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Abstract

The nominal approach allows us to extend first-order syntax and represent smoothly systems
with variable bindings. Hence, nominal unification is simply the extension of first-order
unification modulo α-equivalence by taking into account this nominal setting. This work is
about nominal unification with commutative function symbols (nominal C-unification, for
short) and nominal unification with associative-commutative function symbols (nominal AC-
unification, for short). Regarding nominal C-unification, we specified a functional algorithm
for this task and proved the algorithm is indeed correct and complete with the use of the proof
assistant PVS. In relation to the only known specification of nominal C-unification, there are
two novelties in our work. The first is the formalisation of a functional algorithm that can be
directly executed (not just a set of non-deterministic inference rules). The second is simpler
proofs of termination, soundness and completeness, due to the reduction in the number of
parameters of the lexicographic measure, from four parameters to only two. Additionally,
we programmed and tested the algorithm in Python. Regarding nominal AC-unification, we
discuss our work in progress in extending the algorithm of nominal C-unification to also handle
associative-commutative function symbols. The specification we currently have is presented,
the strategy for the formalisation is detailed, the current problem we are facing is explained and
interesting facts found so far are given.





Resumo

O paradigma nominal permite estender a sintaxe de primeira ordem, representando convenien-
temente o conceito de variáveis ligadas. Assim sendo, unificação nominal é simplesmente uma
extensão da unificação de primeira ordem, considerando a configuração nominal e igualdade
módulo α-equivalência. Este trabalho é acerca de unificação nominal na presença de símbolos
de função comutativos (C-unificação nominal) e associativo-comutativos (AC-unificação nomi-
nal). Em relação à C-unificação nominal, especificamos um algoritmo funcional e provamos
que o algoritmo é correto e completo com o uso do assistente de provas PVS. Comparado
com a única outra especificação de C-unificação nominal, há duas inovações neste trabalho. A
primeira inovação é a formalização de um algoritmo funcional que pode ser diretamente execu-
tado (não apenas um conjunto de regras de inferência não-determinísticas). A segunda inovação
são provas mais simples de terminação, corretude e completude, graças à redução no número de
parâmetros da medida lexicográfica, de quatro parâmetros para apenas dois. Adicionalmente,
programamos e implementamos o algoritmo em Python. Em relação à AC-unificação nominal,
discutimos o nosso trabalho em progresso visando estender o algoritmo de C-unificação nomi-
nal para também tratar o caso de símbolos de funções associativo-comutativos. A especificação
atual é apresentada, a estratégia para a demonstração é detalhada, o problema atual que estamos
enfrentando é explicado e descobertas interessantes feitas até aqui são mostradas.
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Chapter 1

Introduction

The concept of binding is crucial in both mathematics and computer science. We employ this
concept, for instance, when specifying parameters in the definition of a function: in f : x 7→ x2

the variable x is said to be bound. There is also binding when using quantifiers: in ∀x : P(x,y),
where P is some property of interest, the variable x is bound, while the variable y is not bound
(alternatively, one can say that y is a free variable).

Since first-order syntax does not handle binding, extensions of it that consider bound and
free variables are attractive areas of work. This extension is not trivial, since it is possible to
have syntactically different expressions with the same semantics. For example, the functions
f : x 7→ x2 and f : y 7→ y2 are semantically equal, but not syntactically equal. They can,
however, be made syntactically equal by simply renaming y to x, for instance. The expressions
∃x : x > 0 and ∃z : z > 0 are another example of semantically equal expressions that can be
made syntactically equal by renaming: simply substitute the z in the second expression by
x. The notion of semantically equivalent expressions that become syntactically equal after a
suitable renaming of bound variables is known as α-equivalence.

The nominal setting takes α-equivalence into account and represent smoothly systems with
bindings. This has advantages over using indices as in explicit substitutions à la de Bruijn, for
the bindings are represented in a more human-friendly way - see Pitts ([Pit13]) or Fernández
and Gabbay ([FG07]).

On the other hand, the problem of unification is concerned with finding a “way” to make two
terms equal. For instance, the terms f (X ,b) and f (a,Y ) can be made equal by “sending” X to
a and Y to b, since both terms then become f (a,b). This “way” of making terms equal consists
of substituting certain expressions in a term (known as variables) with other expressions. In
the example given, the variables of the problem were X and Y , and they were substituted
respectively by a and b. In a problem of unification, it is clear what expressions are function
symbols, which ones are variables and so on.
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We now give a more practical, although more intricate, example. Imagine we are trying to

calculate
∫

ln(x)dx and we remember the formula of integration by parts:
∫

udv = uv−
∫

vdu.

In order to use this strategy, we must unify
∫

ln(x)dx with
∫

udv. This is done by substituting

the variable u by ln(x) and v by x. Then, we get:∫
ln(x) dx = xln(x)−

∫
x∗ 1

x
dx = xln(x)− x+C (1.1)

It should be noted, however, that in this preceding case only one of the terms contained
variables that were affected by the substitution. This is a particular case of unification known
as matching.

Much work has been done in unification (e.g. [For87], [KKN85], [Baa89]). Unification is
an important topic in first-order theories, since it has applications in logic programming systems,
theorem provers, type inference algorithms and so on (see Baader and Nipkow [BN99]). Given
this importance, the development of unification techniques for the nominal paradigm has been
an attractive area of research since the invention of the nominal approach.

Nominal unification was first solved by Urban et al. in [Urb08]. Then, research continued
in the direction of making algorithm improvements to solve this problem (see the work [CF08]
of Calves and Fernández who obtained an O(n4log2n) bound and the work [LV10] of Levy and
Villaret, who obtained an O(n2) bound) and in the direction of extending nominal unification
(see the work of Levy and Villaret [LV08], Schmidt-Schauß et al. [SSKLV17], or Baumgartner
et al. [BKLV15]), for instance by considering nominal unification modulo equational theories
(e.g. [ARdCSFNS18], [ARdCSFNS17b], [ARFNS18], [ARdCSFNS17a]). This work is in the
area of nominal unification modulo equational theories, since we discuss nominal unification
with commutative function symbols (nominal C-unification, for short) and nominal unification
with associative-commutative function symbols (nominal AC-unification, for short).

1.1 Related Work

Nominal unification was originally solved by Urban et al. in [Urb08], by proposing a set of
inference rules and showing, with the help of proof assistant Isabelle/HOL, that they were
correct and complete.

In [ARFRO16], Ayala-Rincón et al. came back to the problem of nominal unification and,
using the proof assistant PVS, proposed a functional algorithm for the task and formalised its
soundness and completeness. Moreover, two novel approaches were given. The first is the
specification of a functional algorithm for performing nominal unification, not a set of inference
rules, which makes the specification closer to the implementation. The second is the possibility
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of separating the treatment of freshness constraints from equational constraints (these concepts
will be defined in Chapter 2). This research uses both approaches.

After that, Ayala-Rincón et al. (see [ARdCSFNS18]) extended nominal unification to
deal with commutative functions. As in [Urb08], a set of inference rules specified through
an inductive definition was used. These rules were shown correct and complete with the use
of the Coq proof assistant. An implementation in OCaml was made, but it diverges from the
non-deterministic specification proved to be correct and complete.

In relation to AC-unification, there are no formalisations (to the best of our knowledge)
available, neither in the nominal setting nor in first-order theory. The closest that has been done
is the formalisation of AC-Matching in standard first-order syntax (see the work of Contejean
[Con04]).

1.2 Contribution

This work presents contributions to both nominal C-unification and nominal AC-unification.
In relation to nominal C-unification, we present the first (to our knowledge) functional

nominal C-unification algorithm and, using PVS, formalise its soundness and completeness.
Even though there is one other formalisation for nominal C-unification, the approaches taken
are different. In [ARdCSFNS18], a set of rules that progressively transforms the nominal
C-unification problem into a simpler one is presented, while here a recursive algorithm is
indeed developed. The set of rules approach is elegant and allows a higher level of abstraction,
thus simplifying the analysis of the computational properties we are interested. However, due to
its non-determinism, the set of rules cannot be directly executed, while the recursive algorithm
here given can. This MSc thesis also presents a simplification on the proofs of termination,
soundness and completeness from the ones found in [ARdCSFNS18], since we were able to
reduce the number of parameters in the lexicographic measure, from four parameters to only
two (see Section 3.4). Additionally, the described algorithm has been implemented in Python.

The formalisation is fully available at http://www.github.com/gabriel951/c-unification. PVS
was chosen partly in order to reuse a significant portion of the definitions and lemmas from
[ARFRO16] and partly because it provides great support for formalising functionally recursive
algorithms.

In relation to AC-unification, we discuss our work in progress on extending the algorithm
to deal with associative-commutative function symbols. We present the specification and
point interesting aspects of the formalisation, which is not yet completed. If completed, it
would be (to the best of our knowledge) the first formalisation of nominal unification and
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of first-order unification. The work in progress is fully available at http://www.github.com/
gabriel951/ac-unification.

1.3 Organisation

The chapters of this MSc thesis are organised as follows.

• First, in Chapter 2, we provide the necessary background for understanding the research.
The mathematical foundations of the proof assistant PVS are discussed, first-order
theory and nominal theory are explained and the problem of nominal unification with
commutative and associative-commutative function symbols is defined.

• Then, in Chapter 3, we begin by presenting the hierarchy of the PVS files for nominal
C-unification. Next, we give the specification for the algorithm that performs nominal
C-unification. We comment on the most interesting points of the formalisation: how
introducing commutativity made the problem harder, the principal lemmas and the
hardest cases. Finally, we discuss our Python implementation of the algorithm and
present possible applications.

• In Chapter 4, we comment on what was added in the specification for the algorithm to
handle associative-commutative function symbols. Then, we discuss on interesting points
of the partial formalisation that we have.

• Finally, in Chapter 5, we conclude the MSc thesis and offer some possible suggestions of
future work.

This MSc thesis also contains two appendices:

• Appendix A presents fragments of the specification and the formalisation and discusses
them.

• Appendix B comments on fragments of the Python code for nominal C-unification.



Chapter 2

Preliminaries

In this chapter we delve into the preliminaries for understanding the research. We comment on
the proof assistant PVS that was used. Next, we explain first-order theory. Then, we introduce
the nominal setting. Finally, we comment on how to extend this nominal setting to take into
account commutative and associative-commutative function symbols and define the problem of
nominal C and AC-Unification.

2.1 The Proof Assistant PVS

A proof assistant, also called interactive theorem prover, is a software used to help humans with
the development of formal proofs. A verified proof has every step of it accepted as correct by
the proof assistant, thus diminishing the probability of wrong proofs. However, wrong proofs
can still occur, for instance if a given mathematical theory is wrongly defined in the proof
assistant. Examples of interactive theorem provers are: Coq, Isabelle/Hol, PVS, Lean and so
on (see [BBC+97], [NPW02], [OSRSC01], [dMKA+15]).

PVS is a system for specifying and verifying properties of software systems [OS99].
Specifications are kept in .pvs files while the corresponding formalisations are found in .prf
files.

As remarked before, there were a number of different proof assistants we could have chosen,
and we opted for PVS for two different reasons. The first was to reuse a great portion of the
definitions and lemmas from [ARFRO16], instead of proving them from scratch (it should
come as no surprise that nominal unification modulo commutativity and modulo associativity-
commutativity has a lot in common with syntactic nominal unification). The second is the
support offered by PVS to specify functional algorithms.
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2.1.1 Specifications in PVS

PVS provides a functional language to specify the properties we want to verify. Examples 2.1
and 2.2 illustrate this.

Example 2.1 (Adapted from [ARDM17]). The specification of function gcd (which computes
the greatest common divisor of two number m and n) is given below:

gcd(m, n): RECURSIVE nat =
IF n = 0

THEN m
ELSIF m > n

THEN gcd(n, m)
ELSE

gcd(m, n - m)
ENDIF

MEASURE lex2(m, n)

In this particular specification, the variable m was previously defined to be a positive natural
number via the fragment (not shown in the figure) m:VAR posnat while the variable n was
previously defined as a natural number via fragment (not shown in the figure) n:VAR nat.

Since variables in PVS have a type (for instance, in Example 2.1, the variable n has type
natural number), one of the steps of using PVS is type checking an specification. Type checking
generates Type Correctness Conditions (for short TCCs) which must be proved in order for
a function to be considered well-defined. TCCs can be related with successfully preserving
a type or with the termination of a function, among others. In Example 2.1, TCCs would be
generated forcing us to guarantee that, in every recursive call of gcd, the first parameter of
the function is always a positive natural number and the second parameter is always a natural
number. This can be easily verified.

