 4.1.13, we get

}∇ϕ}Φ
n

ě sn,ϕ
}∇un}Φ

n
´

ż

Ω

φp|∇un|q
”

sn,ϕ|∇un| `
∇un∇ϕ
|∇un|

ı

dx

´
1

δ ´ 1

ż

Ω

”

a1p|∇un|q|∇un| ` 2ap|∇un|q
ı

∇un∇ϕdx

“ sn,ϕ

´

}∇un}Φ
n

´

ż

Ω

ap|∇un|q|∇un|2dx
¯

´

´

1`
a` ` 1

δ ´ 1

¯

ż

Ω

ap|∇un|q|∇un||∇ϕ|dx. (4.17)

Clearly, the left hand side of (4.17) goes to zero as nÑ 8. On the other hand, since

φ´ mint}∇un}φ´Φ , }∇un}φ`Φ u ď
ş

Ω
ap|∇un|q|∇un|2dx ď φ` maxt}∇un}φ´Φ , }∇un}φ`Φ u,

}∇un}Φ ď C2 and sn,ϕ Ñ ´8, using the Claim 3 above we can conclude that the

right hand side of (4.17) tends to infinity as n Ñ 8, which is absurd. Thus

sn,ϕ ‰ ´8 and sn,ϕ ě C4 for some C4 P R independent of n. Therefore, putting

together all the information obtained so far, we conclude that |sn,ϕ| ď C5, for some

C5 ą 0 independent of n.

Now, we will prove that (4.13) also holds true in this case. For this, we will

use the Theorem A.1.10 one more time to get

|1´ fn,ϕptq|
}∇un}Φ

n
`
tfn,ϕptq}∇ϕ}Φ

n
ě Jpunq ´ Jpfn,ϕptqpun ` tϕqq

“

ż

Ω

Φp|∇un|qdx`
1

δ ´ 1

ż

Ω

bpxqu1´δ
n dx´

ż

Ω

Φpfn,ϕptq|∇un ` t∇ϕ|qdx

´
f 1´δ
n,ϕ ptq

δ ´ 1

ż

Ω

bpxqpun ` tϕq
1´δdx`

1

δ ´ 1

ż

Ω

bpxqpun ` tϕq
1´δdx

´
1

δ ´ 1

ż

Ω

bpxqpun ` tϕq
1´δdx.

Rearranging the terms and dividing both sides of the previous inequality by t ą 0,
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we still obtain

1

n

´

|1´ fn,ϕptq|

t
}∇un}Φ f̀n,ϕptq}∇ϕ}Φ

¯

ě ´

ż

Ω

Φpfn,ϕptq|∇un ` t∇ϕ|q ´ Φp|∇un|q
t

dx

´
1

δ ´ 1

ż

Ω

bpxqpun ` tϕq
1´δ ´ bpxqu1´δ

n

t
dx`

1

δ ´ 1

ż

Ω

bpxqpun ` tϕq
1´δ

1´ f 1´δ
n,ϕ ptq

t
dx,

which by taking tÑ 0` leads us to

1

n

´

|sn,ϕ|}∇un}Φ ` }∇ϕ}Φ
¯

ě ´

ż

Ω

φp|∇un|q
”

sn,ϕ|∇un| `
∇un∇ϕ
|∇un|

ı

dx

`

ż

Ω

bpxqu´δn ϕdx` sn,ϕ

ż

Ω

bpxqu1´δ
n dx

“ ´

ż

Ω

ap|∇un|q∇un∇ϕdx`
ż

Ω

bpxqu´δn ϕdx,

where in the last equality we use that un P N ˚. So, by Fatou’s Lemma, (4.11) and

using that |sn,ϕ| ď C5, we get again

ż

Ω

ap|∇u˚|q∇u˚∇ϕdx ě
ż

Ω

bpxqu´δ˚ ϕdx.

Therefore, in any case

ż

Ω

ap|∇u˚|q∇u˚∇ϕdx ě
ż

Ω

bpxqu´δ˚ ϕdx. (4.18)

By replacing ϕ in (4.18) by u˚, we conclude that u˚ P N . Besides this, as infN J “

Jpu˚q, then t˚pu˚q “ 1 (see Claim 1 above) and consequently u˚ P N ˚ and u˚ ą 0

in Ω.

