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Resumo

Seja 21 uma algebra associativa sobre um corpo F graduada por um grupo G, e "e" a

unidade de G. Nesse trabalho, nés estudamos e respodemos os seguintes questionamentos:
o que podemos dizer sobre 2 quando 2[, é: 1) um anel nil? 2) um anel nilpotente? 3)
uma subalgebra central em A7 Nesse sentindo, nés estudamos a classe de todos os anéis
graduados cuja a componente neutra é nil, e a classe de todas as algebras graduadas com
a componente neutra central na algebra. Dessa forma, nés provamos que, dado um anel
associativo R com uma S-graduacao finita, onde S é um monoéide a esquerda cancelativo,
se R, ¢ nil (resp. nil de indice limitado) e f-comutativo, entdao 2R também é um anel nil
(resp. de indice limitado). Entre outros resultados, usando o Teorema de Dubnov-Ivanov-
Nagata-Higman, n6s obtemos uma importante aplicacao de nossos resultados: dada uma
F-algebra ! com uma finita S-graduagao, se char(IF) = 0 e 2R, é nil de indice limitado,
entao R é nilpotente. Além disso, nos exibimos uma consideravel relagao entre anéis
graduados e o Problema de Kéthe. Na sequéncia, nos estudamos a variedade definida
pelo conjunto de polinémios G-graduados {[z(¢),y9)] : g € G}, onde G é um grupo. Dessa
forma, nés provamos que se G é um grupo finito e abeliano, e IF é um corpo algebricamente
fechado de caracteristica zero, entao nos descrevemos um portador para variedade de todas
as algebras G-graduadas com a componente neutra central. Finalmente, noés provamos que,
em certas condigoes, se uma algebra graduada 2, satisfaz uma identidade polinomial f
de grau 2, entao 2 é nilpotente ou 2 tem a componente neutra comutativa.

Palavras-chave: algebra associativa G-graduada, anel associativo S-graduado, anel nil,
componente neutra central, problema de Kothe, teorema de Dubnov-Ivanov-Nagata-Higman,
GPI-algebra, identidades graduadas.



Abstract

Let 2 be an associative algebra over a field F graded by a group G, and e the unit of G.
In this work, we study and we answer the following questions: what can we say about 2
when 2, is: 1) a nil ring? 2) a nilpotent ring? 3) a central subalgebra in 27 In this sense,
we study the class of all graded rings whose neutral component is nil, and the class of all
graded algebras whose neutral component is central in the algebra. Namely, we prove that,
given an associative ring R with a finite S-grading, where S is a left cancellative monoid,
if R, is nil (resp. nil of bounded index) and f-commutative, then R is a nil ring (resp.
of bounded index). Among other results, using Dubnov-Ivanov-Nagata-Higman Theorem
we obtain an important application of our results: given an F-algebra SR with a finite
S-grading, if char(IF) = 0 and fR. is nil of bounded index, then fR is nilpotent. Besides
that, we exhibit a considerable relation between graded rings and Kothe’s Problem. Next,
we study a graded variety defined by a set of G-graded polynomials {[z(®),49)] : g € G},
where G is a group. Namely, we prove that if G is a finite abelian group, and F an
algebraically closed field of characteristic zero, then we describe a carrier to the variety
of all the G-graded algebras with the central neutral component. Finally, we prove that,
in suitable conditions, if a graded algebra 2. satisfies a polynomial identity f of degree
2, then either 2 is nilpotent or 2l has the commutative neutral component.

Keywords: S-graded associative ring, nil ring, central neutral component, Kéthe’s Prob-
lem, Dubnov-Ivanov-Nagata-Higman Theorem. G-graded associative algebra, GPI-algebra,
graded identities.
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INTRODUCTION

Let F be an arbitrary field, G an arbitrary group, and F(X®) the free G-graded
associative algebra over F generated by a countable infinite set X¢ = [ ] seG Xg Where
X, = {2\ 2 ...} for all g € G. The indeterminates of X, are said to be homogeneous
(91) .(92) . .(gs

o ) e F(XC®), the homogeneous degree

of degree g. Given a monomial m = z ;
2 1s

of m, denoted by deg(m), is defined by g¢192---gs. Therefore, it is natural to write
F(X® = @ gec Fg where Fy is the subspace of the algebra F(X ) generated by all the
monomials having homogeneous degree g. It is easy to check that F,F, < [y, for all
g,h € G. The above decomposition into direct sum makes F(X®) a G-grading algebra.
Hence, F(X©) is the free G-graded associative algebra generated by the sets X,, g € G.
Now, let 21 be an algebra over F with a G-grading I', ie, I' : A = @geG 2,
with 2(, subspace of 2 and A, < Ay, for all g,h € G. We say that 2 is an as-
sociative GPI-algebra over F (or simply GPI-algebra) if there exists a nonzero f =
F 2 2y e F(XC) such that f(ai,as,...,a,) = 0 for all a; € Ay, an €
Agys ..., an €2y . In this case, we write f =g 0 in 2 and we say that f is a G-graded poly-
nomial identity of A. We denote by T¢(2l) the set of all G-graded identities of . In other
words, T¢(2) = {f e F(X®) : f =¢ 0 in A}. It is easy to check that T¢() is a G-graded
ideal of F{X©®) invariant under G-endomorphisms of F{X®), called GT-ideal of G-graded
identities of (. Consider Supp(I') = {g1, ..., g4} finite, where Supp(I') = {g € G : A, # 0}.
For each i = 1,2,..., put x; = Z;l:l xggj). Let F(X) be the free associative algebra
generated by set X = {1, 29,...}. Consider the set T(A) < F(X) of polynomial (ordi-
nary) identities of A, i.e. T(A) = {f € F{(X) : f = 0in ™A}. We have that T(2() is an
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2 Introduction

ideal of F(X) invariant by its endomorphisms, called T-ideal of identities of 2. Note that
T(R) < TC(A).

One of central problems in the study of graded algebras is to obtain non-graded
(ordinary) properties from the analysis of gradings of a given algebra and vice versa. In
this sense, given a graded algebra, we try to determine relationships between its graded

identities and its non-graded identities. Let A = @, A, be a G-graded algebra, G a

9eG
finite group with neutral element e. In [5], Bergen and Cohen showed that if 2, is a
Pl-algebra, then 2l is also a PI-algebra. In that work, a bound for the degree of the
polynomial identity satisfied by 24 was not found. On the other hand, in [2], Bahturin,
Giambruno and Riley proved the same result, but, in addition, they gave a bound for the

minimal degree of the polynomial identity satisfied by (. Namely, the following result

was shown:

Theorem 5.3, [2]: Let F be an arbitrary field and G be a finite group. Suppose that 2
is a G-graded associative F-algebra such that 2, satisfies a polynomial identity of degree
d. Then 2 satisfies a polynomial identity of degree n, where n is any integer satisfying

the inequality
GI"(|Gld —1)*
(|Gld — 1)!

In particular, if n is the least integer such that e|G|(|G|d — 1)? < n, then 2 satisfies a

polynomial identity of degree n, where e is the base of the natural logarithm.

Therefore, in this thesis work, we analyse specific cases of the statement in the
previous theorem. We study and answer the following questions: what can we say about
a graded algebra A when A, is: 1) a nilpotent ring? 2) a nil ring? 3) a central algebra?
4) a commutative algebra? And so, we divided this work into 4 (four) chapters: 1)
Graded Algebras, Graded Bimodules and Graded Identities; 2) Second Cohomology Group
3) Graded Rings with Nil Neutral Component; 4) Graded Algebras with Central Neutral
Component. In what follows, let us discuss each one of these chapters a little.

In the first chapter, we introduce notations and definitions which are necessary
for a better presentation of other chapters. We define here all the algebraic structures
that we use in this work. Furthermore, we exhibit various properties of these algebraic
structures. The most important part of this chapter is the last section, it is the key to

prove the main theorem in Chapter 4. We admit to be known the concepts of a monoid,

DE Franga, A.M.D. June 28, 2019 Mat — UnB



Introduction 3

group, ring, field and vector space over a field. In the whole text, all rings and algebras
are assumed to be associative, G denotes a group, F and K denote fields. For more details
about the basic structures that we use here, see [6, 8, 9, 23, 25, 26, 31, 40|.

In the second chapter, we present an overview of the objects of the theory of co-
homology of groups. Here we give all definitions necessary to understand the problems
exposed, and some of the main results. Here, the most important result, being an alge-
braically closed field, is that the 2nd cohomology group of a finite group is finite. In the
second section, we present more interesting results. The main result is the following:
Corollary 2.2.7: If [G: H| < o, H is central in G and M is an abelian group with a
trivial G-action, then

H?(H, M) = res} (H*(G,M)) .

Our goal in the second chapter is to determine suitable conditions to ensure that the re-
striction homomorphism from H?(G, M) into H?( H, M) is surjective, where H is a subgroup
of a group G.

In the third chapter, we consider a left cancellative monoid S, i.e. gh = gt implies
that h = t for any g,h,t € S, and an associative ring R with a finite S-grading I". Our
principal goal in this chapter is to present some results which are direct implications of
the case "R, is nilpotent" or "R, is nil", where e is the neutral element of S. In this sense,
we give some upper bounds for nd(fR), the nilpotency index of R. Here, we are interested
in studying associative rings with an S-grading, whose neutral component is nil. Unless
otherwise stated, PR is an associative ring, and S is a left cancellative monoid, with the
neutral element e. Let PR be a nilpotent ring, that is, there exists an integer n > 0 such
that xyzy - - -, = 0 for any xq, xq, ..., z, € R (R™ = {0}). We define the nilpotency index
of R, denoted by nd(R), as the smallest number d € N such that 53¢ = {0}. Analogously,
if R is a nil ring of bounded index, i.e. there exists some integer n > 0 such that y™ = 0
for any y € R, we define the nil index of R, denoted by nd,;(R), as the smallest number
r € N such that " = 0 for any a € R. Consequently, any nilpotent ring also is a nil ring
(of bounded index). Therefore, for any nilpotent ring SR, nd,;(R) < nd(R).

In [24], the authors proved that if a finite solvable group G acts by automorphisms
on a ring M| without non-zero fixed points, i.e. 8¢ = {0}, and without |G|-torsion, then
RISl = {0}. They also proved that if G is a finite group acting on a ring % without |G|-

torsion, and PR® is nilpotent, then DR is nilpotent. Other result proved by these authors
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4 Introduction

is that if R is a ring graded by a finite cyclic group, such that . is central, then the
commutator ideal of 2R is nil. Already in [28], E.I. Khukhro presents the following result
(Corollary 4.3.8 (p. 101)): if a Lie ring admits a reqular automorphism of prime order,
then it is nilpotent. And N. Yu. Makarenko, in [32], using techniques created by E.I
Khukhro, showed that given a G-graded associative algebra 2, where G is a finite group
of order n, if . has a nilpotent two-sided ideal of finite codimension in (., then 2 has
a homogeneous nilpotent two-sided ideal of nilpotency index bounded by a function on n
and of finite codimension. In our work, we generalize some of these results.

In this third chapter, we study the following:

Problem*: Does R, nil imply that R is nil, where R, is the neutral component
of I'?

In this sense, we study the class of all the S-graded rings whose neutral component
is nil. Among other results, we obtain a positive solution for Problem™* in the class of all
f-commutative rings, where an associative ring fR is said to be f-commutative if there
exist a semigroup & that acts on the left of R, and a mapping f : R x R — & such that
ab — f(a,b)ba = 0 for any a,b € . More precisely, we prove

Theorem 3.2.14: Any ring with a finite grading whose neutral component is nil and

f-commutative is a nil ring.

Moreover, adding in the previous theorem the hypotheses "R, is finitely gener-
ated", we obtain that fR is a nilpotent ring. In general, the assumptions "finitely gen-
erated" and "f-commutative" are necessary to guarantee that (R is nilpotent, and so we
present some counterexamples.

The importance of our results arises when we relate them to Dubnov-Ivanov-
Nagata-Higman Theorem and Kodthe Problem. Let us present these two problems.

In [33] and [22], Nagata and Higman (and in [12], Dubnov and Ivanov), respectively,
proved that, under some suitable conditions, any associative nil algebra is also a nilpotent
algebra. Firstly, Nagata proved the validity of the result over a field of characteristic
zero, in [33]. Afterwards, Higman established the result in a more general case, in [22]. A
similar result was previously also published in Russian (|12]).

In this way, we have some natural questions: how to characterize a G-graded algebra
whose neutral component is nil/nilpotent? Does the nil neutral component implies that

the algebra is nilpotent? If so, what are the possible limits for its nilpotency index? Thus,
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Introduction 5

we prove the following theorem that is a generalization of Nagata-Higman Theorem:

Theorem 3.3.3: Let S be a left cancellative monoid , and 2 an associative algebra over
a field F with a finite S-grading, char(F) = p. Suppose that 2, is a nil algebra of bounded
index. If p =0 or p > nd,,;;(2e), then 2 is a nilpotent algebra.

Finally, we exhibit a considerable relation between graded rings and Kdéthe’s Prob-
lem. This problem was proposed in 1930 by G. Kéthe in [29] and still has not a general
solution. Kothe’s Problem asks, whether the sum of two right nil ideals of a ring is nil, or
equivalently, if a ring R has no nonzero nil ideals, then R has no nonzero one-sided nil ide-
als. Various mathematicians have studied this problem since 1930, and we can cite some
of the works: [15, 14, 43, 42|. The Kéthe conjecture has several different formulations.

Among others, we have the following equivalent statements:

Theorem: The following statements are equivalent:
i) If a ring has no nonzero nil ideals, then it has no nonzero one-sided nil ideals;
ii) The sum of two right nil ideals in any ring is nil;
iii) For any nil ring fR, the ring of 2 x 2 matrices over R is nil;

iv) For any nil ring R, the ring of n x n matrices over R is nil.

This theorem can be found in [43]. In our work, we prove that Kéthe’s Problem has a
positive solution in the class of f-commutative rings graded by a monoid. Moreover, we

show that

Theorem 3.3.7: A positive answer to Problem* implies that Kéthe’s Problem has a

positive solution.

Equivalently, a counterexample to Kéthe’s Problem would yield a counterexample
to Problem™.

Finally, in the fourth and last chapter, we study the G-graded algebras with the
central neutral component, and we study the variety of G-graded algebras defined by G-
graded polynomial identities [2(¢),49)] for all g € G, where G is an abelian finite group,
and the base field is algebraically closed fo characteristic zero. In other words, in this
chapter, we exhibit results concerning to the variety ¢ of all G-graded algebras whose

neutral component is central, ie. U := var® ({[z(®,y@]: ge G}). We present some
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6 Introduction

properties of algebras which belong to the variety ¢, and in suitable conditions, we give
a description of %€, in the language of a carrier. Here, we assume that G is a finite abelian
group, [F is an algebraically closed field of characteristic zero, and all considered algebras
are associative F-algebras, unless otherwise stated.

Firstly, we present some results on rings graded by a cancellative monoid that have
a small support, and whose neutral component is central. The main result here is that
any graded ring with the central neutral component and the support of order at most 3
is Lie nilpotent, i.e. satisfies the polynomial identity [xi,...,z,] = 0 for some n € N.
We exhibit also some counterexamples for the case of rings with order of support greater
than 3. In the second section of 4th Chapter, we introduce the variety of ¢ of all G-
graded PIl-algebras with the central neutral component. Basically, we exhibit our objects
of study. In the third section, we study the graded algebra of finite dimension whose
neutral component is central in the algebra. We show some properties of these algebras,
we apply some concepts of cohomology of groups, and combinatorial arguments. Our two
main results in this section are the following:
Theorem 4.3.8: Let F be an algebraically closed field of characteristic zero, G a finite
abelian group, H a subgroup of G, o € Z*(H,F*), and 2l = F°[H]|®J a finite dimensional
G-graded unitary F-algebra. Suppose that Supp('y) = H. If . is central in A, then

A =GPI FU[H] .

Moreover, 2 belongs to var®(F[G]) for some v € Z%(G,F*) which extends o.
Theorem 4.3.14: Let G be a finite abelian group, F an algebraically closed field of char-
acteristic zero, and A a finitely generated G-graded algebra. If A € UC, there exists a

finite dimensional G-graded algebra

Coa = X X (FH]® o) |

H<G \ [o]eH2(H F*)

where each Jp [4)) 15 a finite dimensional G-graded nilpotent algebra (J(g o)) is the Jacob-

son radical of U p o)) = F[H])® Jm0)) ), satisfying

T(Coa) S TE(RL) .

DE Franga, A.M.D. June 28, 2019 Mat — UnB



Introduction 7

Moreover, if 2 is unitary, then T¢(Cgg) < TC(21).

In the 4th section, we study the variety U¢ the all the G-graded algebras with the
central neutral component. Here, our main results are the following.
Theorem 4.5.4: Let G be a finite abelian group, H a subgroup of G x Zsy, o € Z*(H,F*),
and F an algebraically closed field of characteristic zero. Let A = F7[H| @ J be a finite
dimensional G x Zgy-graded unitary algebra, with the semisimple part B = F°[H]|, and J
is the Jacobson radical of A. Suppose that one of the following hypotheses is true:

1) A =Animy;

2) H=Gx{0};

3) w(Supp(I'y)) = 7(H);

4) H < G x {0} and (Supp(T'y)) < 7(H);

If (ES(2A)). is central in EC(2A), then J is generated as a G x Zo-graded B-bimodule by a

nilpotent subalgebra N of J, which is super-central in A, and
E€(A) =cpr ES(FI[H]) .
In particular, in the cases 2) and 4) we have that
ES(A) =cp; F°[H] =cp; F'[7(H)] ,

for some 6 € Z*(w(H),F*).
Theorem 4.5.5: Let G be a finite abelian group, and F an algebraically closed field of

characteristic zero. There exists a finite dimensional G x Zs-graded unitary algebra

Cc= X X (FH]®Jwm ) | -
H<GXZo [c]eH2(H,F*)
(e,1)¢H

such that Jg o)) is a finite dimensional G x Zy-graded nilpotent algebra (J(H,[G]) s the
Jacobson radical of Ap (o)) = FI[H] @ Ju 0 ), satisfying

U¢ = var®(E¢(Cg)) .
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8 Introduction

In the last section of 4th chapter, we prove that if a graded algebra 2l satisfies a
polynomial identity f of degree 2, in suitable conditions, then either 2l is nilpotent or A

has the commutative neutral component.

Brasilia, June 28, 2019

Antonio Marcos Duarte de Franga
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CHAPTER 1

GRADED ALGEBRAS, GRADED
BIMODULES AND GRADED
IDENTITIES

The aim of this chapter is to introduce notations and definitions, that are necessary
for a better presentation of the next chapters. We define here all algebraic structures
that we use in this work. Furthermore, we exhibit various properties of these algebraic
structures.

The most important part of this chapter is the last section, which is the key to
prove the main theorem in Chapter 4.

In the whole text, all rings and algebras are assumed to be associative, G denotes
a group, F and K denote fields. For more details about the basic structures that we use

here, see (6, 8, 9, 23, 25, 26, 31].

1.1 Basic Definitions and Properties

In this section, we present some definitions and properties of the basic structures
which are needed to understand the next chapters better. Let us comment briefly the
definitions of semigroups, monoids, groups, rings and vector spaces. Afterwards, we define

(bi)modules over algebras, gradings on algebras and modules. Finally, we present some
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10 1. Graded Algebras, Graded Bimodules and Graded Identities

properties of these important structures.

Let S be a non-empty set and "+" a map from S x S into S. We say that
P1) (S,*) is associative if (z *y) * z = x = (y * z) for any x,y, z € S;
P2) (S, *) is commutative if y » 2 = x = y for any z,y € S;

P3) (5, ) has a neutral element (or unity) if there exists 15 € S such that 1g*z =

xx1g =1z for any x € S. In this case, (S, ) is called unitary;

P4) z € (S, ) is invertible if (S, %) is unitary and there exists y € S, called inverse of

x, such that x+y =y« = 1g.

A non-empty set & with a binary map "+" is said to be a semigroup if (&, =)
satisfies P1.

"+" is said to be a monoid if (S, =) satisfies

A non-empty set S with a binary map
P1 and P3. Observe that any unitary semigroup is a monoid.

Now, given a non-empty set G with a map = : G x G — G, which is called a map
multiplication. We say that (G, =) is a group if it satisfies P1, P3and P/, for any z € G.
A group G is said to be abelian if satisfies P2. Note that any group is a monoid such
that its elements are invertible.

Let S be a monoid. We say that S is left cancellative (resp. right cancellative)
if gh = gt (resp. hg = tg) implies h = ¢, for any g,h,t € S. We say that S is bf
cancellative if S is both left cancellative and right cancellative. Observe that any group

is a cancellative monoid.

Remark 1.1.1 Let G be a group. Given an element g € G — {e}, where e is the unity of
G, if there exists an number m € N such that g™ = e, then we say that the order of g is
the smallest number n € N such that g™ = e, and in this case we denote o(g) = n. If there
1s no m € N such that gm = e, then we say that g has an infinite order, and we denote
o(g) = . Note that when G is finite, we have that all elements of G have a finite order,
and o(g) | |G|., for any g € G.

Take a non-empty set R with two maps +, - : B x R — R. We say that (R, +, )
is a ring if (MR, +) is an abelian group, and z(y + z) = xy + xz, and (z + y)z = xz + yz
hold, for any z,y, z € R (distributivity). A ring (R, +,-) is associative if (R, ) satisfies
P1; commutative if (R, -) satisfies P2; and unitary if (R, -) satisfies P3.
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1.1. Basic Definitions and Properties 11

A field F is a unitary commutative associative ring (F, +, -) such that (I, -) satisfies
P/ for any z € F — {0}, where 0 is the neutral element of (F, +).

Finally, a vector space over a field F (or simply, F-vector space) is a non-empty
set V together with two maps + : V. xV — V, and - : F x V — V such that (V,+) is
an abelian group, and (A +7)z = Az + vz, AM(x + y) = Az + Ay, (A\y)z = A(yz), for any
z,yeVand \,y€F, and 1gzx = z for any z € V.

A subring (resp. a subspace) is a subset which is also a ring (resp. a vector
space) with the same operations.

An ideal I of a ring R is a subring which is invariant with respect to multiplication
by R, i.e. IR, RI < I. We can define a left ideal (resp. a right ideal) of a ring R
requiring that SRI < I (resp. IR < I).

Definition 1.1.2 Let 2 be a vector space over a field F. We say that 2 is an F-algebra

if there exists a map " " from A x A into A that satisfies the following properties:
i) c-(a+b)=c-a+c-b;
ii) (a+b)-c=a-c+b-c;
iii) AMa-b) = (Xa)-b=a-(\b),
for any a,b,ce A and N e .

We say that 2 is associative if (2, -) satisfies PI; unitary if (2, -) satisfies P3
commutative if (2, -) satisfies P2. A subalgebra of 2 is a subset of 2 which is also an
algebra, and an ideal I of 2 is a subalgebra of 2 which is invariant with respect to the
multiplication of 2, that is, I, Al < I. We define a left ideal and a right ideal of an
algebra, being sufficient to require A/ < I and I < I, respectively.

A nonzero ideal I of an algebra 2 is called a minimal ideal if for any ideal J of
20 which is contained in I, one has J = {0} or J = I. Analogously, we define a minimal
left ideal and minimal right ideal of an algebra.

Given an algebra 21 without unit, it is always possible to obtain a unitary algebra
derived from 2. In fact, consider the algebra A% = A @ 14%F whose product is defined

as following: for any a,be 2 and \,v e F

(a+ Ng#)(b+ ylgx) = (ab+ Ab + va) + A\ylgx. (1.1)
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12 1. Graded Algebras, Graded Bimodules and Graded Identities

The algebra 2 is called an algebra derived from 2 by adjoining the unit 1.

Two important classes of algebras are the class of nil algebras and the class of
nilpotent algebras. An algebra 2l is said to be nil if for any a € 2 there is an integer
n = n(a) > 0 such that ¢” = 0. A nil algebra 2 has a bounded index when there
exists an integer ng > 0 such that 6™ = 0 for any b € 2, and thus, 2 is a nil algebra of
bounded index.

We say that 2l is a nilpotent algebra if there exists an integer d > 0 such that
aias---ag = 0 for any a1, as,...,aq € 2. Notice that any nilpotent algebra is also a nil
algebra (of bounded index). The reciprocal is not true. The definitions of nil rings (of
bounded index) and nilpotent rings are analogous.

From now on, all the rings and algebras are assumed to be associative.

Definition 1.1.3 Let 2 be an algebra and B a subalgebra of A. We define the center
of B in 2, denoted by Zy(B), as being the set

Zy(B) = {aeA:ab=ba,Vbe B}.

When B = U, we write Zy(B) = Z(A), and Z(2A) is called center of A. Notice that A
is commutative if Z(A) = A, and we say that B is central in A if B < Z(A).

The center of a ring is defined analogously.
We define the center of a multiplicative group. Let G be a group with multiplicative

notation and S a subset of G. We define the center of S in G as the set

Z6(S) ={ge G:gs=sg, for any s € S}.

When S = G, we write Z¢(G) = Z(G), and Z(G) is called center of G.

Let us consider now a generalization of commutativity.

Definition 1.1.4 Consider a semigroup &, and an associative ring R. A left action of

S on R is a mapping - : S x R —> R satisfying

(M) -z =Ay-x) and A-(vy) =(A-2)y ,

for any \,v € & and x,y € R, and it is called an action by semigroup. Consider
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1.1. Basic Definitions and Properties 13

amap f: RxR - &. Ifab = f(a,b)ba for any a,b € R, then we say that R is an

f-commutative ring.

We will consider f-commutativity of a ring with more details in Chapter 3.

Let us recall the definition of a linear transformation between two F-vector spaces.
Given two vector spaces V and V over the same field F, a map vV — V is said
to be a linear transformation if ¥(a + b) = ¥(a) + ¥(b) and ¢¥(Aa) = A(a) for
any a,b € V and A € F. The kernel and image of ¢ are, respectively, defined by
ker(¢)) = {a € V : 9(a) = 0} and im(¢)) = {tb(a) € V : a € V}. We say that 1 is an
epimorphism if it is a surjective map, i.e. im(¢)) = V; 1 is a monomorphism if it is
an injective map, i.e. ¥(a) = ¢ (b) implies @ = b in V; and ¢ is an isomorphism if it is
an epimorphism and a monomorphism. Notice that ker = {0} iff ¢ is injective. It is not
difficult to see that ker(s) and im(t)) are subspaces of V and V, respectively. For more
details, see [23].

Definition 1.1.5 Let A and A be two F-algebras and ¢ : A — A a linear transformation.
We say that ¢ is a homomorphism of algebras if ¢ satisfies ¢p(ab) = ¢(a)p(b) for any
a,beX.

The definitions of a kernel, image, epimorphism of algebras, monomor-
phism of algebras and isomorphism of algebras are inherited from linear transfor-
mations. It is not difficult to see that ker(¢) and im(¢) are subalgebras of 2 and £,
respectively. In particular, ker(¢) is an ideal of 2. We write 2 =~ 2l when there exists an
isomorphism of algebras between 2 and 2. Otherwise, we write 2 2 2.

Let us now define gradings on algebras and rings, modules over an algebra and
gradings on modules. For more details, see [6, 34, 35].

We denote by the symbol "@P" the direct sum of additive subgroups on a ring or the
;) =

direct sum of F-subspaces on an F-algebra, i.e. A = @,_;A; means 2A; N (Zje Ijsi

{0}, where ; = 2 are additive subgroups of a ring 2 or F-subspaces of an F-algebra 2.

Definition 1.1.6 Let R be a ring, and S a monoid. An S-grading on R is a decomposition
of R as a direct sum of its additive subgroups R, € R, g€ S,

R=PR,,

ges
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14 1. Graded Algebras, Graded Bimodules and Graded Identities

such that R, Ry, < Ry, for any g,h € S. We say that R is an S-graded ring, or that R is
a ring graded by the monoid S.

The fR,’s are called homogeneous components. For each s € S, any element
r € R, is called a homogeneous element of degree s, and we write deg(r) = s.

We can also define a grading by a quotient group in a natural way. In fact, let R
be a ring graded by a group S. Given a normal subgroup S of S, consider the quotient

group S/g Being R = P __ R, an S-grading on R, we have that

seS

R= P R;

5€S/S
defines an S/ g—grading on R, where Rz = P, s R

Definition 1.1.7 Let 2 be an F-algebra and G a group. A G-grading on 2 is a decom-

position of A as the direct sum of subspaces A, = 2, g € G,

Q[:@ngv

geG

such that A, = Agp for any g, h € G. We say that A is a G-graded algebra.

The 2 ’s are called homogeneous components. For each g € G, any element
a €2, is called a homogeneous element of degree g, and we write deg(a) = g¢.

Let 2 be a G-graded algebra. Denote by I'y : A = @QEG 2, the G-grading on 2
considered. The support of I'y, denoted by Supp(I'y), is given by the set

Supp(I'y) = {ge G:2A, # {0}} .

When no confusion can arise, we write only

Example 1.1.8 Given a group G and a field F, consider the group algebra FG, where

the elements of FG are the finite formal sums Y, _c Agny, where A, € F. We assume that

geG
the set {n, : g € G}, where each element n, corresponds to element g € G, is an F-basis

"o

of FG, and nyny = nng for any h,g € G. The multiplication 1s linearly extended on
the whole FG. A natural example of a G-graded F-algebra (and also G-graded ring) is the

group algebra FG, where 2, = spang{n, € A}.
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1.1. Basic Definitions and Properties 15

Example 1.1.9 Consider a group G and 2 = M, (F), the algebra of matrices of order
n. Fized an n-tuple & = (g1,...,9,) € G", the G-grading on A given by A = @QEG D/
where A, = spang{Ey; € A : g;'g; = g}, is called the elementary G-grading defined
by &. More generally, if B = M, (FG), the algebra of matrices of order n over FG, and

fized an n-tuple € = (G1,--.,0n) € G", the G-grading on B given by B = P, ¢ B,, where

geG
B, = spang{E;jn, € B : §; 'hg; = g}, is called the canonical elementary G-grading

defined by £.

Let 2 be a G-graded algebra. A subalgebra 8 of 2 is a graded subalgebra if
B = D,cc(B N Ay). This is means that, given b € B with b =, by (by € Ay), we have
that b, € B for any b € G.

An ideal I of A is said to be graded if I = @yec(f N A,), ie. if for any x =
Yigec Tg € I, with 2y € g, then x4 € I for any g € G.

It is clear that, if 2 is a unitary G-graded algebra (resp. ring), then 1y € ., where

e is the neutral element of G. For more details, see Chapter 3 in [17].

Definition 1.1.10 A G-graded algebra 2l is said to be (left) G-simple (or simple graded,
or minimal graded) if 2% # {0} and A does not have proper G-graded (left) ideals, i.e.
if I is a graded (left) ideal of A, then either I = {0} or I = 2. Moreover, assuming 2 be
unitary, A is a G-division (or division G-graded ) algebra if all its nonzero homogeneous
elements are inversible in A, i.e. for any a € UgEG A,, a # 0, there exists a=' € A such

that aa™' = a~'a = 1. Note that a™" is also homogeneous of degree deg(a™') = (deg(a))™.

It is not difficult to show that any division algebra is a division G-graded algebra,
for any G-grading on %A, but there are division graded algebras that are not division
algebras. For example, FG is a division G-graded algebra, but it is not a division algebra
for any field F and group G of order greater than or equal to 2. Moreover, any division
graded algebra is also a simple graded algebra.

A graded ideal I of a G-graded algebra 2{ is called minimal graded ideal when
{0} and I are the only graded ideals of 2 contained in 1.

Notice that, given a subgroup H of G, the subset 2 = @ gerr g of A is a graded
subalgebra of 2. In general, Supp(T") is not a subgroup of G. Indeed, consider G = Zy x Z,4,
and B = M(F). Put & = (g1,92,93) € G* with g1 = (0,0), g2 = (1,0),93 = (1, 1).
Notice that 8 with the elementary G-grading defined by £ has the support Supp(I') =
{91, 92, 93,95 ', 9293, 95 - g2}, which obviously is not a subgroup of G.
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16 1. Graded Algebras, Graded Bimodules and Graded Identities

Definition 1.1.11 Let 2 and 2 be two G-graded F-algebras and ¢ : A — A a homomor-
phism of algebras. We say that ¢ is a graded homomorphism of G-graded algebras if
O(A,) S A, for any g € G.

We say that a graded homomorphism of algebras ¢ is a graded epimorphism
if it is surjective; ¢ is a graded monomorphism if it is injective; and ¢ is a graded
isomorphism if it is bijective. We write 2 ~¢ 2 when there exists a graded isomorphism
between two G-graded algebras 2 and 2. Otherwise, we write 2 %¢ 2. It is not difficult
to see that ker(¢) and im(¢) are graded subalgebras of 2 and 2, respectively. Moreover,
ker(¢) is a graded ideal of 2.

Let us now define bimodules over algebras and graded bimodules over graded

algebras.

Definition 1.1.12 Let F be a field, A an F-algebra (not necessarily unitary), and M an
F-vector space. We say that M is a left A-module if there exists a well defined map from
A x M into M that satisfies the following conditions:

i) a(m +my) = am + amy,
i) (a+a))m = am + aym |
iii) (aa)m = a(aym) |

iv) (\a)m = A(am) = a(Am) .

for any a,a; € A, X F and m,my € M. If A is a unitary algebra, then we require that
lgm =m

for any m € M, and hence, we say that M is a unitary left A-module.
Analogously, we define a right 2-module.

Definition 1.1.13 Let F be a field, A an F-algebra (not necessarily unitary), and M an
F-vector space. We say that M is a right 2A-module if there exists a well defined map
from M x A into M that satisfies the following conditions:

i) (m+my)a =ma+ ma ,
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1.1. Basic Definitions and Properties 17

it) m(a + a1) = ma + may ,
i11) m(aay) = (ma)ay ,
i) m(Aa) = (Am)a = A(ma) ,

for any a,a; € A, N € F and m,m; € M. If A is a unitary algebra, then we require that
mly =m

for any m € M, and hence, we say that M is a unitary right 2A-module.

Given an left A-module M, we say that M is a left 0-module if AM = {0}, i.e.
am = 0 for any a € % and m € M.

It is easy to see that if 2 is a commutative algebra, then the definitions of a left
2-module and a right 2-module are the same, and hence, we often say "an 2A-module".
All the results for right 2A-modules and left A-modules are similar. For more details about

(one-sided) modules over algebras, see [9].

Definition 1.1.14 Let F be a field, A and A two F-algebras (not necessarily unitary),
and M an F-vector space. We say that M is an (2, il)-bimodule if it is a left A-module

and a right A-module, and its two scalar multiplications satisfy the associative law:
r(ms) = (rm)s

for anyr e, seA and m e M. When A = A, we say that M is an A-bimodule. When
A and A are unitary, M is a unitary 2-bimodule iff M is a unitary left A-module and

a unitary right 2A-module.

Let A be an algebra, and M a left (resp. right) 2-module. A submodule N of M
is a subspace of M which is 2U-invariant, i.e. N is also a left 2-module. Given a subset S
of M, we define the submodule of M generated by S, denoted by oS (resp. Sy), as
being the set given by

Q[Sz{ZrkmkeM:neN,rieQ[uF,mieS}
k=1
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18 1. Graded Algebras, Graded Bimodules and Graded Identities

(resp. Sy = {EmkskeM:neN,siteuF,mieS}> )

k=1
Observe that, necessarily, S is a subset of .S (resp. Sy). Let us consider also a submodule

2AS (resp. SA) of M defined by

AS = {anie M:neN,nte,mieS}

=1

<resp. SA = {Emjsje M :ﬁeN,sjei’l,mjeS}> :
j=1

If S = {m}, we denote AS (resp. S2A) by Am (resp. m2A) when no confusion can arise.
Observe that not always S is a subset of 205 (resp. S2), and S = AS + spang{m € S}
(resp. Sy = SUA + spany{x € S}). If A is unitary, and M is a unitary left (resp. right)
2A-module, then S = 2AS (resp. Sy = SA), and ¢S (resp. Sy) is a unitary left (resp.
right) 2-module.

