
Universidade de Braśılia
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Abstract

In this work we explore the connection between domain of attraction for

Fréchet distribution and Mallows distance convergence. Under the frame-

work of i.i.d. random variables classical results are derived for Mallows con-

vergence. When the assumption of i.i.d. is dropped su�cient conditions

for the desired convergence are proposed. By making use of regeneration

approach these results are extended to all three types of extreme distribu-

tions. As byproduct, one obtains characterization for domains of attraction

for Markov chains with general state space.

Keywords: Mallows distance; Extremes; Domain of attraction; Fréchet dis-

tribution; Regenerative Process.



Resumo

Neste trabalho exploramos a conexão entre o domı́nio de atração da

distribuição Fréchet e a convergência na distância de Mallows. Quando

as variáveis aleatórias são i.i.d. provamos as convergências clássicas na

distância de Mallows. E para estruturas de dependência geral apresenta-

mos as condiçôes suficientes que garantem a convergência desejada. Métodos

regenerativos são utilizados possibilitando a análise para todos os tres tipos

de distribuições extremais. Como consequência temos a extensão dos resul-

tados clássicos para cadeias de Markov com espaço de estados geral.

Palavras-chaves: Distância Mallows; Extremos; Domı́nio de atração; dis-

tribuição de Fréchet; Processo regenerativo.
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Introduction

Statistics of extremes has been successfully used in a large variety of

fields such as floods, heavy rains, extreme temperatures, failure of equip-

ments, breaking strength, air pollution, finance, insurance, risk theory and

many others. Extreme Value Theory have faced a huge development in the

last decades partially due to the fact that rare events can have catastrophic

consequences for human activities through their impact on natural and con-

structed environments. The pioneer results concerning the possible limiting

laws for extremes of a random sample X
1

, ..., X
n

were obtained by Fisher

and Tippett (1928). Rigorous formalization were established by Gnedenko

(1943). More specifically, for a given sequence {X
n

}
n�1

of independent and

identically distributed (i.i.d.) random variables with a common distribution

F let the partial maximum be defined by X
(n)

= max{X
1

, X
2

, . . . , X
n

}. As-

sume that there exist norming constants a
n

> 0 and b
n

such that

lim
n!1

P [a�1

n

(X
(n)

� b
n

 x)] = lim
n!1

F n(a
n

x+ b
n

) = H(x) (0.0.1)

where H is a non-degenerated distribution. Then the limiting distribution

H belongs necessarily to one of the following three classes:

Fréchet �
↵

(x) =

8
<

:

0 x < 0

exp{�x�↵} x � 0,

Weibull  
↵

(x) =

8
<

:

exp{�(�x)↵} x < 0

1 x � 0,



Introduction

Gumbel ⇤(x) = exp{�e�x} x 2 R.

For properties of these distributions see, for example, Gumbel (1958), de

Haan (1970, 1976), Weissman (1978), Galambos (1987), Falk and Marohn

(1993) and Worms (1998), among others. The class of distributions F that

satisfies (0.0.1) are denominated the domain of attraction of H. Charac-

terization of the domain of attraction is of central interest in the study of

extremes and we will address this problem.

Extreme Value Theory (EVT) is the counterpart of the Central Limit

Theorem (CLT) type results for partial sums. However, while the CLT is

concerned with ”small” fluctuations around the mean resulting from an ag-

gregation process, the EVT provides results on the asymptotic behavior of

the extreme realizations.

A key assumption for the classical CLT is the finiteness of the second

moment. When this assumption is dropped heavy-tailed distributions arise.

The most important class of heavy-tailed distributions, namely, the ↵-stable

laws possess infinite variance. Due to their infinitely divisibility property, the

stable laws play a central role in the study of asymptotic behavior of normal-

ized partial sums, a similar role normal distribution plays among distribu-

tions with finite second moment. With the recognition of the importance of

stable laws the interrelation between CLT for stable distributions and EVT

emerged. Galambos (1987) devoted the section 4.5 to study this relation

by exploring the regularly variation properties of the distribution tails. In

fact, if S
n

=
P

n

j=1

X
j

and for some constants A
n

> 0 and B
n

we have the

3



Introduction

convergence in distribution

S
n

� B
n

A
n

d! Y
↵

where Y
↵

has ↵-stable distribution with 0 < ↵ < 2 then the common distri-

bution F of the X
n

’s has regularly varying tails of index �↵, RV�↵

(either

left-tail or right-tail or both tails). As for the Fréchet distribution, if the

stabilized maximum converges

X
(n)

� b
n

a
n

d! �
↵

then for the right-tail we have 1� F 2 RV�↵

.

On the other hand, the Mallows (1972) distance measures the discrepancy

between two distribution functions and has been successfully used to derive

Central Limit Theorem type results for heavy-tailed stable distributions (see,

e.g., Johnson and Samworth (2005) or Dorea and Oliveira (2014)). For r > 0

the Mallows distance d
r

(F,G) between two distribution functions F and G

is defined by

d
r

(F,G) = inf
(X,Y )

�
E(|X � Y |r)

 
1/r

, X
d

= F, Y
d

= G

where the infimum is taken over all random vectors (X, Y ) with marginal

distributions F and G (
d

= : equality in distribution). The key connection

between convergence in Mallows distance and the convergence in distribution

was established by Bickel and Freedman(1981) for distributions with finite

r-th moments:

d
r

(F
n

, G) !
n

0 , F
n

d! G and

Z
|x|rdF

n

(x) !
n

Z
|x|rdG(x).

4
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The above arguments naturally induce us to make use of Mallows distance

in order to strengthen the convergence (0.0.1). Other authors have studied

di↵erent types of convergence : moment convergence in Pickands (1968),

convergence in density in Sweeting (1985) and large deviation in Goldie and

Smith (1987) and Vivo (2015).

In Chapter 1, we present preliminary concepts and results that are funda-

mental for understanding the subsequent chapters. It includes some details

on extreme distributions, regularly varying functions, stable distributions,

Mallows distance and regenerative processes.

In Chapter 2 we will focus on convergence to Fréchet distribution �
↵

. For

↵ � 1 and for {X
n

} a sequence of i.i.d. random variables our Theorem 2.3.1

provides su�cient conditions for

lim
n!1

d
↵

(F
Mn ,�↵

) = 0 and F
Mn

d! �
↵

where M
n

=
X

(n)

� b
n

a
n

and M
n

d

= F
Mn . The case 0 < ↵ < 1 is treated in

Corollary 2.4.5. In Theorem 2.3.8 we introduce the max-domain of strong

normal attraction of �
↵

. The general case is treated in Theorem 2.4.2 where

the assumption of independency of the X
n

’s is dropped but Lindeberg’s type

conditions are added :

1

n

nX

i=1

E
�
|X

i

� Y
i

|↵1
(|Xi�Yi|>bn

1
↵
)

 
!
n

0, 8b > 0

where {Y
n

} is a sequence of i.i.d. random variables with common distribution

�
↵

.

Though our Theorem 2.4.2 does not requires independency or same dis-

tribution for the X
n

’s, the Lindeberg condition imposes a closeness with

5
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respect to a sequence of i.i.d. random variables. This suggests that processes

{X
n

}
n�0

that admit a decomposition into independent blocks could well be

studied via Mallows distance. That is the case of Markov chains and more

generally the regenerative processes. Namely, processes for which there exist

integer-valued random variables 0 < T
0

< T
1

< . . . and such that the cycles

C
1

= {X
n

, T
0

 n < T
1

}, C
2

= {X
n

, T
1

 n < T
2

}, · · ·

are i.i.d. random vectors. In Chapter 3, our approach for regenerative pro-

cesses will also allow us to treat all three types of extreme distribution �
↵

(Fréchet) ,  
↵

(Weibull) and ⇤ (Gumbel). We borrow some of the arguments

from Rootzén (1988) by considering the submaxima over the cycles,

⇠
j

= max{X
n

: T
j�1

 n < T
j

} j � 1.

Then approximate X
(n)

= max{X
1

, X
2

, . . . , X
n

} by max{⇠
0

, . . . , ⇠vn} where

v
n

= inf{k;T
k

> n}. Our Theorem 3.2.2, for 1  ↵0 and under the framework

of i.i.d. random variables, exhibits su�cient conditions for the convergence

d
↵

0(F
Mn ,�↵

) !
n

0, d
↵

0(F
Mn , ↵

) !
n

0 and d
↵

0(F
Mn ,⇤) !n 0.

The Corollary 3.3.2 characterizes the max-domain of attraction for �
↵

,  
↵

and ⇤. The Lemma 3.3.4 provides moments convergence and Theorem 3.3.5

summarizes the main results for regenerative processes. And, as byproduct,

one obtains characterization for domains of attraction for Markov chains with

general state space.

Finally, it is worth pointing out that from the practical point of view it

is fairly simple to compute d
↵

(F
Mn , G), being G one of the three extremal

6
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distribution. The representation theorem from Dorea and Ferreira (2012)

allow us to take Y ⇤ d

= G, the joint distribution (M
n

, Y ⇤)
d

= F
Mn ^G and set

d↵
↵

(F
Mn , G) = E{|M

n

� Y ⇤|↵}.

7



Chapter 1

Preliminaries

1.1 Introduction

In this chapter we gather the necessary concepts and known results to be

used in the subsequent chapters. As basic references we refer the reader to

Galambos (1978), Resnick (1987) and Embrechts et al. (1997) for extreme

values and regular variation; Breiman (1992), Ibragimov et al. (1971) and

Samorodnistky and Taqqu (2000) for stable distributions; Mallows (1972),

Bickel and Friedman (1981) and Dorea and Ferreira (2012) for Mallows dis-

tance; and Asmussen (1987) and Athreya and Lahiri (2006) for regenerative

processes.

Some Notation and Terminology:

i.i.d. : independent and identically distributed

d! : convergence in distribution

d

= : equality in distribution

d
r

(F,G) : Mallows distance of r-th order

L
r

: class of distributions with finite r-th moment



Chapter 1. Preliminaries

a.s. : almost surely, with probability 1

�
↵

: Fréchet distribution

 
↵

: Weibull distribution

⇤ : Gumbel distribution

D
max

(�
↵

) : max-domain of attraction of Fréchet

D
max

( 
↵

) : max-domain of attraction of Weibull

D
max

(⇤) : max-domain of attraction of Gumbel

S
↵

(�, �, µ) : ↵-stable distribution

G
↵

: ↵-stable distribution S
↵

(�, �, µ)

D(G
↵

) : domain of attraction of G
↵

RV
↵

: regularly varying of index ↵ at 1

F ^G : joint distribution H(x, y) = min{F (x), G(y)}

O(1) : O
n

(1) is bounded as n ! 1

o(1) : lim
n!1 o

n

(1) = 0

X
(n)

: max{X
1

, X
2

, · · · , X
n

}

M
n

: M
n

=
X

(n)

� b
n

a
n

a
n

⇠ b
n

: sequences a
n

and b
n

are such that lim
n!1

a
n

b
n

= 1

1.2 Extreme Distribution and Regular Vari-

ation

Classical Extreme Value Theory analyses distributional properties of

X
(n)

= max
�
X

1

, X
2

, · · · , X
n

 

and

X
(1)

= min
�
X

1

, X
2

, · · · , X
n

 

9



Chapter 1. Preliminaries

when X
1

, X
2

, · · · is a sequence of i.i.d. random variables with a common

distribution F . The distribution of X
(n)

and X
(1)

are easily computed by

P (X
(n)

 x) = P
�
X

1

 x,X
2

 x, . . . , X
n

 x
�
= F n(x)

P (X
(1)

 x) = 1� P
�
X

1

> x,X
2

> x, . . . , X
n

> x
�
= 1� (1� F (x))n.

If we define right end point as

!(F ) = sup{x;F (x) < 1}  1

and left end point as

⌫(F ) = inf{x;F (x) > 0} � �1

then

X
(n)

a.s�! !(F ) and X
(1)

a.s�! ⌫(F ).

