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Resumo

Seja A uma álgebra associativa sobre um corpo F graduada por um grupo G, e "e" a
unidade de G. Nesse trabalho, nós estudamos e respodemos os seguintes questionamentos:
o que podemos dizer sobre A quando Ae é: 1) um anel nil? 2) um anel nilpotente? 3)
uma subálgebra central em A? Nesse sentindo, nós estudamos a classe de todos os anéis
graduados cuja a componente neutra é nil, e a classe de todas as álgebras graduadas com
a componente neutra central na álgebra. Dessa forma, nós provamos que, dado um anel
associativo R com uma S-graduação finita, onde S é um monóide à esquerda cancelativo,
se Re é nil (resp. nil de índice limitado) e f-comutativo, então R também é um anel nil
(resp. de índice limitado). Entre outros resultados, usando o Teorema de Dubnov-Ivanov-
Nagata-Higman, nós obtemos uma importante aplicação de nossos resultados: dada uma
F-álgebra R com uma finita S-graduação, se charpFq “ 0 e Re é nil de índice limitado,
então R é nilpotente. Além disso, nós exibimos uma considerável relação entre anéis
graduados e o Problema de Köthe. Na sequência, nós estudamos a variedade definida
pelo conjunto de polinômios G-graduados trxpeq, ypgqs : g P Gu, onde G é um grupo. Dessa
forma, nós provamos que se G é um grupo finito e abeliano, e F é um corpo algebricamente
fechado de característica zero, então nós descrevemos um portador para variedade de todas
as álgebras G-graduadas com a componente neutra central. Finalmente, nós provamos que,
em certas condições, se uma álgebra graduada Ae satisfaz uma identidade polinomial f
de grau 2, então A é nilpotente ou A tem a componente neutra comutativa.

Palavras-chave: álgebra associativa G-graduada, anel associativo S-graduado, anel nil,
componente neutra central, problema de Köthe, teorema de Dubnov-Ivanov-Nagata-Higman,
GPI-álgebra, identidades graduadas.



Abstract

Let A be an associative algebra over a field F graded by a group G, and e the unit of G.
In this work, we study and we answer the following questions: what can we say about A
when Ae is: 1) a nil ring? 2) a nilpotent ring? 3) a central subalgebra in A? In this sense,
we study the class of all graded rings whose neutral component is nil, and the class of all
graded algebras whose neutral component is central in the algebra. Namely, we prove that,
given an associative ring R with a finite S-grading, where S is a left cancellative monoid,
if Re is nil (resp. nil of bounded index) and f-commutative, then R is a nil ring (resp.
of bounded index). Among other results, using Dubnov-Ivanov-Nagata-Higman Theorem
we obtain an important application of our results: given an F-algebra R with a finite
S-grading, if charpFq “ 0 and Re is nil of bounded index, then R is nilpotent. Besides
that, we exhibit a considerable relation between graded rings and Köthe’s Problem. Next,
we study a graded variety defined by a set of G-graded polynomials trxpeq, ypgqs : g P Gu,
where G is a group. Namely, we prove that if G is a finite abelian group, and F an
algebraically closed field of characteristic zero, then we describe a carrier to the variety
of all the G-graded algebras with the central neutral component. Finally, we prove that,
in suitable conditions, if a graded algebra Ae satisfies a polynomial identity f of degree
2, then either A is nilpotent or A has the commutative neutral component.

Keywords: S-graded associative ring, nil ring, central neutral component, Köthe’s Prob-
lem, Dubnov-Ivanov-Nagata-Higman Theorem. G-graded associative algebra, GPI-algebra,
graded identities.
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INTRODUCTION

Let F be an arbitrary field, G an arbitrary group, and FxXGy the free G-graded

associative algebra over F generated by a countable infinite set XG “
Ť

gPGXg where

Xg “ tx
pgq
1 , x

pgq
2 , . . . u for all g P G. The indeterminates of Xg are said to be homogeneous

of degree g. Given a monomial m “ x
pg1q
i1

x
pg2q
i2
¨ ¨ ¨ x

pgsq
is

P FxXGy, the homogeneous degree

of m, denoted by degpmq, is defined by g1g2 ¨ ¨ ¨ gs. Therefore, it is natural to write

FxXGy “
À

gPG Fg, where Fg is the subspace of the algebra FxXGy generated by all the

monomials having homogeneous degree g. It is easy to check that FgFh Ď Fgh for all

g, h P G. The above decomposition into direct sum makes FxXGy a G-grading algebra.

Hence, FxXGy is the free G-graded associative algebra generated by the sets Xg, g P G.

Now, let A be an algebra over F with a G-grading Γ, i.e., Γ : A “
À

gPG Ag

with Ag subspace of A and AgAh Ď Agh for all g, h P G. We say that A is an as-

sociative GPI-algebra over F (or simply GPI-algebra) if there exists a nonzero f “

fpx
pg1q
1 , x

pg2q
2 , . . . , x

pgnq
n q P FxXGy such that fpa1, a2, . . . , anq “ 0 for all a1 P Ag1 , a2 P

Ag2 , . . . , an P Agn . In this case, we write f ”G 0 in A and we say that f is a G-graded poly-

nomial identity of A. We denote by TGpAq the set of all G-graded identities of A. In other

words, TGpAq “ tf P FxXGy : f ”G 0 in Au. It is easy to check that TGpAq is a G-graded

ideal of FxXGy invariant under G-endomorphisms of FxXGy, called GT -ideal of G-graded

identities of A. Consider SupppΓq “ tg1, . . . , gdu finite, where SupppΓq “ tg P G : Ag ‰ 0u.

For each i “ 1, 2, . . . , put xi “
řd
j“1 x

pgjq
i . Let FxXy be the free associative algebra

generated by set X “ tx1, x2, . . . u. Consider the set TpAq Ď FxXy of polynomial (ordi-

nary) identities of A, i.e. TpAq “ tf P FxXy : f ” 0 in Au. We have that TpAq is an
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2 Introduction

ideal of FxXy invariant by its endomorphisms, called T -ideal of identities of A. Note that

TpAq Ď TGpAq.

One of central problems in the study of graded algebras is to obtain non-graded

(ordinary) properties from the analysis of gradings of a given algebra and vice versa. In

this sense, given a graded algebra, we try to determine relationships between its graded

identities and its non-graded identities. Let A “
À

gPG Ag be a G-graded algebra, G a

finite group with neutral element e. In [5], Bergen and Cohen showed that if Ae is a

PI-algebra, then A is also a PI-algebra. In that work, a bound for the degree of the

polynomial identity satisfied by A was not found. On the other hand, in [2], Bahturin,

Giambruno and Riley proved the same result, but, in addition, they gave a bound for the

minimal degree of the polynomial identity satisfied by A. Namely, the following result

was shown:

Theorem 5.3, [2]: Let F be an arbitrary field and G be a finite group. Suppose that A

is a G-graded associative F-algebra such that Ae satisfies a polynomial identity of degree

d. Then A satisfies a polynomial identity of degree n, where n is any integer satisfying

the inequality
|G|np|G|d´ 1q2n

p|G|d´ 1q!
ă n!.

In particular, if n is the least integer such that e|G|p|G|d ´ 1q2 ď n, then A satisfies a

polynomial identity of degree n, where e is the base of the natural logarithm.

Therefore, in this thesis work, we analyse specific cases of the statement in the

previous theorem. We study and answer the following questions: what can we say about

a graded algebra A when Ae is: 1) a nilpotent ring? 2) a nil ring? 3) a central algebra?

4) a commutative algebra? And so, we divided this work into 4 (four) chapters: 1)

Graded Algebras, Graded Bimodules and Graded Identities; 2) Second Cohomology Group;

3) Graded Rings with Nil Neutral Component; 4) Graded Algebras with Central Neutral

Component. In what follows, let us discuss each one of these chapters a little.

In the first chapter, we introduce notations and definitions which are necessary

for a better presentation of other chapters. We define here all the algebraic structures

that we use in this work. Furthermore, we exhibit various properties of these algebraic

structures. The most important part of this chapter is the last section, it is the key to

prove the main theorem in Chapter 4. We admit to be known the concepts of a monoid,

De França, A.M.D. June 28, 2019 Mat – UnB



Introduction 3

group, ring, field and vector space over a field. In the whole text, all rings and algebras

are assumed to be associative, G denotes a group, F and K denote fields. For more details

about the basic structures that we use here, see [6, 8, 9, 23, 25, 26, 31, 40].

In the second chapter, we present an overview of the objects of the theory of co-

homology of groups. Here we give all definitions necessary to understand the problems

exposed, and some of the main results. Here, the most important result, being an alge-

braically closed field, is that the 2nd cohomology group of a finite group is finite. In the

second section, we present more interesting results. The main result is the following:

Corollary 2.2.7: If rG : Hs ă 8, H is central in G and M is an abelian group with a

trivial G-action, then

H2
pH,Mq “ resGH

`

H2
pG,Mq

˘

.

Our goal in the second chapter is to determine suitable conditions to ensure that the re-

striction homomorphism from H2pG,Mq into H2pH,Mq is surjective, where H is a subgroup

of a group G.

In the third chapter, we consider a left cancellative monoid S, i.e. gh “ gt implies

that h “ t for any g, h, t P S, and an associative ring R with a finite S-grading Γ. Our

principal goal in this chapter is to present some results which are direct implications of

the case "Re is nilpotent" or "Re is nil", where e is the neutral element of S. In this sense,

we give some upper bounds for ndpRq, the nilpotency index of R. Here, we are interested

in studying associative rings with an S-grading, whose neutral component is nil. Unless

otherwise stated, R is an associative ring, and S is a left cancellative monoid, with the

neutral element e. Let R be a nilpotent ring, that is, there exists an integer n ą 0 such

that x1x2 ¨ ¨ ¨ xn “ 0 for any x1, x2, . . . , xn P R (Rn “ t0uq. We define the nilpotency index

of R, denoted by ndpRq, as the smallest number d P N such that Rd “ t0u. Analogously,

if R is a nil ring of bounded index, i.e. there exists some integer n ą 0 such that yn “ 0

for any y P R, we define the nil index of R, denoted by ndnilpRq, as the smallest number

r P N such that ar “ 0 for any a P R. Consequently, any nilpotent ring also is a nil ring

(of bounded index). Therefore, for any nilpotent ring R, ndnilpRq ď ndpRq.

In [24], the authors proved that if a finite solvable group G acts by automorphisms

on a ring R without non-zero fixed points, i.e. RG “ t0u, and without |G|-torsion, then

R|G| “ t0u. They also proved that if G is a finite group acting on a ring R without |G|-

torsion, and RG is nilpotent, then R is nilpotent. Other result proved by these authors

De França, A.M.D. June 28, 2019 Mat – UnB



4 Introduction

is that if R is a ring graded by a finite cyclic group, such that Re is central, then the

commutator ideal of R is nil. Already in [28], E.I. Khukhro presents the following result

(Corollary 4.3.8 (p. 101)): if a Lie ring admits a regular automorphism of prime order,

then it is nilpotent. And N. Yu. Makarenko, in [32], using techniques created by E.I.

Khukhro, showed that given a G-graded associative algebra A, where G is a finite group

of order n, if Ae has a nilpotent two-sided ideal of finite codimension in Ae, then A has

a homogeneous nilpotent two-sided ideal of nilpotency index bounded by a function on n

and of finite codimension. In our work, we generalize some of these results.

In this third chapter, we study the following:

Problem‹: Does Re nil imply that R is nil, where Re is the neutral component

of Γ?

In this sense, we study the class of all the S-graded rings whose neutral component

is nil. Among other results, we obtain a positive solution for Problem‹ in the class of all

f-commutative rings, where an associative ring R is said to be f-commutative if there

exist a semigroup S that acts on the left of R, and a mapping f : RˆR ÝÑ S such that

ab´ fpa, bqba “ 0 for any a, b P R. More precisely, we prove

Theorem 3.2.14: Any ring with a finite grading whose neutral component is nil and

f-commutative is a nil ring.

Moreover, adding in the previous theorem the hypotheses "Re is finitely gener-

ated", we obtain that R is a nilpotent ring. In general, the assumptions "finitely gen-

erated" and "f-commutative" are necessary to guarantee that R is nilpotent, and so we

present some counterexamples.

The importance of our results arises when we relate them to Dubnov-Ivanov-

Nagata-Higman Theorem and Köthe Problem. Let us present these two problems.

In [33] and [22], Nagata and Higman (and in [12], Dubnov and Ivanov), respectively,

proved that, under some suitable conditions, any associative nil algebra is also a nilpotent

algebra. Firstly, Nagata proved the validity of the result over a field of characteristic

zero, in [33]. Afterwards, Higman established the result in a more general case, in [22]. A

similar result was previously also published in Russian ([12]).

In this way, we have some natural questions: how to characterize a G-graded algebra

whose neutral component is nil/nilpotent? Does the nil neutral component implies that

the algebra is nilpotent? If so, what are the possible limits for its nilpotency index? Thus,
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Introduction 5

we prove the following theorem that is a generalization of Nagata-Higman Theorem:

Theorem 3.3.3: Let S be a left cancellative monoid , and A an associative algebra over

a field F with a finite S-grading, charpFq “ p. Suppose that Ae is a nil algebra of bounded

index. If p “ 0 or p ą ndnilpAeq, then A is a nilpotent algebra.

Finally, we exhibit a considerable relation between graded rings and Köthe’s Prob-

lem. This problem was proposed in 1930 by G. Köthe in [29] and still has not a general

solution. Köthe’s Problem asks, whether the sum of two right nil ideals of a ring is nil, or

equivalently, if a ring R has no nonzero nil ideals, then R has no nonzero one-sided nil ide-

als. Various mathematicians have studied this problem since 1930, and we can cite some

of the works: [15, 14, 43, 42]. The Köthe conjecture has several different formulations.

Among others, we have the following equivalent statements:

Theorem: The following statements are equivalent:

i) If a ring has no nonzero nil ideals, then it has no nonzero one-sided nil ideals;

ii) The sum of two right nil ideals in any ring is nil;

iii) For any nil ring R, the ring of 2ˆ 2 matrices over R is nil;

iv) For any nil ring R, the ring of nˆ n matrices over R is nil.

This theorem can be found in [43]. In our work, we prove that Köthe’s Problem has a

positive solution in the class of f-commutative rings graded by a monoid. Moreover, we

show that

Theorem 3.3.7: A positive answer to Problem‹ implies that Köthe’s Problem has a

positive solution.

Equivalently, a counterexample to Köthe’s Problem would yield a counterexample

to Problem‹.

Finally, in the fourth and last chapter, we study the G-graded algebras with the

central neutral component, and we study the variety of G-graded algebras defined by G-

graded polynomial identities rxpeq, ypgqs for all g P G, where G is an abelian finite group,

and the base field is algebraically closed fo characteristic zero. In other words, in this

chapter, we exhibit results concerning to the variety VG of all G-graded algebras whose

neutral component is central, i.e. VG :“ varG
`

trxpeq, ypgqs : g P Gu
˘

. We present some
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properties of algebras which belong to the variety VG, and in suitable conditions, we give

a description of VG, in the language of a carrier. Here, we assume that G is a finite abelian

group, F is an algebraically closed field of characteristic zero, and all considered algebras

are associative F-algebras, unless otherwise stated.

Firstly, we present some results on rings graded by a cancellative monoid that have

a small support, and whose neutral component is central. The main result here is that

any graded ring with the central neutral component and the support of order at most 3

is Lie nilpotent, i.e. satisfies the polynomial identity rx1, . . . , xns “ 0 for some n P N.

We exhibit also some counterexamples for the case of rings with order of support greater

than 3. In the second section of 4th Chapter, we introduce the variety of VG of all G-

graded PI-algebras with the central neutral component. Basically, we exhibit our objects

of study. In the third section, we study the graded algebra of finite dimension whose

neutral component is central in the algebra. We show some properties of these algebras,

we apply some concepts of cohomology of groups, and combinatorial arguments. Our two

main results in this section are the following:

Theorem 4.3.8: Let F be an algebraically closed field of characteristic zero, G a finite

abelian group, H a subgroup of G, σ P Z2pH,F˚q, and A “ FσrHs ‘ J a finite dimensional

G-graded unitary F-algebra. Suppose that SupppΓAq “ H. If Ae is central in A, then

A ”GPI FσrHs .

Moreover, A belongs to varGpFγrGsq for some γ P Z2pG,F˚q which extends σ.

Theorem 4.3.14: Let G be a finite abelian group, F an algebraically closed field of char-

acteristic zero, and A a finitely generated G-graded algebra. If A P VG, there exists a

finite dimensional G-graded algebra

CG,A “
ą

HEG

¨

˝

ą

rσsPH2pH,F˚q

`

FσrHs ‘ JpH,rσsq
˘

˛

‚ ,

where each JpH,rσsq is a finite dimensional G-graded nilpotent algebra (JpH,rσsq is the Jacob-

son radical of ApH,rσsq :“ FσrHs ‘ JpH,rσsq), satisfying

TG
pCG,Aq Ď8 TG

pAq .
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Moreover, if A is unitary, then TGpCG,Aq Ď TGpAq.

In the 4th section, we study the variety VG the all the G-graded algebras with the

central neutral component. Here, our main results are the following.

Theorem 4.5.4: Let G be a finite abelian group, H a subgroup of GˆZ2, σ P Z2pH,F˚q,

and F an algebraically closed field of characteristic zero. Let A “ FσrHs ‘ J be a finite

dimensional G ˆ Z2-graded unitary algebra, with the semisimple part B “ FσrHs, and J

is the Jacobson radical of A. Suppose that one of the following hypotheses is true:

1) A “ AπpHq;

2) H “ Gˆ t0u;

3) πpSupppΓJqq Ď πpHq;

4) H ď Gˆ t0u and pSupppΓJqq Ď πpHq;

If pEGpAqqe is central in EGpAq, then J is generated as a G ˆ Z2-graded B-bimodule by a

nilpotent subalgebra N̂ of J, which is super-central in A, and

EG
pAq ”GPI E

G
pFσrHsq .

In particular, in the cases 2) and 4) we have that

EG
pAq ”GPI FσrHs ”GPI Fσ̃rπpHqs ,

for some σ̃ P Z2pπpHq,F˚q.

Theorem 4.5.5: Let G be a finite abelian group, and F an algebraically closed field of

characteristic zero. There exists a finite dimensional Gˆ Z2-graded unitary algebra

CG “
ą

HEGˆZ2
pe,1qRH

¨

˝

ą

rσsPH2pH,F˚q

`

FσrHs ‘ JpH,rσsq
˘

˛

‚ ,

such that JpH,rσsq is a finite dimensional G ˆ Z2-graded nilpotent algebra (JpH,rσsq is the

Jacobson radical of ApH,rσsq :“ FσrHs ‘ JpH,rσsq), satisfying

VG
“ varGpEG

pCGqq .
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8 Introduction

In the last section of 4th chapter, we prove that if a graded algebra A satisfies a

polynomial identity f of degree 2, in suitable conditions, then either A is nilpotent or A

has the commutative neutral component.

Brasília, June 28, 2019

Antonio Marcos Duarte de França
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CHAPTER 1

GRADED ALGEBRAS, GRADED

BIMODULES AND GRADED

IDENTITIES

The aim of this chapter is to introduce notations and definitions, that are necessary

for a better presentation of the next chapters. We define here all algebraic structures

that we use in this work. Furthermore, we exhibit various properties of these algebraic

structures.

The most important part of this chapter is the last section, which is the key to

prove the main theorem in Chapter 4.

In the whole text, all rings and algebras are assumed to be associative, G denotes

a group, F and K denote fields. For more details about the basic structures that we use

here, see [6, 8, 9, 23, 25, 26, 31].

1.1 Basic Definitions and Properties

In this section, we present some definitions and properties of the basic structures

which are needed to understand the next chapters better. Let us comment briefly the

definitions of semigroups, monoids, groups, rings and vector spaces. Afterwards, we define

(bi)modules over algebras, gradings on algebras and modules. Finally, we present some
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10 1. Graded Algebras, Graded Bimodules and Graded Identities

properties of these important structures.

Let S be a non-empty set and "˚" a map from S ˆ S into S. We say that

P1) pS, ˚q is associative if px ˚ yq ˚ z “ x ˚ py ˚ zq for any x, y, z P S;

P2) pS, ˚q is commutative if y ˚ x “ x ˚ y for any x, y P S;

P3) pS, ˚q has a neutral element (or unity) if there exists 1S P S such that 1S ˚ x “

x ˚ 1S “ x for any x P S. In this case, pS, ˚q is called unitary;

P4) x P pS, ˚q is invertible if pS, ˚q is unitary and there exists y P S, called inverse of

x, such that x ˚ y “ y ˚ x “ 1S.

A non-empty set S with a binary map "˚" is said to be a semigroup if pS, ˚q

satisfies P1.

A non-empty set S with a binary map "˚" is said to be a monoid if pS, ˚q satisfies

P1 and P3. Observe that any unitary semigroup is a monoid.

Now, given a non-empty set G with a map ˚ : G ˆ G Ñ G, which is called a map

multiplication. We say that pG, ˚q is a group if it satisfies P1, P3 and P4, for any x P G.

A group G is said to be abelian if satisfies P2. Note that any group is a monoid such

that its elements are invertible.

Let S be a monoid. We say that S is left cancellative (resp. right cancellative)

if gh “ gt (resp. hg “ tg) implies h “ t, for any g, h, t P S. We say that S is bf

cancellative if S is both left cancellative and right cancellative. Observe that any group

is a cancellative monoid.

Remark 1.1.1 Let G be a group. Given an element g P G ´ teu, where e is the unity of

G, if there exists an number m P N such that gm “ e, then we say that the order of g is

the smallest number n P N such that gn “ e, and in this case we denote opgq “ n. If there

is no m P N such that gm “ e, then we say that g has an infinite order, and we denote

opgq “ 8. Note that when G is finite, we have that all elements of G have a finite order,

and opgq | |G|., for any g P G.

Take a non-empty set R with two maps `, ¨ : R ˆR Ñ R. We say that pR,`, ¨q

is a ring if pR,`q is an abelian group, and xpy ` zq “ xy ` xz, and px ` yqz “ xz ` yz

hold, for any x, y, z P R (distributivity). A ring pR,`, ¨q is associative if pR, ¨q satisfies

P1; commutative if pR, ¨q satisfies P2; and unitary if pR, ¨q satisfies P3.
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1.1. Basic Definitions and Properties 11

A field F is a unitary commutative associative ring pF,`, ¨q such that pF, ¨q satisfies

P4 for any x P F´ t0u, where 0 is the neutral element of pF,`q.

Finally, a vector space over a field F (or simply, F-vector space) is a non-empty

set V together with two maps ` : V ˆ V Ñ V, and ¨ : F ˆ V Ñ V such that pV,`q is

an abelian group, and pλ ` γqx “ λx ` γx, λpx ` yq “ λx ` λy, pλγqx “ λpγxq, for any

x, y P V and λ, γ P F, and 1Fx “ x for any x P V.

A subring (resp. a subspace) is a subset which is also a ring (resp. a vector

space) with the same operations.

An ideal I of a ring R is a subring which is invariant with respect to multiplication

by R, i.e. IR,RI Ď I. We can define a left ideal (resp. a right ideal) of a ring R

requiring that RI Ď I (resp. IR Ď I).

Definition 1.1.2 Let A be a vector space over a field F. We say that A is an F-algebra

if there exists a map "¨" from Aˆ A into A that satisfies the following properties:

i) c ¨ pa` bq “ c ¨ a` c ¨ b;

ii) pa` bq ¨ c “ a ¨ c` b ¨ c;

iii) λpa ¨ bq “ pλaq ¨ b “ a ¨ pλbq,

for any a, b, c P A and λ P F.

We say that A is associative if pA, ¨q satisfies P1; unitary if pA, ¨q satisfies P3;

commutative if pA, ¨q satisfies P2. A subalgebra of A is a subset of A which is also an

algebra, and an ideal I of A is a subalgebra of A which is invariant with respect to the

multiplication of A, that is, IA,AI Ď I. We define a left ideal and a right ideal of an

algebra, being sufficient to require AI Ď I and IA Ď I, respectively.

A nonzero ideal I of an algebra A is called a minimal ideal if for any ideal J of

A which is contained in I, one has J “ t0u or J “ I. Analogously, we define a minimal

left ideal and minimal right ideal of an algebra.

Given an algebra A without unit, it is always possible to obtain a unitary algebra

derived from A. In fact, consider the algebra A# “ A ‘ 1A#F whose product is defined

as following: for any a, b P A and λ, γ P F

pa` λ1A#qpb` γ1A#q “ pab` λb` γaq ` λγ1A# . (1.1)
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12 1. Graded Algebras, Graded Bimodules and Graded Identities

The algebra A# is called an algebra derived from A by adjoining the unit 1A# .

Two important classes of algebras are the class of nil algebras and the class of

nilpotent algebras. An algebra A is said to be nil if for any a P A there is an integer

n “ npaq ą 0 such that an “ 0. A nil algebra A has a bounded index when there

exists an integer n0 ą 0 such that bn0 “ 0 for any b P A, and thus, A is a nil algebra of

bounded index.

We say that A is a nilpotent algebra if there exists an integer d ą 0 such that

a1a2 ¨ ¨ ¨ ad “ 0 for any a1, a2, . . . , ad P A. Notice that any nilpotent algebra is also a nil

algebra (of bounded index). The reciprocal is not true. The definitions of nil rings (of

bounded index) and nilpotent rings are analogous.

From now on, all the rings and algebras are assumed to be associative.

Definition 1.1.3 Let A be an algebra and B a subalgebra of A. We define the center

of B in A, denoted by ZApBq, as being the set

ZApBq “ ta P A : ab “ ba, @b P Bu.

When B “ A, we write ZApBq “ ZpAq, and ZpAq is called center of A. Notice that A

is commutative if ZpAq “ A, and we say that B is central in A if B Ď ZpAq.

The center of a ring is defined analogously.

We define the center of a multiplicative group. Let G be a group with multiplicative

notation and S a subset of G. We define the center of S in G as the set

ZGpSq :“ tg P G : gs “ sg, for any s P Su.

When S “ G, we write ZGpGq “ ZpGq, and ZpGq is called center of G.

Let us consider now a generalization of commutativity.

Definition 1.1.4 Consider a semigroup S, and an associative ring R. A left action of

S on R is a mapping ¨ : SˆR ÝÑ R satisfying

pλγq ¨ x “ λpγ ¨ xq and λ ¨ pxyq “ pλ ¨ xqy ,

for any λ, γ P S and x, y P R, and it is called an action by semigroup. Consider
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1.1. Basic Definitions and Properties 13

a map f : R ˆ R Ñ S. If ab “ fpa, bqba for any a, b P R, then we say that R is an

f-commutative ring.

We will consider f-commutativity of a ring with more details in Chapter 3.

Let us recall the definition of a linear transformation between two F-vector spaces.

Given two vector spaces V and Ṽ over the same field F, a map ψ : V ÝÑ Ṽ is said

to be a linear transformation if ψpa ` bq “ ψpaq ` ψpbq and ψpλaq “ λψpaq for

any a, b P V and λ P F. The kernel and image of ψ are, respectively, defined by

kerpψq “ ta P V : ψpaq “ 0u and impψq “ tψpaq P Ṽ : a P Vu. We say that ψ is an

epimorphism if it is a surjective map, i.e. impψq “ Ṽ; ψ is a monomorphism if it is

an injective map, i.e. ψpaq “ ψpbq implies a “ b in V; and ψ is an isomorphism if it is

an epimorphism and a monomorphism. Notice that ker “ t0u iff ψ is injective. It is not

difficult to see that kerpψq and impψq are subspaces of V and Ṽ, respectively. For more

details, see [23].

Definition 1.1.5 Let A and Ã be two F-algebras and φ : AÑ Ã a linear transformation.

We say that φ is a homomorphism of algebras if φ satisfies φpabq “ φpaqφpbq for any

a, b P A.

The definitions of a kernel, image, epimorphism of algebras, monomor-

phism of algebras and isomorphism of algebras are inherited from linear transfor-

mations. It is not difficult to see that kerpφq and impφq are subalgebras of A and Ã,

respectively. In particular, kerpφq is an ideal of A. We write A – Ã when there exists an

isomorphism of algebras between A and Ã. Otherwise, we write A fl Ã.

Let us now define gradings on algebras and rings, modules over an algebra and

gradings on modules. For more details, see [6, 34, 35].

We denote by the symbol "
À

" the direct sum of additive subgroups on a ring or the

direct sum of F-subspaces on an F-algebra, i.e. A “
À

iPI Ai means Ai X p
ř

jPI,j‰iAjq “

t0u, where Ai Ă A are additive subgroups of a ring A or F-subspaces of an F-algebra A.

Definition 1.1.6 Let R be a ring, and S a monoid. An S-grading on R is a decomposition

of R as a direct sum of its additive subgroups Rg Ď R, g P S,

R “
à

gPS

Rg ,
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14 1. Graded Algebras, Graded Bimodules and Graded Identities

such that RgRh Ď Rgh for any g, h P S. We say that R is an S-graded ring, or that R is

a ring graded by the monoid S.

The Rs’s are called homogeneous components. For each s P S, any element

r P Rs is called a homogeneous element of degree s, and we write degprq “ s.

We can also define a grading by a quotient group in a natural way. In fact, let R

be a ring graded by a group S. Given a normal subgroup S̃ of S, consider the quotient

group S{S̃. Being R “
À

sPS Rs an S-grading on R, we have that

R “
à

s̄PS{S̃

Rs̄

defines an S{S̃-grading on R, where Rs̄ “
À

rPS̃ Rsr.

Definition 1.1.7 Let A be an F-algebra and G a group. A G-grading on A is a decom-

position of A as the direct sum of subspaces Ag Ă A, g P G,

A “
à

gPG

Ag ,

such that AgAh Ď Agh for any g, h P G. We say that A is a G-graded algebra.

The Ag’s are called homogeneous components. For each g P G, any element

a P Ag is called a homogeneous element of degree g, and we write degpaq “ g.

Let A be a G-graded algebra. Denote by ΓA : A “
À

gPG Ag the G-grading on A

considered. The support of ΓA, denoted by SupppΓAq, is given by the set

SupppΓAq “ tg P G : Ag ‰ t0uu .

When no confusion can arise, we write only

Example 1.1.8 Given a group G and a field F, consider the group algebra FG, where

the elements of FG are the finite formal sums
ř

gPG λgηg, where λg P F. We assume that

the set tηg : g P Gu, where each element ηg corresponds to element g P G, is an F-basis

of FG, and ηhηg “ ηhg for any h, g P G. The multiplication "¨" is linearly extended on

the whole FG. A natural example of a G-graded F-algebra (and also G-graded ring) is the

group algebra FG, where Ag “ spanFtηg P Au.
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1.1. Basic Definitions and Properties 15

Example 1.1.9 Consider a group G and A “ MnpFq, the algebra of matrices of order

n. Fixed an n-tuple ξ “ pg1, . . . , gnq P Gn, the G-grading on A given by A “
À

gPG Ag,

where Ag “ spanFtEij P A : g´1
i gj “ gu, is called the elementary G-grading defined

by ξ. More generally, if B “ MnpFGq, the algebra of matrices of order n over FG, and

fixed an n-tuple ξ̃ “ pg̃1, . . . , g̃nq P G
n, the G-grading on B given by B “

À

gPG Bg, where

Bg “ spanFtEijηh P B : g̃´1
i hg̃j “ gu, is called the canonical elementary G-grading

defined by ξ̃.

Let A be a G-graded algebra. A subalgebra B of A is a graded subalgebra if

B “
À

gPGpBXAgq. This is means that, given b P B with b “
ř

gPG bg (bg P Ag), we have

that bg P B for any b P G.

An ideal I of A is said to be graded if I “ ‘gPGpI X Agq, i.e. if for any x “
ř

gPG xg P I, with xg P Ag, then xg P I for any g P G.

It is clear that, if A is a unitary G-graded algebra (resp. ring), then 1A P Ae, where

e is the neutral element of G. For more details, see Chapter 3 in [17].

Definition 1.1.10 A G-graded algebra A is said to be (left) G-simple (or simple graded,

or minimal graded) if A2 ‰ t0u and A does not have proper G-graded (left) ideals, i.e.

if I is a graded (left) ideal of A, then either I “ t0u or I “ A. Moreover, assuming A be

unitary, A is a G-division (or division G-graded) algebra if all its nonzero homogeneous

elements are inversible in A, i.e. for any a P
Ť

gPG Ag, a ‰ 0, there exists a´1 P A such

that aa´1 “ a´1a “ 1. Note that a´1 is also homogeneous of degree degpa´1q “ pdegpaqq´1.

It is not difficult to show that any division algebra is a division G-graded algebra,

for any G-grading on A, but there are division graded algebras that are not division

algebras. For example, FG is a division G-graded algebra, but it is not a division algebra

for any field F and group G of order greater than or equal to 2. Moreover, any division

graded algebra is also a simple graded algebra.

A graded ideal I of a G-graded algebra A is called minimal graded ideal when

t0u and I are the only graded ideals of A contained in I.

Notice that, given a subgroup H of G, the subset Ã “
À

gPH Ag of A is a graded

subalgebra of A. In general, SupppΓq is not a subgroup of G. Indeed, consider G “ Z2ˆZ4,

and B “ M3pFq. Put ξ “ pg1, g2, g3q P G3 with g1 “ p0, 0q, g2 “ p1, 0q, g3 “ p1, 1q.

Notice that B with the elementary G-grading defined by ξ has the support SupppΓq “

tg1, g2, g3, g
´1
3 , g2g3, g

´1
3 g2u, which obviously is not a subgroup of G.
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16 1. Graded Algebras, Graded Bimodules and Graded Identities

Definition 1.1.11 Let A and Ã be two G-graded F-algebras and φ : AÑ Ã a homomor-

phism of algebras. We say that φ is a graded homomorphism of G-graded algebras if

φpAgq Ď Ãg for any g P G.

We say that a graded homomorphism of algebras φ is a graded epimorphism

if it is surjective; φ is a graded monomorphism if it is injective; and φ is a graded

isomorphism if it is bijective. We write A –G Ã when there exists a graded isomorphism

between two G-graded algebras A and Ã. Otherwise, we write A flG Ã. It is not difficult

to see that kerpφq and impφq are graded subalgebras of A and Ã, respectively. Moreover,

kerpφq is a graded ideal of A.

Let us now define bimodules over algebras and graded bimodules over graded

algebras.

Definition 1.1.12 Let F be a field, A an F-algebra (not necessarily unitary), and M an

F-vector space. We say that M is a left A-module if there exists a well defined map from

AˆM into M that satisfies the following conditions:

i) apm`m1q “ am` am1,

ii) pa` a1qm “ am` a1m ,

iii) paa1qm “ apa1mq ,

iv) pλaqm “ λpamq “ apλmq ,

for any a, a1 P A, λ P F and m,m1 P M. If A is a unitary algebra, then we require that

1Am “ m

for any m P M, and hence, we say that M is a unitary left A-module.

Analogously, we define a right A-module.

Definition 1.1.13 Let F be a field, A an F-algebra (not necessarily unitary), and M an

F-vector space. We say that M is a right A-module if there exists a well defined map

from Mˆ A into M that satisfies the following conditions:

i) pm`m1qa “ ma`m1a ,
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1.1. Basic Definitions and Properties 17

ii) mpa` a1q “ ma`ma1 ,

iii) mpaa1q “ pmaqa1 ,

iv) mpλaq “ pλmqa “ λpmaq ,

for any a, a1 P A, λ P F and m,m1 P M. If A is a unitary algebra, then we require that

m1A “ m

for any m P M, and hence, we say that M is a unitary right A-module.

Given an left A-module M, we say that M is a left 0-module if AM “ t0u, i.e.

am “ 0 for any a P A and m P M.

It is easy to see that if A is a commutative algebra, then the definitions of a left

A-module and a right A-module are the same, and hence, we often say "an A-module".

All the results for right A-modules and left A-modules are similar. For more details about

(one-sided) modules over algebras, see [9].

Definition 1.1.14 Let F be a field, A and Ã two F-algebras (not necessarily unitary),

and M an F-vector space. We say that M is an pA, Ãq-bimodule if it is a left A-module

and a right Ã-module, and its two scalar multiplications satisfy the associative law:

rpmsq “ prmqs

for any r P A, s P Ã and m P M. When A “ Ã, we say that M is an A-bimodule. When

A and Ã are unitary, M is a unitary A-bimodule iff M is a unitary left A-module and

a unitary right Ã-module.

Let A be an algebra, and M a left (resp. right) A-module. A submodule N of M

is a subspace of M which is A-invariant, i.e. N is also a left A-module. Given a subset S

of M, we define the submodule of M generated by S, denoted by AS (resp. SA), as

being the set given by

AS “

#

n
ÿ

k“1

rkmk P M : n P N, ri P AY F,mi P S

+
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18 1. Graded Algebras, Graded Bimodules and Graded Identities

˜

resp. SA “

#

n
ÿ

k“1

mksk P M : n P N, si P AY F,mi P S

+¸

.

Observe that, necessarily, S is a subset of AS (resp. SA). Let us consider also a submodule

AS (resp. SA) of M defined by

AS “

#

n
ÿ

i“1

rimi P M : n P N, ri P A,mi P S

+

˜

resp. SA “

#

ñ
ÿ

j“1

m̃jsj P M : ñ P N, sj P A, m̃j P S

+¸

.

If S “ tmu, we denote AS (resp. SA) by Am (resp. mA) when no confusion can arise.

Observe that not always S is a subset of AS (resp. SA), and AS “ AS ` spanFtm P Su

(resp. SA “ SA ` spanFtx P Su). If A is unitary, and M is a unitary left (resp. right)

A-module, then AS “ AS (resp. SA “ SA), and AS (resp. SA) is a unitary left (resp.

right) A-module.

Now, let A and Ã be two algebras, and M an pA, Ãq-bimodule. A subbimodule

N of M is a subspace of M which is also an pA, Ãq-bimodule. Given a subset S of M, we

define the subbimodule of M generated by S, denoted by ASÃ, as being the set given

by

ASÃ “

#

n
ÿ

k“1

rkmksk P M : n P N, ri P AY F, si P ÃY F,mi P S

+

“

$

&

%

n0
ÿ

l“1

λlml `

n1
ÿ

i“1

rim̆i `

n2
ÿ

j“1

m̃jsj `
n3
ÿ

k“1

qkm̂kpk P M :
nt P N0,ml, m̆i, m̃j, m̂j P S,

λl P F, ri, qk P A, sj, pk P Ã

,

.

-

,

where N0 “ NY t0u. Let us consider also a submodule ASÃ of M defined by

ASÃ “

#

n
ÿ

k“1

rkmksk P M : n P N, ri P A, si P Ã,mi P S

+

.

If S “ tmu, we denote ASÃ by AmÃ when no confusion can arise. Observe that ASÃ “

spanFtm P Su ` AS ` SÃ` ASÃ, and hence, ASÃ Ď ASÃ and S Ď ASÃ. When A and Ã

are unitary, and M is a unitary pA, Ãq-bimodule, we have that ASÃ “ ASÃ, and ASÃ is a

unitary pA, Ãq-bimodule.

Observe that a subbimodule of a graded bimodule is graded iff it can be generated
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as a bimodule by homogeneous elements.

A left (resp. right) A-module M is called irreducible (or simple) if AM ‰ t0u

(resp. MA ‰ t0u), and t0u and M are the only submodules of M. Therefore, for any

irreducible left (resp. right) A-module M, we have M “ Am (resp. M “ mA) for any

nonzero m P M. Really, considering N “ tm P M : Am “ t0uu, we have that N is a

submodule of M, and N ‰ M because AN “ t0u and AM ‰ t0u, hence, N “ t0u (since

M is irreducible), and consequently, for any m ‰ 0 (m R N), we have Am ‰ t0u and

Am “ M. Notice that, given a subalgebra I of A such that AI ‰ t0u (resp. IA ‰ t0u),

I is a (minimal) left (resp. right) ideal of A iff I is a (irreducible) left (resp. right)

A-module.

Definition 1.1.15 An pA, Ãq-bimodule M is called irreducible (or simple) if AMÃ ‰

t0u, and t0u and M are the only subbimodules of M. Particularly, the condition AMÃ ‰

t0u means that amã ‰ 0 for some a P A, ã P Ã and m P M.

For any irreducible pA, Ãq-bimodule M, we have M “ AmÃ for any nonzero m P M.

Indeed, it is sufficient to see that N “ tm P M : AmÃ “ t0uu is a subbimodule of M, and

hence, we can conclude that N “ t0u. When M is a unitary pA, Ãq-bimodule (hence A

and Ã are unitary also), the condition AMÃ ‰ t0u is equivalent to conditions AM ‰ t0u

and MÃ ‰ t0u.

Notice that, given a subalgebra I of A such that AIA ‰ t0u, I is a (minimal)

(two-sided) ideal of A iff I is an (irreducible) A-bimodule.

Let A be an algebra, and M a left (resp. right) A-module. We say that M is

faithful if aM “ t0u (resp. Ma “ t0u), where a P A, implies a “ 0. This means that the

set AnnApMq :“ ta P A : am “ 0, @m P Mu (resp. AnnApMq :“ ta P A : ma “ 0, @m P Mu)

is null. It is easy to prove that I “ AnnApMq is an (two-sided) ideal of A, for any left

(resp. right) A-module M. From this, observe that if A is a simple algebra, then any

left (resp. right) A-module M is either a null left (resp. right) module or a faithful left

(resp. right) A-module, and any irreducible left (resp. rigth) A-module is faithful, since

AM ‰ t0u (resp. MA ‰ t0u). Observe that M is also a left (resp. right) A{I-module,

which is faithful, since AnnA{IpMq “ t0u.

Let N be a submodule of a left (resp. right) A-module M. The left quotient

A-module (resp. right quotient A-module) M{N is defined as follow:
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20 1. Graded Algebras, Graded Bimodules and Graded Identities

i) M{N “ tm “ m`N : m P Mu is a quotient vector space;

ii) am “ am (resp. ma “ ma) for any a P A and m P M.