Now, let 2 and 2 be two algebras, and M an (A, ﬁl)—bimodule. A subbimodule
N of M is a subspace of M which is also an (2, 2)-bimodule. Given a subset S of M, we
define the subbimodule of M generated by S, denoted by ¢S5, as being the set given

29q = {ZrkmkskeM:neN,riteuIF,sieﬁlu]F,mieS}
k=1

no ni n2 n3 ng € N07ml>mi7mj7mj € S’
= Z)\lml+2rimi+2mj3j+qu)mk)pkeM: ~ ’
=1 i=1 j=1 k=1 NeEF, 7 g e s;pred

where Ny = N U {0}. Let us consider also a submodule 252 of M defined by

ASA = {Z rempsy € M:ne N, r; e, s; eé(,mi € S}.
k=1

If S = {m}, we denote 2ASA by Am2 when no confusion can arise. Observe that wSg =

spang{m € S} + AS + S2A 4+ ASA, and hence, ASA < a9 and S < 9S5. When 2 and A

are unitary, and M is a unitary (2, él)—bimodule, we have that oS5 = ASA, and 25 1s a

unitary (21, 2)-bimodule.

Observe that a subbimodule of a graded bimodule is graded iff it can be generated
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1.1. Basic Definitions and Properties 19

as a bimodule by homogeneous elements.

A left (resp. right) 2A-module M is called irreducible (or simple) if AM = {0}
(resp. M2 # {0}), and {0} and M are the only submodules of M. Therefore, for any
irreducible left (resp. right) 2A-module M, we have M = Am (resp. M = m2l) for any
nonzero m € M. Really, considering N = {m € M : Am = {0}}, we have that N is a
submodule of M, and N # M because AN = {0} and 2AM = {0}, hence, N = {0} (since
M is irreducible), and consequently, for any m # 0 (m ¢ N), we have dm # {0} and
2Am = M. Notice that, given a subalgebra I of 2 such that 201 # {0} (resp. 12l # {0}),
I is a (minimal) left (resp. right) ideal of 2 iff I is a (irreducible) left (resp. right)
2-module.

Definition 1.1.15 An (A, 2A)-bimodule M is called irreducible (or simple) if AM2 #
{0}, and {0} and M are the only subbimodules of M. Particularly, the condition AMLA

{0} means that ama # 0 for some a € A, a €A and m € M.

For any irreducible (2, 2)-bimodule M, we have M = 2m2l for any nonzero m € M.
Indeed, it is sufficient to see that N = {m € M : Am2A = {0}} is a subbimodule of M, and
hence, we can conclude that N = {0}. When M is a unitary (2, 2)-bimodule (hence 2
and 20 are unitary also), the condition 2AMSl # {0} is equivalent to conditions 2AM # {0}
and M2 # {0}.

Notice that, given a subalgebra I of 2 such that A/ # {0}, [ is a (minimal)
(two-sided) ideal of L iff I is an (irreducible) 2-bimodule.

Let 2 be an algebra, and M a left (resp. right) 2-module. We say that M is
faithful if aM = {0} (resp. Ma = {0}), where a € 2, implies @ = 0. This means that the
set Anng(M) == {a e A : am = 0,Ym € M} (resp. Anng(M) := {a € A : ma = 0,Ym € M})
is null. It is easy to prove that I = Anng(M) is an (two-sided) ideal of 2, for any left
(resp. right) 2A-module M. From this, observe that if 2 is a simple algebra, then any
left (resp. right) 2A-module M is either a null left (resp. right) module or a faithful left
(resp. right) 2A-module, and any irreducible left (resp. rigth) 2A-module is faithful, since
AM # {0} (resp. M2 # {0}). Observe that M is also a left (resp. right) 2/I-module,
which is faithful, since Anng,;(M) = {0}.

Let N be a submodule of a left (resp. right) 2-module M. The left quotient

2A-module (resp. right quotient A-module) M/N is defined as follow:
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20 1. Graded Algebras, Graded Bimodules and Graded Identities

i) M/N = {m =m + N : m e M} is a quotient vector space;
i) am = @m (resp. ma = ma) for any a € 2A and m € M.

By the two above items, note that M/N is a left (resp. right) 2-module naturally.
Analogously we define a quotient bimodule. Let N be a subbimodule of an (%, QN[)—
bimodule M. The quotient (2(,2)-bimodule M/N is defined as follow:

i) M/N = {m =m + N : m e M} is a quotient vector space;
i) am = @m for any a € A and m € M;
iii) mb = mb for any b e A and m € M;

It is clear that amb = @mb = amb = amb for any a € A, b e 2 and m € M. By the three

above items, note that M/N is an (2, A)-bimodule naturally.

Definition 1.1.16 Let A be an algebra, M and M two left (resp. right) A-modules and
¢ : M — M a linear transformation. We say that ¢ is « homomorphism of left (resp.
right ) 2-modules if ¢ satisfies p(am) = ap(m) (resp. ¢p(ma) = ¢(m)a) for any a € A

and m € M.

Definition 1.1.17 Let 2 and A be two algebras, M and M two (A, A)-bimodules and
¢ : M — M aq linear transformation. We say that ¢ is a homomorphism of (2,2)-
bimodules if ¢ satisfies p(am) = ap(m) and p(mb) = w(m)b for any a € A, b e A and

m € M.

The definitions of kernel, image, epimorphism, monomorphism and isomor-
phism of left (resp. right) 2-modules are inherited from linear transformations. It is not
difficult to see that ker(¢) and im(¢) are submodules of M and M, respectively. We write
M =~ M when there exists an isomorphism of left (resp. right) 2A-modules between two
2-modules M and M. Similar definitions we have for (2, 2)-bimodules.

Now, let us define structures of G-gradings on modules.

Definition 1.1.18 Let F be a field, G a group, 2 an F-algebra, and M a left (resp. right)
A-module. Suppose that A has a G-grading. A G-grading on M is a decomposition of M

as a direct sum of F-subspaces My = M, g € G,

M:@Mgv

geG
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1.1. Basic Definitions and Properties 21

such that A,M;, < My, (resp. MpRA, < My,) for any g,h € G. We say that M is a
G-graded left (resp. right) 2-module.

Analogously, given two G-graded algebras 2 and 2, and an (2, 2)-bimodule M, we
define a G-grading on M.

Definition 1.1.19 Let G be a group, A and A two G-graded algebras and M an (A, QNl)-
bimodule. A G-grading on M is a decomposition of M in a direct sum of F-subspaces
M, e M, g € G, satisfying A,M;, = My, and Mp2l, € My, for any g, h,t € G. In this case,
we say that M is a G-graded (2, 2l)-bimodule.

A special case of a bimodule graded by a group occurs when 2 = 21, then we have
a G-graded 2A-bimodule. In the next section, we will detail the study of the G-graded
2A-bimodules.

Let M be a G-graded left (resp. right) 2-module, where G is a group and 2 is a G-
graded algebra. A submodule N of M is called graded submodule if N = @ (N nM,).
This means that if m = dec mgy € N, with mg, € Mgy, then my € N for any g € G. Similarly,
a subbimodule N’ of a G-graded (2, 2)-bimodule M’, where 2 and 2 are G-graded, is said
to be a graded subbimodule if N = @ (N 1 My).

A G-graded left (resp. right) 2A-module M is called irreducible graded if AM #
{0} (resp. M2L # {0}, and M does not have proper graded submodules. This means that
M is an irreducible graded left (resp. right) 2A-module iff AM # {0} (resp. M2l # {0}),

and {0} and M are the only graded submodules of M.

Remark 1.1.20 Let G be a group, A a G-graded algebra, and I a graded left ideal of A,
i.e. I is a left ideal of A such that I = @ (I nAy). We have that I is a G-graded left
A-module naturally. So, when Al # {0}, I is a minimal G-graded left ideal of A if and
only if I is an irreducible G-graded left A-module (see Definition 1.1.10). For right ideals

and two-sided ideals we can deduce analogue result.

Definition 1.1.21 Let M be a G-graded (A, 2)-bimodule. We say that M is irreducible
graded if AM # {0}, and M does not have proper graded subbimodules. This means that
M is an irreducible G-graded (U, 2A)-bimodule iff AMA # {0}, and {0} and M are the only
graded subbimodules of M. Particularly, the condition AMLA = {0} means that ama # 0

for some homogeneous elements a €A, m e M and a € M
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22 1. Graded Algebras, Graded Bimodules and Graded Identities

For any irreducible G-graded (%A, QNL)—bimodule M, we have M = Amg2l for any
nonzero homogeneous element m € M. In fact, it is sufficient to see that N = {m €
M : 2m2l = {0}} is a graded subbimodule of M. Hence, we can conclude that N = {0},
because AM2{0}, and ANA{0}, and so N # M.

Notice that, given a subalgebra I of 2 such that A7/ # {0}, [ is a (minimal)
(two-sided) ideal of 20 iff I is an (irreducible) 2A-bimodule.

Now, let M be a G-graded left A-module (resp. G-graded (2, 21)-bimodule). Given
a graded submodule (resp. graded subbimodule) N of M, we have that left quotient 2A-
module (resp. quotient (2, 2A)-bimodule) M/N is a G-graded left A-module (resp. (2, A)-

bimodule) naturally. In fact, since M = @, My and N = @ ,c(N n M), we have the

geG

quotient space M,/(N n M) is well defined, for any ¢g € G. It is easy to see that

Mgy My
N geGNmMg’

and thus, M/N is a G-graded left 2-module (resp. G-graded (2,2l)-bimodule) called
graded quotient left 2A-module (resp. graded quotient (2, 2A)-bimodule). For

quotient right 2A-modules, we obtain a similar result.

Definition 1.1.22 Let 2 be a G-graded algebra, M and M two G-graded left (resp. right)
2A-modules and ¥ : M — M a homomorphism of left (resp. right) A-modules. We say
that v is a homogeneous homomorphism of degree hy € G of G-graded left (resp.
right) A-modules if (M) < |\~/|gh0 (resp. (M) < |\7Ihog) for any g € G. A finite sum of
homogeneous homomorphisms of left (resp. right) A-modules is called a graded homo-

morphism of left (resp. right) 2A-modules.

Similarly to above definition we define homogeneous homomorphisms of (2, ﬁl)—

bimodules.

Definition 1.1.23 Let G be a group, A and A two G-graded algebras, M and M two
G-graded (A, 2)-bimodules, and ¢ : M — M a homomorphism of (A,2A)-bimodules. We
say that ¢ is o« homogeneous homomorphism of degree hg € G of G-graded (2, ﬁl)-
bimodules if p(M,) < Mgho = Mhog for any g € G. A finite sum of homogeneous homomor-

phisms of (A, A)-bimodules is called a graded homomorphism of (2, 2)-bimodules.
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Observe that the last definition is correct for any hg € Z(G). Particularly, this is
correct for any hg € G if G is abelian.

Notice that any homogeneous homomorphism of G-graded left (resp. right) 2A-
modules is also a graded homomorphism. Not always the kernel or image of a graded
homomorphism are graded submodules, but if a homomorphism of graded left modules
(resp. right modules, bimodules) is homogeneous of degree h, it is easy to see that its
kernel and image are graded submodules. When two G-graded left (resp. right) 2-modules
M and M are homogeneously isomorphic, i.e. there exists a homogeneous isomorphism
Y : M —> M, we write M ~g M. Similar definitions and notations are used also for
G-graded (2, A)-bimodules.

Let M be a G-graded left 2-module. Considering another G-graded algebra 2, we
have that M is a right 2-module with the trivial product, i.e. ma = 0 for any m € M and
a € U, and hence, M is a G-graded (2, A)-bimodule naturally. Analogously, we can assume
that a right A-module is also a (2, A)-bimodule. Therefore, some results for bimodules
are also valid for left and right modules. The next two theorems are also true for graded

left and right modules, and the proofs of them are similar to the proofs for bimodules.

Theorem 1.1.24 Let G be a group, 2 and 2 two G-graded algebras, and M a G-graded
(A, ) -bimodule.

i) If M’ is a G-graded (2, A)-bimodule and 1) : M — M’ is a homogeneous homomor-

phism of degree h, then

as G-graded (2, 2)-bimodules;
it) If N,W are G-graded subbimodules of M, then

N+W N
W CCSNAW

as G-graded (2, 2A)-bimodules;
iii) If N,W are G-graded subbimodules of M with N < W, then

M M/N

.~

W ~° W/N
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24 1. Graded Algebras, Graded Bimodules and Graded Identities

as G-graded (A, 2A)-bimodules.

Proof: i) Since v is a homogeneous homomorphism of (2, él)—bimodules, we have that
ker(¢)) is a graded subbimodule of M, and im(v) is a graded subbimodule of M. Consider
the quotient (2, 2)-bimodule M/ker(¢), and the map

M .
ker(v)) — m(®) , meM,

m=m+ker(¢)) —> ¢(m)=1p(m)

b -

which is well defined because if T = m/, then m — m’ € ker(¢), and consequently,

b(m) = Y(m) = p(m') = () .

It is easy to see that 1 is a homogeneous isomorphism of (2, ﬁl)—bimodules, since v is a
homogeneous homomorphism.

ii) Consider the map

N+ W

w , meM.
m — ¢(m)=m+W

¢p: N —

Obviously ¢ is a homogeneous epimorphism of (2, A)-bimodules. By item i), we have

that

N N+ W
ker(¢) ¢ W

Notice that N W < ker(¢). Conversely, take m € ker(¢). Hence, m € N and 0 = ¢(m) =

lle

m, and hence, m € W. Consequently, ker(¢) = N n W. The result follows.

ii1) Consider the map

M/N
W—/N ,meM.
m — @(m)=m+N)+W/N

p: M —

Obviously ¢ is a homogeneous epimorphism of (£, ﬁl)—bimodules. By item i), we have

that
M M/N
ker(¢) ~° W/N °

Note that W < ker(¢). Conversely, take m € ker(p). Hence, 0 = p(m) = (m+N)+W/N,
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and hence, m + N € W /N. Consequently, we have that m € W, and so ker(¢) < W. The

result follows. [

Theorem 1.1.25 Let G be a group, A and A two G-graded algebras and M a G-graded
(A, él)—bimodule. Suppose N is a graded subbimodule of M. Then any graded subbimodule
of the quotient bimodule M/N s of the form P/N = {x + N : x € P}, where P is a
graded subbimodule of M such that N < P < M. The correspondence between graded
subbimodules of M/N and graded subbimodules of M which contain N is a bijection.

Proof: Analogous to the nongraded case (see Theorem 6.22, [40]). |

1.2 Properties of Graded Algebras

In this section, we present main properties of graded algebras. We also exhibit
some well-known results which help us to develop this work.

Here, F denotes a field and G denotes a group. By F* = F\{0} we denote the
multiplicative group of F. By convention, we assume that G is a group with multiplicative

notation.

1.2.1 Cocycles and Coboundaries

Definition 1.2.1 The mapping o : G x G — F* which satisfies
o(z,y)o(zy, z) = o(z,yz)o(y, 2) for all x,y,z € G
15 called a 2-cocycle on G with values in F*. The set of all 2-cocycles from G into F* is

denoted by Z*(G,F*).

Example 1.2.2 The application o from Gx G to F* given by o(z,y) = 1, for any x,y € G,

18 a 2-cocycle called the trivial 2-cocycle.

Example 1.2.3 Given a group G, a field F and a map f : G — F*, the application
0:Gx G—> F* defined by

_ flxy)
) = )
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18 a 2-cocycle, which is called 2-coboundary. The set of all 2-coboundaries from G into

F* is denoted by B*(G,F*).

Given two 2-cocycles o,p : G x G — F*, we say that ¢ and p are equivalent if

there exists a 2-coboundary f : G — F* such that

for any z,y € G. We write [0] = [p] in this case. It is not difficult to show that this

relation is an equivalence relation on the set of all 2-cocycles on G. In this case, we write

H2(G,F*) = {[0] : o € Z%(G,F*)}.

Definition 1.2.4 Given a 2-cocycle o € Z*(G,F*), we say that o is symmetric when
o(z,y) = o(y,z) for any x,y € G. When o(x,y) = —o(y,z) for any x,y € G, o is called

antisymmetric.

It is immediate of the above definition that any 2-coboundary is a symmetric 2-

cocycle.

Example 1.2.5 Let G = (Zy X Zy,+). The map o : G x G — C* given by the following

table
s |00 01n] a0l
0,0) | 1 1 1 1
0,1)| 1 1 1 1
o) 1 | -1 ] 1 | =1
L) | 1 | -1 | 1 | -1

defines a 2-cocycle, i.e. o belongs to Z*(G,C). Notice that o is neither symmetric nor

antisymmetric.

Proposition 1.2.6 Let G be a group, F a field and 0 : G x G — F* a 2-cocycle on G. If

e € G is the neutral element (unit of G), then for any x,y € G we have

o(x,e) =o(e,y).

-1

In particular, o(x,e) = o(e,x) = a(e, e) for any x € G. In addition, o(x,z™1) = o(xz™1, x),

for any x € G.
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Proof: By Definition 1.2.1, doing y = e, we have

o(x,e)o(zre, z) = o(x,ez)o(e, z)
o(x,e)o(x,z) =o(x,2)o(e, 2)

o(xz,e) =o(e, z)
for any xz, z € G. In particular, for z = x, and after for z = e, we have

o(x,e) =o(e, )

o(x,e) =o(e,e) .

Now, again by Definition 1.2.1, doing ¥y = 27! and z = x, we have

for any = € G, where here we use the equality o(e,w) = o(w,e) for any w € G. [ |

Consider any element A € F. We write /) € F if the polynomial 2" — A\ = 0 has
a solution in FF, i.e. if there exists an element v € F such that v = A. Hence, we write

v = /X to denote that v* = \.

Proposition 1.2.7 Let G be a finite cyclic group of order n generated by g, F a field and
0:GxG— F* a2-cocycle. If

Yal(g,e)olg,9)a(g, ) - olg, 9" ) € F,
then o is a 2-coboundary. In particular, if F is an algebraically closed field and G a finite
cyclic group, then any 2-cocycle on G is a 2-coboundary.

Proof: Suppose G = (g) with |G| = n. Take o a 2-cocycle on G, and assume that
A = {/o(g,e)o(g,9) -0(g,g" 1) € F*. Consider the map ¢ : G —> F* defined by

¢(e) = 0,(91 at o(g) = % and ¢(¢') = %U(g,g) ~0o(g,g' ") for 2 < i <n—1. It is not
difficult to 7see that
o(th)
B =
7(th) = S
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for any ¢, h € G, since

O.(gjgr+s—1)o.(g’gr+s—2> . U(g,gs+2)0(g,gSH)U(g,gS)
o(g,9"Y)o(g,9772)---0(g9,9*)o(g,9)

o(g",9°) =
for any r,s = 1,...,n. The result follows. |

In the previous proposition, the condition "F is an algebraically closed field" can
be changed by "F contains /) for any A € F", then any 2-cocycle on G with values in F*

is a 2-coboundary.
Corollary 1.2.8 Any 2-cocycle on a finite cyclic group is symmetric.

Proof: Let G be a finite cyclic group, and o : G x G — F* a 2-cocycle. Consider an
algebraically closed extension K of F, and the application ¢ : G x G — K* defined by
a(g,h) = o(g,h) for any g,h € G. We have that & is a 2-cocycle, and since K is an
algebraically closed field, by Proposition 1.2.7, it follows that there exists an application

N f(gh)
f:G—> K* such that 6(g,h) = ——+— for any ¢, h € G. Hence, we have
90 = Fg

flgh) _ _f(hg)
) f(h) — f(h)f(g)

o(g,h) =a(g,h) = =3d(h,g) = a(h,g)

for any g, h € G. Therefore, o is symmetric. [ |

It follows from the previous corollary that the restriction of o to a cyclic subgroup
is symmetric, i.e. given a 2-cocycle ¢ : G x G — [F* and a cyclic subgroup H of G,
we have that oy : H x H — F* defined by oy (g,h) = o(g,h) for any g,h € H is a

symmetric 2-cocycle on H.

Remark 1.2.9 Let G = H; x Hy be a group, and F a field. Given a 2-cocycle o; on H;,
1 = 1,2, with values in F*, it is easy to see that the map o == o109 : G x G —> F* defined
by

o(z,y) = o((z1,22), (y1,92)) = o1(1,91)02(22, ¥2) |

for any x = (x1,22),y = (Y1,y2) € G, is a 2-cocycle on G.
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1.2.2 Some results on G-graded algebras

Let F be a field, and G a group. Consider the group algebra FG (see Example
1.1.8). Observe that FG is an associative algebra with unity; if G is commutative (resp.
finite), then FG is a commutative (resp. finite dimensional) algebra. Also, FG has a

natural G-grading. Let us consider a more general situation.

Definition 1.2.10 Let G be a group, F a field, and 0 : G x G — F* a 2-cocycle on G.

Consider the F-vector space

Fo[G] = {Zagng:ageF,geG} :

geG

where {ny}gec are linearly independent over F. And we define in F7|G] the multiplication
which extends by linearity the product ngny, = o(g, h)ngn, g,h € G. The algebra F7[G] is

called a twisted group algebra.

Notice that by the equality in Definition 1.2.1 we can ensure that F7[G] is an
associative algebra. Furthermore, we have that F?[G] is G-graded with the natural grading
given by

A =F7[G] = DF,

geG

where 21, := spang{n,}.
Example 1.2.11 If o is the trivial 2-cocycle on G, it is easy to see that F7[G] = FG.

Remark 1.2.12 Note that F°[G] is unitary, where the unity of F°[G] is given by o (e, e)™1n,
where e € G is the neutral element of G, since o(e,e) = o(e,g) = o(g,e) for any g€ G (by

Proposition 1.2.6).

Theorem 1.2.13 (|3], Theorem 2, or [13]|, Theorem 2.13) Let D be a finite dimen-
sional G-graded algebra over an algebraically closed field F. Then D is a graded division
algebra with support T < G iff D is isomorphic to the twisted group algebra F7[T] (with
its natural T-grading regarded as a G-grading) for some o € Z*(T,F*), where T is a fi-
nite subgroup of G. Two twisted group algebras, F7'[Hy| and F2[Hs|, are isomorphic as
G-graded algebras if and only if Hy = Hy and [o1] = [02].
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Let 2 be a G-graded algebra, and § : G x G — F* a 2-cocycle on G. We define

the f-commutator by

[a,0]5 = [Z ag,th] = > [ag, buls
9sG  heG  lg  gheG
if a,b € A, where [ag,by]g = azbp — B(g,h)bray, g,h € G. We say that 2 is (-
commutative if [a,b]g = 0 for any a,b € A. Obviously, if [a,b]s = 0 for any a,b €
Ugec Ay» we have that 2 is S-commutative. When B(a,b) = 1 for any a,b € G, we write
[, ls=1, ], and [, ]is called commutator. Note that 2 is commutative iff [a, b] = 0 for
any a,b € 2. Observe that S-commutatively is a partial case of f-commutatively defined

in Definition 1.1.4.

Remark 1.2.14 Consider the algebra B = M, (F°[H]) of all n x n matrices over F7[H],
where H is a subgroup of a group G and o € Z*(H,F*). Fiz an arbitrary k-tuple & =
(91,---,9x) € G* of elements of G. Then the equalities deg(E;n,) = g; ‘hg;, for any
he H andi,je{l,...,n}, define a G-grading on B, i.e.

B=FPB,,

geG

where B, = spang{E;jn, € B : g = g; 'hg;}. This G-grading is called canonical ele-

mentary grading corresponding to €.

Definition 1.2.15 Let A and A be two G-graded algebras and ¢ : A — A a graded
homomorphism. We say that 1 is a G-graded immersion (or G-immersion) from 2
to A if ¥ is injective. We denote a G-graded immersion from U to A by A S 9L And, we
write A ﬂi A when A can not be G-immersed in 2.

Note that if ¢ is a G-graded immersion from 2 to 2, then there exists a G-graded subal-
gebra A of A, namely A = im(¢)), such that 2 and 2 are G-graded isomorphic. Therefore,
we can see U as a G-graded subalgebra of 2 or assume that 2 has a G-graded "copy" of
2(. In this case, observe that Supp(I'y) < Supp(I'y).

Remark 1.2.16 Given a group G, consider a subgroup H of G, and a 2-cocycle o €
Z?(H,F*). For anyn > 1 and & = (91,92,-.-,9.) € G", consider the algebra B =
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M, (F?[H]) of n x n matrices over F°[H]| with the canonical elementary G-grading T
corresponding to §. For each g € Supp(I'), there existi,j € {1,...,n} and h € H such that
0 # Eijnn € B,. Given gy € Z6(H), we have

g=9;"hg; = g9 (95 90)hg; = (9; '95") (90h)g;

= (909:) " (hg0)g; = (909:) " 1(gog;) -

Therefore, for any g € Zc(H), in particular, for any g € G, when G is abelian, we have that
E=1(91,92:---,9n) and &, = (991,992, - - -, ggn) determine the same canonical elementary
G-gradings on B. Consequently, when g1 € Z¢(H) or G is abelian, we can assume that

g1 = e, the neutral element of G.

Remark 1.2.17 Under the assumptions of Remark 1.2.16, fix & = (91,92, ---,9n). Take
o € S, where S, is the symmetric group of order n, and consider the n-tuple &, =
(9a(1), Ga(2) - - - » Ga(n)) € G". Consider now the algebra B = M, (F[H]) with the canonical
elementary G-grading corresponding to &,. Assume that B = M, (F°[H]) is G-graded with
the canonical elementary grading corresponding to &. It not is difficult to show that B ~g
B (as G-graded algebras) (the graded isomorphism is given by ©(Eijnn) = Ea)a()n, for
any i,j€{l,...,n} and he H).

Remark 1.2.18 Let G be a group andm < n. PutB = M, (F°[H]) and B = M,,(F°[H]),
where 0,6 € Z*(H,F*) such that [o] = [6]. Fiz an n-tuple £ = (g1, ..., 9,) € G™, and con-
sider a canonical elementary G-grading I' on B corresponding to £&. Now, fived o € Sy,
consider the m-tuple £, = (Ga(1)s - - -+ Jamm)) € G™, and assume that [ is the canonical
elementary G-grading on B corresponding to &,. By Theorem 1.2.13 and Remark 1.2.17,
we can conclude that B < B. Therefore, we can assume, without loss of generality, that

B is a G-graded subalgebra of B.
To conclude this section, let us present the next two important results.

Theorem 1.2.19 (Theorem 3, [3]) Let A = @ A, be a finite dimensional algebra,

geG
over an algebraically closed field F that is graded by a group G. Suppose that either
char(IF) = 0 or char(F) is coprime with the order of each finite subgroup of G. Then 2 is a
graded simple algebra if and only if A is isomorphic to the tensor product My (F)QF7[H]| =~

My (F°[H]), that is, if and only if 2 is a matriz algebra over the division graded algebra
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32 1. Graded Algebras, Graded Bimodules and Graded Identities

F[H|, where H is a finite subgroup of G and o € Z*(H,F*). The G-grading on M (F°[H])

is a canonical elementary grading corresponding to a k-tuple (g1, ..., gx) € G*.

Theorem 1.2.20 (Lemma 2, [45]) Let G be a finite abelian group, and F an alge-
braically closed field of characteristic zero. Any finite dimensional G-graded F-algebra

A is isomorphic as G-graded algebra to a G-graded F-algebra of the form
A = (M, (F7 [Hy]) x -+ x My, (F7[H,])) @ J .

Here the Jacobson radical J = J(2U) of A is a graded ideal, and B = My, (F'[H;]) x -+ - x
My, (For[H,)]) (direct product of algebras) is the maximal graded semisimple subalgebra of
A", pe Nu{0}. The G-grading on B, = My, (F7'[H,]) ~ My, (F) ® F°![H,], the algebra of
n x n matrices over FOU[H;], where H; is a subgroup G and o € Z*(H;,F*) is a 2-cocycle,

is the canonical elementary grading corresponding to some kj-tuple (6;,, . .. ,Hlkl) e G,

1.3 Properties of graded 2-bimodules

In this section, unless otherwise stated, we denote by G a group (not necessarily

finite), by 2 a G-graded unitary algebra and by M a G-graded unitary 2(-bimodule.

1.3.1 Posets and chain conditions

Consider a nonempty set P together with a binary relation "<" that satisfies the

following axioms: for any a,b,c € P,
i) a <q

ii) if a < band b < ¢, then a < ¢;

iii) if a < b and b < a, then a = b.

The pair (P, <) is called a partially ordered set (also called poset). It is important to
say that given a,b € P, we do not necessarily have a < b or b < a. For more details, see

20, 26].

Example 1.3.1 Let X be a nonempty set and P(X) = {8 : [ is a subset of X}. We
have that (P(X),<) is a poset. We say that X has the ordering by inclusion.
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Example 1.3.2 Let G be a group and F a field. For each subgroup H < G, consider
H2(H,F*) = {[o] : o0 € Z*(G,F*)}, where [o] = [p] iff there is a 2-coboundary 6 €
B2(H,F*) such that o = pf (see §1.2.1). Define H = {(H, [0]) : H < G, [c] € H*(H,F*)}.
In H, define the relation "<" by the following: given two pairs (Hy,[o1]) and (Ha, [09])
in H, we have (Hy,|o1]) < (Has,|o2]) iff Hi < Hy and [o1](h,g) = [02](h,g) for any
h,g € Hy. It is not difficult to see that < is a partial order relation of the elements of H.
Therefore, (H, <) is a poset. Hence, we say that G is ordering by <.

Particularly, (H,[o]) = (H,[5]) iff (H,[o]) < (H,[5]) and (H,[5]) < (H,[0]),
i.e. H=H and [o] = [5].

Let X be a poset (possibly by inclusion). If there is some element a € X such that
a < x for any x € X, then we say that X has a least element. Similarly, if there is
some element b € X such that x < b for any x € X, then we say that X has a greatest
element. Notice that the least and the greatest elements, when they exist, are unique.

Now, let us define minimal and mazximal elements of a poset. Let X be a poset
(possibly by inclusion). An element a € X is called a minimal element (resp. a
maximal element) if v < a (resp. a < ) in X implies © = a (resp. a = x). Note that
minimal and maximal elements are not necessarily unique. For more details, see [20].

Consider a subset X’ of a poset X. An element a € X is called a lower bound
(resp. upper bound) of X’ in X if a < 2’ (resp. 2’ < a) for any 2’ € X’. Observe that
theleast (resp. greatest) element of X is a lower bound ( resp. an upper bound) of X’ in
X.

Given a poset X, a chain in X is a family X’ of elements of X such that a < b or

b < a for any a,be X'

Lemma 1.3.3 (Zorn’s Lemma, [20, 25]) If X is a partially ordered set such that every

chain in X has an upper bound in X, then X contains a maximal element.

Given a poset X, a chain £ in X is called ascending chain if it can be written as
¢ ={x; <zy <y <xy4<---}. Analogously, a chain ¢ in X is called descending chain

if it can be written as ( = {y; = y2 = y3 = ys = - - }, where a = b means b < a.

Definition 1.3.4 Let X be a partially ordered set. If all ascending (resp. descending)

chain in X contains the greatest (resp. the least) element, then we say that X satisfies
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34 1. Graded Algebras, Graded Bimodules and Graded Identities

the ascending chain condition (resp. descending chain condition). In this case,

we say also that X satisfies the ACC' (resp. DCC).

Equivalently, a partially ordered set (P, <) satisfies ACC (resp. DCC) iff every
non-empty family S of P contains a maximal (resp. a minimal) element in the family,

that is, an element @) € S such that if N € S and @ < N (resp. N < @), then N = Q.

1.3.2 Group Characters

In this subsection, let us present some definitions and properties of Group Char-
acters. Here, let us denote by G an arbitrary finite multiplicative group with identity

element 1, F a field, and GL,(F) the group of invertible n x n matrices over F.

Definition 1.3.5 A matrix representation of G overF of degree n is a homomorphism
T:g— T(g) of G into GL,(F). Two matriz representations T and T' are equivalent if
they have the same degree, say n, and if there exists a fized S in GL,(F) such that

T'(g) = ST(9)S™",

for any g € G.

To simply notation, we say only "a representation of G of degree n" to mean "a
matriz representation of G of degree n".

Let T': G — GL,(IF) be a representation of a group G. We say that 7" is reducible
if there exist representations 71 : G — GL,,,(F), Ty : G —» GL,,(F) of G, with n = ny +no,

such that

T; Vv
T(g) and i) Vig) are equivalent ,

0 Tx(g)

for any g € G, where V' (g) is a matrix over [ of order n; x ny for each g € G; if no such
reduction exists, then T is an irreducible representation. We say that 7" is completely

reducible if for any g € G, the matrix 7'(g) is equivalent to matrix .
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for some irreducible representations T; : G — GL,,(F) of G, with n = ny +--- + n,. For

more details, see 9, 27, 41].

Theorem 1.3.6 (Maschke’s Theorem, (10.8), p. 41, [9]) LetF be a field, G a finite
group, and T : G — GL,(F) be a representation of G. Assume that char(F) { |G|. Then T

1s completely reducible.

By the previous theorem, given a representation T of a finite group G, when
char(F) 1 |G|, there exist irreducible representations Ti,...,7, (not necessarily non-

equivalent) of G such that T'=T, + --- + T,,.

Theorem 1.3.7 ((27.22), p. 187, [9]) Let G be a finite group, and F an algebraically
closed field such that char(IF) t |G|. Then the number of non-isomorphic irreducible repre-

sentations of G is the same as the number of conjugate classes of G.

Observe that if G is a abelian finite group, then the number of conjugate class of
G is equal to |G|.

Consider the n x n matrices algebra M, (F). The trace function is the linear
transformation tr : M, (F) — T that satisfies tr((a;;)i ;) = >, @i for any (a;;)i; € My (F),
i.e. the trace of A e M, (F) is the sum of the elements on the main diagonal of A.

Let T : G — GL,(F) be a representation of G, and T'(g) = (ag))m € GL,(F) for
any g € G. For each g € G, the trace of T'(g) is defined by tr(T'(g)) = tr((agj’?))m). Observe
that the degree of T is equal to tr(T'(1)) = >\, 1g = n.

Definition 1.3.8 Let G be a group, and T : G — GL,(F) a representation of G. The

character of T is a map ¢ : G — F* defined by ((g) = tr(T(g)) for any g € G.

Proposition 1.3.9 ((30.14), p. 214, [9]) Let T and T} be two representations of G
over F with characters ¢ and (1 of T and Ty, respectively. If char(F) = 0, then T and Ty

are equivalent iff ¢ = (;.

Corollary 1.3.10 Under the same hypotheses of Theorem 1.3.6, suppose that char(F) =

0. Then the number of distinct irreducible characters of G is finite.

Proof: It is immediate of Theorem 1.3.6 and Proposition 1.3.9. [

The next three propositions are known as orthogonality relations.
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Proposition 1.3.11 ((31.8), p. 219, [9]) Let F be an algebraically closed field such
that char(F) t |G|, G a finite group, and ¢ and p two non-equivalent characters of G.
Then ¢ is wrreducible iff

D Cgulg™) =0

geG

Proposition 1.3.12 ((31.14), p. 221, [9]) Let F be an algebraically closed field such
that char(F) 1 |G|, G a finite group, and (i, ...,(s all the distinct characters of G. Then

(G =6 .

i=1

Proposition 1.3.13 ((31.15), p. 221, [9]) LetF be an algebraically closed field of char-

acteristic zero, G a finite group, and ( a character of G. Then ( is irreducible iff

Y Cla)lg™) = 1G] .

geG

The next result is a consequence of Theorem 1.3.7 and Proposition 1.3.12.

Theorem 1.3.14 (Theorem 9, [41]) Let G be a finite group, and F an algebraically
closed field such that char(F) 1 |G|. The following properties are equivalent:

i) G is abelian;
i) all the irreducible representations of G have degree 1;

iii) all the irreducible characters of G have degree 1.

A consequence of previous theorem is that if G is finite abelian, then any irreducible

character of G is a homomorphism of groups, i.e. if ( : G — [ is an irreducible character
of G, then ((gh) = ((g)C(h) for any g,h € G.

The proposition below is a fact well-known of theory of group character.