The convergence above shows that a non-degenerate limiting distribution

does not exist unless we normalize X
(n)

or X(1). We will restrict our studies

mainly for the maxima since we can always apply the results for minima

through the relation

min
�
X

1

, X
2

, · · · , X
n

 
= �max

�
�X

1

,�X
2

, · · · ,�X
n

 
.

The problem reduces in finding the possible non-degenerate limiting dis-

tribution H such that for norming constants a
n

> 0 and b
n

we have

P
�X

(n)

� b
n

a
n

 x
�
= F n(a

n

x+ b
n

) !
n

H(x). (1.2.1)

10



Chapter 1. Preliminaries

Theorem 1.2.1 (Extremal Type Theorem) Suppose there exist constants a
n

>

0 and b
n

2 R such that we have (1.2.1). Then H is one of the following three

types:

Fréchet �
↵

(x) =

8
<

:

0 x < 0

exp{�x�↵} x � 0

Weibull  
↵

(x) =

8
<

:

exp{�(�x)↵} x < 0

1 x � 0

Gumbel ⇤(x) = exp{�e�x} x 2 R

where ↵ > 0 is a positive parameter.

As for the minima

P
�X

(1)

� b
n

a
n

 x
�
= 1� (1� F (a

n

x+ b
n

)n !
n

H 0(x).

The possible types for H 0 are :

Fréchet �0
↵

(x) =

8
<

:

1� exp{�(�x)�↵} x < 0

1 x � 0

Weibull  0
↵

(x) =

8
<

:

0 x < 0

1� exp{�x↵} x � 0

Gumbel ⇤0(x) = 1� exp{�ex} x 2 R

where ↵ > 0 is a positive parameter.

We say that two distributions H
1

and H
2

are of the same type if

H
2

(x) = H
1

(ax+ b)

for some constants a > 0 and b 2 R.

11



Chapter 1. Preliminaries

Definition 1.2.2 A non-degenerate random variable Y is called max-stable

if for every n � 1 satisfies

max
�
Y
1

, Y
2

, · · · , Y
n

 
d

= a
n

Y + b
n

where Y
1

, . . . , Y
n

are independent copies of Y and {a
n

} and {b
n

} are sequences

of constants with a
n

> 0.

Max-stable distributions are the only limit laws for normalized maxima.

Theorem 1.2.3 The class of max-stable distributions coincides with the class

of all possible (non-degenerate) limit laws for normalized maxima of i.i.d.

random variables. Moreover, for Y
d

= H we have:

(i) If H = �
↵

then a
n

= n1/↵ and b
n

= 0.

(ii) If H =  
↵

then a
n

= n�1/↵ and b
n

= 0.

(iii) If H = ⇤ then a
n

= 1 and b
n

= lnn.

Definition 1.2.4 We say a distribution F is in the max-domain of attrac-

tion of H (write F 2 D
max

(H) ) if for all n � 1 there exist constants a
n

> 0

and b
n

2 R such that

F n(a
n

x+ b
n

) !
n

H(x).

Finding necessary and su�cient conditions for F 2 D
max

(H) is funda-

mental for (1.2.1). Before characterizing the max-domain of attraction of

extreme value distributions, we will need some basic concepts related to reg-

ular variation and collect some fundamental properties of regularly varying

functions.

12



Chapter 1. Preliminaries

Definition 1.2.5 A measurable function U : R
+

! R
+

is regularly varying

at 1 with index ⇢ (write U 2 RV
⇢

) if for x > 0

lim
t!1

U(tx)

U(t)
= x⇢.

The case ⇢ = 0 corresponds to the so called slowly varying function.

Note that any function U 2 RV
⇢

with ⇢ 2 R can be written as U(x) =

x⇢l(x), where l is a slowly varying function. It’s enough to take l(x) =

x�⇢U(x).

Some of the properties of the regularly varying functions are related to

H�1. Suppose H is a nondecreasing function on R. With the convention that

the infimum of an empty set is +1 we define the (left continuous) generalized

inverse of H as

H�1(y) = inf{s : H(s) � y}

Proposition 1.2.6 Let U : R
+

! R
+

be a regularly varying at 1 with index

⇢. Then

(i) If U is increasing then ⇢ � 0.

(ii) If U is decreasing then ⇢  0.

(iii) If U is not decreasing and ⇢ 2 [0,1) then U�1 2 RV 1
⇢
.

Theorem 1.2.7 (Potter’s Bounds). Suppose U 2 RV
⇢

with ⇢ 2 R . Take

✏ > 0. Then there exists t
0

such that for x � 1 and t � t
0

(1� ✏)x⇢�✏ <
U(tx)

U(t)
< (1 + ✏)x⇢+✏.

13
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The following results give necessary and su�cient conditions for F 2

D
max

(H) when H is one of the three extreme value distributions and also

characterize a
n

and b
n

.

Theorem 1.2.8 F 2 D
max

(�
↵

) if and only if 1� F 2 RV�↵

. In this case

F n(a
n

x) !
n

�
↵

(x)

with a
n

= (1/(1� F ))�1(n).

Notice that this result implies in particular that every F 2 D
max

(�
↵

)

has an infinite right endpoint !(F ). Furthermore the constants a
n

form a

regularly varying sequence, more precisely a
n

= n1/↵l(n) for some slowly

varying function l .

Since  
↵

and �
↵

are closely related, indeed

 
↵

(�x�1) = �
↵

(x), x > 0.

Therefore one should expect closeness between D
max

(�
↵

) and D
max

( 
↵

) will

be closely related. The following theorem confirms this.

Theorem 1.2.9 F 2 D
max

( 
↵

) if and only if !(F ) < 1 and 1�F
�
!(F )�

1

x

�
2 RV�↵

. In this case

F n

�
a
n

x+ b
n

�
!
n

 
↵

(x), x < 0

where a
n

= !(F )� (1/(1� F ))�1(n) and b
n

= !(F ).

Theorem 1.2.10 F 2 D
max

(⇤) if and only if there exists a Von Mises func-

tion F ⇤ such that for x 2 (z
0

,!(F ))

1� F (x) = c(x)(1� F ⇤(x)) = c(x) exp{�
Z

x

z0

1

g(y)
dy
 

(1.2.2)

14



Chapter 1. Preliminaries

with

lim
x!!(F )

c(x) = c > 0.

[A distribution F ⇤ with right end point x
0

is a Von Mises function if there

exist z
0

< x
0

such that for x 2 (z
0

, x
0

) and c > 0

1� F ⇤(x) = c exp{�
Z

x

z0

1

g(y)
dy
 

where g is absolutely continuous on (z
0

, x
0

) and g(u) > 0, lim
u!x0

g0(u) = 0.]

In this case

F n(a
n

x+ b
n

) !
n

⇤(x)

where b
n

= (1/(1� F ))�1(n) and a
n

= g(b
n

).

It is possible to analyze the moments of F (x) when it belongs to one of

the max-domains of attraction of extreme value distributions.

Proposition 1.2.11 (i) If F (x) 2 D
max

(�
↵

) then

E[(X+)r] =

Z
+1

0

xrdF (x) < 1, for all r 2 (0,↵).

(ii) If F (x) 2 D
max

(⇤) then

E[(X+)r] =

Z
+1

0

xrdF (x) < 1, for all r 2 (0,1).

1.3 Stable Distributions

Stable distributions are fundamental for the study of the asymptotic be-

havior of partial sums of random variables. Let X
1

, X
2

, . . . be a sequence of

15
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i.i.d. random variables. Let S
n

= X
1

+· · ·+X
n

and consider a nondegenerate

distribution G such that

lim
n!1

P (
S
n

� B
n

A
n

 x) = G(x) (1.3.1)

where A
n

> 0 and B
n

2 R. Two important questions arise.

First: What is the form of the class of all limit distributions G?

Second: What are the necessary and su�cient conditions on the common

distribution function of X
1

, X
2

, ... for (1.3.1) hold?

These two questions lead to the stable laws and the domains of attraction

of the stable laws.

Definition 1.3.1 A random variable X is said to have a stable law if for

every integer k > 0, and X
1

, ..., X
k

independent with the same distribution

as X, there are constants a
k

> 0, b
k

such that

X
1

+X
2

+ · · ·+X
k

d

= a
k

X + b
k

. (1.3.2)

X is called strictly stable if (1.3.2) hold with b
k

= 0, for every k.

Proposition 1.3.2 X is the limit in distribution of normed sums if and only

if X has a stable law.

Definition 1.3.3 (Equivalent to Definition 1.3.1) A random variable X is

said to have a stable law if there are parameters 0 < ↵  2, � > 0, �1 

�  1 and µ real such that its characteristic function has the following form:

E{exp(itX)} =

8
<

:
exp{��↵|t|↵(1� i�(sign t) tan

⇡↵

2
) + iµt} if ↵ 6= 1,

exp{��↵|t|↵(1 + i�(sign t) ln |t|) + iµt} if ↵ = 1.
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The parameters ↵, �, � and µ are called respectively index of stability,

scale parameter, skewness parameter and shift parameter.

This characterization motivates to denote stable distribution by

S
↵

(�, �, µ).

Just a few of ↵-stable distribution are known in a close form. We present

them in the following example.

Example 1.3.4 (i) The Gaussian distribution S
2

(�, 0, µ) = N (µ, 2�2)

(ii) The Cauchy distribution S
1

(�, 0, µ)

(iii) The Lévy distribution S 1
2
(�, 1, µ)

Proposition 1.3.5 Let X
d

= S
↵

(�, �, µ) with 0 < ↵ < 2. Then

(i) X with ↵ 6= 1 (↵ = 1) is strictly stable if and only if µ = 0 (� = 0).

(ii) X + a
d

= S
↵

(�, �, µ+ a), a 2 R constant

(iii) X
d

= S
↵

(�, �, 0) () �X
d

= S
↵

(�,��, 0)

(iv) X is symmetric if and only if � = µ = 0. It is symmetric about µ if

and only if � = 0

Proposition 1.3.6 Let X
d

= S
↵

(�, �, µ) with 0 < ↵ < 2. Then

lim
x!1

x↵P (X > x) = C
↵

1 + �

2
�↵

and

lim
x!1

x↵P (X < �x) = C
↵

1� �

2
�↵

17
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where

C
↵

=

✓Z 1

0

x�↵ sin x dx

◆�1

=

8
>><

>>:

1� ↵

�(2� ↵) cos(⇡↵
2

)
if ↵ 6= 1,

2

⇡
if ↵ = 1

Remark 1.3.7 (a) Note that when ↵ is restricted to the range (0, 1) and �

is fixed at 1, the ↵-stable distribution has support (µ,1).

(b) If X
d

= S
↵

(�, 1, 0) then by Proposition 1.3.6 we have

lim
x!1

x↵P (X < �x) = 0.

That is P (X < �x) tends to 0 faster than x�↵.

(c) If X
d

= S
↵

(�,�1, 0) then by Proposition 1.3.6 we have

lim
x!1

x↵P (X > x) = 0.

That is P (X > x) tends to 0 faster than x�↵.

Proposition 1.3.8 Let X
d

= S
↵

(�, �, µ) with 0 < ↵ < 2. Then

E|X|k < 1 for any 0 < k < ↵ ,

E|X|k = 1 for any k � ↵ .

Definition 1.3.9 A distribution F is said to be in the domain of attraction

of a stable law G
↵

with exponent 0 < ↵  2 if there are sequences of constants

{A
n

} and {B
n

} with A
n

> 0 such that

(S
n

� B
n

)/A
n

d! Z

where Z
d

= G
↵

, S
n

=
P

n

j=1

X
j

and X
1

, , X
2

, . . . are i.i.d. random variables

with a common distribution F . Denote this by F 2 D(G
↵

).