By the two above items, note that M{N is a left (resp. right) A-module naturally.

Analogously we define a quotient bimodule. Let N be a subbimodule of an pA, Ãq-

bimodule M. The quotient pA, Ãq-bimodule M{N is defined as follow:

i) M{N “ tm “ m`N : m P Mu is a quotient vector space;

ii) am “ am for any a P A and m P M;

iii) mb “ mb for any b P Ã and m P M;

It is clear that amb “ amb “ amb “ amb for any a P A, b P Ã and m P M. By the three

above items, note that M{N is an pA, Ãq-bimodule naturally.

Definition 1.1.16 Let A be an algebra, M and M̃ two left (resp. right) A-modules and

φ : M ÝÑ M̃ a linear transformation. We say that φ is a homomorphism of left (resp.

right) A-modules if φ satisfies φpamq “ aφpmq (resp. φpmaq “ φpmqa) for any a P A

and m P M.

Definition 1.1.17 Let A and Ã be two algebras, M and M̃ two pA, Ãq-bimodules and

ϕ : M ÝÑ M̃ a linear transformation. We say that ϕ is a homomorphism of pA, Ãq-

bimodules if ϕ satisfies ϕpamq “ aϕpmq and ϕpmbq “ ϕpmqb for any a P A, b P Ã and

m P M.

The definitions of kernel, image, epimorphism, monomorphism and isomor-

phism of left (resp. right) A-modules are inherited from linear transformations. It is not

difficult to see that kerpφq and impφq are submodules of M and M̃, respectively. We write

M – M̃ when there exists an isomorphism of left (resp. right) A-modules between two

A-modules M and M̃. Similar definitions we have for pA, Ãq-bimodules.

Now, let us define structures of G-gradings on modules.

Definition 1.1.18 Let F be a field, G a group, A an F-algebra, and M a left (resp. right)

A-module. Suppose that A has a G-grading. A G-grading on M is a decomposition of M

as a direct sum of F-subspaces Mg Ď M, g P G,

M “
à

gPG

Mg ,
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such that AgMh Ď Mgh (resp. MhAg Ď Mhg) for any g, h P G. We say that M is a

G-graded left (resp. right) A-module.

Analogously, given two G-graded algebras A and Ã, and an pA, Ãq-bimodule M, we

define a G-grading on M.

Definition 1.1.19 Let G be a group, A and Ã two G-graded algebras and M an pA, Ãq-

bimodule. A G-grading on M is a decomposition of M in a direct sum of F-subspaces

Mg P M, g P G, satisfying AgMh Ď Mgh and MhÃt Ď Mht, for any g, h, t P G. In this case,

we say that M is a G-graded pA, Ãq-bimodule.

A special case of a bimodule graded by a group occurs when A “ Ã, then we have

a G-graded A-bimodule. In the next section, we will detail the study of the G-graded

A-bimodules.

Let M be a G-graded left (resp. right) A-module, where G is a group and A is a G-

graded algebra. A submoduleN ofM is called graded submodule ifN “
À

gPGpNXMgq.

This means that ifm “
ř

gPGmg P N , withmg P Mg, thenmg P N for any g P G. Similarly,

a subbimodule N 1 of a G-graded pA, Ãq-bimodule M1, where A and Ã are G-graded, is said

to be a graded subbimodule if N 1 “
À

gPGpN
1 XM1

gq.

A G-graded left (resp. right) A-module M is called irreducible graded if AM ‰

t0u (resp. MA ‰ t0u, and M does not have proper graded submodules. This means that

M is an irreducible graded left (resp. right) A-module iff AM ‰ t0u (resp. MA ‰ t0u),

and t0u and M are the only graded submodules of M.

Remark 1.1.20 Let G be a group, A a G-graded algebra, and I a graded left ideal of A,

i.e. I is a left ideal of A such that I “
À

gPGpI X Agq. We have that I is a G-graded left

A-module naturally. So, when AI ‰ t0u, I is a minimal G-graded left ideal of A if and

only if I is an irreducible G-graded left A-module (see Definition 1.1.10). For right ideals

and two-sided ideals we can deduce analogue result.

Definition 1.1.21 Let M be a G-graded pA, Ãq-bimodule. We say that M is irreducible

graded if AMÃ ‰ t0u, and M does not have proper graded subbimodules. This means that

M is an irreducible G-graded pA, Ãq-bimodule iff AMÃ ‰ t0u, and t0u and M are the only

graded subbimodules of M. Particularly, the condition AMÃ ‰ t0u means that amã ‰ 0

for some homogeneous elements a P A, m P M and ã P M
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For any irreducible G-graded pA, Ãq-bimodule M, we have M “ AmÃ for any

nonzero homogeneous element m P M. In fact, it is sufficient to see that N “ tm P

M : AmÃ “ t0uu is a graded subbimodule of M. Hence, we can conclude that N “ t0u,

because AMÃt0u, and ANÃt0u, and so N ‰ M.

Notice that, given a subalgebra I of A such that AIA ‰ t0u, I is a (minimal)

(two-sided) ideal of A iff I is an (irreducible) A-bimodule.

Now, let M be a G-graded left A-module (resp. G-graded pA, Ãq-bimodule). Given

a graded submodule (resp. graded subbimodule) N of M, we have that left quotient A-

module (resp. quotient pA, Ãq-bimodule) M{N is a G-graded left A-module (resp. pA, Ãq-

bimodule) naturally. In fact, since M “
À

gPG Mg and N “
À

gPGpN XMgq, we have the

quotient space Mg{pN XMgq is well defined, for any g P G. It is easy to see that

M

N
“
à

gPG

Mg

N XMg

,

and thus, M{N is a G-graded left A-module (resp. G-graded pA, Ãq-bimodule) called

graded quotient left A-module (resp. graded quotient pA, Ãq-bimodule). For

quotient right A-modules, we obtain a similar result.

Definition 1.1.22 Let A be a G-graded algebra, M and M̃ two G-graded left (resp. right)

A-modules and ψ : M Ñ M̃ a homomorphism of left (resp. right) A-modules. We say

that ψ is a homogeneous homomorphism of degree h0 P G of G-graded left (resp.

right) A-modules if ψpMgq Ď M̃gh0 (resp. ψpMgq Ď M̃h0g) for any g P G. A finite sum of

homogeneous homomorphisms of left (resp. right) A-modules is called a graded homo-

morphism of left (resp. right) A-modules.

Similarly to above definition we define homogeneous homomorphisms of pA, Ãq-

bimodules.

Definition 1.1.23 Let G be a group, A and Ã two G-graded algebras, M and M̃ two

G-graded pA, Ãq-bimodules, and ϕ : M Ñ M̃ a homomorphism of pA, Ãq-bimodules. We

say that ϕ is a homogeneous homomorphism of degree h0 P G of G-graded pA, Ãq-

bimodules if ϕpMgq Ď M̃gh0 “ M̃h0g for any g P G. A finite sum of homogeneous homomor-

phisms of pA, Ãq-bimodules is called a graded homomorphism of pA, Ãq-bimodules.

De França, A.M.D. June 28, 2019 Mat – UnB



1.1. Basic Definitions and Properties 23

Observe that the last definition is correct for any h0 P ZpGq. Particularly, this is

correct for any h0 P G if G is abelian.

Notice that any homogeneous homomorphism of G-graded left (resp. right) A-

modules is also a graded homomorphism. Not always the kernel or image of a graded

homomorphism are graded submodules, but if a homomorphism of graded left modules

(resp. right modules, bimodules) is homogeneous of degree h, it is easy to see that its

kernel and image are graded submodules. When two G-graded left (resp. right) A-modules

M and M̃ are homogeneously isomorphic, i.e. there exists a homogeneous isomorphism

ψ : M Ñ M̃, we write M –G M̃. Similar definitions and notations are used also for

G-graded pA, Ãq-bimodules.

Let M be a G-graded left A-module. Considering another G-graded algebra Ã, we

have that M is a right Ã-module with the trivial product, i.e. ma “ 0 for any m P M and

a P Ã, and hence, M is a G-graded pA, Ãq-bimodule naturally. Analogously, we can assume

that a right Ã-module is also a pA, Ãq-bimodule. Therefore, some results for bimodules

are also valid for left and right modules. The next two theorems are also true for graded

left and right modules, and the proofs of them are similar to the proofs for bimodules.

Theorem 1.1.24 Let G be a group, A and Ã two G-graded algebras, and M a G-graded

pA, Ãq-bimodule.

i) If M1 is a G-graded pA, Ãq-bimodule and ψ : M ÝÑ M1 is a homogeneous homomor-

phism of degree h, then
M

kerpψq
–G impψq

as G-graded pA, Ãq-bimodules;

ii) If N,W are G-graded subbimodules of M, then

N `W

W
–G

N

N XW

as G-graded pA, Ãq-bimodules;

iii) If N,W are G-graded subbimodules of M with N Ď W , then

M

W
–G

M{N

W {N
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as G-graded pA, Ãq-bimodules.

Proof: i) Since ψ is a homogeneous homomorphism of pA, Ãq-bimodules, we have that

kerpψq is a graded subbimodule of M, and impψq is a graded subbimodule of M̃. Consider

the quotient pA, Ãq-bimodule M{kerpψq, and the map

ψ̃ :
M

kerpψq
ÝÑ impψq

m “ m` kerpψq ÞÝÑ ψ̃pmq “ ψpmq

, m P M ,

which is well defined because if m “ m1, then m´m1 P kerpψq, and consequently,

ψ̃pmq “ ψpmq “ ψpm1
q “ ψ̃pm1q .

It is easy to see that ψ is a homogeneous isomorphism of pA, Ãq-bimodules, since ψ is a

homogeneous homomorphism.

ii) Consider the map

φ : N ÝÑ
N `W

W

m ÞÝÑ φpmq “ m`W
, m P M .

Obviously φ is a homogeneous epimorphism of pA, Ãq-bimodules. By item i), we have

that
N

kerpφq
–G

N `W

W
.

Notice that NXW Ď kerpφq. Conversely, take m P kerpφq. Hence, m P N and 0 “ φpmq “

m, and hence, m P W . Consequently, kerpφq “ N XW . The result follows.

iii) Consider the map

ϕ : M ÝÑ
M{N

W {N

m ÞÝÑ ϕpmq “ pm`Nq `W {N

, m P M .

Obviously ϕ is a homogeneous epimorphism of pA, Ãq-bimodules. By item i), we have

that
M

kerpϕq
–G

M{N

W {N
.

Note thatW Ď kerpϕq. Conversely, take m P kerpϕq. Hence, 0 “ ϕpmq “ pm`Nq`W {N ,
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and hence, m`N P W {N . Consequently, we have that m P W , and so kerpφq Ď W . The

result follows. �

Theorem 1.1.25 Let G be a group, A and Ã two G-graded algebras and M a G-graded

pA, Ãq-bimodule. Suppose N is a graded subbimodule of M. Then any graded subbimodule

of the quotient bimodule M{N is of the form P {N “ tx ` N : x P P u, where P is a

graded subbimodule of M such that N Ă P Ă M. The correspondence between graded

subbimodules of M{N and graded subbimodules of M which contain N is a bijection.

Proof: Analogous to the nongraded case (see Theorem 6.22, [40]). �

1.2 Properties of Graded Algebras

In this section, we present main properties of graded algebras. We also exhibit

some well-known results which help us to develop this work.

Here, F denotes a field and G denotes a group. By F˚ “ Fzt0u we denote the

multiplicative group of F. By convention, we assume that G is a group with multiplicative

notation.

1.2.1 Cocycles and Coboundaries

Definition 1.2.1 The mapping σ : Gˆ G ÝÑ F˚ which satisfies

σpx, yqσpxy, zq “ σpx, yzqσpy, zq for all x, y, z P G

is called a 2-cocycle on G with values in F˚. The set of all 2-cocycles from G into F˚ is

denoted by Z2pG,F˚q.

Example 1.2.2 The application σ from GˆG to F˚ given by σpx, yq “ 1, for any x, y P G,

is a 2-cocycle called the trivial 2-cocycle.

Example 1.2.3 Given a group G, a field F and a map f : G Ñ F˚, the application

σ : Gˆ G ÝÑ F˚ defined by

σpx, yq “
fpxyq

fpxqfpyq
, x, y P G,
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is a 2-cocycle, which is called 2-coboundary. The set of all 2-coboundaries from G into

F˚ is denoted by B2pG,F˚q.

Given two 2-cocycles σ, ρ : G ˆ G ÝÑ F˚, we say that σ and ρ are equivalent if

there exists a 2-coboundary f : G ÝÑ F˚ such that

σpx, yq

ρpx, yq
“

fpxyq

fpxqfpyq

for any x, y P G. We write rσs “ rρs in this case. It is not difficult to show that this

relation is an equivalence relation on the set of all 2-cocycles on G. In this case, we write

H2pG,F˚q :“ trσs : σ P Z2pG,F˚qu.

Definition 1.2.4 Given a 2-cocycle σ P Z2pG,F˚q, we say that σ is symmetric when

σpx, yq “ σpy, xq for any x, y P G. When σpx, yq “ ´σpy, xq for any x, y P G, σ is called

antisymmetric.

It is immediate of the above definition that any 2-coboundary is a symmetric 2-

cocycle.

Example 1.2.5 Let G “ pZ2 ˆ Z2,`q. The map σ : G ˆ G Ñ C˚ given by the following

table
σ p0̄, 0̄q p0̄, 1̄q p1̄, 0̄q p1̄, 1̄q

p0̄, 0̄q 1 1 1 1

p0̄, 1̄q 1 1 1 1

p1̄, 0̄q 1 ´1 1 ´1

p1̄, 1̄q 1 ´1 1 ´1

defines a 2-cocycle, i.e. σ belongs to Z2pG,Cq. Notice that σ is neither symmetric nor

antisymmetric.

Proposition 1.2.6 Let G be a group, F a field and σ : GˆG ÝÑ F˚ a 2-cocycle on G. If

e P G is the neutral element (unit of G), then for any x, y P G we have

σpx, eq “ σpe, yq.

In particular, σpx, eq “ σpe, xq “ σpe, eq for any x P G. In addition, σpx, x´1q “ σpx´1, xq,

for any x P G.
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Proof: By Definition 1.2.1, doing y “ e, we have

σpx, eqσpxe, zq “ σpx, ezqσpe, zq

σpx, eqσpx, zq “ σpx, zqσpe, zq

σpx, eq “ σpe, zq

for any x, z P G. In particular, for z “ x, and after for z “ e, we have

σpx, eq “ σpe, xq

σpx, eq “ σpe, eq .

Now, again by Definition 1.2.1, doing y “ x´1 and z “ x, we have

σpx, x´1
qσpxx´1, xq “ σpx, x´1xqσpx´1, xq

σpx, x´1
qσpe, xq “ σpx, eqσpx´1, xq

σpx, x´1
q “ σpx´1, xq

for any x P G, where here we use the equality σpe, wq “ σpw, eq for any w P G. �

Consider any element λ P F. We write n
?
λ P F if the polynomial xn ´ λ “ 0 has

a solution in F, i.e. if there exists an element γ P F such that γn “ λ. Hence, we write

γ “ n
?
λ to denote that γn “ λ.

Proposition 1.2.7 Let G be a finite cyclic group of order n generated by g, F a field and

σ : Gˆ G ÝÑ F˚ a 2-cocycle. If

n
a

σpg, eqσpg, gqσpg, g2q ¨ ¨ ¨σpg, gn´1q P F ,

then σ is a 2-coboundary. In particular, if F is an algebraically closed field and G a finite

cyclic group, then any 2-cocycle on G is a 2-coboundary.

Proof: Suppose G “ xgy with |G| “ n. Take σ a 2-cocycle on G, and assume that

λ “ n
a

σpg, eqσpg, gq ¨ ¨ ¨σpg, gn´1q P F˚. Consider the map φ : G ÝÑ F˚ defined by

φpeq “
1

σpg, eq
, φpgq “

1

λ
and φpgiq “

1

λi
σpg, gq ¨ ¨ ¨σpg, gi´1

q for 2 ď i ď n ´ 1. It is not

difficult to see that

σpt, hq “
φpthq

φptqφphq
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for any t, h P G, since

σpgr, gsq “
σpg, gr`s´1qσpg, gr`s´2q ¨ ¨ ¨σpg, gs`2qσpg, gs`1qσpg, gsq

σpg, gr´1qσpg, gr´2q ¨ ¨ ¨σpg, g2qσpg, gq

for any r, s “ 1, . . . , n. The result follows. �

In the previous proposition, the condition "F is an algebraically closed field" can

be changed by "F contains n
?
λ for any λ P F", then any 2-cocycle on G with values in F˚

is a 2-coboundary.

Corollary 1.2.8 Any 2-cocycle on a finite cyclic group is symmetric.

Proof: Let G be a finite cyclic group, and σ : G ˆ G ÝÑ F˚ a 2-cocycle. Consider an

algebraically closed extension K of F, and the application σ̃ : G ˆ G ÝÑ K˚ defined by

σ̃pg, hq “ σpg, hq for any g, h P G. We have that σ̃ is a 2-cocycle, and since K is an

algebraically closed field, by Proposition 1.2.7, it follows that there exists an application

f : G ÝÑ K˚ such that σ̃pg, hq “
fpghq

fpgqfphq
for any g, h P G. Hence, we have

σpg, hq “ σ̃pg, hq “
fpghq

fpgqfphq
“

fphgq

fphqfpgq
“ σ̃ph, gq “ σph, gq

for any g, h P G. Therefore, σ is symmetric. �

It follows from the previous corollary that the restriction of σ to a cyclic subgroup

is symmetric, i.e. given a 2-cocycle σ : G ˆ G ÝÑ F˚ and a cyclic subgroup H of G,

we have that σH : H ˆ H ÝÑ F˚ defined by σHpg, hq :“ σpg, hq for any g, h P H is a

symmetric 2-cocycle on H.

Remark 1.2.9 Let G “ H1 ˆH2 be a group, and F a field. Given a 2-cocycle σi on Hi,

i “ 1, 2, with values in F˚, it is easy to see that the map σ :“ σ1σ2 : GˆG ÝÑ F˚ defined

by

σpx, yq “ σppx1, x2q, py1, y2qq “ σ1px1, y1qσ2px2, y2q ,

for any x “ px1, x2q, y “ py1, y2q P G, is a 2-cocycle on G.
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1.2.2 Some results on G-graded algebras

Let F be a field, and G a group. Consider the group algebra FG (see Example

1.1.8). Observe that FG is an associative algebra with unity; if G is commutative (resp.

finite), then FG is a commutative (resp. finite dimensional) algebra. Also, FG has a

natural G-grading. Let us consider a more general situation.

Definition 1.2.10 Let G be a group, F a field, and σ : G ˆ G ÝÑ F˚ a 2-cocycle on G.

Consider the F-vector space

FσrGs “

#

ÿ

gPG

αgηg : αg P F, g P G

+

,

where tηgugPG are linearly independent over F. And we define in FσrGs the multiplication

which extends by linearity the product ηgηh “ σpg, hqηgh, g, h P G. The algebra FσrGs is

called a twisted group algebra.

Notice that by the equality in Definition 1.2.1 we can ensure that FσrGs is an

associative algebra. Furthermore, we have that FσrGs is G-graded with the natural grading

given by

A “ FσrGs “
à

gPG

Fηg ,

where Ag :“ spanFtηgu.

Example 1.2.11 If σ is the trivial 2-cocycle on G, it is easy to see that FσrGs “ FG.

Remark 1.2.12 Note that FσrGs is unitary, where the unity of FσrGs is given by σpe, eq´1ηe

where e P G is the neutral element of G, since σpe, eq “ σpe, gq “ σpg, eq for any g P G (by

Proposition 1.2.6).

Theorem 1.2.13 ([3], Theorem 2, or [13], Theorem 2.13) Let D be a finite dimen-

sional G-graded algebra over an algebraically closed field F. Then D is a graded division

algebra with support T Ď G iff D is isomorphic to the twisted group algebra FσrT s (with

its natural T -grading regarded as a G-grading) for some σ P Z2pT,F˚q, where T is a fi-

nite subgroup of G. Two twisted group algebras, Fσ1rH1s and Fσ2rH2s, are isomorphic as

G-graded algebras if and only if H1 “ H2 and rσ1s “ rσ2s.
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Let A be a G-graded algebra, and β : G ˆ G ÝÑ F˚ a 2-cocycle on G. We define

the β-commutator by

ra, bsβ “

«

ÿ

gPG

ag,
ÿ

hPG

bh

ff

β

“
ÿ

g,hPG

rag, bhsβ

if a, b P A, where rag, bhsβ :“ agbh ´ βpg, hqbhag, g, h P G. We say that A is β-

commutative if ra, bsβ “ 0 for any a, b P A. Obviously, if ra, bsβ “ 0 for any a, b P
Ť

gPG Ag, we have that A is β-commutative. When βpa, bq “ 1 for any a, b P G, we write

r , sβ “ r , s, and r , s is called commutator. Note that A is commutative iff ra, bs “ 0 for

any a, b P A. Observe that β-commutatively is a partial case of f-commutatively defined

in Definition 1.1.4.

Remark 1.2.14 Consider the algebra B “MnpFσrHsq of all nˆn matrices over FσrHs,

where H is a subgroup of a group G and σ P Z2pH,F˚q. Fix an arbitrary k-tuple ξ “

pg1, . . . , gkq P G
k of elements of G. Then the equalities degpEijηhq “ g´1

i hgj, for any

h P H and i, j P t1, . . . , nu, define a G-grading on B, i.e.

B “
à

gPG

Bg ,

where Bg “ spanFtEijηh P B : g “ g´1
i hgju. This G-grading is called canonical ele-

mentary grading corresponding to ξ.

Definition 1.2.15 Let A and Ã be two G-graded algebras and ψ : A Ñ Ã a graded

homomorphism. We say that ψ is a G-graded immersion (or G-immersion) from A

to Ã if ψ is injective. We denote a G-graded immersion from A to Ã by A
G

ãÑ Ã. And, we

write A
G

­ãÑ Ã when A can not be G-immersed in Ã.

Note that if ψ is a G-graded immersion from A to Ã, then there exists a G-graded subal-

gebra Â of Ã, namely Â “ impψq, such that Â and A are G-graded isomorphic. Therefore,

we can see A as a G-graded subalgebra of Ã or assume that Ã has a G-graded "copy" of

A. In this case, observe that SupppΓAq Ď SupppΓÃq.

Remark 1.2.16 Given a group G, consider a subgroup H of G, and a 2-cocycle σ P

Z2pH,F˚q. For any n ą 1 and ξ “ pg1, g2, . . . , gnq P Gn, consider the algebra B “
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MnpFσrHsq of n ˆ n matrices over FσrHs with the canonical elementary G-grading Γ

corresponding to ξ. For each g P SupppΓq, there exist i, j P t1, . . . , nu and h P H such that

0 ‰ Eijηh P Bg. Given g0 P ZGpHq, we have

g “ g´1
i hgj “ g´1

i pg
´1
0 g0qhgj “ pg

´1
i g´1

0 qpg0hqgj

“ pg0giq
´1
phg0qgj “ pg0giq

´1hpg0gjq .

Therefore, for any g P ZGpHq, in particular, for any g P G, when G is abelian, we have that

ξ “ pg1, g2, . . . , gnq and ξg “ pgg1, gg2, . . . , ggnq determine the same canonical elementary

G-gradings on B. Consequently, when g1 P ZGpHq or G is abelian, we can assume that

g1 “ e, the neutral element of G.

Remark 1.2.17 Under the assumptions of Remark 1.2.16, fix ξ “ pg1, g2, . . . , gnq. Take

α P Sn, where Sn is the symmetric group of order n, and consider the n-tuple ξα “

pgαp1q, gαp2q, . . . , gαpnqq P G
n. Consider now the algebra B̃ “MnpFσrHsq with the canonical

elementary G-grading corresponding to ξα. Assume that B “MnpFσrHsq is G-graded with

the canonical elementary grading corresponding to ξ. It not is difficult to show that B –G

B̃ (as G-graded algebras) (the graded isomorphism is given by ϕpEijηhq “ Eαpiqαpjqη̃h, for

any i, j P t1, . . . , nu and h P H).

Remark 1.2.18 Let G be a group andm ď n. Put B “MnpFσrHsq and B̃ “MmpFσ̃rHsq,

where σ, σ̃ P Z2pH,F˚q such that rσs “ rσ̃s. Fix an n-tuple ξ “ pg1, . . . , gnq P G
n, and con-

sider a canonical elementary G-grading Γ on B corresponding to ξ. Now, fixed α P Sm,

consider the m-tuple ξα “ pgαp1q, . . . , gαpmqq P Gm, and assume that Γ̃ is the canonical

elementary G-grading on B̃ corresponding to ξα. By Theorem 1.2.13 and Remark 1.2.17,

we can conclude that B̃ G
ãÑ B. Therefore, we can assume, without loss of generality, that

B̃ is a G-graded subalgebra of B.

To conclude this section, let us present the next two important results.

Theorem 1.2.19 (Theorem 3, [3]) Let A “
À

gPG Ag be a finite dimensional algebra,

over an algebraically closed field F that is graded by a group G. Suppose that either

charpFq “ 0 or charpFq is coprime with the order of each finite subgroup of G. Then A is a

graded simple algebra if and only if A is isomorphic to the tensor productMkpFqbFσrHs –

MkpFσrHsq, that is, if and only if A is a matrix algebra over the division graded algebra
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FσrHs, where H is a finite subgroup of G and σ P Z2pH,F˚q. The G-grading onMkpFσrHsq

is a canonical elementary grading corresponding to a k-tuple pg1, . . . , gkq P G
k.

Theorem 1.2.20 (Lemma 2, [45]) Let G be a finite abelian group, and F an alge-

braically closed field of characteristic zero. Any finite dimensional G-graded F-algebra

A is isomorphic as G-graded algebra to a G-graded F-algebra of the form

A1 “ pMk1pFσ1rH1sq ˆ ¨ ¨ ¨ ˆMkppFσprHpsqq ‘ J .

Here the Jacobson radical J “ JpAq of A is a graded ideal, and B “Mk1pFσ1rH1sq ˆ ¨ ¨ ¨ ˆ

MkppFσprHpsq (direct product of algebras) is the maximal graded semisimple subalgebra of

A1, p P NYt0u. The G-grading on Bl “MklpFσlrHlsq »MklpFqbF FσlrHls, the algebra of

nˆ n matrices over FσlrHls, where Hl is a subgroup G and σ P Z2pHl,F˚q is a 2-cocycle,

is the canonical elementary grading corresponding to some kl-tuple pθl1 , . . . , θlkl q P G
kl.

1.3 Properties of graded A-bimodules

In this section, unless otherwise stated, we denote by G a group (not necessarily

finite), by A a G-graded unitary algebra and by M a G-graded unitary A-bimodule.

1.3.1 Posets and chain conditions

Consider a nonempty set P together with a binary relation "ď" that satisfies the

following axioms: for any a, b, c P P ,

i) a ď a;

ii) if a ď b and b ď c, then a ď c;

iii) if a ď b and b ď a, then a “ b.

The pair pP,ďq is called a partially ordered set (also called poset). It is important to

say that given a, b P P , we do not necessarily have a ď b or b ď a. For more details, see

[20, 26].

Example 1.3.1 Let X be a nonempty set and PpXq “ tβ : β is a subset of Xu. We

have that pPpXq,Ďq is a poset. We say that X has the ordering by inclusion.
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Example 1.3.2 Let G be a group and F a field. For each subgroup H ď G, consider

H2pH,F˚q “ trσs : σ P Z2pG,F˚qu, where rσs “ rρs iff there is a 2-coboundary θ P

B2pH,F˚q such that σ “ ρθ (see §1.2.1). Define H “ tpH, rσsq : H ď G, rσs P H2pH,F˚qu.

In H, define the relation "ĺ" by the following: given two pairs pH1, rσ1sq and pH2, rσ2sq

in H, we have pH1, rσ1sq ĺ pH2, rσ2sq iff H1 Ď H2 and rσ1sph, gq “ rσ2sph, gq for any

h, g P H1. It is not difficult to see that ĺ is a partial order relation of the elements of H.

Therefore, pH,ĺq is a poset. Hence, we say that G is ordering by ĺ.

Particularly, pH, rσsq “ pH̃, rσ̃sq iff pH, rσsq ĺ pH̃, rσ̃sq and pH̃, rσ̃sq ĺ pH, rσsq,

i.e. H “ H̃ and rσs “ rσ̃s.

Let X be a poset (possibly by inclusion). If there is some element a P X such that

a ď x for any x P X, then we say that X has a least element. Similarly, if there is

some element b P X such that x ď b for any x P X, then we say that X has a greatest

element. Notice that the least and the greatest elements, when they exist, are unique.

Now, let us define minimal and maximal elements of a poset. Let X be a poset

(possibly by inclusion). An element a P X is called a minimal element (resp. a

maximal element) if x ď a (resp. a ď x) in X implies x “ a (resp. a “ x). Note that

minimal and maximal elements are not necessarily unique. For more details, see [20].

Consider a subset X 1 of a poset X. An element a P X is called a lower bound

(resp. upper bound) of X 1 in X if a ď x1 (resp. x1 ď a) for any x1 P X 1. Observe that

theleast (resp. greatest) element of X is a lower bound ( resp. an upper bound) of X 1 in

X.

Given a poset X, a chain in X is a family X 1 of elements of X such that a ď b or

b ď a for any a, b P X 1.

Lemma 1.3.3 (Zorn’s Lemma, [20, 25]) If X is a partially ordered set such that every

chain in X has an upper bound in X, then X contains a maximal element.

Given a poset X, a chain ξ in X is called ascending chain if it can be written as

ξ “ tx1 ď x2 ď x3 ď x4 ď ¨ ¨ ¨ u. Analogously, a chain ζ in X is called descending chain

if it can be written as ζ “ ty1 ě y2 ě y3 ě y4 ě ¨ ¨ ¨ u, where a ě b means b ď a.

Definition 1.3.4 Let X be a partially ordered set. If all ascending (resp. descending)

chain in X contains the greatest (resp. the least) element, then we say that X satisfies

De França, A.M.D. June 28, 2019 Mat – UnB



34 1. Graded Algebras, Graded Bimodules and Graded Identities

the ascending chain condition (resp. descending chain condition). In this case,

we say also that X satisfies the ACC (resp. DCC).

Equivalently, a partially ordered set pP,ďq satisfies ACC (resp. DCC) iff every

non-empty family S of P contains a maximal (resp. a minimal) element in the family,

that is, an element Q P S such that if N P S and Q ď N (resp. N ď Q), then N “ Q.

1.3.2 Group Characters

In this subsection, let us present some definitions and properties of Group Char-

acters. Here, let us denote by G an arbitrary finite multiplicative group with identity

element 1, F a field, and GLnpFq the group of invertible nˆ n matrices over F.

Definition 1.3.5 A matrix representation of G over F of degree n is a homomorphism

T : g ÞÑ T pgq of G into GLnpFq. Two matrix representations T and T 1 are equivalent if

they have the same degree, say n, and if there exists a fixed S in GLnpFq such that

T 1pgq “ ST pgqS´1 ,

for any g P G.

To simply notation, we say only "a representation of G of degree n" to mean "a

matrix representation of G of degree n".

Let T : GÑ GLnpFq be a representation of a group G. We say that T is reducible

if there exist representations T1 : GÑ GLn1pFq, T2 : GÑ GLn2pFq of G, with n “ n1`n2,

such that

T pgq and

¨

˝

T1pgq V pgq

0 T2pgq

˛

‚ are equivalent ,

for any g P G, where V pgq is a matrix over F of order n1 ˆ n2 for each g P G; if no such

reduction exists, then T is an irreducible representation. We say that T is completely

reducible if for any g P G, the matrix T pgq is equivalent to matrix .

¨

˚

˚

˚

˝

T1pgq 0
. . .

0 Tqpgq

˛

‹

‹

‹

‚

,
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for some irreducible representations Ti : G Ñ GLnipFq of G, with n “ n1 ` ¨ ¨ ¨ ` nq. For

more details, see [9, 27, 41].

Theorem 1.3.6 (Maschke’s Theorem, (10.8), p. 41, [9]) Let F be a field, G a finite

group, and T : GÑ GLnpFq be a representation of G. Assume that charpFq - |G|. Then T

is completely reducible.

By the previous theorem, given a representation T of a finite group G, when

charpFq - |G|, there exist irreducible representations T1, . . . , Tn (not necessarily non-

equivalent) of G such that T “ T1 ` ¨ ¨ ¨ ` Tn.

Theorem 1.3.7 ((27.22), p. 187, [9]) Let G be a finite group, and F an algebraically

closed field such that charpFq - |G|. Then the number of non-isomorphic irreducible repre-

sentations of G is the same as the number of conjugate classes of G.

Observe that if G is a abelian finite group, then the number of conjugate class of

G is equal to |G|.

Consider the n ˆ n matrices algebra MnpFq. The trace function is the linear

transformation tr : MnpFq Ñ F that satisfies trppaijqi,jq “
řn
i“1 aii for any paijqi,j PMnpFq,

i.e. the trace of A PMnpFq is the sum of the elements on the main diagonal of A.

Let T : G Ñ GLnpFq be a representation of G, and T pgq “ papgqij qi,j P GLnpFq for

any g P G. For each g P G, the trace of T pgq is defined by trpT pgqq :“ trppa
pgq
ij qi,jq. Observe

that the degree of T is equal to trpT p1qq “
řn
i“1 1F “ n.

Definition 1.3.8 Let G be a group, and T : G Ñ GLnpFq a representation of G. The

character of T is a map ζ : GÑ F˚ defined by ζpgq “ trpT pgqq for any g P G.

Proposition 1.3.9 ((30.14), p. 214, [9]) Let T and T1 be two representations of G

over F with characters ζ and ζ1 of T and T1, respectively. If charpFq “ 0, then T and T1

are equivalent iff ζ “ ζ1.

Corollary 1.3.10 Under the same hypotheses of Theorem 1.3.6, suppose that charpFq “

0. Then the number of distinct irreducible characters of G is finite.

Proof: It is immediate of Theorem 1.3.6 and Proposition 1.3.9. �

The next three propositions are known as orthogonality relations.
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Proposition 1.3.11 ((31.8), p. 219, [9]) Let F be an algebraically closed field such

that charpFq - |G|, G a finite group, and ζ and µ two non-equivalent characters of G.

Then ζ is irreducible iff
ÿ

gPG

ζpgqµpg´1
q “ 0 .

Proposition 1.3.12 ((31.14), p. 221, [9]) Let F be an algebraically closed field such

that charpFq - |G|, G a finite group, and ζ1, . . . , ζs all the distinct characters of G. Then

s
ÿ

i“1

pζip1qq
2
“ |G| .

Proposition 1.3.13 ((31.15), p. 221, [9]) Let F be an algebraically closed field of char-

acteristic zero, G a finite group, and ζ a character of G. Then ζ is irreducible iff

ÿ

gPG

ζpgqζpg´1
q “ |G| .

The next result is a consequence of Theorem 1.3.7 and Proposition 1.3.12.

Theorem 1.3.14 (Theorem 9, [41]) Let G be a finite group, and F an algebraically

closed field such that charpFq - |G|. The following properties are equivalent:

i) G is abelian;

ii) all the irreducible representations of G have degree 1;

iii) all the irreducible characters of G have degree 1.

A consequence of previous theorem is that if G is finite abelian, then any irreducible

character of G is a homomorphism of groups, i.e. if ζ : GÑ F is an irreducible character

of G, then ζpghq “ ζpgqζphq for any g, h P G.

The proposition below is a fact well-known of theory of group character.

Proposition 1.3.15 (Exercise 3.3, p. 26, [41]) Let G be a finite group, and F an al-

gebraically closed field such that charpFq “ 0. Let Ĝ be the set of irreducible characters of

G. We have that the groups G and Ĝ are isomorphic.

The group Ĝ is called the dual of the group G.
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1.3.3 Some results on graded A-bimodules

In this subsection, (graded) bimodules are (graded) A-bimodules.

Definition 1.3.16 Let G be a group, A a G-graded algebra and M a G-graded A-bimodule.

We say that M is G-Noetherian (resp. G-Artinian) if it satisfies the ascending (resp.

descending) chain condition for graded subbimodules.

Equivalently, a G-graded A-bimoduleM is G-Noetherian (resp. G-Artinian) iff every

non-empty family S of graded subbimodules of M contains a maximal (resp. a minimal)

graded subbimodule in the family, that is, a graded subbimodule P P S such that if N P S

and N Ą P (resp. N Ă P ), then N “ P . In particular, any G-Noetherian (resp. G-

Artinian) not irreducible G-graded A-bimodule has some maximal (resp. minimal) proper

graded subbimodule. An example of a bimodule that satisfies both chain conditions is

given by a finite dimensional G-graded A-bimodule.

Proposition 1.3.17 Let G be a group, A a G-graded algebra and M a G-graded A-

bimodule. Let N be a graded subbimodule of M. Then M is G-Artinian (resp. G-

Noetherian) iff N and M{N are G-Artinian (resp. G-Noetherian).

Proof: Suppose M is G-Artinian (resp. G-Noetherian). Let N be a G-graded subbimodule

of M. Since each G-graded subbimodule of N is still a G-graded subbimodule of M, we

conclude that N is a G-Artinian (resp. G-Noetherian). Moreover, by Theorem 1.1.25,

each G-graded subbimodule of M{N is of the form W{N for some G-graded subbimodule

W such that N Ă W Ă M. Therefore, M{N is G-Artinian (resp. G-Noetherian).

Conversely, suppose N and M{N are G-Artinian A-bimodules, and consider a de-

scending chain of G-graded subbimodules of M

M1 Ě M2 Ě M3 Ě ¨ ¨ ¨ . (1.2)

Now, consider the chain of G-graded submodules of N given by

pM1 X Nq Ě pM2 X Nq Ě pM3 X Nq Ě ¨ ¨ ¨ . (1.3)

Since N is G-Artinian, it follows that there exists i0 P N such that Mi0 X N “ Mj X N

for any j ě i0. Thus, by (1.3), now consider the chain of G-graded subbimodules of M{N
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given bys
Mi0

Mi0 X N
Ě

Mi0`1

Mi0`1 X N
Ě

Mi0`2

Mi0`2 X N
Ě ¨ ¨ ¨ , (1.4)

Since M{N is G-Artinian, we conclude from (1.4) that there exists j0 P N, j0 ě i0, such

that
Mj0

Mi0 X N
“

Mj0

Mj0 X N
“

Ml

Ml X N
“

Ml

Mi0 X N
(1.5)

for any l ě j0 ě i0. Hence, again by Theorem 1.1.25, we can conclude from (1.5) that

Mj0 “ Ml for any l ě j0. Therefore, the chain in (1.2) stabilizes. Thus M is a G-Artinian

A-bimodule.

Similarly to first part, we can show that if N and M{N are G-Noetherian, then M

is G-Noetherian. �

Using the ideas of the previous proposition and Theorem 1.1.25, we can build a de-

scending chain or an ascending chain of graded subbimodules with a suitable property. In

fact, consider a G-graded A-bimodule M. Suppose M is G-Noetherian (resp. G-Artinian).

By previous proposition, given a graded subbimodule N of M, we have that N and M{N

are G-Noetherian (resp. G-Artinian). If M is not graded irreducible, then there exists

a G-graded maximal (resp. irreducible) subbimodule N1 in M. If N1 (resp. M{N1) is

irreducible, then we have M “ N0 Ľ N1 Ľ N2 “ t0u (resp. t0u “ N0 Ĺ N1 Ĺ N2 “ M)

such that Ni`1 is maximal in Ni (resp. Ni`1{Ni is irreducible), for i “ 0, 1. Other-

wise, suppose that N1 (resp. M{N1) is not irreducible, and hence, there exists a nonzero

graded subbimodule N2 of M such that N2 Ĺ N1 is maximal (resp. N1 Ĺ N2 and N2{N1

is irreducible). So, we obtain the chain M “ N0 Ľ N1 Ľ N2 Ľ N3 “ t0u (resp.

t0u “ N0 Ĺ N1 Ĺ N2 Ĺ N3 “ M). If N2 (resp. M{N2) is irreducible, it follows that

Ni`1 is maximal in Ni (resp. Ni`1{Ni is irreducible), for i “ 0, 1, 2. Otherwise, using

this process inductively we must obtain a descending chain (resp. an ascending chain) of

graded subbimodules

M “ N0 Ľ N1 Ľ N2 Ľ ¨ ¨ ¨ Ľ t0u presp. t0u “ N0 Ĺ N1 Ĺ N2 Ĺ ¨ ¨ ¨ Ĺ Mq , (1.6)

such that Ni`1 is maximal in Ni (resp. Ni`1{Ni is irreducible), for i “ 0, 1, 2, . . . . Notice

that we use Theorem 1.1.25 to ensure that if M{Ni is not irreducible, then there exists a

graded subbimodule Ni`1 Ľ Ni such that Ni`1{Ni is irreducible.
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Now, again by Proposition 1.3.17, it is easy to show that the finite direct sum

(internal or external) of G-Noetherian (resp. G-Artinian) A-bimodules is a G-Noetherian

(resp. G-Artinian) A-bimodule.

Notice that given a homogeneous homomorphism of graded A-bimodules ϕ : M1 Ñ

M2, if M1 is G-Noetherian (resp. G-Artinian), then impϕq and kerpϕq are G-Noetherian

(resp. G-Artinian) left A-subbimodules of M2 and M1, respectively.

Recall any G-graded A-bimodule can be generated by homogeneous elements.

Proposition 1.3.18 Let G be a group, A a finite dimensional unitary algebra with a

G-grading, and M a G-graded unitary A-bimodule. If M is finitely generated as an A-

bimodule, then M is G-Noetherian and G-Artinian.

Proof: Let m1, . . . ,mn P M be homogeneous elements such that

M “

#

n
ÿ

k“1

rkmksk : ri, si P A

+

“

n
ÿ

k“1

AmkA .