A termination TCC would also be generated requiring us to prove that the function gcd
really terminates. This is done by defining a measure and proving that in every recursive
call to gcd the defined measure decreases. In the specification above, MEASURE lex2(m, n)
defines the measure that will be used and lex2 is a built-in function in PVS that implements
a lexicographic order with 2 parameters. Therefore, for lex2(x,y)< lex2(w,z) we must have
x < w or x = w and y < z. This, again, can be easily verified to hold in the given example.
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Example 2.2 (Adapted from [SORSC01]). The function sum receives a function f and a
natural number n. The value of sum( f ,n) is computed recursively and corresponds to f (1)+
...+ f (n−1).

sum: THEORY
BEGIN

n: VAR nat
f, g: VAR [nat -> nat]

sum(f, n): RECURSIVE nat =
IF n = 0

THEN 0
ELSE f(n-1) + sum(f, n-1)
ENDIF
MEASURE n

sum_plus: LEMMA
sum(( lambda n: f(n) + g(n)), n)

= sum(f, n) + sum(g, n)

END sum

Furthermore, the sum theory given specifies a lemma, sum_plus, which says that sum( f +
g,n) = sum( f ,n)+ sum(g,n). We will see how to prove this lemma in Section 2.1.2.

2.1.2 Formalisations in PVS

PVS uses a sequent calculus with every sequent of the form Γ ⊢ ∆, where Γ is the set of
antecedent formulas and ∆ is the set of consequent formulas. The meaning of this sequent
is that by using all formulas in Γ we can derive at least one of the formulas in ∆. Thus, the
deductive system used by PVS is a Gentzen systems [TS00]. Inference rules are of the form:

Premises (Rule Name)
Conclusion

Example 2.3 (Adapated from [ARDM17]). Suppose we have Γ ⊢ ∆, where Γ = {Γ1, ...,Γn}
and ∆ = {∆1, ...∆n}. The premises would be separated by the conclusion by the symbols |–-.
Premises and conclusions are respectively labeled with negative and positive numbers, as shown
below.
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[-1] Γ1

.

.

.
[-n] Γn

|---
[1] ∆1

.

.

.
[-n] ∆n

Example 2.4 (Adapted from [SORSC01]). In Example 2.2 the sum function was specified,
along with a lemma. By using the command induct-and-rewrite! with parameter "n",
PVS applies induction in n and then completes the proof by expanding the functions used in
the theorem and applying convenient instantiation when necessary. Figure 2.1 shows the result
of using this command.

2.2 First-Order Syntax and Unification

The definitions from this section come from [BN99] and [dCS19].

2.2.1 First-Order Syntax

In order to define first-order terms (Definition 2.2), first we must define a signature (Definition
2.1).

Definition 2.1. A signature Σ is a countable set of function symbols f with a given arity. Each
function symbol may have associated to it equational properties, and a function symbol that has
no equational property is said to be syntactic. A function symbol of arity 0 is called a constant.

Remark 2.1. In this work, the equational properties we are interested in are commutativity
(from now on, also denoted with the symbol C) and associativity-commutativity (from now on,
also denoted with the symbol AC).

Definition 2.2 (First-Order Term). Let Σ be a signature and V be a countable set of variables.
The set of first-order terms T (Σ,V) has its terms generated according to the grammar:

t := c | X | f (t1, ..., tn)
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Fig. 2.1 Example of a Proof in PVS

where c ∈ Σ is a constant, X ∈ V is a variable and f ∈ Σ is a function symbol with arity n > 0.

Example 2.5. Examples of terms are c, X , f (X , f (a,c)) and so on.

Relevant concepts of the first-order syntax are substitutions (Definition 2.3), the size of a
term (Definition 3.2) and the variable set of a term (Definition 2.5).

Definition 2.3 (Substitution). A substitution σ is a mapping from variables to terms such that
{X |X ̸= Xσ} is finite.

• The set {X |X ̸= Xσ} is called the domain of the substitution, and is represented by
dom(σ).

• If X ∈ dom(σ), the image of X by σ is the term Xσ .

Remark 2.2. If dom(σ) = {X1, ...,Xn}, then σ can be represented as {X1/t1, ...,Xn/tn} or as
{X1 → t1, ...,Xn → tn}, where Xiσ = ti, for 1 ≤ i ≤ n.

Definition 2.4 (Size of a Term). The size of a term t, represented as |t|, is defined recursively:



10 Preliminaries

• |c|= 1

• |X |= 1

• f (t1, ..., tn) = 1+ ∑
1≤i≤n

|ti|

Definition 2.5 (Variables of a Term). The set of variables of a term t, represented as Vars(t), is
defined recursively:

• Vars(c) = /0

• Vars(X) = {X}

• Vars( f (t1, ..., tn)) =
⋃

1≤i≤n

Vars(ti)

2.2.2 Syntactic First-Order Unification

As remarked before, unification is about finding a substitution σ that makes two terms t and
s equal. In syntactic first-order unification, this equality is seen as syntactical equality. The
problem of syntactic first-order unification is defined in Definition 2.6, the solution for a given
problem is defined in Definition 2.7 and an example is provided in Example 2.7.

Definition 2.6. A first-order problem P is a finite set of equations of the form {s1 ≈? t1, ...,sn ≈?

tn} where si, ti ∈ T (Σ,V), for i= 1, ...,n. A syntactic first-order problem is a first-order problem
such that all terms from the set of equations are syntactic first-order terms.

Definition 2.7. Let P be a first-order unification problem. A substitution σ is a first-order
unification solution for P if for each equation s ≈? t in P it is true that sσ ≈ tσ .

Remark 2.3. In syntactic unification, the meaning of s ≈ t is that s and t are syntactically equal.
In unification modulo equational theories, the meaning of s ≈ t is that s and t are semantically
equal according to the equational theory we are considering.

Definition 2.8. A substitution σ is more general than a substitution δ if there is a substitution
θ such that δ = θσ . In this case, δ is said to be an instance of σ .

Example 2.6. The substitution σ = {Y → f (X)} is more general than δ = {Y → f (a),X → a},
since with θ = {X → a} we have δ = θσ .

Very close to the notion of unification is the concept of matching, given in Definition 2.9.

Definition 2.9. A substitution σ is a first-order matching solution for P if for each equation
s ≈? t in P it is true that sσ ≈ t.
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The idea is that the substitution σ is only applied to one side of the equation. If a term t
does not contain variables, tσ is simply t and, in this case, the problem of matching s ≈? t is
the same as the problem of unifying s ≈? t.

Example 2.7. We formalise one of the examples given in the introduction. Suppose X ,Y
are variables, a,b are constants and f ∈ Σ is a binary function. For the unification problem
P= { f (X ,b)≈? f (a,Y )}, a possible solution is σ = {X/a,Y/b}, since f (X ,b)σ = f (a,Y )σ =

f (a,b).

2.2.3 First-Order Unification Modulo C and AC

When we consider the semantics of commutative function symbols, we have unification
modulo commutativity (or modulo C, for short). In a similar manner, when we consider
the semantics of associative-commutative function symbols, we have unification modulo
associativity-commutativity (or modulo AC, for short). The properties of associativity and
commutativity are:

• Associativity (A): f ( f (X ,Y ),Z)≈ f (X , f (Y,Z))

• Commutativity (C): f (X ,Y )≈ f (Y,X)

Remark 2.4. When we have associativity, terms such as f ( f (X ,Y ),Z) and f (X , f (Y,Z)) are
considered equivalent and thus can be represented as f (X ,Y,Z). This is called a flattened
representation of the term. When we opt for this representation, it is possible to unify associative
and associative-commutative function applications rooted by the same function symbol but
with different arities after flattened. For instance, the terms f ( f (a,b),c) and f (X ,c) would be
represented as f (a,b,c) and f (X ,c) and could be unified by the substitution σ = {X → f (a,b)}
even though their arities after flattening (3 and 2 respectively) are different.

Example 2.8 (Adapted from [Sti81] and [dCS19]). We provide an example of the algo-
rithm given by Stickel in [Sti81] to perform the task of first-order AC unification. Let
P = { f (X ,X ,Y,a,b,c)≈? f (b,b,b,c,Z)} be our unification problem, where f is an AC func-
tion symbol. Here we opt for the flattened representation of terms, which is possible since we
have associativity.

The first step is to eliminate arguments that appear simultaneously on f (X ,X ,Y,a,b,c) and
f (b,b,b,c,Z). Therefore, P is now transformed in P′ = { f (X ,X ,Y,a)≈? f (b,b,Z)} .

The second step is to transform our current problem P′ into a new one, by replacing
constants and subterms headed by different function symbols with new variables. The result is
then P′′ = { f (X ,X ,Y,W0)≈? f (W1,W1,Z)}.
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The third step is to transform the unification problem into a diophantine equation by
observing the number of occurrences of each variable. In our case, the diophantine equation
obtained would be: 2X +Y +W0 = 2W1 +Z. The substitutions can be represented by non-
negative integer solutions to this equation.

The fourth step is to generate the solutions to the system of diophantine equations, as in
Table 2.1.

Table 2.1 Solutions for the Equation 2X +Y +W0 = 2W1 +Z

X Y W0 W1 Z 2X +Y +W0 2W1 +Z New Variables
0 0 1 0 1 1 1 Z1
0 1 0 0 1 1 1 Z2
0 0 2 1 0 2 2 Z3
0 1 1 1 0 2 2 Z4
0 2 0 1 0 2 2 Z5
1 0 0 0 2 2 2 Z6
1 0 0 1 0 2 2 Z7

In the fifth step, new variables are associated with every solution (see the last column of
Table 2.1). This new variables Z1, ...,Z7 can be interpreted as a “basis” of solutions. Observing
the columns of the Table 2.1 one obtains:

X = Z6 +Z7

Y = Z2 +Z4 +2Z5

W0 = Z1 +2Z3 +Z4

W1 = Z3 +Z4 +Z5 +Z7

Z = Z1 +Z2 +2Z6

Each one of the variables Z1, ...,Z7 can be included or not in the solution, giving us 27 = 128
possible cases. However, since all of X ,Y,W0,W1,Z must be different than zero, this is restricted
to 69 cases. More cases should be dropped: the cases where the variables that in fact represent
constants and subterms headed by a different AC function symbol are assigned to more than
one of the variables Z1, ...,Z7. For instance, the solution

σwrong = {X → Z6,Y → Z4,W0 → f (Z1,Z4),W1 → Z4,Z → f (Z1,Z6,Z6)}
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should be discarded as the variable W0, which represents the constant a, must not be
assigned to f (Z1,Z4). This is the sixth step. After this step, in our example, there are only six
remaining cases:

σ1 = {X → Z6,Y → Z4,W0 → Z4,W1 → Z4,Z → f (Z6,Z6)}

σ2 = {X → Z6,Y → f (Z2,Z4),W0 → Z4,W1 → Z4,Z → f (Z2,Z6,Z6)}

σ3 = {X → Z6,Y → f (Z5,Z5),W0 → Z1,W1 → Z5,Z → f (Z1,Z6,Z6)}

σ4 = {X → Z6,Y → f (Z2,Z5,Z5),W0 → Z1,W1 → Z5,Z → f (Z1,Z2,Z6,Z6)}

σ5 = {X → Z7,Y → Z2,W0 → Z1,W1 → Z7,Z → f (Z1,Z2)}

σ6 = {X → f (Z6,Z7),Y → Z2,W0 → Z1,W1 → Z7,Z → f (Z1,Z2,Z6,Z6)}

In the seventh step, the variables introduced in step two are replaced by the original term
they substituted. This can cause solutions to be lost. For instance, in our example, σ0 and σ1

should be discarded, as W0 and W1 must be mapped to distinct constants (respectively, a and b).
Finally, in the eighth step, the remaining cases are normalised by replacing the variables in

the image of the substitution that also happen in the domain. The final result is the following
list of substitutions: 

{Y → f (b,b),Z → f (a,X ,X)}
{Y → f (Z2,b,b),Z → f (a,Z2,X ,X)}

{X → b,Z → f (a,Y )}
{X → f (Z6,b),Z → f (a,Y,Z6,Z6)}


This algorithm has been proved terminating, sound and complete (see [Sti81], [Fag87] and

[dCS19]).

The Table 2.2, from [dCS19], summarises interesting information about first-order unifi-
cation, whether syntactic, commutative or associative-commutative. An unification type of 1
means that only one most general solution is generated, while an unification type of ω means
that a finite number of most general solutions are generated.
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Table 2.2 Information Regarding First-Order Unification

Equational Unification Complexity Complexity Related
Theory Type Matching Unification Work

Syntactic 1 O(n) O(n) [BN99], [MM82]
C ω NP-complete NP-complete [BN99], [KN87]

AC ω NP-complete NP-complete [BN99], [KN92]

2.3 The Nominal Setting

The definitions and notations used in this section are based on [ARFFSNS19] and [FG07].

2.3.1 Nominal Terms, Permutations and Substitutions

In the nominal setting, we consider a countable set of atoms A= {a,b,c, ....}. Atoms represent
object level variables, and therefore, can be abstracted but not substituted. We also consider
a countable set of variables X = {X ,Y,Z, ...} and impose that A and X are disjoint. These
variables represent meta-level variables and can be substituted, but not abstracted.

Remark 2.5. In the nominal setting, atoms with different names are considered different. For
instance, if we consider atoms a and b, it is needless to say that a ̸= b. This is sometimes called
Gabbay’s permutative convention.