18
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The following theorem give necessary and su�cient conditions for F 2

D(G
↵

).

Theorem 1.3.10 F is in the domain of attraction of a stable law with ex-

ponent 0 < ↵ < 2 if and only if there are constants M+ � 0 and M� � 0

with M+ +M� > 0 and such that

lim
y!1

F (�y)

1� F (y)
=

M�

M+

and for every ⇠ > 0

M+ > 0 ) lim
y!1

1� F (⇠y)

1� F (y)
=

1

⇠↵
,

M� > 0 ) lim
y!1

F (�⇠y)
F (�y)

=
1

⇠↵
.

It’s possible to analyze the moments of F when it belongs to domains of

attraction of ↵-stable distribution.

Theorem 1.3.11 If F belong to the domain of attraction of a stable law,

with index ↵ then
Z

+1

�1
|x|rdF (x) < 1, for any 0  r < ↵

and Z
+1

�1
|x|rdF (x) = 1, for any r > ↵.

1.4 Mallows Distance

The Mallows distance (1972) between two distributions functions F and

G generalizes the ”Wasserstein distance” appeared for the first time in 1970

(case r = 1). Thus, in the literature, the name distance of Wasserstein has

also been used instead of Mallows.
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Definition 1.4.1 For r > 0, the Mallows r-distance between distributions F

and G is given by

d
r

(F,G) = inf
(X,Y )

�
E(|X � Y |r)

 
1/r

, X
d

= F, Y
d

= G (1.4.1)

where the infimum is taken over all random vectors (X, Y ) with marginal

distributions F and G, respectively.

For r � 1 the Mallows distance represents a metric on the space of dis-

tribution functions

L
r

=
�
F :

Z

R
|x|rdF (x) < +1

 
.

There is a close connection between convergence in Mallows distance and the

convergence in distribution.

Theorem 1.4.2 (Bickel and Freedman (1981)). For r � 1 and for distribu-

tions G 2 L
r

and {F
n

}
n�1

⇢ L
r

we have

d
r

(F
n

, G) !
n

0 () F
n

d! G and

Z
|x|rdF

n

(x) !
n

Z
|x|rdG(x).

Theorem 1.4.3 (Dorea and Ferreira (2012)). Let r � 1, X⇤ d

= F , Y ⇤ d

= G

and (X⇤, Y ⇤)
d

= H, where H(x, y) = F (x) ^G(y) = min{F (x), G(y)}. Then

the following representation holds

dr
r

(F,G) = E
�
|F�1

(U)�G
�1
(U)|r

 
=

Z
1

0

|F�1
(u)�G

�1
(u)|rdu

= E
�
|X⇤ � Y ⇤|r

 
=

Z

R

2

|x� y|rdH(x, y) (1.4.2)

where U is uniformly distributed on the interval (0, 1) and 0 < u < 1.
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By making use of Mallows distance several Central Limit type results for

stable distributions were successfully derived.

Theorem 1.4.4 (Barbosa and Dorea (2009). Fix 0 < ↵ < 2. Let {X
n

}
n�1

be a sequence of independent random variables, with zero-mean if ↵ > 1. Let

G
↵

be a strictly ↵-stable distribution and assume that there exists a random

variable Y
d

= G
↵

such that for Y
1

, Y
2

, . . . independent copies of Y we have

for all b > 0

1

n

nX

i=1

E
�
|X

i

� Y
i

|↵1
(|Xi�Yi|>bn

2�↵
2↵

)

 
!
n

0 (1.4.3)

then

d
↵

(F
Sn , G↵

) !
n

0

where F
Sn

d

=
X

1

+ · · ·+X
n

� c
n

n1/↵

, being {c
n

}
n�1

a sequence of constants.

As a corollary of Theorem 1.4.4 for i.i.d. sequence we have:

Corollary 1.4.5 Under the hypotheses of Theorem 1.4.4 if, in addition, the

random variables X
1

, X
2

, . . . are i.i.d. and

d
↵

(F,G
↵

) < 1. (1.4.4)

then there exists a sequence of constants {c
n

}
n�1

such that

d
↵

(F
Sn , G↵

) !
n

0 ,

where F
Sn

d

=
X

1

+ · · ·+X
n

� c
n

n1/↵

.

Also, for 1  ↵ < 2 and under the same notation as above Corollary there

is an equivalence between convergence in Mallows distance and convergence

in distribution (cf. Dorea and Ferreira (2012))
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Theorem 1.4.6 Let 1  ↵ < 2. The condition

d
↵

(F,G
↵

) < 1

guarantees the equivalence

d
↵

(F
Sn , G↵

) !
n

0 () F
Sn

d! G .

1.5 Regenerative Process

The classical concept for a stochastic process {X
n

}
n�0

to be regenerative

means, in intuitive terms, that the process can be splitted into i.i.d. cycles.

That is, we assume that a collection of time points exists, so that between

any two consecutive time points in this sequence, (i.e. during a cycle), the

process {X
n

}
n�0

has the same probabilistic behavior. For references on this

section see Athreya and Lahiri (2006) or Embrechts et al. (1997).

Definition 1.5.1 A stochastic process {X
n

}
n�0

with values in a measur-

able space (E, E) is regenerative if there exist integer-valued random vari-

ables 0 < T
0

< T
1

. . . which split the sequence up into independent ”cycles”

or ”excursions”, C
0

, C
1

, . . . . If

C
0

= {X
n

, 0  n < T
0

} , C
1

= {X
n

, T
0

 n < T
1

} , . . .

then C
1

, C
2

, . . . are i.i.d. random vectors. Clearly {T
k

}1
k=0

is a renewal

process i.e.

Y
0

= T
0

, Y
1

= T
1

� T
0

, Y
2

= T
2

� T
1

, . . .

are i.i.d. random variables. A regenerative stochastic process {X
n

}
n�0

is

called zero-delayed when the first cycle, C
0

has the same distribution as all

the other cycles.
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The notation P
0

for the probability and E
0

for the expectation will be

used for the zero-delayed case. Also, if the process has initial distribution

� then we shall write P
�

and E
�

, respectively. Analogously, P
x

and E
x

will

stand for the case � gives probability 1 to the point {x}.

Proposition 1.5.2 Let {X
n

}
n�0

be a regenerative process with renewal times

{T
n

}
n�0

then

(i) If � : E ! F is any measurable mapping, then {�(X
n

)}
n�0

is regener-

ative process with the same renewal times.

(ii) Let v
n

= inf{k;T
k

> n} then the Law of Large Numbers applies
v
n

n
!
n

1

µ
Y

,

where µ
Y

= E(Y
1

) = E(T
1

� T
0

), expected length of a cycle.

Renewal theory plays a key role in the analyze of the asymptotic struc-

ture of many kinds of stochastic processes, and especially in the development

asymptotic properties of general Markov chains. The underlying ground

consists in the fact that limit theorems proved for sums of independent ran-

dom vectors may be extended to regenerative processes. Any Markov chain

{X
n

}
n�0

with a countable state space S that is irreducible and recurrent is re-

generative with {T
i

}
i�1

being the times of successive returns to a given state

{x}. Harris chains on a general state space that possess an atom, are special

cases of regenerative processes. And this illustrates the range of applications

of the regenerative methods.

Now, let {X
n

}
n�0

be a Markov chain on a measurable space (E, E) with

transition probability function P (., .). That is, for all A 2 E , we have

P (X
n+1

2 A|�(X
0

, X
1

, · · · , X
n

)) = P (X
n+1

2 A|�(X
n

)) = P (X
n

, A) a.s.
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for any given initial distribution of X
0

. We have used the notation �(X
n

)

for the sub-�-algebra of E generated by X
n

and �(X
0

, X
1

, · · · , X
n

) the one

generated by (X
0

, X
1

, · · · , X
n

).

For any A 2 E we define the first entrance time to A as

⌧
A

= ⌧ 1
A

=

8
<

:

inf{n : n � 1, X
n

2 A}

1 if X
n

/2 A 8 n � 1.

Note that ⌧
A

or ⌧ 1
A

is a stopping time with respect to the filtration {F
n

}
n�1

where F
n

= �(X
0

, X
1

, · · · , X
n

). We can also define the successive return

times to A by

⌧ j
A

= inf{n : n � ⌧ j�1

A

, X
n

2 A}, j � 2.

Definition 1.5.3 Let  be a nonzero �-finite measure on (E, E).

(i) The Markov chain {X
n

}
n�0

(or equivalently, its transition function

P (., .)) is said to be  -irreducible (or irreducible in the sense of Harris

with reference measure  ) if for any A 2 E and all x 2 E we have

 (A) > 0 ) P
x

(⌧
A

< 1) > 0.

(ii) A Markov chain{X
n

}
n�0

that is Harris irreducible with respect to  is

said to be Harris recurrent if for all x 2 E we have

A 2 E ,  (A) > 0 ) P
x

(⌧
A

< 1) = 1.

(iii) The set A 2 E is an atom if there exists a probability measure ⌫ such

that P (x,B) = ⌫(B), x 2 A and B 2 E.The set A is an accessible atom

for a  -irreducible Markov chain if  (A) > 0 and for all x 2 E and

y 2 E we have P (x, .) = P (y, .).
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Remark 1.5.4 If a chain has an accessible atom then the times at which

the chain enters the atom are regeneration times.

When the chain is Harris recurrent then, for any initial distribution, the

probability of returning infinitely often to the atom A is equal to one. By

the strong Markov property it follows that, for any initial distribution �, the

sample paths of the chain can be divided into i.i.d. blocks of random length

corresponding to consecutive visits to A. The cycles can be defined by

C
1

= {X
⌧

1
A
, X

⌧

1
A+1

, . . . , X
⌧

2
A
}, . . . , C

n

= {X
⌧

n
A
, X

⌧

n
A+1

, . . . , X
⌧

n+1
A

}, . . .

Characterization of max-domain of attraction for regenerative process will

be treated in our Chapter 3.

25



Chapter 2

Mallows Distance Convergence

to Fréchet Distribution

2.1 Introduction

Mallows distance has been successfully used to derive Central Limit The-

orem type results for heavy-tailed stable distributions (see, e.g., Johnson

and Samworth (2005) or Dorea and Oliveira (2014)). On the other hand,

the regularly varying behavior of tail distributions establishes the connection

between stable laws and the Fréchet distributions. The connection is treated

in section 2.2. This leads us to study the role of Mallows distance in char-

acterizing the domain of attraction of �
↵

and to provide conditions under

which

d
↵

(F
Mn ,�↵

) !
n

0 ) F
Mn

d! �
↵

, (2.1.1)

where for given random variables X
1

, X
2

, . . . we define

M
n

=
max{X

1

, . . . , X
n

}
n1/↵

and M
n

d

= F
Mn . (2.1.2)
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In section 2.3 we study the case that {X
n

}
n�1

is a sequence of i.i.d. ran-

dom variables. For ↵ � 1 our Theorem 2.3.1 provides su�cient conditions for

(2.1.1). The case 0 < ↵ < 1 is treated in Corollary 2.4.5. We will give some

examples that clarify the connection between stable laws and Fréchet distri-

bution and the role of Mallows distance. Theorem 2.3.8 provides su�cient

conditions for equivalence between Mallows convergence and convergence in

distribution.

In Section 2.4 we study the case when i.i.d. hypothesis is dropped. The-

orem 2.4.2 proves that Lindeberg’s type conditions su�ces for (2.1.1). As a

side result moment convergences are also derived.

2.2 Partial Sums Versus Fréchet Distribution

With the recognition of the importance of stable laws the interrelation

between CLT for stable distributions and asymptotics for EVT emerged.