Since A is finite dimensional, we can take homogeneous elements a1, a2, . . . , am P A

such that A “ spanFta1, a2, . . . , amu. Hence, we have that

M “

#

n
ÿ

k“1

˜

m
ÿ

i,j“1

λk,i,jaimkaj

¸

: λk,i,j P F

+

“ spanFtaimkaj : i, j “ 1, . . . ,m, k “ 1, . . . , nu .

Hence, the aimkaj’s are homogeneous elements which generate M as an F-vector space.

Observe that dimFpMq ď #taimkaj : i, j “ 1, . . . ,m, k “ 1, . . . , nu ď m2n, and

thus M is finite dimensional. Therefore, M satisfies both chain conditions for graded

subbimodules. �

It is important to note that Proposition 1.3.18 also is true for G-graded non-unitary

A-bimodules. The proof of this is similar to the proof of Proposition 1.3.18.

Corollary 1.3.19 Let G be a group, F a field, B “ MnpFσrHsq the algebra of n ˆ n

matrices over FσrHs with a canonical elementary G-grading, where H is a finite subgroup

of G and σ P Z2pH,F˚q. Any G-graded B-bimodule M which is finitely generated (as a

B-bimodule) is G-Noetherian and G-Artinian.
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Proof: We have that dimpBq “ n2|H| ă 8. From this, by Proposition 1.3.18, the result

is immediate. �

In what follows, let us exhibit elements in a unitary G-graded B-bimodule M,

where B “ MnpFσrHsq, whose product with (homogeneous) elements of B is similar to

the product in B.

Consider a unitary G-graded B-bimodule M, where G is a group, H is a finite

subgroup of G, σ P Z2pH,F˚q, and B “ MnpFσrHsq with the canonical elementary G-

grading defined bay an n-tuple pg1, . . . , gnq P G
n. Recall that B is unitary with unity 1B “

σpe, eq´1
řn
i“1Eiiηe, and the set tEijηg P B : i, j “ 1, dots, n, h P Hu is a homogeneous

basis of B. Fixed a nonzero homogeneous element w0 P M. Since M is unitary, it follows

that ηeEi0i0w0Ej0j0ηe ‰ 0 for some i0, j0 P t1, . . . , nu, and hence, ηgEri0w0Ej0sηh ‰ 0

for any r, s P t1, . . . , nu and g, h P H. Observe that all elements ηgEri0w0Ej0sηh’s are

homogeneous. Without lost of the generality, we can consider the element ηeE11w0E11ηe ‰

0 instead of w0. Given any g P H and i, j P t1, . . . , nu, define the element

mg
ij :“

ÿ

hPH

σph, h´1gq´1Ei1ηhw0E1jηh´1g ,

where each ηgEr1w0E1sηh ‰ 0 for any r, s P t1, . . . , nu and g, h P H.

When mg
ij ‰ 0 for some g P H and i, j P t1, . . . , nu, observe that mg

ij has behaviour

similar to Eijηg in relation to the product by elements of B, i.e. for any r, s P t1, . . . , nu

and h P H, we have

Ersηhm
g
ij “ δsiσph, gqm

hg
rj , and

mg
ijErsηh “ δjrσpg, hqm

gh
is ,

(1.7)

where δij “

$

&

%

0, if i ‰ j

1, if i “ j
is the Kronecker delta. In fact, take any t P H and r, s P

t1, . . . , nu. It is obvious that Ersηhmg
ij “ 0 when s ‰ i, and mg

ijErsηh “ 0 when r ‰ j.
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Now, if s “ i, we have

Eriηtm
g
ij “ Eriηt

˜

ÿ

hPH

σph, h´1gq´1Ei1ηhw0E1jηh´1g

¸

“
ÿ

hPH

σpt, hqσph, h´1gq´1Er1ηthw0E1jηh´1g

“
ÿ

hPH

σpt, hqσph, pthq´1tgq´1Er1ηthw0E1jηpthq´1tg

“ σpt, gq

˜

ÿ

hPH

σpth, pthq´1tgq´1Er1ηthw0E1jηpthq´1tg

¸

“ σpt, gq mtg
rj ,

since σpt, hqσpth, pthq´1tgq “ σpt, gqσph, pthq´1tgq for any h, g, t P H (see Definition 1.2.1).

And if r “ j, we have

mg
ijEjsηt “

˜

ÿ

hPH

σph, h´1gq´1Ei1ηhw0E1jηh´1g

¸

Ejsηt

“
ÿ

hPH

σph´1g, tqσph, h´1gq´1Ei1ηhw0E1sηh´1gt

“ σpg, tq

˜

ÿ

hPH

σph, h´1gtq´1Ei1ηhw0E1sηh´1gt

¸

“ σpg, tq mgt
is ,

since σph, h´1gqσpg, tq “ σph, h´1gtqσph´1g, tq for any h, g, t P H (see Definition 1.2.1).

Another peculiarity of mg
ij’s is that if mg

ij ‰ 0 for some i, j P t1, . . . , nu and

g P H, then mhg
lj “ σph, gq´1Eliηhm

g
ij ‰ 0, and mgh

il “ σpg, hq´1mg
ijEjlηh ‰ 0 for

any h P H and l P t1, . . . , nu, since mg
ij “ pσpe, eq´1σph´1, hq´1Eilηh´1Eliηhqm

g
ij “

pσpe, eq´1σph´1, hq´1Eilηh´1qpEliηhm
g
ijq, and m

g
ij “ mg

ijpσpe, eq
´1σph, h´1qEjlηhEljηh´1q “

pmg
ijEjlηhqpσpe, eq

´1σph, h´1qEljηh´1q. From this, we can deduce that mg
ij ‰ 0 for some

i, j P t1, . . . , nu and g P H iff mh
rs ‰ 0 for any r, s P t1, . . . , nu and h P H.

Besides that, it is easy to prove that the element i :“ σpe, eq´1
řn
i“1m

e
ii satisfies

bi “ ib for any b P B.

Notice that when either degpw0q P ZpGq or H Ă ZpGq, we have mg
ij is a ho-

mogeneous element of M for any g P H, and i, j P t1, . . . , nu. Particularly, when

degpw0q P ZpGq, it follows that mg
ij P Mg´1

i ggjdegpw0q
“ Mdegpw0qg

´1
i ggj

for any g P H,

i, j “ 1, . . . , n.
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By these observations, it follows that the linear transformation ψ : BÑ M which

extends the map Eijηg ÞÑ mg
ij is a homogeneous homomorphism of B-bimodules of degree

degpw0q when degpw0q P ZpGq.

Remark 1.3.20 Let G be a group, H a finite abelian subgroup of G, F a field, σ P

Z2pH,F˚q, and B “ MnpFσrHsq with a canonical elementary G-grading. Let M be a

unitary G-graded B-bimodule. Fix a nonzero homogeneous element m0 P M, and define

mg
ij “

ÿ

hPH

σph, h´1gq´1Ei1ηhm0E1jηh´1g ,

for any g P H, and i, j “ 1, . . . , n. Recall that Ersηhmg
ij “ δsiσph, gqm

hg
rj and mg

ijErsηh “

δjrσpg, hqm
gh
is , for any h, g P H and i, j, r, s P t1 . . . , nu, where δij is the Kronecker delta.

Suppose that mg
ij ‰ 0 for some g P H and i, j P t1, . . . , nu, and thus, mh

rs ‰ 0 for

any h P H and r, s P t1, . . . , nu. Consider N “ spanFtm
g
ij : g P H, i, j “ 1, . . . , nu. If

degpm0q P ZpGq, then we have that N is an irreducible G-graded B-subbimodule of M.

Indeed, consider the linear transformation ψ : B ÝÑ N which extends the map

Eijηg ÞÑ mg
ij. By (1.7), it follows that ψ is a homomorphism of B-bimodules. Notice that

ψ is surjective, and it is homogeneous of degree degpm0q. Since B is an irreducible graded

B-bimodule (and also a G-graded simple algebra), it follows that ψ is injective (kerpψq is a

graded subbimodule of B). Thus, ψ is bijective. Therefore, N is an irreducible graded B-

bimodule, and ψ is a homogeneous isomorphism of G-graded B-bimodules. In particular,

if M is irreducible graded, then M “ N .

In the above remark, it is important to comment that not always mg
ij ‰ 0 for some

g P H and i, j P t1, . . . , nu. Let us present below other cases of irreducible G-graded

B-bimodules (possibly when mg
ij “ 0 for any g P H and i, j P t1, . . . , nu), which are not

isomorphic to B as graded B-bimodules.

Remark 1.3.21 Let G be a finite abelian group, F an algebraically closed field such that

charpFq “ 0, and B “ FσrGs a twisted group algebra. Let M be a unitary G-graded B-

bimodule. Let χ1, . . . , χs be all distinct irreducible characters of G (see the last subsection).

Since G and Ĝ “ tχ1, . . . , χsu are isomorphic groups (see Proposition 1.3.15), we have
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that s “ |G|. Fix a nonzero homogeneous element m0 P M, and define

wχi “
ÿ

hPG

σph, h´1
q
´1χiphqηhm0ηh´1 ,

for all i P t1, . . . , su. Let us show that Bwχi “ wχiB and Bm0B “
řs
i“1 Bwχi. Observe

that each BwχiB is a graded subbimodule of M, since m0 is a homogeneous element, and

G is abelian.

Take any ηt P B, and i “ 1, . . . , s. We have that

ηtwχi “ ηt

˜

ÿ

hPG

σph, h´1
q
´1χiphqηhm0ηh´1

¸

“
ÿ

hPG

σpt, hqσph, h´1
q
´1χiphqηthw0ηh´1

“
ÿ

hPG

σpt, hqσph, h´1
q
´1σppthq´1, tq´1χiphqηthw0ηpthq´1ηt

“

˜

ÿ

hPG

σppthq´1, thq´1χiphqηthw0ηpthq´1

¸

ηt “ χiptq
´1wχiηt ,

since σpt, hqσppthq´1, thq´1 “ σph, h´1qσppthq´1, tq for any h, t P G (see Definition 1.2.1),

and χiphtq “ χiphqχiptq for any h, t P G (see Theorem 1.3.14). From this, it follows that

Bwχi “ wχiB for alli “ 1, . . . , s.

Now, write G “ tg1, . . . , gsu. Since the matrix

rχs :“

¨

˚

˚

˚

˚

˚

˚

˝

χ1pg1q χ1pg2q ¨ ¨ ¨ χ1pgsq

χ2pg1q χ2pg2q ¨ ¨ ¨ χ2pgsq
...

... . . . ...

χspg1q χspg2q ¨ ¨ ¨ χspgsq

˛

‹

‹

‹

‹

‹

‹

‚

is invertible, with inverse matrix given by

rχs´1
“ |G|´1

¨

˚

˚

˚

˚

˚

˚

˝

χ1pg
´1
1 q χ2pg

´1
2 q ¨ ¨ ¨ χspg

´1
s q

χ1pg
´1
1 q χ2pg

´1
2 q ¨ ¨ ¨ χspg

´1
s q

...
... . . . ...

χ1pg
´1
1 q χ2pg

´1
2 q ¨ ¨ ¨ χspg

´1
s q

˛

‹

‹

‹

‹

‹

‹

‚

(this is a consequence of Propositions 1.3.11 and 1.3.13), we have that ηhm0ηh´1 P
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řs
i“1 Bwχi for any h P G, since

¨

˚

˚

˚

˚

˚

˚

˝

wχ1

wχ2

...

wχs

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

χ1pg1q χ1pg2q ¨ ¨ ¨ χ1pgsq

χ2pg1q χ2pg2q ¨ ¨ ¨ χ2pgsq
...

... . . . ...

χspg1q χspg2q ¨ ¨ ¨ χspgsq

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

σpg1, g
´1
1 q

´1ηg1m0ηg´1
1

σpg2, g
´1
2 q

´1ηg2m0ηg´1
2

...

σpgs, g
´1
s q

´1ηgsm0ηg´1
s

˛

‹

‹

‹

‹

‹

‹

‚

.

Hence, we can conclude that ηgm0ηh P
řs
i“1 Bwχi for any g, h P G, and so Bm0B “

řs
i“1 Bwχi.

Observe that if M is irreducible graded, then we have that M “ Bwχ for some

irreducible character of G, since each Bwχi is a graded subbimodule of M.

Below, let us show that, given a simple G-graded finite dimensional algebra A, any

unitary G-graded A-bimodule M which satisfies both chain conditions can be written as

a finite direct sum of the form
À

w Aw of irreducible G-graded A-subbimodules Aw such

that wA “ Aw.

Proposition 1.3.22 Let G be a group, H a finite abelian subgroup of G, and F an alge-

braically closed field such that charpFq “ 0. Consider B “ MnpFσrHsq with a canonical

elementary G-grading, where σ P Z2pH,F˚q, and a unitary G-graded B-bimodule M. If M

is irreducible, then there exits a homogeneous element w P M such that Bw “ wB and

M “ Bw.

Proof: If n “ 1, then the result follows of Remark 1.3.21.

Suppose that n ą 1. Let χ1, . . . , χs be all distinct irreducible characters of H,

where H – Ĥ “ tχ1, . . . , χsu. Fix a nonzero homogeneous element m0 P M, and define

ŵχi “
s
ÿ

i“1

Ei1ηewχiE1iηe

for all i “ 1, . . . , s, where wχi ’s was defined in Remark 1.3.21. It is not difficult to see that

Epqηgŵχi “ χiptq
´1ŵχiEpqηg for any g P H, p, q, i P t1, . . . , su, and hence, Bŵχi “ ŵχiB,

for all i “ 1, . . . , s.

Similarly to Remark 1.3.21, we deduce that M “ Bm0B “
řs
i“1 Bŵχi . Since M

is a irreducible G-graded B-bimodule, we conclude that M “ Bwχ for some irreducible

character χ of H. �
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We can rewrite the previous proposition as follows.

Corollary 1.3.23 Let G be a group, H a finite abelian subgroup of G, F an algebraically

closed field such that charpFq “ 0, and B “ MnpFσrHsq with a canonical elementary G-

grading defined by an n-tuple pg1, . . . , gnq P G
n. Let M be a unitary G-graded B-bimodule.

If M is irreducible graded, then there exists a homogeneous element m0 P M, and a map

χ : H Ñ F˚ such that the element defined as

ŵχ “
n
ÿ

i“1

˜

ÿ

hPH

χphqσph, h´1
q
´1ηhEi1m0E1iηh´1

¸

,

for all i, j P t1, . . . , nu, satisfies ŵχEijηg “ χpgq´1Eijηgŵχ, and M “ Bŵχ.

Proof: It is immediate of the proof of Proposition 1.3.22, and of Remark 1.3.21. �

Observe that the element ŵχ in Corollary 1.3.23 is homogeneous, and satisfies

Bŵχ “ ŵχB. Recall that χ is an irreducible character of H.

Corollary 1.3.24 Let F be an algebraically closed field with charpFq “ 0, G a abelian

group, and A a finite dimensional algebra over F with a G-grading. If A is graded sim-

ple, then any irreducible G-graded A-bimodule M is isomorphic to Aw as a G-graded A-

bimodule, for some homogeneous element w P M satisfying Aw “ wA and M “ Aw.

Proof: By Theorem 1.2.19, we have that A –G MnpFσrHsq for some finite subgroup H

of G, and σ P Z2pH,F˚q, and MnpFσrHsq has a canonical elementary G-grading. Hence,

we have the same conditions of Proposition 1.3.22. Therefore, the result follows. �

Proposition 1.3.25 Let F be an algebraically closed field with charpFq “ 0, G a group,

H a finite abelian subgroup of G, σ P Z2pH,F˚q, and B “ MnpFσrHsq with a canoni-

cal elementary G-grading. If M is a G-graded unitary B-bimodule satisfying both chain

conditions for G-graded B-subbimodules, then M can be written as a finite direct sum

of irreducible G-graded B-subbimodules Bw, w P M, such that wB “ Bw. Moreover,

wb “ γwpbqwb for any b P B, γwpbq P F.

Proof: Let us denote by β “ tEijηh : i, j “ 1, . . . , n, h P Hu the canonical homogeneous

basis ofB. SinceM satisfies the descending chain condition for G-gradedB-subbimodules,
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we can build an ascending chain as in (1.6). From this, consider a chain of G-graded B-

subbimodules of M given as follows:

t0u “ M0 Ď M1 Ď M2 Ď ¨ ¨ ¨ (1.8)

where Mi`1{Mi is an irreducible G-graded B-bimodule for each i “ 0, 1, 2, . . . . On the

other hand, since M is G-Noetherian, it follows that there is n P N such that Mn´1 Ĺ M

is maximal in M “ Mn. Hence, we obtain from (1.8) the following finite sequence

t0u “ M0 Ĺ M1 Ĺ ¨ ¨ ¨ Ĺ Mn´1 Ĺ Mn “ M , (1.9)

where Mi’s are G-graded B-subbimodules of M such that Mi`1{Mi is an irreducible G-

graded B-bimodule for i “ 0, 1, . . . , n´ 1.

Let us show by induction on n that there exist homogeneous elements w1, . . . , wn P

M such that M “
Àn

i“1 Bwi with bwi “ γipbqwib ‰ 0 for any b P β, where γipbq P F, for

all i “ 1, . . . , n and b P β.

Firstly, suppose n “ 1. Hence, M “ M1 with M{M0 –G M irreducible. It follows

of Corollary 1.3.23 that there exists a nonzero homogeneous element w1 P M1 such that

w1b “ γ1pbqbw1 ‰ 0 for any b P β and M1 “ Bw1, where γ1pbq P F for any b P β.

Now, suppose that the result is valid for all d ě 1, i.e. there exist nonzero ho-

mogeneous elements w1 P M1 ´ M0, w2 P M2 ´ M1, . . . , wd P Md ´ Md´1 such that

wib “ γipbqbwi ‰ 0 for any b P β and i “ 1, . . . , d (γipbq P F for any b P β and i “ 1, . . . , n),

satisfying

Md “ Bw1 ‘Bw2 ‘ ¨ ¨ ¨ ‘Bwd ,

where each Bwi is irreducible graded. Notice that Md`1 “ Md `BwB (quotient vector

space) for any w P Md`1 ´Md. Since Md`1{Md is irreducible graded, by Corollary 1.3.23,

there exists a nonzero homogeneous element w0 P Md`1 ´Md such that wd`1 defined by

wd`1 “

n
ÿ

i“1

˜

ÿ

hPH

χphqσph, h´1
q
´1ηhEi1w0E1iηh´1

¸

‰ 0

satisfies Md`1{Md “ Bpwd`1 `Mdq, and bpwd`1 `Mdq “ γd`1pbqpwd`1 `Mdqb ‰ 0 `Md

for any b P β, where γd`1pbq P F for any b P β. It is immediate of the proof of Proposition

1.3.22 that Eijηhwd`1 “ γd`1pbqwd`1Eijηh R Md for any i, j P t1, . . . , nu and h P H.
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Hence, we have that Bwd`1B “ Bwd`1 “ wd`1B. Consequently, it follows that Md`1 “

Md ‘Bwd`1, since Bwd`1 XMd “ t0u. Let us prove that Md`1{Md –G Bwd`1. In fact,

by Isomorphisms Theorem (see Theorem 1.1.24), we have that

Md`1

Md

“
Md ‘Bwd`1

Md

–G
Bwd`1

Bwd`1 XMd

“
Bwd`1

t0u
–G Bwd`1 ,

as G-graded B-bimodules. Therefore, we prove that Bwd`1 is an irreducible G-graded

B-subbimodule of M such that wd`1b “ γd`1pbqbwd`1 for any b P β (γd`1pbq P F). Hence,

Md`1 “ Md ‘Bwd`1 “ Bw1 ‘ ¨ ¨ ¨ ‘Bwd ‘Bwd`1,

where each Bwi is irreducible graded with bwi “ γipbqwib ‰ 0 for any b P β, and i “

1, . . . , d ` 1, where γipbq P F, for any b P β. Furthermore, by induction, the result is

proved. �

By Corollary 1.3.19 and Proposition 1.3.25, it follows that if M is a unitary G-

graded B-bimodule, where G is a group, F is an algebraically closed field, H a finite

abelian subgroup of G such that charpFq “ 0, and B “ MnpFσrHsq, then M is finitely

generated iff M satisfy both chain conditions for graded subbimodules. More general, we

have have the following corollary.

Corollary 1.3.26 Let G be an abelian group, F an algebraically closed field such that

charpFq “ 0, A a finite dimensional G-graded F-algebra, and M a G-graded A-bimodule.

Suppose that A is graded simple, and M is a G-graded unitary A-bimodule. Then M is

G-Noetherian and G-Artinian iff M is finitely generated.

Proof: By Theorem 1.2.19, without loss of generality we can assume that A “MnpFσrHsq

with a canonical elementary G-grading, where H is a finite abelian subgroup of G and

σ P Z2pH,F˚q. The result follows from the previous proposition.

By Corollary 1.3.19 and Proposition 1.3.25, it follows that M is finitely generated

iff M satisfy both chain conditions for graded subbimodules. �

Corollary 1.3.27 Let F be a algebraically closed field, G an abelian group and A a finite

dimensional algebra over F with a G-grading. Suppose that charpFq “ 0, and A is graded
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simple. If M is a G-graded unitary A-bimodule satisfying both chain conditions for G-

graded A-subbimodules, then there exist nonzero homogeneous elements w1, . . . , wn P M

such that

M “ Aw1 ‘ ¨ ¨ ¨ ‘ Awn

where wiA “ Awi ‰ 0 for all i “ 1, . . . , n, and Awi is irreducible.

Proof: By Theorem 1.2.19, we have that A –G MnpFσrHsq for some finite subgroup H

of G and σ P Z2pH,F˚q, and MnpFσrHsq with a canonical elementary G-grading. Hence,

we have the same conditions of Proposition 1.3.25. Therefore, the result follows. �

1.4 Some results on Graded Polynomial Identities

In this section, we present some definitions concerning graded polynomial identities

as well as some results about their properties. Also we present the definition of the graded

Grassmann envelope EGpAq of a GˆZ2-graded algebra A, and its main properties. These

notions and facts will be our principal tools in the next chapters. Here, F denotes a field,

and G denotes a group.

1.4.1 Free Graded Algebra and Graded Polynomial Identities

Let F “ FxXGy be the free G-graded associative algebra over F generated by a

countable set XG “
Ť

gPGXg, where Xg “ tx
pgq
1 , x

pgq
2 , . . . u, g P G. The indeterminates of

Xg are said to be homogeneous of degree g. Given a monomial m “ x
pg1q
i1

x
pg2q
i2
¨ ¨ ¨ x

pgsq
is

P F ,

the homogeneous degree of m, denoted by degpmq, is defined by g1g2 ¨ ¨ ¨ gs. Therefore,

it is natural to write F “
À

gPG Fg, where Fg is the subspace of the algebra F generated

by all monomials having homogeneous degree g. It is easy to check that FgFh Ď Fgh

for all g, h P G. The above decomposition into direct sum makes F a G-graded algebra.

Thus, F is the free G-graded associative algebra generated by the set XG.

Definition 1.4.1 A G-graded ideal I of FxXGy is a GT -ideal if ϕpIq Ď I for any G-

graded endomorphism ϕ of FxXGy.

Definition 1.4.2 Let G be a group, F a field, and A an associative F-algebra with a G-

grading Γ. Given a graded polynomial f “ fpx
pg1q
1 , x

pg2q
2 , . . . , x

pgnq
n q P FxXGy, we say that
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f is a graded polynomial identity in A if fpa1, a2, . . . , anq “ 0 for any a1 P Ag1 , a2 P

Ag2 , . . . , an P Agn. In this case, we write f ”G 0 in A. We say that A is a GPI-algebra

over F (or simply GPI-algebra) if there exists a nonzero graded polynomial f P FxXGy

such that f ”G 0 in A.

We denote by TGpAq the set of all G-graded polynomial identities of A. In other

words, TGpAq “ tf P FxXGy : f ”G 0 in Au. It is easy to check that TGpAq is a G-graded

ideal of FxXGy closed by all G-graded endomorphisms of FxXGy, it is called the GT -ideal

of G-graded identities of A.

We say that two G-graded algebras A and Ã are GPI-equivalent iff TGpAq “ TGpÃq.

In this case, we denote A ”GPI Ã.

We say that a graded polynomial f P FxXGy is a G-consequence of a set S Ă

FxXGy if f belongs to the GT -ideal generated by S.

Given S Ă FxXGy, we denote by xSyGT the GT -ideal of FxXGy generated by S

(xSyGT is the least GT -ideal containing S).

Definition 1.4.3 Given a nonempty set S Ă FxXGy, the class of all G-graded algebras

A such that f ”G 0 in A for any f P S is called graded variety defined by S, and it is

denoted by varGpSq.

We can define also a (ordinary) polynomial identity of an algebra. In this case, we

define a nongraded polynomial identity. Firstly, let FxXy be the free associative algebra

over F generated by a countable set X “ tx1, x2, . . . u.

Definition 1.4.4 An ideal I of FxXy is a T -ideal if ϕpIq Ď I for any endomorphism ϕ

of FxXy.

Definition 1.4.5 Let F be a field and A an associative F-algebra. Given a polyno-

mial f “ fpx1, x2, ¨ ¨ ¨ , xnq P FxXy, we say that f is a polynomial identity in A if

fpa1, a2, . . . , anq “ 0 for any a1, a2, . . . , an P A. In this case, we write f ” 0 in A. We say

that A is a PI-algebra over F (or simply PI-algebra) if there exists a nonzero polynomial

f P FxXy such that f ” 0 in A.

We denote by TpAq the set of all polynomial identities of A. In other words,

TpAq “ tf P FxXy : f ” 0 in Au. It is easy to check that TpAq is an ideal of FxXy closed
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by all endomorphisms of FxXy, it is called the T -ideal of identities of A. Note that,

without loss of generality, TpAq Ď TGpAq. For more details, see [10, 11, 17].

We say that two algebras A and Ã are PI-equivalent iff TpAq “ TpÃq. In this case,

we denote A ”PI Ã.

We say that a polynomial identity f P FxXy is a consequence of a set S Ă FxXy

if f belongs to the T -ideal generated by S.

Given S Ă FxXy, we denote by xSyT the T -ideal of FxXy generated by S.

Definition 1.4.6 Given a nonempty set S Ă FxXy, the class of all algebras A such that

f ” 0 in A for any f P S is called variety defined by S, and it is denoted by varpSq.

Proposition 1.4.7 (Proposition 4.2.3, [10]) Let

fpx1, . . . , xmq “
n
ÿ

i“0

fi P FxXG
y,

where fi is the homogeneous component of f of degree i in x1.

i) If the base field F contains more than n elements (e.g. F is infinite), then the graded

polynomial identities fi ” 0, i “ 0, 1, . . . , n, follow from f ” 0;

ii) If the base field is of characteristic 0 (or if charpFq ą degpfq), then f ” 0 is

equivalent to a set of multilinear graded polynomial identities.

By the previous proposition, item iq, given an F-algebra A, F is an infinite field,

the graded polynomial identities of A can be generated by multihomogeneous graded

polynomials.

Proposition 1.4.8 Let G be a group, F a characteristic zero field, A a GPI-algebra,

and N a commutative algebra with the trivial G-grading. If N is not nilpotent, then

TGpA bF Nq “ TGpAq. If Nd “ t0u and TGpAq “ xf1, . . . , fnyGT , where fi’s are graded

multilinear polynomials, then

TG
pAbF Nq “

A

px
peq
1 x

peq
2 ¨ ¨ ¨ x

peq
d q, fi1 , fi2 , . . . , fim : degpfjq ă d

E

GT
.

Proof: We have that N “ Ne, where e is the neutral element of G, and thus, AbF N “

À

gPG AgbFN . Let f “ fpx
pg1q
1 , x

pg2q
2 , . . . , x

pgrq
r q P TGpAbFNq be a multilinear polynomial,
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and xpgσp1qqσp1q x
pgσp2qq
σp2q ¨ ¨ ¨ x

pgσprqq
σprq a monomial of f . Since N is commutative, we have that

paσp1q b yσp1qqpaσp2q b yσp2qq ¨ ¨ ¨ paσprq b yσprqq “ paσp1qaσp2q ¨ ¨ ¨ aσprqq b y1y2 ¨ ¨ ¨ yr ,

for any homogeneous elements a1, . . . , ar P A (degpaiq “ gi), y1, . . . , yr P N and σ P Sr.

From this, we have that

0 “ fpa1 b y1, a2 b y2, . . . , ar b yrq “ fpa1, a2, . . . , arq b y1y2 ¨ ¨ ¨ yr ,

for any ai b yi P pA bF Nqgi “ Agi bF N . Hence, it follows that either f ”G 0 in A or

x
peq
1 x

peq
2 ¨ ¨ ¨ x

peq
r ”G 0 in N , and so f ”G 0 or xpg1q1 x

pg2q
2 ¨ ¨ ¨ x

pgrq
r ”G 0 in A bF N . Notice

that if Nd “ t0u, and f P TGpAq such that degpfq ě d, then f is a consequence of

x
peq
1 x

peq
2 ¨ ¨ ¨ x

peq
r . The result follows. �

The Proposition 1.4.8 exhibits a tool to build graded nilpotent algebras with an-

other graded polynomial identity.

Theorem 1.4.9 (Theorem 1, [45]) Let F be an algebraically closed field of character-

istic zero, and G a finite abelian group. Any GT -ideal of G-graded identities of a finitely

generated associative PI-algebra over F graded by G coincides with the ideal of graded

identities of some finite dimensional over the base field F associative G-graded algebra.

Remark 1.4.10 Under the same hypothesis of the Theorems 1.2.20 and 1.4.9, we have

that if A is a finitely generated associative G-graded PI-algebra over a field F, then there

exists a finite dimensional associative G-graded algebra

A1 “ pMk1pFσ1rH1sq ˆ ¨ ¨ ¨ ˆMkppFσprHpsqq ‘ J

such that TGpAq “ TGpA1q. Here, A1 satisfies all the claims of Theorem 1.2.20.

One of the central problems in the study of graded algebras is to obtain non-graded

(ordinary) properties from the analysis of gradings assumed for a given algebra, and vice

versa. In this sense, given a graded algebra, we can determine relationships between its

graded identities and its non-graded identities. Let A “
À

gPG Ag be a G-graded algebra,

G is a finite group with the neutral element e. In [5], Bergen and Cohen showed that if Ae
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is a PI-algebra, then A is also a PI-algebra. They did not exhibit, in the general case, a

bound for the degree of the polynomial identity satisfied by A. On the other hand, in [2],

Bahturin, Giambruno and Riley proved the same result. Moreover, they gave a bound on

the minimal degree of a polynomial identity satisfied by A. Namely, the following results

were shown:

Theorem 1.4.11 (Corollary 9, [5]) Suppose an algebra A is graded by a group G such

that |G| “ n. Then Ae is a PI-algebra iff A is a PI-algebra.

Theorem 1.4.12 (Theorem 5.3, [2]) Let F be an arbitrary field and G a finite group.

Suppose that A is a G-graded associative F-algebra such that Ae satisfies a polynomial

identity of degree d. Then A satisfies a polynomial identity of degree n, where n is any

integer satisfying the inequality

|G|np|G|d´ 1q2n

p|G|d´ 1q!
ă n!.

In particular, if n is the least integer such that e|G|p|G|d ´ 1q2 ď n, then A satisfies a

polynomial identity of degree n, where e is the base of the natural logarithm.

The purpose of our work is to examine some concrete cases of the statements of

Theorems 1.4.11 and 1.4.12.

1.4.2 The Grassmann Envelope of an Algebra

Let A be a pGˆ Z2q-graded finite dimensional algebra, namely

A “
à

pg,λqPGˆZ2

Apg,λq .

Notice that A “
À

gPG Ag with Ag “ Apg,0q ‘ Apg,1q, for any g P G, is a G-grading on A,

and A “ A0 ‘ A1 with Aλ “
À

gPG Apg,λq, for λ “ 0, 1, is a Z2-grading on A. We denote

by EGpAq the Grassmann Envelope of A which is given by

EG
pAq “ pA0 b E0q ‘ pA1 b E1q ,
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where E “ E0 ‘ E1 is an infinitely generated non-unitary Grassmann algebra1 with its

natural Z2-grading. Notice that if
`

EGpAq
˘

pg,λq
“ Apg,λqbF Eλ for any pg, λq P GˆZ2, then

Γ : EG
pAq “

à

pg,λqPGˆZ2

`

EG
pAq

˘

pg,λq
“

à

pg,λqPGˆZ2

Apg,λq b Eλ (1.10)

is a pGˆ Z2q-grading on EGpAq. For this reason, it follows that

Supp pΓq “ tpg, λq P Gˆ Z2 : pEG
pAqqpg,λq ‰ 0u

“ tpg, λq P Gˆ Z2 : Apg,λq ‰ 0u

“ SupppΓAq .

(1.11)

It is clear that EGpAq is an A0b E0-bimodule. Now, let B be a GˆZ2-graded subalgebra

of A. By (1.10) and (1.11), it is easy to see that EGpBq is a Gˆ Z2-graded subalgebra of

EGpAq. Observe that

EG
pAq “

à

gPG

pApg,0q bF E0q ` pApg,1q bF E1q

defines a G-grading on EGpAq.

The next theorems give the positive answer to the well-known Specht problem2

for graded varieties.

Theorem 1.4.13 (Theorem 2, [45]) Let F be an algebraically closed field of character-

istic zero, and G any finite abelian group. Any GT -ideal of graded identities of a G-graded

associative PI-algebra over F coincides with the ideal of G-graded identities of the G-

graded Grassmann envelope of some finite dimensional over F associative G ˆ Z2-graded

algebra.

Theorem 1.4.14 (Theorem 1.3, [1]) Let G be a finite group andW a GPI-graded alge-

bra over F, charpFq “ 0. Then there exists a field extension K of F and a finite-dimensional

Gˆ Z2-graded algebra A over K such that TGpW q “ TGpEGpAqq.
1Grassmann algebra: E “ xe1, e2, e3, ¨ ¨ ¨ | eiej “ ´ejei,@i, jy is Z2-graded with E0 “

spanFtei1ei2 ¨ ¨ ¨ ein : n is evenu, and E1 “ spanFtej1ej2 ¨ ¨ ¨ ejm : m is oddu.
2Specht problem was purposed in [44] by W. Specht (1950), and it can be formulated by the following

question: given any algebra A, is any set of polynomial identities of A a consequence of a finite number
of identities of A? For more details about Specht Problem, see [4].
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1.5 A description of JpAq

The goal of this section is to present some results concerning the Jacobson radical

of the Ĝ-graded Grassmann Envelope of A, where Ĝ is a group, and A is a Ĝ-graded

finite dimensional algebra over a field F. Unless otherwise stated, we assume that Ĝ is

an abelian finite group and A “ B‘ J is a finite dimensional Ĝ-graded F-algebra, where

B “Mk1pFσ1rH1sq ˆ ¨ ¨ ¨ ˆMkppFσprHpsq is a maximal Ĝ-graded semisimple subalgebra of

A, and J “ JpAq is the Jacobson radical of A, F is an algebraically closed field, charpFq “ 0.

Here, Hs E Ĝ and σs P Z2pHs,F˚q (see Theorem 1.2.20). For each r “ 1, . . . , p, we denote

by ir “ σrpe, eq
´1

řkr
s“1 Essηpe,0q P B the identity matrix of Br :“ MkrpFσrrHrsq. Hence,

by Proposition 1.2.6, it follows that i “
řp
r“1 ir P A is the unity of B, since iir “ iri “ ir

for all r “ 1, . . . , p, and isir “ iris “ 0 for all s ‰ r.

Suppose that A is a unitary algebra. If ε P A is a central idempotent element, i.e.

ε2 “ ε, and ε P ZpAq, then 1´ ε P A is also a central idempotent element of A such that ε

and p1´ εq are orthogonal when ε ‰ 0, i.e. εp1´ εq “ p1´ εqε “ 0. Therefore, given x P A,

notice that x “ xε` xp1´ εq, and hence, it is not difficult to see that A “ Aε‘Ap1´ εq.

This decomposition is called the Peirce Decomposition of A relative to ε. Naturally,

we can extend this definition to n idempotent elements of A, as follows. Let ε1, . . . , εn P A

be distinct central orthogonal idempotent elements. Without loss of generality, suppose

that 1 “
řn
i“1 εi. Given x P A, we have x “ x1 “

řn
i“1 xεi, and hence, A “ Aε1‘¨ ¨ ¨‘Aεn

is the Peirce decomposition of A relative to ε1, . . . , εn. In the next subsections, we will

use Theorem 1.2.20 to give a description of the Jacobson radical J and its Grassmann

envelope EĜpJq in terms of the concept of the Peirce decomposition and of the semisimple

part B.

Given a G-graded algebra Ã, recall that a G-graded left (resp. right) Ã-module M

is called a 0-module if ÃM “ t0u (resp. MÃ “ t0u).

The following lemmas are the graded versions of Lemma 2 in [16].

Lemma 1.5.1 Let Ĝ be a group and A “ B ‘ J a finite dimensional algebra with a Ĝ-

grading, where B is a Ĝ-graded maximal semisimple subalgebra of A, and J “ JpAq is the

Jacobson radical and a graded ideal of A. Then J can be decomposed as

J “ J00 ‘ J10 ‘ J01 ‘ J11 ,
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where Jij’s are Ĝ-graded B-bimodules such that:

i) for r “ 0, 1, J0r is a left 0-module and J1r is a left Ĝ-graded faithful B-module;

ii) for s “ 0, 1, Js0 is a right 0-module and Js1 is a right Ĝ-graded faithful B-module;

iii) JrqJqs Ď Jrs, and JrpJqs “ t0u for r, p, q, s P t0, 1u with p ‰ q.

Proof: Let i P A be the unity of B, and consider the applications Ri, Li : J ÝÑ J defined

by Ripxq “ xi and Lipyq “ iy for all x, y P J, respectively. Note that J is a graded

ideal of A, and Ri and Li are homogeneous homomorphisms of Ĝ-graded B-bimodules

such that R2
i “ Ri, and L2

i “ Li, since i P Be. Hence, kerpRiq, impRiq, kerpLiq and

impLiq are Ĝ-graded B-bimodules. On the other hand, we conclude that 0, 1 P F are the

only eigenvalues of Ri and Li. So, we have that Ri and Li are diagonalizable, since the

minimal polynomials of Ri and Li can be written as the product of linear factors (see

[23], Theorem 6.4.6). Notice that RiLi “ LiRi, and hence, it follows that kerpRiq and

impRiq are invariant by Li, and kerpLiq and impLiq are invariant by Ri. Thus, it is easy

to check that V R
0 “ kerpRiq and V L

0 “ kerpLiq are the eigenspaces of Ri and Li associated

with 0, respectively, and V R
1 “ impRiq and V L

1 “ impLiq are the eigenspaces of Ri and Li

associated with 1, respectively.

Let us show that

J “ J00 ‘ J01 ‘ J10 ‘ J11 , (1.12)

where J00 “ V R
0 X V L

0 , J10 “ V R
0 X V L

1 , J01 “ V R
1 X V L

0 and J11 “ V R
1 X V L

1 .

Put J̃ “
ř

r,s“0,1 Jrs. Notice that

J10 “ tx P J : x “ ix, xi “ 0u , J01 “ tx P J : x “ xi, ix “ 0u ,

J11 “ tx P J : x “ ixiu , J00 “ tx P J : ix “ xi “ 0u .

From this, if x10 ` x01 ` x11 ` x00 “ 0 with xrs P Jrs, then

0 “ ipx10 ` x01 ` x11 ` x00qi “ ix11i “ x11 ,

0 “ ipx10 ` x01 ` x11 ` x00q “ ix10 ` ix11 “ x10 ` x11 ,

0 “ px10 ` x01 ` x11 ` x00qi “ x01i` x11i “ x01 ` x11 ,
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and hence, x11 “ x10 “ x01 “ x00 “ 0, and thus, J̃ “
À

r,s“0,1 Jrs . By Rank-Nullity

Theorem (see [23], Theorem 3.1.2), it follows that J “ kerpRiq‘ impRiq “ kerpLiq‘ impLiq,

since dimFJ ă 8 and kerpRiq X impRiq “ kerpLiq X impLiq “ t0u. Take x P J. There exist

x0 P kerpLiq and x1 P impLiq such that x “ x0`x1, and hence, there exist x00, x10 P kerpRiq

and x01, x11 P impRiq such that x0 “ x00 ` x01 and x1 “ x10 ` x11. Notice that x00, x01 P

kerpLiq, since 0 “ ix0 “ ix00` ix01 and kerpLiqX impLiq “ t0u. Similarly, x10, x11 P impLiq,

since x1 “ x10 ` x11 and kerpRiq X impRiq “ t0u, hence, x1 “ ix1 “ ix10 ` ix11, and thus

x10 ´ ix10 “ ix11 ´ x11. Therefore,

x “ x00 ` x01 ` x10 ` x11 P J00 ‘ J01 ‘ J10 ‘ J11 .

This finishes the proof of (1.12).

To conclude the proof of this lemma, let us show that Jrs’s satisfy items i), ii), iii).

Indeed, Jrs are Ĝ-graded B-bimodules. Since J is an ideal of A and b “ ibi “ ib “ bi for

any b P B, we have ax “ paiqx “ apixq and xa “ xpiaq “ pxiqa for any a P B and x P J.

Notice that given a nonzero x P J01 Y J10 Y J11, we have that either ix ‰ 0 or xi ‰ 0.