Proposition 1.3.15 (Exercise 3.3, p. 26, [41]) Let G be a finite group, and F an al-
gebraically closed field such that char(F) = 0. Let G be the set of irreducible characters of

G. We have that the groups G and G are isomorphic.

The group G is called the dual of the group G.
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1.3.3 Some results on graded 2-bimodules

In this subsection, (graded) bimodules are (graded) A-bimodules.

Definition 1.3.16 Let G be a group, A a G-graded algebra and M a G-graded A-bimodule.
We say that M is G-Noetherian (resp. G-Artinian) if it satisfies the ascending (resp.

descending) chain condition for graded subbimodules.

Equivalently, a G-graded 2(-bimodule M is G-Noetherian (resp. G-Artinian) iff every
non-empty family S of graded subbimodules of M contains a maximal (resp. a minimal)
graded subbimodule in the family, that is, a graded subbimodule P € S such that if N € S
and N o P (resp. N < P), then N = P. In particular, any G-Noetherian (resp. G-
Artinian) not irreducible G-graded 2A-bimodule has some maximal (resp. minimal) proper
graded subbimodule. An example of a bimodule that satisfies both chain conditions is

given by a finite dimensional G-graded 2(-bimodule.

Proposition 1.3.17 Let G be a group, A a G-graded algebra and M a G-graded -
bimodule. Let N be a graded subbimodule of M. Then M is G-Artinian (resp. G-
Noetherian) iff N and M/N are G-Artinian (resp. G-Noetherian).

Proof: Suppose M is G-Artinian (resp. G-Noetherian). Let N be a G-graded subbimodule
of M. Since each G-graded subbimodule of N is still a G-graded subbimodule of M, we
conclude that N is a G-Artinian (resp. G-Noetherian). Moreover, by Theorem 1.1.25,
each G-graded subbimodule of M/N is of the form W/N for some G-graded subbimodule
W such that N € W < M. Therefore, M/N is G-Artinian (resp. G-Noetherian).
Conversely, suppose N and M/N are G-Artinian 2A-bimodules, and consider a de-

scending chain of G-graded subbimodules of M

Mi2My;2M32---. (12)

Now, consider the chain of G-graded submodules of N given by

(MinN)2(MygnN)2 (M3nN)2---. (1.3)

Since N is G-Artinian, it follows that there exists iy € N such that M,y "N = M; n' N

for any j = ig. Thus, by (1.3), now consider the chain of G-graded subbimodules of M/N
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given bys
Mio - Mio—‘rl ) Mi0+2 o
Mio N N Mi0+1 ~N Mi0+2 ~N ’

(1.4)

Since M/N is G-Artinian, we conclude from (1.4) that there exists jy € N, jo = io, such

that
My, M, MM (L5)
Mi, nN  MynN MAN M;;nN '

for any | > jo = iy. Hence, again by Theorem 1.1.25, we can conclude from (1.5) that
M, = M, for any | > jy. Therefore, the chain in (1.2) stabilizes. Thus M is a G-Artinian
2A-bimodule.

Similarly to first part, we can show that if N and M/N are G-Noetherian, then M
is G-Noetherian. [

Using the ideas of the previous proposition and Theorem 1.1.25, we can build a de-
scending chain or an ascending chain of graded subbimodules with a suitable property. In
fact, consider a G-graded 2A-bimodule M. Suppose M is G-Noetherian (resp. G-Artinian).
By previous proposition, given a graded subbimodule N of M, we have that N and M/N
are G-Noetherian (resp. G-Artinian). If M is not graded irreducible, then there exists
a G-graded maximal (resp. irreducible) subbimodule N; in M. If N; (resp. M/N;) is
irreducible, then we have M = Ny 2 N; 2 Ny = {0} (resp. {0} = Np & N; & Ny = M)
such that N;;; is maximal in N; (resp. N;y1/N; is irreducible), for ¢ = 0,1. Other-
wise, suppose that Ny (resp. M/N;) is not irreducible, and hence, there exists a nonzero
graded subbimodule Ny of M such that Ny & Nj is maximal (resp. N; & Ny and Ny/N;
is irreducible). So, we obtain the chain M = Ny 2 N; 2 Ny 2 N3 = {0} (resp.
{0} = No € N; € Ny & N3 = M). If Ny (resp. M/N,) is irreducible, it follows that
N1 is maximal in N; (resp. N;y1/N; is irreducible), for i = 0,1,2. Otherwise, using
this process inductively we must obtain a descending chain (resp. an ascending chain) of

graded subbimodules

M=Nyg2N; 2Ny 2---2{0} (resp. {0} =Ng&= Ny SNy --- M), (1.6)

such that N;;1 is maximal in N; (resp. N;y1/N; is irreducible), for ¢ = 0,1,2,.... Notice
that we use Theorem 1.1.25 to ensure that if M/N; is not irreducible, then there exists a

graded subbimodule N;;; 2 N; such that N;,1/N; is irreducible.
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Now, again by Proposition 1.3.17, it is easy to show that the finite direct sum
(internal or external) of G-Noetherian (resp. G-Artinian) 2A-bimodules is a G-Noetherian
(resp. G-Artinian) 2-bimodule.

Notice that given a homogeneous homomorphism of graded 2-bimodules ¢ : M; —
Mo, if M; is G-Noetherian (resp. G-Artinian), then im(¢) and ker(y) are G-Noetherian
(resp. G-Artinian) left 2-subbimodules of My and My, respectively.

Recall any G-graded 2-bimodule can be generated by homogeneous elements.

Proposition 1.3.18 Let G be a group, 2 a finite dimensional unitary algebra with a
G-grading, and M a G-graded unitary A-bimodule. If M is finitely generated as an 2A-
bimodule, then M is G-Noetherian and G-Artinian.

Proof: Let mq,...,m, € M be homogeneous elements such that

M = {i rEMESE © Ti, S; € Ql} = iﬁlm;ﬂ[ .
k=1

k=1
Since 2 is finite dimensional, we can take homogeneous elements aq, as, ..., a,, € A
such that 2 = spang{ay,as,...,a,}. Hence, we have that

M = {Zn: (i /\m,jaimkaj) . )‘k,iJ € ]F}
k=1

ij=1

= spang{a;mpa; :i,j =1,....mk=1,...,n}.

Hence, the a;mya;’s are homogeneous elements which generate M as an F-vector space.
Observe that dimg(M) < #{a;mpa; : i,5 = 1,...,mk = 1,...,n} < m?n, and
thus M is finite dimensional. Therefore, M satisfies both chain conditions for graded

subbimodules. [ |

It is important to note that Proposition 1.3.18 also is true for G-graded non-unitary

2-bimodules. The proof of this is similar to the proof of Proposition 1.3.18.

Corollary 1.3.19 Let G be a group, F a field, 8 = M, (F°[H]) the algebra of n x n
matrices over F°[H| with a canonical elementary G-grading, where H is a finite subgroup
of G and o € Z*(H,F*). Any G-graded B-bimodule M which is finitely generated (as a
B-bimodule) is G-Noetherian and G-Artinian.
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Proof: We have that dim(8) = n?|/H| < oo. From this, by Proposition 1.3.18, the result

is immediate. |

In what follows, let us exhibit elements in a unitary G-graded ‘B-bimodule M,
where B = M, (F?[H]), whose product with (homogeneous) elements of 9B is similar to
the product in 8.

Consider a unitary G-graded 8-bimodule M, where G is a group, H is a finite
subgroup of G, ¢ € Z*(H,F*), and B = M, (F°[H]) with the canonical elementary G-
grading defined bay an n-tuple (g1, ..., g,) € G". Recall that 9B is unitary with unity 1 =
ole,e) 1 3 | Eyne, and the set {E;n, € B : 4,5 = 1,dots,n,h € H} is a homogeneous
basis of 8. Fixed a nonzero homogeneous element wy € M. Since M is unitary, it follows
that n.E;i,wolj,j,ne # 0 for some ig,jo € {1,...,n}, and hence, n,E, woE; snn # 0
for any r,s € {1,...,n} and g,h € H. Observe that all elements n,E,; woEj,sny’s are
homogeneous. Without lost of the generality, we can consider the element 7. E1woFE117. #

0 instead of wy. Given any g € H and i,j € {1,...,n}, define the element

m?j = Z o(h, h_lg)_lEilnhonljnhflg )
heH

where each nyEwoE1sn, # 0 for any r,s € {1,...,n} and g,he H.

g

When my; # 0 for some g € H and 4,5 € {1,...,n}, observe that m{; has behaviour

J

similar to E;;n, in relation to the product by elements of 9B, i.e. for any r,s € {1,...,n}

and h € H, we have

E,snpmi; = 5Sia(h,g)m?§’ , and
" (1.7)

is )

ngjE'rsnh = d;,0(g, h)m
0, if i#j5
where 9;; = is the Kronecker delta. In fact, take any t € H and r,s €
1, if i=3j
{1,...,n}. It is obvious that Ersnhmfj = 0 when s # i, and mijrsnh = 0 when r # j.
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Now, if s = i, we have

Erintmgj = LMy <Z o(h, h_lg)_lEilnhonljnhlg>

heH

- Z o(t,h)o(h,h = g)  Esimnwo Erjmn-1,

heH

= Z U(tv h)O’(h, (th)_ltg)_1E7‘177thw0E1j77(th)*1tg
heH

= U(tvg) <Z U(thv (th)_1tg)_1Er1nthw0E1jn(th)1tg)

heH

= o(t,g) m?

since o(t, h)a(th, (th)~'tg) = o(t,g)o(h, (th)~'tg) for any h, g,t € H (see Definition 1.2.1).
And if r = j, we have

mi; Ejsne = (Z o(h, hlg)lEﬂnhonunh—lg> Ejsthe

heH

= Z O-(hilg7 t)O'(h, hilg)ilEﬂnthElsnfrlgt
heH

=0(g,1) <Z o(h, h_lgt>_1Ei177hw0Els77hlgt)

heH

gt
is

=o(g,t) m

since o(h,h™'g)o(g,t) = a(h,h ' gt)o(h~'g,t) for any h,g,t € H (see Definition 1.2.1).
Another peculiarity of m;’s is that if m{; # 0 for some 4,j € {1,...,n} and
g € H, then mlh]rq = o(h,g) ' Eunymy; # 0, and md" = o(g, h)~'m Eyn, # 0 for
any h € H and [ € {1,...,n}, since m; = (a(e,e) o(h™", h) " Eynpr Eynn)my; =
(o(e,e) o (h™ h) ™ Eynp-1) (Eynem; ), and m; = mi;(o(e, )~ o (b, h™1) B By ) =
(m{;Ejmy)(o(e,e) " a(h, h™") Eyny—1). From this, we can deduce that mg; # 0 for some
i,j€{l,...,n} and g€ H iff m", # 0 for any r,s € {1,...,n} and h e H.

Besides that, it is easy to prove that the element i :== o(e,e)™t > | m¢; satisfies

bi = ib for any b € B.
Notice that when either deg(wy) € Z(G) or H < Z(G), we have m?. is a ho-

ij
mogeneous element of M for any ¢ € H, and 4,5 € {1,...,n}. Particularly, when

deg(wo) € Z(G), it follows that my, € M for any g € H,

g9; 'ggjdeg(wo) — Mdeg(wo)gflggj

ij=1,...n.

DE Franga, A.M.D. June 28, 2019 Mat — UnB



42 1. Graded Algebras, Graded Bimodules and Graded Identities

By these observations, it follows that the linear transformation ¢ : 8 — M which
extends the map Ej;;n, — mfj is a homogeneous homomorphism of B-bimodules of degree

deg(wp) when deg(wyg) € Z(G).

Remark 1.3.20 Let G be a group, H a finite abelian subgroup of G, F a field, o €
Z?(H,F*), and B = M,(F°[H]) with a canonical elementary G-grading. Let M be a

unitary G-graded B-bimodule. Fix a nonzero homogeneous element mg € M, and define

md = > o(h,h™'g) EqnymoEymu-1g |
heH

forany ge H, and i,j =1,...,n. Recall that E,nymy; = S50 (h, g)m!?

g —
rj and mijErsnh =

gh

d;r0(g, h)mi;, for any h,ge H andi,j,r,s € {1 ... ,n}, where §;; is the Kronecker delta.
Suppose that mi; # 0 for some g € H and i,j € {1,...,n}, and thus, mf, # 0 for
any h € H and r,s € {1,...,n}. Consider N = spang{m{; : g € H,i,j = 1,...,n}. If
deg(mo) € Z(G), then we have that N is an irreducible G-graded B-subbimodule of M.
Indeed, consider the linear transformation ¢ : B — N which extends the map
Eijng — mfj. By (1.7), it follows that v is a homomorphism of $B-bimodules. Notice that
Y is surjective, and it is homogeneous of degree deg(my). Since B is an irreducible graded
B-bimodule (and also a G-graded simple algebra), it follows that 1 is injective (ker() is a
graded subbimodule of B ). Thus, 1) is bijective. Therefore, N is an irreducible graded B-

bimodule, and v is a homogeneous isomorphism of G-graded B-bimodules. In particular,

if M is irreducible graded, then M = N.

In the above remark, it is important to comment that not always mfj # ( for some
g € H and 7,5 € {1,...,n}. Let us present below other cases of irreducible G-graded
%B-bimodules (possibly when m; = 0 for any g € H and 4, j € {1,...,n}), which are not
isomorphic to B as graded B-bimodules.

Remark 1.3.21 Let G be a finite abelian group, F an algebraically closed field such that
char(F) = 0, and B = F7[G] a twisted group algebra. Let M be a unitary G-graded B-
bimodule. Let x1, ..., xs be all distinct irreducible characters of G (see the last subsection).

Since G and G = {X1,.-.,Xs} are isomorphic groups (see Proposition 1.3.15), we have
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that s = |G|. Fiz a nonzero homogeneous element mg € M, and define

wy, = o (h, k™) () pwmonn-r
heG
forallie{1,...,s}. Let us show that Bw,, = w,,B and BmyB = >}, Bw,,. Observe
that each Bw,,B is a graded subbimodule of M, since my is a homogeneous element, and
G s abelian.

Take any n, € B, and 1 =1,...,s. We have that

MWy, = M (Z o(h, hl)lXi(h)Uhmoﬁh—1> = Z o(t, h)o(h, k™)~ xa(h)muwor—
heG heG

= Y a(t,h)a(h,h™) o ((th) ™ ) xa (R mnwonn) i
heG

= (Z U((th>17th>1xi(h)nthw077(th)—1) e = xi(t) " wym
heG

since o(t,h)o((th)™',th)™ = o(h,h =)o ((th)™',t) for any h,t € G (see Definition 1.2.1),
and x;(ht) = xi(h)xi(t) for any h,t € G (see Theorem 1.3.14). From this, it follows that
Bw,, = w,,B foralli =1,...,s.

Now, write G = {q,...,9s}. Since the matriz

xi(g1) xilg2) -+ xa(gs)

I xe(g) xa(g2) o xa(gs)
[x] = . . .

Xs(91) Xs(g2) -+ Xs(gs)

15 invertible, with inverse matrix given by

xi1(91") x2(92") Xs(g:h)
NEITE x1(977) Xz(gg‘) Xs(95)
xi(gr') xelg2') -+ xs(gah)

(this is a consequence of Propositions 1.8.11 and 1.5.13), we have that nymgon,-1 €
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Yo Bw,, for any h e G, since

Wy, xi(g0) xalg2) - xa(9s) ) (g1, 97 ngimon,
Wxa | x2(91) x2(92) -+ x2(9s) 0(92,92_1)717792”10779;1
wy, Xs(g1) Xs(92) - Xs(gs) ) \o(gs, 95") g mon,

Hence, we can conclude that ngmon, € >.;_, Bw,, for any g,h € G, and so BmyB =
21 Buy,.
Observe that if M is irreducible graded, then we have that M = Bw, for some

irreducible character of G, since each Bw,, is a graded subbimodule of M.

Below, let us show that, given a simple G-graded finite dimensional algebra 2(, any
unitary G-graded 2-bimodule M which satisfies both chain conditions can be written as
a finite direct sum of the form @, Aw of irreducible G-graded 2A-subbimodules Aw such
that w2l = Aw.

Proposition 1.3.22 Let G be a group, H a finite abelian subgroup of G, and F an alge-
braically closed field such that char(F) = 0. Consider 6 = M, (F°[H]) with a canonical
elementary G-grading, where o € Z*(H,F*), and a unitary G-graded B-bimodule M. If M
15 irreducible, then there exits a homogeneous element w € M such that Bw = wB and

M = Bw.

Proof: If n = 1, then the result follows of Remark 1.3.21.
Suppose that n > 1. Let xi,...,xs be all distinct irreducible characters of H,

where H ~ H = {X1,.-.,Xs}- Fix a nonzero homogeneous element mq € M, and define
wxz' = Z EilnewxiElz‘ne
i=1

foralli =1,...,s, where w,,’s was defined in Remark 1.3.21. It is not difficult to see that
Epyngthy, = xi(t) "My, Epgny for any g € H, p,q,i € {1,..., s}, and hence, Buw,, = w,,B,
foralle=1,...,s.

Similarly to Remark 1.3.21, we deduce that M = Bm¢B = >.;_| Bw,,. Since M

is a irreducible G-graded ‘B-bimodule, we conclude that M = Bw, for some irreducible

character y of H. |
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We can rewrite the previous proposition as follows.

Corollary 1.3.23 Let G be a group, H a finite abelian subgroup of G, F an algebraically
closed field such that char(F) = 0, and B = M, (F7[H]) with a canonical elementary G-
grading defined by an n-tuple (g1, ...,g,) € G". Let M be a unitary G-graded B-bimodule.
If M is irreducible graded, then there exists a homogeneous element mg € M, and a map

X : H — F* such that the element defined as

by =] <Z x(h)o(h, h_l)_lnhEﬂmoElmW) )

i=1 \heH

for alli,j e {1,...,n}, satisfies W, Eyn, = x(g) ' Eijngy, and M = B, .
Proof: It is immediate of the proof of Proposition 1.3.22, and of Remark 1.3.21. [ |

Observe that the element w, in Corollary 1.3.23 is homogeneous, and satisfies

Bw, = w,B. Recall that x is an irreducible character of H.

Corollary 1.3.24 Let F be an algebraically closed field with char(F) = 0, G a abelian
group, and 2 a finite dimensional algebra over F with a G-grading. If A is graded sim-
ple, then any irreducible G-graded 2A-bimodule M is isomorphic to JAw as a G-graded -

bimodule, for some homogeneous element w € M satisfying Aw = wA and M = Aw.

Proof: By Theorem 1.2.19, we have that 2 ~¢ M, (F°[H]) for some finite subgroup H
of G, and o € Z*(H,F*), and M, (F°[H]) has a canonical elementary G-grading. Hence,

we have the same conditions of Proposition 1.3.22. Therefore, the result follows. [

Proposition 1.3.25 Let F be an algebraically closed field with char(F) = 0, G a group,
H a finite abelian subgroup of G, o € Z*(H,F*), and B = M, (F°[H]) with a canoni-
cal elementary G-grading. If M is a G-graded unitary B-bimodule satisfying both chain
conditions for G-graded B-subbimodules, then M can be written as a finite direct sum
of irreducible G-graded B-subbimodules Bw, w € M, such that wB = Bw. Moreover,
wb = v, (b)wb for any b e B, ~,(b) € F.

Proof: Let us denote by 8 = {E;jn, : 4,7 = 1,...,n,h € H} the canonical homogeneous
basis of B. Since M satisfies the descending chain condition for G-graded 28-subbimodules,
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we can build an ascending chain as in (1.6). From this, consider a chain of G-graded 98-

subbimodules of M given as follows:

where M;,1/M; is an irreducible G-graded %B-bimodule for each ¢ = 0,1,2,.... On the
other hand, since M is G-Noetherian, it follows that there is n € N such that M,,_; € M

is maximal in M = M,,. Hence, we obtain from (1.8) the following finite sequence

where M;’s are G-graded B-subbimodules of M such that M;,;/M; is an irreducible G-
graded B-bimodule for s = 0,1,...,n — 1.

Let us show by induction on n that there exist homogeneous elements wy, ..., w, €
M such that M = @}, Bw; with bw; = ~;(b)w;b # 0 for any b € 3, where ,;(b) € F, for
allt=1,....,nand be .

Firstly, suppose n = 1. Hence, M = M; with M/My =~¢ M irreducible. It follows
of Corollary 1.3.23 that there exists a nonzero homogeneous element w; € M; such that
wib = y1(b)bwy # 0 for any b € 5 and My = Bw;, where v,(b) € F for any b € 5.

Now, suppose that the result is valid for all d > 1, i.e. there exist nonzero ho-
mogeneous elements w; € My — Mg,ws € My — My, ..., wgy € My — My_; such that
wib = v;(b)bw; # 0 forany be fand i =1,...,d (;(b) e Fforanybe fandi =1,...,n),
satisfying

My = Buw @ Bw, @ -+ D Bwy ,

where each Bw; is irreducible graded. Notice that Mgy = My + BwB (quotient vector
space) for any w € My,; — My. Since My, 1/My is irreducible graded, by Corollary 1.3.23,

there exists a nonzero homogeneous element wy € My 1 — My such that wg,; defined by

Way1 = Z (Z x(h)a(h, hl)lnhEilonlmh—1> # 0

i=1 \heH

satisfies Mgy1 /Mg = B(wge1 + My), and b(wgyr + My) = 7411 (0)(wasr + Mg)b # 0 + My
for any b € 3, where v4,1(b) € F for any b € 8. It is immediate of the proof of Proposition
1.3.22 that E;jmpwir1 = Yas1(b)war1Eijny ¢ Mg for any 4,5 € {1,...,n} and h € H.
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Hence, we have that Bw 1B = Bwy, 1 = wg1B. Consequently, it follows that My, =
My @ Bwg, 1, since Bwg1 N My = {0}. Let us prove that Mgy1/My =g Bwgyq. In fact,

by Isomorphisms Theorem (see Theorem 1.1.24), we have that

Myg1  Mg®Bwayr Bwayr  Bwan

Md Md —¢ ‘deH M Md B {0}

=G %wd-‘rl )

as G-graded B-bimodules. Therefore, we prove that Bw,,; is an irreducible G-graded

B-subbimodule of M such that wg,1b = v441(b)bwg, 1 for any b e 5 (v4.1(b) € F). Hence,

Mi+1 = Mg ® Bwir = Buw @ - - D Bwyg @ Bwgyq,

where each Bw; is irreducible graded with bw; = ~;(b)w;b # 0 for any b € 3, and i =
1,...,d + 1, where ;(b) € F, for any b € . Furthermore, by induction, the result is
proved. [ |

By Corollary 1.3.19 and Proposition 1.3.25, it follows that if M is a unitary G-
graded B-bimodule, where G is a group, F is an algebraically closed field, H a finite
abelian subgroup of G such that char(F) = 0, and B = M, (F’[H]), then M is finitely
generated iff M satisfy both chain conditions for graded subbimodules. More general, we

have have the following corollary.

Corollary 1.3.26 Let G be an abelian group, F an algebraically closed field such that
char(F) = 0, 2 a finite dimensional G-graded F-algebra, and M a G-graded A-bimodule.
Suppose that A is graded simple, and M is a G-graded unitary A-bimodule. Then M 1is
G-Noetherian and G-Artinian iff M is finitely generated.

Proof: By Theorem 1.2.19, without loss of generality we can assume that 2 = M, (F7[H])
with a canonical elementary G-grading, where H is a finite abelian subgroup of G and
o € Z?(H,F*). The result follows from the previous proposition.

By Corollary 1.3.19 and Proposition 1.3.25, it follows that M is finitely generated

iff M satisfy both chain conditions for graded subbimodules. [ |

Corollary 1.3.27 Let IF be a algebraically closed field, G an abelian group and A a finite
dimensional algebra over F with a G-grading. Suppose that char(F) = 0, and 2 is graded
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simple. If M is a G-graded unitary A-bimodule satisfying both chain conditions for G-
graded A-subbimodules, then there exist nonzero homogeneous elements wq, ..., w, € M
such that

M= 2w, & - P Aw,

where w;A = Aw; # 0 for all i =1,...,n, and Aw; is 1rreducible.

Proof: By Theorem 1.2.19, we have that 2 =g M, (F°[H]) for some finite subgroup H
of G and o € Z*(H,F*), and M, (F°[H]) with a canonical elementary G-grading. Hence,

we have the same conditions of Proposition 1.3.25. Therefore, the result follows. [ |

1.4 Some results on Graded Polynomial Identities

In this section, we present some definitions concerning graded polynomial identities
as well as some results about their properties. Also we present the definition of the graded
Grassmann envelope E€(2A) of a G x Zy-graded algebra 2, and its main properties. These
notions and facts will be our principal tools in the next chapters. Here, ' denotes a field,

and G denotes a group.

1.4.1 Free Graded Algebra and Graded Polynomial Identities

Let F = F(X®) be the free G-graded associative algebra over F generated by a

countable set X©¢ = UgeG X,, where X, = {:Egg),xgg), ...}, g € G. The indeterminates of
(91),.(92) ‘95535) e F,

X, are said to be homogeneous of degree g. Given a monomial m = z;7" z;]
the homogeneous degree of m, denoted by deg(m), is defined by g1z - - - gs. Therefore,

it is natural to write F = @, _c F,, where F, is the subspace of the algebra F generated

geG
by all monomials having homogeneous degree g. It is easy to check that F,F;, < Fy
for all g, h € G. The above decomposition into direct sum makes F a G-graded algebra.

Thus, F is the free G-graded associative algebra generated by the set XC.

Definition 1.4.1 A G-graded ideal I of F(X®) is a GT-ideal if ¢(I) < I for any G-
graded endomorphism ¢ of F(X®).

Definition 1.4.2 Let G be a group, F a field, and 24 an associative F-algebra with a G-
grading I'. Given a graded polynomial f = f(xggl),xéﬁ), e ,x,(lg”)) e F(X®), we say that
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f is a graded polynomial identity in 2 if f(a1,az,...,a,) = 0 for any a; € ™A,,, as €
Ao, -y an €Uy . In this case, we write f =g 0 in A. We say that A is a GPI-algebra
over F (or simply GPI-algebra) if there exists a nonzero graded polynomial f € F(X®)
such that f =¢ 0 in 2.

We denote by T¢(21) the set of all G-graded polynomial identities of 2. In other
words, T¢(2) = {f e F(X®) : f =¢ 0 in A}. It is easy to check that T¢() is a G-graded
ideal of F{X®) closed by all G-graded endomorphisms of F{X®), it is called the GT-ideal
of G-graded identities of 2.

We say that two G-graded algebras 2 and 2l are GPI-equivalent iff T¢(2) = T¢(2).
In this case, we denote A =¢gp; 2.

We say that a graded polynomial f € F(X®) is a G-consequence of a set S c
F(X®) if f belongs to the GT-ideal generated by S.

Given S < F(X®) we denote by (S)er the GT-ideal of F(X®¢) generated by S
((S)er is the least GT-ideal containing S5).

Definition 1.4.3 Given a nonempty set S < F(X®), the class of all G-graded algebras
A such that f =¢g 0 in A for any f € S is called graded variety defined by S, and it is
denoted by varg(S).

We can define also a (ordinary) polynomial identity of an algebra. In this case, we
define a nongraded polynomial identity. Firstly, let F{X) be the free associative algebra

over F generated by a countable set X = {x1,zs,...}.

Definition 1.4.4 An ideal I of F(X) is a T-ideal if p(I) < I for any endomorphism ¢
of F(X).

Definition 1.4.5 Let F be a field and A an associative F-algebra. Given a polyno-
mial f = f(xy, 29, -+ ,2,) € F(X), we say that f is a polynomial identity in 2 if
flai,as,...,a,) =0 for any ay,as, . ..,a, € A. In this case, we write f =0 in A. We say
that A is a PI-algebra over F (or simply PI-algebra) if there exists a nonzero polynomial

f e F(X) such that f =0 in 2.

We denote by T(2) the set of all polynomial identities of 2. In other words,
TR ={feFX): f=0in A}. It is easy to check that T(2) is an ideal of F(X') closed
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by all endomorphisms of F(X), it is called the T-ideal of identities of 2. Note that,
without loss of generality, T() < T¢(2). For more details, see [10, 11, 17].

We say that two algebras 2 and 2 are PI-equivalent iff T(21) = T(2l). In this case,
we denote 2 =p; 2.

We say that a polynomial identity f € F(X) is a consequence of a set S < F(X)
if f belongs to the T-ideal generated by S.

Given S < F(X), we denote by (S)r the T-ideal of F(X) generated by S.

Definition 1.4.6 Given a nonempty set S < F(X), the class of all algebras 2 such that
f=0in2A for any f € S is called variety defined by S, and it is denoted by var(5).

Proposition 1.4.7 (Proposition 4.2.3, [10]) Let

flan,. o am) = Y fi e (X®),
=0

where f; is the homogeneous component of f of degree i in x1.

i) If the base field F contains more than n elements (e.g. F is infinite), then the graded

polynomial identities f; =0, 1 =0,1,...,n, follow from f = 0;

ii) If the base field is of characteristic 0 (or if char(F) > deg(f)), then f = 0 is

equivalent to a set of multilinear graded polynomaial identities.

By the previous proposition, item i), given an F-algebra 2, IF is an infinite field,
the graded polynomial identities of 2 can be generated by multihomogeneous graded

polynomials.

Proposition 1.4.8 Let G be a group, F a characteristic zero field, A a GPI-algebra,
and N a commutative algebra with the trivial G-grading. If N is not nilpotent, then
TCRA®r N) = T¢(RA). If N = {0} and T¢() = {f1,..., f.)er, where fi’s are graded

multilinear polynomials, then

TG(QL®F N) = <<x§€)xge) o 'l.((ie))afil?fiw . '7fim : deg(fj) < d>GT .

Proof: We have that N = N,, where e is the neutral element of G, and thus, A ®r N =
Dy AR N. Let f = f(xggl), xé“”), . ,xfng’“)) € T¢(A®r N) be a multilinear polynomial,
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and xffi‘igl))xffi‘;gm . ‘x((fg(jgm a monomial of f. Since N is commutative, we have that

(o) ® Yo1))(Uo2) ® Yo (2)) -+ * (Go(r) ® Yo(r) = (A1)Ao(2) -+~ Co(r) R Y1Y2 - Yr

for any homogeneous elements ay,...,a, € A (deg(a;) = ¢;), y1,...,y- € N and o € S,.

From this, we have that

0=fla®@y1,02QY2,...,0, QYyr) = flar,a2,...,0,) OY1Y2-- Yy ,

for any a; ® y; € (A®r N),, = A, ®p N. Hence, it follows that either f =¢ 0 in A or
2928 2l = 0in N, and so f =¢ 0 or 22l ... 29 =¢ 0 in A ®s N. Notice
that if N4 = {0}, and f € T¢(2) such that deg(f) > d, then f is a consequence of

xge) xée) -+ 2%, The result follows. |

The Proposition 1.4.8 exhibits a tool to build graded nilpotent algebras with an-
other graded polynomial identity.

Theorem 1.4.9 (Theorem 1, [45]) Let F be an algebraically closed field of character-
istic zero, and G a finite abelian group. Any GT-ideal of G-graded identities of a finitely
generated associative Pl-algebra over F graded by G coincides with the ideal of graded

identities of some finite dimensional over the base field F associative G-graded algebra.

Remark 1.4.10 Under the same hypothesis of the Theorems 1.2.20 and 1.4.9, we have
that if A is a finitely generated associative G-graded PI-algebra over a field F, then there

exists a finite dimensional associative G-graded algebra
A = (M, (F7'[H1]) x -+ x My, (F[H,])) @ J

such that T¢(A) = TS(A’). Here, ' satisfies all the claims of Theorem 1.2.20.

One of the central problems in the study of graded algebras is to obtain non-graded
(ordinary) properties from the analysis of gradings assumed for a given algebra, and vice
versa. In this sense, given a graded algebra, we can determine relationships between its

graded identities and its non-graded identities. Let A = @, - A, be a G-graded algebra,

geG

G is a finite group with the neutral element e. In [5], Bergen and Cohen showed that if 2,
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is a PI-algebra, then 2 is also a Pl-algebra. They did not exhibit, in the general case, a
bound for the degree of the polynomial identity satisfied by 2. On the other hand, in [2],
Bahturin, Giambruno and Riley proved the same result. Moreover, they gave a bound on
the minimal degree of a polynomial identity satisfied by 2. Namely, the following results

were shown:

Theorem 1.4.11 (Corollary 9, [5]) Suppose an algebra 2 is graded by a group G such
that |G| = n. Then 2, is a PI-algebra iff A is a PI-algebra.

Theorem 1.4.12 (Theorem 5.3, [2]) Let F be an arbitrary field and G a finite group.
Suppose that A is a G-graded associative F-algebra such that A, satisfies a polynomial
identity of degree d. Then 2 satisfies a polynomial identity of degree n, where n is any
integer satisfying the inequality

|G[*(|Gd — 1)*"
(|Gld — 1)

< nl.

In particular, if n is the least integer such that €|G|(|G|d — 1)? < n, then 2 satisfies a

polynomial identity of degree n, where e is the base of the natural logarithm.

The purpose of our work is to examine some concrete cases of the statements of

Theorems 1.4.11 and 1.4.12.

1.4.2 The Grassmann Envelope of an Algebra

Let A be a (G x Zy)-graded finite dimensional algebra, namely

A = @ 22[(97/\) :

(g,M\)eGXZa

Notice that & = @ ¢
and 2 = Ao @Ay with Ay = P

2, with Ay, = A g0y D A(y,1), for any g € G, is a G-grading on 2,
Agn), for A = 0,1, is a Zy-grading on 2. We denote

geG

by E¢(2A) the Grassmann Envelope of 2 which is given by

EC(2A) = (Ao ®Ep) ® (2, ®Ey),
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where E = Eo @ E; is an infinitely generated non-unitary Grassmann algebra! with its

natural Z,-grading. Notice that if (E¢(2)) = A(g.n) Qr Ex for any (g, \) € G x Zy, then

(g:2)

FECR) = @D (E°@A),n= @D Aun®Es (1.10)

(g,A\)eGXZ2 (9,\)eGXZ2

is a (G x Zy)-grading on E¢(2(). For this reason, it follows that

Supp (T') = {(9, 1) € G x Zy : (E°(A)) (g1 # 0}
={(9,A) € G x Zy : Ay n) # 0} (1.11)

= Supp(I'y) .

It is clear that EG(Q[) is an %Ay ® Eg-bimodule. Now, let B be a G x Zy-graded subalgebra
of A. By (1.10) and (1.11), it is easy to see that ES(B) is a G x Z,-graded subalgebra of
E¢(2A). Observe that

EG(Q() = @(Q[(g,o) ®r Eo) + (Ql(gg) ®r Eq)
geG
defines a G-grading on E¢(2l).
The next theorems give the positive answer to the well-known Specht problem?

for graded varieties.

Theorem 1.4.13 (Theorem 2, [45]) Let F be an algebraically closed field of character-
istic zero, and G any finite abelian group. Any GT'-ideal of graded identities of a G-graded
associative PI-algebra over F coincides with the ideal of G-graded identities of the G-
graded Grassmann envelope of some finite dimensional over F associative G x Zo-graded

algebra.

Theorem 1.4.14 (Theorem 1.3, [1]) Let G be a finite group and W a GPI-graded alge-
bra over F, char(F) = 0. Then there exists a field extension K of F and a finite-dimensional

G x Zy-graded algebra 2 over K such that TS(W) = TC(EC(2A)).

!Grassmann algebra: E = {ej, ez €3, | eje; = —eje;, Vi, jy is Zo-graded with E, =
spang{e;, €;, - - - €;, : n is even}, and E; = spang{ej ej, ---€;,. :m is odd}.