This relation is due to the behavior of distribution tails. In fact, if S
n

=
P

n

j=1

X
j

and for some constants A
n

> 0 and B
n

we have the convergence in

distribution

S
n

� B
n

A
n

d! Y
↵

(2.2.1)

where Y
↵

has ↵-stable distribution with 0 < ↵ < 2 then the common distri-

bution F of the X
n

’s has regularly varying tails of index �↵, RV�↵

(either

left-tail or right-tail or both tails). As for the Fréchet distribution, if the

stabilized maximum converges

X
(n)

� b
n

a
n

d! �
↵

(2.2.2)
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then for the right-tail we have 1� F 2 RV�↵

. In fact, we have the following

proposition that, in a sense, extends Theorem 4.5.1 from Galambos (1978).

Proposition 2.2.1 Let {X
n

}
n�1

be a sequence of i.i.d. random variables

with common distribution function F . Assume F belongs to the domain

of attraction of a stable law with exponent ↵ < 2 and skewness parameter

� 6= �1. Then F 2 D
max

(�
↵

) and as for the constants A
n

> 0, a
n

> 0 in

(2.2.1) and (2.2.2) , respectively, the following relationship holds

a
n

/A
n

⇠ K, 0 < K < 1.

Proof. Since F is in domain of attraction of a stable law with exponent

↵ < 2 and the skewness parameter � 6= �1 we have, by Proposition 1.3.6

and Theorem 1.3.10, that 1 � F 2 RV�↵

. Theorem 1.2.8 concludes the first

part of the proof.

Now, we rewrite the 1� F 2 RV�↵

as

1� F (x) =
L(x)

x↵

(2.2.3)

where L is a slowly varying function. Since n[1� F (a
n

)] !
n

1 (cf Galambos

(1978)page 273) we have by (2.2.3)

nL(a
n

)

a↵
n

!
n

1. (2.2.4)

On the other hand, when F is in the domain of attraction of a stable law

with exponent ↵ < 2 then A
n

satisfies

n(1� F (A
n

x)) !
n

sx�↵ , x > 0 , 0 < s < +1
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(cf Ibragimov and Linnik (1971)). With x = 1 and (2.2.3), we can write

nL(A
n

)

A↵

n

!
n

s 0 < s < +1.

This along with (2.2.4) yields

(a
n

/A
n

)↵ ⇠ nL(a
n

)
1

s

nL(A
n

)
= s

L(a
n

)

L(A
n

)
= s

L
�
A

n

(a
n

/A
n

)
�

L(A
n

)

= s
L(a

n

)

L
�
a
n

(A
n

/a
n

)
� .

The right hand side always tends to s because either (a
n

/A
n

) or (A
n

/a
n

) is

bounded. ⇤

Remark 2.2.2 (i) If F (0) = 0 and F 2 D
max

(�
↵

) then there exists a

↵-stable law G
↵

with skewness parameter � = 1 such that F 2 D(G
↵

).

(ii) If F 2 D
max

(�
↵

)\D
min

(�0
↵

0) with 0 < ↵  ↵0 < 2 , then by Theorems

1.2.8 and 1.3.10 there exists a ↵-stable law G
↵

such that F 2 D(G
↵

).

Note that in this case we have

� 6= 1,�1 if ↵ = ↵0

and � = 1 if ↵ < ↵0

Next for the i.i.d. case, we explore the connection between maxima and the

partial sums.

2.3 The I.I.D. Case

Throughout this section we will assume that {X
n

}
n�1

is a sequence of

i.i.d. random variables with a common distribution F . The following theorem
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provide su�cient conditions for convergence to �
↵

in Mallows distance and

in distribution.

Theorem 2.3.1 Let ↵ � 1. Assume that d
↵

(F,�
↵

) < 1 then for M
n

de-

fined by (2.1.2) we have

lim
n!1

d
↵

(F
Mn ,�↵

) = 0 and F
Mn

d! �
↵

. (2.3.1)

Before proving the theorem the following preliminary results will be needed.

Lemma 2.3.2 For sequences of real numbers {x
n

}
n�1

and {y
n

}
n�1

we have

|max{x
1

, . . . , x
n

}�max{y
1

, . . . , y
n

}
��

 max
�
|x

1

� y
1

|, . . . , |x
n

� y
n

|
 

(2.3.2)

Proof. Suppose that max{x
1

, . . . , x
n

} = x
i

and max{y
1

, . . . , y
n

} = y
j

. Then

we have

x
i

� y
j

 x
i

� y
i

 |x
i

� y
i

|

 max
�
|x

1

� y
1

|, . . . , |x
n

� y
n

|
 

and

y
j

� x
i

 y
j

� x
j

 |x
j

� y
j

|

 max
�
|x

1

� y
1

|, . . . , |x
n

� y
n

|
 
.

It follows

|max{x
1

, . . . , x
n

}�max{y
1

, . . . , y
n

}
�� = |x

i

� y
j

|

 max
�
|x

1

� y
1

|, . . . , |x
n

� y
n

|
 

This completes the proof. ⇤
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Lemma 2.3.3 Let ⇠
1

, ⇠
2

, . . . be i.i.d. random variables. Assume that for

some � > 0 we have E{|⇠
n

|�} < 1. Then

1

n
E{|⇠

(n)

|�} !
n

0 , ⇠
(n)

= max{⇠
1

, . . . , ⇠
n

}. (2.3.3)

Proof. Let G
d

= ⇠
n

and !(G) = sup{x : G(x) < 1}.

(i) If !(G) < 1 then we can choose ✏ > 0 small enough such that
R

!(G)

!(G)�✏

|x|�dG(x) is small. Now,

1

n
E{|⇠

(n)

|�} =
1

n

Z
!(G)

�1
|x|�dGn(x)

=

Z
!(G)

�1
|x|�Gn�1(x)dG(x)

=

Z
!(G)�✏

�1
|x|�Gn�1(x)dG(x) +

Z
!(G)

!(G)�✏

|x|�Gn�1(x)dG(x)

 Gn�1(!(G)� ✏)

Z
!(G)�✏

�1
|x|�dG(x) +

Z
!(G)

!(G)�✏

|x|�dG(x).

Since E{|⇠
n

|�} < 1 and Gn�1(!(G)� ✏) !
n

0, (2.3.3) follows.

(ii) If !(G) = 1 then we can choose d large enough so that
R1
d

|x|�dG(x)

is small and 0 < G(d) < 1. Now,

1

n
E{|⇠

(n)

|�} =
1

n

Z
+1

�1
|x|�dGn(x) =

Z
+1

�1
|x|�Gn�1(x)dG(x)

=

Z
d

�1
|x|�Gn�1(x)dG(x) +

Z
+1

d

|x|�Gn�1(x)dG(x)

 Gn�1(d)

Z
d

�1
|x|�dG(x) +

Z
+1

d

|x|�dG(x).
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Since E{|⇠
n

|�} < 1 and Gn�1(d) !
n

0, result follows. ⇤

Proof of Theorem 2.3.1. Let Y ⇤
1

, Y ⇤
2

, . . . be i.i.d. random variables

with common distribution �
↵

. Since �
↵

is max-stable we have

max{Y ⇤
1

, Y ⇤
2

, . . . , Y ⇤
n

}
n1/↵

d

= �
↵

. (2.3.4)

By (1.4.1) and (2.1.2) we have

d↵
↵

(F
Mn ,�↵

)  E
���M

n

� max{Y ⇤
1

, . . . , Y ⇤
n

}
n1/↵

��↵ 

=
1

n
E
���max{X

1

, . . . , X
n

}�max{Y ⇤
1

, . . . , Y ⇤
n

}
��↵ 

 1

n
E
���max{|X

1

� Y ⇤
1

|, . . . , |X
n

� Y ⇤
n

|}
��↵ .

In the last inequality we have used (2.3.2).

We may take Y ⇤
n

satisfying (X
n

, Y ⇤
n

)
d

= F ^ �
↵

, n = 1, 2, . . . . Since

d
↵

(F,�
↵

) < 1, we have by representation Theorem 1.4.2

d↵
↵

(F,�
↵

) = E{|X
n

� Y ⇤
n

|↵} < 1 , n = 1, 2, . . . .

Let ⇠
n

= X
n

� Y ⇤
n

, n = 1, 2, . . . , so we have E{|⇠
n

|↵} < 1. Using Lemma

2.3.3 we have

d↵
↵

(F
Mn ,�↵

) =
1

n
E{|⇠

(n)

|↵} !
n

0.

Now, take Y ⇤ d

= �
↵

and (M
n

, Y ⇤)
d

= F
Mn ^�↵

then by representation Theo-

rem 1.4.2

d↵
↵

(F
Mn ,�↵

) = E{|M
n

� Y ⇤|↵} !
n

0.

Now from the ↵ mean convergence follows that M
n

d! Y ⇤ or, equivalently,

F
Mn

d! �
↵

. ⇤
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Remark 2.3.4 (a) The proof of Theorem 2.3.1 shows that under the as-

sumption d
↵

(F,�
↵

) < 1 we have

d
↵

(F
Mn ,�↵

) !
n

0 ) F
Mn

d! �
↵

. (2.3.5)

(b) Let G
↵

= S
↵

(�, �, µ) with � 6= �1. By Proposition 2.2.1 if F 2 D(G
↵

)

then F 2 D
max

(�
↵

) and F
Mn

d! �
↵

. From Johnson and Samworth

(2005) we have:

if 1  ↵ < 2 and d
↵

(F,G
↵

) < 1 then F 2 D(G
↵

).

It does not follows that d
↵

(F,�
↵

) < 1 as the left tail
R

0

�1 |x|↵1
(x0)

dF (x)

needs to be finite. By Proposition 1.3.6 the finiteness can be assumed if

� = 1. Thus if d
↵

(F,G
↵

) < 1 with G
↵

= S
↵

(�, 1, µ) then d
↵

(F,�
↵

) <

1 and (2.3.1) hold.

The following examples illustrates the above remarks.

Example 2.3.5 Let F = G
1

= S
1

(1, 0, 0), the standard Cauchy distribution.

Then F 2 D(G
1

) and d
1

(F,G
1

) = 0. By Theorem 1.3.10 we have 1 � F 2

RV�1

and by Theorem 1.2.8 we have F 2 D
max

(�
1

). Since

Z
0

�1
|x|d�

1

(x) = 0 and

Z
0

�1
|x|dF (x) = 1

we can not have d
1

(F,�
1

) < 1.

Example 2.3.6 Assume F = G 1
2
= S 1

2
(1, 1, 0), the Lévy distribution func-

tion

F (x) = 2

✓
1�H(

p
1/x)

◆
, x > 0
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where H is the distribution function of N (0, 1) (cf Samorodnitsky and Taqqu

(2000)). Clearly F 2 D(G 1
2
) and d 1

2
(F,G 1

2
) = 0. Since 1 � F 2 RV� 1

2
we

also have F 2 D
max

(� 1
2
). We can write

H(
p

1/x) =
1

2
+

1p
2⇡

x� 1
2
�
1 + x�1O(1)

�

where lim
x!1

|O(1)| = k < 1. It follows that for some constant c we have

1� F (x) = cx� 1
2
�
1 + x�1O(1)

�
. (2.3.6)

Our Theorem 2.3.8 will show that in this case we will have

d 1
2
(F,� 1

2
) < 1.

Example 2.3.7 We borrow from Dorea and Ferreira (2012) the following

example that shows

F 2 D
max

(�
↵

) 6) d
↵

(F,�
↵

) < 1.

Define

F (x) =

8
>>>><

>>>>:

0 x < 0

1

2
0  x < 1

1� 1

2
x�1

1

1 + log x
x � 1.

Then 1� F 2 RV�1

and F 2 D
max

(�
1

). Write for x > 1

1� �
1

(x) = 1� e�x

�1
= x�1[1 + b

�1(x)]

1� F (x) = x�1[1 + b
F

(x)]
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where

b
�1(x) = x� 1� xe�x

�1
= x�1O(1)

b
F

(x) =
1

2

1

1 + log x
� 1.