Renaming of atoms happens through permutations, where a permutation π is a bijection of
the form π : A→A such that the set of atoms that are modified by π (also called the domain of
π) is finite. Permutations are usually represented as list of swappings, where a swapping (a b)
renames a to b and b to a, while leaving all the other atoms fixed. Therefore, a permutation is
represented as π = (an bn) :: ... :: (a1 b1) :: nil.

Definition 2.10. The action of a permutation over an atom is recursively defined as:

nil · c = c

((a b) :: π) · c =


a if π · c = b

b if π · c = a

π · c otherwise

Finally, the reverse of a permutation π is denoted by π
−1 and consists in the reverse of the

list of swappings.
With the concepts of atoms, variables and permutations, we are able to define nominal

terms:
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Definition 2.11 (Nominal Terms). Let Σ be a signature. The set T (Σ,A,X ) of nominal terms
is generated according to the grammar:

s, t ::= ⟨⟩ | a | π ·X | [a]t | ⟨s, t⟩ | f t

⟨⟩ is the unit. a is an atom. π ·X is a suspended variable (the permutation π is said to be
suspended on the variable X). [a]t is an abstraction, which allows us to capture the idea of a
bound variable on a term (in this case, the atom a is bound on the term t) , and the atom a is
said to be abstracted in t. Finally, ⟨s, t⟩ is a pair and f t is a function application.

Remark 2.6. Although the function application has arity one, this is not a limitation, for we can
use the pair to encode tuples with an arbitrary number of arguments. For example, the tuple
(t1, t2, t3) could be constructed as ⟨t1,⟨t2, t3⟩⟩.

Permutations also act on terms:

Definition 2.12 (Permutation Action). The action of a permutation on a term is also defined
recursively:

π · ⟨⟩= ⟨⟩ π · (π ′ ·X) = (π :: π
′) ·X

π · [a]t = [π ·a]π · t π · ⟨s, t⟩= ⟨π · s,π · t⟩

π · f t = f π · t

Remark 2.7. Notice that when a permutation π is applied to a suspended variable π
′ ·X , the

permutation π stays suspended. The intuition behind this is that π and π
′ are waiting for X to

be instantiated and will only act when the variable X is instantiated.

Example 2.9. To illustrate the action of a permutation on a term, consider π = (a b) :: (b c) ::
(d e) :: nil and t = f ⟨a,⟨d,X⟩⟩. Then, the result of the permutation action is π · t = f ⟨b,⟨e,π ·
X⟩⟩.

Finally, a substitution σ is used to instantiate unknowns. Substitutions are represented as
lists of nuclear substitutions.

Definition 2.13 (Nuclear Substitution). A nuclear substitution is a pair [X → t], where X is a
variable and t is a term. Nuclear substitutions also act over terms by induction, as seen below:
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⟨⟩[X → t] = ⟨⟩ a[X → t] = a

([a]s)[X → t] = [a](s[X → t]) π ·Y [X → t] =

π ·Y if X ̸= Y

π · t otherwise

⟨s1,s2⟩[X → t] = ⟨s1[X → t],s2[X → t]⟩ ( f s)[X → t] = f (s[X → t])

Definition 2.14 (Substitution). A substitution σ is a list of nuclear substitutions [Xn → tn] ::
... :: [X1 → t1] :: Id, which are applied consecutively to a term:

s Id = s, where Id is the empty list

s(σ :: [X → t]) = (s[X → t])σ

Remark 2.8. The definition of substitution here presented differs from the traditional view of a
substitution as a simultaneous application of nuclear substitutions, being closer to the notion
of triangular substitutions [KN10]. Both approaches can correctly represent a substitution
[ARFRO16].

Remark 2.9. Substitutions and permutations were defined as lists, and their actions on terms
start by the last element in the list and finish with the element in the head of the list. This is
advantageous since a composition such as π

′ ◦π can be specified in PVS simply as append(π
′,

π).

Example 2.10. Let σ = [Y → a] :: [X → f (Y,b)] :: Id and t = [a]X . Then, tσ = [a] f (a,b).

2.3.2 Freshness and α-equality

Two important notions in the nominal setting are freshness (represented by #) and α-equality
(represented by ≈α ):

• a#t intuitively means that if a occurs in the term t then it does so under an abstractor [a].
For example, a#b, since a does not occur in b, and also a#[a]a, since a occurs under an
abstractor [a]. However, we do not have a#a.

• s ≈α t means that s and t are α-equivalent, that is, the terms can be made equal by a
suitable renaming of bounded atoms. For instance, [a]a ≈α [b]b but we do not have
a ≈α b.
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The formal definitions of freshness and α-equivalence are given in Definitions 2.15 and
2.16.

Definition 2.15 (Freshness). A freshness context ∆ is a set of constraints of the form a#X . An
atom a is said to be fresh on t under a context ∆ (which we denote by ∇ ⊢ a#t) if it is possible
to build a proof using the rules:

(#⟨⟩)
∆ ⊢ a#⟨⟩ (#atom)

∆ ⊢ a#b

(π−1 ·a#X) ∈ ∆
(#X)

∆ ⊢ a#π ·X
(#[a]a)

∆ ⊢ a#[a]t

∆ ⊢ a#t (#[a]b)
∆ ⊢ a#[b]t

∆ ⊢ a#s ∆ ⊢ a#t (#pair)
∆ ⊢ a#⟨s, t⟩

∆ ⊢ a#t (#app)
∆ ⊢ a# f t

Definition 2.16 (α-equality). Two terms t and s are said to be α-equivalent under the context
∆ (∆ ⊢ t ≈α s) if it is possible to build a proof using the rules:

(≈α ⟨⟩)
∆ ⊢ ⟨⟩ ≈α ⟨⟩ (≈α atom)

∆ ⊢ a ≈α a

∆ ⊢ s ≈α t (≈α app)
∆ ⊢ f s ≈α f t

∆ ⊢ s ≈α t (≈α [a]a)
∆ ⊢ [a]s ≈α [a]t

∆ ⊢ s ≈α (a b) · t, a#t
(≈α [a]b)

∆ ⊢ [a]s ≈α [b]t
ds(π,π ′)#X ⊆ ∆

(≈α X)
∆ ⊢ π ·X ≈α π

′ ·X

∆ ⊢ s0 ≈α t0, ∆ ⊢ s1 ≈α t1 (≈α pair)
∆ ⊢ ⟨s0,s1⟩ ≈α ⟨t0, t1⟩

Notation: We define the difference set between two permutations π and π
′ as ds(π,π ′) = {a ∈

A|π ·a ̸= π
′ ·a}. Thus, ds(π,π ′)#X is the set containing every constraint of the form a#X for

a ∈ ds(π,π ′).

The derivations rules for freshness and α-equivalence form a sequent calculus, as indicated
in Examples 2.11 and 2.12.

Example 2.11. Let’s derive a#⟨X , [a]Y ⟩ with context ∆ = {a#X}:

a#X
(#[a]a)

a#[a]Y
(#pair)

a#⟨X , [a]Y ⟩



18 Preliminaries

Example 2.12. As commented before, [a]a ≈α [b]b are α-equivalent. The following derivation
proves this:

(≈α atom)
a ≈α (a b) ·b (#atom)

a#b
(≈α [a]b)

[a]a ≈α [b]b

2.4 Extending the Nominal Setting to Handle Commutative
and Associative-Commutative Function Symbols

2.4.1 Extending Nominal Terms, Permutations and Substitutions

From now on, we will denote commutative functions by a superscript C and associative-
commutative functions by a superscript AC. After explicitly saying that a symbols is C or AC,
the superscript may be dropped to simplify the notation.

The definition of nominal term may be extended in order to consider C and AC function
symbols, as can be seen in Definition 2.17. The code in PVS to specify a nominal term can be
checked on Appendix A, Section A.1.

Definition 2.17 (Nominal Terms with C and AC function symbols). Let Σ be a signature
of function symbols, C function symbols and AC function symbols. The set T (Σ,A,X ) of
nominal terms are given according to the grammar of Definition 2.11 and also the rules:

s, t ::= fC⟨s, t⟩ | f ACt

Remark 2.10. As in [ARdCSFNS18], we impose that commutative functions always receive
a pair as their argument. This was done in order to simplify the analysis, as we do not have
to worry about the semantics of a C function symbol with only one argument, or a C function
symbol with no arguments. Consider for instance the disjunction operator ∨. We have a∨b if
and only if a or b is true (the case of a C function symbol receiving two arguments), ∨t is true
if and only if t is true (the case of a C function symbol receiving only one argument) and ∨⟨⟩ is
always false (here the unit is being used to represent the case off a C function symbol receiving
no arguments).

It is straightforward to extend the action of permutations and nuclear substitutions to
work with C and AC function symbols, as seen in Definitions 2.18 and 2.19. The action of a
substitution remains simply a consecutive application of the nuclear substitutions.
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Definition 2.18 (Permutation Action with C and AC function symbols). The action of a
permutation on a term (Definition 2.12) is extended by the following rules in order to deal with
C and AC functions:

π · fC⟨s, t⟩= fC⟨π · s,π · t⟩

π · f ACt = f AC(π · t)

Definition 2.19 (Nuclear Substitution with C and AC function symbols). The action of a
nuclear substitution on a term (Definition 2.12) is extended by the following rules in order to
deal with C and AC functions:

( fC⟨s1,s2⟩)[X → t] = fC⟨s1[X → t],s2[X → t]⟩

( f ACs)[X → t] = f AC(s[X → t])

2.4.2 Extending Freshness and α-equality

Extending freshness to deal with C and AC functions is straightforward, as seen in Definition
2.20. Extending α-equality (Definition 2.21), by contrast, is not as simple, since the semantics
of commutativity and associativity-commutativity play an important role.

Definition 2.20 (Freshness with C and AC function symbols). In addition to the rules already
presented in 2.15, when introducing C and AC function symbols, there are the rules:

∆ ⊢ a#s ∆ ⊢ a#t (#c−app)
∆ ⊢ a# fC ⟨s, t⟩

∆ ⊢ a#t (#ac−app)
∆ ⊢ a# f AC t

Definition 2.21 (α-equality with C and AC function symbols). In addition to the rules already
presented in 2.16, when introducing C and AC function symbols, there are the rules:

∆ ⊢ s0 ≈α ti, ∆ ⊢ s1 ≈α ti+1(mod2)
i = 0,1 (≈α c−app)

∆ ⊢ fC⟨s0,s1⟩ ≈α fC⟨t0, t1⟩

∆ ⊢ S1( f ACs)≈α Si( f ACt) ∆ ⊢ D1( f ACs)≈α Di( f ACt)
(≈α ac−app)

∆ ⊢ f ACs ≈α f ACt

In the rule for an associative-commutative function, Sn( f∗) is an operator that selects the nth
argument of the flattened subterm f∗ and Dn( f∗) is an operator that deletes the nth argument
of the flattened subterm f∗.
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Remark 2.11. The rule for commutative function contemplates two possibilities. The first is
that in order for fC⟨s0,s1⟩ ≈α fC⟨t0, t1⟩ it is enough to have s0 ≈α t0 and s1 ≈α t1. The second
is that we can also derive fC⟨s0,s1⟩ ≈α fC⟨t0, t1⟩ from s0 ≈α t1 and s1 ≈α t0, since we have
commutativity.

Remark 2.12. If the flattened subterm f∗ contains only two arguments, then Dn( f∗) will
contain only one argument. Also, if the flattened subterm f∗ contains only one argument, then
Dn( f∗) returns the unit. For instance, D1( f ⟨a,b⟩) = f b and D1( f b) = ⟨⟩.

Example 2.13. The following derivation proves that g( fC⟨a,b⟩)≈α g( fC⟨b,a⟩).

(≈α atom)
b ≈α b (≈α atom)a ≈α a (≈α c−app)

fC⟨a,b⟩ ≈α fC⟨b,a⟩
(≈α app)

g( fC⟨a,b⟩)≈α g( fC⟨b,a⟩)

Example 2.14. We exemplify the operators Sn(∗) and Dn(∗). Let f be an AC-function symbol.
In the above definition, S2( f ⟨ f ⟨a,b⟩, f ⟨[a]X ,π ·Y ⟩⟩) is b, and D2( f ⟨ f ⟨a,b⟩, f ⟨[a]X ,π ·Y ⟩⟩⟩)
is f ⟨ f a, f ⟨[a]X ,π ·Y ⟩⟩⟩).