Now, we can prove that u˚ P W 1,Φ
0 pΩq is the desired solution of pSq. For

this, let us fix ε ą 0 and φ P W 1,Φ
0 pΩq. By taking pu˚ ` εφq` P W 1,Φ

0 pΩq as a test

function in (4.18), we obtain

0 ď

ż

ru˚`εφě0s

´

ap|∇u˚|q∇u˚∇pu˚ ` εφq ´ bpxqu´δ˚ pu˚ ` εφq
¯

dx

“

ż

Ω

´

ż

ru˚`εφă0s

´

ap|∇u˚|q∇u˚∇pu˚ ` εφq ´ bpxqu´δ˚ pu˚ ` εφq
¯

dx
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“ ε

ż

Ω

´

ap|∇u˚|q∇u˚∇φ´ bpxqu´δ˚ φ
¯

dx

´

ż

ru˚`εφă0s

´

ap|∇u˚|q∇u˚∇pu˚ ` εφq ´ bpxqu´δ˚ pu˚ ` εφq
¯

dx pu˚ P N ˚
q

ď ε

ż

Ω

´

ap|∇u˚|q∇u˚∇φ´ bpxqu´δ˚ φ
¯

dx´ ε

ż

ru˚`εϕă0s

ap|∇u˚|q∇u˚∇φdx

´

ż

ru˚`εϕă0s

ap|∇u˚|q|∇u˚|2dx`
ż

ru˚`εφă0s

bpxqu´δ˚ pu˚ ` εφqdx

ď ε

ż

Ω

´

ap|∇u˚|q∇u˚∇φ´ bpxqu´δ˚ φ
¯

dx´ ε

ż

ru˚`εϕă0s

ap|∇u˚|q∇u˚∇φdx,

which dividing both sides by ε ą 0 and taking εÑ 0`, gives

ż

Ω

ap|∇u˚|q∇u˚∇φdx ě
ż

Ω

bpxqu´δ˚ φdx.

By the arbitrariness of φ P W 1,Φ
0 pΩq, we conclude that u˚ is W 1,Φ

0 pΩq-solution of

pSq.

pii ùñ iiiq

By Corollary 4.2.9, to conclude the desired result it suffices to show that

any critical point of I is a solution of pQλ,µq.

Let u P DompΨ2q be a critical point of I, that is,

xΨ1
1puq, v ´ uy ` µ

´

Ψ2pvq ´Ψ2puq
¯

ě 0, @v P W 1,Φ
0 pΩq. (4.19)

Since u P DompΨ2q, we have
ż

Ω

|Gpx, uq|dx ă 8, which implies Gp¨, up¨qq finite

almost everywhere. Therefore, by the definition of G when δ ą 1, we necessarily

have u ą 0 a.e in Ω.

Next, we will prove that bu´δϕ P L1pΩq and

M
´

Ppuq
¯

ż

Ω

ap|∇u|q∇u∇ϕdx´ λ
ż

Ω

fpx, uqϕdx´ µ

ż

Ω

bu´δϕdx ě 0,

for all 0 ď ϕ P W 1,Φ
0 pΩq.
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So let us take 0 ď ϕ P W 1,Φ
0 pΩq. Putting v “ u` tϕ in (4.19), one has

µ

ż

Ω

”Gpx, uq ´Gpx, u` tϕq

t

ı

dxď M
´

Ppuq
¯

ż

Ω

ap|∇u|q∇u∇ϕdx´ λ
ż

Ω

fpx, uqϕdx.

By using that Gpx, ¨q is a decreasing function once again and applying Fatou’s

Lemma with tÑ 0` in the previous inequality, we get

µ

ż

Ω

bpxqu´δϕdx ďM
´

Ppuq
¯

ż

Ω

ap|∇u|q∇u∇ϕdx´ λ
ż

Ω

fpx, uqϕdx. (4.20)

Therefore, bu´δϕ P L1pΩq.

Next, we will prove that the integral equality in Definition 0.0.11 holds.

So for t P p0, 1q, let us set v “ p1´ tqu in (4.19) to obtain

0 ď´M
´

Ppuq
¯

ż

Ω

ap|∇u|q|∇u|2dx` λ
ż

Ω

fpx, uqudx` µ

ż

Ω

Gpx, u´ tuq ´Gpx, uq

t
dx.

