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Abstract. A group G is of type FPn, with n ≥ 0, if there is a projective
resolution

P : Pn → . . .→ Pi → Pi−1 → . . .→ P0 → Z→ 0

of trivial ZG-module Z such that each ZG-projective module Pi is finitely
generated for 0 ≤ i ≤ n. The property FPn is a homological version of
another homotopic property called Fn. A group G is of homotopic type Fn
if, and only if, G is of homological type FPn and finitely presented.

There is a conjecture called n-(n + 1)-(n + 2) Conjecture, that we call
Homotopic n-(n + 1)-(n + 2) Conjecture in this work. This claims that,

for n ≥ 0, given two short exact sequences of groups N1 ↪→ G1

π1
� Q and

N2 ↪→ G2

π2
� Q, if N1 is of homotopic type Fn, both G1 and G2 are of

homotopic type Fn+1 and Q is of homotopic type Fn+2, then the fiber product
P of π1 and π2 is of homotopic type Fn+1.

Related to the latter conjecture there is another one called Virtual Surjec-
tion Conjecture, that we also call Homotopic in this work. This claims that,
for n ≥ 2, given G1, . . . , Gk groups of homotopical type Fn, where n ≤ k, and
P ⊆ G1 × . . .×Gk a subgroup that virtually surjects on every n factors, i.e.
for every 1 ≤ i1 < . . . < in ≤ k the image of P under canonical projection
P → Gi1 × . . .×Gik has finite index, then P is of type Fn.

These conjectures are unsolved until now, but Benno Kuckuck proved some
interesting related results in 2012.

Motivated by Kuckuck’s work, we have proposed the Homological n-(n+
1)-(n+ 2) Conjecture and Homological Virtual Surjection Conjecture that
the assertions are the same of the conjectures above replacing Fn with FPn.
We have proved analogous results to Kuckuck’s results, but using spectral
sequences in some of then. Furthermore the work here is quite different from



Kuckuck’s work because our groups are not finitely presented in general.
In special we have proved Homological 1-2-3 Conjecture when Q is fini-

tely presented and Homological Virtual Surjection Conjecture when n = 2
(Homological VSP Criterion).

This is a work join with Dessislava H. Kochloukova.
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Queen Mary College Mathematics Notes (Queen Mary College), 1981.

[4] R. Bieri, R. Geoghegan. Sigma invariants of direct products of
groups. Groups Geom. Dyn. 4 (2010), no. 2, p. 251 - 261

[5] R. Bieri, B. Renz. Valuations on free resolutions and higher geometric
invariants of groups. Commentarii Mathematici Helvetici, 1988, nÂo 3,
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