Example 2.15. Let f be an AC-function symbol. Notice that f ⟨ f ⟨a,b⟩, [a]X⟩ and f ⟨[a]X ,⟨a,b⟩⟩
are α-equivalent. To see that, apply rule (≈α ac-app) and prove that S1( f ⟨ f ⟨a,b⟩, [a]X⟩)≈α

S2( f ⟨[a]X ,⟨a,b⟩⟩) and that D1( f ⟨ f ⟨a,b⟩, [a]X⟩)≈α D2( f ⟨[a]X ,⟨a,b⟩⟩).
We have S1( f ⟨ f ⟨a,b⟩, [a]X⟩) = a ≈α a = S2( f ⟨[a]X ,⟨a,b⟩⟩). Finally, since

D1( f ⟨ f ⟨a,b⟩, [a]X⟩) = f ⟨b, [a]X⟩ and D2( f ⟨[a]X ,⟨a,b⟩⟩) = f ⟨[a]X ,b⟩ we have, by another
convenient application of rule (≈α ac-app), that D1( f ⟨ f ⟨a,b⟩, [a]X⟩)≈α D2( f ⟨[a]X ,⟨a,b⟩⟩).

2.4.3 Nominal C and AC-Unification

Unification, both in first-order and in nominal syntax, is about discovering a substitution that
makes two terms t and s equal. In the absence of equational theories, the only difference is
that in first-order theory we consider syntactical equality, while in the nominal approach we
consider equality modulo renaming of bound variables, that is, α-equality. By adding C and AC
function symbols, we also need to consider equality modulo the semantics of commutativity and
associativity-commutativity. We now formally define an unification problem and a solution for
a unification problem in the nominal setting. For a comparison with the analogous definitions
in the first-order setting, check Definitions 2.6 and 2.7.

Definition 2.22 (Unifiable Terms and Unifiers). Two terms t and s are unifiable if there exists
a pair ⟨∇,σ⟩ such that ∇ ⊢ tσ ≈α sσ . The pair ⟨∇,σ⟩ is said to be a unifier of t and s.
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Definition 2.23 (Unification Problem with C and AC function symbols). A unification problem
is a pair ⟨∆,P⟩ where ∆ is a freshness context and P is a finite set of equations and freshness
constraints of the form s ≈? t and a#?t, respectively, with s and t terms and a atom.

Example 2.16. Let f be an AC function symbol. A unification problem with empty context
and one equation constraint is: ⟨∆,P⟩= ⟨ /0, f ⟨ f ⟨X ,Y ⟩,c⟩⟩ ≈? f ⟨c, f ⟨a,b⟩⟩⟩.

Let ∇ and ∇
′ be freshness contexts and σ and σ

′ be substitutions. Before defining a solution
to a unification problem, we need the following notation:

• ∇
′ ⊢ ∇σ means that ∇

′ ⊢ a#Xσ holds for each (a#X) ∈ ∇.

• ∇ ⊢ σ ≈ σ
′ means that ∇ ⊢ Xσ ≈α Xσ

′ holds for all X in dom(σ)∪dom(σ ′).

Definition 2.24 (Solution for a Triple or Problem). A solution for a unification problem ⟨∆,P⟩
is a solution for the associated triple ⟨∆, id,P⟩, where id is the identity substitution. We define
a solution for a triple P = ⟨∆,δ ,P⟩ (where δ is a substitution) as a pair ⟨∇,σ⟩ that fulfills the
following four conditions:

• ∇ ⊢ ∆σ

• ∇ ⊢ a#tσ , if a#?t ∈ P

• ∇ ⊢ sσ ≈α tσ , if s ≈? t ∈ P

• There exists λ such that ∇ ⊢ δλ ≈ σ

Example 2.17. Consider the unification problem of Example 2.16 and remember that f is an
AC function symbol. We have ⟨∆, id,P⟩= ⟨ /0, id, f ⟨ f ⟨X ,Y ⟩,c⟩ ≈? f ⟨c, f ⟨a,b⟩⟩⟩. A possible
solution is: ⟨ /0, [X → a] :: [Y → b] :: Id⟩.

Definition 2.25. A fixed point equation is an equation of the form π ·X ≈α π
′ ·X .

Fixed point equations are not central to standard nominal unification, but they do play
a key role in nominal C or AC-Unification. In standard nominal unification, a fixed point
equation like π ·X ≈α π

′ ·X would be easily solved by requiring that ds(π,π ′)#∇, where ∇

is the context that composes the solution to the problem (see the rule for α-equivalence of
suspended variables in Definition 2.16).

This approach, while still correct in nominal C or AC-unification, is not complete. Take,
for instance the equation (a b) ·X ≈α X . A solution not captured by this traditional approach is
⟨ /0, [X → a+b] :: Id⟩, where + is an associative-commutative function symbol (here we are
using infix notation). Moreover, there is an infinite number of solutions to fixed point equations
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[ARdCSFNS18]. Considering the equation above, among the infinite number of solutions we
have: ⟨ /0, [X → a+b] :: Id⟩ ⟨ /0, [X → (a+b)+(a+b)] :: Id⟩ and so on.

Consequently, fixed point equations are not solved in nominal C or AC-Unification, instead,
they are carried on as part of the solution to the unification problem [ARdCSFNS18]. In this
work, we decided to separate the fixed point equations from the set of equational and freshness
constraints, which allowed us reduce by one the number of parameters of the lexicographic
measure used in the proofs of termination, soundness and completeness. This will be better
discussed in Section 3.4.1.

There is a simple extension of the definition of solution for a triple or unification problem
(Definition 2.24) in order to consider this separation of fixed point equations. It is shown in
Definition 2.26. For further reference, we repeat the common clauses with Definition 2.24.

Definition 2.26 (Solution for a Quadruple). Let FP be a set of fixed point equations. ⟨∇,σ⟩ is
a solution to the quadruple P = ⟨∆,δ ,P,FP⟩ if the four conditions of the Definition 2.24 are
satisfied and we also have:

• ∇ ⊢ π ·Xσ ≈α π
′ ·Xσ , if π ·X ≈? π

′ ·X ∈ FP

This means that five conditions must be met:

• ∇ ⊢ ∆σ

• ∇ ⊢ a#tσ , if a#?t ∈ P

• ∇ ⊢ sσ ≈α tσ , if s ≈? t ∈ P

• There exists λ such that ∇ ⊢ δλ ≈ σ

• ∇ ⊢ π ·Xσ ≈α π
′ ·Xσ , if π ·X ≈? π

′ ·X ∈ FP

Remark 2.13. In [AFN19], instead of working with freshness relations, the authors work with
the notion of a fixed-point constraint. This alternative formulation has the advantage that
C-unification remains finitary. For further reference about this alternative approach, one can
check [AFN19].



Chapter 3

A Correct and Complete Algorithm for
Functional Nominal C-Unification

In this chapter we detail the algorithm developed for the task of functional nominal C-
Unification. In this chapter the nominal setting contains C function symbols, but not AC
function symbols. Since we used PVS for specifying and formalising the algorithm, we briefly
tell about the PVS files and where to find further information. Next, we present and explain the
specification of the algorithm. Then, we give some examples and comment on the most interest-
ing aspects of the formalisation. Following this, we briefly mention our Python implementation
of the algorithm, again pointing where to find further information. Finally, we discuss possible
applications. The material of this chapter is an extension of [ARFFSNS19] and all theorems
and corollaries in this chapters were proved in PVS.

3.1 The PVS Theory Organisation and Where to Find Fur-
ther Information

As remarked before, the specification and formalisation of the PVS theory are fully available
at http://www.github.com/gabriel951/c-unification. Additional information can be found by
looking at the README or the .pvs files themselves. Version 6 of PVS must be used.

The hierarchy of the PVS files is presented in Figure 3.1.
We succintly describe the contents of each file:

• nominalunif.pvs - It is the main file of the nominal C-unification theory. The
file contains the main function c_unify and also the specifications for the lemmas of
soundness and completeness. As usual, the formalisations of these lemmas are in the
correspondent .prf file.
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Fig. 3.1 Hierarchy of the PVS Theory For Nominal C-Unification.

• substitution.pvs - Deals with substitutions and basic properties. Contains a lot of
auxiliary lemmas used in the formalisation of the algorithm.

• alpha_equivalence.pvs - Concerns α-equivalence, defined via the function “al-
pha”. It is proved that α-equivalence is indeed an equivalent relation.

• fresh.pvs - Contains the definition of freshness and related lemmas.

• nominal_term.pvs - Defines a nominal term and functions that deal with nominal
terms, such as the action of permutation on nominal terms. Contains the functions that
calculates the set of variables in a nominal term and the size of a nominal term, used in
the lexicographic measure of the proofs of termination, soundness and completeness.

• term_adt.pvs - This file is generated automatically by PVS and contains the neces-
sary datatype definitions in order for the nominal term datatype to work correctly.

• atoms.pvs - Defines atoms, permutations and how permutations act on atoms.

• structure_extra.pvs - Has basic properties related with lists and membership, to
be used by the remaining .pvs files.
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3.2 Specification

We have developed a recursive algorithm that can unify nominal terms t and s which may contain
C function symbols (see Algorithm 1). In the pseudocode, the + denotes a concatenation of
lists, the = denotes an assignment, the symbol == checks equality while ! = checks inequality.

The algorithm needs to keep track of the current context, the substitutions made so far, the
remaining terms to unify and the current fixed point equations. Hence, the algorithm receives
as input a quadruple (∆,σ ,PrbLst,FPEqLst), where ∆ is the context we are working with, σ

is a list of substitutions already done, PrbLst is a list of pairs of terms which we must still unify
and FPEqLst is a list of the fixed point equations already computed.

The first call to the algorithm, in order to unify terms t and s is simply: UNIFY( /0, Id, [(t,s)], /0).
The algorithm will eventually terminate, returning a list of solutions (which may be empty, if
there is no solution) where each solution is of the form: (∆,σ ,FPEqLst).

Although long, the algorithm is simple. It starts by analysing the list of terms it needs to
unify. If PrbLst is an empty list, then it has finished and can return the answer computed so far,
which is the list [(∆,σ ,FPEqLst)]. If PrbLst is not empty, then there are terms to unify and
the algorithm begins by trying to unify the terms t and s in the head of PrbLst and only after
that it goes to the tail of the list (represented, in Algorithm 1, by PrbLst ′). The algorithm keeps
calling itself on progressively simpler versions of the problem until it finishes.

Remark 3.1. When trying to unify fC⟨t1, t2⟩ with fC⟨s1,s2⟩ there are two possible branches to
take:

• try to unify t1 with s1 and t2 with s2

• try to unify t1 with s2 and t2 with s1

This means there are two paths we must consider, and since each path can generate one solution,
we may have more than one solution. That is why Algorithm 1 gives, as output, a list of
solutions.

Remark 3.2. As can be seen in line 26 of Algorithm 1, a fixed point equation π ·X ≈α π
′ ·X is

represented as a pair (π
′−1 ◦π,X). To convert from this representation to the representation of

a unification problem, the function fix_pnt2unif_prb was used. A better approach should
have been employed: fixed point equations should have been represented in the same way
unification problems were, which would avoid the need for a separate function to perform the
conversion from one representation to another.
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Algorithm 1 - First Part - Functional Nominal C-Unification
1: procedure UNIFY(∆,σ ,PrbLst,FPEqLst)
2: if null(PrbLst) then
3: return list((∆,σ ,FPEqLst))
4: else
5: (t,s)+PrbLst ′ = PrbLst
6: if (s == π ·X) and (X not in t) then
7: σ

′ = {X → π
−1 · t}

8: σ
′′ = σ

′ ◦σ

9: (∆′, bool1) = fresh_subs?(σ ′,∆)
10: ∆

′′ = ∆∪∆
′

11: PrbLst ′′ = (PrbLst ′)σ ′+(FPEqLst)σ ′

12: if bool1 then return UNIFY(∆′′,σ ′′,PrbLst ′′,null)
13: else return null
14: end if
15: else
16: if t == a then
17: if s == a then
18: return UNIFY(∆,σ ,PrbLst ′,FPEqLst)
19: else
20: return null
21: end if
22: else if t == π ·X then
23: if (X not in s) then
24: ▷ Similar to case above where s is a suspension and X is not in t.
25: else if (s == π

′ ·X) then
26: FPEqLst ′ = FPEqLst ∪{((π ′)−1 +π) ·X}
27: return UNIFY(∆,σ ,PrbLst ′,FPEqLst ′)
28: else return null
29: end if
30: else if t == ⟨⟩ then
31: if s == ⟨⟩ then
32: return UNIFY(∆,σ ,PrbLst ′,FPEqLst)
33: else return null
34: end if
35: else if t == ⟨t1, t2⟩ then
36: if s == ⟨s1,s2⟩ then
37: PrbLst ′′ = [(s1, t1)]+ [(s2, t2)]+PrbLst ′

38: return UNIFY(∆,σ ,PrbLst ′′,FPEqLst)
39: else return null
40: end if
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Algorithm 1 - Second Part - Functional Nominal C-Unification

41: else if t == [a]t1 then
42: if s == [a]s1 then
43: PrbLst ′′ = [(t1,s1)]+PrbLst ′

44: return UNIFY(∆,σ ,PrbLst ′′,FPEqLst)
45: else if s == [b]s1 then
46: (∆′,bool1) = f resh?(a,s1)
47: ∆

′′ = ∆∪∆
′

48: PrbLst ′′ = [(t1, (a b) s1)]+PrbLst ′

49: if bool1 then
50: return UNIFY(∆′′,σ ,PrbLst ′′,FPEqLst)
51: else return null
52: end if
53: else return null
54: end if
55: else if t == f t1 then ▷ f is not commutative
56: if s != f s1 then return null
57: else
58: PrbLst ′′ = [(t1,s1)]+PrbLst ′

59: return UNIFY(∆,σ ,PrbLst ′′,FPEqLst)
60: end if
61: else ▷ t is of the form fC(t1, t2)
62: if s != fC(s1,s2) then return null
63: else
64: PrbLst1 = [(s1, t1)]+ [(s2, t2)]+PrbLst ′

65: sol1 = UNIFY(∆,σ ,PrbLst1,FPEqLst)
66: PrbLst2 = [(s1, t2)]+ [(s2, t1)]+PrbLst ′

67: sol2 = UNIFY(∆,σ ,PrbLst2,FPEqLst)
68: return APPEND(sol1,sol2)
69: end if
70: end if
71: end if
72: end if
73: end procedure
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3.2.1 Auxiliary Functions

In accordance with the approach of [ARFRO16], we separate the treatment of freshness
constraints from the main function, by using auxiliary functions. This is advantageous, for the
function UNIFY gets smaller, as it only needs to deal with equational constraints. This separate
treatment also allowed a reduction on the number of parameters of the lexicographic measure
used in the proofs of termination, soundness and completeness, as will be better discussed in
Section 3.4. The auxiliary functions used by UNIFY to deal with freshness constraints are:

• fresh_subs?(σ ,∆): This function returns the minimal context (∆′ in Algorithm 1) in
which a#?Xσ holds, for every a#X in the context ∆. A boolean (bool1 in Algorithm 1) is
also returned, indicating if it is possible to find the mentioned context. This function can
be found in file substitution.pvs.