2Specht problem was purposed in [44] by W. Specht (1950), and it can be formulated by the following
question: given any algebra 2, is any set of polynomial identities of 2 a consequence of a finite number
of identities of 2? For more details about Specht Problem, see [4].
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1.5 A description of J(2)

The goal of this section is to present some results concerning the Jacobson radical
of the G—graded Grassmann Envelope of 2, where Gis a group, and 2 is a G—graded
finite dimensional algebra over a field F. Unless otherwise stated, we assume that G is
an abelian finite group and 2 =B @ J is a finite dimensional C—graded F-algebra, where
B = M, (F[Hy]) x -+ x My, (F°r[H,]) is a maximal G-graded semisimple subalgebra of
2, and J = J() is the Jacobson radical of 2, F is an algebraically closed field, char(F) = 0.
Here, H, < G and o, € Z?(H,,F*) (see Theorem 1.2.20). For each r = 1,...,p, we denote
by i, = o.(e,e)™! Z];;l Essne,0) € B the identity matrix of B, = M, (F°r[H,]). Hence,
by Proposition 1.2.6, it follows that i = >7_, i, € 2 is the unity of B, since ii, = i,i =i,
forallr =1,...,p, and i, = i,iy, = 0 for all s # r.

Suppose that 2 is a unitary algebra. If € € 2 is a central idempotent element, i.e.
€2 =¢,and e € Z(2A), then 1 — € € A is also a central idempotent element of A such that e
and (1—¢€) are orthogonal when € # 0, i.e. €(1 —¢) = (1 —¢€)e = 0. Therefore, given z € 2,
notice that x = ze + (1 — €), and hence, it is not difficult to see that A = Ae B A(1 — ¢).
This decomposition is called the Peirce Decomposition of 2 relative to €. Naturally,
we can extend this definition to n idempotent elements of 2, as follows. Let €1,...,¢, € A
be distinct central orthogonal idempotent elements. Without loss of generality, suppose
that 1 = > | . Given z € A, we have x = 21 = > | z¢;, and hence, 2 = Ae; - - BAe,,
is the Peirce decomposition of 2 relative to €1,...,€,. In the next subsections, we will
use Theorem 1.2.20 to give a description of the Jacobson radical J and its Grassmann
envelope EC(J) in terms of the concept of the Peirce decomposition and of the semisimple
part ‘B.

Given a G-graded algebra 2, recall that a G-graded left (resp. right) 2-module M
is called a 0-module if AM = {0} (resp. M2l = {0}).

The following lemmas are the graded versions of Lemma 2 in [16].

Lemma 1.5.1 Let G be a group and A =B D J a finite dimensional algebra with a G-
grading, where B is a G—gmded mazximal semisimple subalgebra of A, and J = J(A) is the

Jacobson radical and a graded ideal of A. Then J can be decomposed as

J=Joo®Jio @ Jo1 @ 11,
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where J;;’s are G-graded $B-bimodules such that:
i) forr =0,1, Jo, is a left 0-module and Jy, is a left C—]—gmded faithful B-module;
i) for s =0,1, Jy is a right 0-module and Jg is a right C—gmded faithful B-module;
i0i) Jrgdgs S Jrs, and J,pdys = {0} for r,p,q,s € {0,1} with p # q.

Proof: Let i € 2 be the unity of 28, and consider the applications R;, L; : J — J defined
by Ri(z) = zi and Li(y) = iy for all z,y € J, respectively. Note that J is a graded
ideal of %, and R; and L; are homogeneous homomorphisms of C—graded $B-bimodules
such that R? = R;, and L? = L, since i € B,.. Hence, ker(R;), im(R;), ker(L;) and
im(L;) are G-graded B-bimodules. On the other hand, we conclude that 0,1 € F are the
only eigenvalues of R; and L;. So, we have that R; and L; are diagonalizable, since the
minimal polynomials of R; and L; can be written as the product of linear factors (see
[23], Theorem 6.4.6). Notice that R;L; = LiR;, and hence, it follows that ker(R;) and
im(R;) are invariant by L;, and ker(L;) and im(L;) are invariant by R;. Thus, it is easy
to check that V# = ker(R;) and V& = ker(L;) are the eigenspaces of R; and L; associated
with 0, respectively, and V{® = im(R;) and V}* = im(L;) are the eigenspaces of R; and L;
associated with 1, respectively.
Let us show that
J=Joo ® Jo1 ® J10 ® J11 , (1.12)

where Joo = VE N VE, Jio = VEAVE Jo = VEAVE and Jyy = VE A VE

Put J = Zr,s:o,l J,s. Notice that

Jo={rel:z=ix,2i=0}, Jy={red:z=uxiiz =0},

Ju={rel:z=ixi}, Jpo={rel:iz=12i=0}.
From thiS, if T10 + To1 + 11 + Too = 0 with Trg € Jrs; then

0= i(l’lo + o1 + X171 + moo)i = iiL‘lli =11 ,
0= 1(1‘10 + o1 + 11 + 2700) = il‘lo + il‘ll =210+ 211,

0= ((L‘lo + o1 + X171 + ZEO())i = l’(ni + Illi = To1 + X1 s
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and hence, r11 = z19 = Zo1 = 2o = 0, and thus, J = @ J,s . By Rank-Nullity

r,s=0,1 =TS

Theorem (see [23], Theorem 3.1.2), it follows that J = ker(R;) ®im(R;) = ker(L;) ®im(L;),
since dimpJ < o0 and ker(R;) nim(R;) = ker(L;) nim(L;) = {0}. Take x € J. There exist
xg € ker(L;) and x1 € im(L;) such that x = x¢+ 21, and hence, there exist xgg, 719 € ker(R;)
and o1, 11 € im(R;) such that xg = oo + xo1 and x; = x19 + x17. Notice that xg, z¢1 €
ker(Li), since 0 = iz = ixgo + ixgr and ker(L;) nim(L;) = {0}. Similarly, x1o, z11 € im(Ly),
since 1 = x19 + x17 and ker(R;) nim(R;) = {0}, hence, x1 = ir; = ix1g + iz11, and thus

X109 — ir19 = ixr1; — x11. Therefore,
T = oo + Tor + T10 + 11 € Joo D Jo1 D J10 D 11 -

This finishes the proof of (1.12).

To conclude the proof of this lemma, let us show that J,¢’s satisfy items i), i), 7).
Indeed, J,; are C—graded $B-bimodules. Since J is an ideal of 2 and b = ibi = ib = bi for
any b € 9B, we have ax = (ai)xr = a(izr) and za = z(ia) = (xi)a for any a € B and = € J.
Notice that given a nonzero z € Jo; U Jig U Ji1, we have that either ix # 0 or xi # 0.

Hence, by definition of J,, items i) and i) follow. Moreover, it follows that

Jood11 = Joodio = Jordoo = J1od11 = Jindor = Jidoo = {0} ,

Joodoo = spang{zy e J:zi=0,ix =0,iy =0,yi = 0,2,y € J} < Joo ,
Joodo1 = spang{zyie J:zi =0,ix = 0,iy = 0,z,y € J} < Jo1 ,

Ji0doo = spang{izy e J: 2i = 0,iy = 0,yi = 0,x,y € J} < Jyo ,

Jiodor = spang{izyie J:zi=0,iy = 0,z,y € J} < Jy1

Jo1Jio = spang{ziye J: iz =0,yi = 0,2,y € J} < Joo ,

Jo1J11 = spang{ziyie J :ix = 0,z,y € J} < Jo1 ,

Ji1d10 = spang{iziye J 1 yi = 0,2,y € J} < Jy ,

Jidi = spang{iziyie J:x,y e J} < iy,
and this ensures item ). |

By previous lemma, it follows that if 2 is a unitary algebra, then i € B is still the
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unity of 2, since J is nilpotent. In this case, we have

Joo ® Jo1 ® J10 = 1 (Joo @ Jo1 @ J1o) i = {0}, (1.13)

and so J = iJi = Jy; which is described in the next lemma. Observe also that J;g and Ji;

are unitary left B-modules and Jo; and Jq; are unitary right 8-modules.

Lemma 1.5.2 Under the assumptions of Lemma 1.5.1, consider that G is a finite abelian
group, and F is an algebraically closed field with char(F) = 0. The following statements

are true:

i) Ji = @Zrzl i,J111s, where each i.Ji1i, is a G-gmded (B, B)-bimodule, where B =

P B with B; = My, (Foi[H;]). In addition, i,J11is # 0 implies that i,J11is is a
faithful left B;-module and a faithful right B ;-module;

it) Foreachs =1,...,p, there exists a C-gmded vector space Ng = spanp{dys, ..., d, s}
igdi1is such that i,J11is = BNy and bd;s = ~;5(b)d;sb # 0 for any nonzero b € s,
andi=1,...,75, where v;s €F, and By = {Ej j,nn, € Bs : ls,Js = 1,... ks, hs € Hy}
is the canonical homogeneous basis of By = My (F7[H]). Moreover, for each

t=1,...,7s, we have that Bd;s is a G—Simple B, -bimodule.

Proof: By Lemma 1.5.1, we have iJi = {z € J : iz = zi = 2} = {izi: x € J} = J;;. Notice
that i,Ji, = i,J11i,, where i = fo:l i,. Since i,i; = 0 for all » # s, we have ii, = i, = i,
forallg=1,...,p.

i) Let us show that J;; = @Y

s,r=1

iJi,. Put J =37 _ iJi,. Again, since i,i, = 0 for all
r # s, it follows that J = ®€,r=1 i,Ji, and J < iJi = Ji;. On the other hand, for any
x € Ji1, we have
P P P R
r=izi= )i e D] =) iaiel.
s=1 r=1 s,r=1

Hence, J;;1 < ], and so Jy; = J. It is immediate that i,Ji; is a C—graded faithful
(B, B,)-bimodule for all ;s = 1,...,p, since Lemma 1.5.1 ensures that Ji; is a G-
graded B-bimodule, i,, i, are homogeneous elements of degree e for all r,s = 1,...,p, and
i.(i,xis)is = (i) (isis) = i, for any x € J.

Now, suppose that i,J11is # 0 for some r, s € {1,...,p}. Since i,J11i, is a (B, B,)-
bimodule, it follows that there exist wg € i,J11is — {0}, Eine € B, and E;;7. € B, such
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that E;n.woE;;n. # 0. From this, it is not difficult to see that my, := Ejn.woE;7. # 0 for
any le {l,...,k.}and t € {1,..., ks}. Thus, EyngmE,q, # 0 for any n,le {1,... k. },
t,me{l,... ks}, g€ H, and h € H,. The result follows.

it) Fix s € {1,...,p}. We have that Vg = i,Jy1is is a finite dimensional C—]-graded B,-
bimodule, and also a graded subalgebra of J. Since J satisfies both chain conditions,
because has a finite dimension, by Proposition 1.3.25, there exist homogeneous elements
dg1,...,dsg, € Vg such that V, = ;]il B.d,;, where each B,d,; is an irreducible C—graded
B-bimodule, and dgb = 7;5(b)bds; # 0 for any b e

betas. Now, consider Ny = spang{dsi,...,ds.} = J which is a C—graded vector space.

Since each dg; almost commutes with all the elements base s of B, it is easy to check

that %sdsi = dsi%& and ilelis = %st- [ |

Observing the proof of Lemma 1.5.2, for all s = 1, ..., p, we obtain that if deg(dy;) €
Supp(I',) for all i = 1,...,¢qs, then Supp(I'y,) = Supp(I's,), where s = B, D iJi;. On
the other hand, given A = B ® J with B = M, (F’[H]), and J = J(A) (which is a
graded nilpotent finite dimensional ideal of 1), assume that N = spang{dy,...,d,} is a
G—graded vector space such that J = BN, where d;’s are homogeneous elements such that
dB =Bd; for all v =1,...,m. If for some s = 1,...,m we have d,b = bd; # 0, for any

b € B, then the map
Vs B — ]
b +—— bds

(1.14)

is a homogeneous monomorphism of C—]—graded B-bimodules such that 1,(i) = d,. In this

case, Bd, ~c B as a C—graded B-bimodules.

Corollary 1.5.3 Under the assumptions of Lemma 1.5.1, if i € Zy(2A),) for some h € C,
then Jn, = (Joo)n @ (J11)n- In addition, i € Z() implies J = Joo @ J11.

Proof: By Lemmas 1.5.1 and by Lemma 1.5.2, we can write

J= @ ((J00)g @ (Jo1)g @ (J10)g @ (J11)4) = @ (Jij)g -

geG geG
i,j€{0,1}

Now, given h € G, suppose i € Zy(Ap), i.e., [i,a,] = 0 for all aj, € Ap,. In particular,

for any x), € J, € Ap,, we have iz, = x,i. Since J, = (Joo)n® (J10)n D (Jo1)n D (J11)n, where
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Jo=1{z€el:iiz=0=zi}, Jjo={rel:ix=x,2i =0} and Jo; = {y € J : yi = y,iy = 0},
it follows that J10 = J01 = {0} Therefore, i€ Zm(glh) for h e G 1mphes Jh = (J00>h@(J11)h.
Consequently, if i € Z(2), we conclude that

J= (—DJQ = @ ((JOO)g &) (Jll)g) = J00 @Jll )

geG geG

and the result follows. [ |

Corollary 1.5.4 Under the assumptions of Lemma 1.5.2, ifis € Z(2) foralls =1,...,p,
then iJi = @P_, iJis.

Proof: Suppose iy € Z(2A) forany s = 1,...,p. Sincei = >"_, i, it follows that i € Z ().
By Proposition 1.5.1, we have iJi = Jy; = @Z;T:l i,Ji,., and hence, we can conclude that
iJi, = {0} for r # s, since igri, = (is2i,)is = 0 for all x € J and r # s. From this,

Ji=J = @’;zl i,Jis. Therefore, we have the result. [ |

Observe that all results of this section we can apply for the cases G=GorG=

G x Zs, G is a given finite abelian group.

1.5.1 Some Conditions on E¢(J(21))

Here, we present important results concerning the Grassmann envelope of a finite
dimensional G x Zs-graded algebra. We exhibit some results that help to study the
graded polynomials identities of the Grassmann Envelope of a graded finite dimensional
algebra. The main result here is that, under suitable conditions, it is sufficient to study
the Grassmann Envelope of the subalgebras A, = B, @ i,Ji, instead of the Grassmann
Envelope of 20 = X?_, .

Given a G x Zy-graded algebra 2, it is easy to check that if a ® ¢ € 2y ® Ey
with 9 # 0, and (a ® z¢)r = x(a ® x¢) for any z € E®(A), for some h € G, then
a € Zy(Ap), where A, = A(0) B A1), since 0 = [a @ 29,b Q@ y| = [a,b] ® oy for any
bRy € (Ag®E) U (A ®E;). Analogously, for any h € G, we have a € Zy(2(;,) < 2 implies
(a®yo)z = z(a @) for any yy € Ey and z € E¢(),.

Lemma 1.5.5 Let G be a group, and A = B D J a G x Zy-graded finite dimensional

algebra, where B is a G x Zy-graded mazimal semisimple subalgebra of A, and J = J(A) is
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the Jacobson radical and a graded ideal of A. Given h € G, if there is a nonzero element
xo € By such that (i® zo)r = 2(i® x0) for any x € ES(A)y,, then EC(J), = E¢(Joo ® J11)n-
Particularly, E¢(J) = E¢(Joo) ®EC(J11) iff (®yo)y = y(i®yo) for all y € ES(A), for some

nonzero yo € Eo.

Proof: For some h € G, suppose (i ® x)z = z(i ® x¢) for any x € ES(2),. By above
observations, it follows that i € Zy(2l;,), and by Corollary 1.5.3, we have J;, = (Joo®J11)n =
(Joo)n ® (J11)n. Hence, we have that E¢(J);, = E¢(Joo ® J11)n.

Finally, suppose i € Z(2). Again by Corollary 1.5.3, we have J = Joo @ Ji1.
Consequently, E¢(J) = E¢(Joo) @ E®(Jy1). Conversely, if ES(J) = E®(Joo) ® E®(J11), then
J = Joo @ J11, and hence, it is easy to see that i € Z(2(), since A = B D Joo @ J11. The

result follows. [ |

The following result establishes a good condition for the GPI-equivalence between
the Grassmann envelope of an algebra 2l and the Grassmann envelope of a unitary sub-

algebra of 2, where 2 is finite dimensional and G-graded.

Lemma 1.5.6 Let G be a group, and A = B @ J a finite dimensional F-algebra with o
G x Zy-grading, where B = M, (F°[H]) is the mazimal graded semisimple subalgebra of
A, J = JA) is the Jacobson radical of A. Suppose F is a field of characteristic zero, and
i is the unity of B. Ifie Z(), then

ES(2) =cps ES(B @ Ju1) x E®(Joo)

where Ji1 = i, and Joo = {x € J : iz = xi = 0}. In particular, if A is unitary, then

Joo = {0}7 and EG(Q[) =GPI EG<% @Jn).

Proof: Firstly, write 24 = B @ iJi. Since iJi = Jis a G x Z,-graded ideal of 2 (by
Lemma 1.5.2), it follows that 2 and Joo are G x Zo-graded subalgebras of 2, and hence,
ES(Joo), ES(A) < ES(A). Thus, TS(ES(A)) = TE(ES(A)) n TS(ES(Jgo)).

Suppose i € Z(2A). Hence, by Lemma 1.5.5, J = Joo @ J11. Let us show that
feTS(ESA)) N TS(ES(Joo)) implies f € TS(ES(A)). In fact, take f ¢ TS(ES(A)), where
f= f(xggl), . ,[Eégk)) e F{X®)is a polynomial in G-graded variables. By Proposition 1.4.7
we can assume that f is multilinear. Let a; @ y1, ..., ax @ yp € EC(B) U E®(J11) U EC(Joo)

be homogeneous elements such that deg(a; ® ;) = ¢i, a1,...,ax € B U Joo U J1; and
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fla1 ®y1,...,ar ®yr) # 0, such elements exists because f is multilinear. Hence, there
exists a monomial m = x; x;, - - - ;. in f such that (a;, @i, )(ai, @ yiy) - -+ (a;, Y, ) # 0.
From this, a;,a;, - - - a;, # 0, where aq,...,a; € B U Joo U J11 are homogeneous elements.

If a; € B U Jy; for some j € {1,...,k}, it follows that

Oséail...ai_...

S, = ag, - (ag i) - ag, = (lag i) - (lagi) - - - (iag, 1), (1.15)

since i € Z(2), and J;; = iJi (by Proposition 1.5.1). So, since Joo = {z € J : iz = a1 = 0},
it follows from the expression in (1.15) that {a;,...,a;} N Joo = &. Reciprocally, if
{aiy, ... a5} 0 Joo # I, then a;; ¢ B U Jyy forall i = 1,..., k. Hence, we conclude that
either {a;,,...,a; } < Joo or {a;,,...,a; } =B U i, exclusively. Therefore, we have that
either f ¢ TS(ES(2)) or f ¢ TS(ES(Joo)), and consequently, f ¢ TS(ES(A)) A TS(E®(Jgo)).

Suppose that 2 is unitary. Take z € Jy. Since J is nilpotent, we have that the
unity of 2l must be i, the unity of 9. From this, x = iz = 0, and so Jog = {0}. Therefore,
the result follows. u

Theorem 1.5.7 Let G be a group, F a field of characteristic zero, and A = B®J a finite
dimensional F-algebra with a G x Zy-grading, where B = X*_, B is the mazimal graded
semisimple subalgebra of A, with Bs = My (F7[H]), J = J(A) is the Jacobson radical of
A, and i, is the unity of B,. If iy, € Z(A) for any s =1,...,p, then

E€(RA) =gpr EC (Ay) x -+ x ES(A,) x ES(Joo) ,

where Ay = By +1idig, s=1,...,p, and Joo = {x € J : iz = xi = 0}. Moreover, if A is
unitary, then Jog = {0}.

Proof: Firstly, observe that

Jo={rel: ix=21i=0}

={rel:ix=ri,=0VYs=1,...,p},

where i = >_ i,. By Lemma 1.5.6, we have that

EC(2As @ Joo) = E®(Bs @ i,Jis @ Joo) =cpr EC (B, @ isdis) x E®(Joo) = E(As) x E®(Joo)
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forall s=1,...,p.
Since iJi = @

s,r=1

i,Jis (see Lemma 1.5.2), and iy € Z(2), it follows that iJi =

@"_, i,Ji;. Hence, it is immediate that

p
A = (%1 X oo X %p) &) (@13.]15) (‘BJOO =GxZs (%1 @ 11.]11) X oo X (%pC—Dllep) X Joo s

s=1

and consequently, A =Gxz,)pr A1 X -+ x Ay, x Jgg. From this, we have that ES(A) =¢p;
EG(Qll) X oo X EG(Q[p) X EG(J()()).
Note that Jyoo = {0} when 2 is unitary (see Lemma 1.5.6). The result follows. H

By Theorems 1.2.13 and 1.2.20 and Remark 1.2.17, we can determine when two
matrix algebras over twisted algebras with canonical elementary G-gradings are G-graded
isomorphic. Consequently, we can have ‘B, x5 B, for some of the algebras 9B;’s in
Theorem 1.5.7, but not necessarily we have that 2, CxZe A (see the definition of a
graded immersion in 1.2.15). From this, when B, ~g.z, B, let us build below a G x Z,-
graded algebra 2 = B, ® J(A) such that TS(ES(A)) = TS(ES(A,)) n TS(ES(2A,)), where
A, =B, P J;’s are given in Theorem 1.5.7.

The next construction was presented by I. Sviridova in [45]. It is a construction,
for any finite dimensional C—graded algebra 2, of a graded algebra with a graded "free"
Jacobson radical.

Let G be a finite abelian group, and A = B @ J(A) a finite dimensional C—graded
algebra, where B is a maximal G-graded semisimple subalgebra of 2, and J = J(2) is
the Jacobson radical of 2, which is a nilpotent graded ideal of 2. Consider a C-graded
semisimple subalgebra B c B, and ¢ € Z with ¢ > 0. For any ¢ € N, consider the set
Xqé =U geé{xgg),xgg), e ,:r((lg)} of graded indeterminates. Now, consider the free prod-
uct B# «p IF<X5’>#, and define on it the G-grading by the equalities dege (uy - --u,) =
(degguq) - - - (deggus), where u; € %#UIRX(?}# are homogeneous elements, and C#
denotes an algebra with the adjoint unity. Let %(XqG) be the graded subalgebra of
B# xp F<X§># generated by the set %UF<X§> Denote by (qu) the graded (two-
sided) ideal of B(X qG) generated by the set of variables X qé. Particularly, we have that
B(XE) = B (XE).
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Given a GT-ideal T of ]F<XC>, denote by F(%(XQG)) the G-graded ideal
D(B(XE) = {f(h,... . ha) : fe T, hy € B(XE), deg(hy) = degg(x,), Vi) I B(XE),
which is called a verbal ideal of £~B(X qG) corresponding to I'. Now, for all s € N, we can

consider the quotient algebra

R,s(B,T) = BXY) (1.16)
B (D(B(XE)) + (X&) '

Denote also Rys(A) = Ryo(B, TS(A)) for T' = TS(A) and B = B.

Lemma 1.5.8 (Lemma 16, [45]) Let G be a finite abelian group. For any ¢,s € N and
a GT-ideal T = TC(), the algebra Rqs(B,T) is a finite dimensional G-graded algebra
with the ideal of graded identities Té(Rq,s(%,F)) > I'. Moreover, Ry o(B,T) = B®
J(R,s(B,T)), where B is a mazimal semisimple G-graded subalgebra of Ry 4(B,T), and
B =¢ B. The Jacobson radical of R,(B,T) is equal to (XL]G)/(F(%(XqG)) + (Xf)s), and
it is milpotent of degree less than or equal to s. In addition, if ¢ > maxgeé(dimF(J(QL))g)

and s = nd(J(A)), then TS(Ry.(A)) = TE(A).

Corollary 1.5.9 (Absorption Lemma) Let G be a finite abelian group, and F a field
of characteristic zero. Consider any two finite dimensional C-gmded algebras Ay = B D
Ji and Ay = By @ Jo, where B, and By are mazrimal semisimple C-gmded subalgebras
of A1 and Ay, and J; and Jo are the Jacobson radicals of Ay and s, respectively. If
B, = By, then there ewists a finite dimensional C—gmded algebra A = By @ J such
that Té(ﬁl) = TG(Qll x Ap). Here, By ~¢ By, and it is the mazimal graded semisimple
subalgebra of Q~l, J is the Jacobson radical of Q~l, which is a nilpotent graded ideal of QNl, and
nd(J) = max{nd(J;) : i = 1,2}.

Proof: Let us denote 2 = 24 xy. Let ¢ = max{dimg(J;) : ¢ = 1,2}, s = max{nd(J;) : i =
1,2}, and T = T¢(A) = T¢(A;) n TS(y). Consider the algebra R,s(B1,I) as in (1.16).
By Lemma 1.5.8, we have that I' € T¢(R,,(B1,T)), where R, (B1,T) = B, @ J is a
finite dimensional C—graded algebra, such that B, ~¢ By, and it is the maximal graded
semisimple subalgebra of R, ;(*B1,1), and J is the Jacobson radical of R,s(B1,I'), which
is a nilpotent graded ideal of 2 with nd(J) = s.
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Now, since By =¢ B, there exists a C—isomorphism Py By — By, and hence,
we have 12(B1) = B,. Denote I = (F(%I(Xqé)) + (Xqé)s), which is a graded ideal of
%1(Xq¢) (see (1.16)). Suppose that the set {rq,...,r,} is an F-basis of J;. Then we

have r; = Y, ¢ 70, where 19 € Jo 0 (Az)g, for all ¢ = 1,...,¢2. Consider the map
Qg - fl@ = xz@ + 1 — 1y, foralli = 1,...,qs, and @y : i’g) == x; + I — 0 for all

=@ +1,...,q (@2 < q). Assume that po(b + I) = 12(b) for any b € B;. Then @,
can be extended to a graded epimorphism @y : R, s(B1,I') — Ay of graded algebras.

In fact, consider the homomorphism of G-graded algebras o B1(X qG) — 2, such that
©2(b) = 1ho(b) for any b € B4, and 902(5135-9)) = rjg, forall j = 1,...,¢, and <p2(:c§»9)) =0
for j = g+ 1,...,q. Then ¢y = @y, where 7 : %1(){5) — Rys(B1,T") is the natural
G-graded homomorphism (quotient), since ker(r) < ker(gy). In fact, ker(r) = I, and
oo(I) < T(Ay) + J5 = {0}, since I' = TE(2Ay), and nd(Js) < s. Hence, the following

diagram commutes:

Rqs(%la i

RN /

By (X7

Take any multilinear f = f(z\™, 2, .. %)) € T¢(R,.(B1,T)). Let us show
that f =g 0 in %Ay. In fact, for any homogeneous elements ay, as, ..., a, € By U Jy such
that deg(a;) = deg(z (g‘)) = g;, for alli =1,...,n, we have that there exist by, bs,...,b, €
R,s(B1,I') homogeneous elements such that ¢s(b;) = a;, with deg(b;) = g;, for all i =

1,...,n. Hence, we have that

f<a17a27 s 7an) = f<@2(b1)7@2(b2)7 .. 7@2(17”)) = @2<f(blvb2= s 7bn>> = 902<6) =0.

From this, we have that f =¢ 0in 2y, and so f € TG(2Ay). Consequently, TG (Rys(B1,1)) <
TG(2A).

Analogously, we can build a graded epimorphism of R, (*8;,I") to 20 (it is suffi-
cient to consider ¢; : B — B, such that 1;(b) = b for any b € By, and to process as in
the first part of this proof), and hence, we conclude also that TC(RQ?S(%l, ) < TC().
Therefore, it follows that TG(RW(%l,F)) - (TC(Qll) N Té(%2)> — TS(2), and conse-
quently, we have that R, ;(%B1,I') =¢p; . [ |
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Lemma 1.5.10 (Lemma 31, [45]) Given G x Zy-graded algebras 2, and B over a field
F of characteristic zero, where Gisa finite abelian group, we have A = (Gx72)P1 B iff

EGZz2 () = (G o) PI EG*Z2(B) (as G x Zy-graded algebras).

Lemma 1.5.11 Let G be a finite abelian group, A and B two G x Zo-graded algebras
over a field F of characteristic zero, which are PI-algebras. If A = (Gx72)PT B, then

EG (1) =¢pr EG(B) (as G-graded algebras).

Proof: Any G-graded polynomial identity f € F(X é> can be seen as a (G x Z,)-graded
polynomial identity. More precisely, f = f(x3 (g1) ..,x%"")) e F(X C> corresponds to the
set of polynomials Wy == { (2™, .. 2" )Y V(AL 0 A € (Zo)") © F(XGxE2),

Let A = D, n)eexz, Ao Pe a (G x Zs)-graded algebra, where the G-grading is
induced, i.e. A = ®geé 2, with A, = Ay 0) @ ™Ug,1) for any g € G. We have that 2
satisfies a G-graded polynomial identity f € F(X G> iff A satisfies all the (G X Zso)-graded
polynomial identities of Wy, i.e. f e TG() iff Wy < TGxZ2(gy),

Consider two (G x Zs)-graded algebras 21 and 9B, and their Grassmann enve-
lope E¢(2() and E®(B), respectively. By Lemma 1.5.10, we have that 2 = (Gx72)PI D
iff ES(2) = (GxZa)PI EG(B), where we consider E¢(2) and EC(B) with their (G x Z,)-
gradings. By above reason, we obtain that if A =, ,,)p; B, then EG(2A) . EG(B).
Therefore, we conclude that if T6*%2 2A) = TGXZQ(‘B), then TG(EG(Q()) = TC(EG(%)). [

By Corollary 1.5.9, it is not difficult to check that 9B, =g B, forallr =2,...,n
implies that A = (g x- - -xAy,) =¢p; A, where A; = B;®I(2,), and A = R, (B, TE(A)).
In this sense, assuming G=Gx Zo, we can use Corollary 1.5.9 and Lemma 1.5.11 to
improve Theorem 1.5.7 up to G x Zs-isomorphisms of semisimple parts of ;. Thus, we

have the following result.

Theorem 1.5.12 Let G be a finite abelian group, F a field of characteristic zero, and
2A =B @ J a finite dimensional F-algebra with a G x Zy-grading, where B = X?_ B is
the maximal graded semisimple subalgebra of A, with B = My (F7*[H,]), J = J(A) is the
Jacobson radical of A, and iy is the unity of Bs. If iy € Z(A) for any s = 1,...,p, then
there exist finite dimensional G x Zs-graded unitary algebras Ay, s, . . . ,le, Joo such that

EC(A) =¢p; ES(2Ay) x - x ES(2,) x ES(Jgo) ,
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where le =B, P ]s are G x Zy-graded algebras satisfying B, 2GxZs B, for all s # 7,
B, ~Gxz, B, for someis e {1,...p}, ]s 18 the Jacobson radical ofﬁls, and ]00 18 a finite

dimensional G X Zso-graded nilpotent algebra.

Proof: By Theorem 1.5.7, we have E¢(21) =gp; E® () x - - - x E® (,) x E®(Jg9). Suppose
that B, ~¢g«z, B, for some r # s, and hence, by Corollary 1.5.9 and Lemma 1.5.11, we
have that TS(ES(2(,) x EG(2,)) = TS(E®(,)) for some finite dimensional G x Z,-graded
algebra 2, = B, ® J(ﬁ[s). From this, the result follows. [ |

Assume that 2 = B @ J is a finite dimensional F-algebra with a G x Zs-grading,
where J = J(2), and B = X?_ Fo[H;], with H; < G x Zs, 0<Z*(H;,F*). Observe that
by Theorem 1.2.13 and Example 1.3.2, the previous theorem can be rewritten in terms
of partial order "<", since (H;,[0:]) = (H;,[o;]) (i.e. H; = H;, and [o;]) = [o;]) implies
Fo[H;] =gz, F7[H|].
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CHAPTER 2

SECOND COHOMOLOGY GROUP

In this chapter we present some notions and properties of the cohomology theory
of groups. We will use these concepts as tools in Chapter 4. Our goal in this chapter is to
determine suitable conditions to ensure that the restriction homomorphism from H?(G, M)
into H?(H, M) is surjective, where H is a subgroup of a group G. Unless otherwise stated,
G denotes a multiplicative group and M denotes an abelian additive group that has a

structure of a left G-module. All modules in this chapter are assumed to be left modules.

2.1 Definitions and Properties

Let us define the Second Cohomology Group. Posteriorly, we will exhibit some
important results. The following definition is a generalization of Definition 1.2.1. For more

details, see [39], Section 9.1.2.

Definition 2.1.1 Let (G,-) be a multiplicative group, and (M,+) an additive abelian
group. We say that M s a left G-module if there is a well-defined map from G x M
into M which satisfies

i) r(my +ma) = rmy + rmo,
’LZ) (7’1 + Tz)m =T1m +1ram,

ZZZ) (Tlrz)m =T (TQTTL),
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68 2. Second Cohomology Group

for any r,r1,ro € ZG and m, mq, mo € M, where ZG is a group ring.

Recall that we denote by 7, the element of ZG which corresponds to an element
g € G. For convenience we assume that n,m = m for any m € M, where e is the neutral

element of G (M is a unitary left ZG-module).
Definition 2.1.2 Let G be a group and M a (left) G-module. A map 0 : G x G — M is
said to be a 2-cocycle! if it satisfies the following relation:

o(g,h) +o(gh,t) = ngo(h,t) + o(g, ht) ,

for any g,h,t € G. We say that a 2-cocycle p : G x G — M s a 2-coboundary if there

exists a function f : G — M such that

p(g,h) = ngf(h) — f(gh) + f(g)

for any g, h € G.
Notice that if M is a trivial (left) G-module (also we say “G acts trivially on M”),
i.e. nym = m for any g € G and m € M, it follows that

o(g,h) + o(gh,t) = a(h,t) + o(g, ht)

for any 2-cocycle o and g,h,t € G. Similarly for a 2-coboundary p, we have: p(g,h) =
f(h) — f(gh) + f(g) for any g,h € G.

Definition 2.1.3 Let G be a group and M a G-module. We define
Z*(G,M) = {all the 2-cocycles o : G x G — M} , and

B*(G, M) = {all the 2-coboundaries p: G x G — M} .

Given o, p € Z*(G, M), we define?

o+p:(g,h)—oa(g,h)+plg,h)

'If we assume that M has a multiplicative notation, then o € Z?(G,M) if a(g, h)o(gh,t) = (n, -
a(h,t))o(g, ht), and o € B%(G, M) if o(g,h) = % for some map f: G — M.
2If we assume that M has a multiplicative notation, then op : (g, h) — (g, h)p(g, h) for any g,h € G.
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for any g,h € G. In [39], Proposition 9.11 ensures that Z*(G,M) is an abelian group,
and B?(G, M) is a subgroup of Z*(G, M), with respect to this operation. Observe that,
since B%(G, M) is a group, the inverse element of a 2-coboundary p defined by p(g,h) =
ngf(h) — f(gh) + f(g) for some f: G x G — M is given by

(=p)(g,h) = —f(g) + f(gh) —nyf(h) .

Definition 2.1.4 The second cohomology group of G is defined as a quotient group

Z2(G, M)

H2(G, M) := B

The elements of H*(G, M) are denoted by [c], where o € Z(G, M). Hence, [c] = [p]
in H?(G, M) if there exists & € B?(G, M) such that o = £ + p.
Let us present some basic results, which relate the second cohomology group and

the orders of groups and subgroups. These results and some other facts can be found in

[7, 19, 25, 39, 46].

Theorem 2.1.5 (Theorem 6.14, [25]) Let G be a finite group and M a G-module. Ev-
ery element of H%(G, M) has finite order, which is a divisor of |G|.

In [39], it is shown that (see Corollary 9.41) if M is a finitely generated G-module,
then H?(G, M) is finite. Still in [39], it is proved (see Corollary 9.90) the following items:

i) There is an injection 0 : H*(G, M) — @, H*(G,, M), where G,, is a Sylow p-subgroup

of G, p is a prime divisor of |G|;
ii) If H?(G,, M) = {0} for all Sylow p-subgroups, then H*(G, M) = {0}.