Hence, by definition of Jrs, items i) and ii) follow. Moreover, it follows that

J00J11 “ J00J10 “ J01J00 “ J10J11 “ J11J01 “ J11J00 “ t0u ,

J00J00 “ spanFtxy P J : xi “ 0, ix “ 0, iy “ 0, yi “ 0, x, y P Ju Ď J00 ,

J00J01 “ spanFtxyi P J : xi “ 0, ix “ 0, iy “ 0, x, y P Ju Ď J01 ,

J10J00 “ spanFtixy P J : xi “ 0, iy “ 0, yi “ 0, x, y P Ju Ď J10 ,

J10J01 “ spanFtixyi P J : xi “ 0, iy “ 0, x, y P Ju Ď J11 ,

J01J10 “ spanFtxiy P J : ix “ 0, yi “ 0, x, y P Ju Ď J00 ,

J01J11 “ spanFtxiyi P J : ix “ 0, x, y P Ju Ď J01 ,

J11J10 “ spanFtixiy P J : yi “ 0, x, y P Ju Ď J10 ,

J11J11 “ spanFtixiyi P J : x, y P Ju Ď J11 ,

and this ensures item iii). �

By previous lemma, it follows that if A is a unitary algebra, then i P B is still the
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unity of A, since J is nilpotent. In this case, we have

J00 ‘ J01 ‘ J10 “ i pJ00 ‘ J01 ‘ J10q i “ t0u , (1.13)

and so J “ iJi “ J11 which is described in the next lemma. Observe also that J10 and J11

are unitary left B-modules and J01 and J11 are unitary right B-modules.

Lemma 1.5.2 Under the assumptions of Lemma 1.5.1, consider that G is a finite abelian

group, and F is an algebraically closed field with charpFq “ 0. The following statements

are true:

i) J11 “
Àp

s,r“1 irJ11is, where each irJ11is is a Ĝ-graded pBr,Bsq-bimodule, where B “

Àp
i“1 Bi with Bi “ MkipFσirHisq. In addition, irJ11is ‰ 0 implies that irJ11is is a

faithful left Bi-module and a faithful right Bj-module;

ii) For each s “ 1, . . . , p, there exists a Ĝ-graded vector space Ns “ spanFtd1s, . . . , drssu Ă

isJ11is such that isJ11is “ BsNs and bdis “ γispbqdisb ‰ 0 for any nonzero b P βs,

and i “ 1, . . . , rs, where γis P F, and βs “ tElsjsηhs P Bs : ls, js “ 1, . . . , ks, hs P Hsu

is the canonical homogeneous basis of Bs “ MkspFσsrHssq. Moreover, for each

i “ 1, . . . , rs, we have that Bsdis is a Ĝ-simple Bs-bimodule.

Proof: By Lemma 1.5.1, we have iJi “ tx P J : ix “ xi “ xu “ tixi : x P Ju “ J11. Notice

that isJir “ isJ11ir, where i “
řp
r“1 ir. Since iris “ 0 for all r ‰ s, we have iiq “ iqi “ iq

for all q “ 1, . . . , p.

i) Let us show that J11 “
Àp

s,r“1 isJir. Put J̃ “
řp
s,r“1 isJir. Again, since iris “ 0 for all

r ‰ s, it follows that J̃ “
Àp

s,r“1 isJir and J̃ Ď iJi “ J11. On the other hand, for any

x P J11, we have

x “ ixi “

˜

p
ÿ

s“1

is

¸

x

˜

p
ÿ

r“1

ir

¸

“

p
ÿ

s,r“1

isxir P J̃ .

Hence, J11 Ď J̃, and so J11 “ J̃. It is immediate that irJis is a Ĝ-graded faithful

pBr,Bsq-bimodule for all r, s “ 1, . . . , p, since Lemma 1.5.1 ensures that J11 is a Ĝ-

graded B-bimodule, ir, is are homogeneous elements of degree e for all r, s “ 1, . . . , p, and

irpirxisqis “ pirirqxpisisq “ irxis for any x P J.

Now, suppose that irJ11is ‰ 0 for some r, s P t1, . . . , pu. Since irJ11is is a pBr,Bsq-

bimodule, it follows that there exist w0 P irJ11is ´ t0u, Eiiηe P Br and Ejj η̃e P Bs such
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that Eiiηew0Ejj η̃e ‰ 0. From this, it is not difficult to see that mlt :“ Eliηew0Ejtη̃e ‰ 0 for

any l P t1, . . . , kru and t P t1, . . . , ksu. Thus, EnlηgmltEtmη̃h ‰ 0 for any n, l P t1, . . . , kru,

t,m P t1, . . . , ksu, g P Hr and h P Hs. The result follows.

ii) Fix s P t1, . . . , pu. We have that Vs :“ isJ11is is a finite dimensional Ĝ-graded Bs-

bimodule, and also a graded subalgebra of J. Since J satisfies both chain conditions,

because has a finite dimension, by Proposition 1.3.25, there exist homogeneous elements

ds1, . . . , dsqs P Vs such that Vs “
Àqs

i“1 Bsdsi, where each Bsdsi is an irreducible Ĝ-graded

Bs-bimodule, and dsib “ γispbqbdsi ‰ 0 for any b P

betas. Now, consider Ns “ spanFtds1, . . . , dsqsu Ă J which is a Ĝ-graded vector space.

Since each dsi almost commutes with all the elements base βs of Bs, it is easy to check

that Bsdsi “ dsiBs, and isJ11is “ BsNs. �

Observing the proof of Lemma 1.5.2, for all s “ 1, . . . , p, we obtain that if degpdsiq P

SupppΓBsq for all i “ 1, . . . , qs, then SupppΓAsq “ SupppΓBsq, where As “ Bs ‘ isJis. On

the other hand, given A “ B ‘ J with B “ MnpFσrHsq, and J “ JpAq (which is a

graded nilpotent finite dimensional ideal of A), assume that N “ spanFtd1, . . . , dmu is a

Ĝ-graded vector space such that J “ BN, where di’s are homogeneous elements such that

diB “ Bdi for all i “ 1, . . . ,m. If for some s “ 1, . . . ,m we have dsb “ bds ‰ 0, for any

b P B, then the map
ψs : B ÝÑ J

b ÞÝÑ bds
(1.14)

is a homogeneous monomorphism of Ĝ-graded B-bimodules such that ψspiq “ ds. In this

case, Bds –G B as a Ĝ-graded B-bimodules.

Corollary 1.5.3 Under the assumptions of Lemma 1.5.1, if i P ZApAhq for some h P Ĝ,

then Jh “ pJ00qh ‘ pJ11qh. In addition, i P ZpAq implies J “ J00 ‘ J11.

Proof: By Lemmas 1.5.1 and by Lemma 1.5.2, we can write

J “
à

gPĜ

ppJ00qg ‘ pJ01qg ‘ pJ10qg ‘ pJ11qgq “
à

gPĜ
i,jPt0,1u

pJijqg .

Now, given h P Ĝ, suppose i P ZApAhq, i.e., ri, ahs “ 0 for all ah P Ah. In particular,

for any xh P Jh Ď Ah, we have ixh “ xhi. Since Jh “ pJ00qh‘pJ10qh‘pJ01qh‘pJ11qh, where
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J00 “ tz P J : iz “ 0 “ ziu, J10 “ tx P J : ix “ x, xi “ 0u and J01 “ ty P J : yi “ y, iy “ 0u,

it follows that J10 “ J01 “ t0u. Therefore, i P ZApAhq for h P Ĝ implies Jh “ pJ00qh‘pJ11qh.

Consequently, if i P ZpAq, we conclude that

J “
à

gPĜ

Jg “
à

gPĜ

ppJ00qg ‘ pJ11qgq “ J00 ‘ J11 ,

and the result follows. �

Corollary 1.5.4 Under the assumptions of Lemma 1.5.2, if is P ZpAq for all s “ 1, . . . , p,

then iJi “
Àp

s“1 isJis.

Proof: Suppose is P ZpAq for any s “ 1, . . . , p. Since i “
řp
s“1 is, it follows that i P ZpAq.

By Proposition 1.5.1, we have iJi “ J11 “
Àp

s,r“1 isJir, and hence, we can conclude that

isJir “ t0u for r ‰ s, since isxir “ pisxirqis “ 0 for all x P J and r ‰ s. From this,

iJi “ J11 “
Àp

s“1 isJis. Therefore, we have the result. �

Observe that all results of this section we can apply for the cases Ĝ “ G or Ĝ “

Gˆ Z2, G is a given finite abelian group.

1.5.1 Some Conditions on EGpJpAqq

Here, we present important results concerning the Grassmann envelope of a finite

dimensional G ˆ Z2-graded algebra. We exhibit some results that help to study the

graded polynomials identities of the Grassmann Envelope of a graded finite dimensional

algebra. The main result here is that, under suitable conditions, it is sufficient to study

the Grassmann Envelope of the subalgebras As “ Bs ‘ isJis instead of the Grassmann

Envelope of A “
Śp

s“1 As.

Given a G ˆ Z2-graded algebra A, it is easy to check that if a b x0 P A0 b E0

with x0 ‰ 0, and pa b x0qx “ xpa b x0q for any x P EGpAqh for some h P G, then

a P ZApAhq, where Ah “ Aph,0q ‘ Aph,1q, since 0 “ ra b x0, b b ys “ ra, bs b x0y for any

bby P pA0bE0qYpA1bE1q. Analogously, for any h P G, we have a P ZApAhq Ď A implies

pab y0qz “ zpab y0q for any y0 P E0 and z P EGpAqh.

Lemma 1.5.5 Let G be a group, and A “ B ‘ J a G ˆ Z2-graded finite dimensional

algebra, where B is a GˆZ2-graded maximal semisimple subalgebra of A, and J “ JpAq is
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the Jacobson radical and a graded ideal of A. Given h P G, if there is a nonzero element

x0 P E0 such that pib x0qx “ xpib x0q for any x P EGpAqh, then EGpJqh “ EGpJ00 ‘ J11qh.

Particularly, EGpJq “ EGpJ00q‘EGpJ11q iff piby0qy “ ypiby0q for all y P EGpAq, for some

nonzero y0 P E0.

Proof: For some h P G, suppose pi b x0qx “ xpi b x0q for any x P EGpAqh. By above

observations, it follows that i P ZApAhq, and by Corollary 1.5.3, we have Jh “ pJ00‘J11qh “

pJ00qh ‘ pJ11qh. Hence, we have that EGpJqh “ EGpJ00 ‘ J11qh.

Finally, suppose i P ZpAq. Again by Corollary 1.5.3, we have J “ J00 ‘ J11.

Consequently, EGpJq “ EGpJ00q ‘ EGpJ11q. Conversely, if EGpJq “ EGpJ00q ‘ EGpJ11q, then

J “ J00 ‘ J11, and hence, it is easy to see that i P ZpAq, since A “ B ‘ J00 ‘ J11. The

result follows. �

The following result establishes a good condition for the GPI-equivalence between

the Grassmann envelope of an algebra A and the Grassmann envelope of a unitary sub-

algebra of A, where A is finite dimensional and G-graded.

Lemma 1.5.6 Let G be a group, and A “ B ‘ J a finite dimensional F-algebra with a

G ˆ Z2-grading, where B “ MnpFσrHsq is the maximal graded semisimple subalgebra of

A, J “ JpAq is the Jacobson radical of A. Suppose F is a field of characteristic zero, and

i is the unity of B. If i P ZpAq, then

EG
pAq ”GPI E

G
pB‘ J11q ˆ EG

pJ00q ,

where J11 “ iJi, and J00 “ tx P J : ix “ xi “ 0u. In particular, if A is unitary, then

J00 “ t0u, and EGpAq ”GPI E
GpB‘ J11q.

Proof: Firstly, write Ã “ B ‘ iJi. Since iJi Ď J is a G ˆ Z2-graded ideal of Ã (by

Lemma 1.5.2), it follows that Ã and J00 are G ˆ Z2-graded subalgebras of A, and hence,

EGpJ00q,E
GpÃq Ď EGpAq. Thus, TGpEGpAqq Ď TGpEGpÃqq X TGpEGpJ00qq.

Suppose i P ZpAq. Hence, by Lemma 1.5.5, J “ J00 ‘ J11. Let us show that

f P TGpEGpÃqq X TGpEGpJ00qq implies f P TGpEGpAqq. In fact, take f R TGpEGpAqq, where

f “ fpx
pg1q
1 , . . . , x

pgkq
k q P FxXGy is a polynomial in G-graded variables. By Proposition 1.4.7

we can assume that f is multilinear. Let a1b y1, . . . , ak b yk P E
GpBq Y EGpJ11q Y EGpJ00q

be homogeneous elements such that degpai b yiq “ gi, a1, . . . , ak P B Y J00 Y J11 and
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fpa1 b y1, . . . , ak b ykq ‰ 0, such elements exists because f is multilinear. Hence, there

exists a monomial m “ xi1xi2 ¨ ¨ ¨ xik in f such that pai1 b yi1qpai2 b yi2q ¨ ¨ ¨ paik b yikq ‰ 0.

From this, ai1ai2 ¨ ¨ ¨ aik ‰ 0, where a1, . . . , ak P B Y J00 Y J11 are homogeneous elements.

If aij P BY J11 for some j P t1, . . . , ku, it follows that

0 ‰ ai1 ¨ ¨ ¨ aij ¨ ¨ ¨ aik “ ai1 ¨ ¨ ¨ piaij iq ¨ ¨ ¨ aik “ piai1iq ¨ ¨ ¨ piaij iq ¨ ¨ ¨ piaik iq, (1.15)

since i P ZpAq, and J11 “ iJi (by Proposition 1.5.1). So, since J00 “ tx P J : ix “ xi “ 0u,

it follows from the expression in (1.15) that tai1 , . . . , aiku X J00 “ H. Reciprocally, if

tai1 , . . . , aiku X J00 ‰ H, then aij R B Y J11 for all i “ 1, . . . , k. Hence, we conclude that

either tai1 , . . . , aiku Ă J00 or tai1 , . . . , aiku Ă BY J11, exclusively. Therefore, we have that

either f R TGpEGpÃqq or f R TGpEGpJ00qq, and consequently, f R TGpEGpÃqqXTGpEGpJ00qq.

Suppose that A is unitary. Take x P J00. Since J is nilpotent, we have that the

unity of A must be i, the unity of B. From this, x “ ix “ 0, and so J00 “ t0u. Therefore,

the result follows. �

Theorem 1.5.7 Let G be a group, F a field of characteristic zero, and A “ B‘J a finite

dimensional F-algebra with a GˆZ2-grading, where B “
Śp

s“1 Bs is the maximal graded

semisimple subalgebra of A, with Bs “MkspFσsrHssq, J “ JpAq is the Jacobson radical of

A, and is is the unity of Bs. If is P ZpAq for any s “ 1, . . . , p, then

EG
pAq ”GPI E

G
pA1q ˆ ¨ ¨ ¨ ˆ EG

pApq ˆ EG
pJ00q ,

where As “ Bs ` isJis, s “ 1, . . . , p, and J00 “ tx P J : ix “ xi “ 0u. Moreover, if A is

unitary, then J00 “ t0u.

Proof: Firstly, observe that

J00 “ tx P J : ix “ xi “ 0u

“ tx P J : isx “ xis “ 0, @s “ 1, . . . , pu ,

where i “
řp
r“1 ir. By Lemma 1.5.6, we have that

EG
pAs ‘ J00q “ EG

pBs ‘ isJis ‘ J00q ”GPI E
G
pBs ‘ isJisq ˆ EG

pJ00q “ EG
pAsq ˆ EG

pJ00q
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for all s “ 1, . . . , p.

Since iJi “
Àp

s,r“1 irJis (see Lemma 1.5.2), and is P ZpAq, it follows that iJi “
Àp

s“1 isJis. Hence, it is immediate that

A “ pB1 ˆ ¨ ¨ ¨ ˆBpq ‘

˜

p
à

s“1

isJis

¸

‘ J00 –GˆZ2 pB1 ‘ i1Ji1q ˆ ¨ ¨ ¨ ˆ pBp ‘ ipJipq ˆ J00 ,

and consequently, A ”pGˆZ2qPI A1 ˆ ¨ ¨ ¨ ˆ Ap ˆ J00. From this, we have that EGpAq ”GPI

EGpA1q ˆ ¨ ¨ ¨ ˆ EGpApq ˆ EGpJ00q.

Note that J00 “ t0u when A is unitary (see Lemma 1.5.6). The result follows. �

By Theorems 1.2.13 and 1.2.20 and Remark 1.2.17, we can determine when two

matrix algebras over twisted algebras with canonical elementary G-gradings are G-graded

isomorphic. Consequently, we can have Br
GˆZ2
ãÑ Bs for some of the algebras Bi’s in

Theorem 1.5.7, but not necessarily we have that Ar
GˆZ2
ãÑ As (see the definition of a

graded immersion in 1.2.15). From this, when Br –GˆZ2 Bs, let us build below a GˆZ2-

graded algebra Ã “ Bs ‘ JpÃq such that TGpEGpÃqq “ TGpEGpArqq X TGpEGpAsqq, where

Ai “ Bi ‘ Ji’s are given in Theorem 1.5.7.

The next construction was presented by I. Sviridova in [45]. It is a construction,

for any finite dimensional Ĝ-graded algebra A, of a graded algebra with a graded "free"

Jacobson radical.

Let Ĝ be a finite abelian group, and A “ B ‘ JpAq a finite dimensional Ĝ-graded

algebra, where B is a maximal Ĝ-graded semisimple subalgebra of A, and J “ JpAq is

the Jacobson radical of A, which is a nilpotent graded ideal of A. Consider a Ĝ-graded

semisimple subalgebra B̃ Ď B, and q P Z with q ą 0. For any q P N, consider the set

X Ĝ
q “

Ť

gPĜtx
pgq
1 , x

pgq
2 , . . . , x

pgq
q u of graded indeterminates. Now, consider the free prod-

uct B̃# ˚F FxX Ĝ
q y

#, and define on it the Ĝ-grading by the equalities degĜpu1 ¨ ¨ ¨usq “

pdegĜu1q ¨ ¨ ¨ pdegĜusq, where ui P B̃#
Ť

FxX Ĝ
q y

# are homogeneous elements, and C#

denotes an algebra with the adjoint unity. Let B̃pX Ĝ
q q be the graded subalgebra of

B̃# ˚F FxX Ĝ
q y

# generated by the set B̃
Ť

FxX Ĝ
q y. Denote by pX Ĝ

q q the graded (two-

sided) ideal of B̃pX Ĝ
q q generated by the set of variables X Ĝ

q . Particularly, we have that

B̃pX Ĝ
q q “ B̃‘ pX Ĝ

q q.
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Given a ĜT -ideal Γ of FxX Ĝy, denote by ΓpB̃pX Ĝ
q qq the Ĝ-graded ideal

ΓpB̃pX Ĝ
q qq “ tfph1, . . . , hnq : f P Γ, hi P B̃pX

Ĝ
q q, degĜphiq “ degĜpxiq, @iuE B̃pX Ĝ

q q,

which is called a verbal ideal of B̃pX Ĝ
q q corresponding to Γ. Now, for all s P N, we can

consider the quotient algebra

Rq,spB̃,Γq “
B̃pX Ĝ

q q

pΓpB̃pX Ĝ
q qq ` pX

Ĝ
q q

sq
. (1.16)

Denote also Rq,spAq “ Rq,spB,T
ĜpAqq for Γ “ TĜpAq and B̃ “ B.

Lemma 1.5.8 (Lemma 16, [45]) Let Ĝ be a finite abelian group. For any q, s P N and

a ĜT -ideal Γ Ď TĜpAq, the algebra Rq,spB̃,Γq is a finite dimensional Ĝ-graded algebra

with the ideal of graded identities TĜpRq,spB̃,Γqq Ě Γ. Moreover, Rq,spB̃,Γq “ B ‘

JpRq,spB̃,Γqq, where B is a maximal semisimple Ĝ-graded subalgebra of Rq,spB̃,Γq, and

B –Ĝ B̃. The Jacobson radical of Rq,spB̃,Γq is equal to pX Ĝ
q q{pΓpB̃pX

Ĝ
q qq ` pX

Ĝ
q q

sq, and

it is nilpotent of degree less than or equal to s. In addition, if q ě maxgPĜpdimFpJpAqqgq

and s ě ndpJpAqq, then TĜpRq,spAqq “ TĜpAq.

Corollary 1.5.9 (Absorption Lemma) Let Ĝ be a finite abelian group, and F a field

of characteristic zero. Consider any two finite dimensional Ĝ-graded algebras A1 “ B1 ‘

J1 and A2 “ B2 ‘ J2, where B1 and B2 are maximal semisimple Ĝ-graded subalgebras

of A1 and A2, and J1 and J2 are the Jacobson radicals of A1 and A2, respectively. If

B1 –Ĝ B2, then there exists a finite dimensional Ĝ-graded algebra Ã “ B1 ‘ J̃ such

that TĜpÃq “ TĜpA1 ˆ A2q. Here, B1 –Ĝ B1, and it is the maximal graded semisimple

subalgebra of Ã, J̃ is the Jacobson radical of Ã, which is a nilpotent graded ideal of Ã, and

ndpJ̃q “ maxtndpJiq : i “ 1, 2u.

Proof: Let us denote A “ A1ˆA2. Let q “ maxtdimFpJiq : i “ 1, 2u, s “ maxtndpJiq : i “

1, 2u, and Γ “ TĜpAq “ TĜpA1q X TĜpA2q. Consider the algebra Rq,spB1,Γq as in (1.16).

By Lemma 1.5.8, we have that Γ Ď TĜpRq,spB1,Γqq, where Rq,spB1,Γq “ B1 ‘ J̃ is a

finite dimensional Ĝ-graded algebra, such that B1 –Ĝ B1, and it is the maximal graded

semisimple subalgebra of Rq,spB1,Γq, and J̃ is the Jacobson radical of Rq,spB1,Γq, which

is a nilpotent graded ideal of Ã with ndpJ̃q “ s.
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Now, since B2 –Ĝ B1, there exists a Ĝ-isomorphism ψ2 : B1 Ñ B2, and hence,

we have ψ2pB1q “ B2. Denote I “ pΓpB1pX
Ĝ
q qq ` pX

Ĝ
q q

sq, which is a graded ideal of

B1pX
Ĝ
q q (see (1.16)). Suppose that the set tr1, . . . , rq2u is an F-basis of J2. Then we

have ri “
ř

θPĜ riθ, where riθ P J2 X pA2qθ, for all i “ 1, . . . , q2. Consider the map

ϕ̄2 : x
pθq
i “ x

pθq
i ` I ÞÑ riθ, for all i “ 1, . . . , q2, and ϕ̄2 : x̄

pθq
i ““ xi ` I ÞÑ 0 for all

i “ q2 ` 1, . . . , q (q2 ď q). Assume that ϕ̄2pb ` Iq “ ψ2pbq for any b P B1. Then ϕ̄2

can be extended to a graded epimorphism ϕ̄2 : Rq,spB1,Γq Ñ A2 of graded algebras.

In fact, consider the homomorphism of Ĝ-graded algebras ϕ2 : B1pX
Ĝ
q q Ñ A2 such that

ϕ2pbq “ ψ2pbq for any b P B1, and ϕ2px
pθq
j q “ rjθ, for all j “ 1, . . . , q2, and ϕ2px

pθq
j q “ 0

for j “ q2 ` 1, . . . , q. Then ϕ2 “ ϕ̄2π, where π : B1pX
Ĝ
q q Ñ Rq,spB1,Γq is the natural

Ĝ-graded homomorphism (quotient), since kerpπq Ď kerpϕ2q. In fact, kerpπq “ I, and

ϕ2pIq Ď ΓpA2q ` Js2 “ t0u, since Γ Ď TĜpA2q, and ndpJ2q ď s. Hence, the following

diagram commutes:

Rq,spB1,Γq A2

B1pX
Ĝ
q q

ϕ̄2

ϕ2π
.

Take any multilinear f “ fpx
pg1q
1 , x

pg2q
2 , . . . , x

pgnq
n q P TĜpRq,spB1,Γqq. Let us show

that f ”Ĝ 0 in A2. In fact, for any homogeneous elements a1, a2, . . . , an P B2 Y J2 such

that degpaiq “ degpx
pgiq
i q “ gi, for all i “ 1, . . . , n, we have that there exist b1, b2, . . . , bn P

Rq,spB1,Γq homogeneous elements such that ϕ̄2pbiq “ ai, with degpbiq “ gi, for all i “

1, . . . , n. Hence, we have that

fpa1, a2, . . . , anq “ fpϕ̄2pb1q, ϕ̄2pb2q, . . . , ϕ̄2pbnqq “ ϕ̄2pfpb1, b2, . . . , bnqq “ ϕ2p0q “ 0 .

From this, we have that f ”Ĝ 0 in A2, and so f P TĜpA2q. Consequently, TĜpRq,spB1,Γqq Ď

TĜpA2q.

Analogously, we can build a graded epimorphism of Rq,spB1,Γq to A1 (it is suffi-

cient to consider ψ1 : B1 Ñ B1 such that ψ1pbq “ b for any b P B1, and to process as in

the first part of this proof), and hence, we conclude also that TĜpRq,spB1,Γqq Ď TĜpA1q.

Therefore, it follows that TĜpRq,spB1,Γqq Ď
´

TĜpA1q X TĜpA2q

¯

“ TĜpAq, and conse-

quently, we have that Rq,spB1,Γq ”ĜPI A. �
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Lemma 1.5.10 (Lemma 31, [45]) Given ĜˆZ2-graded algebras A, and B over a field

F of characteristic zero, where Ĝ is a finite abelian group, we have A ”
pĜˆZ2qPI

B iff

EĜˆZ2pAq ”
pĜˆZ2qPI

EĜˆZ2pBq (as Ĝˆ Z2-graded algebras).

Lemma 1.5.11 Let Ĝ be a finite abelian group, A and B two Ĝ ˆ Z2-graded algebras

over a field F of characteristic zero, which are PI-algebras. If A ”
pĜˆZ2qPI

B, then

EĜpAq ”ĜPI E
ĜpBq (as Ĝ-graded algebras).

Proof: Any Ĝ-graded polynomial identity f P FxX Ĝy can be seen as a pĜ ˆ Z2q-graded

polynomial identity. More precisely, f “ fpx
pg1q
1 , . . . , x

pgnq
n q P FxX Ĝy corresponds to the

set of polynomials Wf :“ tfpx
pg1,λ1q
1 , . . . , x

pgn,λnq
n q : @pλ1, . . . , λnq P pZ2q

nu Ă FxX ĜˆZ2y.

Let A “
À

pg,λqPĜˆZ2
Apg,λq be a pĜ ˆ Z2q-graded algebra, where the Ĝ-grading is

induced, i.e. A “
À

gPĜ Ag with Ag “ Apg,0q ‘ Apg,1q for any g P Ĝ. We have that A

satisfies a Ĝ-graded polynomial identity f P FxX Ĝy iff A satisfies all the pĜˆ Z2q-graded

polynomial identities of Wf , i.e. f P TĜpAq iff Wf Ď TĜˆZ2pAq.

Consider two pĜ ˆ Z2q-graded algebras A and B, and their Grassmann enve-

lope EGpAq and EGpBq, respectively. By Lemma 1.5.10, we have that A ”
pĜˆZ2qPI

B

iff EĜpAq ”
pĜˆZ2qPI

EĜpBq, where we consider EĜpAq and EĜpBq with their pĜ ˆ Z2q-

gradings. By above reason, we obtain that if A ”
pĜˆZ2qPI

B, then EĜpAq ”ĜPI EĜpBq.

Therefore, we conclude that if TĜˆZ2pAq “ TĜˆZ2pBq, then TĜpEĜpAqq “ TĜpEĜpBqq. �

By Corollary 1.5.9, it is not difficult to check that Br –Ĝ B1 for all r “ 2, . . . , n

implies that A “ pA1ˆ¨ ¨ ¨ˆAnq ”ĜPI Â, where Ai “ Bi‘JpAiq, and Â “ Rq,spB1,T
ĜpAqq.

In this sense, assuming Ĝ “ G ˆ Z2, we can use Corollary 1.5.9 and Lemma 1.5.11 to

improve Theorem 1.5.7 up to G ˆ Z2-isomorphisms of semisimple parts of Ai. Thus, we

have the following result.

Theorem 1.5.12 Let G be a finite abelian group, F a field of characteristic zero, and

A “ B‘ J a finite dimensional F-algebra with a Gˆ Z2-grading, where B “
Śp

s“1 Bs is

the maximal graded semisimple subalgebra of A, with Bs “MkspFσsrHssq, J “ JpAq is the

Jacobson radical of A, and is is the unity of Bs. If is P ZpAq for any s “ 1, . . . , p, then

there exist finite dimensional Gˆ Z2-graded unitary algebras Ã1, Ã2, . . . , Ãp, J̃00 such that

EG
pAq ”GPI E

G
pÃ1q ˆ ¨ ¨ ¨ ˆ EG

pÃqq ˆ EG
pJ̃00q ,
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where Ãs “ Bs ‘ J̃s are G ˆ Z2-graded algebras satisfying Bs flGˆZ2 Br for all s ‰ r,

Bs –GˆZ2 Bis for some is P t1, . . . , pu, J̃s is the Jacobson radical of Ãs, and J̃00 is a finite

dimensional Gˆ Z2-graded nilpotent algebra.

Proof: By Theorem 1.5.7, we have EGpAq ”GPI E
G pA1qˆ¨ ¨ ¨ˆEG pApqˆEGpJ00q. Suppose

that Br –GˆZ2 Bs for some r ‰ s, and hence, by Corollary 1.5.9 and Lemma 1.5.11, we

have that TGpEGpArq ˆ EGpAsqq “ TGpEGpÃsqq for some finite dimensional Gˆ Z2-graded

algebra Ãs “ Bs ‘ JpÃsq. From this, the result follows. �

Assume that A “ B ‘ J is a finite dimensional F-algebra with a G ˆ Z2-grading,

where J “ JpAq, and B “
Śp

i“1 FσirHis, with Hi ď G ˆ Z2, σPZ2pHi,F˚q. Observe that

by Theorem 1.2.13 and Example 1.3.2, the previous theorem can be rewritten in terms

of partial order "ĺ", since pHi, rσisq “ pHj, rσjsq (i.e. Hi “ Hj, and rσisq “ rσjs) implies

FσirHis –GˆZ2 Fσj rHjs.

De França, A.M.D. June 28, 2019 Mat – UnB



CHAPTER 2

SECOND COHOMOLOGY GROUP

In this chapter we present some notions and properties of the cohomology theory

of groups. We will use these concepts as tools in Chapter 4. Our goal in this chapter is to

determine suitable conditions to ensure that the restriction homomorphism from H2pG,Mq

into H2pH,Mq is surjective, where H is a subgroup of a group G. Unless otherwise stated,

G denotes a multiplicative group and M denotes an abelian additive group that has a

structure of a left G-module. All modules in this chapter are assumed to be left modules.

2.1 Definitions and Properties

Let us define the Second Cohomology Group. Posteriorly, we will exhibit some

important results. The following definition is a generalization of Definition 1.2.1. For more

details, see [39], Section 9.1.2.

Definition 2.1.1 Let pG, ¨q be a multiplicative group, and pM,`q an additive abelian

group. We say that M is a left G-module if there is a well-defined map from G ˆ M

into M which satisfies

i) rpm1 `m2q “ rm1 ` rm2,

ii) pr1 ` r2qm “ r1m` r2m,

iii) pr1r2qm “ r1pr2mq,
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68 2. Second Cohomology Group

for any r, r1, r2 P ZG and m,m1,m2 P M, where ZG is a group ring.

Recall that we denote by ηg the element of ZG which corresponds to an element

g P G. For convenience we assume that ηem “ m for any m P M, where e is the neutral

element of G (M is a unitary left ZG-module).

Definition 2.1.2 Let G be a group and M a (left) G-module. A map σ : G ˆ G Ñ M is

said to be a 2-cocycle1 if it satisfies the following relation:

σpg, hq ` σpgh, tq “ ηgσph, tq ` σpg, htq ,

for any g, h, t P G. We say that a 2-cocycle ρ : G ˆ G Ñ M is a 2-coboundary if there

exists a function f : GÑ M such that

ρpg, hq “ ηgfphq ´ fpghq ` fpgq

for any g, h P G.

Notice that if M is a trivial (left) G-module (also we say “G acts trivially on M”),

i.e. ηgm “ m for any g P G and m P M, it follows that

σpg, hq ` σpgh, tq “ σph, tq ` σpg, htq

for any 2-cocycle σ and g, h, t P G. Similarly for a 2-coboundary ρ, we have: ρpg, hq “

fphq ´ fpghq ` fpgq for any g, h P G.

Definition 2.1.3 Let G be a group and M a G-module. We define

Z2
pG,Mq “ tall the 2-cocycles σ : Gˆ GÑ Mu , and

B2
pG,Mq “ tall the 2-coboundaries ρ : Gˆ GÑ Mu .

Given σ, ρ P Z2pG,Mq, we define2

σ ` ρ : pg, hq ÞÑ σpg, hq ` ρpg, hq

1If we assume that M has a multiplicative notation, then σ P Z2pG,Mq if σpg, hqσpgh, tq “ pηg ¨

σph, tqqσpg, htq, and % P B2pG,Mq if %pg, hq “ pηg ¨fphqqfpgq
fpghq for some map f : GÑ M.

2If we assume that M has a multiplicative notation, then σρ : pg, hq ÞÑ σpg, hqρpg, hq for any g, h P G.
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for any g, h P G. In [39], Proposition 9.11 ensures that Z2pG,Mq is an abelian group,

and B2pG,Mq is a subgroup of Z2pG,Mq, with respect to this operation. Observe that,

since B2pG,Mq is a group, the inverse element of a 2-coboundary ρ defined by ρpg, hq “

ηgfphq ´ fpghq ` fpgq for some f : Gˆ GÑ M is given by

p´ρqpg, hq “ ´fpgq ` fpghq ´ ηgfphq .

Definition 2.1.4 The second cohomology group of G is defined as a quotient group

H2
pG,Mq :“

Z2pG,Mq

B2pG,Mq
.

The elements of H2pG,Mq are denoted by rσs, where σ P Z2pG,Mq. Hence, rσs “ rρs

in H2pG,Mq if there exists ξ P B2pG,Mq such that σ “ ξ ` ρ.

Let us present some basic results, which relate the second cohomology group and

the orders of groups and subgroups. These results and some other facts can be found in

[7, 19, 25, 39, 46].

Theorem 2.1.5 (Theorem 6.14, [25]) Let G be a finite group and M a G-module. Ev-

ery element of H2pG,Mq has finite order, which is a divisor of |G|.

In [39], it is shown that (see Corollary 9.41) if M is a finitely generated G-module,

then H2pG,Mq is finite. Still in [39], it is proved (see Corollary 9.90) the following items:

i) There is an injection θ : H2pG,Mq ÝÑ
À

p H
2pGp,Mq, where Gp is a Sylow p-subgroup

of G, p is a prime divisor of |G|;

ii) If H2pGp,Mq “ t0u for all Sylow p-subgroups, then H2pG,Mq “ t0u.

Already in [46], it is proved (see Theorem 11.8.18) that if H E G with index rG : Hs “ m

coprime to the order of H, then H2pG,Mq – H2pH,MqG ‘ H2pG{H,MHq, where MH “

tm P M : ηhm “ m, @h P Hu, and H2pH,MqG “ tσ P H2pH,Mq : ηgσ “ σ,@g P Gu. It

is also proved there (see Theorem 12.1.3) that if H is a subgroup of G and M is an H-

module, then H2pG,HomZHpZG,Mqq and H2pH,Mq are isomorphic, where HomZHpZG,Mq

is the group of ZH-homomorphisms from ZG into M. This last result is known as Shapiro

Lemma (see Theorem 6.3.2 in [19]).
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The proposition below improves Exercise 6.10.3, in [25]. Roughly speaking, for all

λ P F, a field F contains n
?
λ iff F contains a root of the polynomial pλpxq “ xn ´ λ, i.e.

pλ has a solution in F. In particular, any algebraically closed field F contains n
?
λ for all

λ P F. Hence, we write γ “ n
?
λ to denote that γn “ λ.

Proposition 2.1.6 Let G be a finite group of order n, F a field such that n
?
λ P F for any

λ P F, and H2pG,F˚q the second cohomology group of G with coefficients in the multiplica-

tive group F˚, where G acts trivially on F˚. For any rγs P H2pG,F˚q, the representative

cocycle γ can be chosen to have values that are n-th roots of unity. Therefore, H2pG,F˚q

is finite.

Proof: Let us assume that H2pG,F˚q is a group with multiplicative notation. Let rσs P

H2pG,F˚q, where σ P Z2pG,F˚q is a 2-cocycle. Since G is a group of order n, by Theorem

2.1.5, it follows that rσsn is the neutral element of H2pG,F˚q, and so rσsn “ rσns “ r1s

which implies σn P B2pG,F˚q. Let f : GÑ F˚ be a map, and ξ P B2pG,F˚q a 2-coboundary

such that

ξpg, hq “
fpghq

fpgqfphq
and ξpg, hq “ σnpg, hq “ pσpg, hqqn

for any g, h P G. For each g P G, by hypothesis, it follows that n
a

fpgq P F˚, and thus,

we can consider the map f̂ : G Ñ F˚ defined by f̂pgq “ n
a

fpgq for any g P G. Put

ξ̂pg, hq “
f̂pgqf̂phq

f̂pghq
. It is not difficult to see that ξ̂ P B2pG,F˚q, and

pξ̂σpg, hqqn “ ξ̂npg, hqσnpg, hq “ pξpg, hqq´1σnpg, hq “ 1 (2.1)

for any g, h P G. Notice that ξ̂σ is an element of Z2pG,F˚q, and rξ̂σs “ rσs, since

ξ̂ P B2pG,F˚q. Consider now σ̂ “ ξ̂σ. By (2.1), for each g, h P G, it follows that σ̂pg, hq

is an n-th root of unit. Therefore, we have σ̂ is a representative of rσs which has values

that are n-th roots of the unit.

Finally, since F has only n roots of unit and G is a finite group, it follows that

H2pG,F˚q is a finite group. �

Notice that there exists at most nn2 possibilities for functions from G ˆ G into

tall n-th roots of unityu, and hence, under the assumptions of the previous proposition,

it follows that |H2pG,F˚q| ď nn
2 . But, by proof of the previous proposition and Proposition
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1.2.6, we can improve this estimate as follows

|H2
pG,F˚q| ď n

npn´1q
2

`1 ,

We have σpg, eq “ σpe, hq “ σpe, eq, and σpg, g´1q “ σpg´1, gq for any g, h P G. And

hence, being G “ te, x1, . . . , xn´1u, fix σpe, eq “ λ0 P F˚, and σpxi, xjq “ λij P F˚ for all

1 ď i ď j ď n´ 1. Thus, by definition of a 2-cocycle (see Definition 2.1.2), we have that

σpxi, xjq “
σpxj, pxixjq

´1qσpxi, x
´1
i q

σpxixj, pxixjq´1q
“
σpxj, pxixjq

´1qσpx´1
i , xiq

σppxixjq´1, xixjq
,

where we put g “ xi, h “ xj and t “ pxixjq
´1 in Definition 1.2.17, and we consider

that G acts trivially on F˚. Let us fix a choice for values of σpe, eq, and σpxi, xjq for all

1 ď j ď i ď n´ 1. Consequently, we can build the following table

σ e x1 ¨ ¨ ¨ xn´1

e n 1 ¨ ¨ ¨ 1

x1 1 n
. . . ...

...
...

... . . . 1

xn´1 1 n ¨ ¨ ¨ n

which represents the number of possibilities (possible combinations) for the function

σpg, hq, g, h P G.

2.2 Restriction resGH

In the previous section we present some results which relate the second cohomology

groups of G and its subgroups. Here, we study a way to ensure an existence of a surjective

homomorphism from H2pG,Mq onto H2pH,Mq, for a subgroup H of G. Here, to simplify

notation, we write gm :“ ηgm for any g P G and m P M.

Consider the pair pH,Mq, where H is a subgroup of a group G and M is a G-module.

Given an element g P G, we denote by cpgq the bijection

cpgq :“ pγg, fgq : pH,Mq ÝÑ pgHg´1,Mq

ph,mq ÞÑ pγgphq, fgpmqq
,
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where γg : h ÞÑ ghg´1 and fg : m ÞÑ g´1m. Observe that γg is an isomorphism of groups,

and fg is an isomorphism of abelian groups. This application is an action of G on pH,Mq,

called conjugation action. Note that for any h P H and m P M, we have:

fgpγgphqmq “ fgpghg
´1mq “ g´1ghg´1m “ hg´1m “ hfgpmq ,

In this case, we say that the pair pγg, fgq is a compatible pair.

It is well known (see §III.8 in [7], or §9.5 in [39], or §11.8 in [46]) that there exists

an isomorphism of groups

cpgq˚ : H2
pgHg´1,Mq ÝÑ H2

pH,Mq

induced by the conjugation map cpgq “ pγg, fgq. For more details how cpgq induces a

homomorphism, see §9.5 in [39].

Define a map from Gˆ H2pH,Mq to H2pgHg´1,Mq by

g ¨ σ “ pcpgq˚q´1
pσq P H2

pgHg´1,Mq , (2.2)

which is induced by the conjugation action of G on pH,Mq. Unless otherwise stated, we

denote by gσ the product defined in (2.2).

Now, by (2.2), H acts trivially on H2pH,Mq, and if H is a normal subgroup of G,

then the conjugation action of G on pH,Mq defined above induces an action of G{H on

H2pH,Mq. For more details, see §9.5 in[39], or §III.9 in [7]. More precisely, we have the

following result:

Proposition 2.2.1 (Corollaries 3.8.3 and 3.8.4, [7]) Let H be a subgroup of G. Then

the conjugation action of H on pH,Mq induces an action of H on H2pH,Mq, which is triv-

ial. In addition, if HCG and M is a G-module, then the conjugation action of G on pH,Mq

induces an action of G{H on H2pH,Mq.

Proposition 2.2.2 (Exercise 3.8.1, [7]) If H is central in G and M is an abelian group

with the trivial G-action, then G{H acts trivially on H2pH,Mq.

Other proofs of Propositions 2.2.1 and 2.2.2 can also be found in [39], written as

Lemma 9.82.
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Let us show now a relation between H2pH,Mq and H2pG,Mq for any subgroup H

of a group G. But firstly, we need some definitions.

Definition 2.2.3 Let H be a subgroup of a group G, M a G-module, i the inclusion map

from H into G, and 1M is the identity map on M. The pair pi, 1Mq is compatible, i.e.