• fresh?(a, t): This function computes and returns the minimal context (∆′ in Algorithm
1) in which a is fresh on t. This function also returns a boolean (bool1 in Algorithm 1),
indicating if it is possible to find the mentioned context. This function can be found in
file freshness.pvs.

Remark 3.3. The algorithm does not handle directly as input an unification problem that already
has a freshness constraint a#?t. This, however, would not be a difficult extension from what we
currently have and could be done in the following manner: if the algorithm receives a freshness
constraint a#?t apply function fresh? directly and if the algorithm receives an equational
constraint s ≈? t, apply function UNIFY.

3.3 Examples

An example of the algorithm running is given in Example 3.1. It is possible to observe how
commutative function symbols introduces branches, how more than one solution may be given
and also how the algorithm keeps calling itself with progressively easier versions of the problem
until it finishes. A more intricate example, which uses Example 3.1, is shown in Example 3.2.

Example 3.1. Suppose f is a commutative function symbol. This example shows how the
algorithm proceeds in order to unify f ⟨(a b) ·X ,c⟩ with f ⟨X ,c⟩.
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unify( /0, id, [ f ⟨(a b) ·X ,c⟩ ≈α f ⟨X ,c⟩], /0)

unify( /0, id, [(a b) ·X ≈α X , c ≈α c], /0)

unify( /0, id, [c ≈α c], (a b) ·X ≈α X)

unify( /0, id, null, (a b) ·X ≈α X)

( /0, id,(a b) ·X ≈α X)

unify( /0, id, [(a b) ·X ≈α c, X ≈α c], /0)

unify( /0, {X → c}, [c ≈α c], /0)

unify( /0, {X → c}, null, /0)

( /0,{X → c}, /0)

In this example, the output of the algorithm would be:

[( /0, id,(a b) ·X ≈α X), ( /0,{X → c}, /0)]

Example 3.2. Let f and g be commutative function symbols and h be a non-commutative
function symbol. This example shows how the algorithm would unify g⟨h d, f ⟨(a b) ·X ,c⟩⟩
with g⟨ f ⟨X ,c⟩,h d⟩. Because g is commutative, the algorithm explores two branches:

• On the first branch, the algorithm tries to unify h d with f ⟨X ,c⟩ and f ⟨(a b) ·X ,c⟩ with
h d. However, since it is impossible to unify h d with f ⟨X ,c⟩ (different function symbols),
the algorithm returns an empty list, indicating that no solution is possible for this branch.

• On the second branch, the algorithm tries to unify h d with h d and f ⟨(a b) ·X ,c⟩ with
f ⟨X ,c⟩. First, h d unify with h d without any alterations on the context ∆, the substitution
σ or the list of fixed point equations FPEqLst. Finally, the unification of f ⟨(a b) ·X ,c⟩
with f ⟨X ,c⟩ was shown in Example 3.1, and gives two solutions: ( /0, id,(a b) ·X ≈α X)

and ( /0,{X → c}, /0).

The algorithm then concatenates the empty list of the first branch with the list containing
two solutions of the second branch, giving as solution:

[( /0, id,(a b) ·X ≈α X), ( /0,{X → c}, /0)]
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3.4 Formalisation

3.4.1 The Lexicographic Measure and Termination of the Algorithm

The termination of the algorithm was proved by proving the TCCs (the concept of TCC can
be found in Section 2.1.1) generated by PVS [SORSC01]. In order to do that, we defined the
following lexicographic measure and proved that it decreases in every recursive call:

lex2(|Vars(PrbLst)∪Vars(FPEqLst)|,size(PrbLst))

|Vars(PrbLst)∪Vars(FPEqLst)| is the cardinality of the set of variables which occur in
PrbLst (the list of unification problems that remain) or in FPEqLst (the list of fixed point
equations). To compute the set of variables in a list, we consider the union of the set of variables
in all terms of the list. The set of variables is recursively computed as shown in Definition 3.1.

Definition 3.1. The set of variables in a term is recursively defined as:

Vars(a) = /0 Vars(⟨⟩) = /0

Vars(π ·X) = {X} Vars([a]t) =Vars(t)

Vars(⟨t0, t1⟩) =Vars(t0)∪Vars(t1) Vars( f t) =Vars(t)

Vars( fC⟨t0, t1⟩) =Vars(t0)∪Vars(t1)

To see how the PVS specification computes this, check function Vars in Appendix A,
Section A.1.

The second component of the lexicographic measure is size(PrbLst), which is the sum of
the size of every unification problem. In an arbitrary manner, it was decided that the size of the
unification problem (t,s) is the size of t, the first term. The measure would still work had we
taken the size of the unification problem (t,s) to be the size of s or even the size of t plus the
size of s. The definition for the size of the term t is given in Definition 3.2.

Definition 3.2. The size of a term is recursively computed as as:

size(a) = 1 size(⟨⟩) = 1

size(π ·X) = 1 size([a]t) = 1+ size(t)

size(⟨t0, t1⟩) = 1+ size(t0)+ size(t1) size( f t) = 1+ size(t)

size( fC⟨t0, t1⟩) = 1+ size(t0)+ size(t1)
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To see how the PVS specification computes this, check function size in Appendix A,
Section A.1.

Notice that the lexicographic measure decreases in each recursive call and the component
that diminishes depends on the type of the terms t and s that are in the head of the list of
problems to unify. If one of them is a suspended variable, say π ·X , and we are not dealing with
a fixed point equation, then the algorithm will instantiate the variable X appropriately and the
first component of the lexicographic measure, |Vars(PrbLst)∪Vars(FPEqLst)| will decrease.
In any other case, the first component remains the same (since no variable is introduced) and
the second component (size(PrbLst)) decreases.

Remark 3.4. We reduced the lexicographic measure used in [ARdCSFNS18], from 4 parameters
to only 2 parameters. The measure adopted in [ARdCSFNS18] was:

|P|= ⟨|Var(P≈)|, |P≈|, |Pn f p|, |P#|⟩

where P≈ is the set of equation constraints in P, Pn f p is the set of non fixed point equations in
P and P# is the set of freshness constraints in P. Two insights were necessary to accomplish
this reduction. The first was to separate the treatment of freshness constraints from equational
constraints, and treat freshness constraints separately, with the use of the auxiliary functions of
Section 3.2.1. This idea comes from [ARFRO16]. The second insight is to separate the fixed
point equations from the equational constraints. In this manner, when a fixed point equation is
found in PrbLst, it is added to FPEqLst and taken out of PrbLst, diminishing size(PrbLst).

Remark 3.5. We simplified the proofs of soundness, completeness and termination by reducing
the lexicographic measure used on them.

3.4.2 Soundness and Completeness

Before stating the main theorems of soundness and completeness, we define a valid quadruple.
A valid quadruple is an invariant of the UNIFY function (see Algorithm 3.1) with useful
properties.

Definition 3.3 (Valid Quadruple). Let ∆ be a freshness context, σ a substitution, P a list
of unification problems and FP a list of fixed point equations. P = ⟨∆,σ ,P,FP⟩ is a valid
quadruple if the following two conditions hold:

• im(σ)∩dom(σ) = /0

• dom(σ)∩ (Vars(P)∪Vars(FP)) = /0

Remark 3.6. A valid quadruple has two desirable properties: the substitution is idempotent
(condition 1) and applying the substitution to P or FP produces no effect (condition 2).



32 A Correct and Complete Algorithm for Functional Nominal C-Unification

Soundness

The corollary 3.1 enunciates that UNIFY is sound. It follows straightforwardly by application of
Theorem 3.1.

Theorem 3.1. Suppose (∆sol,σsol,FPEqLstsol) ∈ UNIFY(∆,σ ,PrbLst,FPEqLst), (∇,δ ) is a
solution to ⟨∆sol,σsol, /0,FPEqLstsol⟩ and that ⟨∆,σ ,PrbLst,FPEqLst⟩ is a valid quadruple.
Then (∇,δ ) is a solution to ⟨∆,σ ,PrbLst,FPEqLst⟩.

Proof. The proof is by induction on the lexicographic measure, according to the case of the
terms t and s that are in the head of PrbLst, the list of remaining unification problems. The
hardest cases are the ones of suspended variables and abstractions (the same happens when
proving completeness, so their explanation is put together in Remark 3.12). We now explain
the case of commutative functions.

In the case of commutative function symbols f ⟨t1, t2⟩ and f ⟨s1,s2⟩, there are no changes
in the context nor in the substitution from one recursive call to the next. Therefore, it is
trivial to check that we remain with a valid quadruple and it is also trivial to check all but the
third condition of Definition 2.26. For the third condition we have either (∇ ⊢ t1δ ≈α s1δ

and ∇ ⊢ t2δ ≈α s2δ ) or (∇ ⊢ t1δ ≈α s2δ and ∇ ⊢ t2δ ≈α s1δ ). In any case, we are able to
deduce ∇⊢ ( f ⟨t1, t2⟩)δ ≈α ( f ⟨s1,s2⟩)δ by noting that ( f ⟨t1, t2⟩)δ = f ⟨t1δ , t2δ ⟩, ( f ⟨s1,s2⟩)δ =

f ⟨s1δ ,s2δ ⟩ and then using rule (≈α c− app) for α-equivalence of commutative function
symbols.

Corollary 3.1 (Soundness of Unify). Suppose (∆sol,σsol,FPEqLstsol) ∈ UNIFY( /0, Id, [(t,s)],
/0), (∇,δ ) is a solution to ⟨∆sol,σsol, /0,FPEqLstsol⟩. Then (∇,δ ) is a solution to ⟨ /0, Id,
[(t,s)], /0⟩.

Proof. Notice that ⟨ /0, Id, [(t,s)], /0⟩ is a valid quadruple. Then, we apply Theorem 3.1 and
prove the corollary.

Remark 3.7. An interpretation of Corollary 3.1 is that if (∇,δ ) is a solution to one of the
outputs of the algorithm UNIFY, then (∇,δ ) is a solution to the original problem.

Remark 3.8. It was not possible to do a proof by induction directly in Corollary 3.1 for although
in the initial problem we have an empty context, the identity substitution, only one unification
problem and an empty list of fixed point equations this is not necessarily the case for the next
recursive call.

Completeness

In an analogous manner with the proof of soundness, the Corollary 3.2 enunciates that UNIFY
is complete and it follows directly by the application of Theorem 3.2.
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Theorem 3.2. Suppose (∇,δ ) is a solution to ⟨∆,σ ,PrbLst,FPEqLst⟩ and that ⟨∆,σ ,

PrbLst,FPEqLst⟩ is a valid quadruple. Then, there exists (∆sol,σsol,FPEqLstsol) ∈
UNIFY(∆,σ ,PrbLst,FPEqLst) such that (∇,δ ) is a solution to ⟨∆sol,σsol, /0,FPEqLstsol⟩.

Proof. The proof is by induction on the lexicographic measure, according to the case of the
terms t and s that are in the head of PrbLst, the list of remaining unification problems. The
hardest cases are again the ones of suspended variables and abstractions (explained in Remark
3.12). Below we explain the case of commutative functions.