Already in [46], it is proved (see Theorem 11.8.18) that if H <G with index [G: H] =m
coprime to the order of H, then H?(G,M) =~ H?(H,M)® @ H*(G/H, M), where M# =
{meM:ngm=m,Vh e H}, and H*(H,M)® = {o € H*(H,M) : n,0 = o,Yg € G}. It
is also proved there (see Theorem 12.1.3) that if H is a subgroup of G and M is an H-
module, then H?(G, Homzy(ZG,M)) and H?(H, M) are isomorphic, where Homz g (ZG, M)
is the group of ZH-homomorphisms from ZG into M. This last result is known as Shapiro

Lemma (see Theorem 6.3.2 in [19]).
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70 2. Second Cohomology Group

The proposition below improves Exercise 6.10.3, in [25]. Roughly speaking, for all
A e T, a field F contains {/\ iff F contains a root of the polynomial pa(x) = 2" — A ie.
px has a solution in F. In particular, any algebraically closed field F contains {/\ for all
A € F. Hence, we write v = /X to denote that Y=

Proposition 2.1.6 Let G be a finite group of order n, F a field such that /A € F for any
A e F, and H*(G,F*) the second cohomology group of G with coefficients in the multiplica-
tive group F*, where G acts trivially on F*. For any [y] € H*(G,F*), the representative
cocycle v can be chosen to have values that are n-th roots of unity. Therefore, H*(G,F*)

18 finite.

Proof: Let us assume that H?(G,F*) is a group with multiplicative notation. Let [o] €
H%(G,F*), where o € Z?(G,F*) is a 2-cocycle. Since G is a group of order n, by Theorem
2.1.5, it follows that [o]" is the neutral element of H?(G,F*), and so [¢]" = [¢"] = [1]
which implies 0™ € B*(G,F*). Let f : G — F* be a map, and ¢ € B?(G, F*) a 2-coboundary
such that

f(gh)
f(9)f(h)

for any g, h € G. For each g € G, by hypothesis, it follows that {/f(g) € F*, and thus,

we can consider the map f : G — F* defined by f(g) = ¥/f(g) for any g € G. Put

. FCa) (R ’
£(g,h) = M It is not difficult to see that & € B(G,F*), and

f(gh)

g(ga h) = and 5(97 h) = Un(g> h) = (O‘(g, h))n

(éo(g, W)™ = €"(g,h)a" (g, h) = (£(g,h)) ‘o™ (g. k) =1 (2.1)

for any g,h € G. Notice that £o is an element of Z2(G,F*), and [é0] = [o], since
€ € B2(G,F*). Consider now 6 = £o. By (2.1), for each ¢, h € G, it follows that 6(g, h)
is an n-th root of unit. Therefore, we have & is a representative of [¢] which has values
that are n-th roots of the unit.

Finally, since ' has only n roots of unit and G is a finite group, it follows that

H%(G,F*) is a finite group. [

Notice that there exists at most n™ possibilities for functions from G x G into
{all n-th roots of unity}, and hence, under the assumptions of the previous proposition,

it follows that |H?*(G,F*)| < n™. But, by proof of the previous proposition and Proposition
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1.2.6, we can improve this estimate as follows
H2(GF")| < ™5
’ = )

We have o(g,e) = o(e,h) = o(e,e), and o(g,97') = o(g7',g) for any g,h € G. And
hence, being G = {e,z1,..., 2,1}, fix o(e,e) = Ao € F*, and o(z;,x;) = \;; € F* for all

1 <i<j<n-—1. Thus, by definition of a 2-cocycle (see Definition 2.1.2), we have that

o(xj, (xix;) o(e,x') oy, (xiw;) ol(e; ', x;)

o(zmj, (rix;)")  ol(wwy) " )

o(z;,xj) =

9

where we put g = x;, h = z; and ¢t = (z;2;)"" in Definition 1.2.17, and we consider
that G acts trivially on F*. Let us fix a choice for values of o(e,e), and o(z;,z;) for all

1 <7 <i<n-—1. Consequently, we can build the following table

o e T1 o Tpoi
e n 1 - 1
Ty 1 n
1
Tpo1 | 1 n - n

which represents the number of possibilities (possible combinations) for the function

o(g,h), g,h eG.

2.2 Restriction res

In the previous section we present some results which relate the second cohomology
groups of G and its subgroups. Here, we study a way to ensure an existence of a surjective
homomorphism from H?(G, M) onto H?(H, M), for a subgroup H of G. Here, to simplify
notation, we write gm := ny,m for any g € G and m € M.

Consider the pair (H, M), where H is a subgroup of a group G and M is a G-module.

Given an element g € G, we denote by ¢(g) the bijection

c(g) = (g, fg) - (HM) —  (gHg ', M)
(h,m) = (74(h), fg(m))

DE Franga, A.M.D. June 28, 2019 Mat — UnB



72 2. Second Cohomology Group

where 7, : h — ghg™! and f, : m — g~'m. Observe that v, is an isomorphism of groups,
and f, is an isomorphism of abelian groups. This application is an action of G on (H, M),

called conjugation action. Note that for any h € H and m € M, we have:

fo(rg(h)m) = fo(ghg™'m) = g~ ghg™'m = hg™'m = hfy(m) ,

In this case, we say that the pair (v, f,) is a compatible pair.
It is well known (see §IIL.8 in |7], or §9.5 in [39], or §11.8 in [46]) that there exists

an isomorphism of groups
c(g)* : H(gHg™ ", M) — H*(H, M)

induced by the conjugation map c(g) = (7, fy). For more details how c¢(g) induces a
homomorphism, see §9.5 in [39).

Define a map from G x H*(H, M) to H*(gHg !, M) by

g 0 =(clg)") (o) e H(gHg ™", M) , (2.2)

which is induced by the conjugation action of G on (H,M). Unless otherwise stated, we
denote by go the product defined in (2.2).

Now, by (2.2), H acts trivially on H*(H,M), and if H is a normal subgroup of G,
then the conjugation action of G on (H, M) defined above induces an action of G/H on
H%(H,M). For more details, see §9.5 in[39], or §II1.9 in [7]. More precisely, we have the

following result:

Proposition 2.2.1 (Corollaries 3.8.3 and 3.8.4, [7]) Let H be a subgroup of G. Then
the conjugation action of H on (H, M) induces an action of H on H*(H, M), which is triv-
ial. In addition, if H<1G and M is a G-module, then the conjugation action of G on (H, M)
induces an action of G/H on H*(H,M).

Proposition 2.2.2 (Exercise 3.8.1, [7]) If H is central in G and M is an abelian group
with the trivial G-action, then G/H acts trivially on H*(H, M).

Other proofs of Propositions 2.2.1 and 2.2.2 can also be found in [39], written as
Lemma 9.82.
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Let us show now a relation between H?(H, M) and H?(G, M) for any subgroup H

of a group G. But firstly, we need some definitions.

Definition 2.2.3 Let H be a subgroup of a group G, M a G-module, i the inclusion map
from H into G, and 1y is the identity map on M. The pair (i,1y) is compatible, i.e.
Im(i(h)m) = hm = hlm(m) for any h € H and m € M. The homomorphism induced by
the pair (i,1y) is denoted by res$ : H*(G,M) — H2(H, M) and is called a restriction.

The above definition can be founded in [39], page 566.

It is well known that the restriction homomorphism is defined as follows: if o :
G x G — M is a 2-cocycle, then o restricted to H x H is also a 2-cocycle, namely
o (h) := o(h) for any h € H, and res$([0]) = [ox] in H2(H, M) (see [46], §11.8, or [39],
§9.5).

Proposition 2.2.4 (Lemma 11.8.15, [46]) Let G be a group, H a subgroup of G and
M a G-module. If H <1 G, then

resy;(H*(G, M)) = H*(H,M)® ,
where HX(H,M)¢ = {oc e H*(H,M) : g -0 = 0,Vg € G}, and g - o is the action defined in

Another proof of the previous proposition is given in Corollary 9.83, [39].
Now, let us use the next proposition to define a homomorphism of H?(H, M) to
H2(G, M), called corestriction (also called transfer). For more details about this homo-

morphism, see §I11.9 in [7], or §9.6 in [39], or §11.8 in [46].

Proposition 2.2.5 Let H be a subgroup of finite index in a group G, and M a G-module.

There exists a homomorphisms of groups
cores%, : H2(H, M) — H?(G, M)

satisfying
i) coresqresbo = [G: Hlo, for all o € H?(G,M);

i) If H<1G, then resgcoresgp =3 ¢y gp, for all p e H*(H, M),
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where gp = g - p is the action defined in (2.2).

Proof: The existence of cores is ensured by Proposition 9.87 in [39] (see also §IIL.9 in 7|
or §11.8 in [46]). The properties i) and i) are proved in Proposition (3.9.5), [7] (see also
Theorem 9.88 in [39], or Theorem 11.8.6 in [46]). |

The homomorphism cores in Proposition 2.2.5 is called a corestriction (or trans-
fer). Observe that Proposition 2.2.1 ensures that >, ¢, gp, for all p € HZ(H, M) is well
defined.

Suppose that M is a G-module. We say that \ € Z, A > 0, is invertible in M if

the multiplication by A is an automorphism of M, i.e., the map given by

dy: M — M
m — dym)=m-+---+m
—_—
A—times
is an isomorphism of G-modules. In this case, by item i) in the previous proposition, if
[G: H] < 0 and [G : H] is invertible in M, then res$ is an injective map. Let us show

now that, under suitable conditions, res$ is surjective.

Corollary 2.2.6 If [G: H| < oo, H is central in G, and M is an abelian group with the
trivial G-action, then res$cores$p = [G : H|p for all p € H2(H,M). In addition, if [G : H|

is invertible in M, then res$, is a surjection from H*(G, M) into H*(H, M).

Proof: Since H is central in G, it follows that H <1 G and, by item i) in Proposition
2.2.5, resjcoresfyp = 3/ gp for all p e H*(H,M). On the other hand, since G/H acts
trivially on H?(H, M) (Proposition 2.2.2), it follows that

dogp= > p=I[G:Hlp, pe H(HM) .
geG/H geG/H
Therefore, res$cores$p = [G: H]p for all p e H*(H, M).
Suppose now that [G : H] is invertible in M. Fixed o € H?*(H,M), we have
d[_Gle](a(a, b)) € M for any a,b e H. Consider the map

§i=digyo : (a,b) = digy(0(a,b))
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from H x H to M. Since G/H acts trivially on H*(H, M) and any 2-cocycle satisfies the

equality in Definition 2.1.2, we have

€(a> b) + é(abv C) = §<b7 C) + 5(‘17 bc) )

for any a,b,c € H, since M is an abelian group, and so dfcl ] is a homomorphism of
groups. Hence, it follows that d[_G1 mo = € € H2(H,M). From the first part of this proof,
it follows that

resgcoresyé = [G: H|¢ = [G: H|[G: H] o =0 ,

and so o = res$(cores$€) € res$ (H2(G, M)). Therefore, res$ is surjective. |

Let H be a central subgroup of G, and M an abelian group. Observe that when
M is a multiplicative group, then the last result means that res$coresGp = pl®H1 for
all p € H3(H,M), and in the case when [G : H] is invertible in M, then we have that
d[’Gle](p(a, b)) = “4/p(a,b) € M for any a,b € G. In particular, when M = F* is the
multiplicative group of a field F, where G acts trivially on M, then p = [G : H]| invertible
in F means that ¢/\ € F for any \ € F.

Now. by Propositions 2.2.5 and 2.2.6, it follows that

IH*(H,M)| = |res; (H*(G,M)) | ,
when [G : H] is invertible in M. We have
(lon] - [0] € H(G, M)} < H2(H, M) (23)

The previous corollary gives enough conditions to ensure the equality in (2.3), since

res$ (H2(G,M)) < H?(H, M). Thus, we have the following result.

Corollary 2.2.7 Let H be a central subgroup of G, [G : H| < o0, and M an abelian group
with the trivial G-action. If [G : H] is invertible in M, then

H?(H, M) = res} (H*(G,M)) .

Proof: By Corollary 2.2.6, it follows that H?(H,M) < res (H?(G,M)). Therefore, the
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result follows, since by definition resS (H%(G, M)) < H?(H, M). [

The previous corollary means that, under the assumptions of Corollary 2.2.7, given

[0] € H2(H, M), there exists [¢] € H*(G, M) such that 5 = o. Therefore,
H*(H,M) = {[{H] . & e 77(G, M)} .

In particular, given o € Z*(H, M), there exists £ € Z?(G, M) such that £y = 0.
Consider a finite abelian group G, and a field F. Suppose that G acts trivially on
F*. If F is algebraically closed, by Corollary 2.2.7, for any subgroup H of G, we have that

H?(H,F*) = resy (H*(G,F*)) .

In particular, by Proposition 2.1.6, if |G|=n, then H?(G,F*) is finite, and H?(G,F*) =
{lo1], ..., o]}, where o; € Z%(G, /1r), i.e. (0i(g,h))" = 1 for any g,h € G, and i =

1,...,r.
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CHAPTER 3

GRADED RINGS WITH THE NIL
NEUTRAL COMPONENT

In this chapter, we study a concrete case of Theorem 1.4.12 and we have answered
the following question: what can we say about R when DR, is nil/nilpotent, where R is
an associative ring with an S-grading, S is a monoid and e its neutral element?

Therefore, we consider an associative ring with a finite grading by a left cancella-
tive monoid, and we prove that if its neutral component is nil and f-commutative, then
the whole ring is also nil. Among other results, we have given various counterexamples
showing that our hypotheses are necessary. Consequently, using Nagata-Higman Theo-
rem, we have exhibited some important applications of our results (see Theorem 3.3.3 and
Corollary 3.3.4). Besides that, we have exhibited a considerable relation between graded

rings and Kothe’s Problem (see Theorem 3.3.7).

3.1 Graded rings with the nil neutral component

Let S be a left cancellative monoid, i.e. gh = gt implies h = t for any g, h,t € S.
Let R be an associative ring with a finite S-grading I'. In this chapter, we have studied an
important class of rings: nil rings. Our principal goal in this chapter is to present some
results which are direct implications of the case "R, is nilpotent" or "R, is nil", where

e is the neutral element of S. Here, we are interested in studying associative rings with
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78 3. Graded Rings with the Nil Neutral Component

an S-grading, whose neutral component is nil. We also we interested to find conditions
providing the nilpotency of the whole ring $R. In this case, we have given some upper
bounds for nd(fR), the nilpotency index of PR. Unless otherwise stated, R is an associative

ring, and S is a left cancellative monoid, with the neutral element e.

3.2 Main Results

In this section, we present some important results concerning S-graded rings with
the nil neutral component. Unless otherwise stated, in this section we denote by ‘R an
associative ring with an S-grading given by I' : ;R = @ ges Ry, where S is an arbitrary left
cancellative monoid. Observe that any group is a left cancellative monoid. Thus, all the
results here presented are valid for rings graded by groups. We also assume that I" has a
finite support, namely |Supp(T')| = d < .

Let 2R be an S-graded ring. Note that to prove that R is nil /nilpotent, it is sufficient

to analyse only products of its homogeneous elements. In fact, given ay,as, ..., a; € R,
. d
we can write a; = ZFl aig;, Where a;y; € Ry, and Supp(I') = {g1,...,g4}. Hence, we have
d d d
Ji1=1 J2=1 Je=1
d
= Z A1g;, A2gj, * * * Ckgj), -
J153250-J6=1

Therefore, without loss of generality we study only the products of homogeneous elements

in the grading of fR.

Remark 3.2.1 Let ay,as,...,a, € R be homogeneous elements. Note that if deg(a;) ¢
Supp(T") for some i = 1,...,n, then ajay---a, = 0. Moreover, put deg(a;) = g; fori =
1,2,...,n, and consider the set Ny, o) = {GiGit1- Givm 10 =1,...,1n,0 <m < n—i}.
If Agy....g0) € Supp(I'), then ayas---a, = 0, since R is an associative ring. Therefore, if
aiay - - a, # 0 with a; € Ry, a2 € Ry, ..., an € Ry, then Ay, . 4.) < Supp(l').

Recall that Supp(I") = d < co. Observe that if g € Supp(T'), then either (R,)?*! =
{0} or e € Supp(I'), where e is the neutral element of S. In fact, suppose that e ¢
Supp(I'). By contradiction, suppose also that there exist a1, as,...,a441 € R, such that

aias---aqgy1 # 0. Hence, {g, 9%, ...,9%""} < Supp(T), since R is an associative ring. But
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3.2. Main Results 79

|Supp(T')| = d, and thus, there exist 1 < [ <t < d + 1 such that g' = ¢', and hence,
g"7" = e ¢ Supp(T'), because S is a left cancellative monoid, where 1 < t—1 < d. From this,
we obtain a contradiction. Therefore, for any g € Supp(L), it follows that (R,)4™ = {0}
when e ¢ Supp(T).

The following result ensures that any S-graded non-nilpotent ring has necessarily

some nonzero homogeneous element of degree e.

Proposition 3.2.2 Let R be a ring with a finite S-grading I, where S is a left cancellative
monoid. If R, = {0}, then R = {0}, where d = |Supp(T)].

Proof: Suppose that e ¢ Supp(I'), and write n := d + 1. We will show that R" = {0}.
For this purpose, it is sufficient to prove that a,as - - - a,, = 0 for all homogeneous elements
ai, ag,...,a, € R (see (3.1)).

By contradiction, suppose that there exist homogeneous elements ay, as, . .., a, € R
such that ajas - - - a, # 0. Put deg(a;) = g; fori = 1,...,n, and define A == Ay, 4, 4.) (85
in Remark 3.2.1). Hence, by Remark 3.2.1, we have A < Supp(I'), and since [Supp(I")| = d,
it follows that |A] < d < n. Notice that {g1,9192,...,0192 " gn} S A, and hence, we

conclude that there exist 1 <! < t < n such that

919291 = (9192 - ‘gl)g(l+1) T Gt

Thus, since S is left cancellative, we conclude that e = ¢;.1---¢g; € A < Supp(T"). This
contradicts our assumption. Therefore, we prove that ajas - - - a, = 0 for all homogeneous
elements a,as,...,a, € R, and hence, by (3.1), we conclude that R™ = {0}. Conse-

quently, fR is nilpotent of index at most n = d + 1. [ |

Besides ensuring that any non-nilpotent S-graded ring has a nonzero neutral ho-
mogeneous element, the previous proposition provides an upper bound for the nilpotency
index nd(R), when fR is an S-graded ring with a finite support, whose neutral component
is zero. The following example exhibits a nilpotent ring whose nilpotency index is not less

than that predicted by Proposition 3.2.2.

Example 3.2.3 Let F be an arbitrary field and n € N, n > 1. Consider R = SUT,(F),

the ring of the strictly upper triangular matrices of order n x n over F. The family of

subspaces (R, )rez, , where R, = spang{E;; : 7 —1i = 7}, defines a Z,-grading on R (called
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80 3. Graded Rings with the Nil Neutral Component

an elementary Z,-grading corresponding to (0,1,...,n — 1)), namely T. It is easily
seen that Supp(T') = Z, — {0} and nd(R) = n = |Supp(T')| + 1. Therefore, we conclude
that the previous proposition provides a good upper bound for the nilpotency index of graded

rings (with a finite support) whose neutral component is zero.

On the other hand, the following example shows that the "finite support" condition

is required, in particular.

Example 3.2.4 Consider the ring R = R[x] of all the real polynomials in one variable.
We have that SR is naturally Z-graded with the infinite support. Now, consider the subset
R = {p(x) € R : p(0) = 0} of M. Notice that R is a Z-graded ring (with the Z-grading
induced by the Z-grading of R) such that Ry = {0}, but its support is not finite and
(R)" # {0} for all n € N, since z" € R,,.

In the proof of the previous proposition, we have used combinatorial arguments.
Evidently, the techniques used in Proposition 3.2.2 can be extended to answer the following
question: "what can we say about R when R, is nil?". Thus, one of the most natural

question is the following:

Problem 3.2.5 Given an S-graded ring R with a finite support, does R, being nil imply
that R is nil?

Below we present some results concerning this question. Before it, observe that
the following example ensures the existence of an S-graded ring with an infinite support,
which is not nil, although its neutral component is nil, and hence, a problem similar to

Problem 3.2.5 for infinite support is not valid.

Example 3.2.6 (Theorem 2.7, [42]) For every countable field K there is an associative
nil K-algebra N such that the polynomial ring in one indeterminate over N (which is

naturally Z-graded with the neutral component equal to N ) is not nil.

An S-graded ring fR is called S-nil if all its homogeneous components are nil, i.e. for
any g € S, we have that any = € R, is nilpotent. Analogously, R is called S-nilpotent if for
each g € S there exists n, € N such that aijas, - -~ a,,q = 0 for any ayg, agg, ..., an,g € Ry.

Notice that if the support of S is finite and R is S-nilpotent, then necessarily there exists
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3.2. Main Results 81

n € N such that the product of any n homogeneous elements of the same homogeneous
degree is zero.

Let S be a monoid. Given an element g € S — {e}, if there exists an m € N such
that ¢"™ = e, then we say that the order of g in S is the smallest number n € N such that
g" = e, and in this case we denote o(g) = n. If there is not m € N such that ¢ = e, then
we say that ¢ has infinite order, and we denote o(g) = o0. Note that when S is finite and

S is a left cancellative monoid, we have that all the elements of S have finite orders.

Proposition 3.2.7 Let S be a left cancellative monoid and R a ring with an S-grading
[ of finite support, namely |Supp(I')| = d. Suppose that R, is a nonzero nil ring. Then

the following items are true:
i) R is an S-nil ring;
it) Suppose R, is nil of bounded index, namely nd,;(R.) = s. Then:

1. (a1a2 . ~-akg)s = 0 for any g € Supp('), and any ay,aq,...,ar, € Ry, where

kg = min{o(Q)? d};

2. there exists k € N such that (ajas---ay)® = 0 for any homogeneous elements

ai, as, ..., a; of the same homogeneous degree (deg(ay) = -+ = deg(ax));

3. R is S-nil of bounded index.

Proof: i) Firstly, since R, # {0}, e € Supp(I"). Without loss of generality we can take
any g € Supp(I') — {e}, since R, is nil by the claim. Put s = min{o(g), d} and consider the
subset 3 = {g,4% ...,9°} of S. Notice that if 8 & Supp(T’), then a® = 0 for any a € R,
since R is an associative ring. For this reason, we can assume 5 < Supp(I'). It follows
that either ¢° = e or e ¢ 8. In fact, e €  implies that ¢" = e for some r € {1,...,s}. By
definition of o(g), we have o(g) < r. Thus, r = s and ¢° = e, since s < o(g) and r < s.
Note that e ¢ §iff g" # e for all 1 <r < s.

If ¢° = e, then for any x € R,, we have z° € R, and hence, x is nilpotent, since
R, is nil. Otherwise, we have that e ¢ 3, and s = d < o(g). Hence, 5 = Supp(I'), since
|B| = s (all the elements of § are different). From this, it follows that e ¢ Supp(I") in this
case, otherwise we would have o(g) < s, since S is left cancellative, that contradicts to

the claims.
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82 3. Graded Rings with the Nil Neutral Component

Anyway, we show that any element of R, is nilpotent, for all g € S. Therefore, R
is S-nil.

ii-1) Since R, # {0}, we have nd(R.) > 1. Fix any g € Supp(R). If g = e, the
result is obvious. Assume that g # e. Notice that ¢' ¢ Supp(I") for some [ € N implies that
(R,)! = {0}. Consider k, := min{o(g),d}, where d = |Supp(T')|. Take arbitrary elements
ai,ay,...,ag, € Ry.

Consider v = {g,¢%,...,g"}. Let us show that either k, = o(g) or v & Supp(T).
Suppose that k, # o(g), and hence, d = k, < o(g). Since k;, < o(g), it is easy to see
that e ¢ ~, and all elements of the set v are different, because S is left cancellative.
Then |y| = d = |Supp(I")|, and for this reason, we can conclude that v & Supp(I'), since
e € Supp(T).

If k, = o(g), then ajas---ar, € Re. If v & Supp(l), then there exists ¢' €
v — Supp(I'), and consequently, ajas---a; =0, 1 <1 < k.

Therefore, we have shown that for any g € Supp(I') and any ay,as, . .., a

€ Ny,

where k; = min{o(g),|Supp(I')|}, we have either ajas---az, € R or ajay---ap, = 0.
Thus, in any case, we conclude that (a1a2 . -akg)s = 0, since nd,;(MR.) = s.

ii-2) By the arguments of (4-1), it is sufficient to take k := lcm{k, : g € Supp(I')},
since Supp(I') is finite.

ii-3) Let k be the integer defined in (i-2). Given g € Supp(I'), we have that

k = kgp, for some integer p,, where k, is the integer defined in (7-1). Hence,

aks — a(kgpg)s — akg(ng) — (ak9>57’g — ((akg)S)Py =0

for any a € R,. Therefore, we conclude that b* = 0 holds for any homogeneous element

b € SR. The result follows. [ |

Notice that, when we assume that 93, is nil, the previous proposition exhibits
consequences only for homogeneous components. From now on we will show more general

results, i.e. not only for homogeneous components.

Lemma 3.2.8 Let S be a left cancellative monoid and R be a ring with an S-grading T’
with a finite support, |Supp(I')| = d. For any integer r > 1 and any homogeneous elements

ai, Ao, ..., 0.q € R, we have that either ajas -+ -a,q = 0 or there exist 0 < s5g < 51 < -+ <
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s, < rd satisfying

€= deg(asm-l e ag,) = deg(ag, 115,12 - ag,) = -+ = deg(as,_ 41 as,). (3.2)

Proof: By Proposition 3.2.2, if e ¢ Supp(I'), then R4+t = {0}. From this, the result
follows, since d + 1 < dr for all » > 1 in N. Observe that in this case we always have the
first alternative.

Now, assume that e € Supp(I'). Let aq,as, ..., a.q € | be homogeneous elements,
such that ajas - - - a,q # 0. Let us show that there exist 0 < sg < s1 < --- < s, < rd such
that (3.2) holds. Put deg(a;) = g; for each i = 1,2,...,rd. For all 1 <1 < k < rd, define

bk = a1 - .. ag, b, = by, and by = a;. It is easy to see that

deg(by ;) = deg(a;)deg(ai+1) - - - deg(ar) = gigir1 - - - Gr, (3.3)

for all 1 <1<k < rd. Since ajas...a,q # 0, it follows that A = {deg(b ) : 1 <[ <k <

rd} = Ngigs....g0a
= {deg(b;) : i =1,2,...,rd} of A, and notice that

y is contained in Supp(I') (see Remark 3.2.1). Now, consider the subset

il < d—1, ife¢ A (3.4)
S| 4 ifeed |

since A < Supp(T'), and |Supp(T")| = d. For each g € A, consider the integer \, = |{i :
deg(b;) = g}|, and assume A, = 0 for any ¢ ¢ A. Take go € A such that Ago = max{A, : g€
A, g # e}. Let us show that either A\, =7 or \,, =7 + 1.
Firstly, note that {i : deg(b;) = g} n {j : deg(b;) = h} = & for any g # h, and
hence,
rd = || J{i : deg(b; =) {i: deg(bs) = g}l = D A, - (3.5)
geh geh geh

Then by (3.4), we have

rd=Act+ D Ag <At Do Ay S Aot (d— 1)), . (3.6)
geh—{e} geh—{e}

If e ¢ A, then \, = 0, and hence, by (3.6), it follows that rd < (d — 1)), which
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84 3. Graded Rings with the Nil Neutral Component

implies that A\, > r.

Suppose now that e € A. Assume that A\, < (r + 1) for any g € A — {e}. Hence,
Ago < 1, and by (3.6), we have rd < A\, + (d —1)r, and thus, A\ = rd— (d —1)r = r. From
this, we deduce that A\,, < (r + 1) implies A, > 7.

Therefore, we show that either A, > r or there exists at least one gy € A — {e} such
that \gy = r + 1.

Finally, suppose that A\, > r, and take 1 < 4y < --- < 7, < rd such that e =
deg(b;,) = --- = deg(b;,). Hence, it follows that

bir = Qa1a9 - q;

=(a1az -+ aiy ) (@G +1)Q0+2) 7 Qi) (@G, 1)1 +2) 7 Q) (3.7)

:bz’1 b(i1+1),i2 T b(ir71+1)7z‘r-

We deduce from (3.3) and (3.7) that e = deg(b;,) = deg(by,11),i,) = - -+ = deg(bg,_, +1),,)-
Thus, we obtain sg = 0, s; =4; for j =1,...,7.

Assume now that A\, > 7 + 1 for some go € A — {e}. Let us take 1 < 4; <

+ < i, < i(41) < rd such that gy = deg(b;,) = --- = deg(b;,) = deg(b;,., ). Similarly

to (3.7), we have b;,, = bi,bi,11), - (i, 1 +1),i,0(i,4+1)si(sr)-  From this, and by (3.3),

we conclude that deg(b(i,+1)4,) = -+ = deg(bi,_,+1).) = deg(bg, +1).4,,,) = e, since

deg(b;,) = deg(bi,,) = 9o, bi,y, = bibis1,,, @ = 1,...,7, and S is left cancellative.

Therefore, we obtain (3.2) for sg = 41,81 = i2,..., 8 = lpi1. [ |

Let us recall the notion of f-commutativity, defined in Definition 1.1.4.
Let us consider a semigroup & (that is, a set together with a binary operation from
S x & to & which is associative), and an associative ring R. A left action of G on R is

a mapping - : & x R — ‘R satisfying
(Ay) -z =Aly-z) and A-(zy) = (A-2)y,

for any A\,v € G and x,y € fR, it is called an action by semigroup.

Consider any application f : R x R — &, and define the f-commutator of R by

[a,b]f = ab —f(a,b) - ba ,
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for any a,b € R. Particularly, we can consider some concrete cases.

Example 3.2.9 Given any subring P of R, and any map f of R xR to P, we have that
[a,blf = ab — f(a,b)ba ,

for any a,b € R, defines an f-commutator of R.

Example 3.2.10 Given any ring R, we have that Z acts on the left of R naturally,
assuming that
Xa=a+ - +a, ya=(—7)(~a)=(-a)+ -+ (—a), and Oa=0a,
a=a a, va=(—y)(—a)=(—a) (—a) , and Oa = Oa

. J/
v~

A—times (—v)—times

for any a € R and N,y € Z, with A > 0 and v < 0. We can consider for each \ € Z
the mapping A satisfying A(a,b) = X for any a,b € R, and hence, the \-commutative
[, |x is well defined. In particular, for X = 1, take 1(a,b) = 1 for any a,b € R, and
thus, the 1-commutator | , |1 is given by [a,b]; = ab—1-ba = ab — ba = [a,b], and so
[, ]i=1[,] On the other hand, when X\ = 0, take 0(a,b) = 0 for any a,b € R, and
hence, the 0-commutator | , |o is given by [a,blo = ab—0-ba = ab, and so | , ]o is the

product of R.

Definition 3.2.11 A an associative ring R is called a f-commutative ring if there
exist a semigroup & that acts on the left of R, and a mapping f : R x R — & such that

[a,b]f = 0 for any a,b e R, then R is said to be f-commutative.

Example 3.2.12 Given any ring R, we have that R is 1-commutative iff R is commu-

tative. Also, R is 0-commutative iff R has the trivial product.

Let us denote by T the class of all f-commutative rings.

In particular, all commutative rings, anticommutative rings, and the nilpotent
rings of index 2 belong to the class T. An interesting question is whether every ring is
f-commutative for some f. To answer this question, we need some tools. In fact, Example
3.2.23 gives a ring, which is not f-commutative for any f. In general, if for any a,b € R,
the equation zba = ab has a solution in some semigroup &, which acts on R from the

left, then R belongs to T.
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86 3. Graded Rings with the Nil Neutral Component

Remark 3.2.13 Under the conditions of Lemma 3.2.8, consider any integer r > 1. Let
0<sp<s1 <--- <8, <rd be integers such that (3.2) holds. Consider the set & = {i €
{1,...,7}:8; — s;—1 > 2d}. We have

r

rd—30+2 i — Si—1) rd—sr)>Z(si—si_1)
=1 (3.8)
> (si—si1) = Y (2d+ 1) = [¢](2d + 1) .

€€ €€

Consider the integer 7 € Z, 7 = 1, such that r € {27, 27 + 1}. Observe that s; — s;—1 < 2d
for at least 7 + 1 integers i € {1,...,r}, that is, r — || = 7 + 1. In fact, firstly suppose
r = 27. Let us show that || < . By contradiction, suppose that || =7 = 1. By (3.8), it
follows that

d=E2d+1)=7(2d+1) = 2¢d+7>rd + 1,

and hence, we obtain a contradiction.
Now, suppose r = 27 + 1. By contradiction, assume that || >7+1 > 1. By (3.8),

we have that

d=[¢(2d+1) = (7 +1)(2d + 1)
>2fd+7+2d+1=2fd+d)+1+7+d

>rd+14+7+d>=rd+1,

which is impossible. Therefore, we conclude that r — |§| = 7 + 1, for any integer r €

{27,271 + 1}, for any integer v > 1.

Let us use the previous remark to prove that any ring with a finite S-grading is nil
if its neutral component is nil and f-commutative.
Suppose that R is an f-commutative ring. Consider any monomials my, my, m3 € R

(i.e. m; is the product of elements of R). For any x,y, z,t € R, we have

xmyymezmgt = (f(z, m1)mq)zymozmst
= (f(x,my)my) (f(zy, ma)mso)xyzmst (3.9)

= (f(x,m1)mq)(f(zy, mo)ms)(f(zyz, ms)ms)xy=t,
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where f(z, mi)mq, f(zy, mo)ms, f(xyz, ms)ms € R. We can write also

xmyymezmgt = x(f(mq,y)y)mimezmst
(3.10)
= x<f(m17 y)y) (f(m1m27 Z)Z)m1m2m3t7

where f(my, y)y, f(mime, z)z € R. We will use (3.9) and (3.10) to prove Theorems 3.2.14
and 3.2.19.

Theorem 3.2.14 Let S be a left cancellative monoid with the neutral element e, and R
an S-graded ring with a finite support I'. If R, is nil and f-commutative, then R is nil.
In addition, if R, is nil of bounded index, then R is nil of bounded indez.

Proof: Let I' : R = @le MR, be an S-grading on R with Supp(l') = {g1,92,...,94} < S.
Assume that MR, is an f-commutative nil ring. If e ¢ Supp(I'), by Proposition 3.2.2, it
follows that R4+ = {0}, and the result follows.

Assume now that e € Supp(T’). Let a = Z?Zl ag, € R be an arbitrary element, with
ag, € Ry,. Let us show that a is nilpotent, i.e. there exists n € N such that " = 0. By
(3.1), it is sufficient to consider only the products of n homogeneous components of a.

Counsider the set

Az{blbgbk1<k<2d7 bl,...,bke{agl,...,agd}},

which is finite, and its subset A = {b € A : deg(b) = e}. By Lemma 3.2.8, for any
bi,ba, ... bog € {ag,...,a,}, we have that biby---byg = 0 or there exist 0 < 59 < 51 <
Sy < 2d such that e = deg(bsy41---bs,) = deg(bs,+1---bs,). In this last case, we have
that (bsyr1---bs,), (bsy1---bs,) € A. Thus, if byby---bog # 0 for some by, by, ... by €
{ag,,...,ay,}, then A # . We have that A contains all elements of the neutral degree
formed by the products of at most 2d elements of the set {ay,, ..., a,,}. Note that A is
contained in R.. Hence, since A is finite and R, is nil, we can take r = min{m e N : p" =
0,¥be A}. Put n = r|A|, and fix any by, by, ..., bopa € {ag,,...,ay,}. Let us show that the
monomial m = byby - - - bypg is equal to zero.

To obtain a contradiction, suppose that m # 0. By Lemma 3.2.8, since m # 0,

there exist 0 < 59 < 81 < -+ < 89, < 2nd such that

1 = b80+1 e bS17 Co = b81+1bs1+2 e b827 ceey Con = bS(gn_1)+1bS(2n_1)+2 e bSZn € %e . (3]-1)
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By Remark 3.2.13, it follows that there exist i, ...,4, € {1,...,2n} such that s;, —s;,_1 <
2d for all j € {1,...,n}, and hence,

61 = (bsi171+1 T bsil)u 62 = (bsi271+1 T bSiQ)u ceey én = (bsin71+1 T bsin) € A .
Observe that ¢y = ¢;, forall k =1,...,n.