Let u+ > 1/2 such that ��1

1

(u+) ^ F�1(u+) > 1. Then for u � u+ we

have

F�1(u) = inf{x : 1� F (x) < 1� u}

=
1

1� u

�
1 + b

F

(F�1(u))
�

and

��1

1

(u) =
1

1� u

�
1 + b

�1(�1

�1(u))
�

=
1

1� u
(1 +

O(1)

�
1

�1(u)
).

By (1.4.2) with U
d

= U [0, 1],

d
1

(F,�
1

) = E
���F�1(U)� ��1

1

(U)
�� 

= E
��� 1

1� U
� F�1(U)� 1

1� U
+ ��1

1

(U)
�� 

� E
����� 1

1� U
� F�1(U)

���
�� 1

1� U
� ��1

1

(U)
���� .

�
����E
��� 1

1� U
� F�1(U)

�� � E
��� 1

1� U
� ��1

1

(U)
�� 
����.

We will show that the first expectation is finite but not the second. Thus we

can not have d
1

(F,�
1

) < 1. Let Y
d

= �
1

and X
d

= F . Then ��1

1

(U)
d

= Y
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and F�1(U)
d

= X.

E
��� 1

1� U
� ��1

1

(U)
��1

(U�u)

 
= E

��� 1

1� U
� 1

1� U
(1 +

O(1)

�
1

�1(U)
)
��1

(U�u)

 

= E
��� 1

1� U

O(1)

�
1

�1(U)

��1
(U�u)

 

= E
��� 1

1� �
1

(Y )

O(1)

Y

��1
(Y��

�1
1 (u))

 

= E
� |O(1)|
1 + b

�1(Y )
1
(Y��

�1
1 (u))

 

< 1 .

But

E
��� 1

1� U
� F�1(U)

��1
(U�u)

 
= E

��� 1

1� U
b
F

(F�1(U))
��1

(U�u)

 

= E
��� 1

1� F (X)
b
F

(X)
��1

(X�F

�1
(u))

 

= E
���X(1 + 2 logX)

��1
(X�F

�1
(u))

 

= 1.

The above example shows that we can not expect the convergence of

(2.3.5) to hold for all F 2 D
max

(�
↵

) and (2.3.6) suggests the subdomain to

be considered. For constants c > 0 and � > 0

C(�
↵

) = {F : 1� F (x) = cx�↵(1 + x��O(1)), x > x
0

> 0}.

By analogy to stable laws we may call C(�
↵

) max domain of strong normal

attraction of �
↵

.

Theorem 2.3.8 Let ↵ � 1 and X
d

= F 2 C(�
↵

). Assume that

E{|X|↵1
(X0)

} < 1.
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Then

d
↵

(F
Mn ,�↵

) !
n

0 () F
Mn

d! �
↵

.

Proof. By Remark 2.3.4 (a) and Theorem 2.3.1 it is enough to prove d
↵

(F,�
↵

) <

1. Let

F (x) = 1� cx�↵(1 + x��O(1)) , x > x
0

> 0.

Define the following auxiliary distribution

H(x) =

8
<

:

0 , x < (2c)1/↵

1� cx�↵ , x > (2c)1/↵.

First, we show for this auxiliary distribution H that

d↵
↵

(F,H) = E{|F�1(U)�H�1(U)|↵} < 1 , U
d

= U [0, 1]. (2.3.7)

Let x⇤ > x
0

such that F (x⇤) � 1

2

and |x��

⇤ O(1)| < 1

3

. Then for x > x⇤ we

have F (x) � 1

2

and for u � 1

2

,

H�1(u) =
� c

1� u

�
1/↵

.

Now,

x�H�1(F (x)) =
⇥
x� (

x↵

1 + x��O(1)
)1/↵

⇤

= x
⇥
1� (

1

1 + x��O(1)
)1/↵

⇤
.

Since

| x��O(1)

1 + x��O(1)
|  1

2

we can use the inequality

|1� z�|  |1� z|� for |1� z|  1

2
and 0 < �  1
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and

��1�
� 1

1 + x��O(1)

�
1/↵

�� 
�� x��O(1)

1 + x��O(1)

��1/↵

 (
1

2
)1/↵|x��O(1)|1/↵.

Now,

E
���F�1(U)�H�1(U)

��↵1
(U�F (x))

 

= E
���X �H�1(F (X))

��↵1
(X�x)

 

= E
�
|X|↵

��1�
� 1

1 + x��O(1)

�
1/↵

��↵1
(X�x)

 

 E
�
|X|↵(1

2
)1/↵|X|��/↵O(1)

 

< 1.

Clearly if u < 1

2

then H�1(u) = 0. We may assume F (x) < 1

2

if x < 0,

E
���F�1(U)�H�1(U)

��↵1
(U<

1
2 )

 
 E

�
|X|↵1

(X<0)

 
< 1.

By Theorem 1.4.2 we have d
↵

(F,H) < 1. Similarly write

1� �
↵

(x) = x�↵ + x�2↵O(1)

and proceed analogously to show that d
↵

(H,�
↵

) < 1. Since d
↵

, for ↵ � 1,

is a metric we have

d
↵

(F,�
↵

)  d
↵

(F,H) + d
↵

(H,�
↵

) < 1

This concludes the proof. ⇤
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2.4 The General Case

In the i.i.d. case we explored the connection between maxima and the

partial sums, for latter results are known when X
1

, X
2

, . . . are not identically

distributed or when a dependency structure is assumed, see for example ,

Johnson and Samworth (2005) or Barbosa and Dorea (2010) . One should

expect to inherit some of these results for the maxima. On the other hand,

it is intuitive that for the extremes the dependency structure would not play

a central role as in the case of partial sums. Indeed, our Theorem 2.4.2

shows that under Linderberg’s type conditions we have the desired Mallows

convergence.

Let {X
n

}
n�1

be a general sequence of random variables. We will be using

the following well-known inequalities,

E
���X

1

+ · · ·+X
n

��r 
nX

j=1

E
�
|X

j

|r
 
, 0 < r  1 (2.4.1)

and

E
���X

1

+ · · ·+X
n

��r  nr�1

nX

j=1

E
�
|X

j

|r
 
, r > 1. (2.4.2)

Lemma 2.4.1 Let ↵ > 0 and let {A
n

}
n�1

be any sequence of events. Then

we have the following inequalities

�
max{|X

1

|, . . . , |X
n

|}
�
↵  max

�
|X

1

|↵, . . . , |X
n

|↵
 
, (2.4.3)

max{X
1

, . . . , X
n

}  max
�
|X

1

|1
A1 , . . . , |Xn

|1
An

 
+

max
�
|X

1

|1
A

c
1
, . . . , |X

n

|1
A

c
n

 
(2.4.4)

39



Chapter 2. Mallows Distance Convergence to Fréchet Distribution

and

max{|X
1

|, . . . , |X
n

|} 
nX

j=1

|X
j

|. (2.4.5)

Proof. For any sequence of real number (2.4.3) and (2.4.5) hold trivially.

Let A
n

⇢ ⌦ and assume that for some ! 2 ⌦ we have

max{X
1

(!), . . . , X
n

(!)} = X
i

(!).

If ! 2 A
i

then

max{X
1

, . . . , X
n

}(!) = X
i

(!)  |X
i

(!)|1
Ai(!)

 max
�
|X

1

|1
A1 , . . . , |Xn

|1
An

 
(!)

and (2.4.4) holds.

If ! 2 Ac

i

then

max{X
1

, . . . , X
n

}(!) = X
i

(!)  |X
i

(!)|1
A

c
i
(!)

 max
�
|X

1

|1
A

c
1
, . . . , |X

n

|1
A

c
n

 
(!)

and (2.4.4) follows. ⇤

Now we can present the following theorem in general case.

Theorem 2.4.2 Let M
n

be defined by (2.1.2) . Let {Y
n

}
n�1

be a sequence

of i.i.d. random variables with common distribution �
↵

. Assume that for all

b > 0

1

n

nX

j=1

E
�
|X

j

� Y
j

|↵1
(|Xj�Yj |>bn

1/↵
)

 
!
n

0. (2.4.6)
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Then

lim
n!1

d
↵

(F
Mn ,�↵

) = 0

.

Proof. Since �
↵

is a max-stable distribution we have

max{Y
1

, . . . , Y
n

}
n1/↵

d

= �
↵

.

By inequalities (2.3.2), (2.4.1)–(2.4.5) we can write,

d↵
↵

(F
Mn ,�↵

)  E
���M

n

� max{Y
1

, . . . , Y
n

}
n1/↵

��↵ 

 1

n
E
���max{X

1

, . . . , X
n

}�max{Y
1

, . . . , Y
n

}
��↵ 

 1

n
E
�⇥

max{|X
1

� Y
1

|, . . . , |X
n

� Y
n

|}
⇤
↵

 

 1

n
E
�⇥

max
1jn

|X
j

� Y
j

|1
(|Xj�Yj |bn

1/↵
)

+ (2.4.7)

max
1jn

|X
j

� Y
j

|1
(|Xj�Yj |>bn

1/↵
)

⇤
↵

 

 c(↵)

n

✓⇥
E
�
max
1jn

|X
j

� Y
j

|1|Xj�Yj |bn

1/↵
)

 ⇤
↵

+ (2.4.8)

⇥
E
�
max
1jn

|X
j

� Y
j

|1
(|Xj�Yj |>bn

1/↵
)

 ⇤
↵

◆

 c(↵)

n

✓
E
�
max
1jn

|X
j

� Y
j

|↵1|Xj�Yj |bn

1/↵
)

 
+ (2.4.9)

E
�
max
1jn

|X
j

� Y
j

|↵1
(|Xj�Yj |>bn

1/↵
)

 ◆

 c(↵)b↵ +
c(↵)

n

nX

j=1

E
�
|X

j

� Y
j

|↵1
(|Xj�Yj |>bn

1/↵
)

 

where c(↵) = 1 if 0 < ↵ < 1 and c(↵) = 2↵�1 if ↵ � 1. In (2.4.7), (2.4.8) and
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(2.4.9) we have used (2.4.4), (2.4.1) or (2.4.2) and (2.4.3) , respectively. Since

b is arbitrary, it can be chosen su�ciently small. Using (2.4.6) conclusion

follows. ⇤

Remark 2.4.3 (a) By reviewing the proof of Theorem 2.4.2 we can see

that if we replace the condition (2.4.6) by a weaker condition

E
�
max
1jn

|X
j

� Y
j

|↵1
(|Xj�Yj |>bn

1/↵
)

 
!
n

0.

the result still holds.

(b) Theorem 2.4.2 dispenses the condition of an i.i.d. sequence {X
n

}
n�1

,

while provides a mode of convergence stronger than convergence in dis-

tribution.

(c) Though our Theorem 2.4.2 does not requires independency or same

distribution for the X
n

’s, the Lindeberg condition imposes a closeness

with respect to a sequence of i.i.d. random variables. This suggests that

processes {X
n

}
n�0

that admit a decomposition into independent blocks

could well be studied via Mallows distance. That is the case of Markov

chains and more generally the regenerative processes that we treat it in

the following chapter.

The following proposition shows that when {X
n

}
n�1

is a sequence of i.i.d.

random variables the Linderberg condition (2.4.6) reduces to the requirement

that d
↵

(F,�
↵

) < 1.

Proposition 2.4.4 Under hypothesis of Theorem 2.4.2 if {X
n

}
n�1

is a se-

quence of i.i.d. random variables with common distribution F then condition

(2.4.6) is equivalent to d
↵

(F,�
↵

) < 1.
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Proof. (i)()) For j = 1, 2, . . . we have d↵
↵

(F,�
↵

)  E{|X
j

� Y
j

|↵}. So we

can write

d↵
↵

(F,�
↵

)  1

n

nX

j=1

E
�
|X

j

� Y
j

|↵
 

 1

n

✓
E
�
|X

j

� Y
j

|↵1
(|Xj�Yj |bn

1/↵
)

 
+

E
�
|X

j

� Y
j

|↵1
(|Xj�Yj |>bn

1/↵
)

 ◆

 b↵n+
1

n

nX

j=1

E
�
|X

j

� Y
j

|1
(|Xj�Yj |>bn

1/↵
)

 
.