In the case of commutative function symbols f ⟨t1, t2⟩ and f ⟨s1,s2⟩, there are no changes
in the context nor in the substitution from one recursive call to the next. Therefore, it is
trivial to check that we remain with a valid quadruple and it is also trivial to check all but
the third condition of Definition 2.26. For the third condition we have ∇ ⊢ ( f ⟨t1, t2⟩)δ ≈α

( f ⟨s1,s2⟩)δ and must prove that either (∇⊢ t1δ ≈α s1δ and ∇⊢ t2δ ≈α s2δ ) or (∇⊢ t1δ ≈α s2δ

and ∇ ⊢ t2δ ≈α s1δ ) happens. This again is solved by noting that ( f ⟨t1, t2⟩)δ = f ⟨t1δ , t2δ ⟩,
( f ⟨s1,s2⟩)δ = f ⟨s1δ ,s2δ ⟩ and then using rule (≈α c−app) for α-equivalence of commutative
function symbols.

Corollary 3.2 (Completeness of Unify). Suppose (∇,δ ) is a solution to ⟨ /0, Id, [(t,s)], /0⟩. Then,
there exists (∆sol,σsol, FPEqLstsol) ∈ UNIFY( /0, Id, [(t,s)], /0) such that (∇,δ ) is a solution to
⟨∆sol,σsol, /0,FPEqLstsol⟩.

Proof. Notice that ⟨ /0, Id, [(t,s)], /0⟩ is a valid quadruple. Then, we apply Theorem 3.2 and
prove the corollary.

Remark 3.9. An interpretation of Corollary 3.2 is that if (∇,δ ) is a solution to the initial
problem, then (∇,δ ) is also a solution to one of the outputs of UNIFY.

Remark 3.10. In a similar way as Remark 3.8, it was not possible to do a proof by induction
directly in Corollary 3.2 for although in the initial problem we have an empty context, the
identity substitution, only one unification problem and an empty list of fixed point equations
this is not necessarily the case for the next recursive call.

Remark 3.11. An alternative approach for formalising the correctness and completeness of
the Algorithm 1 given would be to prove its functional equivalence with the set of non-
deterministic rules presented in [ARdCSFNS18], since this rules were already shown to be
correct and complete. That, however, would require a “translation” (which must be assured to
be correct) from the Coq specification to the PVS specification (or vice-versa).

3.4.3 Interesting Points

Interesting points of the formalisation are discussed in Remarks 3.12 and 3.13.
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Remark 3.12. To prove correctness and completeness of the algorithm, we worked with the
terms t and s that were in the head of PrbLst. We divided the proof in cases. The hardest case
happened when t or s were a suspended variable of the type π ·X and the variable X did not
occur in the other term (see Algorithm 1).

The reason for that is the algorithm receives as arguments ∆, σ , PrbLst and FPEqLst
and the next recursive call is made with four different parameters: ∆

′′, σ
′′, PrbLst ′′ and null

(see Algorithm 1). Therefore, all of the five conditions of the Definition 2.26 are not trivially
satisfied. Moreover, since in the next recursive call we will be working with a new substitution
σ
′′ and the variable X will no longer be a part of PrbLst ′′, we must assure that the quadruple

we are working with remains valid.
The case of unifying t = [a]t1 with s = [b]s1 was also interesting, as both the context and

the list of problems to unify suffer modifications in the recursive call. In all the remaining
cases, there are no changes in the context nor in the substitution, making them easier. In these
remaining cases, only one condition (the third) of the five in Definition 2.26 is not trivially
satisfied. Moreover, this one condition can be easily checked to be true (or false, and in this
event the algorithm will return an empty list) in the remaining cases by applying the appropriate
α-equivalence rule.

Remark 3.13. There were three main novelties in the formalisation which were due to the
introduction of commutative function symbols.

• Unification of commutative functions. The unification of commutative functions (for
instance, f (t1, t2) with f (s1,s2)) was straightforward (see Algorithm 1). First, the algo-
rithm tries to unify t1 with s1 and t2 with s2, generating a list of solutions sol1. Then, the
algorithm tries unifying t1 with s2 and t2 with s1, generating a list of solutions sol2. The
final result is then simply the concatenation of both lists.

• Management of fixed point equations. This was also straightforward. We keep a separate
list of fixed point equation (FPEqLst), and when the algorithm recognises a fixed point
equation in PrbLst it takes this equation out of PrbLst and puts it on FPEqLst.

• Reason about the appropriate data structure for the algorithm and the solutions. This was
not straightforward. As mentioned before, since commutativity introduced branches, the
recursive calls of the algorithm can be seen as a tree (see Example 3.1). Therefore, ini-
tially, an approach using a tree data structure was planned (which would have complicated
the analysis). However, since the algorithm simply solves one branch and then solves the
other, we realized all that was needed was to do two recursive calls (one for each branch)
and append the two lists of solutions generated. Hence, we were able to avoid the tree
data structure, working instead with lists, which simplified the specification.



3.5 Implementation 35

3.5 Implementation

We have implemented in Python the functional algorithm proved correct and complete. The
implementation may be found on file unify.py, while Examples 3.3 and 3.4 that will be
shown next can be run by executing file tests.py (both of them also available at http://www.
github.com/gabriel951/c-unification). Specific instructions can be found on these files. The
most recent version of Python, Python 3, should be used. As PVS does not support automatic
extraction to Python code, the translation of the PVS specification to the Python implementation
was done manually. The implementation follows strictly the PVS specification developed, with
the exception of minor differences now detailed. For fragments of the Python code, check
appendix B.

Two optional parameters were added to function UNIFY when programming the algorithm,
to allow the user to run the algorithm either printing or not the tree of recursive calls. The
first parameter (verb) is a boolean that sets the verbosity of the algorithm: when set to true,
the algorithm prints the tree of recursive calls and when set to false the algorithm does not.
The second parameter (indent_lvl) is a string that regulates the indentation level. When the
algorithm forks into two branches, this parameter is updated, allowing us to clearly distinguish
when the algorithm enters a branch (see Examples 3.3 and 3.4).

As mentioned before, a term in the nominal setting can be an atom, a suspended variable,
the unit, a pair, an abstraction, a function application or a commutative function application.
Each of these options is represented as a class in our implementation. An atom object a has
one attribute, its name, represented by the algorithm as a string. A suspended variable object
contains two attributes: a permutation and a variable. A permutation is represented as a list,
where each element of the list (corresponding to a swapping) is a pair consisting of two strings
(to represent the two atoms being swapped) and a variable is represented by the algorithm as a
string. The unit is a class with no attributes. A pair object contains two attributes, to represent
the two terms of a pair. An abstraction object contains two attributes: the first is an atom and
the second a term. A function application and a commutative function application both have
two attributes: the first is the function symbol, represented as a string, and the second is their
argument, which is another term. In the case of commutative function applications, an assertion
verifies that the argument is indeed a pair, as commented in Remark 2.10.

Finally, the action of permutations and substitutions have no significant differences from
what has been specified in PVS. The representation of the four parameters of the UNIFY function
in the Python implementation also follows closely the PVS specification.
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Example 3.3. Let f be a commutative function symbol. Here we show how the Python
algorithm would proceed to unify the terms in Example 3.1: f ⟨(a b) ·X ,c⟩ and f ⟨X ,c⟩. Note
that each one of the two branches explored generates a solution.

Trying to unify terms: f(<[(a b) ]*X, c>) and f(<[]*X, c>)

<[], id, [(f(<[(a b) ]*X, c>) = f(<[]*X, c>)), ], []>
|

<[], id, [([(a b) ]*X = []*X), (c = c), ], []>
|
<[], id, [(c = c), ], [[(’a’, ’b’)]*X = X ]>
|
<[], id, [], [[(’a’, ’b’)]*X = X ]>
|
solution: <[], id, [[(’a’, ’b’)]*X = X ]>

<[], id, [([(a b) ]*X = c), (c = []*X), ], []>
|
<[], [X->c ], [(c = c), ], []>
|
<[], [X->c ], [], []>
|
solution: <[], [X->c ], []>

Finished.

Example 3.4. Let f and g be commutative function symbols, and let h be a non-commutative
function symbol. We now show how the Python algorithm would proceed to unify the terms in
Example 3.2: g⟨h d, f ⟨(a b) ·X ,c⟩⟩ and g⟨ f ⟨X ,c⟩,h d⟩. Note that one branch does not generate
any solution.
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Trying to unify terms: g(<h(d), f(<[(a b) ]*X, c>)>) and
g(<f(<[]*X, c>), h(d)>)

<[], id, [(g(<h(d), f(<[(a b) ]*X, c>)>) = g(<f(<[]*X, c>), h(d)>)), ], []>
|

<[], id, [(h(d) = f(<[]*X, c>)), (f(<[(a b) ]*X, c>) = h(d)), ], []>
|
No solution

<[], id, [(h(d) = h(d)), (f(<[(a b) ]*X, c>) = f(<[]*X, c>)), ], []>
|
<[], id, [(d = d), (f(<[(a b) ]*X, c>) = f(<[]*X, c>)), ], []>
|
<[], id, [(f(<[(a b) ]*X, c>) = f(<[]*X, c>)), ], []>
|

<[], id, [([(a b) ]*X = []*X), (c = c), ], []>
|
<[], id, [(c = c), ], [[(’a’, ’b’)]*X = X ]>
|
<[], id, [], [[(’a’, ’b’)]*X = X ]>
|
solution: <[], id, [[(’a’, ’b’)]*X = X ]>

<[], id, [([(a b) ]*X = c), (c = []*X), ], []>
|
<[], [X->c ], [(c = c), ], []>
|
<[], [X->c ], [], []>
|
solution: <[], [X->c ], []>

Finished.

Example 3.5. We now give an example in which the context returned is not empty, a substitution
has been made and there is a fixed point equation. Imagine we want to unify h⟨[a](c d) ·X ,(c a) ·
Z⟩ and h⟨[b]Id ·Y,(b e) ·Z⟩. The algorithm running is shown below.
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Trying to unify terms: h(<[a][(c d) ]*X, [(c a) ]*Z>) and
h(<[b][]*Y, [(b e) ]*Z>)

<[], id, [(h(<[a][(c d) ]*X, [(c a) ]*Z>) = h(<[b][]*Y, [(b e) ]*Z>)), ], []>
|
<[], id, [(<[a][(c d) ]*X, [(c a) ]*Z> = <[b][]*Y, [(b e) ]*Z>), ], []>
|
<[], id, [([a][(c d) ]*X = [b][]*Y), ([(c a) ]*Z = [(b e) ]*Z), ], []>
|
<[a#Y ], id, [([(c d) ]*X = []*Y), ([(c a) ]*Z = [(b e) ]*Z), ], []>
|
<[a#X a#Y ], [Y->[(c d) ]*X ], [([(c a) ]*Z = [(b e) ]*Z), ], []>
|
<[a#X a#Y ], [Y->[(c d) ]*X ], [], [[(’b’, ’e’), (’c’, ’a’)]*Z = Z ]>
|
solution: <[a#X a#Y ], [Y->[(c d) ]*X ], [[(’b’, ’e’), (’c’, ’a’)]*Z = Z ]>

Finished.

The final answer is (∆,σ ,FPEqLst) = ({a#X ,a#Y},{Y → (cd) ·X},(b e) :: (c a) ·Z ≈α Z).

3.6 Possible Applications

Since unification has applications to logic programming ([BN99]), the nominal C-unification al-
gorithm given could be used in a logic programming language that employs the nominal setting,
such as αProlog (see the work of Cheney and Urban in [CU04]). For systems implemented in
αProlog, there is a tool for checking if the desired properties really occur: αCheck [CM17].
Therefore, we speculate that other possible application could be in the αCheck program itself,
to test properties related with commutativity.

Another application is related to matching (see [BS01], [BN99]). As remarked before,
matching two terms t and s can be seen as unification where one of the terms (suppose t, without
loss of generality) is not affected by substitutions [ARdCSFNS18]. This can be accomplished
by extending the algorithm to use as an additional parameter a set of variables that cannot be
instantiated. Then, matching resumes to unifying using as this additional parameter the set
of variables in t [ARdCSFNS18]. The C-matching algorithm proposed could then be used
to extend the nominal rewriting relation introduced in [FG07] modulo commutativity. Also,
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nominal C-unification and C-matching would be relevant in implementing nominal narrowing
allowing commutative symbols (see [AFN16]).





Chapter 4

Formalising Nominal AC-Unification

This chapter discuss our work in progress in developing a nominal AC-Unification algorithm.
Here, the nominal syntax contains both C and AC function symbols. We begin by explaining
the organisation and hierarchy of the PVS files. Then, the current specification of the algorithm
is presented. Next, interesting points related with the formalisation are discussed. Finally, we
briefly comment about possible applications of the functional nominal AC-unification algorithm.
The content of this chapter is an extension of [ARFFS19].

4.1 Hierarchy and Organisation of the PVS theory

The specification and formalisation of the PVS theory are fully available at www.github.com/
gabriel951/ac-unification. Other informations can be found by looking at the README file or
the .pvs files themselves. The hierarchy of the PVS files is similar to the one described in 3.1
and is shown on Figure 4.1. The names in red are files not previously contained in the PVS
theory that formalised nominal C-unification.