Since é&,...,¢, € A, and n = r|A|, where A is a finite set, it follows that there
exist 1 < j1 < jo<---<j <nsuchthat¢; =¢, =---=¢, =ce A, and thus,
= ¢" = 0. From this, by (3.9), (3.10) and (3.11), since R, is f-commutative,

CinCjp """ G

r

it follows that

m =0by-bopg =0y 550(0102 T 62n>b82n+1 “+bapa
= (bl T bso)(cl T Cz'lfl)él(Cthl o '01271)52 o '5n(Cin+1 s Czn)<b82n+1 s b2nd)

= (bl T bso)m15j1m25j2m3 e 'mréjrmr+l(b52n+l e 'and) )

where m; = (01 T Cijlfl)a may = (Cz’jlﬂ T Cij2—1)> ceey My = (Cijﬁﬁl T Cijr—l)a Mpy1 =
(Ci]’r+1 st an) € %e' Put ml = (bl ce bSO)ml, and ﬁlr_;,_l = mr+1(b$2n+1 ce b2nd>7 it follows

that

m = MyCj,maCj,ms - - MyCj M1 = My (Ej,MaCjyms - - - MG )My

= f (¢, ma)maof (&5, ¢, ma)ms - - £(¢5,¢5, -+ - Gy, My )M (G, Gy -+ - G5 )11

Since ¢j,¢;, - - - €5, = 0, we have that m = b - - - bypg = 0. Evidently, this is a contradiction.
Thus, we have that by ---bopg = 0 if A = &, and also by -« - bong = 0 if A # ¢, for any
bi, ..., bang € {ag,, ..., ay,}. Anyway, we conclude that R is a nil ring.

To prove the second part of the theorem it is sufficient to take r = nd,;(R.) and

to proceed as in first part of this proof. [ |

By the proof of the previous theorem, if R is an S-graded ring whose neutral

component is nil of bounded index, we can exhibit an upper bound for nd,;(28). Indeed,

d2d _ 1
it is easy to see that ndy(R) < 2rd” ( 71 ) Where ndpi(M.) = r < 0 and d =
2d
A —-1
ISupp(R)|, since |A| < [A| < d+d>+ -+ d2 = %

Observe also that a proof similar to proof of Theorem 3.2.14 ensures a positive

answer to Problem 3.2.5 in the class of f-commutative rings. Beside that, Theorem 3.2.14
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provides that Problem 3.2.5 has a positive solution in the class of all associative rings with
a finite grading whose neutral component belongs to the class T of all the f-commutative
rings.

Notice that we can weaken the definition of an f-commutator and still obtain
that the previous theorem is true. In fact, it is sufficient to assume that a semigroup
S acts on R if (A\y)x = A(yx) for any A,y € &, and x € R, and hence, to define
[a,b]s = ab— (f(a,b)b)a for any a,b € R, where f is a map from R x R into S. Therefore,
(3.9) and (3.10) are still true, and thus, Theorem 3.2.14 can also be verified in this case.

Theorem 3.2.15 Let S be a left cancellative monoid and R be a ring with a finite S-
grading T'. If R, is nilpotent of index nd(R.) = r > 1, then R is a nilpotent ring with
r < nd(R) < dr, where d = |Supp(T)|, and r > 1; orr < nd(Ri) <d+ 1 ifr = 1.

Proof: Suppose that R, is a nilpotent ring with nd(R.) = r > 1. We will show that

ajas - - ayq = 0 for any homogeneous elements ay, as, ..., a.q € R (see (3.1)), where d =
|Supp(I')]-
Taking into account Lemma 3.2.8, suppose that there exist 0 < 59 < 51 < -+ <

s, < rd satisfying

€= deg(a50+1 s 'CLS1) = deg(a81+1a51+2 Clgy) == deg(asr—ﬁrl T aS'r)'

Hence, (asy41--as;), (s 11Qs,12° Qsy)y -y (as._ 417 as,) € Re, and thus, it follows
that (as,11- - as.) € (Re)” = {0}. By this reason, we have that a; ...a,q = 0.

Thus, by Lemma 3.2.8, for any a4, ..., a,q € R we always have that a; ...a,q = 0.
Therefore, we conclude that R is a nilpotent ring with nd(R) < dr.

Observe that for nd(fR.) = r = 1, the result holds by Proposition 3.2.2. |

It easily follows from the previous theorem that Problem 3.2.5 has positive solution
in the class of graded rings, whose support is finite and the neutral component is a

nilpotent ring.

Example 3.2.16 Let R be a commutative nilpotent F-algebra, whose nilpotency index is

nd(R) = 2p, F an algebraically closed field and char(F) = p > 0. Consider the algebra
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90 3. Graded Rings with the Nil Neutral Component

given by
0 a2 a3
A = 0 0 ay |:ai;eR
0 0 (as3)?

Notice that 2 is a subalgebra of M3(R), the F-algebra of 3 x 3 matrices over R, and
A2 < SUT3(R). Now, consider the F-algebra M such that

2[ 03><3
O3x3 A

We have that M is Zg-graded with the elementary grading I defined by (0,1,...,5) €
(Z6)®, with support of order equal to 3. It is easy to see that (Mg)* = {0}, and hence,
by Theorem 3.2.15, it follows that M® = {0}. Observe that nd(M) = 4, and hence,
nd(M) < nd(Mpg)|Supp(T')| < nd(Mpy)|Zs|, i.e the previous theorem provides an upper
bound better than if we look only at the order of the group.

Remark 3.2.17 Let R be an f-commutative finitely generated ring. Suppose that SR is nil.
Let n € N be the smallest number of generators of R. Fiz a set 5 of generators of R with
n elements. Let s € N be the largest nilpotency index of the elements of 5. By (3.1), (3.9)
and (3.10), it is easy to check that a1as - - - G(s—1yns1 = 0 for any ay, as, ..., a—1)m+1 € R.

Thus, we can see that R is a nilpotent ring with nilpotency index s < nd(R) < (s—1)n+1.

Let us consider some classes of graded rings, such that the condition "the neutral

component is nil" provides the nilpotency of the whole ring.

Example 3.2.18 Let R be a ring with a finite S-grading I" such that R, is nil of index
2. Suppose that char(R.) # 2. Given a,b € R., we have

0= (a+b)?=a’>+b>+ab+ba=ab+ba,
and hence, ab = —ba for any a,b € R.. Now, considering any a, b, c € R, it follows that

0 = (ab+ ¢)* = (ab)® + ¢ + abc + cab = abc + cab = abc + (ca)b

= abc — (ac)b = abc — a(cb) = abc — a(—bc) = 2abc |
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and so abc = 0, since char(R,) # 2. Therefore, (R.)> = 0. By Theorem 3.2.15, it follows
that R is a nilpotent ring with nd(R) < 3d, where d = |Supp(T’)].

Theorem 3.2.19 Let S be a left cancellative monoid and R a ring with a finite S-grading
. IfR. is mil, f-commutative and finitely generated, then R is a nilpotent ring. Moreover,
if {a1, ..., a,} is a generator set of R, and d = |Supp(L')|, then s < nd(R) < d((s—1)n+1),
where s = min{m € N : a = 0,i = 1,...,n} (s > 1). If R, = {0} (s = 1), then
1 <ndR) <d+1.

Proof: In fact, by Remark 3.2.17, it follows that R, is nilpotent with s < nd(R.) < r,
where r = (s — 1)n + 1, s and n are as in Remark 3.2.17. Thus, by Theorem 3.2.15, we
conclude that 2R is nilpotent with s < nd(R) < dr-.

If R, = {0}, then by Proposition 3.2.2, we have R = {0}. [

The following examples ensures that the assumptions of previous theorems are
necessary. The first three examples present graded rings or algebras, in which the neutral
component is not finitely generated. And the last example concerns the case R, is not

f-commutative.

Example 3.2.20 If R. can not be finitely generated, the previous theorem does not
hold. To see this, a counterexample is given below. Let R = Z|xy, 9, x3,...]/I be the
quotient ring of the polynomial ring over Z in the variables x1,x9,x3,... by its ideal
I ={a% x5, 23, ..., with the trivial grading (R. = R). We have that R is a commutative

ring which 1s nil but it s not nilpotent.

Example 3.2.21 (5. Remark (I), [33]) Let K be a field of characteristic p # 0. Let
A be the algebra over K with the generating elements x, ..., x, with the fundamental
relations xf = 0, z;x; = xjo; fori,5 = 1,2,...,k; and put A = ZZO:1 A, Then A s a
commutative algebra which is nil of bounded index, with the trivial grading for any left

cancellative monoid S, but A is not nilpotent.

Example 3.2.22 (Lemma 8(5.6), [38]) Let E be the infinite dimensional Grassmann
algebra over a field of characteristic p # 0 and let us consider E* = E — {1}, then E*
satisfies the identity xP = 0, i.e. E* is nil of degree p. We have that E* is a Zy-graded

ring, such that Eqy is a nil commutative algebra (ring), but E* is not nilpotent.
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92 3. Graded Rings with the Nil Neutral Component

Example 3.2.23 In [18] (text in Russian), Example 1 exhibits a construction of a nil
ring which is finitely generated but it is not nilpotent (see also [8] Ezercise 5, Section 6.3,
page 179, or [21], Chapter 8: The Golod-Shafarevitch Theorem). Then by Remark 3.2.14,
this ring can not be f-commutative for any semigroup & and map f. This ring with the
trivial grading also gives an example which shows the necessity of the condition "R, is

f-commutative” to be required in Theorem 3.2.19.

Corollary 3.2.24 Let S be a group and R be a ring with an S-grading I', not necessary
finite. Let H be a normal subgroup of S and T : R = (—Dges/H MR, be the S/H-grading
induced by T, i.e. Ry = @,y Rgn for any g€ G/H. Suppose T has the finite support of

order d. The following assumptions are true:
i) If H A Supp(T) = &, then R = {0},

i) If Re = @y R s f-commutative and nil (resp. nil of bounded index), then R is
nil (resp. nil of bounded indez).

iii) Re = Py Ri ts nilpotent iff R is nilpotent.

Proof: Considering R with its S/H-grading ' (induced by I'), it is sufficient to apply
Proposition 3.2.2, Theorem 3.2.14 and Theorem 3.2.15. The result follows. [

It is important to note that, in general, the previous corollary ensures that for a
graded ring with a support not necessarily finite we can obtain the same results as in the
first part of this chapter. In addition, if support of T" is finite, then d < |Supp(T)|.

Observe nevertheless that, in Corollary 3.2.24, R; = @,y Rp, and hence, the

initial claim must be true for the major part of ‘R.

3.3 Applications

This part of the 3rd chapter is important. We present here two considerable appli-
cations of the results of the previous section: one of them generalizes the Dubnov-Ivanov-
Nagata-Higman Theorem, and another one shows a relation between graded rings and

Kothe’s Problem.
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3.3.1 Graded Algebras and Dubnov-Ivanov-Nagata-Higman

Theorem

Let F be a field, S a left cancellative monoid, and R be an (associative) F-algebra
with a finite S-grading (grading of finite support).

Let us now introduce the Dubnov-Ivanov-Nagata-Higman Theorem. Under suit-
able conditions, it ensures the equivalence between nil algebras of bounded degree, and
nilpotent algebras. Besides that, an upper bound is given to the nilpotency index, de-
pending only on the nil index of the algebra. In 1953, Nagata proved that any nil algebra
of bounded degree over a field of characteristic zero is nilpotent. Afterwards, in 1956,
Higman generalized the result of Nagata to any field. Posteriorly, it was discovered that

this result was firstly published in [12], in 1943, by Dubnov and Ivanov.

Theorem 3.3.1 (Dubnov-Ivanov-Nagata-Higman, [12, 33, 22]) Let R be an asso-
ciative algebra over a field F. Assume char(F) = p. Suppose 2" = 0 in R. If p =0 or

n < p, then x1xo- - Ton_1 = 0 in K.

In [30], E. N. Kuzmin exhibited a lower bound for the nilpotency index of a nil

algebra of bounded index R over a field of characteristic zero. He showed that nd(R) >

n(n+1)
2

than that given by Higman in [22], the proof can be founded in [37].

, where n = nd,;(fR). Later, in [36], Razmyslov proposed a smaller estimate

Theorem 3.3.2 (Theorem 33.1, [37]) In any associative algebra over a field of char-

acteristic zero in which the identity y™ = 0 is valid, the identity r1xs - - - 1,2 = 0 s valid.

Finally, we deduce an immediate consequence from Theorem 3.2.15 and the pre-
vious theorem. Therefore, we have answered Problem 3.2.5 for S-graded algebras over a

field of characteristic zero, if R, is nil of bounded index.

Theorem 3.3.3 Let S be a left cancellative monoid and R an associative algebra over a
field F with an S-grading of finite support, char(F) = p. Suppose R, is a nil algebra of
bounded index s = nd,y(Re) > 1. If p =0 orp > s, then R is a nilpotent algebra. In
addition, if d = |Supp(L's)|, we have

i) if p> s, then nd(R) < d(2° — 1);
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94 3. Graded Rings with the Nil Neutral Component

o 25 —1, if s=2,3,4
it) if p =0, then nd(R) < dq where ¢ =
s, if s=5

Is s = nd(R.) = 1 then R is nilpotent for any field F, and nd(R) < d + 1.

Proof: The first part follows directly from Theorem 3.3.1 and from Theorem 3.2.15.
Already the items ¢) and i) follow from Theorem 3.3.2 and again from Theorem 3.3.1,
and also by 2" —1 <n? in Niff n = 1,2, 3,4.

The case s = 1 follows from Theorem 3.2.15 (or Proposition 3.2.2). |

The corollary below is an immediate consequence of Theorem 3.3.3.

Corollary 3.3.4 Let S be a left cancellative monoid and R an associative algebra over a
field F with an S-grading of finite support. If R is nil, char(F) # 2,3 and s € {2,3,4},

then x1xo -+ - Tges—1) = 0 1n 2.

Note that the upper bound for the nilpotency index obtained in Theorem 3.2.19 can
be smaller for the case of a little number n of generators of 9R, than the limitation given
by Theorem 3.3.3. Nevertheless, in Theorem 3.3.3, fR. is not necessarily f-commutative,
and the bound of the nilpotency degree does not depend on the number of generators of

R (inclusively PR, can be infinitely generated).

3.3.2 Graded Rings and Ko6the’s Problem

As in the previous sections, here, all the rings are associative, not necessarily with
unity.

In [29], K&the conjectured that if a ring YR has no nonzero nil ideals, then 2R has no
nonzero one-sided nil ideals. The question if this conjecture is true is known as Kothe’s
Problem, and is still unsolved in the general case. For some equivalences of this problem,
see [14], [43], [42]. In this section, we present a relation between graded rings and Kéthe’s
Problem. Firstly, below, we exhibit some equivalences of Kéthe’s Problem, which are the

basic tools for our study.

Theorem 3.3.5 (Some equivalences of K6the Problem, [43]) The following assump-

tions are equivalent:
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i) If a ring has no nonzero nil ideals, then it has no nonzero one-sided ideals (Kéthe’s

conjecture);
it) The sum of two right nil ideals in any ring is nil;
i11) For every nil ring R, the ring of 2 x 2 matrices over R is nil;
iv) For every nil ring R, the ring of n x n matrices over R is nil.

Various other equivalences of Kothe’s Problem have been exhibited since 1930.
Also the problem was solved positively in some classes of rings, but no answer in the

general case. Now we present one more class of rings which issues a positive solution

Ko6the’s Problem.
Corollary 3.3.6 The Kdthe’s Problem has a positive solution for any f-commutative ring.

Proof: Let R be a nil f-commutative ring. Let us show that Ms(9R) is nil. We have
R 0 0 R

MQ(SR) = MO ® M17 with MO = s and M1 = s defines the
0 MR R 0

elementary Z,-grading on M;(fR). Since

n

a 0 a® 0
0 b 0 b

for any a, b € R and n € N, we have that M is nil. Suppose that f : RxR — &, where G is

. o
a semigroup acting on the left of SR. Then define a semigroup & = o, eSS
0
with the usual product of diagonal of matrices. Observe that & acts on 9, from the left
naturally:
a 0 a 0 aa 0
0 8)\o b 0 b/

for any alpha, B € &, and a,b € R. Consider the map f of My x M, to M5 (R) defined by

—
I

0b) \o d 0 f(bd)

Observe that M is f-commutative, and hence, by Theorem 3.2.14, it follows that M, (%R)
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96 3. Graded Rings with the Nil Neutral Component

is a nil ring. By Theorem 3.3.5, we conclude that for R the solution of Kothe’s Problem

is positive, and thus, the result follows. [ |

Let 2 be an associative algebra over a field of characteristic zero graded by a left
cancellative monoid S. If 2 is nil of bounded index, then, by Theorem 3.3.3, and similarly
to the proof of Corollary 3.3.6, it follows that the Kothe’s Problem has a positive solution
for 2A.

Now, suppose that Kothe’s Problem has a negative solution. By Theorem 3.3.5, it
follows that the 2 x 2 matrices ring M5(fR) is not a nil ring for some nil ring R. Considering
the elementary Zs-grading on 20 = M;(R), we have, that 2y =~ R x R is also nil. Thus,
we can conclude that 2l is a counterexample to Problem 3.2.5.

More general, let R be a ring and M,,(2R) be the ring of all n x n matrices over fR.
For each A € Z,, consider the subgroups of (R, +) given by

M, ={E;;(a) e M,,(R) :aeR,j —i=\}.

We have that ' : M, (R) = @,, My defines a Z,-grading on M, (R). This grading is
called elementary Z,-grading on M, (R). Notice that

Mﬁ = {EH(CL1> + E22(a2) + - Enn<an) D a1,0a9,...,0an € 9%} , (312)

and hence, Mj is nil iff R is nil.

In what follows, we show a relation between graded rings and K&éthe’s Problem.

Theorem 3.3.7 A positive answer to Problem 3.2.5 implies that the Kothe’s Problem
has a positive solution. In particular, being S = Z,, a positive solution of Problem 3.2.5

for S-graded rings implies Kithe’s conjecture.

Proof: Let us apply the item v) of Theorem 3.3.5 for the S-graded matrix ring 2 = M, (R)
over a ring R with the elementary S-grading defined above. The positive answer of

Problem 3.2.5 for the ring 2l gives the positive solution of Kéthe’s problem for a nil ring
R. [ |

The previous theorem shows a connection between graded rings and Kéthe’s Prob-

lem. We present below a question still unanswered in the general case.
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Problem 3.3.8 Are Kothe’s Problem and Problem 3.2.5 equivalent?
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CHAPTER 4

GRADED ALGEBRAS WITH THE
CENTRAL NEUTRAL COMPONENT

In this chapter, we study the variety of G-graded algebras over an algebraically
closed field of characteristic zero defined by G-graded polynomial identities [2(®), 3(9)] for
all g € G, where G is an abelian finite group.

On other words, here we exhibit results concerning to the variety ¢ of all G-
graded algebras whose neutral component is central, i.e. ¢ := var® ({[x(e), y9]:ge G})
We present some properties of algebras which belong to the variety 20¢, and in suitable
conditions, we give a description of U, in the language of a carrier.

The first section also contains results concerning associative rings graded by a

two-sided cancellative monoid with the central neutral component.

4.1 Graded rings with the central neutral components

In this section, we present some general results involving associative rings graded
by a (two-sided) cancellative monoid, i.e. a monoid which satisfies gh = th iff g = ¢, and
Wg =ntiff ¢ =t forany g,q’, h,h',t,t' €S, whose neutral component is central. Here,
let us denote by S a cancellative monoid, fR is an associative ring with an S-grading T

Let us assume also that I' has a finite support, namely |Supp(I')| = d < 0.
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100 4. Graded Algebras with the Central Neutral Component

Theorem 4.1.1 Let S be a cancellative monoid, and R an associative ring with a finite
S-grading T". If |Supp(I")| = d and R. is central in R, then [z1,...,2411] = 0 in R for
de{l1,2,3}.

Proof: Firstly, by Proposition 3.2.2, if R, = {0}, then |R?*! = {0}. In particular,
[21,...,2441] = 0 in R in this case.

Assume that R, # {0}. For d = 1, we have R = R., and hence, if R, < Z(R),
then R is commutative, i.e. [z1, 23] =0 in R.

Suppose d = 2 and put Supp(I') = {e, g}, where g # e, then, either g*> = ¢ or
g* ¢ Supp(I'), because S is cancellative. Anyway, (R,)? € R.. Given a,b,c € R, we can
write a = a. + ag, b = b. + b,. Since R, < Z(R), it follows that

[a,b,c|] = [ac + ag,be + by, c] = [ag, by, c| = [[ag,by],c] = 0.

Therefore, [a,b,c] = 0 for any a,b,c € R.

Now, assume d = 3, and put Supp(I') = {e, g, h}. Consider the elements gh, hg € S.
Observe that either hg = gh = e or hg, gh ¢ Supp(I'), since S is cancellative. In fact, since
S is cancellative, we have gh, hg ¢ {h, g}. Hence, if hg € Supp(I"), then hg = e, and hence,
hgh = h, and by cancellation law, it follows that gh = e. Similarly, gh € Supp(T") implies
gh = hg = e. Anyway, we have R Ry, RpR, < R..

Given a, b, c € R, we can write a = a.+ay+ap, b = b +by+0bp,, and ¢ = c. + ¢4+ cp.

Hence, since R, < Z(R) and KRRy, KR, < R, we have that

[a,b,c] = [ac + ag + an, be + by + by, c] = [ag + an, by + by, c]

= [ag, by, c] + [an, by, c] + [an, by, c| + [ag, by, c]

= [ag, by, c] + [an, b, c] = [ag, by, ce + ¢4 + cn] + [an, b, ce + ¢4 + cp)
= [ag, by, cg + cp] + [an, by, cy + ca)

=[

= (

Qg, bg7cg] [ag, bmch] + [ahvbhvcg] + [an, bn, cn]

[ag’ bgv Cg] [aih bh7 Ch]) + ([agv bg> Ch] + [alw bh? Cg])-
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Notice that

[ag, by, cn] + [an, br, cg] = [aghy — byayg, cn] + [anby — anbn, c4]
= ag(bgch) - (Chag)bg - bg(agch) + (Chbg)ag + ah(bhcg) - (Cgah)bh - ah(bhcg) + (Cgah)bh
= (bgch)ag - (bgch>ag - (agch)bg + a9<chbg) + (bhcg)ah - bh(cgah) - (bhcg>ah + bh<cgah)

=0.

Hence, [a, b, c] = [ag, by, cg] + [an, by, cn]. Observe that g* # g and h? # h, by cancellation
law. If R,R, < R, (resp. RpRy, S Re), i.e. ¢°> = e or g ¢ Supp(T) (resp. h? = e or
h* ¢ Supp(T")), then [a,b,c] = [an, by, cn] (vesp. [a,b,c] = [ay, by, c,]) for any a,b,c € R.
Now, if R,R, S Ry, (resp. KRRy, S R,), i.e. g> = hor g> ¢ Supp(') (resp. h* = g
or h? ¢ Supp(T')), then g> = hg (resp. h® = gh) which is equal to e or does not belong
to Supp(I'), since gh,hg ¢ {h,g}. Consequently, we deduce that either (R,)* < R. or
(R,)? < R, and either (R,)? < R, or (R,)? S Re, and thus, [a,, by, ¢, ], [an, by, cn] € Re
in any case. Therefore, [a,b,c] € R, for a,b,c¢ € R, and thus, [a,b,c,d] = 0 for any
a,b,c,d € R. The result follows. [ |

By Theorem 4.1.1, if S = Zy (resp. S = Zj3), then any S-graded ring R with
the central neutral component satisfies the polynomial identity [x7,22, 23] = 0 (resp.
[21, 29, T3, 4] = 0).

We exhibit below two counterexamples to the previous theorem for the case of the
support of R with more than 3 elements. Anyway, we show that Theorem 4.1.1 does not

work when d > 4.

Example 4.1.2 Let G = Zy x Zo, F be an arbitrary field, and My(F) the algebra of
matrices of order 2 over F. Consider the G-grading on My(F) given by My(F) = M0 @
M(U,l) S M(l,O) @ M(1,1), where

1 1 0
Mo,0) = spang , M1y = spang )

0 1 0 —1

0 1 0 —1
Mo,1) = spang ; M1,0) = spang

10 0

Notice that My(F) satisfies the G-graded polynomial identities [z, y9)] for any g € G,
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where e = (0,0) is the neutral element of G, but [x1,za,...,x,] is not a (ordinary) poly-

nomial identity of My(F), for all n € N, since

(B2, Eog, ..., By = Eng #0
—_——

(n—1)—times

for all n € N, where E;; is an elementary matriz.

Example 4.1.3 Consider 2 ¢ Quaternion algebra over a field F, char # 2, i.e. A =
{al + bi+cj+dk: a,b,c,d e F} = F(i,j,k), where i = j> = k¥ = —1, and ij = —ji = k,
and 1 is the unity. We have that A has a natural Zy x Zs-grading. In fact, considering
A0 = spanp{l}, A1) = spang{i}, A1,0) = spanp{j} and A(11) = spangp{k}, we have

2 = A0,0) D A0,1) D A1,0) D A1,y -

Notice that A0 ts central i A, but A is not a nilpotent algebra, since R is a divi-

sion algebra, and it is not a Lie nilpotent algebra, i.e. A does not satisfy the identity
[21,To,...,2,] for alln €N, since [i, j,j,...,j | € {\, \k: Ae {=2n~1 2n=11}
-
(n—1)—times
From the example above, we can build, for all d > 4, an S-graded ring with the
central neutral component and the support of grading of order d such that the polynomial
[21,...,24:1] # 0 in 2A. In fact, consider the a Quaternion algebra 2[ as in the previous
example. Now, suppose B = Fz is a nilpotent algebra, such that x # 0, and 22 = 0.
Let G = Zy X Zg x Zs. Consider now the algebra A; = 24 x B (the direct product
of the algebras 2 and 9B), and the G-grading I'; on 244 given by (1)(0,00) = spang{1},
(A1) (0,1,0) = spang{i}, (A1),00) = spang{j}, (A1),1,0) = spangik}, and (As)e1) = B. We
have that I" has the support of order 5, and (2l;). is central in ;. Since 2 S 2y, it follows
that [zq,...,2,] # 0 in 2 for all n € N. In particular, [x1,...,26] % 0 in ;. By this
process, we can build a ring 2f,, which is not Lie nilpotent, such that 21, is (Zy)""?-graded
with support of order n+ 4, and (2l,,). is central in 2,. It is sufficient to consider, for any

n € N, the algebra 2, = A x B = A x B x -+ x B with (Zy)" 2-grading T',, induced
-—
n—times

by gradings of 2 and B. Since 2 S 2., it follows that 2, is not Lie nilpotent. Observe

that (2(,,). is central in 2,,, and |Supp(T',,)| = 4 + n. Furthermore, our affirmation follows.
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4.2. The Variety 3° 103

Corollary 4.1.4 Let S be a group and R a ring with an S-grading I'. Let P be a normal
subgroup of S, and T : R = (—Bges/P R, the S/P-grading induced by T'. Suppose T has a
finite support of order d. If Rz = @pep R, < Z(R) andd € {1,2,3}, then [z1,...,2441] =
0 n fR.

Proof: Considering R with its induced S/P-grading T', by Theorem 4.1.1, it follows that
[xl,...,de]EOin R. [ |

It is important to note that I' in the previous corollary is not necessarily a finite

S-grading.

4.2 The Variety 3¢

Let G be a finite group, I a field, and ¢ the variety of all G-graded associative [F-
algebras with the central neutral component. Let 2 be a G-graded algebra which belongs
to UC¢. Hence, 2, is central in 2A, where e is the neutral element of G. In particular,
2(, is commutative, and so a Pl-algebra. By Theorem 1.4.11 (or Theorem 1.4.12), we
conclude that 2 is a PI-algebra. From this, ¢ is a G-graded variety of PI-algebras, and
if G is a finite abelian group, ' an algebraically closed field of characteristic zero, then
we can apply Theorems 1.2.20 and 1.4.13. We have that there exists a finite dimensional
G x Zs-graded algebra 2 such that

0¢ = varg(EC(A)) := varg(TS(ES(A))) ,
where 2l = B @ J with
B = M, (F[Hy]) x -+ x My, (F*[Hg]), and J=J(A),

where H; I G x Zy, 0; € Z*(H;,F*), M,,(F°[H;]) is a subalgebra with a canonical ele-
mentary G x Zy-grading defined by some n;-tuple (g1, ..., gn,) € (G x Zy)™. Here, B is a
maximal semisimple G x Zy-graded subalgebra of 2, and J = J(2) is the Jacobson radical
of 2, which is a finite dimensional graded ideal.

Notice that T¢(E¢(A)) < T¢(E®(J)), since J < 2 is G x Zy-graded, and in Chapter
3, we exhibit some results which ensure that 2, # J.. Particularly, by Theorem 3.2.15, 2
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104 4. Graded Algebras with the Central Neutral Component

is nilpotent when 2, = J., and consequently, E®(2l) is nilpotent, but 2 is not a nilpotent
variety, because FG belongs to U°¢. Therefore, we conclude that B, # {0}, namely i € B,
where 1 is the unity of B (see Sections 1.1 and 1.2 in Chapter 1).

In the next sections, we will study the variety U, as well as some subvarieties of

DR

4.3 On the 2 when 2, is central

In this section, let us consider a finite dimensional G-graded F-algebra 2, whose
neutral component is central, for a finite abelian group G. This means that 2 is a G-
graded algebra which belongs to the variety 2¢. We assume also that the base field F is
algebraically closed of characteristic zero. In the results below, we use the following reason:
by Theorem 1.2.20, there exist ky,...,k, € N, Hy,...,H, <G, 01 € Z*(H;,F*),...,0, €
Z?(H,,F*) such that

A g (Mg (F[H1]) x - x My, (F7[H,]) @,

where J = J(2) is the Jacobson radical of 2(. By Lemma 1.5.6 and Theorem 1.5.7, we can
write

A =cpr Ay x -+ x AU, x Joo (4.1)

where 2, = B, @ J,, J, = i,.Ji, and i, is the unity of B,, where B, = M, (F°"[H,]). By
Theorem 1.5.12, we can assume that B, #¢ B, for all i # j.

Fix r € {1,...,p}. Since (B,). > A and A, = Z(A), it follows that k, = 1
for all » = 1,...,p. In fact, since E;n. € (*8,)., we have that 0 = [Eyne, Euine] =
o(e,e)(FEy; — E1;E11)ne, which is only possible when ¢ = 1. Hence, A, = Fo"[H,| ® J, for
all 7 = 1,...,p. Therefore, let us study the unitary algebras A = F°[H]| @ J.

Observe that by Theorem 1.2.13 and Examplel.3.2, the immersion F7[H,| x5
[F?i[H;] can be expressed in terms of the partial order "<", ie. (H;, [o;]) < (Hj,[o;]).

More precisely, we have the next lemma.

Lemma 4.3.1 (Immersion Lemma) Let F be an algebraically closed field, G a group,
and Hy, Hy two finite abelian subgroups of G. Consider two 2-cocycles o € Z*(Hy,F*)
and o9 € Z*(Hq,F*), and two twisted group algebras B, = FoL[H,| and By = Fo2[H,)].
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4.3. On the 2 when %[, is central 105

Then %1 ‘E> %2 Zﬁ (Hl, [0'1]) < (HQ, [O‘Q]).

Proof: Firstly, suppose that H; < Hy and [o1]| = [02]n,. Hence, there exists some 6 €
B?(H,,F*) such that (09)y, = 0o;. By Theorem 1.2.13, it is immediate that B, =~ F°[H,],
where & is the 2-cocycle of Z?(H,,F*) defined by 5(g,h) = 0(g, h)o1(g,h) = o2(g, h) for
any g,h e Hy.

Observe that F7[H,| is a graded subspace of Fo2[ Hs], since H; < Ho, and by defi-
nition of twisted group algebra. Let us now show that Fo[H,] is an H,-graded subalgebra
of F°2[H,|. In fact, let us denote by "«" the multiplication of F?2[H,] and by "*" the
multiplication of F7[H;]. Given ny,n, € F7[H;], it follows that

Nh* Mg = (R, g)Nhg = (001)(h, g)1ing = (R, g)o1(h, 9)ng = 02(h, §)1hg = T * g -

This shows that "+" and "+" are equal in F72[H,], and so we conclude that F7[H;] is an
Hy-graded subalgebra of F72[ Hy]. Hence, we have that 2B, S By, because By ~¢ F7[H,].

On other hand, suppose that 9, SE %, Hence, by definition of nS, (G-immersion),
there exists a graded homomorphism ¢ of B; to B, which is injective. Notice that
Y(ny) € (Bg), is different to zero for any g € H;, because v is injective. Hence,
Hy; = Supp(I'y,) < Supp(I's,) = Hs. In particular, H; < H,. Since B; =g im(¢)),
by Theorem 1.2.13, there exits 6 € Z?(H;, F*) such that im(¢)) = F°[H,], and [o,] = [5].
Now, observe that (o9) g, € Z*(Hy,F*), and Fo2[H,] is a graded subalgebra of B5. Hence,
F?[H,] and F’2[H,] are graded subalgebras of 9B,. For any g, h € H;, we have

6 (g, R)ngn = ngnn = o2(g, k)ngn (in Bo).

Thus, 6 = (02)g,, that is, [6] = [o2]n,. From this, we conclude that [o1] = [o2]g,-

Therefore, we conclude that (Hy,[01]) < (Ha, [02]). The result follows. [ ]

In the proof of Lemma 4.3.1, we ensures that Fo[H;] and F°2[H,] are graded
subalgebras of F72[Hy]. Observe that Corollary 2.2.7 ensures that the restriction [o2]n,
is unique, and hence, we must have [6] = [02]py, in H?(Hy,F*). This is another proof for
[on,] = [02]n, in Lemma 4.3.1.

Observe that we can rewrite Theorem 1.5.12, for the case ky = --- =k, = 1.

Recall that if H, H are subgroups of a group G, and o € Z?(H,F*) and ¢ €
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106 4. Graded Algebras with the Central Neutral Component

Z*(H,F*), then (H, [0]) = (H,[5]) iff H = H and [0] = [5] (see Example 1.3.2).

Lemma 4.3.2 Let G be a finite abelian group, F an algebraically closed field with char(F) =
0, and A =2Ay x --- x A, x Joo a finite dimensional G-graded algebra, where A; = B, D J;
are finite dimensional G-graded unitary algebras, where B; = F7[H;| with H; < G,
o; € Z2(H;, F*), and J; = J(2;) is the Jacobson radical of ;. If A € BC, then

mEGPIQLlX"'Xéqu]Oo, (42)

where ﬁlj = i%j ® ]j are finite dimensional G-graded unitary algebras, with ‘Bj ~; ‘B,

for some 1 € {1,...,p}, and (H;,[0:]) # (H;,[0;]) for all i # j. Moreover, A = Ay x
- x A, x Joo belongs to V€, and nd(J(2A,)) < nd(J(A)) < |G|nd(J(A,)), where J(A) =

Jix .- x]qxjoo.

Proof: The first part is immediate from Corollary 1.5.9 and Lemma 4.3.1, similarly to

the proof of Theorem 1.5.12. Since A =cpr 20, we have that 2 € YC. Tt is clear that

Jyx o x Jq X ]00 is the major nilpotent ideal of Q~l, since j[)() is a finite dimensional $G-

graded nilpotent algebra (as in Theorem 1.5.12). Hence 2l is also finite dimensional. The

inequality nd(J(2l,)) < nd(J()) < |G|nd(J(2L,)) follows of Theorem 3.2.15. |

Let A = B @ J be an algebra of the list {2l,...,2l,} in (4.2). We have that 2
satisfies all the claims of Lemma 4.3.2, i.e. B = F°[H]|, H < G, 0 € Z*(H,F*), J is a finite
dimensional graded nilpotent ideal of 2. Now, by Lemma 1.5.2, we have that J = BN
for some G-graded vector space N < J, where N = spang{dy,...,d,} with d;B = Bd;,
where d;’s are homogeneous elements. Moreover, if § = {eta;, : h € H} is the canonical
homogeneous basis of B, then d;b = 7;(b)bd;for any b € 3, for some v;(b) € F (see Remark
1.3.21).