Thus, for some τ “ τptq P p0, tq we have

0 ď ´M
´

Ppuq
¯

ż

Ω

ap|∇u|q|∇u|2dx` λ
ż

Ω

fpx, uqudx` µp1´ τq´δ
ż

Ω

bpxqu´δ`1dx,

which by passing the limit as tÑ 0` give us

0 ď ´M
´

Ppuq
¯

ż

Ω

ap|∇u|q|∇u|2dx` λ
ż

Ω

fpx, uqudx` µ

ż

Ω

bpxqu´δ`1dx. (4.21)

Putting ϕ “ u in (4.20) and combining this with (4.21), we conclude

0 “ ´M
´

Ppuq
¯

ż

Ω

ap|∇u|q|∇u|2dx` λ
ż

Ω

fpx, uqudx` µ

ż

Ω

bpxqu´δ`1dx. (4.22)

Therefore, by fixing ϕ P W 1,Φ
0 pΩq, as 0 ď pu ` εϕq` P W 1,Φ

0 pΩq, taking pu ` εϕq`

as a test function in (4.20) and using (4.22), we obtain
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0 ď M
´

Ppuq
¯

ż

Ω

ap|∇u|q∇u∇pu` εϕq`dx´ λ
ż

Ω

fpx, uqpu` εϕq`dx

´µ

ż

Ω

bpxqu´δpu` εϕq`dx

“ ε
”

M
´

Ppuq
¯

ż

Ω

ap|∇u|q∇u∇ϕdx´ λ
ż

Ω

fpx, uqϕdx´ µ

ż

Ω

bpxqu´δϕdx
ı

´

”

M
´

Ppuq
¯

ż

ru`εϕă0s

ap|∇u|q∇u∇pu` εϕqdx´ λ
ż

ru`εϕă0s

fpx, uqpu` εϕqdx

´µ

ż

ru`εϕă0s

bpxqu´δpu` εϕqdx
ı

ď ε
”

M
´

Ppuq
¯

ż

Ω

ap|∇u|q∇u∇ϕdx´ λ
ż

Ω

fpx, uqϕdx´ µ

ż

Ω

bpxqu´δϕdx
ı

´εM
´

Ppuq
¯

ż

ru`εϕă0s

ap|∇u|q∇u∇ϕdx.

By noting that
ż

ru`εϕă0s

ap|∇u|q∇u∇ϕdx Ñ 0 as ε Ñ 0`, let us divide the

previous inequality by ε and take the limit as εÑ 0` to get

0 ďM
´

Ppuq
¯

ż

Ω

ap|∇u|q∇u∇ϕdx´ λ
ż

Ω

fpx, uqϕdx´ µ

ż

Ω

bpxqu´δϕdx.

Since ϕ was chosen arbitrarily, we conclude that the integral equality in Definition

0.0.11 is satisfied and this conclude the proof of the implication pii ùñ iiiq.

piii ùñ iq

If 0 ă u0 P W
1,Φ
0 pΩq is a solution of pQλ,µq, then in particular u0 P DompΨ2q,

that is,
ż

Ω

bu1´δ
0 dx ă 8. �

Corollary 0.0.13 Replacing δ ą 1 with δ ď 1 and assuming the hypotheses of

above theorem, the claims iq ´ iiiq remains true independent of each other.

Proof: Let us assume δ ď 1 and prove that the claims iq ´ iiiq holds true.

Since we are assuming pbq, by Lemma 4.2.5 we have DompΨ2q ‰ H, which

prove the item iq. The proof of iiq, is similar to that done in the Theorem 0.0.3,

so we will omit it.
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For the last item, Corollary 4.2.9 guarantees the existence of three critical

points for I. Thus, it remains to show that any critical point of I is solution of

pQλ,µq.

Then, let u P W 1,Φ
0 pΩq be a critical point of I. The integral equality in

Definition 0.0.11 and the fact that bu´δϕ P L1pΩq for all ϕ P W 1,Φ
0 pΩq, follows

from exactly the same argument made in the proof of implication pii ùñ iiiq

above.

To conclude the proof, we just need to check that u ą 0 in Ω. Indeed, since

u P DompΨ2q, we have
ş

Ω
|Gpx, uq|dx ă 8, which results in Gp¨, up¨qq finite almost

everywhere. Therefore, by the definition of G, we necessarily have u ě 0 a.e in Ω

when 0 ă δ ă 1 and u ą 0 a.e in Ω when δ “ 1.