The contents of each file are shortly described:

• nominalunif.pvs - It is the main file of the nominal AC-unification theory. This file
contains the main function unify and also the specification of the lemmas of soundness
and completeness.

• aux_nominalunif.pvs - This new file contains secondary definitions and lemmas
used by the file nominalunif.pvs, to avoid cluttering it.

• substitution.pvs - Deals with substitutions.

• alpha_equivalence.pvs - Concerns α-equivalence.
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Fig. 4.1 Hierarchy of the PVS theory for Nominal AC-Unification.

• tuples.pvs - This new file contains lemmas related with the functions that handle
the combinatory part of the problem (introduced by the AC functions, as will be seen
in 4.2) and also with the operators Sn( f∗) and Dn( f∗), that select and delete arguments
from AC functions.

• fresh.pvs - Deals with freshness.

• nominal_term.pvs - Contains the datatype definition of a nominal term and related
functions.

• term_adt.pvs - Generated automatically by PVS, contains necessary definitions for
the nominal term datatype to work correctly.

• atom.pvs - Concerns atoms and permutations.

• structure_extra.pvs - Has basic properties that will be used by the remaining of
the .pvs files.

Remark 4.1. The hierarchy for the PVS theory for nominal AC-unification is similar to
the one for nominal C-unification (see Section 3.1): the only two differences are the files
aux_nominal_unif.pvs and tuples.pvs. The file aux_nominalunif.pvs is simply not
to clutter the main file nominalunif.pvs. Therefore, the only significant alteration in the
organisation is the new file tuples.pvs necessary to deal with the combinatory part of the
problem and the operators Sn( f∗) and Dn( f∗), introduced by associativity-commutativity.
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Remark 4.2. Despite its current name, the PVS theory for nominal AC-unification, if completed,
would allow unification with both C and AC function symbols.

4.2 Current Specification

We have specified a functional nominal AC-unification algorithm for unifying two terms t and
s. The algorithm here presented is an extension of Algorithm 1, to also deal with the case of t
or s being AC functions. Hence, we will not explain again how the whole algorithm works, as
this can be found on Section 3.2, focusing instead on the case of AC function symbols.

When t or s is rooted by an AC function symbol and the other term is a suspended variable,
the algorithm instantiates the suspended variable term appropriately and unifies the terms.
Alternatively, when one of the terms is rooted by an AC function symbol and the other is
neither a suspended variable nor a term rooted by the same AC function symbol, the algorithm
recognises it is a situation where no solution is possible and the list of solutions returned is
empty. The interesting case is, therefore, when both t and s are rooted by the same AC function
symbol.

In this case, the algorithm first extracts all arguments of t and then generates all pairings of
these arguments, in any order. After that, the algorithm extracts all arguments of s and then
generates all pairings of these arguments, again in any order. Finally, the algorithm tries to
unify every pairing of arguments of t with every pairing of arguments of s. An example of the
pairings generated is shown on Example 4.1.

Example 4.1. Let f be an AC function symbol and suppose we are trying to unify the terms
f ⟨ f ⟨X ,Y ⟩,c⟩ and f ⟨c, f ⟨a,b⟩⟩:

• The two pairings generated for the term f ⟨ f ⟨X ,Y ⟩,c⟩ in the order (X ,Y,c) are: ⟨X ,⟨Y,c⟩⟩
and ⟨⟨X ,Y ⟩,c⟩. Two pairings would be generated for every order and the possible orders
are: (X ,Y,c), (X ,c,Y ), (Y,X ,c), (Y,c,X), (c,X ,Y ) and (c,Y,X).

• The twelve pairings generated for the term f ⟨c, f ⟨a,b⟩⟩ include, for instance: ⟨c,⟨a,b⟩⟩,
⟨⟨c,a⟩,b⟩, ⟨⟨b,c⟩,a⟩ and ⟨a,⟨b,c⟩⟩.

Remark 4.3. Our initial idea to deal with the pairings of the arguments of t and s was to generate
all pairings of the arguments of t, preserving the order and all pairings of the arguments of s, in
any order. This approach, however, is not complete.

To see that, consider f an AC function symbol, t = f ⟨a,⟨b,c⟩⟩ and s = f ⟨X ,b⟩. The
substitution σ = {X → ⟨a,c⟩} would not be found if we had generated only the pairings of the
arguments in t preserving the order, but it can be found by our approach. That is because the
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substitution σ is found when trying to unify ⟨⟨a,c⟩,b⟩ with ⟨X ,b⟩ and the arguments of the
pairing ⟨⟨a,c⟩,b⟩ are not in the same order that they are in t.

The pseudocode of the algorithm when extended for AC function applications is shown in
Algorithm 2. When the algorithm is unifying two AC function applications t and s, the first
step is to generate all pairings of t and s and combine them. This step is done by function
gen_unif_prb. The result is a list of unification problems (each one of these unification
problems corresponds to an attempt of unifying a pairing of t and a pairing of s), stored in
variable NewPrbLst. The algorithm will call the function unify recursively, with the same
∆, σ and FPEqLst, but with a new list of unification problems, consisting of one unification
problem from NewPrbLst concatenated with the list of remaining problems PrbLst ′. This
corresponds to the algorithm exploring one branch in the tree of recursive calls. The algorithm
will do this for every unification problem in NewPrbLst, thus exploring all branches in the
tree of recursive calls. The algorithm does that in two steps. In the first step, the function
get_lst_quad is called, constructing a list of quadruples, which are stored in variable LstQuad.
Each quadruple in LstQuad is of the form (∆,σ ,PrbLst,FPEqLst). In the next step, the map
function applies the function unify to every quadruple in LstQuad and since every application
of unify generates a list of solutions, the returned value of the map function is a list of lists of
solutions, stored in variable LstLstSol. The algorithm then returns a flattened version of this
list, via the use of the flatten function.

Remark 4.4. To handle the combinatory of the problem, we opted for a naive, brute-force
approach that does not take efficiency into consideration. This has been done with the goal of
simplifying the formalisation. Indeed compared with the algorithm presented in Example 2.8,
the approach here described is much simpler, with the view of facilitating the formalisation.

4.3 Our Work in Progress on the Formalisation

4.3.1 Main Theorems That Must Be Proved

The Corollaries 3.1 and 3.2 must be proved again to guarantee correctness and completeness of
the nominal AC-unification algorithm. As before, they are easy consequences of Theorems 3.1
and 3.2, which must be reproved. In relation to the formalisation of C-unification, our only
work is extending those proofs to the case where the terms t and s in the head of PrbLst are AC
functions. In this case, there are no changes in the context nor in the substitution, so it is trivial
to check that we remain with a valid quadruple and it is also trivial to check all but the third
condition of Definition 2.26.
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Algorithm 2 Functional Nominal AC-Unification
1: procedure UNIFY(∆,σ ,PrbLst,FPEqLst)
2: if null(PrbLst) then
3: return list((∆,σ ,FPEqLst))
4: else
5: (t,s)+PrbLst ′ = PrbLst
6: if (s == π ·X) and (X not in t) then
7: see Algorithm 1
8: else
9: if t == a then

10: see Algorithm 1
11: else if t == π ·X then
12: see Algorithm 1
13: else if t == ⟨⟩ then
14: see Algorithm 1
15: else if t == ⟨t1, t2⟩ then
16: see Algorithm 1
17: else if t == [a]t1 then
18: see Algorithm 1
19: else if t == f t1 then
20: see Algorithm 1
21: else if t == fC⟨t1, t2⟩ then
22: see Algorithm 1
23: else ▷ t is of the form f ACt ′

24: if s != f ACs′ then return null
25: else
26: NewPrbLst = gen_unif_prb(t,s)
27: LstQuad = get_lst_quad(NewPrb,∆,σ ,PrbList ′,FPEqLst)
28: LstLstSol = map(unify,LstQuad)
29: return FLATTEN(LstLstSol)
30: end if
31: end if
32: end if
33: end if
34: end procedure
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Regarding the third condition, Theorems 4.1 and 4.2 must be formalised. As mentioned
before, the function gen_unif_prb( f t, f s), for f AC, generates all pairings of f t and f s (in
any order) and then combines them to generate a list of unification problems.

Theorem 4.1 (Soundness of Unifying AC functions). Let f t and f s be AC function applications.
Suppose that (t1,s1) ∈ gen_unif_prb( f t, f s) and that ∇ ⊢ t1σ ≈α s1σ . Then, ∇ ⊢ ( f t)σ ≈α

( f s)σ .

Theorem 4.2 (Completeness of Unifying AC functions). Let f t and f s be AC function applica-
tions. Suppose that ∇ ⊢ ( f t)σ ≈α ( f s)σ . Then, there exists (t1,s1) ∈ gen_unif_prb( f t, f s)
such that ∇ ⊢ t1σ ≈α s1σ .

4.3.2 A Plan to the Proof

The natural way of proving the theorem of soundness of unifying AC functions would be by
induction on the size of the term. If we had decided to prove the theorem directly, we would
find the i that makes ∇ ⊢ S1(( f t)σ)≈α Si(( f s)σ) and then try to use the induction hypothesis
to prove that ∇ ⊢ D1(( f t)σ)≈α Di(( f s)σ).

This straightforward approach, however, does not work. We would not be able to apply the
induction hypothesis, since the term being deleted of tσ could be the first term of t but it could
have also being introduced by the substitution σ . A similar problem could happen for s.

To get around this problem, we must first eliminate the substitutions from the problem and
only then solve a version of the problem without substitutions, by induction. As explained
next, Lemmas 4.1 and 4.2, together with a convenient renaming of variables, eliminate the
substitution, while Lemma 4.3 solves a simplified version of the problem.

For taking substitutions out of the equation, we will need the operator FAO, which generates
all possible flattened versions of a term, in any order. Hence, after applying this operator, we
get a term that is not an AC function application.

Lemma 4.1. Let f t and f s be AC applications. Suppose that (t1,s1) ∈ gen_unif_prb( f t, f s).
Then, ∀t ′1 ∈ FAO(t1σ), s′1 ∈ FAO(s1σ): (t ′1,s

′
1) ∈ gen_unif_prb( f tσ , f sσ).

Remark 4.5. The operator FAO is needed in the Lemma 4.1 because, although we have the
guarantee that t1 and s1 are pairings of f t and f s (and therefore do not contain the AC function
symbol f ), the substitution σ may reintroduce f into the terms t1σ and s1σ . Since an output
of gen_unif_prb(( f t)σ ,( f s)σ) cannot contain the AC function symbol, we must apply the
flattener operator FAO to t1σ and s1σ . A case where this reintroduction of the AC function
symbol occurs is illustrated in Example 4.2.
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Example 4.2. Let f be an AC function symbol. Consider f t = f X , f s = fY and σ = {X →
f ⟨a,b⟩,Y → f ⟨b,a⟩}. Then, t1 = X and s1 = Y do not indeed contain the AC function symbol
f . However, the substitution σ given reintroduces this AC function symbol and we have
t1σ = f ⟨a,b⟩ and s1σ = f ⟨b,a⟩.

Lemma 4.2. Let f t and f s be AC applications. Suppose that (t1,s1) ∈ gen_unif_prb( f t, f s)
and that ∇ ⊢ t1σ ≈α s1σ . Then, ∃t ′1 ∈ FAO(t1σ),s′1 ∈ FAO(s1σ) : ∇ ⊢ t ′1 ≈α s′1.

Using Lemmas 4.1 and 4.2 we can obtain, from our original hypothesis of soundness, the
existence of t ′1 and s′1 such that (t ′1,s

′
1) ∈ gen_unif_prb(( f t)σ ,( f s)σ) and ∇ ⊢ t ′1 ≈α s′1 and

we must prove that ∇ ⊢ ( f t)σ ≈α ( f s)σ . Then, with a convenient renaming of variables, this
is equivalent to proving Lemma 4.3, which can be done by induction on the size of the term t.

Lemma 4.3. Let f t and f s be AC function applications, with the same function symbol.
Suppose that (t1,s1) ∈ gen_unif_prb( f t, f s) and that ∇ ⊢ t1 ≈α s1. Then, ∇ ⊢ f t ≈α f s.

A similar analysis could be applied to prove the lemma of completeness.

Remark 4.6. As mentioned in Remark 4.3, our initial approach to the problem was to generate
the pairings of the term t (when trying to unify t and s) preserving order. In that previous
version of the specification, we have formalised Lemma 4.3 with a proof by induction on the
size of f t. We have changed the specification of the algorithm to generate all pairings of t,
in any order and we believe a proof by induction on the size of t would still work. After this
change on the specification, not one of the lemmas enunciated in this chapter has been fully
proved.