Now, given a subgroup H of the a group G x Zs,, by Theorem 1.2.13, we have that
EC(F[H]) ~¢ EC(F'[H]) for any [o] = [y] in H?*(H,F*). Hence, we deduce that the
GT-ideal of graded identities of ES(F’[H]) does not depend on a representative element
of [o] € H?>(H,F*). If F is an algebraically closed field, and G is a finite abelian group,
then the values of ¢ can be chosen in /1 := {\ € F* : Nl® = 1}. In this sense, we have

the following result.
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4.3. On the 2 when %[, is central 107

Lemma 4.3.3 Let F be an algebraically closed field, G a finite abelian group, and B =
Fo[H] a G-graded simple finite dimensional algebra. If H is a subgroup of G such that
H < H, then there exists a é—gmded simple finite dimensional algebra B such B & %,
and TG(B) < TC(B), B = F[H] for some & € Z2(H,F*) which extends o. Moreover, if
char(F) = 0 and G = G x Z,, then var®(ES(B)) < var®(ES(B)).

Proof: By Corollary 2.2.7, given o € Z2(H,F*), there is 6 € Z2(H,F*) such that (g, h) =
61(g,h) = (g, h) for any g,h € H. Consider B = F°[H]. By Lemma 4.3.1, it follows
that B S B, Consequently, T¢(B) < T¢(B).

Therefore, assuming that G = G x Zy, by Lemma 1.5.11, we can conclude that

var®(ES(2A)) < var®(ES(2)). ]

Remark 4.3.4 A good application of the previous lemma is given when H < G x {0},
i.e. H >~ n(H) x {0}, where "t" is the projection map 7 : G x Zy — G defined by
(g, \) = g for any g € G and )\ € Zy. Assume B = F7[H]. Naturally, we have that H is
a subgroup of G x {0} and, by Lemma 4.5.3, there is 6 € Z*(G x {0}, F*) such that

var®(E®(B)) < var®(ES(F°[G x {0}])) ,

where 6y = o. Notice that ES(F°[G x {0}]) =cp; F°[G], where & € Z*(G,F*) defined by
F(hy, hy) = 6((h1,0), (ha,0)) for any hy, ho € G. Therefore, we deduce that var®(E¢(B))
var®(F[G]) for some v € Z2(G,F*).

Remark 4.3.5 In the whole work, let us assume that "m" is always the projection map

of G X Zsy on G.

Lemma 4.3.6 Let G be a group, F a algebraically closed field of characteristic zero,2l =
BDJ a C—gmded finite dimensional unitary algebra, where J = J() is the Jacobson
radical of A, and B = F°[H| with H < G and o € Z2(H,F*). If H is finite abelian, then
Jg can be generated as a graded B-bimodule by a graded nilpotent subalgebra N < J, such
that Bd = dB for any d € N, where Jy = @Perr In- In addition, if A, is central in A,
then Ji = BN ~¢ B¢ N as graded $B-bimodules, and as graded algebras.

Proof: Firstly, since 2l is unitary, as observed in (1.13), in Section 1.5, Chapter 1, we

have that J = iJi, where i is the unity of 2 (which is also the unity of B).
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108 4. Graded Algebras with the Central Neutral Component

Consider %Ay = B @ Jy, where Jg = (—Bge g Jdn. Since H is a subgroup of C,
it is easy to see that 2y and Jgy are graded subalgebras of 1. Notice that Jg is the
greatest nilpotent ideal of Ay, and so Jy = J(%y). By Lemma 1.5.2, we can write
Jg = BN for some graded vector space N = spang{dy,...,d,} < J, where dy,...,d, € Jg
are homogeneous elements such that bd; = 7;(h)d;b # 0 for any homogeneous element
be By, he H andi=1,...,r, and some 7;(b) € F; and Bd; is an irreducible G-graded
B-bimodule. We have that the set {n.dy, ...,n.d.} generate Jy as a G—graded B-bimodule
(or as H-graded B-bimodule, more precisely). Put h; = deg(d;) for alli € {1,...,r}. Since
Supp(T'y,,) € H, it follows that hq,...,h, € H, and hence,

ned; = ((hi, by ™) o, —1)ds = o(hay hi ™) " o, (ny,~1 i)

foralli e {1,...,r}. Foranyie {1,...,r}, write d; == np,—1di, and put N = spanF{Jl, e ,cir}.
It is obvious that bd; # 0 and d;b # 0 for any nonzero b € B, and i = 1,...,r. Since
d; € J,, it follows that N < J,. For any g € H (because H is abelian), and i € {1,...,7},

by Proposition 1.2.6 and Corollary 1.3.23, we have that

Nodi = 1g(M,-1ds) = (g, hy Yngn,—1ds = (g, by )y, ~14ds
=o(g,hyo(h; ™ g) " (. -1mg)ds = (g, hy o (b, g) -1 (nyds)
= 71(9)0-(97 hfl)a(hfly9)71(77hi—1dz')779 = Vl(g)o-(g: hiil)o-(hiilvg>716?ing )

for some ;(g) € F. Hence, we obtain that Bd = dB for any d € N. We have still that N

is subalgebra of J.. In fact, for all 4,j € {1,...,r}, we have

dyd; = (my,~1d;) (p,—1di) = 73 (R ") (1= (didi) = 73( Do (b b (g noy-1) (dyds) -

Since deg(d;d;) = deg(d;)deg(d;) = hjh; € H, it follows that d;d; € BN = @, _, Bdy,
and hence, there exist A\j,..., A\, € F, and ¢1,...,9, € H such that d;d; = >}, _; M0y, di-
Hence, by Corollary 1.3.23

djd; = i (hi "o (g, hi) (1) (dsdi) = 5 (hi Do (bt B (1) (Z Ak%ﬂk)

k=1

= fyj(h hj 17h1 Z /\kU h h 79’6) ( 19kdk) :
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Observe that if Ay # 0 for some £ =1,...,r, then

e = deg(d;d;) = deg(nn,n,)-1g,d) = ((hshi) " gi,)deg(dy) .

and so deg(dy)™" = ((hjh;)~'gr), that is, nun)-1gdr = dr. We deduce that d;d; =
Do Xkdk € N, M\ € T, for all 1,7 =1,...,7. We conclude that N is a graded subalgebra
of J. such that Bd = dB for any d € N. Therefore, it follows that N is a graded nilpotent
algebra which generates Jy as a graded B-bimodule.

Suppose that 2. is central in 2. Hence, we have that bd = db for any b € B and
deN (Ne c ). It is clear that Bd, = Bdy, for all k = 1,...,r, and it is an irreducible
C—graded B-bimodule, and Jy = BN = Dy Bd,.. From this, it is not difficult to see
that the linear transformation 1 of Jg to B ®p N that extends the map ngczk = 1y @ czk,
for any g € H and ¢ = 1,...,r, is a homogeneous isomorphism of graded B-bimodules,

and of graded algebras. [ |

By conditions of the previous lemma, we have that H is a finite abelian subgroup
of G. Observe again that Jy is a nilpotent graded subalgebra of J and 2.

Another consequence of the above lemma is that if 2A. is central in %A, then Jy
can be generated as a graded *B-bimodule by a graded nilpotent algebra N < J. which
is central in 2A, where Jy = @, Jn. Consequently, J can be generated as a G-graded
B-bimodule by a graded vector space N such that Ny = N = Ne, and hence, Ny is a
graded nilpotent subalgebra of 2 which is central in (. To prove these facts, it is enough

to apply Lemma 1.5.2 for J, and to proceed as in the proof of Lemma 4.3.6.

Remark 4.3.7 Let 2 = B ® J be a finite dimensional G-graded unitary algebra, with
B = FI[H]| and J = J(A). Suppose G is a finite abelian group, and F is an algebraically
closed field with char(F) = 0. Then A is GPI-equivalent to BN* @ Bd, @ - D Bd,, for
some nilpotent graded algebra N < Je, and homogeneous elements dy, . ..,ds € J such that
d;B = Bd; # 0 for any deg(d;) ¢ H. Really, we have that A =BDJ =B DIy ® (Bd,
- @ Bds), where d; € J, Bd; = d;B, and deg(d;) ¢ H. By Lemma 4.3.6, we have that
BB Iy = B@BN = %H#, where H# = F@® N is the nilpotent subalgebra N < J. with
the adjoint unity.

Theorem 4.3.8 Let F be an algebraically closed field of characteristic zero, G a finite
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110 4. Graded Algebras with the Central Neutral Component

abelian group, H a subgroup of G, o € Z*(H,F*), and 2l = F°[H|®J a finite dimensional

G-graded unitary F-algebra. Suppose that Supp(T'y) = H. If 2. is central in 2, then
A =GPJ F° [H] .

Moreover, 2 belongs to var®(F7[G]) for some v € Z*(G,F*) which extends o.

Proof: Firstly, note that Jy = J. Put B8 = F?[H]. It follows from Lemma 4.3.6 that
A =B @J with J = BN ~: B R N for some nilpotent graded algebra N < J. such that
bd = db for any be B and d € N. We can conclude that N is a commutative algebra, and
N c Z(2). Write N = spang{dy, ..., d,} with homogeneous nonzero d; € Z(2).

Now, since B = F’[H] is a G-graded subalgebra of 2, it follows that T¢(2) <
T¢(B). Conversely, take a graded multilinear polynomial f ¢ T¢(2(). Since f is multilin-
ear, we can take homogeneous elements ay, ..., a, € B U J such that f(a,...,a,) #0. If
a; € B, it follows that f ¢ T¢(B), and the result follows. Suppose that a; € J for some
je{l,...,n}. Foreachi=1... n, write a; = b;c; where ¢; = 1y for a; € B, and ¢; € N

if a; € J. From this, since E= A, = Z(2A), we have for any «a € S, that

Aa(1) "+ ) = (ba()Ca()) (Ba@)Ca@) -+ (Bam)Catn) = (Ba)bar2) "+~ ba@m)crc2 -~ Cn,

and consequently, 0 # f(a1,...,a,) = f(b1,by,...,b,)cica- - c,. Therefore, f ¢ T¢(B),
and so T¢(B) = T¢(A).

To finish the proof, observe that, by Lemma 4.3.3, there exists v € Z*(G, F*) which
extends o such that B < FY[G], and so var®(B) < var®(F?[G]). Consequently, we have

2 € var®(A) = var®(B) < var®(F[G]),

since A =gp; B (the first part of this proof). [ |

Observe that if H = G in Theorem 4.3.8, then Supp(I'y) = H, and hence, Jg = J.

Hence, the corollary below is immediate.

Corollary 4.3.9 Let F be an algebraically closed field of characteristic zero, G a finite
abelian group, o € Z*(G,F*), and 2 = F°[G] @ J a finite dimensional G-graded unitary
F-algebra. If A, is central in A, then A =gp; F7[G].
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4.3.1 Finitely generated graded algebras of the variety 2°¢

The next theorems are obvious consequences of the Lemmas of Section 4.3 of this
chapter. Let us denote by ¢ the G-graded variety of G-graded algebras with the central

neutral component.

Theorem 4.3.10 Let G be a finite group, and F a field. Let N be a G-graded F-algebra
(not necessarily finitely generated) which belongs to the variety GC. If N, is nil (resp. nil
of bounded indez), then N is nil (resp. nil of bounded index). If N, is finitely generated
and nil, then N is nilpotent. In particular, in characteristic zero, if N, is nil of bounded

indez, then N is nilpotent. Moreover, if N, is nilpotent, then N is nilpotent with nd(N) <
|G|nd(N.).

Proof: The theorem is immediate consequence of the Theorems 3.2.14, 3.2.15 and 3.2.19,
and of the fact that N, is commutative is N € €. Observe also |Supp(I'y)| < |G|, and
Supp(I'n)[ + 1 < |G] if e ¢ Supp(I'y). u

Example 4.3.11 Let F be a field, and G a group. Consider Ny = Flzy,x9,..., 2% :
iy Ty~ =0,V1 < iy <ip < -+ < iy < k), the free commutative nilpotent k-generated
F-algebm. We have that N, with its trivial G-grading belongs to B¢, and nd(N) = s. Thus,
B contains a nilpotent algebra of index s for all s € N, i.e. in general, the nilpotency

index of algebras in B¢ can not be limited.

Theorem 4.3.12 Let G be a finite abelian group, F an algebraically closed field of char-
acteristic zero, and A a finitely generated G-graded algebra. If A € BVC, then

QlEGPIQHX'“Xéqu]ooy

such that for any j = 1,....q, A; = FO[H;]®J; is a finite dimensional G-graded alge-
bra, that satisfies all the claims of Lemma 4.3.2, H; < G, o; € Z*(H;,F*), (H;,[0i]) #
(Hj,[0}]) for alli # j, i.e. Hy # Hj or [0:] # [0;] wheni # j. Besides that, J;, Joo are G-
graded nilpotent finite dimensional algebras which belong to BC, and nd(J;) < nd((J;).)|G|,
and nd(Joo) < nd((Joo)c)[G|-

Proof: The statement follows of Theorem 1.4.9 (or Remark 1.4.10, Lemma 4.3.2, and
Theorem 4.3.10. [}
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Definition 4.3.13 Let G be a group, and A and A two G-graded PI-algebras. We say
that A satisfies asymptotically all the G-graded identities of A if there exists some n € N
such that A satisfies all the G-graded identities of A of degree m = n. We write in this

case

TORA) = TE) .

Theorem 4.3.14 Let G be a finite abelian group, F an algebraically closed field of char-
acteristic zero, and A a finitely generated G-graded algebra. If A € UC, there exists a

finite dimensional G-graded algebra

Cea= X X (FH]®Imp)) | (4.3)

H<G \ [o]eH2(H F*)

where each Jp (o)) is a finite dimensional G-graded nilpotent algebra (J(p ) is the Jacob-

son radical of (g o)) = F[H]® J(n[07)), satisfying
T¢(Con) So TO() .

Moreover, if 2 is unitary, then T¢(Cgy) S TC(A).

Proof: Fix any finitely generated G-graded algebra 2, such that 2 € 2¢. Observe that
TY(2A) is the GT-ideal of graded identities of a finitely generated PI-algebra, since 2, is
central in 2, and hence, 2l is commutative, and so, by Theorem 1.4.12, 2 is a P[-algebra.
By Theorems 1.4.9 and 1.2.20, and Lemma 4.3.2, there exist finite dimensional G-graded
algebras 2,’s such that
A=cpr Ay x - - xéqujoo,

where A; = B, @ J;, with B, = F% [H,], for some subgroup H; of G and o; € Z*(H;, F*),
where (H;,[0;]) # (Hj,[o;]) for all i # j.

Now, consider Cg = X X (F7[H]) |. Observe that Cc € UC. By Ab-

H<G \ [o]eH2(H,F*)
sorption Lemma (Corollary 1.5.9), for any H < G, and [o] € H?(H,F*), there exist finite

dimensional G-graded nilpotent algebras J(g,[,])’s satisfying

q ~
<>< Qlj) x Joo X Ce =cpr Coa % Joo »
j=1
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4.3. On the 2 when %[, is central 113

where Cg g is defined in (4.3), and joo is some nilpotent G-graded algebra which belongs
to U, Consequently, T¢(Cgq X joo) < T¢(2l). Since nd(jog) < o0, and T¢(Cgy x joo) =
T¢(Coa) N TG(jOO), it follows that any multilinear polynomial identity f € T¢(Cgq) of
degree m > nd(joo) belongs to TG(jOO). Therefore, we conclude that T¢(Cgg) So TC(A).

Notice that Cgy x joo e UC (since Cg and 2A belong to YC), hence, we also have
that Cgg € UC.

Finally, suppose that 2 is a unitary algebra. Take any g = g(:vgel), e ,x&e’”)) €
T¢(Cga). Since T¢(Cga) S TE(RA), fix n € N such that any polynomial identity w €
TC(Cga) of degree m = n belongs to T¢(2A). Consider the graded polynomial identity § =
g™ 2 Dy = g 2Oy Observe that § e TC(),
since deg(§) = n + deg(g) = n, and g € T¢(Cgq) (because g is a consequence of g). Being
1y the unity of 2 (where 1y € 2.), for any homogeneous elements ay,...,a, € A, with

deg(a;) = 0;, we have that

0=glas,...,am, lo,..., 1) =glar,...,a.) 1o ... 19 = g(as,...,a,),

n n

and consequently, g € T¢(2(). Therefore, we conclude that T¢(Cgg) < TC(2A). [

Corollary 4.3.15 Let G = Z, be a cyclic finite group of order n. Then any finitely
generated G-graded algebra A which belongs to BC satisfies the ordinary (non-graded)
wdentity

(21, 22|23, 24] - - - [Top—1, Tor] € F(X)

for some k € N.

Proof: Fix any finitely generated G-graded algebra 2 € U¢. By Theorem 4.3.14, we have
that T¢(Cga) Soo T¢(A). Let us analyse each component F7[H | @ Ji, o)) of Coa.

Given H < G and o € Z*(H,F*), consider Ao = F[H] ® Ju o). Observe
that F?[H] is commutative, because H is cyclic, and o is symmetric (by Corollary 1.2.8).
Hence [a + z,b + y] = [,0] + [a,y] + [z,y] € J(u,e)) for any a,b € F7[H], and =,y €
Jep. Take ay = by + y1,..., 20 = bay + Yon € W(m,[o)) With b1,..., by, € F7[H], and
Y1, Yon € J(m o). We have

[ala GQ] [a3, a4] T [a2n—17 a2n] € (J(H,[U]))n )
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114 4. Graded Algebras with the Central Neutral Component

for all n € N.

Let us choose 7 = max{nd(J(g,[o}) : H < G,[o] € H*(H,F*)}. Then we have that
[a1,as] - [aga_1,a0r] € T¢(Coa). Since T¢(Coa) Soo TE(RA), then there exists m € N
such that any multilinear polynomial f € T¢(Cgy) of degree greater than or equal to m
alsobelongs to T¢(2l).

Then, for k = max{m, n} we have that [zy, 2][z3, 4] [vor_1, 721 € TC(A). W

4.4 On the algebra 2 when E®(2l), is central

Recall that we assume that G is a finite abelian group, and F is an algebraically
closed field of characteristic zero.

The following result is basic for our study.

Lemma 4.4.1 Let 2 be a (arbitrary) G x Zo-graded algebra. Then (E€(2A)). is central in
EC(A) iff Aie0) € Z(A), A(e1) S Za(Ao) and ab + ba = 0 for any a € A1) and b e Ay.

Proof: Suppose (E(2)), € Z(E(2)). Take any a € Ay and b e A. Put b = by + by,
bg € Ao and b; € A;. We have

0= [a®o,bo @Yo + b1 @ y1] = [a, bo] ® zoyo + [a, bi] ® Toy

for any o, yo € Eg, and y; € E;. It follows that [a,by| = [a,b1] = 0, since [a, by] ® zoyo €
EC(A)o and [a, b ] ®@xoy; € EC(A);. Hence, [a,b] = [a,by + b1] = [a, bo] + [a, b1] = 0. From
this, we conclude that Aoy = Z(A).

Now, take any c € /(. 1). Let dy € %y and d; € %, then we have

0= [C@ZL’l,do ®ZO + d1 ®Zl] = [C, do] ®J]1ZQ + (Cdl + dlc) ®J]121

for any zop € Ey and x1,2; € Ey. It follows that [c,dg] = 0 and cd; + dic = 0, since
[c,do] ® 1120 € EC(A); and (cdy + dic) @ w121 € ES(A)y. Therefore, we deduce that
A1y S Za(™Ao), and ab + ba = 0 for any a € A1) and b e A;.

Reciprocally, suppose that .0 S Z(A), A1) S Za(™Ao) and ab + ba = 0 for any
a€Aeqy and b e 2A;. Take any a0 @ g € EC (Ae,0)) and a1y @1 € EG(Ql(eyl)). For any
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(bo ®yo + by ®y1) € ES(2A), we have that

[a(e,0) @ o + ey ® 1,00 @ Yo + b1 @ y1] = [a(e,0) ® o, bo @ Yo| + [a(e0) ® o, b1 @ Y1+
+ [age,1) ® 21,00 ® yo] + [a(e1) @ 21,01 @ y1] = [a(,0)®, boToyo+

+ [a(e,0), b1] @ xoy1 + [a(e,1), bo] @ T1y0 + (@(e,1)b1 + brae)) @ 191 =0 .

Since ae,0) @ To, Age,1) @ T1, b0 @ Yo, b1 @ Y1 € EG(2A) can be chosen as basic elements, the

result follows. (]
The above result motivate the following definition.

Definition 4.4.2 A Zs-graded algebra 2 is called a super-commutative algebra if
Ao < Z(A), and Ay is anti-commutative. Now, given a graded subalgebra B of A, we say
that B is a super-central algebra in 2 if By < Z(A), By < Z9(Ap), and ab + ba =0
for any a € Ay and b e *B;.

In the above definition, notice that B is also super-commutative. Also, in Lemma
4.4.1, we can conclude that 2, is super-central in 2 when E®(2), is central in E¢().

By previous lemma, supposing (ES(2)). = Z(E®(1)), it follows that a* = 0 for
any a € A1y if char(F) # 2, and 2, is central in 2 when char(F) = 2 (and so 2 € U° if
char(F) = 2). Anyway, we conclude that 2, is super-central iff E®(2(), is central in E¢(21).

Now assume char(F) = 0. Let us show that we can assume that 2 is unitary if
0C = var®(E¢(A)). In fact, consider A* = ADF -1, the algebra derived from the algebra 2
by adjoining the unit "1". The product in 2 is defined in (1.1, Section 1.1 of Chapter 1).
We have that A% is G x Zo-graded with the grading induced from %, i.e. Q(f;)\) = Ag.N)
if (g,\) # (e,0), and Q[Zio) = Aoy @F - 1. Hence, we can see 2 as a G x Zy-graded
subalgebra of 2#. Then E¢(2A) is a G x Zy-graded subalgebra of E¢(21#). It follows that
[C = var®(EC(A)) < var®(EC(AH)).

Reciprocally, to show that var®(E®(#)) < var®(E(21)), let us show that E¢(A#) e
20¢. By Lemma 4.4.1, it follows that

[a(e0) + A b+ 9] = (a0 + A0 +7) = (b+7)(aeo +A)
= a(e,0)0 + Ab + Ya(e0) + A7 — (ba(e,0) + Va(e,0) + AD +YA)

= Q00 — ba(eo) = [a(e0),0] =0,
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116 4. Graded Algebras with the Central Neutral Component

for any a0 € 2Ac0), b€ A and A,y € F- 1. Hence, and again by Lemma 4.4.1, we have

[(a(e,0) + A) @ o + ey @21, (bo +7) Quo + 1 Qui]| =
=[a(e,0) + A, bo + 7] @ Toyo + [ae0) + A 1] @ woys +
+ [ae), bo + 7] @ T1yo + [a(e) ® 1, ¢1 @ Y1 ]
=0® z0Yo + 0@ zoy1 + [a(e1), bo] ® 1Yo + (a(enyC1 + aeycr) @ 131 = 0,
for any aeo + A € Ql?;o), AeF-1, aer € Ql?;l) = A1), bo +7 € Ql#, v elF-1,
c € Qlfé = Ay, 29,90 € Eg, and z1,9; € E;. Therefore, ES(2#), is a central in E®(2A%).
Thus E¢(A#) € UC. We conclude that 0¢ = var®(E®(A#)).
Therefore, let A = B ® J be a finite dimensional C—graded unitary algebra, where
B is the maximal semisime subalgebra of 2, J is the Jacobson radical of 2, and i is the
unity of 2. Without loss of generality, we can assume that A =i0i =B PiJi =B P Jyy,
where Ji; is described by Lemma 1.5.1. Let B = X”_, 9B, where B,’s are graded simple
subalgebras of 2, and i; the unity of B, where i = >_ i,. From this, since i; € Z(2),
by Theorem 1.5.12, 0¢ = var® (EG(ﬁll) x -+ x EG(Uy) X EG(JOO))>, where B, #cxz, Bs,

for any 7 # j. Hence
k
TC (ES(2A)) = (ﬂ T (EG(QL-))) M (T¢ (ESUn))) . (4.4)

where ﬁlj = ‘iﬁj @® jj is a finite dimensional G x Zs-graded unitary algebra, i%j is a finite
dimensional G x Zs-graded simple algebra, and jj = ijjjij is the Jacobson radical of ﬁ[j,
for j = 1,...,k. Therefore, to describe the variety U° it is sufficient to study the varieties
var®(ES(2L;)) for all j = 1,...,k, and var®(ES(Jo)) .

In the next subsections, let us study the graded polynomial identities of EG(ﬁ[j) for
all j =1,..., k. For this, let us describe the G x Zy-graded subalgebras %j and jj when

EG(2L;) has the central neutral component.

4.4.1 On B and J when E®(2(), is central

As it observed in the previous section, to determine U is sufficient to describe
EC(A), where 2l = B @ J is a finite dimensional G x Zy-graded unitary algebra, and
(ES(21)), is central in EG(A), where B = M, (F°[H]), J = iJ(A)i is the Jacobson radical
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4.4. On the algebra 2f when E®¢(2), is central 117

of A, with H < G x Zy,0: Hx H— F* neN, and iis the unity of 2. Notice that
(ES(20))g = (E®(A))(g0) + (E®(0))(0.1) = A(g.0) ® Eo + A(y1) ® By = EC(2y),

for any g € G. We consider a canonical elementary G-grading on 8 determined by an

n-tupla (g1, g2, ... gn) € (G x Zs)™.

In the following, we present a characterization for E®(2A), where 2 = M, (F°[H])®J
denotes a finite dimensional unitary G x Zs-graded algebra over a field F, and J = iJ(20)i,
which is a nilpotent graded ideal of 2.

Lemma 4.4.3 Suppose (E¢()). is central in E¢(A), and char(F) # 2. Then B = F°[H],
and (e, 1) ¢ H. In particular, we have B, = B(c ) = spanp{1co0}-

Proof: Assume (E¢(2A)). < Z(E®(2A)). To obtain a contradiction, suppose that n > 2.

By Lemma 4.4.1, we have that 2 o) is central in 2. Consider a = E31)(,0) € B. Note that
Eo9Me,0) € Beo) S Agey0), since deg(Ejjne0)) = gj_l(e,O)gj = (e,0) for any j € {1,...,n}.
From this, it follows that

0= [a, E1277(e,0)] = [E2277(e,0)7 E1277(e,0)]
= J((e7 0)7 (67 O)) (521E2277(e,0) - 522E127](e,0))

= _U((e> 0)7 (6a O))E1277(e,0) ,

and hence, we have a contradiction, since o((g, ), (h,7)) # 0, and Ejjnea) # 0 for any
i,je{l,...,n}, g,h € Gand A\, € Zy. Therefore, we have showed that n = 1. Since
is unitary, and hence, in ) € B(c,0). From this, B = F7[H].

Now, to obtain a contradiction, assume that (e,1) € H. Hence, we have 1 €

B(c,1)- By Lemma 4.4.1, it follows that

0 = Ne)Me1) + Ne)Nen) = 2(Nen))” = 20((e, 1), (e, 1))me0) -

Since char(F) # 2 and 7.0 # 0, we deduce that o((e, 1), (e, 1)) = 0, which obviously is a
contradiction. Therefore, we conclude that (e, 1) ¢ H and B, = spanp{no)}. [

It follows from Lemmas 4.4.3 and 1.5.2 that, when (ES()). = Z (ES()), J =

F?[H]N for a suitable finite dimensional G x Zs-graded vector subspace N < J. Hence,
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118 4. Graded Algebras with the Central Neutral Component

it follows that B € U°¢ by Lemma 4.4.3. Hence, it follows from Lemma 4.4.3 that
[z 4] 2D belong to T¢*%2(B), for any h € G x Zy (char(F) # 2).

Remark 4.4.4 Assume that A = F7[H|®J is a unitary G x Zy-graded finite dimensional
algebra, where H <G x Zy, and o € Z*(H,F*). Being B = F°[H|, as in Lemma 1.5.2,
put J = BN for some G x Zs-graded vector space N.

Under these conditions, we have that J.oy = {0} iff Supp(In) (VH = &, where
Supp(T's) = H and Supp(I'y) is the support of N.

Indeed, suppose firstly that J o) # {0}. Hence, there exist homogeneous elements
be B and x € N such that bx € Jc). Thus, deg(x)™' = deg(b) € H, because (e,0) =
deg(bx) = deg(b)deg(x). Since H is a subgroup of G x Zs, it follows that deg(z) € H, and
so Supp(T'n) (N H # &.

Conwversely, suppose that Jico) = {0}. To obtain a contradiction, take a nonzero
homogeneous d € N such that deg(d) € H. Put deg(d) = (g,\) € G x Zy for some g € G
and \ € Zy. Since H is a subgroup of G x Zs, it follows that deg(d)~' € H. Hence, there
exists h € H such that h = deg(d)™" = (¢7', A), and so ny € By-1,) — {0}. From this, we

have that npd # 0 is a homogeneous element of J such that its degree is

deg(nnd) = deg(nn)deg(d) = h(g, A) = (g7, N)(g, A) = (e,0) ,

that contradicts our hypothesis Jic o) = {0}.

The above observations motivate the next results. Let us exhibit some conditions
to ensure that J can be generated (as a graded B-bimodule) by homogeneous elements of

degree (e,0) or (e, 1).

Remark 4.4.5 Let A = B D J be a G x Zy-graded algebra, where B = F°[H], and J
is the Jacobson radical of A. It is obvious that w(Supp(I'y)) = 7(H) if, and only if,
7(Supp(T'y)) € n(H), where m : G x Zy — G is the projection map. Particularly, if
J=BN = @,_, Bd; for some G x Zy-graded subspace N = spang{d,...,d.} < J, we have
taht w(Supp(Ty)) < w(H) iff w(supp(T'n). In fact,

Supp(l'y) = {ge G x Zy:J, # 0}
={9eGxZy:(BN), # 0}
:{thEGXZQZ%tNh?é()}.
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4.4. On the algebra 2f when E®¢(2), is central 119

Let us consider 2l = B @ J a finite dimensional (G x Z,)-graded algebra, where
B = Fo[H] is a twisted group algebra, with H < G x Z,, o € Z*(H,F*), and J is the
Jacobson radical of 2. Consider a graded subspace N of 1. Recall that 7 denotes the
projection map of G x Zy to G. Let us consider Ny(g) = @ Ny, and Ny = @, .5 N
geSupp(I'n)
m(g)en(H)
Lemma 4.4.6 Let G be a finite abelian group, F an algebraically closed field of charac-

teristic zero, and A =B D J a (G x Zy)-graded finite dimensional unitary algebra, where

J is the Jacobson radical of A, and B = Fo[H]| with H < G x Zy and o € Z*(H,F*).

i) If m(Supp(T'y)) is contained in w(H), then there exists a nilpotent Zo-graded algebra
NclJ, = Je,0) ® J(e,1), which generates J as a (G x Zy)-graded B-bimodule;

it) J can be generated as a G x Zy-graded B-bimodule by a graded vector space N c J,
such that N,,(H) c J., NW(H) 18 a Zo-graded subalgebra, with NH = N(e,O) which is a
subalgebra of .

In addition, if ES(), is central in ES(), then Ny is central in 2, and NW(H) and N are

super-central in 2.

Proof: Firstly, let us apply Lemma 1.5.2 for J. Write J = ‘BN for some G x Zy-graded
vector space N = spanp{dy,...,d,} where the d;’s are homogeneous elements of J such
that bd; = 7;(h)d;b # 0 for any b€ B, and i = 1,...,7, 1;(h) € F (see Corollary 1.3.23).
Besides that, J = BN = Bd; @ --- @ Bd, as a (G x Zy)-graded B-bimodule, and Bd; is
an irreducible graded 2B-bimodule, for all : = 1,..., 7.

i) By Remark 4.4.5, we have that 7(Supp(I'y)) = 7(H). Let us show that J can be
generated (as a B-bimodule) by homogeneous elements of degree (e,0) or (e, 1).

Fixie {1,...,r}, and put g; = (7(g;), \) = deg(d;) € G x Zy. Since w(Supp(T'y)) <
m(H), we have that g; € H or (m(¢g;),\ +1) € H. If g; € H, then take h; = g; ",
and a~l1 = np,d;, and hence, CZZ € Jieo) when d; € Jy. Otherwise, if g; ¢ H, then take
hi = (7(g;)"",\+1) € H, and d; = nn,d;, and in this case, d; € Jiey- Thus, for all

t=1,...,7, we have

. Jee , if deg(d;) e H
doed e B(d:) | (4.5)
Jeay . if deg(d;) ¢ H

Observe that if deg(d;) = (e, 1) for some ¢ = 1,...,r, then we must have (e,1) ¢ H.

In fact, suppose that (e,1) € H. Hence, for any (g,v) € H, we have that (g,v + 1) =
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120 4. Graded Algebras with the Central Neutral Component

(9,7)(e,1) € H. We conclude that deg(d;) € H when (e,1) € H, forall r = 1,...,7. So
we must have (e, 1) € H implies that d; € Jeoy, foralli =1,...,r.
For any g € H and ¢ = 1,...,r, since H is abelian, and by Corollary 1.3.23, we

have

Ngds = Ng(Mh,di) = NgNin,di = (g, hi)Ngn,di = (g, hi)Mh,eds
= 0(g, hi)o(hi, @) " nmgds = i(9)o (g, hi)o(hi, ¢) ™ (nm,di)n,

= 72(9>U<g7 hl)o-(hw g>7ldi77g )

and hence, Bd; = d;%B, for all i = 1,...,r. Since Bd; is irreducible, and bd; = ~;(h)d;b
for any b € By, h € H, it follows that %Ji = Bd; is an irreducible G x Zs-graded 8B-
bimodule, for all i = 1,...,7. Observe that J = BN = @_, Bd;, = @|_, Bd;, = BN,
where N = spanF{Jl, o ,Jr}.

Consider N = spanF{dl, - ,JT} < Je = Je,0)@ Jie,1), which is a Zj-graded subspace
of J. Let us show that N is a graded subalgebra of J. Indeed, for all 4,5 = 1,...,r, we
have chzj elJ=00,_, Bd,,. Hence, there exist A\q,..., A\, € F and t1,...,t, € H such
that JZJ] = D )\knthk (since all elements d; are homogeneous). If \; # 0 for some
t=1,...,r, then

tydeg(dy) = deg(m, dy) = deg(d;)deg(d;) .

Hence, we have t), = deg(dy)deg(d;)deg(d;) € {(e,0), (e, 1)}, since deg(dy,), deg(d;), deg(d;) €
{(e,0), (e,1)}. Recall that (e,1) € H implies that d; € Jp), for all i = 1,...,r. If
(e,1) € H, then t; = (e,0) when )\, # 0, because deg(dy)deg(d;)deg(d;) = (e,0). If
(e,1) ¢ H, then we conclude also that t;, = (e,0) (tx € H). Anyway, when A, # 0, we
have that t;, = (e,0), and hence, did; = Sp_ Mneoyds = Sy o((e,0), hp)A\rdy, € N.
Therefore, N is a nilpotent graded subalgebra of J. which generates J as a G x Zy-graded
$B-bimodule.

i4) Without loss of generality, we can assume Ny = spang{d,...,d}, for some
0 < s < r, such that m(deg(d;)) ¢ w(H), for all s < j < r. By item ¢) of this lemma, there
exists di,...,ds € Jo = J(e,0) @ J(e,1), such that J gy = BN, where N = spanF{cil, e Js}
satisfies the claims of the item 7).

Observe that N = spang{ds, ..., ds,dss1,...,d,} is a graded vector space, which
generates J as a graded B-bimodule such that NW(H) c Ne, and Ny = N(&O) (by proof of
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the item 17)).
Now, let us show the second part of lemma. Supposing (E¢(2)). to be central in
EC(A), it is easy to show that N is central in 2, and N and NW(H) are super-central in

2, it is enough to apply Lemma 4.4.1. [ |

Similarly to Remark 4.3.7, using Lemma 4.4.6 instead of Lemma 4.3.6, we obtain

the following observation.