Condition (2.4.6) follows that for each ✏ > 0 exists n
0

= n
0

(✏) such that,

8n � n
0

1

n

nX

j=1

E
�
|X

j

� Y
j

|↵1
(|Xj�Yj |>bn

1/↵
)

 
< ✏

that follows 8 n � n
0

d↵
↵

(F,�
↵

)  b↵n
0

+ ✏ < 1 .

(ii) (()Assume d
↵

(F,�
↵

) < 1. For some X
d

= F and Y
d

= �
↵

we have

d↵
↵

(F,�
↵

) = E
�
|X � Y |↵

 
. We may take (X

j

, Y
j

)
d

= (X, Y ) , j = 1, 2, . . . .

Thus

1

n

nX

j=1

E
�
|X

j

� Y
j

|↵1
(|Xj�Yj |>bn

1/↵
)

 

= E
�
|X

j

� Y
j

|↵1
(|Xj�Yj |>bn

1/↵
)

 
!
n

0

and (2.4.6) follows. ⇤

This will allow us to extend Theorem 2.3.1 for ↵ > 0.
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Corollary 2.4.5 Let ↵ > 0. Let {X
n

}
n�1

be a sequence of i.i.d. random

variables with common distribution F . If d
↵

(F,�
↵

) < 1 then

d
↵

(F
Mn ,�↵

) !
n

0.

As a corollary of Theorem 2.4.2 we also have the moment convergence for

M
n

.

Corollary 2.4.6 Under hypothesis of Theorem 2.4.2 if 1  ↵0 < ↵ we have

for Y
d

= �
↵

,

E
�
|M

n

|↵0 !
n

E
�
|Y |↵0 

and F
Mn

d! �
↵

. (2.4.10)

Proof. From Proposition 1.2.11 we have E
�
|Y |↵0 

< 1. Using the same

notation as in the proof of Theorem 2.4.2 we have

E
���max{Y

1

, . . . , Y
n

}
n1/↵

��↵0 
< 1.

By Liapounov’s inequality

d↵
0

↵

0(F
Mn ,�↵

)  E
���max{X

1

, . . . , X
n

}�max{Y
1

, . . . , Y
n

}
n1/↵

��↵0 


✓
E
���max{X

1

, . . . , X
n

}�max{Y
1

, . . . , Y
n

}
n1/↵

��↵ 
◆

↵

0
/↵

!
n

0.

Thus F
Mn 2 L

↵

0 and �
↵

2 L
↵

0 . Result follows as a direct application of

Theorem 1.4.2. ⇤

As noted in the Preliminaries, since

min{X
1

, . . . , X
n

} = �max{�X
1

, . . . ,�X
n

}
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analogous results for minima are derived. We just remember

�0
↵

(x) =

8
<

:

1� exp{�(�x)�↵} x < 0,

1 x > 0.

Theorem 2.4.7 Let W
n

= min{X
1

, . . . , X
n

}/n 1
↵ and W

n

d

= F
Wn. Let

{Y
n

}
n�1

be a sequence of i.i.d. random variables with common distribution

�0
↵

. Assume that for all b > 0

1

n

nX

j=1

E
�
|X

j

� Y
j

|↵1
(|Xj�Yj |>bn

1/↵
)

 
!
n

0. (2.4.11)

Then

lim
n!1

d
↵

(F
Wn ,�

0
↵

) = 0 .

Proof. Since {Y
n

}
n�1

is a sequence of i.i.d. random variables with com-

mon distribution �0
↵

we have

min{Y
1

, . . . , Y
n

}
n1/↵

d

= �0
↵

.

Thus

d↵
↵

(F
Wn ,�

0
↵

)  E
���min{X

1

, . . . , X
n

}
n

1
↵

� min{Y
1

, . . . , Y
n

}
n

1
↵

��↵ 

= E
����max{�X

1

, . . . ,�X
n

}
n

1
↵

+
max{�Y

1

, . . . ,�Y
n

}
n

1
↵

��↵ 

=
1

n
E
����max{�X

1

, . . . ,�X
n

}+max{�Y
1

, . . . ,�Y
n

}
��↵ 

 1

n
E
�⇥

max{|X
1

� Y
1

|, . . . , |X
n

� Y
n

|}
⇤
↵
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with the same steps of the proof of Theorem 2.4.2 follows

 c(↵)b↵ +
c(↵)

n

nX

j=1

E
�
|X

j

� Y
j

|↵1
(|Xj�Yj |>bn

1/↵
)

 

where c(↵) = 1 if 0 < ↵ < 1 and c(↵) = 2↵�1 if ↵ � 1. Using (2.4.6) and

since b is arbitrary conclusion follows. ⇤
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Chapter 3

Mallows Distance Convergence

for Extremes: Regeneration

Approach

3.1 Introduction

In this chapter, we treat all three types of extreme distributions �
↵

(Fréchet),  
↵

(Weibull) and ⇤ (Gumbel). We present results that, for r � 1,

exhibit su�cient conditions for the convergence

d
r

(F
Mn ,�↵

) !
n

0, d
r

(F
Mn , ↵

) !
n

0 and d
r

(F
Mn ,⇤) !n 0.

Where for given random variables X
1

, X
2

, . . . we define

M
n

=
max{X

1

, . . . , X
n

}� b
n

a
n

and M
n

d

= F
Mn . (3.1.1)

First, making use of moment convergence results from Lemma 3.2.1 and

under the framework of i.i.d. random variables we derive the desired Mallows

convergence, Theorem 3.2.2. A key assumption is the proper moment control

relative to the left tail, Z
0

�1
|x|rdF (x) < 1,



Chapter 3. Mallows Distance Convergence for Extremes

being F the common distribution of the i.i.d. sequence.

In section 3.3, we borrow some of the arguments from Rootzén (1988) by

considering the submaxima over the cycles,

⇠
j

= max{X
n

: T
j�1

 n < T
j

} j � 1.

Then approximate X
(n)

= max{X
1

, X
2

, . . . , X
n

} by max{⇠
0

, . . . , ⇠vn} where

v
n

is conveniently chosen. Corollary 3.3.2 characterizes the max-domain of

attraction for �
↵

,  
↵

and ⇤. The Lemma 3.3.4 provides moments conver-

gence. Finally Theorem 3.3.5 summarizes the main results for regenerative

processes.

3.2 Convergence for I.I.D Random Variable

Sequence

Throughout this section we will assume that {X
n

}
n�1

is a sequence of

i.i.d. random variable with common distribution F . If F 2 D
max

(H) for an

extreme value distribution H, then there exist a
n

> 0 and b
n

2 R such that

X
(n)

= max
�
X

1

, X
2

, · · · , X
n

 
satisfies

P
�X

(n)

� b
n

a
n

 x
�
= F n(a

n

x+ b
n

) !
n

H(x). (3.2.1)

As mentioned before one way to achieve convergence in Mallows distance

is exploring its close relation to the convergence in distribution and corre-

sponding moment convergence results. Now we may ask for which value of

r > 0 it is true that

lim
n!1

E
��X

(n)

� b
n

a
n

�
r

 
=

Z

R
|x|rdH(x) ?
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The tail conditions which comprise the domain of attraction criteria are only

a control on the right tail. As mentioned in Proposition 1.2.11 this implies

if F 2 D
max

(�
↵

) then

Z
+1

0

xrdF (x) < 1, for all r 2 (0,↵),

and if F (x) 2 D
max

(⇤) then

Z
+1

0

xrdF (x) < 1, for all r 2 (0,1).

but no control is provided over the left tail and it is possible

Z
0

�1
|x|rdF (x) =

1 for any r > 0. Thus, it is necessary to impose some condition on the left

tail. Regarding convergence of moments, Proposition 2.1 from Resnick (1987)

provides the answer.

Lemma 3.2.1 Suppose F 2 D
max

(H). Let M
n

be defined by (3.1.1). For an

extreme value distribution H,

(i) If H = �
↵

and for some integer 0 < r < ↵

Z
0

�1
|x|rdF (x) < 1

then

lim
n!1

E
�
(M

n

�
r} =

Z 1

0

xrd�
↵

(x) = �(1� ↵�1r),

where a
n

= (1/(1� F ))�1(n) and b
n

= 0.

(ii) If H =  
↵

and for some integer r > 0,

Z
!(F )

�1
|x|rdF (x) < 1
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then

lim
n!1

E
�
(M

n

�
r} =

Z
0

�1
|x|rd 

↵

(x) = (�1)r�(1 + ↵�1r),

where a
n

=
⇥
!(F )� (1/(1� F ))�1(n)

⇤
and b

n

= !(F ).

(iii) If H = ⇤ and for some integer r > 0,

Z
0

�1
|x|rdF (x) < 1

then

lim
n!1

E
�
(M

n

�
r} =

Z
+1

�1
|x|rd⇤(x) = (�1)r�(r)(1),

where b
n

= (1/(1� F ))�1(n) and a
n

= g(b
n

).

�(r)(1) is the r-th derivative of the gamma function at x = 1.

Using Lemma 3.2.1 and Theorem 1.4.2 we easily prove the following Mal-

lows distance convergence for M
n

.

Theorem 3.2.2 Let M
n

be defined by (3.1.1).

(i) If for some integer 1  r < ↵

Z
0

�1
|x|rdF (x) < 1 (3.2.2)

then

F 2 D
max

(�
↵

) () d
r

(F
Mn ,�↵

) !
n

0,

where a
n

= (1/(1� F ))�1(n) and b
n

= 0.
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(ii) If for some integer r � 1,

Z
!(F )

�1
|x|rdF (x) < 1 (3.2.3)

then

F 2 D
max

( 
↵

) () d
r

(F
Mn , ↵

) !
n

0

where a
n

=
⇥
!(F )� (1/(1� F ))�1(n)

⇤
and b

n

= !(F ).

(iii) If for some integer r � 1,

Z
0

�1
|x|rdF (x) < 1 (3.2.4)

then

F 2 D
max

(⇤) () d
r

(F
Mn ,⇤) !n 0

where b
n

= (1/(1� F ))�1(n) and a
n

= g(b
n

).

Proof.

i) )) Since F 2 D
max

(�
↵

) then by Proposition 1.2.11

Z
+1

0

xrdF (x) < 1, for all r 2 (0,↵).

This together with condition (3.2.2) ensures that F 2 L
r

. Even more,

F
Mn 2 L

r

since by Lemma 3.2.1 we have

lim
n!1

E{(M
n

)r} =

Z 1

�1
|x|rd�

↵

(x) < 1.

Now applying Proposition 1.4.2 we have convergence in Mallows r-th

distance for 1  r < ↵.

() Let d
r

(F
Mn ,�↵

) !
n

0. By Theorem 1.4.2 there are a sequence of
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random variable Y
n

and Y such that Y
n

d

= F
Mn , Y

d

= �
↵

, (Y
n

, Y )
d

=

F
Mn ^ �

↵

and

dr
r

(F
Mn ,�↵

) = E{|Y
n

� Y |r !
n

0

Now from the r-mean convergence we have Y
n

d! Y or equivalently,

F
Mn

d! �
↵

.

The proof of (ii) and (iii) are similar to item (i). ⇤

3.3 Convergence for Regenerative Process

In this section we consider a regenerative process {X
n

}
n�0

with values in

a measurable space (E, E). As described in section 1.5 this means there exist

integer-valued random variables 0 < T
0

< T
1

< . . . such that the cycles ,

C
0

= {X
n

, 0  n < T
0

} , C
1

= {X
n

, T
0

 n < T
1

} , . . .

are independent and, in addition, C
1

, C
2

, . . . have the same distribution. In

what follows we will denote v
n

= inf{k;T
k

> n} and µ = E[Y
1

] where

Y
1

= T
1

� T
0

.