1Mpiphqmq “ hm “ h1Mpmq for any h P H and m P M. The homomorphism induced by

the pair pi, 1Mq is denoted by resGH : H2pG,Mq ÝÑ H2pH,Mq and is called a restriction.

The above definition can be founded in [39], page 566.

It is well known that the restriction homomorphism is defined as follows: if σ :

G ˆ G ÝÑ M is a 2-cocycle, then σ restricted to H ˆ H is also a 2-cocycle, namely

σHphq :“ σphq for any h P H, and resGHprσsq “ rσHs in H2pH,Mq (see [46], §11.8, or [39],

§9.5).

Proposition 2.2.4 (Lemma 11.8.15, [46]) Let G be a group, H a subgroup of G and

M a G-module. If H C G, then

resGHpH
2
pG,Mqq Ď H2

pH,MqG ,

where H2pH,MqG “ tσ P H2pH,Mq : g ¨ σ “ σ, @g P Gu, and g ¨ σ is the action defined in

(2.2).

Another proof of the previous proposition is given in Corollary 9.83, [39].

Now, let us use the next proposition to define a homomorphism of H2pH,Mq to

H2pG,Mq, called corestriction (also called transfer). For more details about this homo-

morphism, see §III.9 in [7], or §9.6 in [39], or §11.8 in [46].

Proposition 2.2.5 Let H be a subgroup of finite index in a group G, and M a G-module.

There exists a homomorphisms of groups

coresGH : H2
pH,Mq ÝÑ H2

pG,Mq

satisfying

i) coresGHres
G
Hσ “ rG : Hsσ, for all σ P H2pG,Mq;

ii) If H C G, then resGHcores
G
Hρ “

ř

gPG{H gρ, for all ρ P H2pH,Mq,
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where gρ “ g ¨ ρ is the action defined in (2.2).

Proof: The existence of cores is ensured by Proposition 9.87 in [39] (see also §III.9 in [7]

or §11.8 in [46]). The properties i) and ii) are proved in Proposition (3.9.5), [7] (see also

Theorem 9.88 in [39], or Theorem 11.8.6 in [46]). �

The homomorphism cores in Proposition 2.2.5 is called a corestriction (or trans-

fer). Observe that Proposition 2.2.1 ensures that
ř

gPG{H gρ, for all ρ P H2pH,Mq is well

defined.

Suppose that M is a G-module. We say that λ P Z, λ ą 0, is invertible in M if

the multiplication by λ is an automorphism of M, i.e., the map given by

dλ : M ÝÑ M

m ÞÑ dλpmq “ m` ¨ ¨ ¨ `m
loooooomoooooon

λ´times

is an isomorphism of G-modules. In this case, by item i) in the previous proposition, if

rG : Hs ă 8 and rG : Hs is invertible in M, then resGH is an injective map. Let us show

now that, under suitable conditions, resGH is surjective.

Corollary 2.2.6 If rG : Hs ă 8, H is central in G, and M is an abelian group with the

trivial G-action, then resGHcores
G
Hρ “ rG : Hsρ for all ρ P H2pH,Mq. In addition, if rG : Hs

is invertible in M, then resGH is a surjection from H2pG,Mq into H2pH,Mq.

Proof: Since H is central in G, it follows that H C G and, by item ii) in Proposition

2.2.5, resGHcoresGHρ “
ř

gPG{H gρ for all ρ P H2pH,Mq. On the other hand, since G{H acts

trivially on H2pH,Mq (Proposition 2.2.2), it follows that

ÿ

gPG{H

gρ “
ÿ

gPG{H

ρ “ rG : Hsρ , ρ P H2
pH,Mq .

Therefore, resGHcoresGHρ “ rG : Hsρ for all ρ P H2pH,Mq.

Suppose now that rG : Hs is invertible in M. Fixed σ P H2pH,Mq, we have

d´1
rG:Hspσpa, bqq P M for any a, b P H. Consider the map

ξ :“ d´1
rG:Hsσ : pa, bq ÞÑ d´1

rG:Hspσpa, bqq ,
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from H ˆH to M. Since G{H acts trivially on H2pH,Mq and any 2-cocycle satisfies the

equality in Definition 2.1.2, we have

ξpa, bq ` ξpab, cq “ ξpb, cq ` ξpa, bcq ,

for any a, b, c P H, since M is an abelian group, and so d´1
rG:Hs is a homomorphism of

groups. Hence, it follows that d´1
rG:Hsσ “ ξ P H2pH,Mq. From the first part of this proof,

it follows that

resGHcores
G
Hξ “ rG : Hsξ “ rG : HsrG : Hs´1σ “ σ ,

and so σ “ resGHpcores
G
Hξq P res

G
H pH

2pG,Mqq. Therefore, resGH is surjective. �

Let H be a central subgroup of G, and M an abelian group. Observe that when

M is a multiplicative group, then the last result means that resGHcores
G
Hρ “ ρrG:Hs for

all ρ P H2pH,Mq, and in the case when rG : Hs is invertible in M, then we have that

d´1
rG:Hspρpa, bqq “

rG:Hs
a

ρpa, bq P M for any a, b P G. In particular, when M “ F˚ is the

multiplicative group of a field F, where G acts trivially on M, then p “ rG : Hs invertible

in F means that p
?
λ P F for any λ P F.

Now. by Propositions 2.2.5 and 2.2.6, it follows that

|H2
pH,Mq| “ |resGH

`

H2
pG,Mq

˘

| ,

when rG : Hs is invertible in M. We have

trσHs : rσs P H2
pG,Mqu Ď H2

pH,Mq . (2.3)

The previous corollary gives enough conditions to ensure the equality in (2.3), since

resGH pH
2pG,Mqq Ď H2pH,Mq. Thus, we have the following result.

Corollary 2.2.7 Let H be a central subgroup of G, rG : Hs ă 8, and M an abelian group

with the trivial G-action. If rG : Hs is invertible in M, then

H2
pH,Mq “ resGH

`

H2
pG,Mq

˘

.

Proof: By Corollary 2.2.6, it follows that H2pH,Mq Ď resGH pH
2pG,Mqq. Therefore, the
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result follows, since by definition resGH pH
2pG,Mqq Ď H2pH,Mq. �

The previous corollary means that, under the assumptions of Corollary 2.2.7, given

rσs P H2pH,Mq, there exists rξs P H2pG,Mq such that ξH “ σ. Therefore,

H2
pH,Mq “

 

rξHs : ξ P Z2
pG,Mq

(

.

In particular, given σ P Z2pH,Mq, there exists ξ P Z2pG,Mq such that ξH “ σ.

Consider a finite abelian group G, and a field F. Suppose that G acts trivially on

F˚. If F is algebraically closed, by Corollary 2.2.7, for any subgroup H of G, we have that

H2
pH,F˚q “ resGH

`

H2
pG,F˚q

˘

.

In particular, by Proposition 2.1.6, if |G|=n, then H2pG,F˚q is finite, and H2pG,F˚q “

trσ1s, . . . , rσrsu, where σi P Z2pG, n
?

1Fq, i.e. pσipg, hqqn “ 1F for any g, h P G, and i “

1, . . . , r.
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CHAPTER 3

GRADED RINGS WITH THE NIL

NEUTRAL COMPONENT

In this chapter, we study a concrete case of Theorem 1.4.12 and we have answered

the following question: what can we say about R when Re is nil/nilpotent, where R is

an associative ring with an S-grading, S is a monoid and e its neutral element?

Therefore, we consider an associative ring with a finite grading by a left cancella-

tive monoid, and we prove that if its neutral component is nil and f-commutative, then

the whole ring is also nil. Among other results, we have given various counterexamples

showing that our hypotheses are necessary. Consequently, using Nagata-Higman Theo-

rem, we have exhibited some important applications of our results (see Theorem 3.3.3 and

Corollary 3.3.4). Besides that, we have exhibited a considerable relation between graded

rings and Köthe’s Problem (see Theorem 3.3.7).

3.1 Graded rings with the nil neutral component

Let S be a left cancellative monoid, i.e. gh “ gt implies h “ t for any g, h, t P S.

Let R be an associative ring with a finite S-grading Γ. In this chapter, we have studied an

important class of rings: nil rings. Our principal goal in this chapter is to present some

results which are direct implications of the case "Re is nilpotent" or "Re is nil", where

e is the neutral element of S. Here, we are interested in studying associative rings with
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78 3. Graded Rings with the Nil Neutral Component

an S-grading, whose neutral component is nil. We also we interested to find conditions

providing the nilpotency of the whole ring R. In this case, we have given some upper

bounds for ndpRq, the nilpotency index of R. Unless otherwise stated, R is an associative

ring, and S is a left cancellative monoid, with the neutral element e.

3.2 Main Results

In this section, we present some important results concerning S-graded rings with

the nil neutral component. Unless otherwise stated, in this section we denote by R an

associative ring with an S-grading given by Γ : R “
À

gPSRg, where S is an arbitrary left

cancellative monoid. Observe that any group is a left cancellative monoid. Thus, all the

results here presented are valid for rings graded by groups. We also assume that Γ has a

finite support, namely |SupppΓq| “ d ă 8.

LetR be an S-graded ring. Note that to prove thatR is nil/nilpotent, it is sufficient

to analyse only products of its homogeneous elements. In fact, given a1, a2, . . . , ak P R,

we can write ai “
řd
j“1 aigj , where aigj P Rgj and SupppΓq “ tg1, . . . , gdu. Hence, we have

a1a2 ¨ ¨ ¨ ak “

˜

d
ÿ

j1“1

a1gj1

¸˜

d
ÿ

j2“1

a2gj2

¸

¨ ¨ ¨

˜

d
ÿ

jk“1

akgjk

¸

(3.1)

“

d
ÿ

j1,j2,...,jk“1

a1gj1
a2gj2

¨ ¨ ¨ akgjk .

Therefore, without loss of generality we study only the products of homogeneous elements

in the grading of R.

Remark 3.2.1 Let a1, a2, . . . , an P R be homogeneous elements. Note that if degpaiq R

SupppΓq for some i “ 1, . . . , n, then a1a2 ¨ ¨ ¨ an “ 0. Moreover, put degpaiq “ gi for i “

1, 2, . . . , n, and consider the set Λpg1,...,gnq :“ tgigi`1 ¨ ¨ ¨ gi`m : i “ 1, . . . , n, 0 ď m ď n´ iu.

If Λpg1,...,gnq Ę SupppΓq, then a1a2 ¨ ¨ ¨ an “ 0, since R is an associative ring. Therefore, if

a1a2 ¨ ¨ ¨ an ‰ 0 with a1 P Rg1 , a2 P Rg2 , . . . , an P Rgn, then Λpg1,...,gnq Ď SupppΓq.

Recall that SupppΓq “ d ă 8. Observe that if g P SupppΓq, then either pRgq
d`1 “

t0u or e P SupppΓq, where e is the neutral element of S. In fact, suppose that e R

SupppΓq. By contradiction, suppose also that there exist a1, a2, . . . , ad`1 P Rg such that

a1a2 ¨ ¨ ¨ ad`1 ‰ 0. Hence, tg, g2, . . . , gd`1u Ă SupppΓq, since R is an associative ring. But
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|SupppΓq| “ d, and thus, there exist 1 ď l ă t ď d ` 1 such that gt “ gl, and hence,

gt´l “ e R SupppΓq, because S is a left cancellative monoid, where 1 ď t´l ď d. From this,

we obtain a contradiction. Therefore, for any g P SupppΓq, it follows that pRgq
d`1 “ t0u

when e R SupppΓq.

The following result ensures that any S-graded non-nilpotent ring has necessarily

some nonzero homogeneous element of degree e.

Proposition 3.2.2 Let R be a ring with a finite S-grading Γ, where S is a left cancellative

monoid. If Re “ t0u, then Rd`1 “ t0u, where d “ |SupppΓq|.

Proof: Suppose that e R SupppΓq, and write n :“ d ` 1. We will show that Rn “ t0u.

For this purpose, it is sufficient to prove that a1a2 ¨ ¨ ¨ an “ 0 for all homogeneous elements

a1, a2, . . . , an P R (see (3.1)).

By contradiction, suppose that there exist homogeneous elements a1, a2, . . . , an P R

such that a1a2 ¨ ¨ ¨ an ‰ 0. Put degpaiq “ gi for i “ 1, . . . , n, and define Λ :“ Λpg1,g2,...,gnq (as

in Remark 3.2.1). Hence, by Remark 3.2.1, we have Λ Ď SupppΓq, and since |SupppΓq| “ d,

it follows that |Λ| ď d ă n. Notice that tg1, g1g2, . . . , g1g2 ¨ ¨ ¨ gnu Ď Λ, and hence, we

conclude that there exist 1 ď l ă t ď n such that

g1g2 ¨ ¨ ¨ gl “ pg1g2 ¨ ¨ ¨ glqgpl`1q ¨ ¨ ¨ gt.

Thus, since S is left cancellative, we conclude that e “ gl`1 ¨ ¨ ¨ gt P Λ Ď SupppΓq. This

contradicts our assumption. Therefore, we prove that a1a2 ¨ ¨ ¨ an “ 0 for all homogeneous

elements a1, a2, . . . , an P R, and hence, by (3.1), we conclude that Rn “ t0u. Conse-

quently, R is nilpotent of index at most n “ d` 1. �

Besides ensuring that any non-nilpotent S-graded ring has a nonzero neutral ho-

mogeneous element, the previous proposition provides an upper bound for the nilpotency

index ndpRq, when R is an S-graded ring with a finite support, whose neutral component

is zero. The following example exhibits a nilpotent ring whose nilpotency index is not less

than that predicted by Proposition 3.2.2.

Example 3.2.3 Let F be an arbitrary field and n P N, n ą 1. Consider R “ SUTnpFq,

the ring of the strictly upper triangular matrices of order n ˆ n over F. The family of

subspaces pRγqγPZn, where Rγ “ spanFtEij : j ´ i “ γu, defines a Zn-grading on R (called

De França, A.M.D. June 28, 2019 Mat – UnB



80 3. Graded Rings with the Nil Neutral Component

an elementary Zn-grading corresponding to p0, 1, . . . , n´ 1q), namely Γ. It is easily

seen that SupppΓq “ Zn ´ t0̄u and ndpRq “ n “ |SupppΓq| ` 1. Therefore, we conclude

that the previous proposition provides a good upper bound for the nilpotency index of graded

rings (with a finite support) whose neutral component is zero.

On the other hand, the following example shows that the "finite support" condition

is required, in particular.

Example 3.2.4 Consider the ring R “ Rrxs of all the real polynomials in one variable.

We have that R is naturally Z-graded with the infinite support. Now, consider the subset

R̃ “ tppxq P R : pp0q “ 0u of R. Notice that R̃ is a Z-graded ring (with the Z-grading

induced by the Z-grading of R) such that R̃0 “ t0u, but its support is not finite and

pR̃qn ‰ t0u for all n P N, since xn P R̃n.

In the proof of the previous proposition, we have used combinatorial arguments.

Evidently, the techniques used in Proposition 3.2.2 can be extended to answer the following

question: "what can we say about R when Re is nil?". Thus, one of the most natural

question is the following:

Problem 3.2.5 Given an S-graded ring R with a finite support, does Re being nil imply

that R is nil?

Below we present some results concerning this question. Before it, observe that

the following example ensures the existence of an S-graded ring with an infinite support,

which is not nil, although its neutral component is nil, and hence, a problem similar to

Problem 3.2.5 for infinite support is not valid.

Example 3.2.6 (Theorem 2.7, [42]) For every countable field K there is an associative

nil K-algebra N such that the polynomial ring in one indeterminate over N (which is

naturally Z-graded with the neutral component equal to N) is not nil.

An S-graded ring R is called S-nil if all its homogeneous components are nil, i.e. for

any g P S, we have that any x P Rg is nilpotent. Analogously, R is called S-nilpotent if for

each g P S there exists ng P N such that a1ga2g ¨ ¨ ¨ angg “ 0 for any a1g, a2g, . . . , angg P Rg.

Notice that if the support of S is finite and R is S-nilpotent, then necessarily there exists
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n P N such that the product of any n homogeneous elements of the same homogeneous

degree is zero.

Let S be a monoid. Given an element g P S ´ teu, if there exists an m P N such

that gm “ e, then we say that the order of g in S is the smallest number n P N such that

gn “ e, and in this case we denote opgq “ n. If there is not m P N such that gm “ e, then

we say that g has infinite order, and we denote opgq “ 8. Note that when S is finite and

S is a left cancellative monoid, we have that all the elements of S have finite orders.

Proposition 3.2.7 Let S be a left cancellative monoid and R a ring with an S-grading

Γ of finite support, namely |SupppΓq| “ d. Suppose that Re is a nonzero nil ring. Then

the following items are true:

i) R is an S-nil ring;

ii) Suppose Re is nil of bounded index, namely ndnilpReq “ s. Then:

1.
`

a1a2 ¨ ¨ ¨ akg
˘s
“ 0 for any g P SupppΓq, and any a1, a2, . . . , akg P Rg, where

kg :“ mintopgq, du;

2. there exists k P N such that pa1a2 ¨ ¨ ¨ akq
s
“ 0 for any homogeneous elements

a1, a2, . . . , ak of the same homogeneous degree (degpa1q “ ¨ ¨ ¨ “ degpakq);

3. R is S-nil of bounded index.

Proof: i) Firstly, since Re ‰ t0u, e P SupppΓq. Without loss of generality we can take

any g P SupppΓq´teu, since Re is nil by the claim. Put s “ mintopgq, du and consider the

subset β “ tg, g2, . . . , gsu of S. Notice that if β Ę SupppΓq, then as “ 0 for any a P Rg,

since R is an associative ring. For this reason, we can assume β Ď SupppΓq. It follows

that either gs “ e or e R β. In fact, e P β implies that gr “ e for some r P t1, . . . , su. By

definition of opgq, we have opgq ď r. Thus, r “ s and gs “ e, since s ď opgq and r ď s.

Note that e R β iff gr ‰ e for all 1 ď r ď s.

If gs “ e, then for any x P Rg, we have xs P Re, and hence, x is nilpotent, since

Re is nil. Otherwise, we have that e R β, and s “ d ă opgq. Hence, β “ SupppΓq, since

|β| “ s (all the elements of β are different). From this, it follows that e R SupppΓq in this

case, otherwise we would have opgq ď s, since S is left cancellative, that contradicts to

the claims.
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Anyway, we show that any element of Rg is nilpotent, for all g P S. Therefore, R

is S-nil.

ii-1) Since Re ‰ t0u, we have ndpReq ą 1. Fix any g P SupppRq. If g “ e, the

result is obvious. Assume that g ‰ e. Notice that gl R SupppΓq for some l P N implies that

pRgq
l “ t0u. Consider kg :“ mintopgq, du, where d “ |SupppΓq|. Take arbitrary elements

a1, a2, . . . , akg P Rg.

Consider γ “ tg, g2, . . . , gkgu. Let us show that either kg “ opgq or γ Ę SupppΓq.

Suppose that kg ‰ opgq, and hence, d “ kg ă opgq. Since kg ă opgq, it is easy to see

that e R γ, and all elements of the set γ are different, because S is left cancellative.

Then |γ| “ d “ |SupppΓq|, and for this reason, we can conclude that γ Ę SupppΓq, since

e P SupppΓq.

If kg “ opgq, then a1a2 ¨ ¨ ¨ akg P Re. If γ Ę SupppΓq, then there exists gl P

γ ´ SupppΓq, and consequently, a1a2 ¨ ¨ ¨ al “ 0, 1 ď l ď kg.

Therefore, we have shown that for any g P SupppΓq and any a1, a2, . . . , akg P Rg,

where kg “ mintopgq, |SupppΓq|u, we have either a1a2 ¨ ¨ ¨ akg P Re or a1a2 ¨ ¨ ¨ akg “ 0.

Thus, in any case, we conclude that
`

a1a2 ¨ ¨ ¨ akg
˘s
“ 0, since ndnilpReq “ s.

ii-2) By the arguments of (ii-1), it is sufficient to take k :“ lcmtkg : g P SupppΓqu,

since SupppΓq is finite.

ii-3) Let k be the integer defined in (ii-2). Given g P SupppΓq, we have that

k “ kgpg for some integer pg, where kg is the integer defined in (ii-1). Hence,

aks “ apkgpgqs “ akgpspgq “ pakgqspg “ ppakgqsqpg “ 0

for any a P Rg. Therefore, we conclude that bks “ 0 holds for any homogeneous element

b P R. The result follows. �

Notice that, when we assume that Re is nil, the previous proposition exhibits

consequences only for homogeneous components. From now on we will show more general

results, i.e. not only for homogeneous components.

Lemma 3.2.8 Let S be a left cancellative monoid and R be a ring with an S-grading Γ

with a finite support, |SupppΓq| “ d. For any integer r ą 1 and any homogeneous elements

a1, a2, . . . , ard P R, we have that either a1a2 ¨ ¨ ¨ ard “ 0 or there exist 0 ď s0 ă s1 ă ¨ ¨ ¨ ă
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sr ď rd satisfying

e “ degpas0`1 ¨ ¨ ¨ as1q “ degpas1`1as1`2 ¨ ¨ ¨ as2q “ ¨ ¨ ¨ “ degpasr´1`1 ¨ ¨ ¨ asrq. (3.2)

Proof: By Proposition 3.2.2, if e R SupppΓq, then Rd`1 “ t0u. From this, the result

follows, since d` 1 ď dr for all r ą 1 in N. Observe that in this case we always have the

first alternative.

Now, assume that e P SupppΓq. Let a1, a2, . . . , ard P R be homogeneous elements,

such that a1a2 ¨ ¨ ¨ ard ‰ 0. Let us show that there exist 0 ď s0 ă s1 ă ¨ ¨ ¨ ă sr ď rd such

that (3.2) holds. Put degpaiq “ gi for each i “ 1, 2, . . . , rd. For all 1 ď l ď k ď rd, define

bl,k “ alal`1 . . . ak, bk “ b1,k, and bl,l “ al. It is easy to see that

degpbl,kq “ degpalqdegpal`1q ¨ ¨ ¨ degpakq “ glgl`1 ¨ ¨ ¨ gk, (3.3)

for all 1 ď l ď k ď rd. Since a1a2 . . . ard ‰ 0, it follows that Λ :“ tdegpbl,kq : 1 ď l ď k ď

rdu “ Λpg1,g2,...,grdq is contained in SupppΓq (see Remark 3.2.1). Now, consider the subset

Λ̃ :“ tdegpbiq : i “ 1, 2, . . . , rdu of Λ, and notice that

|Λ̃| ď

$

&

%

d´ 1, if e R Λ̃

d, if e P Λ̃
, (3.4)

since Λ̃ Ď SupppΓq, and |SupppΓq| “ d. For each g P Λ̃, consider the integer λg :“ |ti :

degpbiq “ gu|, and assume λg “ 0 for any g R Λ̃. Take g0 P Λ̃ such that λg0 “ maxtλg : g P

Λ̃, g ‰ eu. Let us show that either λe ě r or λg0 ě r ` 1.

Firstly, note that ti : degpbiq “ gu X tj : degpbjq “ hu “ H for any g ‰ h, and

hence,

rd “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

gPΛ̃

ti : degpbiq “ gu

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

gPΛ̃

|ti : degpbiq “ gu| “
ÿ

gPΛ̃

λg . (3.5)

Then by (3.4), we have

rd “ λe `
ÿ

gPΛ̃´teu

λg ď λe `
ÿ

gPΛ̃´teu

λg0 ď λe ` pd´ 1qλg0 . (3.6)

If e R Λ̃, then λe “ 0, and hence, by (3.6), it follows that rd ď pd ´ 1qλg0 which
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implies that λg0 ą r.

Suppose now that e P Λ̃. Assume that λg ă pr ` 1q for any g P Λ̃ ´ teu. Hence,

λg0 ď r, and by (3.6), we have rd ď λe`pd´ 1qr, and thus, λe ě rd´pd´ 1qr “ r. From

this, we deduce that λg0 ă pr ` 1q implies λe ě r.

Therefore, we show that either λe ě r or there exists at least one g0 P Λ̃´teu such

that λg0 ě r ` 1.

Finally, suppose that λe ě r, and take 1 ď i1 ă ¨ ¨ ¨ ă ir ď rd such that e “

degpbi1q “ ¨ ¨ ¨ “ degpbirq. Hence, it follows that

bir “ a1a2 ¨ ¨ ¨ air

“pa1a2 ¨ ¨ ¨ ai1qpapi1`1qapi1`2q ¨ ¨ ¨ ai2q ¨ ¨ ¨ papir´1`1qapir´1`2q ¨ ¨ ¨ airq (3.7)

“bi1bpi1`1q,i2 ¨ ¨ ¨ bpir´1`1q,ir .

We deduce from (3.3) and (3.7) that e “ degpbi1q “ degpbpi1`1q,i2q “ ¨ ¨ ¨ “ degpbpir´1`1q,irq.

Thus, we obtain s0 “ 0, sj “ ij for j “ 1, . . . , r.

Assume now that λg0 ě r ` 1 for some g0 P Λ̃ ´ teu. Let us take 1 ď i1 ă

¨ ¨ ¨ ă ir ă ipr`1q ď rd such that g0 “ degpbi1q “ ¨ ¨ ¨ “ degpbirq “ degpbipr`1q
q. Similarly

to (3.7), we have bipr`1q
“ bi1bpi1`1q,i2 ¨ ¨ ¨ bpir´1`1q,irbpir`1q,ipr`1q

. From this, and by (3.3),

we conclude that degpbpi1`1q,i2q “ ¨ ¨ ¨ “ degpbpir´1`1q,irq “ degpbpir`1q,ipr`1q
q “ e, since

degpbilq “ degpbil`1
q “ g0, bil`1

“ bilbil`1,il`1
, i “ 1, . . . , r, and S is left cancellative.

Therefore, we obtain (3.2) for s0 “ i1, s1 “ i2, . . . , sr “ ir`1. �

Let us recall the notion of f-commutativity, defined in Definition 1.1.4.

Let us consider a semigroup S (that is, a set together with a binary operation from

SˆS to S which is associative), and an associative ring R. A left action of S on R is

a mapping ¨ : SˆR ÝÑ R satisfying

pλγq ¨ x “ λpγ ¨ xq and λ ¨ pxyq “ pλ ¨ xqy ,

for any λ, γ P S and x, y P R, it is called an action by semigroup.

Consider any application f : RˆRÑ S, and define the f-commutator of R by

ra, bsf “ ab´ fpa, bq ¨ ba ,
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for any a, b P R. Particularly, we can consider some concrete cases.

Example 3.2.9 Given any subring P of R, and any map f of RˆR to P , we have that

ra, bsf “ ab´ fpa, bqba ,

for any a, b P R, defines an f-commutator of R.

Example 3.2.10 Given any ring R, we have that Z acts on the left of R naturally,

assuming that

λa “ a` ¨ ¨ ¨ ` a
looooomooooon

λ´times

, γa “ p´γqp´aq “ p´aq ` ¨ ¨ ¨ ` p´aq
loooooooooomoooooooooon

p´γq´times

, and 0a “ 0a ,

for any a P R and λ, γ P Z, with λ ą 0 and γ ă 0. We can consider for each λ P Z

the mapping λ satisfying λpa, bq “ λ for any a, b P R, and hence, the λ-commutative

r , sλ is well defined. In particular, for λ “ 1, take 1pa, bq “ 1 for any a, b P R, and

thus, the 1-commutator r , s1 is given by ra, bs1 “ ab ´ 1 ¨ ba “ ab ´ ba “ ra, bs, and so

r , s1 “ r , s. On the other hand, when λ “ 0, take 0pa, bq “ 0 for any a, b P R, and

hence, the 0-commutator r , s0 is given by ra, bs0 “ ab ´ 0 ¨ ba “ ab, and so r , s0 is the

product of R.

Definition 3.2.11 A an associative ring R is called a f-commutative ring if there

exist a semigroup S that acts on the left of R, and a mapping f : RˆR ÝÑ S such that

ra, bsf “ 0 for any a, b P R, then R is said to be f-commutative.

Example 3.2.12 Given any ring R, we have that R is 1-commutative iff R is commu-

tative. Also, R is 0-commutative iff R has the trivial product.

Let us denote by Υ the class of all f-commutative rings.

In particular, all commutative rings, anticommutative rings, and the nilpotent

rings of index 2 belong to the class Υ. An interesting question is whether every ring is

f-commutative for some f. To answer this question, we need some tools. In fact, Example

3.2.23 gives a ring, which is not f-commutative for any f. In general, if for any a, b P R,

the equation xba “ ab has a solution in some semigroup S, which acts on R from the

left, then R belongs to Υ.
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Remark 3.2.13 Under the conditions of Lemma 3.2.8, consider any integer r ą 1. Let

0 ď s0 ă s1 ă ¨ ¨ ¨ ă sr ď rd be integers such that (3.2) holds. Consider the set ξ “ ti P

t1, . . . , ru : si ´ si´1 ą 2du. We have

rd “ s0 `

r
ÿ

i“1

psi ´ si´1q ` prd´ srq ě
r
ÿ

i“1

psi ´ si´1q

ě
ÿ

iPξ

psi ´ si´1q ě
ÿ

iPξ

p2d` 1q ě |ξ|p2d` 1q .

(3.8)

Consider the integer r̂ P Z, r̂ ě 1, such that r P t2r̂, 2r̂ ` 1u. Observe that si ´ si´1 ď 2d

for at least r̂ ` 1 integers i P t1, . . . , ru, that is, r ´ |ξ| ě r̂ ` 1. In fact, firstly suppose

r “ 2r̂. Let us show that |ξ| ă r̂. By contradiction, suppose that |ξ| ě r̂ ě 1. By (3.8), it

follows that

rd ě |ξ|p2d` 1q ě r̂p2d` 1q ě 2r̂d` r̂ ě rd` 1 ,

and hence, we obtain a contradiction.

Now, suppose r “ 2r̂` 1. By contradiction, assume that |ξ| ě r̂` 1 ě 1. By (3.8),

we have that

rd ě |ξ|p2d` 1q ě pr̂ ` 1qp2d` 1q

ě 2r̂d` r̂ ` 2d` 1 “ p2r̂d` dq ` 1` r̂ ` d

ě rd` 1` r̂ ` d ě rd` 1 ,

which is impossible. Therefore, we conclude that r ´ |ξ| ě r̂ ` 1, for any integer r P

t2r̂, 2r̂ ` 1u, for any integer r̂ ě 1.

Let us use the previous remark to prove that any ring with a finite S-grading is nil

if its neutral component is nil and f-commutative.

Suppose thatR is an f-commutative ring. Consider any monomialsm1,m2,m3 P R

(i.e. mi is the product of elements of R). For any x, y, z, t P R, we have

xm1ym2zm3t “ pfpx,m1qm1qxym2zm3t

“ pfpx,m1qm1qpfpxy,m2qm2qxyzm3t

“ pfpx,m1qm1qpfpxy,m2qm2qpfpxyz,m3qm3qxyzt,

(3.9)
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where fpx,m1qm1, fpxy,m2qm2, fpxyz,m3qm3 P R. We can write also

xm1ym2zm3t “ xpfpm1, yqyqm1m2zm3t

“ xpfpm1, yqyqpfpm1m2, zqzqm1m2m3t,
(3.10)

where fpm1, yqy, fpm1m2, zqz P R. We will use p3.9q and p3.10q to prove Theorems 3.2.14

and 3.2.19.

Theorem 3.2.14 Let S be a left cancellative monoid with the neutral element e, and R

an S-graded ring with a finite support Γ. If Re is nil and f-commutative, then R is nil.

In addition, if Re is nil of bounded index, then R is nil of bounded index.

Proof: Let Γ : R “
Àd

i“1 Rgi be an S-grading on R with SupppΓq “ tg1, g2, . . . , gdu Ď S.

Assume that Re is an f-commutative nil ring. If e R SupppΓq, by Proposition 3.2.2, it

follows that Rd`1 “ t0u, and the result follows.

Assume now that e P SupppΓq. Let a “
řd
i“1 agi P R be an arbitrary element, with

agi P Rgi . Let us show that a is nilpotent, i.e. there exists n P N such that an “ 0. By

(3.1), it is sufficient to consider only the products of n homogeneous components of a.

Consider the set

Λ “ tb1b2 ¨ ¨ ¨ bk : 1 ď k ď 2d, b1, . . . , bk P tag1 , . . . , agduu ,

which is finite, and its subset Λ̃ “ tb P Λ : degpbq “ eu. By Lemma 3.2.8, for any

b1, b2, . . . , b2d P tag1 , . . . , agdu, we have that b1b2 ¨ ¨ ¨ b2d “ 0 or there exist 0 ď s0 ď s1 ď

s2 ď 2d such that e “ degpbs0`1 ¨ ¨ ¨ bs1q “ degpbs1`1 ¨ ¨ ¨ bs2q. In this last case, we have

that pbs0`1 ¨ ¨ ¨ bs1q, pbs1`1 ¨ ¨ ¨ bs2q P Λ̃. Thus, if b1b2 ¨ ¨ ¨ b2d ‰ 0 for some b1, b2, . . . , b2d P

tag1 , . . . , agdu, then Λ̃ ‰ H. We have that Λ̃ contains all elements of the neutral degree

formed by the products of at most 2d elements of the set tag1 , . . . , agdu. Note that Λ̃ is

contained in Re. Hence, since Λ̃ is finite and Re is nil, we can take r “ mintm P N : bm “

0, @b P Λ̃u. Put n “ r|Λ̃|, and fix any b1, b2, . . . , b2nd P tag1 , . . . , agdu. Let us show that the

monomial m “ b1b2 ¨ ¨ ¨ b2nd is equal to zero.

To obtain a contradiction, suppose that m ‰ 0. By Lemma 3.2.8, since m ‰ 0,

there exist 0 ď s0 ă s1 ă ¨ ¨ ¨ ă s2n ď 2nd such that

c1 “ bs0`1 ¨ ¨ ¨ bs1 , c2 “ bs1`1bs1`2 ¨ ¨ ¨ bs2 , . . . , c2n “ bsp2n´1q`1bsp2n´1q`2 ¨ ¨ ¨ bs2n P Re . (3.11)
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By Remark 3.2.13, it follows that there exist i1, . . . , in P t1, . . . , 2nu such that sij´sij´1 ď

2d for all j P t1, . . . , nu, and hence,

c̃1 “ pbsi1´1`1 ¨ ¨ ¨ bsi1 q, c̃2 “ pbsi2´1`1 ¨ ¨ ¨ bsi2 q, . . . , c̃n “ pbsin´1`1 ¨ ¨ ¨ bsin q P Λ̃ .

Observe that c̃k “ cik for all k “ 1, . . . , n.

Since c̃1, . . . , c̃n P Λ̃, and n “ r|Λ̃|, where Λ̃ is a finite set, it follows that there

exist 1 ď j1 ă j2 ă ¨ ¨ ¨ ă jr ď n such that c̃j1 “ c̃j2 “ ¨ ¨ ¨ “ c̃jr “ c P Λ̃, and thus,

c̃j1 c̃j2 ¨ ¨ ¨ c̃jr “ cr “ 0. From this, by (3.9), (3.10) and (3.11), since Re is f-commutative,

it follows that

m “ b1 ¨ ¨ ¨ b2nd “ b1 ¨ ¨ ¨ bs0pc1c2 ¨ ¨ ¨ c2nqbs2n`1 ¨ ¨ ¨ b2nd

“ pb1 ¨ ¨ ¨ bs0qpc1 ¨ ¨ ¨ ci1´1qc̃1pci1`1 ¨ ¨ ¨ ci2´1qc̃2 ¨ ¨ ¨ c̃npcin`1 ¨ ¨ ¨ c2nqpbs2n`1 ¨ ¨ ¨ b2ndq

“ pb1 ¨ ¨ ¨ bs0qm1c̃j1m2c̃j2m3 ¨ ¨ ¨mrc̃jrmr`1pbs2n`1 ¨ ¨ ¨ b2ndq ,

where m1 “ pc1 ¨ ¨ ¨ cij1´1q, m2 “ pcij1`1 ¨ ¨ ¨ cij2´1q, . . . , mr “ pcijr´1`1 ¨ ¨ ¨ cijr´1q, mr`1 “

pcijr`1 ¨ ¨ ¨ c2nq P Re. Put m̃1 “ pb1 ¨ ¨ ¨ bs0qm1, and m̃r`1 “ mr`1pbs2n`1 ¨ ¨ ¨ b2ndq, it follows

that

m “ m̃1c̃j1m2c̃j2m3 ¨ ¨ ¨mrc̃jrm̃r`1 “ m̃1pc̃j1m2c̃j2m3 ¨ ¨ ¨mrc̃jrqm̃r`1

“m̃1fpc̃j1 ,m2qm2fpc̃j1 c̃j2 ,m3qm3 ¨ ¨ ¨ fpc̃j1 c̃j2 ¨ ¨ ¨ c̃jr´1 ,mrqmrpc̃j1 c̃j2 ¨ ¨ ¨ c̃jrqm̃r`1 .

Since c̃j1 c̃j2 ¨ ¨ ¨ c̃jr “ 0, we have that m “ b1 ¨ ¨ ¨ b2nd “ 0. Evidently, this is a contradiction.

Thus, we have that b1 ¨ ¨ ¨ b2nd “ 0 if Λ̃ “ H, and also b1 ¨ ¨ ¨ b2nd “ 0 if Λ̃ ‰ H, for any

b1, . . . , b2nd P tag1 , . . . , agdu. Anyway, we conclude that R is a nil ring.

To prove the second part of the theorem it is sufficient to take r “ ndnilpReq and

to proceed as in first part of this proof. �

By the proof of the previous theorem, if R is an S-graded ring whose neutral

component is nil of bounded index, we can exhibit an upper bound for ndnilpRq. Indeed,

it is easy to see that ndnilpRq ď 2rd2

ˆ

d2d ´ 1

d´ 1

˙

, where ndnilpReq “ r ă 8 and d “

|SupppRq|, since |Λ̃| ď |Λ| ď d` d2 ` ¨ ¨ ¨ ` d2d “
dpd2d ´ 1q

d´ 1
.

Observe also that a proof similar to proof of Theorem 3.2.14 ensures a positive

answer to Problem 3.2.5 in the class of f-commutative rings. Beside that, Theorem 3.2.14
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provides that Problem 3.2.5 has a positive solution in the class of all associative rings with

a finite grading whose neutral component belongs to the class Υ of all the f-commutative

rings.

Notice that we can weaken the definition of an f-commutator and still obtain

that the previous theorem is true. In fact, it is sufficient to assume that a semigroup

S acts on R if pλγqx “ λpγxq for any λ, γ P S, and x P R, and hence, to define

ra, bsf “ ab´ pfpa, bqbqa for any a, b P R, where f is a map from RˆR into S. Therefore,

(3.9) and (3.10) are still true, and thus, Theorem 3.2.14 can also be verified in this case.

Theorem 3.2.15 Let S be a left cancellative monoid and R be a ring with a finite S-

grading Γ. If Re is nilpotent of index ndpReq “ r ě 1, then R is a nilpotent ring with

r ď ndpRq ď dr, where d “ |SupppΓq|, and r ą 1; or r ď ndpRiq ď d` 1 if r “ 1.

Proof: Suppose that Re is a nilpotent ring with ndpReq “ r ą 1. We will show that

a1a2 ¨ ¨ ¨ ard “ 0 for any homogeneous elements a1, a2, . . . , ard P R (see (3.1)), where d “

|SupppΓq|.

Taking into account Lemma 3.2.8, suppose that there exist 0 ď s0 ă s1 ă ¨ ¨ ¨ ă

sr ď rd satisfying

e “ degpas0`1 ¨ ¨ ¨ as1q “ degpas1`1as1`2 ¨ ¨ ¨ as2q “ ¨ ¨ ¨ “ degpasr´1`1 ¨ ¨ ¨ asrq.

Hence, pas0`1 ¨ ¨ ¨ as1q, pas1`1as1`2 ¨ ¨ ¨ as2q, . . . , pasr´1`1 ¨ ¨ ¨ asrq P Re, and thus, it follows

that pas0`1 ¨ ¨ ¨ asrq P pReq
r “ t0u. By this reason, we have that a1 . . . ard “ 0.

Thus, by Lemma 3.2.8, for any a1, . . . , ard P R we always have that a1 . . . ard “ 0.

Therefore, we conclude that R is a nilpotent ring with ndpRq ď dr.

Observe that for ndpReq “ r “ 1, the result holds by Proposition 3.2.2. �

It easily follows from the previous theorem that Problem 3.2.5 has positive solution

in the class of graded rings, whose support is finite and the neutral component is a

nilpotent ring.

Example 3.2.16 Let R be a commutative nilpotent F-algebra, whose nilpotency index is

ndpRq “ 2p, F an algebraically closed field and charpFq “ p ą 0. Consider the algebra
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given by

A “

$

’

’

’

&

’

’

’

%

¨

˚

˚

˚

˝

0 a12 a13

0 0 a23

0 0 pa33q
p

˛

‹

‹

‹

‚

: aij P R

,

/

/

/

.

/

/

/

-

.

Notice that A is a subalgebra of M3pRq, the F-algebra of 3 ˆ 3 matrices over R, and

A2 Ď SUT3pRq. Now, consider the F-algebra M such that

M “

$

&

%

¨

˝

A 03ˆ3

03ˆ3 A

˛

‚

,

.

-

.

We have that M is Z6-graded with the elementary grading Γ defined by p0, 1, . . . , 5q P

pZ6q
6, with support of order equal to 3. It is easy to see that pM0q

2 “ t0u, and hence,

by Theorem 3.2.15, it follows that M6 “ t0u. Observe that ndpMq “ 4, and hence,

ndpMq ď ndpM0q|SupppΓq| ă ndpM0q|Z6|, i.e the previous theorem provides an upper

bound better than if we look only at the order of the group.

Remark 3.2.17 Let R be an f-commutative finitely generated ring. Suppose that R is nil.