Now, let us exclude the possibility of u to be zero in a set of positive measure

when 0 ă δ ă 1. For this, consider 0 ă δ ă 1 and suppose that u “ 0 in Ω0, for

some Ω0 Ă Ω with |Ω0| ą 0. By taking 0 ă ϕ P W 1,Φ
0 pΩq, ε ą 0 small enough and

replacing v by u` εϕ in (4.19), we get

0 ď εM
´

Ppuq
¯

ż

Ω

ap|∇u|q∇u∇ϕdx´ ελ
ż

Ω

fpx, uqϕdx

`µ

ż

Ω0

Gpx, εϕqdx` µ

ż

ΩzΩ0

”

Gpx, u` εϕq ´Gpx, uq
ı

dx,

whence, by using Gpx.¨q is a decreasing function in r0,8q and dividing both the

sides of the previous inequality by ε, we have

0 ď M
´

Ppuq
¯

ż

Ω

ap|∇u|q∇u∇ϕdx´ λ
ż

Ω

fpx, uqϕdx

´
µε´δ

1´ δ

ż

Ω0

bpxqϕ1´δdxÑ ´8 as εÑ 0`

which is absurd. Therefore, u ą 0 a.e in Ω and this ends the proof. �

In [40], Lazer and Mckenna has proven that, when 0 ă b0 ď b P L8pΩq and

Φptq “ |t|p{p in pSq, with p “ 2, then pSq admits solution in H1
0 pΩq if and only if

δ ă 3. Mohammed also proved in [44] that in the case where Φptq “ |t|p{p pp ą 1q,
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the sharp power is given by p2p´ 1q{pp´ 1q. Through the Theorem 0.0.12, we are

able to show the existence of δq ą 1, which depends on the summability LqpΩq of

b, such that for δ ă δq the existence of solution in W 1,Φ
0 pΩq to pSq is still ensured,

and this is the content of the next corollary.

Corollary 0.0.14 Assume that pφ0q and pφ1q hold. If b P LqpΩq for some 1 ă q

and

1 ă δ ă 1`
φ1`
q1

:“ δq, p9q

then pSq admits a W 1,Φ
0 pΩq-solution.

Proof: By implication pi ùñ iiq in Theorem 0.0.12, it suffices to show that there

exists u0 P W
1,Φ
0 pΩq such that

ż

Ω

bu1´δ
0 dx ă 8. Let us construct such u0.

First, since Ω is a smooth domain, we can find ε ą 0 sufficiently small

such that d P C2pΩ2εq and |∇dpxq| “ 1 in Ω2ε, where dpxq :“ distpx, BΩq and

Ω2ε “ tx P Ω : dpxq ă 2εu. So, by fixing this ε ą 0, let us define

u0pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dpxqθ if dpxq ă ε

εθ `

ż dpxq

ε

θεθ´1
´2ε´ t

ε

¯2{pφ´´1q

dt if ε ď dpxq ă 2ε

εθ `

ż 2ε

ε

θεθ´1
´2ε´ t

ε

¯2{pφ´´1q

dt if ε ď dpxq ă 2ε

where 0 ă θ ă 1 will be chosen later.

A simple calculation gives us

∇u0pxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

θdpxqθ´1∇dpxq if dpxq ă ε

θεθ´1
´

2ε´dpxq
ε

¯2{pφ´´1q

∇dpxq if ε ď dpxq ă 2ε

0 if ε ď dpxq ă 2ε.

In order to u0 P W
1,Φ
0 pΩq, it is enough that

ż

Ωε

Φpθdpxqθ´1
|∇dpxq|qdx ă 8. (4.23)
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But, by Lemma 4.1.11´iq we have

ż

Ωε

Φpθdpxqθ´1
|∇dpxq|qdx “

ż

Ωε

Φpθdpxqθ´1
qdx

θă1
ď C

ż

Ωε

dpxqpθ´1qφ`dx.

Thus, if pθ ´ 1qφ` ą ´1, by [40] we get
ż

Ωε

dpxqpθ´1qφ`dx ă 8 and consequently

(4.23) will be satisfied.

On the other hand, in order to
ż

Ω

bpxqu0pxq
1´δdx ă 8, it is enough that

ż

Ωε

bpxqdpxqθp1´δqdx ă 8. (4.24)

Since we are assuming b P LqpΩq, if
ż

Ωε

dpxqθp1´δqq
1

dx ă 8 holds, then (4.24) will

occur. So once again by [40], if θqp1´δq
q´1

ą ´1, the condition (4.24) will be satisfied.

Therefore, if 1 ´ 1
φ`
ă

q´1
qpδ´1q

, that is, 0 ă δ ă qp2φ`´1q´φ`
qpφ`´1q

, by taking θ P
´

1´ 1
φ`
,min

!