Let ⇠
0

= max
0n<T0

(X
n

) and for j � 1, define the submaximum over the j-th

cycle by

⇠
j

= max
Tj�1n<Tj

(X
n

).

Rootzén (1988) in Theorem 3.1 show that X
(n)

= max{X
1

, X
2

, . . . , X
n

} is

approximated by max{⇠
0

, . . . , ⇠vn} , which in turn can be approximated by

max{⇠
0

, . . . , ⇠
[

n
µ ]

}. Since the distribution of the first cycle, C
0

, is in general

arbitrary, a condition is needed to assure that the first block does not a↵ect

the extremal behavior.
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Theorem 3.3.1 (Rootzén (1988)). Let {X
n

}
n�0

be a regenerative process

with renewal sequence {T
k

}
k�0

and let µ = E[Y
1

] < 1. Under the assumption

that the first block does not a↵ect the extremal behavior, that is to say that

P
�
⇠
0

> max{⇠
1

, . . . , ⇠
k

}
�
�! 0 as k ! 1, (3.3.1)

then we have

sup
x2R

|P (X
(n)

 x)�Gn(x)| !
n

0, (3.3.2)

where G(x) = P (⇠
1

 x)
1
µ .

It is trivial to see that (3.3.1) holds if {X
n

}
n�0

is zero-delayed, since

⇠
0

, ⇠
1

, . . . then are i.i.d. Since G is a distribution function it follows that

the only possible limit laws for M
n

defined by (3.1.1), are the three extreme

value distributions. For cases where the tail of the distribution of ⇠
1

can be

controlled we can derive detailed information on M
n

.

Corollary 3.3.2 Let {X
n

}
n�0

be a regenerative process with renewal se-

quence {T
k

}
k�0

and let µ = E[Y
1

] < 1. Let G(x) = P (⇠
1

 x)
1
µ where

⇠
1

= max
T0n<T1

(X
n

). Then under assumption (3.3.1) we have

(i) 1�G 2 RV�↵

if and only if

F
Mn

d�! �
↵

(3.3.3)

where a
n

= (1/(1�G))�1(n) and b
n

= 0.

(ii) F
Mn

d�!  
↵

, if and only if !(G) < 1 and 1�G
�
!(G)� 1

x

�
2 RV�↵

.

In this case a
n

= !(G)� (1/(1�G))�1(n) and b
n

= !(G).
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(iii) F
Mn

d�! ⇤(x) if and only if there exists a Von Mises function G⇤ such

that for x 2 (z
0

,!(G))

1�G(x) = c(x)(1�G⇤) = c(x) exp{�
Z

x

z0

1

g(y)
dy
 
, (3.3.4)

and

lim
x!!(G)

c(x) = c > 0.

In this case b
n

= (1/(1�G))�1(n) and a
n

= g(b
n

).

Proof. (i) ()) By Theorem 3.3.1 we have

sup
x2R

|P (X
(n)

 x)�Gn(x)| !
n

0,

where G(x) = P (⇠
1

 x)
1
µ . Since G is a distribution function and 1 � G 2

RV�↵

it follows from Theorem 1.2.8

Gn(a
n

x) = P (⇠
1

 a
n

x)
n
µ !

n

�
↵

(x)

where a
n

= (1/(1�G))�1(n) . Now (3.3.3) follows from (3.3.2).

(() Conversely suppose

F
Mn

d�! �
↵

This, combined with (3.3.2) , yields

Gn(a
n

x) !
n

�
↵

(x)

and so by Theorem 1.2.8 we have 1�G 2 RV�↵

.

The proofs of (ii) and (iii) are in a similar way using Theorems 1.2.9 and

1.2.10, respectively, along with (3.3.2). ⇤
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Next, we extend moment convergence results for i.i.d. sequences to re-

generative process. For that the following upper bounds will be needed. The

proof makes use of some ideas from the proof of Lemma 2.2 from Resnick

(1987).

Lemma 3.3.3 Let {X
n

}
n�0

be a regenerative process with renewal sequence

{T
k

}
k�0

and let µ = E[Y
1

] < 1. Let (3.3.1) hold. Assume that F
Mn

d�! ⇤ .

Then for G(x) = P (⇠
1

 x)
1
µ we have

(i) Given ✏ > 0, we have for y > 0 and all su�ciently large n

1�Gn(a
n

y + b
n

)  (1 + ✏)3(1 + ✏y)�✏
�1

.

(ii) Let z
0

be the value in the representation (3.3.4). Given ✏ choose z
1

2

(z
0

,!(G)) such that |g0(t)| < ✏ if t > z
1

. Then for s 2 (
z
1

� b
n

a
n

, 0) and

for large n we have

Gn(a
n

s+ b
n

)  e�(1� ✏)2(1 + ✏|s|)✏
�1

.

Proof. By Corollary 3.3.2 (iii) (3.3.4) holds. We recall that a
n

= g(b
n

).

(i) Since g is absolutely continuous function on (z
0

,!(G)) with density g0 and

lim
u!x0

g0(u) = 0, we choose n such that |g0(t)| < ✏ if t � b
n

and we can write

for s > 0

g(a
n

s+ b
n

)

a
n

� 1 =

Z
ans+bn

bn

g0(u)

a
n

du

=

Z
s

0

g0(a
n

u+ b
n

)du

 ✏s.
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And we have immediately

a
n

g(a
n

s+ b
n

)
� (1 + ✏s)�1. (3.3.5)

On the other hand, note that

1�G(b
n

) ⇠ n�1

so that for large n and y > 0

n
�
1�G(a

n

y + b
n

)
�
 (1 + ✏)

1�G(a
n

y + b
n

)

1�G(b
n

)
.

From (3.3.4) we have

1�G(a
n

y + b
n

) = c(a
n

y + b
n

)e
�

Z
any+bn

z0

1

g(s)
ds

and

1�G(b
n

) = c(b
n

)e
�

Z
bn

z0

1

g(s)
ds

.

Thus

n
�
1�G(a

n

y + b
n

)
�
 (1 + ✏)

c(a
n

y + b
n

)

c(b
n

)
e
�

Z
any+bn

bn

1

g(s)
ds

.

Since c(x) ! c > 0 as x ! !(G) for su�cient large n the preceding is

bounded by

 (1 + ✏)2e
�

Z
y

0

a
n

g(a
n

s+ b
n

)
ds

 (1 + ✏)2e
�

Z
y

0

(1 + ✏s)�1ds

= (1 + ✏)2e�✏
�1 ln(1 + ✏y)

= (1 + ✏)2(1 + ✏y)�✏
�1

. (3.3.6)
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In the last inequality we have used (3.3.5) . Therefore

1�Gn(a
n

y + b
n

) = 1� exp
�
n lnG(a

n

y + b
n

)
 

 n(� lnG(a
n

y + b
n

))

 (1 + ✏)n(1�G(a
n

y + b
n

))

In the last inequality we have used lim
z!1

� ln z

1� z
= 1. Now with (3.3.6) result

follows.

(ii) For u 2 (
z
1

� b
n

a
n

, 0) and large n we have

1� g(a
n

u+ b
n

)

a
n

=

Z
bn

anu+bn

g0(t)

a
n

dt

=

Z
0

u

g0(a
n

t+ b
n

)dt

� �✏|u|

The last inequality holds because a
n

t + b
n

> a
n

u + b
n

> z
1

. Thus we have

shown

1 + ✏|u| � g(a
n

u+ b
n

)

a
n

. (3.3.7)

On the other hand, for large n

Gn(a
n

s+ b
n

) =

✓
1� (1�G(a

n

s+ b
n

))

◆
n

 exp

⇢
� n(1�G(a

n

s+ b
n

))

�

 exp

⇢
� (1� ✏)

1�G(a
n

s+ b
n

)

1�G(b
n

)

�

 exp

⇢
� (1� ✏)

c(a
n

s+ b
n

)

c(b
n

)
exp

�Z ans+bn

bn

1

g(u)
du
 �

.
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Supposing z
1

has been chosen so that c(z
1

)/c(b
n

) � 1 � ✏, the preceding is

bounded by

 exp

⇢
� (1� ✏)2 exp

⇢Z
0

s

a
n

g(a
n

u+ b
n

)
du

��

 exp

⇢
� (1� ✏)2 exp

⇢Z
0

s

(1 + ✏|u|)�1du

��

= exp
�
� (1� ✏)2(1 + ✏|s|)✏

�1 
.

In the last inequality we have used (3.3.7). ⇤

Now we may repeat Lemma 3.2.1 for regenerative processes.

Lemma 3.3.4 Let {X
n

}
n�0

be a regenerative process that satisfies the con-

ditions of Theorem 3.3.1 . Let M
n

be defined by (3.1.1). Suppose F
Mn

d�! H

for an extreme value distribution H.

(i) If H = �
↵

and for some X
i

with distribution F and some integer

0 < r < ↵

Z
0

�1
|x|rdF (x) < 1 (3.3.8)

then

lim
n!1

E{M
n

}r =
Z 1

0

xrd�
↵

(x) = �(1� ↵�1r),

where a
n

= (1/(1�G))�1(n) and b
n

= 0.

(ii) If H =  
↵

and for some X
i

with distribution F and for some integer

r > 0,

Z
!(F )

�1
|x|rdF (x) < 1 (3.3.9)
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then

lim
n!1

E{M
n

}r =
Z

0

�1
|x|rd 

↵

(x) = (�1)r�(1 + ↵�1r),

where a
n

= !(G)� (1/(1�G))�1(n) and b
n

= !(G).

(iii) If H = ⇤ and for some X
i

with distribution F and for some integer

r > 0,

Z
0

�1
|x|rdF (x) < 1 (3.3.10)

then

lim
n!1

E{M
n

}r =
Z

+1

�1
|x|rd⇤(x) = (�1)r�r(1),

where b
n

= (1/(1�G))�1(n) and a
n

= g(b
n

)

�(r)(1) is the r-th derivative of the gamma function at x = 1.

Proof. The proof makes use of some ideas from the proof of Proposition 2.1

on page 77 from Resnick (1987).

Since F
Mn

d�! H we have from weak convergence theory ( Helly-Bray

lemma) that for any L > 0

lim
n!1

E
��

M
n

�
r

1
(|Mn|L)

 
=

Z
L

�L

xrdH(x).

Thus, it is enough to show

lim
L!1

lim sup
n!1

E
�
|M

n

|r1
(|Mn|>L)

 
= 0, (3.3.11)
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because
����E{(M

n

)r} �
Z 1

�1
xrdH(x)

����


����E{(M

n

)r}� E{(M
n

)r1
(|Mn|L)

}
����

+

����E{(M
n

)r1
(|Mn|L)

}�
Z

L

�L

xrdH(x)

����

+

����
Z

L

�L

xrdH(x)�
Z 1

�1
xrdH(x)

����. (3.3.12)

and with (3.3.11) we will have

lim
L!1

lim sup
n!1

��E{(M
n

)r}� E{(M
n

)r1
(|Mn|L)

}
�� = 0

and so the right side of (3.3.12) will have lim
L!1

lim sup
n!1

= 0 and since the

left side of (3.3.12) does not depend on L, the desired result follows. We use

Fubini’s theorem to justify an integration by parts:

E
�
|M

n

|r1
(|Mn|>L)

 
= E

�Z |Mn|

0

rsr�1ds1
(|Mn|>L)

 

= E
�Z L

0

rsr�1ds1
(|Mn|>L)

 
+

E
�Z 1

L

rsr�11
(|Mn|>L,|Mn|>s)

ds
 

= LrP
�
|M

n

| > L
�
+

Z 1

L

rsr�1P
�
|M

n

| > s
�
ds

= A+B.