Let n P N be the smallest number of generators of R. Fix a set β of generators of R with

n elements. Let s P N be the largest nilpotency index of the elements of β. By p3.1q, p3.9q

and p3.10q, it is easy to check that a1a2 ¨ ¨ ¨ aps´1qn`1 “ 0 for any a1, a2, . . . , aps´1qn`1 P R.

Thus, we can see that R is a nilpotent ring with nilpotency index s ď ndpRq ď ps´1qn`1.

Let us consider some classes of graded rings, such that the condition "the neutral

component is nil" provides the nilpotency of the whole ring.

Example 3.2.18 Let R be a ring with a finite S-grading Γ such that Re is nil of index

2. Suppose that charpReq ‰ 2. Given a, b P Re, we have

0 “ pa` bq2 “ a2
` b2

` ab` ba “ ab` ba ,

and hence, ab “ ´ba for any a, b P Re. Now, considering any a, b, c P Re, it follows that

0 “ pab` cq2 “ pabq2 ` c2
` abc` cab “ abc` cab “ abc` pcaqb

“ abc´ pacqb “ abc´ apcbq “ abc´ ap´bcq “ 2abc ,
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and so abc “ 0, since charpReq ‰ 2. Therefore, pReq
3 “ 0. By Theorem 3.2.15, it follows

that R is a nilpotent ring with ndpRq ď 3d, where d “ |SupppΓq|.

Theorem 3.2.19 Let S be a left cancellative monoid and R a ring with a finite S-grading

Γ. If Re is nil, f-commutative and finitely generated, then R is a nilpotent ring. Moreover,

if ta1, . . . , anu is a generator set of Re and d “ |SupppΓq|, then s ď ndpRq ď dpps´1qn`1q,

where s “ mintm P N : ami “ 0, i “ 1, . . . , nu (s ą 1). If Re “ t0u (s “ 1), then

1 ď ndpRq ď d` 1.

Proof: In fact, by Remark 3.2.17, it follows that Re is nilpotent with s ď ndpReq ď r,

where r “ ps ´ 1qn ` 1, s and n are as in Remark 3.2.17. Thus, by Theorem 3.2.15, we

conclude that R is nilpotent with s ď ndpRq ď dr.

If Re “ t0u, then by Proposition 3.2.2, we have Rd`1 “ t0u. �

The following examples ensures that the assumptions of previous theorems are

necessary. The first three examples present graded rings or algebras, in which the neutral

component is not finitely generated. And the last example concerns the case Re is not

f-commutative.

Example 3.2.20 If Re can not be finitely generated, the previous theorem does not

hold. To see this, a counterexample is given below. Let R “ Zrx1, x2, x3, . . . s{I be the

quotient ring of the polynomial ring over Z in the variables x1, x2, x3, . . . by its ideal

I “ xx2
1, x

3
2, x

4
3, . . . y, with the trivial grading (Re “ R). We have that R is a commutative

ring which is nil but it is not nilpotent.

Example 3.2.21 (5. Remark (I), [33]) Let K be a field of characteristic p ‰ 0. Let

Ak be the algebra over K with the generating elements x1, . . . , xk with the fundamental

relations xpi “ 0, xixj “ xjxi for i, j “ 1, 2, . . . , k; and put A “
ř8

k“1 Ak. Then A is a

commutative algebra which is nil of bounded index, with the trivial grading for any left

cancellative monoid S, but A is not nilpotent.

Example 3.2.22 (Lemma 8(5.6), [38]) Let E be the infinite dimensional Grassmann

algebra over a field of characteristic p ‰ 0 and let us consider E˚ “ E ´ t1u, then E˚

satisfies the identity xp ” 0, i.e. E˚ is nil of degree p. We have that E˚ is a Z2-graded

ring, such that E0 is a nil commutative algebra (ring), but E˚ is not nilpotent.
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92 3. Graded Rings with the Nil Neutral Component

Example 3.2.23 In [18] (text in Russian), Example 1 exhibits a construction of a nil

ring which is finitely generated but it is not nilpotent (see also [8] Exercise 5, Section 6.3,

page 179, or [21], Chapter 8: The Golod-Shafarevitch Theorem). Then by Remark 3.2.14,

this ring can not be f-commutative for any semigroup S and map f . This ring with the

trivial grading also gives an example which shows the necessity of the condition "Re is

f-commutative" to be required in Theorem 3.2.19.

Corollary 3.2.24 Let S be a group and R be a ring with an S-grading Γ, not necessary

finite. Let H be a normal subgroup of S and Γ : R “
À

ḡPS{H Rḡ be the S{H-grading

induced by Γ, i.e. Rḡ “
À

hPH Rgh for any ḡ P G{H. Suppose Γ has the finite support of

order d. The following assumptions are true:

i) If H X SupppΓq “ H, then Rd`1 “ t0u;

ii) If Rē “
À

hPH Rh is f-commutative and nil (resp. nil of bounded index), then R is

nil (resp. nil of bounded index).

iii) Rē “
À

hPH Rh is nilpotent iff R is nilpotent.

Proof: Considering R with its S{H-grading Γ (induced by Γ), it is sufficient to apply

Proposition 3.2.2, Theorem 3.2.14 and Theorem 3.2.15. The result follows. �

It is important to note that, in general, the previous corollary ensures that for a

graded ring with a support not necessarily finite we can obtain the same results as in the

first part of this chapter. In addition, if support of Γ is finite, then d ď |SupppΓq|.

Observe nevertheless that, in Corollary 3.2.24, Rē “
À

hPH Rh, and hence, the

initial claim must be true for the major part of R.

3.3 Applications

This part of the 3rd chapter is important. We present here two considerable appli-

cations of the results of the previous section: one of them generalizes the Dubnov-Ivanov-

Nagata-Higman Theorem, and another one shows a relation between graded rings and

Köthe’s Problem.
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3.3.1 Graded Algebras and Dubnov-Ivanov-Nagata-Higman

Theorem

Let F be a field, S a left cancellative monoid, and R be an (associative) F-algebra

with a finite S-grading (grading of finite support).

Let us now introduce the Dubnov-Ivanov-Nagata-Higman Theorem. Under suit-

able conditions, it ensures the equivalence between nil algebras of bounded degree, and

nilpotent algebras. Besides that, an upper bound is given to the nilpotency index, de-

pending only on the nil index of the algebra. In 1953, Nagata proved that any nil algebra

of bounded degree over a field of characteristic zero is nilpotent. Afterwards, in 1956,

Higman generalized the result of Nagata to any field. Posteriorly, it was discovered that

this result was firstly published in [12], in 1943, by Dubnov and Ivanov.

Theorem 3.3.1 (Dubnov-Ivanov-Nagata-Higman, [12, 33, 22]) Let R be an asso-

ciative algebra over a field F. Assume charpFq “ p. Suppose xn ” 0 in R. If p “ 0 or

n ă p, then x1x2 ¨ ¨ ¨ x2n´1 ” 0 in R.

In [30], E. N. Kuzmin exhibited a lower bound for the nilpotency index of a nil

algebra of bounded index R over a field of characteristic zero. He showed that ndpRq ě
npn` 1q

2
, where n “ ndnilpRq. Later, in [36], Razmyslov proposed a smaller estimate

than that given by Higman in [22], the proof can be founded in [37].

Theorem 3.3.2 (Theorem 33.1, [37]) In any associative algebra over a field of char-

acteristic zero in which the identity yn ” 0 is valid, the identity x1x2 ¨ ¨ ¨ xn2 ” 0 is valid.

Finally, we deduce an immediate consequence from Theorem 3.2.15 and the pre-

vious theorem. Therefore, we have answered Problem 3.2.5 for S-graded algebras over a

field of characteristic zero, if Re is nil of bounded index.

Theorem 3.3.3 Let S be a left cancellative monoid and R an associative algebra over a

field F with an S-grading of finite support, charpFq “ p. Suppose Re is a nil algebra of

bounded index s “ ndnilpReq ą 1. If p “ 0 or p ą s, then R is a nilpotent algebra. In

addition, if d “ |SupppΓSq|, we have

i) if p ą s, then ndpRq ď dp2s ´ 1q;
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94 3. Graded Rings with the Nil Neutral Component

ii) if p “ 0 , then ndpRq ď dq where q “

$

&

%

2s ´ 1, if s “ 2, 3, 4

s2, if s ě 5
.

Is s “ ndpReq “ 1 then R is nilpotent for any field F, and ndpRq ď d` 1.

Proof: The first part follows directly from Theorem 3.3.1 and from Theorem 3.2.15.

Already the items i) and ii) follow from Theorem 3.3.2 and again from Theorem 3.3.1,

and also by 2n ´ 1 ď n2 in N iff n “ 1, 2, 3, 4.

The case s “ 1 follows from Theorem 3.2.15 (or Proposition 3.2.2). �

The corollary below is an immediate consequence of Theorem 3.3.3.

Corollary 3.3.4 Let S be a left cancellative monoid and R an associative algebra over a

field F with an S-grading of finite support. If Re is nil, charpFq ‰ 2, 3 and s P t2, 3, 4u,

then x1x2 ¨ ¨ ¨ xdp2s´1q ” 0 in A.

Note that the upper bound for the nilpotency index obtained in Theorem 3.2.19 can

be smaller for the case of a little number n of generators of Re than the limitation given

by Theorem 3.3.3. Nevertheless, in Theorem 3.3.3, Re is not necessarily f-commutative,

and the bound of the nilpotency degree does not depend on the number of generators of

R (inclusively Re can be infinitely generated).

3.3.2 Graded Rings and Köthe’s Problem

As in the previous sections, here, all the rings are associative, not necessarily with

unity.

In [29], Köthe conjectured that if a ring R has no nonzero nil ideals, then R has no

nonzero one-sided nil ideals. The question if this conjecture is true is known as Köthe’s

Problem, and is still unsolved in the general case. For some equivalences of this problem,

see [14], [43], [42]. In this section, we present a relation between graded rings and Köthe’s

Problem. Firstly, below, we exhibit some equivalences of Köthe’s Problem, which are the

basic tools for our study.

Theorem 3.3.5 (Some equivalences of Köthe Problem, [43]) The following assump-

tions are equivalent:
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i) If a ring has no nonzero nil ideals, then it has no nonzero one-sided ideals (Köthe’s

conjecture);

ii) The sum of two right nil ideals in any ring is nil;

iii) For every nil ring R, the ring of 2ˆ 2 matrices over R is nil;

iv) For every nil ring R, the ring of nˆ n matrices over R is nil.

Various other equivalences of Köthe’s Problem have been exhibited since 1930.

Also the problem was solved positively in some classes of rings, but no answer in the

general case. Now we present one more class of rings which issues a positive solution

Köthe’s Problem.

Corollary 3.3.6 The Köthe’s Problem has a positive solution for any f-commutative ring.

Proof: Let R be a nil f-commutative ring. Let us show that M2pRq is nil. We have

M2pRq “ M0 ‘ M1, with M0 “

$

&

%

¨

˝

R 0

0 R

˛

‚

,

.

-

, and M1 “

$

&

%

¨

˝

0 R

R 0

˛

‚

,

.

-

, defines the

elementary Z2-grading on M2pRq. Since

¨

˝

a 0

0 b

˛

‚

n

“

¨

˝

an 0

0 bn

˛

‚

for any a, b P R and n P N, we have thatM0 is nil. Suppose that f : RˆRÑ S, whereS is

a semigroup acting on the left of R. Then define a semigroup S̃ “

$

&

%

¨

˝

α 0

0 β

˛

‚: α, β P S

,

.

-

with the usual product of diagonal of matrices. Observe that S̃ acts on M0 from the left

naturally:
¨

˝

α 0

0 β

˛

‚

¨

˝

a 0

0 b

˛

‚“

¨

˝

αa 0

0 βb

˛

‚ ,

for any alpha, β P S, and a, b P R. Consider the map f̃ of M0 ˆM0 to M2pRq defined by

f̃

¨

˝

¨

˝

a 0

0 b

˛

‚,

¨

˝

c 0

0 d

˛

‚

˛

‚“

¨

˝

fpa, cq 0

0 fpb, dq

˛

‚ .

Observe that M0 is f̃-commutative, and hence, by Theorem 3.2.14, it follows that M2pRq
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is a nil ring. By Theorem 3.3.5, we conclude that for R the solution of Köthe’s Problem

is positive, and thus, the result follows. �

Let A be an associative algebra over a field of characteristic zero graded by a left

cancellative monoid S. If A is nil of bounded index, then, by Theorem 3.3.3, and similarly

to the proof of Corollary 3.3.6, it follows that the Köthe’s Problem has a positive solution

for A.

Now, suppose that Köthe’s Problem has a negative solution. By Theorem 3.3.5, it

follows that the 2ˆ2 matrices ringM2pRq is not a nil ring for some nil ringR. Considering

the elementary Z2-grading on A “ M2pRq, we have, that A0 – R ˆR is also nil. Thus,

we can conclude that A is a counterexample to Problem 3.2.5.

More general, let R be a ring and MnpRq be the ring of all nˆn matrices over R.

For each λ P Zn, consider the subgroups of pR,`q given by

Mλ “ tEijpaq PMnpRq : a P R, j ´ i “ λu .

We have that Γ : MnpRq “
À

λPZnMλ defines a Zn-grading on MnpRq. This grading is

called elementary Zn-grading on MnpRq. Notice that

M0 “ tE11pa1q ` E22pa2q ` ¨ ¨ ¨Ennpanq : a1, a2, . . . , an P Ru , (3.12)

and hence, M0 is nil iff R is nil.

In what follows, we show a relation between graded rings and Köthe’s Problem.

Theorem 3.3.7 A positive answer to Problem 3.2.5 implies that the Köthe’s Problem

has a positive solution. In particular, being S “ Zn, a positive solution of Problem 3.2.5

for S-graded rings implies Köthe’s conjecture.

Proof: Let us apply the item v) of Theorem 3.3.5 for the S-graded matrix ring A “MnpRq

over a ring R with the elementary S-grading defined above. The positive answer of

Problem 3.2.5 for the ring A gives the positive solution of Köthe’s problem for a nil ring

R. �

The previous theorem shows a connection between graded rings and Köthe’s Prob-

lem. We present below a question still unanswered in the general case.
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Problem 3.3.8 Are Köthe’s Problem and Problem 3.2.5 equivalent?

De França, A.M.D. June 28, 2019 Mat – UnB





CHAPTER 4

GRADED ALGEBRAS WITH THE

CENTRAL NEUTRAL COMPONENT

In this chapter, we study the variety of G-graded algebras over an algebraically

closed field of characteristic zero defined by G-graded polynomial identities rxpeq, ypgqs for

all g P G, where G is an abelian finite group.

On other words, here we exhibit results concerning to the variety VG of all G-

graded algebras whose neutral component is central, i.e. VG :“ varG
`

trxpeq, ypgqs : g P Gu
˘

.

We present some properties of algebras which belong to the variety VG, and in suitable

conditions, we give a description of VG, in the language of a carrier.

The first section also contains results concerning associative rings graded by a

two-sided cancellative monoid with the central neutral component.

4.1 Graded rings with the central neutral components

In this section, we present some general results involving associative rings graded

by a (two-sided) cancellative monoid, i.e. a monoid which satisfies gh “ th iff g “ t, and

h1g1 “ h1t1 iff g1 “ t1, for any g, g1, h, h1, t, t1 P S, whose neutral component is central. Here,

let us denote by S a cancellative monoid, R is an associative ring with an S-grading Γ.

Let us assume also that Γ has a finite support, namely |SupppΓq| “ d ă 8.

De França, A.M.D. June 28, 2019 Mat – UnB



100 4. Graded Algebras with the Central Neutral Component

Theorem 4.1.1 Let S be a cancellative monoid, and R an associative ring with a finite

S-grading Γ. If |SupppΓq| “ d and Re is central in R, then rx1, . . . , xd`1s ” 0 in R for

d P t1, 2, 3u.

Proof: Firstly, by Proposition 3.2.2, if Re “ t0u, then Rd`1 “ t0u. In particular,

rx1, . . . , xd`1s ” 0 in R in this case.

Assume that Re ‰ t0u. For d “ 1, we have R “ Re, and hence, if Re Ď ZpRq,

then R is commutative, i.e. rx1, x2s ” 0 in R.

Suppose d “ 2 and put SupppΓq “ te, gu, where g ‰ e, then, either g2 “ e or

g2 R SupppΓq, because S is cancellative. Anyway, pRgq
2 Ď Re. Given a, b, c P R, we can

write a “ ae ` ag, b “ be ` bg. Since Re Ď ZpRq, it follows that

ra, b, cs “ rae ` ag, be ` bg, cs “ rag, bg, cs “ rrag, bgs, cs “ 0.

Therefore, ra, b, cs “ 0 for any a, b, c P R.

Now, assume d “ 3, and put SupppΓq “ te, g, hu. Consider the elements gh, hg P S.

Observe that either hg “ gh “ e or hg, gh R SupppΓq, since S is cancellative. In fact, since

S is cancellative, we have gh, hg R th, gu. Hence, if hg P SupppΓq, then hg “ e, and hence,

hgh “ h, and by cancellation law, it follows that gh “ e. Similarly, gh P SupppΓq implies

gh “ hg “ e. Anyway, we have RgRh,RhRg Ď Re.

Given a, b, c P R, we can write a “ ae`ag`ah, b “ be`bg`bh, and c “ ce`cg`ch.

Hence, since Re Ď ZpRq and RgRh,RhRg Ď Re, we have that

ra, b, cs “ rae ` ag ` ah, be ` bg ` bh, cs “ rag ` ah, bg ` bh, cs

“ rag, bg, cs ` rah, bh, cs ` rah, bg, cs ` rag, bh, cs

“ rag, bg, cs ` rah, bh, cs “ rag, bg, ce ` cg ` chs ` rah, bh, ce ` cg ` chs

“ rag, bg, cg ` chs ` rah, bh, cg ` chs

“ rag, bg, cgs ` rag, bg, chs ` rah, bh, cgs ` rah, bh, chs

“ prag, bg, cgs ` rah, bh, chsq ` prag, bg, chs ` rah, bh, cgsq.
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Notice that

rag, bg, chs ` rah, bh, cgs “ ragbg ´ bgag, chs ` rahbh ´ ahbh, cgs

“ agpbgchq ´ pchagqbg ´ bgpagchq ` pchbgqag ` ahpbhcgq ´ pcgahqbh ´ ahpbhcgq ` pcgahqbh

“ pbgchqag ´ pbgchqag ´ pagchqbg ` agpchbgq ` pbhcgqah ´ bhpcgahq ´ pbhcgqah ` bhpcgahq

“ 0 .

Hence, ra, b, cs “ rag, bg, cgs` rah, bh, chs. Observe that g2 ‰ g and h2 ‰ h, by cancellation

law. If RgRg Ď Re (resp. RhRh Ď Re), i.e. g2 “ e or g2 R SupppΓq (resp. h2 “ e or

h2 R SupppΓq), then ra, b, cs “ rah, bh, chs (resp. ra, b, cs “ rag, bg, cgs) for any a, b, c P R.

Now, if RgRg Ď Rh (resp. RhRh Ď Rg), i.e. g2 “ h or g2 R SupppΓq (resp. h2 “ g

or h2 R SupppΓq), then g3 “ hg (resp. h3 “ gh) which is equal to e or does not belong

to SupppΓq, since gh, hg R th, gu. Consequently, we deduce that either pRgq
2 Ď Re or

pRgq
3 Ď Re, and either pRhq

2 Ď Re or pRhq
3 Ď Re, and thus, rag, bg, cgs, rah, bh, chs P Re

in any case. Therefore, ra, b, cs P Re for a, b, c P R, and thus, ra, b, c, ds “ 0 for any

a, b, c, d P R. The result follows. �

By Theorem 4.1.1, if S “ Z2 (resp. S “ Z3), then any S-graded ring R with

the central neutral component satisfies the polynomial identity rx1, x2, x3s “ 0 (resp.

rx1, x2, x3, x4s “ 0).

We exhibit below two counterexamples to the previous theorem for the case of the

support of R with more than 3 elements. Anyway, we show that Theorem 4.1.1 does not

work when d ě 4.

Example 4.1.2 Let G “ Z2 ˆ Z2, F be an arbitrary field, and M2pFq the algebra of

matrices of order 2 over F. Consider the G-grading on M2pFq given by M2pFq “Mp0,0q ‘

Mp0,1q ‘Mp1,0q ‘Mp1,1q, where

Mp0,0q “ spanF

$

&

%

¨

˝

1 0

0 1

˛

‚

,

.

-

, Mp1,1q “ spanF

$

&

%

¨

˝

1 0

0 ´1

˛

‚

,

.

-

,

Mp0,1q “ spanF

$

&

%

¨

˝

0 1

1 0

˛

‚

,

.

-

, Mp1,0q “ spanF

$

&

%

¨

˝

0 ´1

1 0

˛

‚

,

.

-

.

Notice that M2pFq satisfies the G-graded polynomial identities rxpeq, ypgqs for any g P G,
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where e “ p0, 0q is the neutral element of G, but rx1, x2, . . . , xns is not a (ordinary) poly-

nomial identity of M2pFq, for all n P N, since

rE12, E22, . . . , E22
loooooomoooooon

pn´1q´times

s “ E12 ‰ 0

for all n P N, where Eij is an elementary matrix.

Example 4.1.3 Consider A a Quaternion algebra over a field F, char ‰ 2, i.e. A “

ta1 ` bi ` cj ` dk : a, b, c, d P Fu “ F pi, j, kq, where i2 “ j2 “ k2 “ ´1, and ij “ ´ji “ k,

and 1 is the unity. We have that A has a natural Z2 ˆ Z2-grading. In fact, considering

Ap0,0q “ spanFt1u, Ap0,1q “ spanFtiu, Ap1,0q “ spanFtju and Ap1,1q “ spanFtku, we have

A “ Ap0,0q ‘ Ap0,1q ‘ Ap1,0q ‘ Ap1,1q .

Notice that Ap0,0q is central in A, but A is not a nilpotent algebra, since A is a divi-

sion algebra, and it is not a Lie nilpotent algebra, i.e. A does not satisfy the identity

rx1, x2, . . . , xns for all n P N, since ri, j, j, . . . , j
looomooon

pn´1q´times

s P tλi, λk : λ P t´2n´1, 2n´1uu.

From the example above, we can build, for all d ě 4, an S-graded ring with the

central neutral component and the support of grading of order d such that the polynomial

rx1, . . . , xd`1s ı 0 in A. In fact, consider the a Quaternion algebra A as in the previous

example. Now, suppose B “ Fx is a nilpotent algebra, such that x ‰ 0, and x2 “ 0.

Let G “ Z2 ˆ Z2 ˆ Z2. Consider now the algebra A1 “ A ˆ B (the direct product

of the algebras A and B), and the G-grading Γ1 on A1 given by pA1qp0,0,0q “ spanFt1u,

pA1qp0,1,0q “ spanFtiu, pA1qp1,0,0q “ spanFtju, pA1qp1,1,0q “ spanFtku, and pA1qp0,0,1q “ B. We

have that Γ has the support of order 5, and pA1qe is central in A1. Since A
G

ãÑ A1, it follows

that rx1, . . . , xns ı 0 in A1 for all n P N. In particular, rx1, . . . , x6s ı 0 in A1. By this

process, we can build a ring An which is not Lie nilpotent, such that An is pZ2q
n`2-graded

with support of order n` 4, and pAnqe is central in An. It is sufficient to consider, for any

n P N, the algebra An “ A ˆBn “ A ˆBˆ ¨ ¨ ¨ ˆB
loooooomoooooon

n´times

with pZ2q
n`2-grading Γn induced

by gradings of A and B. Since A
G

ãÑ An, it follows that An is not Lie nilpotent. Observe

that pAnqe is central in An, and |SupppΓnq| “ 4`n. Furthermore, our affirmation follows.
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Corollary 4.1.4 Let S be a group and R a ring with an S-grading Γ. Let P be a normal

subgroup of S, and Γ : R “
À

ḡPS{P Rḡ the S{P -grading induced by Γ. Suppose Γ has a

finite support of order d. If Rē “
À

pPP Rp Ď ZpRq and d P t1, 2, 3u, then rx1, . . . , xd`1s ”

0 in R.

Proof: Considering R with its induced S{P -grading Γ, by Theorem 4.1.1, it follows that

rx1, . . . , xd`1s ” 0 in R. �

It is important to note that Γ in the previous corollary is not necessarily a finite

S-grading.

4.2 The Variety VG

Let G be a finite group, F a field, and VG the variety of all G-graded associative F-

algebras with the central neutral component. Let A be a G-graded algebra which belongs

to VG. Hence, Ae is central in A, where e is the neutral element of G. In particular,

Ae is commutative, and so a PI-algebra. By Theorem 1.4.11 (or Theorem 1.4.12), we

conclude that A is a PI-algebra. From this, VG is a G-graded variety of PI-algebras, and

if G is a finite abelian group, F an algebraically closed field of characteristic zero, then

we can apply Theorems 1.2.20 and 1.4.13. We have that there exists a finite dimensional

Gˆ Z2-graded algebra A such that

VG
“ varGpE

G
pAqq :“ varGpT

G
pEG
pAqqq ,

where A “ B‘ J with

B “Mn1pFσ1rH1sq ˆ ¨ ¨ ¨ ˆMnkpF
σkrHksq, and J “ JpAq ,

where Hi E G ˆ Z2, σi P Z2pHi,F˚q, MnipFσirHisq is a subalgebra with a canonical ele-

mentary GˆZ2-grading defined by some ni-tuple pg1, . . . , gniq P pGˆZ2q
ni . Here, B is a

maximal semisimple GˆZ2-graded subalgebra of A, and J “ JpAq is the Jacobson radical

of A, which is a finite dimensional graded ideal.

Notice that TGpEGpAqq Ĺ TGpEGpJqq, since J Ď A is GˆZ2-graded, and in Chapter

3, we exhibit some results which ensure that Ae ‰ Je. Particularly, by Theorem 3.2.15, A
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104 4. Graded Algebras with the Central Neutral Component

is nilpotent when Ae “ Je, and consequently, EGpAq is nilpotent, but VG is not a nilpotent

variety, because FG belongs to VG. Therefore, we conclude that Be ‰ t0u, namely i P Be,

where i is the unity of B (see Sections 1.1 and 1.2 in Chapter 1).

In the next sections, we will study the variety VG, as well as some subvarieties of

VG.

4.3 On the A when Ae is central

In this section, let us consider a finite dimensional G-graded F-algebra A, whose

neutral component is central, for a finite abelian group G. This means that A is a G-

graded algebra which belongs to the variety VG. We assume also that the base field F is

algebraically closed of characteristic zero. In the results below, we use the following reason:

by Theorem 1.2.20, there exist k1, . . . , kp P N, H1, . . . , Hp E G, σ1 P Z2pH1,F˚q, . . . , σp P

Z2pHp,F˚q such that

A –G pMk1pFσ1rH1sq ˆ ¨ ¨ ¨ ˆMkppFσprHpsqq ‘ J ,

where J “ JpAq is the Jacobson radical of A. By Lemma 1.5.6 and Theorem 1.5.7, we can

write

A ”GPI A1 ˆ ¨ ¨ ¨ ˆ Ap ˆ J00 , (4.1)

where Ar “ Br ‘ Jr, Jr “ irJir and ir is the unity of Br, where Br “ MkrpFσrrHrsq. By

Theorem 1.5.12, we can assume that Bsi flG Bsj for all i ‰ j.

Fix r P t1, . . . , pu. Since pBrqe
G

ãÑ Ae and Ae Ď ZpAq, it follows that kr “ 1

for all r “ 1, . . . , p. In fact, since Eiiηe P pBrqe, we have that 0 “ rE11ηe, E1iηes “

σpe, eqpE1i ´ E1iE11qηe, which is only possible when i “ 1. Hence, Ar “ FσrrHrs ‘ Jr for

all r “ 1, . . . , p. Therefore, let us study the unitary algebras A “ FσrHs ‘ J.

Observe that by Theorem 1.2.13 and Example1.3.2, the immersion FσirHis
GˆZ2
ãÑ

Fσj rHjs can be expressed in terms of the partial order "ĺ", i.e. pHi, rσisq ĺ pHj, rσjsq.

More precisely, we have the next lemma.

Lemma 4.3.1 (Immersion Lemma) Let F be an algebraically closed field, G a group,

and H1, H2 two finite abelian subgroups of G. Consider two 2-cocycles σ1 P Z2pH1,F˚q

and σ2 P Z2pH2,F˚q, and two twisted group algebras B1 “ Fσ1rH1s and B2 “ Fσ2rH2s.
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4.3. On the A when Ae is central 105

Then B1
G

ãÑ B2 iff pH1, rσ1sq ĺ pH2, rσ2sq.

Proof: Firstly, suppose that H1 ď H2 and rσ1s “ rσ2sH1 . Hence, there exists some θ P

B2pH1,F˚q such that pσ2qH1 “ θσ1. By Theorem 1.2.13, it is immediate thatB1 – Fσ̃rH1s,

where σ̃ is the 2-cocycle of Z2pH1,F˚q defined by σ̃pg, hq “ θpg, hqσ1pg, hq “ σ2pg, hq for

any g, h P H1.

Observe that Fσ̃rH1s is a graded subspace of Fσ2rH2s, since H1 ď H2, and by defi-

nition of twisted group algebra. Let us now show that Fσ̃rH1s is an H2-graded subalgebra

of Fσ2rH2s. In fact, let us denote by "˚" the multiplication of Fσ2rH2s and by "‹" the

multiplication of Fσ̃rH1s. Given ηh, ηg P Fσ̃rH1s, it follows that

ηh ‹ ηg “ σ̃ph, gqηhg “ pθσ1qph, gqηhg “ θph, gqσ1ph, gqηhg “ σ2ph, gqηhg “ ηh ˚ ηg .

This shows that "˚" and "‹" are equal in Fσ2rH2s, and so we conclude that Fσ̃rH1s is an

H2-graded subalgebra of Fσ2rH2s. Hence, we have that B1
G

ãÑ B2, because B1 –G Fσ̃rH1s.

On other hand, suppose thatB1
G

ãÑ B2. Hence, by definition of " G
ãÑ" (G-immersion),

there exists a graded homomorphism ψ of B1 to B2 which is injective. Notice that

ψpηgq P pB2qg is different to zero for any g P H1, because ψ is injective. Hence,

H1 “ SupppΓB1q Ď SupppΓB2q “ H2. In particular, H1 ď H2. Since B1 –G impψq,

by Theorem 1.2.13, there exits σ̂ P Z2pH1,F˚q such that impψq “ Fσ̂rH1s, and rσ1s “ rσ̂s.

Now, observe that pσ2qH1 P Z
2pH1,F˚q, and Fσ2rH1s is a graded subalgebra of B2. Hence,

Fσ̂rH1s and Fσ2rH1s are graded subalgebras of B2. For any g, h P H1, we have

σ̂pg, hqηgh “ ηgηh “ σ2pg, hqηgh pin B2q.

Thus, σ̂ “ pσ2qH1 , that is, rσ̂s “ rσ2sH1 . From this, we conclude that rσ1s “ rσ2sH1 .

Therefore, we conclude that pH1, rσ1sq ĺ pH2, rσ2sq. The result follows. �

In the proof of Lemma 4.3.1, we ensures that Fσ̂rH1s and Fσ2rH1s are graded

subalgebras of Fσ2rH2s. Observe that Corollary 2.2.7 ensures that the restriction rσ2sH1

is unique, and hence, we must have rσ̂s “ rσ2sH1 in H2pH1,F˚q. This is another proof for

rσH1s “ rσ2sH1 in Lemma 4.3.1.

Observe that we can rewrite Theorem 1.5.12, for the case k1 “ ¨ ¨ ¨ “ kp “ 1.

Recall that if H, H̃ are subgroups of a group G, and σ P Z2pH,F˚q and σ̃ P
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Z2pH̃,F˚q, then pH, rσsq “ pH̃, rσ̃sq iff H “ H̃ and rσs “ rσ̃s (see Example 1.3.2).

Lemma 4.3.2 Let G be a finite abelian group, F an algebraically closed field with charpFq “

0, and A “ A1 ˆ ¨ ¨ ¨ ˆAp ˆ J00 a finite dimensional G-graded algebra, where Ai “ Bi ‘ Ji

are finite dimensional G-graded unitary algebras, where Bi “ FσirHis with Hi E G,

σi P Z
2pHi,F˚q, and Ji “ JpAiq is the Jacobson radical of Ai. If A P VG, then

A ”GPI Ã1 ˆ ¨ ¨ ¨ ˆ Ãq ˆ J̃00 , (4.2)

where Ãj “ B̃j ‘ J̃j are finite dimensional G-graded unitary algebras, with B̃j –G Bl,

for some l P t1, . . . , pu, and pHi, rσisq ‰ pHj, rσjsq for all i ‰ j. Moreover, Ã “ Ã1 ˆ

¨ ¨ ¨ ˆ Ãq ˆ J̃00 belongs to VG, and ndpJpÃeqq ď ndpJpÃqq ď |G|ndpJpÃeqq, where JpÃq “

J̃1 ˆ ¨ ¨ ¨ ˆ J̃q ˆ J̃00.

Proof: The first part is immediate from Corollary 1.5.9 and Lemma 4.3.1, similarly to

the proof of Theorem 1.5.12. Since Ã ”GPI A, we have that Ã P VG. It is clear that

J̃1 ˆ ¨ ¨ ¨ ˆ J̃q ˆ J̃00 is the major nilpotent ideal of Ã, since J̃00 is a finite dimensional $G-

graded nilpotent algebra (as in Theorem 1.5.12). Hence Ã is also finite dimensional. The

inequality ndpJpÃeqq ď ndpJpÃqq ď |G|ndpJpÃeqq follows of Theorem 3.2.15. �

Let A “ B ‘ J be an algebra of the list tÃ1, . . . , Ãqu in (4.2). We have that A

satisfies all the claims of Lemma 4.3.2, i.e. B “ FσrHs, H ď G, σ P Z2pH,F˚q, J is a finite

dimensional graded nilpotent ideal of A. Now, by Lemma 1.5.2, we have that J “ BN

for some G-graded vector space N Ď J, where N “ spanFtd1, . . . , dnu with diB “ Bdi,

where di’s are homogeneous elements. Moreover, if β “ tetah : h P Hu is the canonical

homogeneous basis of B, then dib “ γipbqbdifor any b P β, for some γipbq P F (see Remark

1.3.21).

Now, given a subgroup H of the a group GˆZ2, by Theorem 1.2.13, we have that

EGpFσrHsq –G EGpFγrHsq for any rσs “ rγs in H2pH,F˚q. Hence, we deduce that the

GT -ideal of graded identities of EGpFσrHsq does not depend on a representative element

of rσs P H2pH,F˚q. If F is an algebraically closed field, and G is a finite abelian group,

then the values of σ can be chosen in |G|
?

1 :“ tλ P F˚ : λ|G| “ 1u. In this sense, we have

the following result.
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Lemma 4.3.3 Let F be an algebraically closed field, G̃ a finite abelian group, and B “

FσrHs a G̃-graded simple finite dimensional algebra. If Ĥ is a subgroup of G̃ such that

H ď Ĥ, then there exists a G̃-graded simple finite dimensional algebra B̂ such B
G̃

ãÑ B̂,

and TG̃pB̂q Ď TG̃pBq, B̂ “ Fσ̂rĤs for some σ̂ P Z2pĤ,F˚q which extends σ. Moreover, if

charpFq “ 0 and G̃ “ Gˆ Z2, then varGpEGpBqq Ď varGpEGpB̂qq.

Proof: By Corollary 2.2.7, given σ P Z2pH,F˚q, there is σ̂ P Z2pĤ,F˚q such that σ̂pg, hq “

σ̂Hpg, hq “ σpg, hq for any g, h P H. Consider B̂ “ Fσ̂rĤs. By Lemma 4.3.1, it follows

that B G̃
ãÑ B̂. Consequently, TG̃pB̂q Ď TG̃pBq.

Therefore, assuming that G̃ “ G ˆ Z2, by Lemma 1.5.11, we can conclude that

varGpEGpAqq Ď varGpEGpÂqq. �

Remark 4.3.4 A good application of the previous lemma is given when H ď G ˆ t0u,

i.e. H – πpHq ˆ t0u, where "π" is the projection map π : G ˆ Z2 ÝÑ G defined by

πpg, λq “ g for any g P G and λ P Z2. Assume B “ FσrHs. Naturally, we have that H is

a subgroup of Gˆ t0u and, by Lemma 4.3.3, there is σ̂ P Z2pGˆ t0u,F˚q such that

varGpEG
pBqq Ď varGpEG

pFσ̂rGˆ t0usqq ,

where σ̂H “ σ. Notice that EGpFσ̂rG ˆ t0usq ”GPI Fσ̆rGs, where σ̆ P Z2pG,F˚q defined by

σ̆ph1, h2q “ σ̂pph1, 0q, ph2, 0qq for any h1, h2 P G. Therefore, we deduce that varGpEGpBqq Ď

varGpFγrGsq for some γ P Z2pG,F˚q.

Remark 4.3.5 In the whole work, let us assume that "π" is always the projection map

of Gˆ Z2 on G.

Lemma 4.3.6 Let Ĝ be a group, F a algebraically closed field of characteristic zero,A “

B ‘ J a Ĝ-graded finite dimensional unitary algebra, where J “ JpAq is the Jacobson

radical of A, and B “ FσrHs with H ď Ĝ and σ P Z2pH,F˚q. If H is finite abelian, then

JH can be generated as a graded B-bimodule by a graded nilpotent subalgebra N̂ Ă Je such

that Bd “ dB for any d P N̂, where JH “
À

hPH Jh. In addition, if Ae is central in A,

then JH “ BN̂ –G BbF N̂ as graded B-bimodules, and as graded algebras.

Proof: Firstly, since A is unitary, as observed in (1.13), in Section 1.5, Chapter 1, we

have that J “ iJi, where i is the unity of A (which is also the unity of B).
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Consider AH “ B ‘ JH , where JH “
À

gP H Jh. Since H is a subgroup of Ĝ,

it is easy to see that AH and JH are graded subalgebras of A. Notice that JH is the

greatest nilpotent ideal of AH , and so JH “ JpAHq. By Lemma 1.5.2, we can write

JH “ BN for some graded vector space N “ spanFtd1, . . . , dru Ă J, where d1, . . . , dr P JH

are homogeneous elements such that bdi “ γiphqdib ‰ 0 for any homogeneous element

b P Bh,, h P H, and i “ 1, . . . , r, and some γipbq P F; and Bdi is an irreducible G-graded

B-bimodule. We have that the set tηed1, . . . , ηedru generate JH as a Ĝ-graded B-bimodule

(or asH-gradedB-bimodule, more precisely). Put hi “ degpdiq for all i P t1, . . . , ru. Since

SupppΓJH q Ď H, it follows that h1, . . . , hr P H, and hence,

ηedi “ pσphi, hi
´1
q
´1ηhiηhi´1qdi “ σphi, hi

´1
q
´1ηhipηhi´1diq

for all i P t1, . . . , ru. For any i P t1, . . . , ru, write d̂i :“ ηhi´1di, and put N̂ “ spanFtd̂1, . . . , d̂ru.

It is obvious that bd̂i ‰ 0 and d̂ib ‰ 0 for any nonzero b P B, and i “ 1, . . . , r. Since

d̂i P Je, it follows that N̂ Ă Je. For any g P H (because H is abelian), and i P t1, . . . , ru,

by Proposition 1.2.6 and Corollary 1.3.23, we have that

ηgd̂i “ ηgpηhi´1diq “ σpg, h´1
i qηghi´1di “ σpg, h´1

i qηhi´1gdi

“ σpg, h´1
i qσph

´1
i , gq´1

pηhi´1ηgqdi “ σpg, h´1
i qσph

´1
i , gq´1ηhi´1pηgdiq

“ γipgqσpg, h
´1
i qσph

´1
i , gq´1

pηhi´1diqηg “ γipgqσpg, h
´1
i qσph

´1
i , gq´1d̂iηg ,

for some γipgq P F. Hence, we obtain that Bd “ dB for any d P N̂. We have still that N̂

is subalgebra of Je. In fact, for all i, j P t1, . . . , ru, we have

d̂j d̂i “ pηhj´1djqpηhi´1diq “ γjph
´1
i qpηhj´1ηhi´1qpdjdiq “ γjph

´1
i qσph

´1
j , h´1

i qpηphjhiq´1qpdjdiq .

Since degpdjdiq “ degpdjqdegpdiq “ hjhi P H, it follows that djdi P BN “
Àr

k“1 Bdk,

and hence, there exist λ1, . . . , λr P F, and g1, . . . , gr P H such that djdi “
řr
k“1 λkηgkdk.

Hence, by Corollary 1.3.23

d̂j d̂i “ γjph
´1
i qσphj, hiqpηphjhiq´1qpdjdiq “ γjph

´1
i qσph

´1
j , h´1

i qpηphjhiq´1q

˜

r
ÿ

k“1

λkηgkdk

¸

“ γjph
´1
i qσph

´1
j , h´1

i q

r
ÿ

k“1

λkσpphjhiq
´1, gkq

`

ηphjhiq´1gkdk
˘

.
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Observe that if λk ‰ 0 for some k “ 1, . . . , r, then

e “ degpd̂j d̂iq “ degpηphjhiq´1gkdkq “ pphjhiq
´1gkqdegpdkq ,

and so degpdkq
´1 “ pphjhiq

´1gkq, that is, ηphjhiq´1gkdk “ d̂k. We deduce that d̂j d̂i “
řr
k“1 λ̃kd̂k P N̂, λ̃k P F, for all i, j “ 1, . . . , r. We conclude that N̂ is a graded subalgebra

of Je such that Bd “ dB for any d P N̂. Therefore, it follows that N̂ is a graded nilpotent

algebra which generates JH as a graded B-bimodule.