1, q´1
qpδ´1q

)¯

the function u0, defined as above, satisfies the condition

of item iq in Theorem 0.0.12, which finishes the proof. �

Corollary 0.0.15 Assume that pφ0q, pφ1q, pφ2q, pMq and pf 11q ´ pf 13q hold. If b P

LqpΩq for some 1 ă q and δ satisfies (9), then for each λ ą λ˚ there exists µλ ą 0

such that for µ P p0, µλs the problem pQλ,µq admits at least three weak solutions.

Proof: It follows from the previous corollary and Theorem 0.0.12. �

Remark 4.3.1 Although we do not know if δq “ 1`
φ1`
q1

is the sharp value for the

existence of solution in W 1,Φ
0 pΩq, we observe that 1`

φ1`
q1
Ñ

2φ`´1
φ`´1

as q Ñ 8, which

reobtains the sharp values obtained by [40] and [44], for the cases Φptq “ |t|2{2 and

Φptq “ |t|p{p pp ą 1q, respectively.
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1 General Results

Theorem A.1.1 (Schaeffer’s Fixed Point Theorem): Let X be a Banach

space and S : X Ñ X be a continuous and compact mapping. If the set

tx P X : x “ λSpxq for some λ P r0, 1su

is bounded, then S has a fixed point.

Proof: See Theorem 11.3 in [31]. �

Theorem A.1.2 (See [57]): Let u P C1pΩq be a nonnegative function that sat-

isfies ´∆pu ě 0 a.e in Ω. If u does not vanish identically it is positive everywhere

in Ω.

Theorem A.1.3 Let punq be a sequence in LppΩq and let u P LppΩq be such that

}un ´ u}p Ñ 0. Then, there exists a subsequence punkq and a function h P LppΩq

such that:

iq unkpxq Ñ upxq a.e on Ω,

iiq |unkpxq| ď hpxq for all k, a.e on Ω.
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Proof: See Theorem 4.9 in [9]. �

Theorem A.1.4 (See [7]): Consider de equation

´∆pun “ gn in D1pΩq

and assume that un á u weakly in W 1,ppΩq, strongly in LplocpΩq and a.e in Ω.

Moreover, assume that gn P W´1,p1pΩq pp1 “ p{pp ´ 1qq and gn is bounded in the

space of Radon measures, i.e.

ˇ

ˇ

ˇ

ż

Ω

ϕdgn

ˇ

ˇ

ˇ
ď CΘ}ϕ}8, for any ϕ P DpΩq with supp ϕ Ă Θ,

where CΘ is a constant which depends on the compact set Θ. Then

Dun Ñ Du strongly in
´

LqpΩq
¯N

, for any q ă p.

Theorem A.1.5 (Vitali): Let µ be a finite positive measure on a measure space

X. A sequence tunu P L1pµq is said to have uniformly absolutely continuous inte-

grals if to each ε ą 0 there is corresponds δ ą 0 such that µpEq ă δ implies

ˇ

ˇ

ˇ

ż

E

undµ
ˇ

ˇ

ˇ
ă ε pn “ 1, 2, 3, ¨ ¨ ¨ q.

If tunu has uniformly absolutely continuous integrals and if unpxq Ñ upxq a.e.,

then u P L1pµq and

lim
nÑ8

ż

X

undµ “

ż

X

udµ.

Theorem A.1.6 (Picone’s Identity): Let v ą 0 and u ě 0 be weakly differ-

entiable. Denote

Lpu, vq “ |∇u|p ` pp´ 1q
up

vp
|∇v|p ´ pu

p´1

vp´1
|∇v|p´2∇u ¨∇v.

Then Lpu, vq ě 0 and Lpu, vq “ 0 a.e on Ω if and only if u “ αv for some constant

α in each component of Ω.
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Proof: See [2]. �

Theorem A.1.7 Let X be a Banach space and T : R` ˆX Ñ X a compact map

such that T p0, uq “ 0 for all u P X. Then the equation u “ T pλ, uq possesses an

unbounded continuum Σ Ă R` ˆX of solutions with p0, 0q P Σ.

Proof: See Theorem 3.2 in [48]. �

Theorem A.1.8 (Bolzano’s Theorem): Let X be a Banach space and let h

be a continuous function in a continuum Σ0 Ă r0,8q ˆX and suppose that there

exist pα1, u1q, pα2, u2q P Σ0 such that hpα1, u1q ¨ hpα2, u2q ă 0. Then there exists

pα, uq P Σ0 such that hpα, uq “ 0.

Theorem A.1.9 (Reverse Hölder inequality): Assume that p P p0,8q and

Ω Ă RN is a subset with finite measure. If f and g are measurable functions such

that gpxq ‰ 0 a.e in Ω, then

}fg}1 ě }f}1{p}g}´1{pp´1q.