(i) When H = �
↵

and r < ↵ ,

lim
L!1

lim sup
n!1

A = lim
L!1

Lr(1� �
↵

(L) + �
↵

(�L))

= lim
L!1

Lr(1� e�L

�↵
) = lim

L!1
LrL�↵

= 0.
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As for the term B write

B =

Z 1

L

rsr�1P
�
|
X

(n)

a
n

| > s
�
ds

=

Z 1

L

rsr�1P (X
(n)

> a
n

s)ds+
Z 1

L

rsr�1P (X
(n)

< �a
n

s)ds

= B
1

+B
2

.

For B
1

, by Theorem 3.3.1, the uniform convergence in (3.3.2) hold and

we have

lim sup
n!1

B
1

= lim sup
n!1

Z 1

L

rsr�1P (X
(n)

> a
n

s)ds

= lim sup
n!1

Z 1

L

rsr�1(1�Gn(a
n

s))ds.

We can write for large n

1�Gn(a
n

s) = 1� exp{n lnG(a
n

s)}

 n(� lnG(a
n

s))

 (1 + ✏)n(1�G(a
n

s))

 (1 + ✏)2
1�G(a

n

s)

1�G(a
n

)
.

By Corollary 3.3.2 (i) we have 1 � G 2 RV�↵

. Now apply Theorem

1.2.7, which tells us, given ✏ > 0, if n is large and L > 1 then we have

the following upper bound

1�G(a
n

s)

1�G(a
n

)
 (1 + ✏)s�↵+✏.
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So that in this case if we choose ✏ such that r < ↵ � ✏ or equivalently

r � 1� ↵ + ✏ < �1 then

lim
L!1

lim sup
n!1

B
1

 lim
L!1

(1 + ✏)3
Z 1

L

rsr�1s�↵+✏ds

= 0

Note that since r is assumed less than ↵, we can choose ✏ small enough

such that r < ↵� ✏.

Now for B
2

we have

B
2

=

Z 1

L

rsr�1P (X
(n)

< �a
n

s)ds

=

Z �L

�1
r|s|r�1P (X

(n)

< a
n

s)ds

=
1

ar
n

Z �anL

�1
r|s|r�1P (X

(n)

< s)ds

 1

ar
n

Z �anL

�1
r|s|r�1F (s)ds.

By (3.3.8) and the fact that a
n

! 1 we have for all L > 0

lim sup
n!1

B
2

= 0.

This complete the proof of the part (i).

(ii) When H =  
↵

and k > 0, we have

lim
L!1

lim sup
n!1

A = lim
L!1

Lr(1� 
↵

(L) + 
↵

(�L))

= lim
L!1

Lr(e�L

↵
)

= 0.
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And for B

B =

Z 1

L

rsr�1P
�
|
X

(n)

� !(G)

a
n

| > s
�
ds

=

Z 1

L

rsr�1P
�
X

(n)

� !(G) > a
n

s
�
ds

+

Z 1

L

rsr�1P
�
X

(n)

� !(G) < �a
n

s
�
ds

= B
1

+B
2

.

Since !(F ) < 1 we have obviously

lim
L!1

lim sup
n!1

B
1

= 0

It remains to check for B
2

. By uniform convergence in (3.3.2) we can

write

lim sup
n!1

B
2

= lim sup
n!1

Z 1

L

rsr�1P
�
X

(n)

< �a
n

s+ !(G)
�
ds

= lim sup
n!1

Z 1

L

r|s|r�1Gn(�a
n

s+ !(G))ds

= lim sup
n!1

Z �L

�1
r|s|r�1Gn(a

n

s� !(G))ds

= lim sup
n!1

1

ar
n

Z �anL�!(G)

�1
r|s|r�1Gn(s)ds

 lim sup
n!1

1

ar
n

Gn�µ(�a
n

L� !(G))

Z �anL�!(G)

�1
r|s|r�1F (s)ds

 lim sup
n!1

1

ar
n

Gn�µ(�a
n

L� !(G))

Z
!(F )

�1
r|s|r�1F (s)ds.

By (3.3.9) and the fact that

a�r

n

Gn�µ(�a
n

L� !(G)) ! 0

we have for all L > 0

lim sup
n!1

B
2

= 0

63



Chapter 3. Mallows Distance Convergence for Extremes

This complete the proof of the part (ii).

(iii) When H = ⇤ for A we have

lim
L!1

lim sup
n!1

A = lim
L!1

Lr

�
1� ⇤(L) + ⇤(�L)

�

= lim
L!1

Lr

�
1� exp(�e�L) + exp(�eL)

�

= lim
L!1

Lr

�
e�L + exp(�eL)

�
= 0.

Now, for B

B =

Z 1

L

rsr�1P
�
|
X

(n)

� b
n

a
n

| > s
�
ds

=

Z 1

L

rsr�1P
�
X

(n)

� b
n

> a
n

s
�
ds

+

Z 1

L

rsr�1P
�
X

(n)

� b
n

< �a
n

s
�
ds

= B
1

+B
2

For the case of B
1

by uniform convergence in (3.3.2) and applying

Lemma 3.3.3 (i) we have for su�ciently large n

B
1


Z 1

L

rsr�1(1�Gn(a
n

s+ b
n

))ds

 (1 + ✏)3
Z 1

L

rsr�1(1 + ✏s)�✏

�1
ds

On the other hand, we have

rsr�1(1 + ✏s)�✏

�1 ⇠ r✏�✏

�1
sr�1�✏

�1
.

We choose ✏ < r�1 and so

r � 1� ✏�1 < �1
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Thus for some constant C (hereafter C will denote a positive constant,

not necessarily the same one)

lim
L!1

lim sup
n!1

B
1

 C lim
L!1

Z 1

L

sr�1�✏

�1
ds = 0.

For B
2

we have

lim sup
n!1

B
2

= lim sup
n!1

Z 1

L

rsr�1Gn(�a
n

s+ b
n

)ds

Let z
1

is chosen as Lemma 3.3.3 (ii). Since (z
1

� b
n

)/a
n

! �1 so

eventually (z
1

� b
n

)/a
n

< �L and we can write

Z 1

L

rsr�1Gn(�a
n

s+ b
n

)ds =

Z �L

�1
rsr�1Gn(a

n

s+ b
n

)ds

=

Z
(z1�bn)/an

�1
rsr�1Gn(a

n

s+ b
n

)ds

+

Z �L

(z1�bn)/an

rsr�1Gn(a
n

s+ b
n

)ds

= B
21

+B
22

For B
21

, setting y = a
n

s+ b
n

we have

B
21

=
1

ar
n

Z
z1

�1
r|y � b

n

|r�1Gn(y)dy

So for some constant C

B
21

 r

ar
n

Gn�µ(z
1

)C

Z
z1

�1
(|y|r�1 + br�1

n

)F (y)dy

=
r

ar
n

Gn�µ(z
1

)C

Z
z1

�1
|y|r�1F (y)dy

+
r

ar
n

Gn�µ(z
1

)C

Z
z1

�1
br�1

n

F (y)dy.
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Since a
n

and b
n

are slowly varying functions of n, and Gn�µ(z
1

) geo-

metrically fast we get as n ! 1

Gn�µ(z
1

)a�r

n

�! 0 , Gn�µ(z
1

)a�r

n

br�1

n

�! 0.

On the other hand from (3.3.10) we have

Z
z1

�1
|y|r�1F (y)dy < 1

and so for some constant C

Z
z1

�1
br�1

n

F (y)dy  C

Z
z1

�1
br�1

n

|y|r�1F (y)dy < 1

that follows lim sup
n!1

B
21

= 0.

Finally, applying Lemma 3.3.3 (ii) we have

B
22

=

Z �L

(z1�bn)/an

r|s|r�1Gn(a
n

s+ b
n

)ds


Z �L

(z1�bn)/an

r|s|r�1e(1�✏)

2
(1+✏|s|)✏�1

ds.

Since |s|r � 1e�(1� ✏)2(1 + ✏|s|)✏�1

is integrable on (�1, 0) for some

constant C we get

lim
L!1

lim sup
n!1

B
22

 lim
L!1

C

Z �L

�1
|s|r�1e�(1�✏)

2
(1+✏|s|)✏�1

ds

= 0.

This completes the proof. ⇤
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Theorem 3.3.5 Let {X
n

} be a regenerative process that satisfies the condi-

tions of Theorem 3.3.1. Let M
n

be defined by (3.1.1).

(i) If for some X
i

with distribution F and some integer 1  r < ↵

Z
0

�1
|x|rdF (x) < 1

then

F
Mn

d�! �
↵

() d
r

(F
Mn ,�↵

) !
n

0,

where a
n

= (1/(1�G))�1(n).

(ii) If for some X
i

with distribution F and some integer r � 1,

Z
!(F )

�1
|x|rdF (x) < 1

then

F
Mn

d�!  
↵

() d
r

(F
Mn , ↵

) !
n

0,

where a
n

= !(G)� (1/(1�G))�1(n) and b
n

= !(G).

(iii) If for some X
i

with distribution F and some integer r � 1,

Z
0

�1
|x|rdF (x) < 1

then

F
Mn

d�! ⇤ () d
r

(F
Mn ,⇤) !n 0,

where b
n

= (1/(1�G))�1(n) and a
n

= g(b
n

).

Proof. Using Lemma 3.3.4, we can repeat the same idea of the proof of

Theorem 3.2.2 for this proof.
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As we already said in the preliminary any Markov chain {X
n

}
n�0

with

a countable state space S that is irreducible and recurrent is regenerative

with {T
i

}
i�1

being the times of successive returns to a given state {x}. Har-

ris chains on a general state space that possess an atom, are regenerative

processes too. So they are applications of the above regenerative methods.

68



Bibliography

[1] Asmussen, S., Applied Probability and Queues. Wiley, New York,

1987.

[2] Athreya, K.B. and Lahiri, S.N., Measure Theory and Probability

Theory.Springer 2006.

[3] Barbosa, E.G. and Dorea, C.C.Y., A Note on Lindeberg Condition

for Convergence to Stable Laws in Mallows Distance. Bernoulli, 15 922–

924, 2009.

[4] Barbosa, E.G. and Dorea, C.C.Y., Convergence to Stable Laws in

Mallows Distance for Mixing Sequences of Random Variables. Brazilian

Journal of Probability and Statistics, vol. 24, No. 2, 2010.

[5] Fisher, R.A. and Tippett, L.H.C., Limiting Forms of the Frequency

Distribution of the Largest or Smallest Members of a Sample. Proceed-

ings of the Cambridge Philosophical Society, 24, 180-190, 1928.

[6] Bickel, P.J. and Freedman, D. A., Some Asymptotic Theory for

the Bootstrap. Annals of Statistics, v. 9, p. 1196–1217, 1981.



Bibliographic references 70

[7] Breiman, L., Probability. Philadelphia, Classics in Applied Mathemat-

ics. 7 1992.

[8] Dorea, C.C.Y. and Ferreira, D.B., Conditions for Equivalence

Between Mallows Distance and Convergence to Stable Laws. Acta Math-

ematica Hungarica v. 134, p. 1–11, 2012.

[9] Dorea, C.C.Y. and Oliveira, M.A., The Donsker’s Theorem for

Levy Stable Motions Via Mallows Distance. Markov Processes and Re-

lated Fields v. 20, p. 167–172, 2014.

[10] Embrechts, P., Kluppelberg, C. and Mikosch, T., Modeling Ex-

tremal Events for Insurance and Finance. Springer-Verlag, Berlin, 1997.

[11] Falk, M. and Marohn, F., Von Mises Conditions Revisited. Ann.

Probab. 21, 1310– 1328. 1993.

[12] Galambos, J., The Asymptotic Theory of Extreme Order Statistics.

John Wiley & Sons, New York, 1978.

[13] Gnedenko, B.V., Sur la Distribution Limité du Terme d’ une Série
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