Suppose that Ae is central in A. Hence, we have that bd “ db for any b P B and

d P N̂ (N̂e Ă Ae). It is clear that Bd̂k “ Bdk, for all k “ 1, . . . , r, and it is an irreducible

Ĝ-graded B-bimodule, and JH “ BN̂ “
Àr

k“1 Bd̂k. From this, it is not difficult to see

that the linear transformation ψ of JH to B bF N̂ that extends the map ηgd̂k ÞÑ ηg b d̂k,

for any g P H and i “ 1, . . . , r, is a homogeneous isomorphism of graded B-bimodules,

and of graded algebras. �

By conditions of the previous lemma, we have that H is a finite abelian subgroup

of Ĝ. Observe again that JH is a nilpotent graded subalgebra of J and A.

Another consequence of the above lemma is that if Ae is central in A, then JH

can be generated as a graded B-bimodule by a graded nilpotent algebra N̂ Ă Je which

is central in A, where JH “
À

hPH Jh. Consequently, J can be generated as a G-graded

B-bimodule by a graded vector space Ñ such that ÑH “ N̂ “ N̂e, and hence, ÑH is a

graded nilpotent subalgebra of A which is central in A. To prove these facts, it is enough

to apply Lemma 1.5.2 for J, and to proceed as in the proof of Lemma 4.3.6.

Remark 4.3.7 Let A “ B ‘ J be a finite dimensional G-graded unitary algebra, with

B “ FσrHs and J “ JpAq. Suppose G is a finite abelian group, and F is an algebraically

closed field with charpFq “ 0. Then A is GPI-equivalent to BN̂# ‘Bd1 ‘ ¨ ¨ ¨ ‘Bds, for

some nilpotent graded algebra N̂ Ă Je, and homogeneous elements d1, . . . , ds P J such that

diB “ Bdi ‰ 0 for any degpdiq R H. Really, we have that A “ B‘ J “ B‘ JH ‘ pBd1‘

¨ ¨ ¨ ‘Bdsq, where di P J, Bdi “ diB, and degpdiq R H. By Lemma 4.3.6, we have that

B ‘ JH “ B ‘BN̂ “ BĤ#, where Ĥ# “ F ‘ N̂ is the nilpotent subalgebra N̂ Ă Je with

the adjoint unity.

Theorem 4.3.8 Let F be an algebraically closed field of characteristic zero, G a finite
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abelian group, H a subgroup of G, σ P Z2pH,F˚q, and A “ FσrHs ‘ J a finite dimensional

G-graded unitary F-algebra. Suppose that SupppΓAq “ H. If Ae is central in A, then

A ”GPI FσrHs .

Moreover, A belongs to varGpFγrGsq for some γ P Z2pG,F˚q which extends σ.

Proof: Firstly, note that JH “ J. Put B “ FσrHs. It follows from Lemma 4.3.6 that

A “ B‘ J with J “ BN̂ –G BbF N̂ for some nilpotent graded algebra N̂ Ă Je such that

bd “ db for any b P B and d P N̂. We can conclude that N̂ is a commutative algebra, and

N̂ Ă ZpAq. Write N̂ “ spanFtd1, . . . , dnu with homogeneous nonzero di P ZpAq.

Now, since B “ FσrHs is a G-graded subalgebra of A, it follows that TGpAq Ď

TGpBq. Conversely, take a graded multilinear polynomial f R TGpAq. Since f is multilin-

ear, we can take homogeneous elements a1, . . . , an P BY J such that fpa1, . . . , anq ‰ 0. If

ai P B, it follows that f R TGpBq, and the result follows. Suppose that aj P J for some

j P t1, . . . , nu. For each i “ 1 . . . , n, write ai “ bici where ci “ 1F for ai P B, and ci P N̂

if ai P J. From this, since N̂ Ď Ae Ď ZpAq, we have for any α P Sn that

aαp1q ¨ ¨ ¨ aαpnq “ pbαp1qcαp1qqpbαp2qcαp2qq ¨ ¨ ¨ pbαpnqcαpnqq “ pbαp1qbαp2q ¨ ¨ ¨ bαpnqqc1c2 ¨ ¨ ¨ cn,

and consequently, 0 ‰ fpa1, . . . , anq “ fpb1, b2, . . . , bnqc1c2 ¨ ¨ ¨ cn. Therefore, f R TGpBq,

and so TGpBq “ TGpAq.

To finish the proof, observe that, by Lemma 4.3.3, there exists γ P Z2pG,F˚q which

extends σ such that B G̃
ãÑ FγrGs, and so varGpBq Ď varGpFγrGsq. Consequently, we have

A P varGpAq “ varGpBq Ď varGpFγrGsq,

since A ”GPI B (the first part of this proof). �

Observe that if H “ G in Theorem 4.3.8, then SupppΓAq “ H, and hence, JH “ J.

Hence, the corollary below is immediate.

Corollary 4.3.9 Let F be an algebraically closed field of characteristic zero, G a finite

abelian group, σ P Z2pG,F˚q, and A “ FσrGs ‘ J a finite dimensional G-graded unitary

F-algebra. If Ae is central in A, then A ”GPI FσrGs.

De França, A.M.D. June 28, 2019 Mat – UnB



4.3. On the A when Ae is central 111

4.3.1 Finitely generated graded algebras of the variety VG

The next theorems are obvious consequences of the Lemmas of Section 4.3 of this

chapter. Let us denote by VG the G-graded variety of G-graded algebras with the central

neutral component.

Theorem 4.3.10 Let G be a finite group, and F a field. Let N be a G-graded F-algebra

(not necessarily finitely generated) which belongs to the variety VG. If Ne is nil (resp. nil

of bounded index), then N is nil (resp. nil of bounded index). If Ne is finitely generated

and nil, then N is nilpotent. In particular, in characteristic zero, if Ne is nil of bounded

index, then N is nilpotent. Moreover, if Ne is nilpotent, then N is nilpotent with ndpNq ď

|G|ndpNeq.

Proof: The theorem is immediate consequence of the Theorems 3.2.14, 3.2.15 and 3.2.19,

and of the fact that Ne is commutative is N P VG. Observe also |SupppΓNq| ď |G|, and

|SupppΓNq| ` 1 ď |G| if e R SupppΓNq. �

Example 4.3.11 Let F be a field, and G a group. Consider Ns “ Frx1, x2, . . . , xk :

xi1xi2 ¨ ¨ ¨ xis “ 0, @1 ď i1 ď i2 ď ¨ ¨ ¨ ď is ď ks, the free commutative nilpotent k-generated

F-algebra. We have that Ns with its trivial G-grading belongs to VG, and ndpNq “ s. Thus,

VG contains a nilpotent algebra of index s for all s P N, i.e. in general, the nilpotency

index of algebras in VG can not be limited.

Theorem 4.3.12 Let G be a finite abelian group, F an algebraically closed field of char-

acteristic zero, and A a finitely generated G-graded algebra. If A P VG, then

A ”GPI Ã1 ˆ ¨ ¨ ¨ ˆ Ãq ˆ J̃00 ,

such that for any j “ 1, . . . , q, Ãj “ Fσj rHjs ‘ J̃i is a finite dimensional G-graded alge-

bra, that satisfies all the claims of Lemma 4.3.2, Hj ď G, σj P Z2pHj,F˚q, pHi, rσisq ‰

pHj, rσjsq for all i ‰ j, i.e. Hi ‰ Hj or rσis ‰ rσjs when i ‰ j. Besides that, J̃j, J̃00 are G-

graded nilpotent finite dimensional algebras which belong to VG, and ndpJ̃jq ď ndppJ̃jqeq|G|,

and ndpJ̃00q ď ndppJ̃00qeq|G|.

Proof: The statement follows of Theorem 1.4.9 (or Remark 1.4.10, Lemma 4.3.2, and

Theorem 4.3.10. �
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Definition 4.3.13 Let G be a group, and A and Ã two G-graded PI-algebras. We say

that A satisfies asymptotically all the G-graded identities of Ã if there exists some n P N

such that A satisfies all the G-graded identities of Ã of degree m ě n. We write in this

case

TG
pÃq Ď8 TG

pAq .

Theorem 4.3.14 Let G be a finite abelian group, F an algebraically closed field of char-

acteristic zero, and A a finitely generated G-graded algebra. If A P VG, there exists a

finite dimensional G-graded algebra

CG,A “
ą

HEG

¨

˝

ą

rσsPH2pH,F˚q

`

FσrHs ‘ JpH,rσsq
˘

˛

‚ , (4.3)

where each JpH,rσsq is a finite dimensional G-graded nilpotent algebra (JpH,rσsq is the Jacob-

son radical of ApH,rσsq :“ FσrHs ‘ JpH,rσsq), satisfying

TG
pCG,Aq Ď8 TG

pAq .

Moreover, if A is unitary, then TGpCG,Aq Ď TGpAq.

Proof: Fix any finitely generated G-graded algebra A, such that A P VG. Observe that

TGpAq is the GT -ideal of graded identities of a finitely generated PI-algebra, since Ae is

central in A, and hence, Ae is commutative, and so, by Theorem 1.4.12, A is a PI-algebra.

By Theorems 1.4.9 and 1.2.20, and Lemma 4.3.2, there exist finite dimensional G-graded

algebras Ãi’s such that

A ”GPI Ã1 ˆ ¨ ¨ ¨ ˆ Ãq ˆ J̃00 ,

where Ãj “ B̃j ‘ J̃j, with B̃j “ Fσj rHjs, for some subgroup Hj of G and σj P Z2pHj,F˚q,

where pHi, rσisq ‰ pHj, rσjsq for all i ‰ j.

Now, consider CG “
ą

HEG

¨

˝

ą

rσsPH2pH,F˚q

pFσrHsq

˛

‚. Observe that CG P VG. By Ab-

sorption Lemma (Corollary 1.5.9), for any H E G, and rσs P H2pH,F˚q, there exist finite

dimensional G-graded nilpotent algebras JpH,rσsq’s satisfying

˜

q
ą

j“1

Ãj

¸

ˆ J̃00 ˆ CG ”GPI CG,A ˆ
˜̃J00 ,
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where CG,A is defined in (4.3), and ˜̃J00 is some nilpotent G-graded algebra which belongs

to VG. Consequently, TGpCG,A ˆ
˜̃J00q Ď TGpAq. Since ndp˜̃J00q ă 8, and TGpCG,A ˆ

˜̃J00q “

TGpCG,Aq X TGp
˜̃J00q, it follows that any multilinear polynomial identity f P TGpCG,Aq of

degree m ě ndp˜̃J00q belongs to TGp
˜̃J00q. Therefore, we conclude that TGpCG,Aq Ď8 TGpAq.

Notice that CG,A ˆ
˜̃J00 P VG (since CG and A belong to VG), hence, we also have

that CG,A P V
G.

Finally, suppose that A is a unitary algebra. Take any g “ gpx
pθ1q
1 , . . . , x

pθrq
r q P

TGpCG,Aq. Since TGpCG,Aq Ď8 TGpAq, fix n P N such that any polynomial identity w P

TGpCG,Aq of degree m ě n belongs to TGpAq. Consider the graded polynomial identity g̃ “

g̃px
pθ1q
1 , . . . , x

pθrq
r , y

peq
1 , . . . , y

peq
n q “ gpx

pθ1q
1 , . . . , x

pθrq
r qy

peq
1 ¨ ¨ ¨ y

peq
n . Observe that g̃ P TGpAq,

since degpg̃q “ n` degpgq ě n, and g̃ P TGpCG,Aq (because g̃ is a consequence of g). Being

1A the unity of A (where 1A P Ae), for any homogeneous elements a1, . . . , ar P A, with

degpaiq “ θi, we have that

0 “ g̃pa1, . . . , ar, 1A, . . . , 1A
loooomoooon

n

q “ gpa1, . . . , arq 1A . . . 1A
looomooon

n

“ gpa1, . . . , arq ,

and consequently, g P TGpAq. Therefore, we conclude that TGpCG,Aq Ď TGpAq. �

Corollary 4.3.15 Let G “ Zn be a cyclic finite group of order n. Then any finitely

generated G-graded algebra A which belongs to VG satisfies the ordinary (non-graded)

identity

rx1, x2srx3, x4s ¨ ¨ ¨ rx2k´1, x2ks P FxXy ,

for some k P N.

Proof: Fix any finitely generated G-graded algebra A P VG. By Theorem 4.3.14, we have

that TGpCG,Aq Ď8 TGpAq. Let us analyse each component FσrHs ‘ JpH,rσsq of CG,A.

Given H E G and σ P Z2pH,F˚q, consider ApH,rσsq “ FσrHs ‘ JpH,rσsq. Observe

that FσrHs is commutative, because H is cyclic, and σ is symmetric (by Corollary 1.2.8).

Hence ra ` x, b ` ys “ rx, bs ` ra, ys ` rx, ys P JpH,rσsq for any a, b P FσrHs, and x, y P

JpH,rσsq. Take a1 “ b1 ` y1, . . . , a2n “ b2n ` y2n P ApH,rσsq with b1, . . . , b2n P FσrHs, and

y1, . . . , y2n P JpH,rσsq. We have

ra1, a2sra3, a4s ¨ ¨ ¨ ra2n´1, a2ns P pJpH,rσsqq
n ,
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for all n P N.

Let us choose ñ “ maxtndpJpH,rσsq : H E G, rσs P H2pH,F˚qu. Then we have that

ra1, a2s ¨ ¨ ¨ ra2ñ´1, a2ñs P TGpCG,Aq. Since TGpCG,Aq Ď8 TGpAq, then there exists m P N

such that any multilinear polynomial f P TGpCG,Aq of degree greater than or equal to m

alsobelongs to TGpAq.

Then, for k “ maxtm, ñu we have that rx1, x2srx3, x4s ¨ ¨ ¨ rx2k´1, x2ks P T
GpAq. �

4.4 On the algebra A when EGpAqe is central

Recall that we assume that G is a finite abelian group, and F is an algebraically

closed field of characteristic zero.

The following result is basic for our study.

Lemma 4.4.1 Let A be a (arbitrary) GˆZ2-graded algebra. Then pEGpAqqe is central in

EGpAq iff Ape,0q Ď ZpAq, Ape,1q Ď ZApA0q and ab` ba “ 0 for any a P Ape,1q and b P A1.

Proof: Suppose pEGpAqqe Ď ZpEGpAqq. Take any a P Ape,0q and b P A. Put b “ b0 ` b1,

b0 P A0 and b1 P A1. We have

0 “ rab x0, b0 b y0 ` b1 b y1s “ ra, b0s b x0y0 ` ra, b1s b x0y1

for any x0, y0 P E0, and y1 P E1. It follows that ra, b0s “ ra, b1s “ 0, since ra, b0s b x0y0 P

EGpAq0 and ra, b1sbx0y1 P E
GpAq1. Hence, ra, bs “ ra, b0` b1s “ ra, b0s` ra, b1s “ 0. From

this, we conclude that Ape,0q Ď ZpAq.

Now, take any c P Ape,1q. Let d0 P A0 and d1 P A1, then we have

0 “ rcb x1, d0 b z0 ` d1 b z1s “ rc, d0s b x1z0 ` pcd1 ` d1cq b x1z1

for any z0 P E0 and x1, z1 P E1. It follows that rc, d0s “ 0 and cd1 ` d1c “ 0, since

rc, d0s b x1z0 P EGpAq1 and pcd1 ` d1cq b x1z1 P EGpAq0. Therefore, we deduce that

Ape,1q Ď ZApA0q, and ab` ba “ 0 for any a P Ape,1q and b P A1.

Reciprocally, suppose that Ape,0q Ď ZpAq, Ape,1q Ď ZApA0q and ab` ba “ 0 for any

a P Ape,1q and b P A1. Take any ape,0qb x0 P E
GpApe,0qq and ape,1qb x1 P E

GpApe,1qq. For any
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pb0 b y0 ` b1 b y1q P E
GpAq, we have that

rape,0q b x0 ` ape,1q b x1, b0 b y0 ` b1 b y1s “ rape,0q b x0, b0 b y0s ` rape,0q b x0, b1 b y1s`

` rape,1q b x1, b0 b y0s ` rape,1q b x1, b1 b y1s “ rape,0qb, b0sx0y0`

` rape,0q, b1s b x0y1 ` rape,1q, b0s b x1y0 ` pape,1qb1 ` b1ape,1qq b x1y1 “ 0 .

Since ape,0q b x0, ape,1q b x1, b0 b y0, b1 b y1 P EGpAq can be chosen as basic elements, the

result follows. �

The above result motivate the following definition.

Definition 4.4.2 A Z2-graded algebra A is called a super-commutative algebra if

A0 Ď ZpAq, and A1 is anti-commutative. Now, given a graded subalgebra B of A, we say

that B is a super-central algebra in A if B0 Ď ZpAq, B1 Ď ZApA0q, and ab` ba “ 0

for any a P A1 and b P B1.

In the above definition, notice that B is also super-commutative. Also, in Lemma

4.4.1, we can conclude that Ae is super-central in A when EGpAqe is central in EGpAq.

By previous lemma, supposing pEGpAqqe Ď ZpEGpAqq, it follows that a2 “ 0 for

any a P Ape,1q if charpFq ‰ 2, and Ae is central in A when charpFq “ 2 (and so A P VG if

charpFq “ 2). Anyway, we conclude that Ae is super-central iff EGpAqe is central in EGpAq.

Now assume charpFq “ 0. Let us show that we can assume that A is unitary if

VG “ varGpEGpAqq. In fact, consider A# “ A‘F¨1, the algebra derived from the algebra A

by adjoining the unit "1". The product in A# is defined in (1.1, Section 1.1 of Chapter 1).

We have that A# is G ˆ Z2-graded with the grading induced from A, i.e. A#
pg,λq “ Apg,λq

if pg, λq ‰ pe, 0q, and A#
pe,0q “ Ape,0q ‘ F ¨ 1. Hence, we can see A as a G ˆ Z2-graded

subalgebra of A#. Then EGpAq is a Gˆ Z2-graded subalgebra of EGpA#q. It follows that

VG “ varGpEGpAqq Ď varGpEGpA#qq.

Reciprocally, to show that varGpEGpA#qq Ď varGpEGpAqq, let us show that EGpA#q P

VG. By Lemma 4.4.1, it follows that

rape,0q ` λ, b` γs “ pape,0q ` λqpb` γq ´ pb` γqpape,0q ` λq

“ ape,0qb` λb` γape,0q ` λγ ´ pbape,0q ` γape,0q ` λb` γλq

“ ape,0qb´ bape,0q “ rape,0q, bs “ 0 ,
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for any ape,0q P Ape,0q, b P A and λ, γ P F ¨ 1. Hence, and again by Lemma 4.4.1, we have

rpape,0q ` λq b x0 ` ape,1q b x1, pb0 ` γq b y0 ` c1 b y1s “

“rape,0q ` λ, b0 ` γs b x0y0 ` rape,0q ` λ, c1s b x0y1`

` rape,1q, b0 ` γs b x1y0 ` rape,1q b x1, c1 b y1s

“0b x0y0 ` 0b x0y1 ` rape,1q, b0s b x1y0 ` pape,1qc1 ` ape,1qc1q b x1y1 “ 0,

for any ape,0q ` λ P A#
pe,0q, λ P F ¨ 1, ape,1q P A#

pe,1q “ Ape,1q, b0 ` γ P A#
0 , γ P F ¨ 1,

c1 P A#
1 “ A1, x0, y0 P E0, and x1, y1 P E1. Therefore, EGpA#qe is a central in EGpA#q.

Thus EGpA#q P VG. We conclude that VG “ varGpEGpA#qq.

Therefore, let A “ B‘ J be a finite dimensional Ĝ-graded unitary algebra, where

B is the maximal semisime subalgebra of A, J is the Jacobson radical of A, and i is the

unity of A. Without loss of generality, we can assume that A “ iAi “ B‘ iJi “ B‘ J11,

where J11 is described by Lemma 1.5.1. Let B “
Śp

s“1 Bs, where Bs’s are graded simple

subalgebras of A, and is the unity of Bs, where i “
řp
s“1 is. From this, since is P ZpAq,

by Theorem 1.5.12, VG “ varG
´

EGpÂ1q ˆ ¨ ¨ ¨ ˆ EGpÂkq ˆ EGpJ00qq

¯

, where Bsi flGˆZ2 Bsj

for any i ‰ j. Hence

TG
`

EG
pAq

˘

“

˜

k
č

j“1

TG
´

EG
pÂjq

¯

¸

č

`

TG
`

EG
pJ00q

˘˘

, (4.4)

where Âj “ B̂j ‘ Ĵj is a finite dimensional G ˆ Z2-graded unitary algebra, B̂j is a finite

dimensional G ˆ Z2-graded simple algebra, and Ĵj “ ij Ĵjij is the Jacobson radical of Âj,

for j “ 1, . . . , k. Therefore, to describe the variety VG it is sufficient to study the varieties

varGpEGpÂjqq for all j “ 1, . . . , k, and varGpEGpJ00qq .

In the next subsections, let us study the graded polynomial identities of EGpÂjq for

all j “ 1, . . . , k. For this, let us describe the G ˆ Z2-graded subalgebras B̂j and Ĵj when

EGpÂjq has the central neutral component.

4.4.1 On B and J when EGpAqe is central

As it observed in the previous section, to determine VG is sufficient to describe

EGpAq, where A “ B ‘ J is a finite dimensional G ˆ Z2-graded unitary algebra, and

pEGpAqqe is central in EGpAq, where B “ MnpFσrHsq, J “ iJpAqi is the Jacobson radical
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of A, with H ď Gˆ Z2, σ : H ˆH ÝÑ F˚, n P N, and i is the unity of A. Notice that

pEG
pAqqg “ pE

G
pAqqpg,0q ` pE

G
pAqqpg,1q “ Apg,0q b E0 ` Apg,1q b E1 “ EG

pAgq,

for any g P G. We consider a canonical elementary G-grading on B determined by an

n-tupla pg1, g2, . . . , gnq P pGˆ Z2q
n.

In the following, we present a characterization for EGpAq, where A “MnpFσrHsq‘J

denotes a finite dimensional unitary GˆZ2-graded algebra over a field F, and J “ iJpAqi,

which is a nilpotent graded ideal of A.

Lemma 4.4.3 Suppose pEGpAqqe is central in EGpAq, and charpFq ‰ 2. Then B “ FσrHs,

and pe, 1q R H. In particular, we have Be “ Bpe,0q “ spanFtηpe,0qu.

Proof: Assume pEGpAqqe Ď ZpEGpAqq. To obtain a contradiction, suppose that n ě 2.

By Lemma 4.4.1, we have that Ape,0q is central in A. Consider a “ E22ηpe,0q P B. Note that

E22ηpe,0q P Bpe,0q Ď Ape,0q, since degpEjjηpe,0qq “ g´1
j pe, 0qgj “ pe, 0q for any j P t1, . . . , nu.

From this, it follows that

0 “ ra,E12ηpe,0qs “ rE22ηpe,0q, E12ηpe,0qs

“ σppe, 0q, pe, 0qq
`

δ21E22ηpe,0q ´ δ22E12ηpe,0q
˘

“ ´σppe, 0q, pe, 0qqE12ηpe,0q ,

and hence, we have a contradiction, since σppg, λq, ph, γqq ‰ 0, and Eijηpg,λq ‰ 0 for any

i, j P t1, . . . , nu, g, h P G and λ, γ P Z2. Therefore, we have showed that n “ 1. Since A

is unitary, and hence, iηpe,0q P Bpe,0q. From this, B “ FσrHs.

Now, to obtain a contradiction, assume that pe, 1q P H. Hence, we have ηpe,1q P

Bpe,1q. By Lemma 4.4.1, it follows that

0 “ ηpe,1qηpe,1q ` ηpe,1qηpe,1q “ 2pηpe,1qq
2
“ 2σppe, 1q, pe, 1qqηpe,0q .

Since charpFq ‰ 2 and ηpe,0q ‰ 0, we deduce that σppe, 1q, pe, 1qq “ 0, which obviously is a

contradiction. Therefore, we conclude that pe, 1q R H and Be “ spanFtηpe,0qu. �

It follows from Lemmas 4.4.3 and 1.5.2 that, when pEGpAqqe Ď Z
`

EGpAq
˘

, J “

FσrHsN for a suitable finite dimensional G ˆ Z2-graded vector subspace N Ă J. Hence,
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it follows that B P VG by Lemma 4.4.3. Hence, it follows from Lemma 4.4.3 that
“

xpe,0q, yphq
‰

, xpe,1q belong to TGˆZ2pBq, for any h P Gˆ Z2 (charpFq ‰ 2).

Remark 4.4.4 Assume that A “ FσrHs‘J is a unitary GˆZ2-graded finite dimensional

algebra, where H E G ˆ Z2, and σ P Z2pH,F˚q. Being B “ FσrHs, as in Lemma 1.5.2,

put J “ BN for some Gˆ Z2-graded vector space N.

Under these conditions, we have that Jpe,0q “ t0u iff SupppΓNq
Ş

H “ H, where

SupppΓBq “ H and SupppΓNq is the support of N.

Indeed, suppose firstly that Jpe,0q ‰ t0u. Hence, there exist homogeneous elements

b P B and x P N such that bx P Jpe,0q. Thus, degpxq´1 “ degpbq P H, because pe, 0q “

degpbxq “ degpbqdegpxq. Since H is a subgroup of GˆZ2, it follows that degpxq P H, and

so SupppΓNq
Ş

H ‰ H.

Conversely, suppose that Jpe,0q “ t0u. To obtain a contradiction, take a nonzero

homogeneous d P N such that degpdq P H. Put degpdq “ pg, λq P G ˆ Z2 for some g P G

and λ P Z2. Since H is a subgroup of Gˆ Z2, it follows that degpdq´1 P H. Hence, there

exists h P H such that h “ degpdq´1 “ pg´1, λq, and so ηh P Bpg´1,λq ´ t0u. From this, we

have that ηhd ‰ 0 is a homogeneous element of J such that its degree is

degpηhdq “ degpηhqdegpdq “ hpg, λq “ pg´1, λqpg, λq “ pe, 0q ,

that contradicts our hypothesis Jpe,0q “ t0u.

The above observations motivate the next results. Let us exhibit some conditions

to ensure that J can be generated (as a graded B-bimodule) by homogeneous elements of

degree pe, 0q or pe, 1q.

Remark 4.4.5 Let A “ B ‘ J be a G ˆ Z2-graded algebra, where B “ FσrHs, and J

is the Jacobson radical of A. It is obvious that πpSupppΓAqq “ πpHq if, and only if,

πpSupppΓJqq Ď πpHq, where π : G ˆ Z2 Ñ G is the projection map. Particularly, if

J “ BN “
Àr

i“1 Bdi for some GˆZ2-graded subspace N “ spanFtd1, . . . , dru Ď J, we have

taht πpSupppΓJqq Ď πpHq iff πpsupppΓNq. In fact,

SupppΓJq “ tg P Gˆ Z2 : Jg ‰ 0u

“ tg P Gˆ Z2 : pBNqg ‰ 0u

“ tth P Gˆ Z2 : BtNh ‰ 0u .
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Let us consider A “ B ‘ J a finite dimensional pG ˆ Z2q-graded algebra, where

B “ FσrHs is a twisted group algebra, with H ď G ˆ Z2, σ P Z2pH,F˚q, and J is the

Jacobson radical of A. Consider a graded subspace N of A. Recall that π denotes the

projection map of GˆZ2 to G. Let us consider NπpHq “
à

gPSupppΓNq

πpgqPπpHq

Ng, and NH “
À

hPH Nh.

Lemma 4.4.6 Let G be a finite abelian group, F an algebraically closed field of charac-

teristic zero, and A “ B‘ J a pGˆ Z2q-graded finite dimensional unitary algebra, where

J is the Jacobson radical of A, and B “ FσrHs with H ď Gˆ Z2 and σ P Z2pH,F˚q.

i) If πpSupppΓJqq is contained in πpHq, then there exists a nilpotent Z2-graded algebra

Ñ Ď Je “ Jpe,0q ‘ Jpe,1q, which generates J as a pGˆ Z2q-graded B-bimodule;

ii) J can be generated as a G ˆ Z2-graded B-bimodule by a graded vector space N̂ Ď J,

such that N̂πpHq Ď Je, N̂πpHq is a Z2-graded subalgebra, with N̂H “ N̂pe,0q which is a

subalgebra of A.

In addition, if EGpAqe is central in EGpAq, then N̂H is central in A, and N̂πpHq and Ñ are

super-central in A.

Proof: Firstly, let us apply Lemma 1.5.2 for J. Write J “ BN for some G ˆ Z2-graded

vector space N “ spanFtd1, . . . , dru where the di’s are homogeneous elements of J such

that bdi “ γiphqdib ‰ 0 for any b P Bh and i “ 1, . . . , r, γiphq P F (see Corollary 1.3.23).

Besides that, J “ BN “ Bd1 ‘ ¨ ¨ ¨ ‘Bdr as a pG ˆ Z2q-graded B-bimodule, and Bdi is

an irreducible graded B-bimodule, for all i “ 1, . . . , r.

i) By Remark 4.4.5, we have that πpSupppΓAqq “ πpHq. Let us show that J can be

generated (as a B-bimodule) by homogeneous elements of degree pe, 0q or pe, 1q.

Fix i P t1, . . . , ru, and put gi “ pπpgiq, λq “ degpdiq P GˆZ2. Since πpSupppΓJqq Ď

πpHq, we have that gi P H or pπpgiq, λ ` 1q P H. If gi P H, then take hi “ g´1
i ,

and d̃i “ ηhidi, and hence, d̃i P Jpe,0q when di P JH . Otherwise, if gi R H, then take

hi “ pπpgiq
´1, λ ` 1q P H, and d̃i “ ηhidi, and in this case, d̃i P Jpe,1q. Thus, for all

i “ 1, . . . , r, we have

d̃i P

$

&

%

Jpe,0q , if degpdiq P H

Jpe,1q , if degpdiq R H
. (4.5)

Observe that if degpd̃iq “ pe, 1q for some i “ 1, . . . , r, then we must have pe, 1q R H.

In fact, suppose that pe, 1q P H. Hence, for any pg, γq P H, we have that pg, γ ` 1q “
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pg, γqpe, 1q P H. We conclude that degpdiq P H when pe, 1q P H, for all r “ 1, . . . , r. So

we must have pe, 1q P H implies that d̃i P Jpe,0q, for all i “ 1, . . . , r.

For any g P H and i “ 1, . . . , r, since H is abelian, and by Corollary 1.3.23, we

have

ηgd̃i “ ηgpηhidiq “ ηgηhidi “ σpg, hiqηghidi “ σpg, hiqηhigdi

“ σpg, hiqσphi, gq
´1ηhiηgdi “ γipgqσpg, hiqσphi, gq

´1
pηhidiqηg

“ γipgqσpg, hiqσphi, gq
´1d̃iηg ,

and hence, Bd̃i “ d̃iB, for all i “ 1, . . . , r. Since Bdi is irreducible, and bdi “ γiphqdib

for any b P Bh, h P H, it follows that Bd̃i “ Bdi is an irreducible G ˆ Z2-graded B-

bimodule, for all i “ 1, . . . , r. Observe that J “ BN “
Àr

i“1 Bdi “
Àr

i“1 Bd̃i “ BÑ,

where Ñ “ spanFtd̃1, . . . , d̃ru.

Consider Ñ “ spanFtd̃1, . . . , d̃ru Ď Je “ Jpe,0q‘ Jpe,1q, which is a Z2-graded subspace

of J. Let us show that Ñ is a graded subalgebra of J. Indeed, for all i, j “ 1, . . . , r, we

have d̃id̃j P J “
Àr

k“1 Bd̃k. Hence, there exist λ1, . . . , λr P F and t1, . . . , tr P H such

that d̃id̃j “
řr
k“1 λkηtk d̃k (since all elements d̃i are homogeneous). If λi ‰ 0 for some

i “ 1, . . . , r, then

tkdegpd̃kq “ degpηtk d̃kq “ degpd̃iqdegpd̃jq .

Hence, we have tk “ degpd̃kqdegpd̃iqdegpd̃jq P tpe, 0q, pe, 1qu, since degpd̃kq, degpd̃iq, degpd̃jq P

tpe, 0q, pe, 1qu. Recall that pe, 1q P H implies that d̃i P Jpe,0q, for all i “ 1, . . . , r. If

pe, 1q P H, then tk “ pe, 0q when λk ‰ 0, because degpd̃kqdegpd̃iqdegpd̃jq “ pe, 0q. If

pe, 1q R H, then we conclude also that tk “ pe, 0q (tk P H). Anyway, when λk ‰ 0, we

have that tk “ pe, 0q, and hence, d̃id̃j “
řr
k“1 λkηpe,0qd̃k “

řr
k“1 σppe, 0q, hkqλkd̃k P Ñ.

Therefore, Ñ is a nilpotent graded subalgebra of Je which generates J as a Gˆ Z2-graded

B-bimodule.

ii) Without loss of generality, we can assume NπpHq “ spanFtd1, . . . , dsu, for some

0 ď s ď r, such that πpdegpdjqq R πpHq, for all s ă j ď r. By item i) of this lemma, there

exists d̃1, . . . , d̃s P Je “ Jpe,0q ‘ Jpe,1q, such that JπpHq “ BÑ, where Ñ “ spanFtd̃1, . . . , d̃su

satisfies the claims of the item i).

Observe that N̂ “ spanFtd̃1, . . . , d̃s, ds`1, . . . , dru is a graded vector space, which

generates J as a graded B-bimodule such that N̂πpHq Ď N̂e, and N̂H “ N̂pe,0q (by proof of
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the item i)).

Now, let us show the second part of lemma. Supposing pEGpAqqe to be central in

EGpAq, it is easy to show that N̂H is central in A, and Ñ and N̂πpHq are super-central in

A, it is enough to apply Lemma 4.4.1. �

Similarly to Remark 4.3.7, using Lemma 4.4.6 instead of Lemma 4.3.6, we obtain

the following observation.

Remark 4.4.7 Let A “ B ‘ J be a finite dimensional G ˆ Z2-graded unitary algebra,

with B “ FσrHs and J “ JpAq. Suppose that F is an algebraically closed field with

charpFq “ 0, and G is an finite abelian group. Then EGpAq is GPI-equivalent to EGpBN̂#‘

Bd1‘¨ ¨ ¨‘Bdsq for some nilpotent Z2-graded algebra N̂ Ă Je, and homogeneous elements

d1, . . . , ds P J such that dib “ γiphqbdi ‰ 0 for any nonzero homogeneous b P Bh, h P H,

γphq P F, and degpdiq R πpHq.

Next, we exhibit a result similar to Corollary 4.3.15.

Proposition 4.4.8 Let G be a finite abelian group, F an algebraically closed field with

charpFq “ 0, A “ FγrHs ‘ J a finite dimensional unitary algebra, where H is subgroup

of a group G, γ P Z2pH,F˚q, and J is the Jacobson radical of A. If γ is symmetric, and

ndpJq “ n, we have that

rx1, x2srx3, x4s ¨ ¨ ¨ rx2n´1, x2ns P TpAq .

In general, assume that H̃ C G ˆ Z2 has an odd order, σ P Z2pH̃,F˚q is symmetric, and

Ã “ FσrH̃s ‘ J̃ is a finite dimensional GˆZ2-graded unitary algebra. If EGpÃqe is central

in EGpÃq, then

rx1, x2srx3, x4s ¨ ¨ ¨ rx2m´1, x2ms P TpEpÃqq

where m “ ndpJ̃q.

Proof: Similarly to Corollary 4.3.15, if H is abelian, and γ is symmetric, then FγrHs

is commutative. Hence, for any a1 “ b1 ` y1, a2 “ b2 ` y2, . . . , an “ bn ` yn P A with

b1, b2, . . . , bn P FγrHs, and y1, y2, . . . , yn P J, we obtain rai, ai`1s “ rbi ` yi, bi`1 ` yi`1s “

rbi, yi`1s ` ryi, bi`1s ` ryi, yi`1s P J. hence, we have that ra1, a2sra3, a4s ¨ ¨ ¨ ra2n´1, a2ns P J
n.

Thus, rx1, x2srx3, x4s ¨ ¨ ¨ rx2n´1, x2ns P TpAq.
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If H̃ ď GˆZ2 has an odd order, then it is clear that H̃ “ Hˆt0u, for some H ď G.

In fact, an element ph, 1q P G ˆ Z2, h P G can not have an odd order, hence, ph, 1q R H̃,

for any h P G. Since H̃ is abelian, and σ is symmetric, then EGpFσrH̃sq –G Fσ̃rHs bF E0

is commutative, since σ̃ P Z2pH,F˚q defined by σ̃ph1, h2q “ σpph1, 0q, ph2, 0qq, for any

h1, h2 P H, is also symmetric, and hence, Fσ̃rHs and Fσ̃rHs bF E0 are commutative

algebras. It is clear that EGpÃq “ EGpFσ̃rHs ‘ J̃q “ EGpFσ̃rHsq ‘ EGpJ̃q (Fσ̃rHs and J̃ are

GˆZ2-graded algebras). Hence, for any a1 “ b1`y1, a2 “ b2`y2, . . . , an “ bn`yn P E
GpÃq

with b1, b2, . . . , bn P EGpFγrHsq, and y1, y2, . . . , yn P EGpJ̃q, we have rai, ai`1s “ rbi `

yi, bi`1` yi`1s “ rbi, yi`1s` ryi, bi`1s` ryi, yi`1s P E
GpJ̃q. Observe that EGpJ̃q is a nilpotent

algebra with ndpEGpJ̃qq “ ndpJ̃q, since J̃ is nilpotent. Hence ra1, a2sra3, a4s ¨ ¨ ¨ ra2n´1, a2ns P

EGpJ̃qn “ t0u. Therefore, we conclude that rx1, x2srx3, x4s ¨ ¨ ¨ rx2n´1, x2ns P TpE
GpÃqq.

� Observe that if G is cyclic, then any its subgoup H is also cyclic, and any

γ P Z2pH,F˚q is symmetric. Hence, in this case Proposition 4.4.8 holds.

4.4.2 Some Informations on H

In this section, we present some immediate consequences of Lemma 4.4.3.

Firstly, notice that, under the hypothesis of Lemma 4.4.3, if pg, λq P H, then either

λ “ 0̄ and pg, 1q R H or 2 divides opgq. Indeed, fixed pg, λq P H, suppose 2 does not divide

opgq. Thus, opgq “ 2n` 1 for some n P N. It follows that

pg, λq2pn`1q
“ pg2pn`1q, λ2pn`1q

q “ pg2n`1g, 0q “ peg, 0q “ pg, 0q ,

and hence, pg, 0q P H. Consequently, pg, 1q R H, since pe, λq “ pg, 0q´1pg, λq P H, which

is only possible for λ “ 0̄ (by Lemma 4.4.3, pe, 1q R H). The following lemma shows that

if H E G ˆ Z2 with pe, 1q R H, then H – πpHqE G. In particular, if G is a cyclic group,

then H is cyclic.

Lemma 4.4.9 Let G be a finte abelian group, H a subgroup of GˆZ2, and π : GˆZ2 Ñ G

the projection map. Suppose pe, 1q R H. The restriction map πH : H ÝÑ πpHq given by

πHphq “ πphq for any h P H is an isomorphism of groups. In addition, |H| “ |πpHq|,

and rGˆ Z2 : Hs “ 2rG : πpHqs; and rGˆ Z2 : Hs “ 2 implies πpHq “ G.

Proof: Since H is a group and π is a homomorphism of groups, we have that πpHq is a
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subgroup of G. Let ph1, λ1q, ph2, λ2q P H be some elements such that πph1, λ1q “ πph2, λ2q.

Hence, it follows that h1 “ h2, and thus we must have λ1 “ λ2, otherwise we can obtain

pe, 1q “ ph1, λ1q
´1
ph2, λ2q P H

which is a contradiction. Therefore, πH is an injective map. It is clear that πH is a

surjection. Hence, πH is an isomorphism of groups. By this reason, |H| “ |πpHq|, and

rGˆ Z2 : Hs “

ˇ

ˇ

ˇ

ˇ

Gˆ Z2

H

ˇ

ˇ

ˇ

ˇ

“
|Gˆ Z2|

|H|
“

2|G|

|πpHq|
“ 2

ˇ

ˇ

ˇ

ˇ

G

πpHq

ˇ

ˇ

ˇ

ˇ

“ 2rG : πpHqs .

Additionally, if rGˆZ2 : Hs “ 2, from the last equality, it follows that 2 “ rGˆZ2 : Hs “

2rG : πpHqs, and hence, we have rG : πpHqs “ 1. �

Lemma 4.4.10 Let G be an abelian finite group, H a subgroup of G ˆ Z2, and π : G ˆ

Z2 ÝÑ G the projection map. Suppose |G| “ n, and pe, 1q R H.

i) If n is odd, then H “ πpHq ˆ t0u. In addition, G̃ “ Gˆ t0u is a subgroup of GˆZ2

such that rGˆ Z2 : G̃s “ 2, pe, 1q R G̃, and H Ď G̃;

ii) If n is even, and G has not an element of order 4, then there exists a subgroup G̃ of

Gˆ Z2 such that rGˆ Z2 : G̃s “ 2, pe, 1q R G̃ and H Ď G̃.

Proof: i) Let h P πpHq and λ P Z2 such that ph, λq P H. Since G has an odd order, it

follows that h2s`1 “ e for some s P N. Hence, ph, λq2s`1 “ ph2s`1, λ2s`1q “ pe, λq, and

thus, λ ‰ 1 since pe, 1q R H. Therefore, it follows that H “ πpHq ˆ t0u.

For G̃ “ Gˆ t0u, it is obvious that rGˆ Z2 : G̃s “ 2, pe, 1q R G̃, and H Ď G̃.

ii) Without loss of generality, we can assume that G “ Ĝˆ pZ2q
m for some m P N

and some subgroup of odd order Ĝ. Put e “ pê, 0q P G where ê is the neutral element of Ĝ.