Theorem A.1.10 ( Ekeland’s Variational Principle): Let pM, dq be a com-

plete metric space and J a lower semicontinuos functional (s.c.i) bounded below in

M. If c “ infM J , then for each ε ą 0 there exists uε PM such that

$

’

&

’

%

c ď Jpuεq ď c` ε

Jpuq ´ Jpuεq ` εdpu, uεq ą 0 for all u PM, u ‰ uε.

Proof: See Lemma 6.8 in [33], page 162. �

Theorem A.1.11 If X is a real Banach space, we denote by WX the class of all

functionals J : X Ñ R possessing the following property: “if tunu is a sequence

in X converging weakly to u P X and limnÑ8 inf Jpunq ď Jpuq, then tunu has a

subsequence converging strongly to u”.



4.3. Necessary and sufficient condition to a multiplicity result 136

Let X be a reflexive and separable real Banach space, let J, I : X Ñ R be

two sequentially weakly lower semicontinuous functionals with J1 belonging toWX .

Assume that

lim
}x}Ñ`8

pJpxq ` Ipxqq “ `8.

Then, any strict local minimum of the functional J ` I in the strong topology is so

in the weak topology.

Proof: See Theorem C in [51]. �

Theorem A.1.12 Let X be a Hausdorff topological space and tΘnu be a sequence

of nonempty compact subsets of X such that Θn`1 Ď Θn for all n P N and

8
č

n“1

Θn “ D1 YD2, D1 XD2 “ H,

where D1, D2 are nonempty and compact. Then, there exist n0 P N and C1, C2

nonempty compact sets such that

Θn0 “ C1 Y C2, C1 X C2 “ H, D1 Ď C1, D2 Ď C2.

Proof: See [28]. �

2 Regularity

Theorem A.2.1 (See [43]): Consider

pRq

$

’

&

’

%

divApx, u,∇uq ` Bpx, u,∇uq “ 0 in Ω,

u “ 0 on BΩ,

with paijq “ pBAi{Bpjq.

Let α, λ,Λ,M0 be positive constants with α ď 1 and Λ ě λ, κ a nonnegative

constant, Ω be a domain in RN with C1,α boundary. Suppose A and B satisfy the
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following conditions:

pH1q a
ijpx, z, pqξiξj ě λpκ` |p|qm|ξ|2,

pH2q |a
ijpx, z, pq| ď Λpκ` |p|qm,

pH3q |Apx, z, pq ´Apy, w, pq| ď Λp1` |p|qm`1r|x´ y|α ` |z ´ w|αs,

pH4q |Bpx, z, pq| ď Λp1` |p|qm`2

for all px, z, pq P BΩ ˆ r´M0,M0s ˆ RN , all py, wq in Ω ˆ r´M0,M0s and all

ξ P RN . If u is a bounded weak solutions of pRq with |u| ď M0 in Ω, then

there is a positive constant β “ βpα,Λ{λ,m,Nq such that u P C1,βpΩq, moreover

|u|1,β ď Cpα,Λ{λ,m,M0, N,Ωq.

Theorem A.2.2 (See [47]): Consider

pRq

$

’

&

’

%

´∆pu “ gpxq in Ω,

u “ 0 on BΩ.

Suppose g P LmpΩq for some m ą N . Then (R) has a unique weak solution

u P C1
0pΩq. If in addition g ě 0 is nontrivial, then

u ą 0 in Ω, Bu{Bν on BΩ,

where ν is the interior unit normal on BΩ.

Theorem A.2.3 (See Theorem 2 in [24]): Consider

pRq ´∆pu` Bpx, u,∇uq “ 0 in D1pΩq,

where p ą 1 and |Bpx, u,∇uq| ď Cp|∇u|p ` ψpxqq for some ψ P LplocpΩq with

q ą p1N . Let u P W 1,p
loc pΩq XL

8
locpΩq be a local weak solution of (R). Consider Ω1 a

subdomain of Ω such that Ω
1
Ă Ω and let M “ ess supΩ1 |u|. Then x ÞÑ ∇upxq is

locally Hölder continuous in Ω1, i.e, for every compact Θ Ă Ω1, there exist constants
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C1 and α P p0, 1q, depending only upon C, p,N,M and distpΘ, BΩ1q, such that

|uxipxq ´ ux1pyq| ď C1|x´ y|
α, x, y P Θ; i “ 1, 2, ¨ ¨ ¨N.
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