4.3.3 A Loose End

Let f be an AC function symbol and imagine we are trying to unify f ⟨X ,b⟩ with f ⟨a,Y ⟩. After
generating all the pairings and combining them, the only solution our algorithm would find
is ⟨∆,σ ,FPEqLst⟩ = ⟨ /0,{X → a,Y → b}, /0⟩. Nevertheless, the solution ⟨∆,σ ,FPEqLst⟩ =
⟨ /0,{X → f ⟨a,U⟩,Y → f ⟨b,U⟩}, /0⟩ is also correct and should have been found. This proves
the current algorithm is not complete and should be adapted to find solutions like this.

It appears that our simple but inefficient approach of generating all the pairings is inherently
incomplete. Other approaches, for instance the translation of the problem of AC-unification
to the one of solving a system of diophantine equations (as seen in Example 2.8), should be
considered. The simplicity of potential approaches should also be considered, to make the
formalisation easier. As indicated in Chapter 5, this is one possible path of future work.



48 Formalising Nominal AC-Unification

4.3.4 Interesting Discoveries

Interesting facts found during our work in progress in formalising the algorithm are enumerated
below:

1. Prior to the introduction of AC function applications, α-equivalence was a size preserving
relation, meaning that if t ≈α s then size(t) = size(s). However, according to the grammar
of the nominal setting, our rule for α-equivalence of AC function applications and the
definition of the operators Sn( f∗) and Dn( f∗) , this ceases to be the case when AC
function symbols are introduced. To see that, let f be an AC function symbol and
consider, for instance, t = f ( f a) and s = f a. Then, t and s are α-equivalent, since
S1(t) = S1( f ( f a)) = a ≈α a = S1( f a) = S1(s) and D1(t) = D1( f ( f a)) = ⟨⟩ ≈α ⟨⟩ =
D1( f a) = D1(s) but the size of t is greater than the size of s, as there is one more
occurence of the AC function symbol f in t then there is in s. The same phenomenon
happens for the depth of a term: α-equivalence ceases to be a depth preserving relation.

2. α-equivalence is an equivalent relation. This is formalised by proving that α-equivalence
is reflexive, symmetric and transitive. During the proofs of symmetry and transitivity it
was used that α-equivalence preserved size. Hence, these proofs had to be modified in
order to avoid using this fact, which is no more valid. The modified proofs were not hard
and can be found on file alpha.prf.

3. Imagine t and s are terms that do not contain any AC function symbol, in any position.
Then, in an initial analysis, from the hypothesis that S1(t)≈α S1(s) (i.e. the first argument
of t is α-equivalent to the first argument of s) and D1(t) ≈α D1(s) (i.e. after deleting
the first argument of t and deleting the first argument of s the terms are α-equivalent)
it appears that we should be able to conclude that t and s are α-equivalent. This
however is not true, as shown by the following counterexample. Let t = ⟨a,⟨b,c⟩⟩
and s = ⟨⟨a,b⟩,c⟩. Then, t and s are not α-equivalent, but S1(t) = a ≈α a = S1(s) and
D1(t) = ⟨b,c⟩ ≈α ⟨b,c⟩= D1(s) are indeed α-equivalent.

4.4 Possible Applications

The possible applications of a nominal AC-unification algorithm are analogous to the ones of a
nominal C-unification algorithm, which are discussed on Section 3.6.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

This work presented contributions to nominal unification with C and AC function symbols.
Regarding nominal C-unification, a functional algorithm was specified and proven to be
correct and complete using PVS and then implemented in Python. In relation to the work
of [ARdCSFNS18], there are two important differences. The first is the specification of an
indeed functional algorithm that can be directly executed, not a set of non-deterministic rules.
The second is the reduction on the lexicographic measure used in the proofs of soundness,
completeness and termination, from four parameters to only two. The algorithm could be used
in logic programming or be adapted to a matching algorithm, with potential applications in
nominal rewriting and nominal narrowing.

Regarding nominal AC-unification, we presented our work in progress to extend the nominal
C-unification algorithm to handle AC function symbols as well. The strategy adopted was
explained, the problem that remains unsolved was discussed and interesting points found so far
during our efforts in the formalisation were presented.

5.2 Future Work

The most urgent future work would be finishing the AC-unification algorithm formalisation,
proving its correctness and completeness. After that, a possible path is extending the unifi-
cation algorithm to handle other equational properties such as associativity, neutral element,
idempotence and distributivity.
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A future work could be done in the area of complexity of algorithms. Although it is known
that the problem of C-unification is NP-complete, one could restrict the set of inputs for the
problem and investigate the complexity of the algorithm for this restricted set.

In [ARdCSFNS17b], a method for enumerating all the solutions to fixed point equa-
tions is detailed. Another possible future work is formalising that the method proposed
in [ARdCSFNS17b] is correct and complete.
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Appendix A

The PVS Theory for Nominal
C-Unification

In this appendix, we comment on some fragments of the PVS specification and formalisation.
As commented before, the PVS code can be found on http://www.github.com/gabriel951/
c-unification.

A.1 Fragments of the Specification

A.1.1 Defining a Nominal Term in PVS

It was necessary to define a subtype pair, in order to guarantee that the argument of a
commutative function is a pair. Nevertheless, when working with subtypes in PVS it is required
that every term has a subtype. Hence, a subtype plain was also defined, and every term that is
not a pair has subtype plain.
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term[atom: TYPE+, perm: TYPE+, variable: TYPE+,
symbol: TYPE+, c_symbol: TYPE+, ac_symbol: TYPE +]:
DATATYPE WITH SUBTYPES plain , pair

BEGIN
at (a: atom): atom? : plain
* (p: perm , V: variable ): susp? : plain
unit: unit? : plain
pair (term1: term , term2: term): pair? : pair
abs (abstr: atom , body: term): abs? : plain
app (sym: symbol , arg: term): app? : plain
c_app (c_sym: c_symbol , c_arg: pair): c_app? : plain
ac_app (ac_sym: ac_symbol , ac_arg: term):

ac_app? : plain
END term

Remark A.1. In the specification of a nominal term in PVS, by defining term as a datatype,
it is assumed that all terms must have one of the types given. In other words, all terms are
either an atom, or a permutation, or the unit, or an abstraction, or a function application or a
commutative function application or an associative-commutative function application.

A.1.2 Specification of the Main Functions in the Lexicographic Measure

To calculate the lexicographic measure, the main functions are the Vars function and the size
function. The first calculates the set of variables in a term t, while the second calculates the
size of a term t. The specification of the Vars function is:

Vars(t): RECURSIVE finite_set[variable] =
CASES t OF

at(a): emptyset ,
*(pm,v): singleton(v),
unit: emptyset ,
pair(t1,t2): union(Vars(t1),Vars(t2)),
abs(a,bd): Vars(bd),
app(sl,ag): Vars(ag),
c_app(sl , ag): Vars(ag)

ENDCASES
MEASURE t BY <<
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While the specification of the size function is:

size(t): RECURSIVE nat =
CASES t OF

at(a): 1,
*(pm,v): 1,
unit: 1,
pair(t1,t2): 1 + size(t1) + size(t2),
abs(a,bd): 1 + size(bd),
app(sl,ag): 1 + size(ag),
c_app(sl , ag): 1 + size(ag)

ENDCASES
MEASURE t BY <<

A.2 A Fragment of the Formalisation

We now present a fragment of the formalisation. One of the TCCs generated by the algorithm
ask us to prove that in the recursive call of the case s = π ·X and X not in t (i.e, the recursive
call of Algorithm 1 in line 12), the lexicographic measure decreases.

This happens since the cardinality of Vars(PrbLst)∪Vars(FPEqLst) is reduced. Since the
variable X , previously present in s, is now in the domain of the substitution σ

′′ (see line 8 of
Algorithm 1), by the Definition 3.3 of valid quadruples (once we prove that we remain with a
valid quadruple) this variable will not be in PrbLst ′′ or in null (see line 12 of Algorithm 1) and
we will have |Vars(PrbLst ′′)∪Vars(null)|< |Vars(PrbLst)∪Vars(FPEqLst)|.

Figure A.1 shows a printscreen of one sequent of the proof (and in the background part of
the tree of the commands used to prove the TCC).

Additionally, Figure A.2 contains just the sequent (the same sequent of Figure A.1). It is
possible to see that we have, as our hypothesis, that Vars(new_uni f _prb_lst) is a strict subset of
Vars(uni f _prb_lst)∪Vars( f ix_pnt_eq_lst) and we must prove that |Vars(new_uni f _prb_lst)|
< |Vars(uni f _prb_lst)∪Vars( f ix_pnt_eq_lst)|. Comparing Figure A.2 and the pseudocode
of Algorithm 1 we have the following correspondences:

• new_uni f _prb_lst corresponds to PrbLst ′′.

• uni f _prb_lst corresponds to PrbLst.

• f ix_pnt_eq_lst corresponds to FPEqLst.
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Fig. A.1 One of the Sequents in a Proof of a TCC. In the Back, Part of the Tree of Commands
Used in the Proof.

Remark A.2. The function fix_pnt2unif_prb simply converts a fixed point equation to an
unification problem. This conversion is not important here.

This part of the proof has been done with the use of lemma card_strict_subset, available
in the prelude file of PVS.
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Fig. A.2 One of the Sequents of a Proof of a TCC.





Appendix B

Fragments of The Python Code For
Nominal C-Unification

In this appendix, we give some fragments of the Python implementation of the algorithm here
presented for nominal C-unification. As commented before, the Python code can be found at
http://www.github.com/gabriel951/c-unification.

B.1 The Classes

As mentioned previously, terms are represented as objects of a given class, and there is one
class for atoms, one class for suspended variables and so on. Below, we present the code for the
Atom class. An atom object has only one attribute, its name. The __init__ method is called
when creating the atom and is responsible for correctly setting the name of the atom (via the
attribute name, which should be a string). Finally, the __str__ method is used when printing
an atom object and returns the attribute name.

class Atom:
def __init__(self , name):

self.name = name

def __str__(self):
return self.name

The code below creates an atom with name a and binds the variable atom_a to it:

atom_a = Atom("a")

In the code above, the Python variable atom_a is an instance of the Atom class and its only
attribute (name) is equal to the string a.
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Next, we present the code for the class CApplication. Notice that a CApplication object
has two attributes: symbol (a string to represent the function symbol) and arg (a term that
corresponds to the argument of the function). Since commutative function applications receive
a pair as their argument, we put an assertion in the code forcing the attribute arg to be an
instance of the Pair class. Finally, the __str__ method correctly prints a commutative function
application.

class CApplication:
def __init__(self , symbol , arg):

assert(isinstance(arg , Pair))
self.symbol = symbol
self.arg = arg

def __str__(self):
return self.symbol + "("+ (self.arg). __str__ ()+ ")"

B.2 Fragments of the Unify Function

The initial fragment of the unify function is given below (this fragment corresponds to lines
1 to 5 of the pseudocode given in Algorithm 1). The parameters Delta, sigma, PrbLst
and FPEqLst are respectively the context, the substitution, the list of unification problems
that remain and the list of fixed point equations. The parameters verb and indent_lvl are
respectively the boolean that indicates whether the algorithm should run in verbose mode or
not and a string that regulates the indentation level. They are optional parameters and have as
default value False and ""(empty string) respectively. The function print_quad prints the
quadruple (∆, σ , PrbLst, FPEqLst) the algorithm receives, with the appropriate indentation
and the function print_sol prints the solution the algorithm found.
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def unify(Delta , sigma , PrbLst , FPEqLst , verb=False ,
indent_lvl =""):

if verb:
print_quad(Delta , sigma , PrbLst , FPEqLst ,

indent_lvl)

if len(PrbLst) == 0:
if verb:

print(indent_lvl , end = ’’)
print_sol ([(Delta , sigma , FPEqLst )])
print ("\n")

return [(Delta , sigma , FPEqLst )]
else:

(t, s) = PrbLst [0]
PrbLst1 = PrbLst [1:]

Next, we present the fragment for the case where the terms t and s in the head of the list are
commutative function applications. This code corresponds to lines 61 to 70 of the Algorithm
1. Notice that in the recursive calls correspondent to exploring the two branches introduced
by commutativity, the variable new_indent_lvl is used. new_indent_lvl is defined to be
indent_lvl (our original identation) plus four empty spaces, to correctly give the impression
that the algorithm has entered a branch.
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elif isinstance(t, CApplication ):
if (not isinstance(s, CApplication ))

or (t.symbol != s.symbol ):
if verb:

print(indent_lvl + "No solution\n")
return []

else:
new_indent_lvl = indent_lvl + " "
PrbLst_branch1 = [((t.arg).term1 , (s.arg).term1 )]+

[((t.arg).term2 , (s.arg).term2 )]+
PrbLst1

sol1 = unify(Delta , sigma , PrbLst_branch1 , FPEqLst ,
verb , new_indent_lvl)

PrbLst_branch2 = [((t.arg).term1 , (s.arg).term2 )]+
[((t.arg).term2 , (s.arg).term1 )]+
PrbLst1

sol2 = unify(Delta , sigma , PrbLst_branch2 , FPEqLst ,
verb , new_indent_lvl)

return sol1 + sol2