Fix any HEGˆZ2. Since gcdp|Ĝ|, |pZ2q
m|q “ 1, we have H “ Ĝ1ˆH1 for some Ĝ1CĜ, and

H1CpZ2q
mˆZ2. Notice that HEĜˆH1, pe, 1q “ ppê, 0q, 1q R ĜˆH1 and rGˆZ2 : ĜˆH1s

divides 2m`1. From this, it is sufficient to show that there exists Ĥ1C pZ2q
mˆZ2 of index

2 such that p0, 1q R Ĥ1, and H1 Ď Ĥ1. Then, Ĥ “ Ĝ ˆ Ĥ1 is a subgroup of index 2 of

G ˆ Z2, which contains H and pe, 1q “ ppê, 0q, 1q R Ĥ. Put n1 “ rpZ2q
m ˆ Z2 : H1s. If

n1 “ 2, the result follows (Ĥ1 “ H1). Suppose that n1 ą 2, and consider the quotient

group
pZ2q

m ˆ Z2

H1

. Hence, there exists an element g1 P ppZ2q
m ˆ Z2q ´ H1 such that
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g1H1 ‰ p0, 1qH1 and has the order 2 in the quotient. And so the subgroup H2 generated

by H1 and g1 has not the element p0, 1q, and rpZ2q
mˆZ2 : H2s ă n1. This process can be

applied until we obtain a subgroup Ĥ1 of pZ2q
m ˆ Z2, which does not contain p0, 1q, and

has index 2 in pZ2q
m ˆ Z2. The result follows. �

Under the assumptions of Lemma 4.4.10, we can always determine a subgroup of

G ˆ Z2 of index 2 which does not contain pe, 1q and contain H if G does not contain an

element of order 4.

In the proof of item ii) Lemma 4.4.10, we could use arguments on Z2-vector spaces

(we consider Z2 as a 2-element field). Indeed, supposing G “ pZ2q
d and HEGˆZ2 which

does not contain pe, 1q, we have that H is a subspace of Z2-vector space GˆZ2 of a finite

dimension. Since any vector space over a field has a well defined basis, we can consider

a basis of G ˆ Z2 formed by a basis of H, the vector pe, 1q R H, and other vectors. The

detail is that we can complete a linearly independent set until a basis of space. Let β

be a basis of H and γ Y tpe, 1qu a basis of G ˆ Z2 which contains β. Consider the Z2-

space H̃ generated by γ. Note that pe, 1q R H̃, H is a subspace of H̃ and dimZ2pH̃q “ d.

Consequently, |H̃| “ 2d, and so rGˆZ2 : H̃s “ 2. Let us now study the cases when G has

an element of order 4.

Lemma 4.4.11 For d ą 1, consider G “ Z2d. If H EGˆZ2 is such that pe, 1q R H, then

H is a subgroup of Hm, where Hm is one of the following subgroups: i) H´1 “ G ˆ t0u;

ii) H0 “ xp1̄, 1̄qy; iii) Hn “ xp2̄
n, 1̄qy for n “ 1, . . . , d ´ 1. In addition, given r ‰ s, we

have that neither Hs Ă Hr nor Hr Ă Hs.

Proof: Firstly, ifH “ πpHqˆt0u, we haveHEGˆt0u. Suppose now thatH ‰ πpHqˆt0u,

i.e. there exists x P H such that x “ ph, 1̄q for some h P πpHq. Since G is a cyclic group

and pe, 1̄q R H, by Lemma 4.4.9, since πpHq ď G, and πpHq – H, it follows that H is

cyclic, and hence, there exists y P G ˆ Z2 such that H “ xyy with y “ pn1̄, 1̄q P G ˆ Z2

for some n P t1, . . . , 2d´1u. We have two cases to study: 1) n is odd and 2) n is even.

Supposing n odd, namely n “ 2m ` 1, we have n1̄ “ p2m ` 1q1̄ “ 1̄ in Z2, and so

y “ pn1̄, 1̄q “ pn1̄, n1̄q “ np1̄, 1̄q P H0. In this case, we conclude that xpn1̄, 1̄qy Ď H0

for all n odd. On the other hand, supposing n even, take r P t1, . . . , d ´ 1u such that
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gcdp2r, n{2rq “ 1. Put n “ 2rm1 for some m1 P N, m1 odd. We have

y “ pn1̄, 1̄q “ p2rm11̄, 1̄q “ m1
p2̄r, 1̄q P Hr ,

and hence H EHr for some r P t1, . . . , d´ 1u.

Finally, fix distinct r ‰ s, namely r “ s`p for some p P N. We must have Hr Ę Hs

and Hs Ę Hr, otherwise, we would have one of the following situations: p2̄r, 1̄q P Hs or

p2̄s, 1̄q P Hr. Thus, we could find k P N such that p2̄r, 1̄q “ kp2̄s, 1̄q (resp. p2̄s, 1̄q “

kp2̄r, 1̄q), which implies k odd, and 2̄s`p “ k2̄s (resp. 2̄s “ k2̄s`p) in Z2d , and consequently,

p2p´ kq1̄ “ 0̄ (resp. pk2p´ 1q1̄ “ 0̄) in Z2d . This generates a contradiction because 2p´ k

(resp. k2p ´ 1) is odd and 1̄ has even order in Z2d . Therefore, it follows that neither

Hs Ă Hr nor Hr Ă Hs for r ‰ s. �

Differently of Lemma 4.4.10, given a group G under the conditions of Lemma

4.4.11, always there exists some subgroup H of Gˆ Z2 which does not contain pe, 1q and

if H E H̃ E GˆZ2 with pe, 1q R H̃, then H “ H̃. It is important to note that, for G as in

Lemma 4.4.11, we have

rGˆ Z2 : H´1s “ rGˆ Z2 : H0s “ 2,

rGˆ Z2 : Hns “ 2n`1 for n “ 1, . . . , d´ 1.

And hence, by Lemma 4.4.9, it follows that πpH´1q “ πpH0q “ G and rG : πpHnqs “ 2n

for n “ 1, . . . , d´1. Notice that, fixed any i P t´1, 0, 1, . . . , d´1u, there is no Ĥ Ď GˆZ2

such that Hi Ă Ĥ and pe, 1q R Ĥ. Therefore, the Hi’s are maximal in the family of

subgroups of Gˆ Z2 which do not contain pe, 1q.

Finally, given G an abelian finite group and HEGˆZ2 which does not contain the

element pe, 1q, using Lemmas 4.4.10 and 4.4.11, we can exhibit a subgroup H̃ E G ˆ Z2

such that H Ď H̃, pe, 1q R H̃, and rG ˆ Z2 : H̃s is the smallest for a subgroup H̃ under

these conditions.

4.5 The variety varG
`

rxpeq, ypgqs : g P G
˘

In this section we present the main results of this chapter. Here, let us denote by G

a finite abelian group, F an algebraically closed field of characteristic zero, and VG the G-
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126 4. Graded Algebras with the Central Neutral Component

graded variety defined by the set of graded polynomial identities trxpeq, ypgqs, for g P Gu.

In the results of this section we strongly use Remark 4.4.5, as well as the results of

Subsection 4.4.2.

Let F be a field, G a finite abelian group, HEGˆZ2, and σ P Z2pH,F˚q. Consider

a finite dimensional G ˆ Z2-graded unitary algebra A “ FσrHs ‘ J, with the Jacobson

radical J “ FσrHsN (as is described in Lemma 1.5.2), where N is a graded subspace of J.

In the lemmas below, recall that AπpHq “
à

gPSupppΓAq

πpgqPπpHq

Ag, which is a GˆZ2-graded subalgebra

of A.

Lemma 4.5.1 Let H be a finite abelian subgroup of a group G, F an algebraically closed

field of characteristic zero, and A “ B ‘ J a finite dimensional G ˆ Z2-graded unitary

algebra, where B “ FσrHs, and J “ JpAq is the Jacobson radical of A. If pEGpAqqe is

central in EGpAπpHqq, then

EG
pAπpHqq ”GPI E

G
pFσrHsq.

Proof: By Lemma 4.4.6, there exists a nilpotent G ˆ Z2-graded algebra N̂ contained in

Je “ Jpe,0q ‘ Jpe,1q, such that JπpHq “ BN̂. Since pEGpAqqe Ď ZpEGpAπpHqqq, it follows from

Lemma 4.4.6 (also Lemma 4.4.1) that N̂ is super-central in AπpHq.

It is immediate that TGpEGpAπpHqqq Ď TGpEGpBqq, because EGpBq is a graded

subalgebra of EGpAπpHqq. Thus, to prove that EGpAπpHqq ”GPI E
GpFσrHsq is sufficient to

show that if f R TGpEGpAπpHqqq, then f R TGpEGpBqq.

Let f “ fpz1, . . . , zkq R TGpEGpAπpHqqq be a G-graded polynomial. If charpFq “ 0,

we can assume, without loss of generality, that f is multilinear, and hence, we can take

homogeneous elements a1 b x1, . . . , ak b xk P E
GpBq0 Y EGpBq1 Y EGpJπpHqq0 Y EGpJπpHqq1

such that fpa1 b x1, . . . , ak b xkq ‰ 0. If a1, . . . , ak P B, the result is obvious. If for

some i “ 1, . . . , k we have that ai P JπpHq “ BN̂, then ai “
řr
j“1 bijcij, where bij P B,

cij P N̂. Since f is multilinear, without loss of generality, we can assume that ai “ bici,

where bi P B, and ci P N̂. For all i “ 1, . . . , k, write ai “ bici with bi P B, and

ci “

$

&

%

σppe, 0q, pe, 0qq´1ηpe,0q, if ai R JπpHq

ci P N̂, if ai P JπpHq
.

Note that degGpbiq “ degGpaiq, since degGpciq “ e in any case. We always can

assume that xi “ x̃iyi, where degZ2
pyiq “ degZ2

pciq, degZ2
px̃iq “ degZ2

pbiq, and xi, x̃i, yi P

E0 Y E1. Hence ai b xi “ pbiciq b px̃iyiq “ pbi b x̃iqpci b yiq for all i “ 1, . . . , k. It is clear
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that bi b x̃i, ci b yi P EGpAπpHqq. Since N̂ Ď Je is super-central in A, we have that EGpN̂q

is central in EGpAπpHqq. It follows that

paαp1q b xαp1qq ¨ ¨ ¨ paαpkq b xαpkqq “ ppbαp1qcαp1qq b xαp1qq ¨ ¨ ¨ ppbαpkqcαpkqq b xαpkqq

“ pbαp1q b x̃αp1qqpcαp1q b yαp1qq ¨ ¨ ¨ pbαpkq b x̃αpkqqpcαpkq b yαpkqq

“
`

pcαp1q b yαp1qq ¨ ¨ ¨ pcαpkq b yαpkqq
˘ `

pbαp1q b x̃αp1qq ¨ ¨ ¨ pbαpkq b x̃αpkqq
˘

“ ppc1 b y1q ¨ ¨ ¨ pck b ykqq
`

pbαp1q b x̃αp1qq ¨ ¨ ¨ pbαpkq b x̃αpkqq
˘

“ ppc1 ¨ ¨ ¨ ckq b py1 ¨ ¨ ¨ ykqq
`

pbαp1q b x̃αp1qq ¨ ¨ ¨ pbαpkq b x̃αpkqq
˘

,

for all α P Sk. From this, we deduce that

0 ‰ fpa1 b x1, . . . , ak b xkq “ ppc1 ¨ ¨ ¨ ckq b py1 ¨ ¨ ¨ ykqq pfpb1 b x̃1, . . . , bk b x̃kqq, (4.6)

where degGpai b xiq “ degGpbi b x̃iq, for all i “ 1, . . . , k. By (4.6), it follows that f R

TGpEGpBqq, and the result follows. �

An immediate consequence of the previous lemma holds when πpSupppΓNqq Ď

πpHq, in particular, if N “ Npe,0q ‘ Ne,1q. In this case, it follows from Lemma 4.5.1 that

EGpAq ”GPI E
GpFσrHsq.

Corollary 4.5.2 Let H be a subgroup of a finite abelian group G, F an algebraically closed

field of characteristic zero, and A “ B ‘ J a finite dimensional G ˆ Z2-graded unitary

algebra, where B “ FσrHs, and J “ JpAq is the Jacobson radical of A. If A “ AπpHq and

pEGpAqqe is central in EGpAq, then

EG
pAq ”GPI E

G
pFσrHsq .

In addition, if H ď pGˆ t0uq, then EGpAq ”GPI Fσ̃rπpHqs, for some σ̃ P Z2pπpHq,F˚q.

Proof: The first part follows of Lemma 4.5.1, since A “ AπpHq.

Now, let us prove the second part of the lemma. It is easy to see that

B “ FσrHs “ FσrπpHq ˆ t0us –G Fσ̃rπpHqs ,

where σ̃ P Z2pπpHq,F˚q is defined by map σ̃ph, gq “ σpph, 0q, pg, 0qq for any g, h P πpHq
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(see Remark 1.2.9). The result follows. �

It is important to note that if G has an odd order, then any subgroup H of G,

which does not contain pe, 1q is necessarily of the form πpHq ˆ t0u. For more details, see

Lemma 4.4.10, in Section 4.4.2.

The next result is a combination (immediate consequence) of Lemma 4.5.1 and

Corollary 4.5.2.

Corollary 4.5.3 Suppose that F is an algebraically closed field with charpFq “ 0, and

pEGpAqqe is central in EGpAq. If H ď pGˆ t0uq, then

EG
pAπpHqq ”GPI FσrHs ”GPI Fσ̃rπpHqs

for some σ̃ P Z2pπpHq,F˚q.

Proof: The GPI-equivalence EGpAπpHqq ”GPI FσrHs follows from Lemma 4.5.1, and the

fact that H “ πpHq ˆ t0u (because EGpFσrHsq “ FσrHs bF E0, where E0 is commuta-

tive non-nilpotent). Now, the GPI-equivalence EGpAπpHqq ”GPI Fσ̃rπpHqs follows from

Corollary 4.5.2. �

Finally, let us now combine all the above results into a unique theorem.

Theorem 4.5.4 Let G be a finite abelian group, H a subgroup of Gˆ Z2, σ P Z2pH,F˚q,

and F an algebraically closed field of characteristic zero. Let A “ FσrHs ‘ J be a finite

dimensional G ˆ Z2-graded unitary algebra, with the semisimple part B “ FσrHs, and J

is the Jacobson radical of A. Suppose that one of the following hypotheses is true:

1) A “ AπpHq;

2) H “ Gˆ t0u;

3) πpSupppΓJqq Ď πpHq;

4) H ď Gˆ t0u and pSupppΓJqq Ď πpHq;

If pEGpAqqe is central in EGpAq, then J is generated as a G ˆ Z2-graded B-bimodule by a

nilpotent subalgebra N̂ of J, which is super-central in A, and

EG
pAq ”GPI E

G
pFσrHsq .
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In particular, in the cases 2) and 4) we have that

EG
pAq ”GPI FσrHs ”GPI Fσ̃rπpHqs ,

for some σ̃ P Z2pπpHq,F˚q.

Proof: All the four cases follow of Lemma 4.5.1 (or Corollary 4.5.2), because all them

imply that AπpHq “ A.

The existence of N̂ satisfying the claims of theorem is ensured by Lemma 4.4.6.

Finally, the last affirmation, about the items 2) and 4), is ensured by Corollary

4.5.3. The result follow. �

Under the hypotheses of Theorem 4.5.4, we have that varGpEGpAqq “ varGpEGpFσrHsqq.

It is important to note that EGpFσrHsq P VG, where VG “ varGprxpeq, ypgqs : g P Gq,

for any H ď G ˆ t0u, and σ P Z2pH,F˚q. And thus, varGpEGpFσrHsqq Ď VG, for any

H ď Gˆ t0u, and σ P Z2pH,F˚q.

Also by the Theorem 4.5.4, supposing that the item 4) (or item 2)) is true, F is an

algebraically closed field, and G is finite abelian, by Lemma 4.3.3, there is γ P Z2pG,F˚q

which extends σ̃ such that

varGpEG
pAqq Ď varGpFγrGsq Ď VG .

Applying Lemma 4.3.3 and Theorem 4.5.4 together with the results of Subsection

4.4.2, we can complete the above observation. In fact, supposing that the item 1) (or item

3)) is true, it follows from the previous theorem that varGpEGpAqq “ varGpEGpFσrHsqq. If

there exists a subgroup H̃ of G ˆ Z2 such that H Ď H̃ and pe, 1q R H̃ (for more details,

see Subsection 4.4.2), then

varGpEG
pAqq Ď varGpEG

pFσ̃rH̃sqq Ď VG

for some σ̃ P Z2pH̃,F˚q. It is worth to note that rG ˆ Z2 : H̃s is at least 2, since

pe, 1q R SupppΓAq.

The last observation is important because in various classes of groups we can always

extend a group HEGˆZ2, which does not contain pe, 1q to a subgroup H̃EGˆZ2 of index
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2, which also does not contain pe, 1q. For more details, see Lemma 4.4.10 and Subsection

4.4.2 of this chapter.

As observed at the beginning of this chapter, module graded polynomial identity,

to study the graded variety VG, of all G-graded algebras whose neutral component is

central, is equivalent to studying a graded variety generated by the Grassmann envelope

of a finite dimensional Gˆ Z2-graded algebra A which can be written as

pFσ1rH1s ‘ J1q ˆ ¨ ¨ ¨ ˆ pFσkrHks ‘ Jkq ˆ J00 ,

where for all r “ 1, . . . , k, Hr is a subgroup of G ˆ Z2, σr P Z2pHr,F˚q, and Jr “

pFσrrHrsqNr is the Jacobson radical of Ar “ FσrrHrs‘Jr for some graded subspace Nr Ă Jr,

and J00 is a finite dimensional GˆZ2-graded nilpotent algebra, such that EGpJ00q belongs

to VG. We have that EGpJ00q is also nilpotent, and ndpEGpJ00qq “ ndpJ00q. Therefore, we

have

varGV “

k
č

r“1

varG
`

EG
pArq

˘

X varG
`

EG
pJ00q

˘

.

The results obtained before describe the algebras Ar’s when EGpArqe is central in

EGpArq.

Theorem 4.5.5 Let G be a finite abelian group, and F an algebraically closed field of

characteristic zero. There exists a finite dimensional Gˆ Z2-graded unitary algebra

CG “
ą

HEGˆZ2
pe,1qRH

¨

˝

ą

rσsPH2pH,F˚q

`

FσrHs ‘ JpH,rσsq
˘

˛

‚ , (4.7)

such that JpH,rσsq is a finite dimensional G ˆ Z2-graded nilpotent algebra (JpH,rσsq is the

Jacobson radical of ApH,rσsq :“ FσrHs ‘ JpH,rσsq), satisfying

VG
“ varGpEG

pCGqq .

Proof: The idea of the proof is similar to the proof of Theorem 4.3.14.

Observe that VG is a variety of PI-algebras, since if A P VG, then Ae is central

in A, and hence, Ae is commutative, and so, by Theorem 1.4.12, A is a PI-algebra. By

Theorems 1.4.13 and 1.2.20 and expression in (4.4), consider the Gˆ Z2-graded algebras
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Ã1, Ã2, . . . , Ãp, J̃00 such that

VG
“ varG

´

EG
pÃ1q ˆ ¨ ¨ ¨ ˆ EG

pÃkq ˆ EG
pJ̃00q

¯

,

where Ãs “ Bs ‘ J̃s are finite dimensional G ˆ Z2-graded unitary algebras such that

Bs flGˆZ2 Br for all s ‰ r, where Bs “ FσsrHss, with Hs E Gˆ Z2, and σs P Z2pHs,F˚q,

for all s P t1, . . . , ku, J̃s is the Jacobson radical of Ãs, and J̃00 is a finite dimensional

nilpotent Gˆ Z2-graded algebra.

Now, consider C̃G “
ą

HEGˆZ2
pe,1qRH

¨

˝

ą

rσsPH2pH,F˚q

pFσrHsq

˛

‚. By Absorption Lemma (Corol-

lary 1.5.9), for any H E G ˆ Z2 such that pe, 1q R H, and rσs P H2pH,F˚q, there exists a

finite dimensional G-graded nilpotent algebra JpH,rσsq such that

˜

k
ą

j“1

Ãj

¸

ˆ J̃00 ˆ C̃G ”pGˆZ2qPI CG ˆ
˜̃J00 ,

where CG is defined in (4.7), and ˜̃J00 is some finite dimensional G ˆ Z2-graded nilpotent

algebra. Consequently, it follows from Lemma 1.5.11 that

VG
Ď varGpEG

pCG ˆ
˜̃J00qq .

Observe that C̃G P VG, and hence, we have that EGpCGq ˆ EGp
˜̃J00q “ EGpCG ˆ

˜̃J00q P VG.

Particularly, EGp
˜̃J00,E

GpCGq P VG. Therefore, we conclude that VG “ varGpEGpCGq ˆ

EGp
˜̃J00qq.

Since VG can be generated by the Grassmann envelope of a GˆZ2-graded unitary

algebra, ndpEGp
˜̃J00qq is nilpotent, similarly to the proof of Theorem 4.3.14, we deduce that

VG “ varGpEGpCGqq. �

Remark 4.5.6 In (4.7) we can suppose that either πpSupppΓJpH,rσsqqq Ę πpHq or JpH,rσsq “

t0u (see Lemma 4.5.4). Besides that, if JpH,rσsq “ t0u for some H E G ˆ t0u, namely

H “ H1 ˆ t0u, and σ P Z2pH,F˚q, then

TG
pEG
pFσrHsq ˆ EG

pFσ̂rGˆ t0usq “ TG
pFσ1rH1s ˆ Fσ̃1rGsq “ TG

pFσ̃1rGsq ,

De França, A.M.D. June 28, 2019 Mat – UnB



132 4. Graded Algebras with the Central Neutral Component

where σ̂ P Z2pG ˆ t0u,F˚q extends σ (see Lemma 4.3.3), σ1 P Z2pH1,F˚q is defined by

σ1ph, h1q “ σpph, 0q, ph1, 0qq for any h, h1 P H, and σ̃1 P Z
2pG,F˚q extends σ1.

Corollary 4.5.7 Under all the conditions of Theorem 4.5.5, if A P VG, then TGpEGpCGqq Ď

TGpAq.

Corollary 4.5.8 Under all the conditions of Theorem 4.5.5, if G is a finite cyclic group,

then CG “
ą

HEGˆZ2
pe,1qRH
H‰Gˆt0u

`

FrHs ‘ JpH,r1sq
˘

ˆ FrGˆ t0us, and

VG
“ varG

¨

˚

˚

˚

˚

˝

ą

HEGˆZ2
pe,1qRH
H‰Gˆt0u

EG
`

FrHs ‘ JpH,r1sq
˘

˛

‹

‹

‹

‹

‚

X varGpFGq ,

where r1s is the class of the trivial 2-cocycle of Z2pH,F˚q, and JpH,r1sq is a finite dimensional

nilpotent Gˆ Z2 algebra.

Corollary 4.5.9 Under all the conditions of Theorem 4.5.5, if G is a finite cyclic group

of a prime order p ą 2, then CG “ J#
ptpe,0qu,r1sq ˆ FrGˆ t0us, and

VG
“ varG

´

EG
´

J#
ptpe,0qu,r1sq

¯¯

č

varGpFGq ,

where r1s is the class of the trivial 2-cocycle of Z2pH,F˚q, and J#
ptpe,0qu,r1sq is a finite di-

mensional nilpotent Gˆ Z2 algebra with adjoint unity.

If G “ Z2 (p “ 2), then CZ2 “ J#
ptpe,0qu,r1sq ˆ FrZ2 ˆ t0us ˆ Frtp0, 0q, p1, 1qus, and

VZ2 “ varZ2pEZ2pJ#
ptpe,0qu,r1sqqq X varZ2pFrZ2sq X varZ2pEq, where E “ E0 ‘ E1 is the infinite

dimensional Grassmann algebra with the canonical Z2-grading.

4.6 Graded algebras with the neutral component

satisfying a polynomial identity of degree 2

Let G be a finite group, and A a G-graded algebra. In this section, we present

a study about the general case when the neutral component Ae satisfies a polynomial
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identity of degree 2. A polynomial f of degree 2 in the variables x1, . . . , xn is a polynomial

in FxXy of the form

fpx1, . . . , xnq “
n
ÿ

r,s,k“1

λrsxrxs ` γkxk ,

where λrs, γk P F.

Let G be a finite group, and A “ B‘ JpAq a finite dimensional G-graded algebra,

where B “
Śp

i“1MnipFσirHisq and J “ JpAq is the Jacobson radical of A. Assume that

Bi “MnipFσirHisq is graded with a canonical elementary G-grading. Suppose that f is a

polynomial identity of degree 2 of Ae. We must analyse the two following situations:

i) Ae is nilpotent;

ii) Ae is not nilpotent.

Firstly, suppose that Ae is a nilpotent algebra. By Theorem 3.2.15, in Chapter 3,

we have that A is nilpotent with ndpAeq ď ndpAq ď |G|ndpAeq, and thus, A “ J. Let

us assume that Ae is not nilpotent (and also A). Hence, observe that pBiqe Ď Ae for all

i “ 1, . . . , p. From this, if Ae satisfies f ” 0, then pBiqe satisfies f ” 0 for all i “ 1, . . . , p.

Lemma 4.6.1 Let G be a group, F a field, f “ fpx
peq
1 , . . . , x

peq
n q P FxXGy a polynomial of

degree 2, and B “MnpFσrHsq the algebra of nˆ n matrices over FσrHs with a canonical

elementary G-grading. Suppose that charpFq ‰ 2, and Be satisfies f ” 0. Then f and

rxpeq, ypeqs generate the same GT -ideal.

Proof: Write fpxpeq1 , . . . , x
peq
n q “

n
ÿ

r,s,k“1

λrsx
peq
r xpeqs ` γkx

peq
k . We have that E11ηe P Be, and

so for xi “ E11ηe, xj “ 0 for all j ‰ i, we obtain

0 “ fp0, . . . , 0, E11ηe, 0, . . . , 0q “ λiipE11ηeq
2
` γipE11ηeq

“ λiiσpe, eqE11ηe ` γiE11ηe “ pλiiσpe, eq ` γiqE11ηe .

And for xi “ ´E11ηe, xj “ 0, for all j ‰ i, we obtain

0 “ fp0, . . . , 0,´E11ηe, 0, . . . , 0q “ λiip´E11ηeq
2
` γip´E11ηeq

“ λiiσpe, eqE11ηe ´ γiE11ηe “ pλiiσpe, eq ´ γiqE11ηe ,
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and hence, λiiσpe, eq ` γi “ 0 and λiiσpe, eq ´ γi “ 0 for all i “ 1, . . . , p. Thus, it follows

that λii “ 0 for all i “ 1, . . . , p, and consequently, γi “ 0 for all i “ 1, . . . , p. From this,

we have that fpxpeq1 , . . . , x
peq
n q “

n
ÿ

r,s“1
r‰s

λrsx
peq
r xpeqs .

Finally, we have for the evaluation xi “ E11ηe, xj “ E11ηe, xk “ 0, for all k ‰ i, j

(for any pair i, j P t1, . . . , nu), i ‰ j

0 “ fp0, . . . , 0, E11ηe, 0, . . . , 0, E11ηe, 0, . . . , 0q “ λijpE11ηeqpE11ηeq ` λjipE11ηeqpE11ηeq

“ pλij ` λjiqσpe, eqE11ηe ,

and hence, λij ` λji “ 0 for all i, j “ 1, . . . , p distinct. Therefore, we conclude that

fpx
peq
1 , . . . , xpeqn q “

ÿ

1ďrăsďn

λrsrx
peq
r , xpeqs s .

The result follows. �

By the previous lemma, given a finite dimensional G-graded algebra A “ B ‘ J,

where B “
Śp

i“1MnipFσirHisq and J “ JpAq is the Jacobson radical of A, and Bi “

MnipFσirHisq has a canonical elementary G-grading, if Ae satisfies a graded polynomial

identity f “ fpx
peq
1 , . . . , x

peq
n q of degree 2, then either A is nilpotent, or f and rxpeq, ypeqs

generate the same GT -ideal.

Theorem 4.6.2 Let G be a finite abelian group, F an algebraically closed field of charac-

teristic zero, and A a finitely generated G-graded algebra A. If Ae satisfies a polynomial

identity f “ fpx
peq
1 , . . . , x

peq
n q P FxXGy of degree 2, then either A is a nilpotent algebra,

with ndpAeq ď ndpAq ď ndpAeq|G|, or A satisfies rxpeq, ypeqs.

Proof: Observe that since Ae is PI-algebra, then A is also PI-algebra (see Theorems

1.4.11 and 1.4.12). By Remark 1.4.10, there exists a finite dimensional G-graded algebra

A1 “ B ‘ J such that TGpAq “ TGpA1q, where J “ JpA1q is the Jacobson radical of A1

(which is a graded ideal of A1), and

B “Mn1pFσ1rH1sq ˆ ¨ ¨ ¨ ˆMnppFσprHpsq ,

with Hi ď G, σi P Z2pHi,F˚q, MnipFσirHisq is equipped with a canonical elementary G-

grading, for any i “ 1, . . . , p. Suppose that A1 is not nilpotent, i.e. B ‰ t0u. Then
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pBiqe Ď A1e for all i “ 1, . . . , p. The result follows from Lemma 4.6.1. �

Now, assume that F is an algebraically close field of characteristic zero, and G is

a finite abelian group, f “ fpx
peq
1 , . . . , x

peq
n q P FxXGy is a polynomial identity of degree

2, and WG “ varGpfq. By Theorems 1.2.20 and 1.4.13, it follows that there exists a

Gˆ Z2-graded finite dimensional algebra A “ B‘ J such that

WG
“ varGpEG

pAqq ,

where J “ JpAq is the Jacobson radical of A, and

B “Mn1pFσ1rH1sq ˆ ¨ ¨ ¨ ˆMnppFσprHpsq ,

with Hi ď G ˆ Z2, σi P Z2pHi,F˚q, MnipFσirHisq has a canonical elementary G-grading.

Observe that f ” 0 is satisfied in EGpAqe “ Ape,0q bF E0 ` Ape,1q bF E1. In particular,

f ” 0 is satisfied in Ape,0q bF E0. Hence, either Ape,0q “ Jpe,0q, and it is nilpotent, or

pBiqpe,0q Ď Ape,0q for all i “ 1, . . . , p, where Bi “ MnipFσirHisq. Observe that if B ‰ t0u

(A ‰ J, i.e. A is not nilpotent), then Bpe,0q ‰ t0u, since 1B P Bpe,0q. It means A “ J is

nilpotent if Ape,0q “ Jpe,0q. In this case, EGpAq is also a nilpotent algebra.

Theorem 4.6.3 Let G be a finite abelian group, F a algebraically closed field of charac-

teristic zero, f “ fpx
peq
1 , . . . , x

peq
n q P FxXGy a polynomial degree 2, and WG “ varGpfq the

G-graded variety defined by f . Then either WG “ varGprxpeq, ypeqsq or WG “ varGpNq for

some nilpotent algebra N .

Proof: The result follows from above observations and Theorem 4.6.2. �
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NOTATION

ă 8 finite order (or bounded upper)

rG : Hs index of H in G

rσs “ tγ P Z2pG,Mq : σγ P B2pG : Mqu

ra, bs commutator of a and b — ra, bs “ ab´ ba

ra, bsf f-commutator of a and b — ra, bs “ ab´ fpa, bqba

ra1, a2, . . . , ans “ rra1, a2s, a3, . . . , ans

#tβu number of elements of the set β

AS left submodule of M

ASÃ subbimodule of M

A associative algebra

AbF B tensor product of F-algebras

A# algebra A with adjoint unity

Ag homogeneous component of A of degree g P G

AπpHq “
à

gPSupppΓAq

πpgqPπpHq

Ag

m̄ element m`N which belongs to M{N

C Complex field

X,
Ş

intersection of sets

– isomorphism of algebras (or modules, or groups)
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142 Notation

–G G-graded isomorphism of algebras (or modules)

Y,
Ť

union of sets

δij Kronecker delta

E “ E0 ‘ E1 Grassmann algebra with its natural Z2-grading

EGpAq G-graded Grassmann envelope of A

H empty set

”GPI GPI-equivalence of GPI-algebras

”PI PI-equivalence of PI-algebras

ηg basic element of FG (and also of FσrGs)corresponding to g P G

F, K fields

Frx1, x2, x3, . . . s polynomial ring over F

FG group algebra

FxXy free associative algebra over F generated by X

FxXGy free G-graded associative algebra over F generated by XG

F˚ “ F´ t0u — multiplicative group of F

FσrGs twisted group algebra

AnnApMq “ ta P A : am “ 0, @m P Mu

B2pG,Mq group of all the 2-coboundaries of G with coefficients in M (“ F˚)

charpFq characteristic of field F

coresGH corestriction map

degpaq homogeneous degree of a P A

degprq homogeneous degree of r P R

dimFpVq dimension over F of vector space V

e Euler number

gcd greatest common divisor

H2pG,Mq second cohomology group of G with coefficients in M (“ F˚)

H2pH,MqG subgroup of H2pH,Mq of points fixed by G

impψq image of homormophism ψ

kerpψq kernel of homormophism ψ
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Notation 143

lcm least common multiple

maxtx P Xu “ y P X such that x ď y for any x P X

mintx P Xu “ y P X such that x ě y for any x P X

M left A-module, right A-module, pA, Ãq-bimodule, or A-bimodule

M{N quotient module

MH submodule of M of points fixed by H

ndpRq nilpotency order of R

ndnilpRq the smallest number r P N such that ar “ 0 for any a P R

opgq order of element g P G

resGH restriction map

resGHpH
2pG,Mqq subset of H2pH,Mq of all σH , where σ P H2pG,Mq

resGHpσq “ σH P H
2pH,Mq, where σ P H2pG,Mq

spanFtv P Nu vector F-subspace generated by N

SupppΓq support of G-grading Γ

S left cancellative monoid

S{P quotient group

tr trace function

varGpfq G-graded variety defined by f Ă FxXGy

varGpSq G-graded variety defined by S Ă FxXGy

Z2pG,Mq group of all the 2-cocycles of G with coefficients in M (“ F˚)

G group

Gˆ Z2 direct product of G and Z2

Gn “ Gˆ ¨ ¨ ¨ ˆ G
looooomooooon

n´times

Γ,ΓA G-gradings on A

Ĝ “ tχ1, . . . , χnu — group of irreducible characters of G

i unity of algebra of matrices MnpFσrHsq

J “ JpAq Jacobson radical of an algebra A

J00 nilpotent algebra, and a 0-bimodule

λ, γ elements of F
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144 Notation

xSyGT GT -ideal generated by the subset S P FxXGy

xSyT T -ideal generated by the subset S P FxXy

ZpXq center of X

ZXpY q center of Y in X

S semigroup

| a | b means b is divisible by a

N Natural numbers

- a - b means b is not divisible by a

fl there is no an isomorphism

flG there is no a G-graded isomorphism

‘,
À

direct sum of vector subspaces

b, bF tensor products of F-algebras

π the projection map of Gˆ Z2 to G

πpHq “ tg P G : g P impπqu

R associative ring

Rs homogeneous component of R of degree s P S

σ 2-cocycle

σpg, hq 2-cocycle σ applied in pg, hq P Gˆ G

σH restriction of σ to H

n
?

1 “ ta P F : an “ 1u

n
?
λ “ a P F such that an “ λ

G
ãÑ G-graded immersion

G

­ãÑ there is no a G-graded immersion

Ď8 asymptotically contained

Ĺ X Ĺ Y means X Ă Y and X ‰ Y

ř

sum

TpAq T -ideal of all polynomial identities of A

TGpAq GT -ideal of all G-graded polynomial identities of A

ˆ,
Ś

direct products of algebras (or groups)
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Notation 145

E H E G means H is a normal subgroup of G

Υ class of all f-commutative rings

VG,WG varieties of G-graded algebras

ϕ, ψ (graded) homomorphisms of algebras (or modules)

Z Integer ring

Zrx1, x2, x3, . . . s polynomial ring over Z

Zn quotient group Z{nZ

AS left submodule of M generated by S Ă M

ASÃ subbimodule of M generated by S Ă M

e neutral element of G (or of S)

Eij elementary matrix of MnpFq

Eijηg elementary matrix of MnpFσrHsq

f ” 0 polynomial identity

f ”G 0 G-graded polynomial identity

g´1 inverse element of g P G, i.e. g´1g “ gg´1 “ e

H subgroup of G

HomZHpZG,Mq ZH-homomorphisms from ZG into M

MnpFq algebra of matrices over F

MnpFσrHsq algebra of matrices over twisted group algebra

SA right submodule of M

SA right submodule of M generated by S Ă M

Sn symmetric group of order n

X a countable set X “ tx1, x2, . . . u

XG a countable set
Ť

gPGXg, where Xg “ tx
pgq
1 , x

pgq
2 , . . . u
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INDEX

2-cocycle, 25
2-coboundary, 26
antisymmetric, 26
equivalence, 26
symmetric, 26
trivial, 25

A-bimodule
G-Artinian, 37
G-Noetherian, 37
G-graded, 21
irreducible, 22

epimorphism, 20
graded
subbimodule, 21

homomorphism, 20
bijective, 20
graded, 23
homogeneous, 23
image, 20
injective, 20
kernel, 20
surjective, 20

irreducible, 19
isomorphism, 20
monomorphism, 20
quotient, 20
graded, 22

simple, 19
subbimodule, 18
graded, 21

subbimodule generated, 18
unitary, 17

A-module
0-module, 17

G-graded, 21
irreducible, 21

epimorphism, 20
faithful, 19
homomorphism, 20
bijective, 20
graded, 22
homogeneous, 22
image, 20
injective, 20
kernel, 20
surjective, 20

irreducible, 19
isomorphism, 20
monomorphism, 20
quotient, 20
graded, 22

simple, 19
submodule, 17, 21
submodule generated, 18

G-graded
A-bimodule, 21
G-Artinian, 37
G-Noetherian, 37
irreducible, 21, 22

algebra, 14
division, 15
ideal, 15
minimal, 15
simple, 15
subalgebra, 15

module, 21
G-grading

support of, 14
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148 Index

G-module, 67
S-graded

ring, 14
S-grading, 13
f-commutator, 84
2-coboundary, 68

abelian, 10
algebra, 11

PI-equivalent, 50
T -ideal, 49, 50
GPI-algebra, 49
GT -ideal, 48, 49
G-simple, 15
graded homomorphism, 16
adjoining a unit, 12, 115
associative, 11
center, 12
central, 12, 114
commutative, 11
β-commutative, 30

epimorphism, 13
free associative, 49
free graded associative, 48
graded
GPI-equivalent, 49
epimorphism, 16
free associative algebra, 48
immersion, 30
isomorphism, 16
monomorphism, 16
polynomial identity, 49

graded homomorphism
injective, 16
subjective, 16

graded isomorphism, 16
Grassmann Envelope, 52
group, 14
homomorphism, 13
bijective, 13
image, 13
injective, 13
kernel, 13
surjective, 13

ideal, 11
minimal, 11

left ideal, 11
minimal, 11

nil, 12

bounded index, 12
nilpotent, 12
PI-algebra, 49
polynomial identity, 49
consequence, 50

Quaternion, 102
right ideal, 11
minimal, 11

subalgebra, 11
super-central, 115
super-commutative, 115
T-ideal, 50
twisted group, 29
unitary, 11
variety, 50
graded, 49

algebras
isomorphism, 13
monomorphism, 13

associative, 10

bimodule, 17
A-bimodule, 17

center
algebra, 12
group, 12
ring, 12
subalgebra, 12

central
subalgebra, 12

chain, 33
ACC, 34
ascending, 34
condition, 34

DCC, 34
descending, 34
condition, 34

character, 35
cocycle, 68
commutative, 10
commutator, 30

β-commutator, 30
compatible pair, 72
conjugation action, 72

dual
group, 37

Dubnov-Ivanov-Nagata-Higman Theorem, 93
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Index 149

element
minimal, 33
greatest, 33
least, 33
maximal, 33

field, 11

graded
finite, 14
free algebra, 48
ideal
minimal, 15

grading
canonical elementary, 30
elementary, 15, 96
canonical, 15, 30

finite, 14
group, 10

abelian, 10
center, 12
order of an element, 10
second cohomology, 67, 69

group character
dual, 37

homogeneous
component, 14
element, 14

homomorphism
A-bimodule, 20
A-module, 20
algebra, 13
corestriction, 73, 74
graded
A-bimodules, 23
A-modules, 22
algebra, 16

homogeneous, 22
homogeneous of pA, Ãq-bimodules, 23
restriction, 73
transfer, 73, 74

ideal
minimal graded, 15
verbal, 63

indeterminates, 48
invertible, 10

Jacobson radical

free, 62

Köthe’s Problem, 5, 92, 94, 96

linear transformation, 13
epimorphism, 13
image, 13
isomorphism, 13
kernel, 13
monomorphism, 13

lower bound, 33

Maschke’s Theorem, 35
matrix representation, 34
matrix representations

equivalent, 34
minimal

ideal, 11
left ideal, 11
right ideal, 11

module
left, 16
unitary, 16

right, 17
unitary, 17

monoid, 10
cancellative, 10, 77, 99
left, 10
right, 10

order of an element, 81
monomial, 48
multiplication, 10

Nagata-Higman Theorem, 4, 92
neutral component

central, 99, 103
neutral element, 10

partially ordered set, 33
Peirce Decomposition, 54
polynomial identity, 49

consequence, 50
graded, 49

poset, 33
chain, 33

projection map, 107, 118

representation, 34
irreducible, 34
orthogonality relations, 36
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150 Index

reducible, 34
completely, 35

trace, 35
ring, 10

f-commutative, 13, 85, 87, 91, 94
f-commutator, 84
associative, 10
center, 12
commutative, 10
ideal, 11
left ideal, 11
nil, 12
bounded index, 3, 12
nil index, 3

nilpotent, 3, 12
nilpotency index, 3

right ideal, 11
subring, 11
unitary, 10

Second Cohomology Group, 67
semigroup, 10, 84

action, 12, 84
Specht problem, 53

trace function, 35
twisted group algebra, 29

unitary, 10
unity, 10
upper bound, 33

vector space, 11
subspace, 11
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