Remark 4.4.7 Let A = B ® J be a finite dimensional G x Zs-graded unitary algebra,
with B = FI[H]| and J = J(A). Suppose that F is an algebraically closed field with
char(F) = 0, and G is an finite abelian group. Then ES(2) is GPI-equivalent to ES(BN#@
Bd, - --D*Bds) for some nilpotent Zo-graded algebra N < Je, and homogeneous elements
dy,...,ds € J such that d;b = ~;(h)bd; # 0 for any nonzero homogeneous b € By, h € H,
~v(h) € F, and deg(d;) ¢ ©(H).

Next, we exhibit a result similar to Corollary 4.3.15.

Proposition 4.4.8 Let G be a finite abelian group, F an algebraically closed field with
char(F) = 0, 2 = F'[H]| @ J a finite dimensional unitary algebra, where H is subgroup
of a group G, v € Z*(H,F*), and J is the Jacobson radical of 2. If v is symmetric, and
nd(J) = n, we have that

(21, xo][23, 4] - - - [Ton—1, T2n] € T(A) .

In general, assume that H <1 G x Zy has an odd order, o € ZQ(ﬁ,IF*) 18 symmetric, and
A =Fo[H|@J is a finite dimensional G x Zy-graded unitary algebra. If ES(A),. is central
in ES(2), then

[331, 962] [96’3, 954] s [xszl, 332m] € T(E(Q[))
where m = nd(J).

Proof: Similarly to Corollary 4.3.15, if H is abelian, and ~ is symmetric, then F7[H]
is commutative. Hence, for any a; = b; + y1,a2 = by + y2,...,a, = b, + y, € A with
bi,ba, ..., b, € FI[H], and y1,¥s, ...,y € J, we obtain [a;, a;11] = [b; + yi, biv1 + Yir1] =
[0:, Yis1] + [Yis biv1]| + (i, viv1] € J. hence, we have that [aq, as][as, a4] - - [agn—1, as,] € ™.
Thus, |21, x2][xs, 24] - - [T2n_1, T2n] € T(A).
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If H < G x Zj has an odd order, then it is clear that H = H x {0}, for some H < G.
In fact, an element (h,1) € G x Zy, h € G can not have an odd order, hence, (h,1) ¢ H,
for any h € G. Since H is abelian, and o is symmetric, then E¢(F?[H]) ~¢ F°[H] ®r Eo
is commutative, since ¢ € Z*(H,F*) defined by &(hi,hy) = o((hy,0), (hs,0)), for any
hi,hy € H, is also symmetric, and hence, F°[H| and F°[H| ®r Ey are commutative
algebras. It is clear that ES(2) = ES(F°[H]| @ J) = ES(F°[H]) ® ES(J) (F°[H] and J are
G x Zo-graded algebras). Hence, for any a; = by +y1, a2 = bo+ya, ..., a, = b, +y, € EG(Q~[)
with by, by, ..., b, € ES(F'[H]), and w1,9s,...,yn € EC(J), we have [a;,a;1] = [bs +
Yir biv1 + Yiv1] = [bi, Yisa] + [Yi, biv1 ] + [vi, vita] € EG(]). Observe that EG(]) is a nilpotent
algebra with nd(E®(J)) = nd(J), since J is nilpotent. Hence [ay, as][as, as] - - - [a2n_1, a2n] €
EG(J)" = {0}. Therefore, we conclude that [z1, 2[5, 24] - - - [Ton_1, Ton] € T(ES(A)).
B Observe that if G is cyclic, then any its subgoup H is also cyclic, and any

v € Z%(H,F*) is symmetric. Hence, in this case Proposition 4.4.8 holds.

4.4.2 Some Informations on H

In this section, we present some immediate consequences of Lemma 4.4.3.

Firstly, notice that, under the hypothesis of Lemma 4.4.3, if (g, \) € H, then either
A=0and (g,1) ¢ H or 2 divides o(g). Indeed, fixed (g, \) € H, suppose 2 does not divide
0(g). Thus, o(g) = 2n + 1 for some n € N. It follows that

(9, A0 = (gD N = (g7 g, 0) = (eg, 0) = (9,0) ,

and hence, (g,0) € H. Consequently, (¢g,1) ¢ H, since (e,\) = (g,0)"'(g,\) € H, which
is only possible for A = 0 (by Lemma 4.4.3, (e,1) ¢ H). The following lemma shows that
if H<G x Zy with (e,1) ¢ H, then H =~ n(H) < G. In particular, if G is a cyclic group,

then H is cyclic.

Lemma 4.4.9 Let G be a finte abelian group, H a subgroup of Gx Zo, and 7 : GxZy — G
the projection map. Suppose (e,1) ¢ H. The restriction map 7y : H — w(H) given by
wg(h) = w(h) for any h € H is an isomorphism of groups. In addition, |H| = |n(H)|,
and |G x Zy : H] = 2[G : w(H)]; and [G x Zy : H| = 2 implies m(H) = G.

Proof: Since H is a group and 7 is a homomorphism of groups, we have that 7(H) is a
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subgroup of G. Let (h1, A1), (he, A\2) € H be some elements such that w(hy, A1) = 7(ha, A2).

Hence, it follows that h; = hy, and thus we must have \; = Ay, otherwise we can obtain
(6, 1) = (hl, )\1)71<h2, )\2) e H

which is a contradiction. Therefore, my is an injective map. It is clear that 7y is a

surjection. Hence, 7y is an isomorphism of groups. By this reason, |H| = |r(H)|, and

GXZQ
H

GxZ  2g|
= - =2
= ()

[GXZQ:H]z‘

m‘ =2(G:n(H)] .

Additionally, if [G x Zy : H]| = 2, from the last equality, it follows that 2 = [Gx Zs : H| =
2[G : w(H)], and hence, we have [G: 7(H)| = 1. |

Lemma 4.4.10 Let G be an abelian finite group, H a subgroup of G x Zs, and m : G x
Zs —> G the projection map. Suppose |G| =n, and (e,1) ¢ H.

i) If n is odd, then H = w(H) x {0}. In addition, G = G x {0} is a subgroup of G x Z
such that |G x Zy : C] =2, (e,1)¢ G, and H = G;

it) If n is even, and G has not an element of order 4, then there exists a subgroup G of

G x Zy such that [G x Zy : G| = 2, (e,1) ¢ G and H = G.

Proof: i) Let h € m(H) and A\ € Zy such that (h,\) € H. Since G has an odd order, it
follows that h**! = e for some s € N. Hence, (h, \)*T! = (h?t1 \?5t1) = (¢, )\), and
thus, A # 1 since (e, 1) ¢ H. Therefore, it follows that H = 7w(H) x {0}.

For G = G x {0}, it is obvious that [G x Zy : G] = 2, (e,1) ¢ G, and H < G.

ii) Without loss of generality, we can assume that G = G x (Zy)™ for some m € N
and some subgroup of odd order G. Put e = (é,0) € G where ¢ is the neutral element of G.
Fix any H <G x Zs. Since ged(|G|,|(Z2)™|) = 1, we have H = G, x Hy for some G; <G, and
Hy <1(Zy)™ x Zs. Notice that H<1Gx Hy, (e,1) = ((6,0),1) ¢ Gx Hy and [G x Zy : G x H, |
divides 2*!. From this, it is sufficient to show that there exists H 1 < (Zy)™ x Zs of index
2 such that (0,1) ¢ H, and H; < H,. Then, H = G x H; is a subgroup of index 2 of
G x Zjy, which contains H and (e,1) = ((¢,0),1) ¢ H. Put ny = [(Zo)™ x Zy - Hy]. If

ny = 2, the result follows (I-L = H;). Suppose that n; > 2, and consider the quotient
(ZZ)m X ZQ

group 0,

Hence, there exists an element ¢, € ((Zy)™ x Zs) — Hy such that
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g1H1 # (0,1)H; and has the order 2 in the quotient. And so the subgroup Hs generated
by H; and g; has not the element (0, 1), and [(Z2)™ x Zsy : Hy] < ny. This process can be
applied until we obtain a subgroup H; of (Z2)™ x Zs, which does not contain (0, 1), and
has index 2 in (Zy)™ x Zsy. The result follows. |

Under the assumptions of Lemma 4.4.10, we can always determine a subgroup of
G x Zs of index 2 which does not contain (e, 1) and contain H if G does not contain an
element of order 4.

In the proof of item 4i) Lemma 4.4.10, we could use arguments on Zs-vector spaces
(we consider Z, as a 2-element field). Indeed, supposing G = (Zy)? and H <G x Zy which
does not contain (e, 1), we have that H is a subspace of Zs-vector space G x Zs of a finite
dimension. Since any vector space over a field has a well defined basis, we can consider
a basis of G x Zy formed by a basis of H, the vector (e,1) ¢ H, and other vectors. The
detail is that we can complete a linearly independent set until a basis of space. Let (8
be a basis of H and v U {(e, 1)} a basis of G x Zy which contains 3. Consider the Z,-
space H generated by ~. Note that (e,1) ¢ H, H is a subspace of H and dim, (H) = d.
Consequently, |H| = 24, and so [G x Zy : H] = 2. Let us now study the cases when G has

an element of order 4.

Lemma 4.4.11 Ford > 1, consider G = Zya. If H <G x Zy is such that (e,1) ¢ H, then
H is a subgroup of H,,, where H,, is one of the following subgroups: i) H_1 = G x {0};
ii) Hy = {(1,1)); wi) H, = {(2",1)) formn = 1,...,d — 1. In addition, given r # s, we
have that neither H, c H, nor H, ¢ H,.

Proof: Firstly, if H = 7(H)x {0}, we have H<IGx {0}. Suppose now that H # 7(H)x{0},
i.e. there exists x € H such that x = (h, 1) for some h € 7(H). Since G is a cyclic group
and (e,1) ¢ H, by Lemma 4.4.9, since m(H) < G, and 7(H) =~ H, it follows that H is
cyclic, and hence, there exists y € G x Zy such that H = (y) with y = (nl1,1) € G x Z,
for some n € {1,...,2%971}. We have two cases to study: 1) n is odd and 2) n is even.
Supposing n odd, namely n = 2m + 1, we have nl = (2m + 1)1 = 1 in Z,, and so
y = (n1,1) = (nl,nl) = n(1,1) € Hy. In this case, we conclude that {((n1,1)) = H,

for all n odd. On the other hand, supposing n even, take r € {1,...,d — 1} such that
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ged(2",n/2") = 1. Put n = 2"m’ for some m’ € N, m’ odd. We have

and hence H < H, for some r € {1,...,d — 1}.

Finally, fix distinct r # s, namely r = s+ p for some p € N. We must have H, & H,
and H, & H,, otherwise, we would have one of the following situations: (2",1) € H, or
(2¢,1) € H,. Thus, we could find k& € N such that (2,1) = k(2%,1) (resp. (2%,1) =
k(27,1)), which implies k odd, and 2577 = k2° (resp. 2% = k2°*P) in Zya, and consequently,
(22 — k)1 =0 (resp. (k2° —1)1 = 0) in Zya. This generates a contradiction because 2F — k
(resp. k2P — 1) is odd and 1 has even order in Zja. Therefore, it follows that neither
H, c H, nor H, c H, for r # s. |

Differently of Lemma 4.4.10, given a group G under the conditions of Lemma
4.4.11, always there exists some subgroup H of G x Zs which does not contain (e, 1) and
if H<QH <G x Zy with (e,1) ¢ H, then H = H. It is important to note that, for G as in

Lemma 4.4.11, we have

[GXZQZH_l]Z[GXZQIHo]ZQ,

[Gx Zy: H,] =2"" for n=1,...,d— 1.

And hence, by Lemma 4.4.9, it follows that 7(H_;) = n(Hy) = G and [G : n(H,)] = 2"
forn =1,...,d—1. Notice that, fixed any i € {—1,0,1,...,d— 1}, there is no H<c GxZ,y
such that H; ¢ H and (e,1) ¢ H. Therefore, the H;’s are maximal in the family of
subgroups of G x Zs which do not contain (e, 1).

Finally, given G an abelian finite group and H <G x Zs which does not contain the
element (e, 1), using Lemmas 4.4.10 and 4.4.11, we can exhibit a subgroup H < G x Z;
such that H < H, (e,1) ¢ H, and [G x Z, : H] is the smallest for a subgroup H under

these conditions.

4.5 The variety var® ([as(e), y9)]:ge G)

In this section we present the main results of this chapter. Here, let us denote by G

a finite abelian group, IF an algebraically closed field of characteristic zero, and ¢ the G-
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graded variety defined by the set of graded polynomial identities {[2(?), y(9)], for g € G}.
In the results of this section we strongly use Remark 4.4.5, as well as the results of
Subsection 4.4.2.

Let F be a field, G a finite abelian group, H <G x Z,, and o € Z*(H,F*). Consider
a finite dimensional G x Zy-graded unitary algebra 2 = F7[H]| @ J, with the Jacobson
radical J = F7[H]N (as is described in Lemma 1.5.2), where N is a graded subspace of J.
In the lemmas below, recall that gy = G—) 2A,, which is a G x Zy-graded subalgebra

9€Supp(T'a()
n(g)en(H)

of 2.

Lemma 4.5.1 Let H be a finite abelian subgroup of a group G, F an algebraically closed
field of characteristic zero, and A = B @ J a finite dimensional G x Zs-graded unitary
algebra, where B = Fo[H], and J = J(2) is the Jacobson radical of A. If (ES(RL)). is
central in E®(y(r)), then

ES(Ar(rn)) =cpr ES(F7[H]).

Proof: By Lemma 4.4.6, there exists a nilpotent G x Zs-graded algebra N contained in
Je = J(e,0) ® Je,1), such that J gy = BN. Since (ES(A)). = Z(ES(Ar(m))), it follows from
Lemma 4.4.6 (also Lemma 4.4.1) that N is super-central in Aoy

It is immediate that TS(ES(U;))) S TE(E®(B)), because E¢(B) is a graded
subalgebra of E®(2,(;)). Thus, to prove that ES(U ) =cpr E¢(F7[H]) is sufficient to
show that if f ¢ TS(E®(Urn))), then f ¢ TC(ES(B)).

Let f = f(z1,...,25) ¢ TS(E®(U-n))) be a G-graded polynomial. If char(F) = 0,
we can assume, without loss of generality, that f is multilinear, and hence, we can take
homogeneous elements a; ® 1, ..., ay @ xj, € ES(B)g U ES(B)1 U ES(Jriar))o v EC(Jnan)
such that f(a; ® x1,...,ar ® x) # 0. If ay,...,a, € B, the result is obvious. If for
some ¢ = 1,...,k we have that a; € Jyy) = %N, then a; = Z;:1 bijci;, where b;; € ‘B,
c;j € N. Since f is multilinear, without loss of generality, we can assume that a; = b;c;,
where b; € B, and ¢; € N. For all i = 1,..., k, write a; = b;c; with b; € B, and

a((e,0), (e, O))*ln(@o), if a; ¢ Jrcm)

C; € N, if a; € Jﬂ—(H)

Note that degg(b;) = degg(a;), since degg(c;) = e in any case. We always can
assume that x; = Z;3;, where degy_(v;) = degy, (c;), degy, (%;) = degy, (b;), and x;, T;,y; €

Eo U E;. Hence a; ® x; = (bic;) @ (Tiy:) = (i ® Z;)(¢; ®y;) for all ¢ = 1,... k. It is clear
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that b; ® %, ¢; @ y; € E¢(Ar()). Since N < J. is super-central in 2, we have that ES(N)
is central in E¢(,(z)). It follows that

(Ga) ® Taw) -+ (Gagr) ® Taw) = ((ba(1)Car)) @ Taq)) -+ ((Par)Ca(k)) ® Taw))
= (ba(1) ® Ta(1))(Cat) @ Ya()) - - (ba(k) ® Ta(k)) (Catr) @ Ya(k))
((ca) ®Ya(n) *** (Catr) ® Ya®)) ((ba() @ Fa(n)) *** (bar) ® Fa(r))
= ((1®@y1) - (s ® k) ((bat) ® Ta(1)) - - (batr) ® Tak)))
= (1) @ (- wr) (o) ® Taq)) -+ * (batr) ® Taw)) »

for all & € Si. From this, we deduce that

0# flar®x1, ..., @) = ((c1- k) ® (Y1 yx)) (f(1 ®Tq,..., 0, ®T)), (4.6)

where deg¢(a; ® z;) = degg(b; ® Z;), for all ¢ = 1,..., k. By (4.6), it follows that f ¢
TC(EC(B)), and the result follows. [

An immediate consequence of the previous lemma holds when 7(Supp(I'y)) <

m(H), in particular, if N = N, @ N¢1). In this case, it follows from Lemma 4.5.1 that
ES(2) =gy ES(F[H]).

Corollary 4.5.2 Let H be a subgroup of a finite abelian group G, F an algebraically closed
field of characteristic zero, and A = B ® J a finite dimensional G x Zy-graded unitary
algebra, where B = F7[H], and J = J(A) is the Jacobson radical of A. If A = Arpy and
(EC(A)), is central in ES(2L), then

E€(A) =gp; ES(F7[H]) .

In addition, if H < (G x {0}), then ES() =gp; F°[r(H)], for some 6 € Z*(n(H),F*).

Proof: The first part follows of Lemma 4.5.1, since A = 2 ).

Now, let us prove the second part of the lemma. It is easy to see that
B = F[H] = F[r(H) x {0}] =¢ F7[r(H)] ,

where 6 € Z%(w(H),F*) is defined by map &(h, g) = o((h,0),(g,0)) for any g,h € w(H)
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(see Remark 1.2.9). The result follows. [

It is important to note that if G has an odd order, then any subgroup H of G,
which does not contain (e, 1) is necessarily of the form m(H) x {0}. For more details, see
Lemma 4.4.10, in Section 4.4.2.

The next result is a combination (immediate consequence) of Lemma 4.5.1 and

Corollary 4.5.2.
Corollary 4.5.3 Suppose that F is an algebraically closed field with char(F) = 0, and
(ES(2L)), is central in EC(A). If H < (G x {0}), then

EG(QLT(H)) =GPI FU[H] =GPI ]F&[W(H)]

for some 6 € Z*(w(H),TF*).

Proof: The GPI-equivalence E(. (i) =cps F7[H| follows from Lemma 4.5.1, and the
fact that H = w(H) x {0} (because E¢(F°[H]) = F°[H] ®r Ey, where Eq is commuta-
tive non-nilpotent). Now, the GPI-equivalence E®( () =gpr F°[r(H)] follows from
Corollary 4.5.2. [ |

Finally, let us now combine all the above results into a unique theorem.

Theorem 4.5.4 Let G be a finite abelian group, H a subgroup of G x Zy, o € Z*(H,F*),
and F an algebraically closed field of characteristic zero. Let A = F7[H| @ J be a finite
dimensional G x Zg-graded unitary algebra, with the semisimple part B = F°[H]|, and J
1s the Jacobson radical of A. Suppose that one of the following hypotheses is true:

1) A = Arimy;
2) H=0Gx{0};
3) m(Supp(I'y)) = w(H);
4) H <G x {0} and (Supp(T'y)) < n(H);
If (ES(2A)). is central in EC(A), then J is generated as a G x Zg-graded B-bimodule by a

nilpotent subalgebra N of J, which is super-central in A, and

E®(2) =cps ES(F7[H]) .
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In particular, in the cases 2) and 4) we have that
E€(A) =cps F7[H] =cp; F'[n(H)] ,

for some 6 € Z*(w(H),F*).

Proof: All the four cases follow of Lemma 4.5.1 (or Corollary 4.5.2), because all them
imply that ;) = 2.
The existence of N satisfying the claims of theorem is ensured by Lemma 4.4.6.
Finally, the last affirmation, about the items 2) and 4), is ensured by Corollary
4.5.3. The result follow. |

Under the hypotheses of Theorem 4.5.4, we have that var®(E®(2()) = var®(E¢(F°[H])).

It is important to note that EG¢(F?[H]) € U¢, where ¢ = var®([2(),y9)] : g € G),
for any H < G x {0}, and o € Z*(H,F*). And thus, var®(E¢(F°[H])) < U°, for any
H < G x {0}, and o € Z*(H,F*).

Also by the Theorem 4.5.4, supposing that the item 4) (or item 2)) is true, F is an
algebraically closed field, and G is finite abelian, by Lemma 4.3.3, there is v € Z*(G, F*)

which extends & such that
var®(E¢(21)) < var®(F7[G]) < UV° .

Applying Lemma 4.3.3 and Theorem 4.5.4 together with the results of Subsection
4.4.2, we can complete the above observation. In fact, supposing that the item 1) (or item
3)) is true, it follows from the previous theorem that var®(E®(2()) = var®(EC(F°[H])). If
there exists a subgroup H of G x Zy such that H < H and (e,1) ¢ H (for more details,
see Subsection 4.4.2), then

var®(ES(2)) < var®(ES(F°[H])) < V°

for some & € Z*(H,F*). It is worth to note that [G x Zy : HJ| is at least 2, since
(e,1) ¢ Supp(T'y).
The last observation is important because in various classes of groups we can always

extend a group H <G x Zj,, which does not contain (e, 1) to a subgroup H <G x Z; of index
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2, which also does not contain (e, 1). For more details, see Lemma 4.4.10 and Subsection
4.4.2 of this chapter.

As observed at the beginning of this chapter, module graded polynomial identity,
to study the graded variety ¢, of all G-graded algebras whose neutral component is
central, is equivalent to studying a graded variety generated by the Grassmann envelope

of a finite dimensional G x Zs-graded algebra 21 which can be written as
(Fgl [Hl] @J1> X e X (ng[Hk] @ Jk) X Joo y

where for all r = 1,... k, H, is a subgroup of G x Z,, o, € Z*(H,,F*), and J, =
(For[H,])N, is the Jacobson radical of 2, = F"[ H,|®J, for some graded subspace N,. < J,,
and Jyp is a finite dimensional G x Zy-graded nilpotent algebra, such that E®(Jyo) belongs
to UC. We have that E(Jy) is also nilpotent, and nd(E®(Jo)) = nd(Jgo). Therefore, we

have

var®y = (k}varG (ES(2A,)) nvar® (E(Joo)) -

The results obtained before describe the algebras 2A,.’s when EG(QlT)e is central in

ES(2,).

Theorem 4.5.5 Let G be a finite abelian group, and F an algebraically closed field of

characteristic zero. There exists a finite dimensional G x Zo-graded unitary algebra

Cc= X X (F[H]® ) | (4.7)
HAAGxZo \ [o]eH2(H,F*)
(e,1)¢H

such that Jg o)) 15 a finite dimensional G x Zs-graded nilpotent algebra (J(m o)) is the
Jacobson radical of U o)) = F[H] ® Jm o)) ), satisfying

BE = var®(ES(Cq)) .

Proof: The idea of the proof is similar to the proof of Theorem 4.3.14.

Observe that 0% is a variety of PI-algebras, since if 2 € U¢, then 2. is central
in 2, and hence, 2, is commutative, and so, by Theorem 1.4.12, 2 is a PI-algebra. By
Theorems 1.4.13 and 1.2.20 and expression in (4.4), consider the G x Zy-graded algebras
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ﬁll, Q~l2, . ,ﬁlp, ]00 such that
‘IIG = varG (Ec(ﬁl) X o+ X EG(élk) X EG(]00)> 5

where A, = B, @ J, are finite dimensional G x Zs-graded unitary algebras such that
B, £GxZ, B, for all s # r, where B, = Fo:[H,], with H, <G x Zy, and o, € Z?(H,,F*),
for all s € {1,...,k}, J, is the Jacobson radical of 2,, and Jgo is a finite dimensional

nilpotent G x Zs-graded algebra.

Now, consider Cg = X X (F?[H]) |- By Absorption Lemma (Corol-
H<AAGxZo \ [o]eH2(H,F*)
(e,)¢H

lary 1.5.9), for any H < G x Z, such that (e,1) ¢ H, and [o] € H*(H,F*), there exists a
finite dimensional G-graded nilpotent algebra J [,]) such that

k -
<>< 913') x Joo x Cg =(GxZy)PI Ce x Joo

J=1

where Cg is defined in (4.7), and joo is some finite dimensional G x Zy-graded nilpotent

algebra. Consequently, it follows from Lemma 1.5.11 that
Y€ < varS(ES(Ce x Joo)) -

Observe that Cg € UC, and hence, we have that E¢(Cg) x EG(jOO) = E¢(Cg x joo) e YC.
Particularly, EG(jOO, E¢(Cg) € UC. Therefore, we conclude that U¢ = var®(E¢(Cg) x
ES(Joo))-

Since U¢ can be generated by the Grassmann envelope of a G x Zy-graded unitary

algebra, nd( EG(jOO)) is nilpotent, similarly to the proof of Theorem 4.3.14, we deduce that
0C = var®(E¢(Cg)). u

Remark 4.5.6 In (4.7) we can suppose that either w(Supp(L') , ,,))) E 7(H) or Ju o)) =
{0} (see Lemma 4.5.4). Besides that, if Jiu ) = {0} for some H 4G x {0}, namely
H = H, x {0}, and o € Z*(H,F*), then

TE(ES(F7[H]) x ES(F7[G x {0}]) = TS(F" [Hy] x F™[G]) = T*(F™'[G]) .

DE Franga, A.M.D. June 28, 2019 Mat — UnB



132 4. Graded Algebras with the Central Neutral Component

where 6 € Z*(G x {0}, F*) extends o (see Lemma 4.5.3), o1 € Z*(H,,F*) is defined by
o1(h,hy) = o((h,0), (hy,0)) for any h,hy € H, and 6, € Z*(G,F*) extends 0.

Corollary 4.5.7 Under all the conditions of Theorem 4.5.5, if A € 0¢, then TS(E¢(Cg)) <
TC(2A).

Corollary 4.5.8 Under all the conditions of Theorem 4.5.5, if G is a finite cyclic group,
then Co = X (F[H] @ Jupny) x FIG x {0}], and
HﬂGXZQ

(e,1)¢H
H#Gx {0}

0¢ = var® X EC(F[H]®Jmp)) | nvar®(FG) ,

HSGXZQ
(e,1)¢H
H#Gx {0}

where [1] is the class of the trivial 2-cocycle of Z*(H,F*), and J g ,) s a finite dimensional
nilpotent G x Zy algebra.

Corollary 4.5.9 Under all the conditions of Theorem 4.5.5, if G is a finite cyclic group
; #
of a prime order p > 2, then Cg = Jieonm * F[G x {0}], and

B¢ = var® (EG (J?{E(e,o)},[u))) ﬂvarG(FG) ,

where [1] is the class of the trivial 2-cocycle of Z?(H,F*), and J?{E(e,o)},[u) is a finite di-

mensional nilpotent G x Zs algebra with adjoint unity.

If G = Zy (p = 2), then Cg, = Jf 0y * FIZa x {0}] x F[{(0,0), (1,1)}], and

Yl = varZQ(EZZ(JZ%(&O)}’D]))) N var?2(F[Zy]) n var?2(E), where E = Ey ® E; is the infinite

dimensional Grassmann algebra with the canonical Z,-grading.

4.6 Graded algebras with the neutral component

satisfying a polynomial identity of degree 2

Let G be a finite group, and 2 a G-graded algebra. In this section, we present

a study about the general case when the neutral component 2, satisfies a polynomial
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identity of degree 2. A polynomial f of degree 2 in the variables x4, ..., x, is a polynomial

in F(X) of the form

n
f(xlv s 7xn) = Z )\TS'rsz + Y%k,
r,s,k=1

where A, 7% € F.
Let G be a finite group, and 2 = B @ J(2) a finite dimensional G-graded algebra,
where B = X?_| M, (F7[H;]) and J = J(2) is the Jacobson radical of 2. Assume that

B, = M,,(F7[H;]) is graded with a canonical elementary G-grading. Suppose that f is a

polynomial identity of degree 2 of 2.. We must analyse the two following situations:
i) 2, is nilpotent;
ii) 2, is not nilpotent.

Firstly, suppose that 2. is a nilpotent algebra. By Theorem 3.2.15, in Chapter 3,
we have that 2 is nilpotent with nd(2(.) < nd(A) < |G|nd(2.), and thus, A = J. Let
us assume that 2, is not nilpotent (and also (). Hence, observe that (B;). < 2. for all

i=1,...,p. From this, if 2, satisfies f = 0, then (B;). satisfies f =0 forall: =1,...,p.

Lemma 4.6.1 Let G be a group, F a field, f = f(\?,..., ') e F(X®) a polynomial of
degree 2, and B = M, (F°[H]) the algebra of n x n matrices over F°[H| with a canonical
elementary G-grading. Suppose that char(F) # 2, and B, satisfies f = 0. Then f and
[2(), y(©)] generate the same GT-ideal.

Proof: Write f(xge), . ,xff)) = 2 Arszl@ () 4 ykm,(f). We have that Fyin. € B., and
r,s,k=1
so for x; = Ey1ne, x; = 0 for all j # ¢, we obtain

0= f(0,...,0, E117,0,...,0) = /\ii(Ellne)Q + Yi(E11ne)

= Xio(e,€)Enne + viEune = (Auo(e,e) +vi)Enne .

And for x; = —Eyn., x; = 0, for all j # 4, we obtain

0= f(0> o0, —E1ne, 0, ... 70) = /\ii(_Ellne)Q + %(—Elme)

= )\iia(e, 6)En77@ —viEune = ()\u‘U(B, 6) - %’)Enne )
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134 4. Graded Algebras with the Central Neutral Component

and hence, \;o(e,e) +; = 0 and \;o(e,e) —7; =0 for all i = 1,...,p. Thus, it follows
that A\j; = 0 for all © = 1,...,p, and consequently, v; = 0 for all ¢ = 1,...,p. From this,
we have that f(z\”,...,z{) = Z Aps (€2

r,s=1

r#S
Finally, we have for the evaluation x; = Ey1ne, v; = E1ine, v, = 0, for all k # 4, j

(for any pair i,j € {1,...,n}), i # j

0= f(07 .., 0, E1177e, 0,...,0, E1177e, 0,... ,0) = )\z‘j(En??e)(Elme) + )\jz‘(EuT]e)(En??e)

= (Nij + Aji)o(e, e) Enne

and hence, \;; + \;; = 0 for all 4,57 = 1,...,p distinct. Therefore, we conclude that

f(x§€)7 Ty (e) Z )‘rs mre axge] .

I<r<s<n

The result follows. [ |

By the previous lemma, given a finite dimensional G-graded algebra 2l = B @ J,
where B = X?_ | M, (F7[H;]) and J = J(2) is the Jacobson radical of A, and B, =
M,,(F?[H;]) has a canonical elementary G-grading, if 2. satisfies a graded polynomial
identity f = f (ml Iy ) of degree 2, then either 2 is nilpotent, or f and [2(®), y(®]

generate the same GT-ideal.

Theorem 4.6.2 Let G be a finite abelian group, F an algebraically closed field of charac-
teristic zero, and A a finitely generated G-graded algebra A. If A, satisfies a polynomial
wdentity f = f(x1 yee a:n ) e F(XC®) of degree 2, then either 2 is a nilpotent algebra,
with nd(2A.) < nd(2A) < nd(2U,)|G|, or A satisfies [2(©), y(©)].

Proof: Observe that since 2, is Pl-algebra, then 2 is also PIl-algebra (see Theorems
1.4.11 and 1.4.12). By Remark 1.4.10, there exists a finite dimensional G-graded algebra
A' = B @ J such that TS(A) = T(A'), where J = J(') is the Jacobson radical of 2’
(which is a graded ideal of '), and

B = My, (F7 [H]) x - - x My, (F7[Hy])

with H; < G, o; € Z*(H;,F*), M, (F°[H;]) is equipped with a canonical elementary G-
grading, for any ¢ = 1,...,p. Suppose that 2’ is not nilpotent, i.e. B # {0}. Then
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(B;). < A for all i = 1,...,p. The result follows from Lemma 4.6.1. [

Now, assume that [ is an algebraically close field of characteristic zero, and G is
a finite abelian group, f = f (xge), . ,ng)) e F(XC®) is a polynomial identity of degree
2, and 20¢ = var®(f). By Theorems 1.2.20 and 1.4.13, it follows that there exists a
G X Zso-graded finite dimensional algebra 2l = 8 @ J such that

W€ = var®(ES()) ,
where J = J(21) is the Jacobson radical of 2, and
B = My, (F7 [Hy]) x - - x My, (F7[Hy)

with H; < G x Zy, 0; € Z*(H;,F*), M,,(F°[H;]) has a canonical elementary G-grading.
Observe that f = 0 is satisfied in E®(2A), = Ae0) ®r Eg + A1) ®r E1. In particular,
f = 0 is satisfied in A o) ®r Eo. Hence, either o) = J,0), and it is nilpotent, or
(Bi)(e,0) S U(eo) for all i = 1,...,p, where B; = M, (F7*[H;]). Observe that if B # {0}
(A # J, ie. A is not nilpotent), then B, o) # {0}, since 1y € Bycp). It means A = J is

nilpotent if A0y = J(e,0)- In this case, E(2) is also a nilpotent algebra.

Theorem 4.6.3 Let G be a finite abelian group, F a algebraically closed field of charac-
teristic zero, f = f(xge), . ,ng)) € F(X®) a polynomial degree 2, and 20° = var®(f) the
G-graded variety defined by f. Then either 20¢ = var®([2(®),4©)]) or 20¢ = var®(N) for

some nilpotent algebra N .

Proof: The result follows from above observations and Theorem 4.6.2. [ |
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NOTATION

finite order (or bounded upper)

index of H in G

= {y € Z*(G,M) : oy € B}G : M)}
commutator of a and b — [a, b] = ab — ba
f-commutator of a and b — [a,b] = ab — f(a,b)ba
= [[a1,a2], a3, . .., ax]

number of elements of the set 3

left submodule of M

subbimodule of M

associative algebra

tensor product of F-algebras

algebra 2l with adjoint unity

homogeneous component of 2 of degree g € G

- (‘B A

9€Supp(T'a)

m(g)en(H)
element m + N which belongs to M/N
Complex field

intersection of sets

isomorphism of algebras (or modules, or groups)
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142 Notation

~g G-graded isomorphism of algebras (or modules)

v, union of sets

0ij Kronecker delta

E=E®E, Grassmann algebra with its natural Zs-grading

EC(A) G-graded Grassmann envelope of 2

[0%) empty set

=cps GPI-equivalence of GPI-algebras

=ps Pl-equivalence of Pl-algebras

Ng basic element of FG (and also of F?[G])corresponding to g € G
F, K fields

Flzy,x9,23,...] polynomial ring over F

FG group algebra

F(X) free associative algebra over F generated by X

F(X©) free G-graded associative algebra over F generated by X©
F* = F — {0} — multiplicative group of F

F[G] twisted group algebra

Anng (M) ={aeA:am=0,Yme M}

B2(G, M) group of all the 2-coboundaries of G with coefficients in M (= F*)
char(TF) characteristic of field F

cores$, corestriction map

deg(a) homogeneous degree of a € A

deg(r) homogeneous degree of r € R

dimp(V) dimension over F of vector space V

e Euler number

gcd greatest common divisor

H%(G, M) second cohomology group of G with coefficients in M (= F*)
H2(H, M)® subgroup of H%(H, M) of points fixed by G

im(v) image of homormophism

ker (1)) kernel of homormophism 1)
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Notation 143

lcm

max{z € X}
min{z € X}
M

M/N

MH

nd(R)

res$

resy (H(G, M))
res§y ()
spang{v € N}
Supp(T')

S

S/P

tr

varS (f)
var®(S)
Z3(G,M)

G

G x Zs

Gn

Ay

least common multiple

=y € X such that x <y for any x € X

=y € X such that x > y for any x € X

left A-module, right A-module, (2, ﬁl)—bimodule, or 2A-bimodule
quotient module

submodule of M of points fixed by H

nilpotency order of R

the smallest number 7 € N such that a” = 0 for any a € R
order of element g € G

restriction map

subset of H2(H, M) of all o, where o € H*(G, M)

= oy € H*(H, M), where o € H*(G, M)

vector F-subspace generated by N

support of G-grading I"

left cancellative monoid

quotient group

trace function

G-graded variety defined by f < F<X©)

G-graded variety defined by S < F<X©)

group of all the 2-cocycles of G with coefficients in M (= F*)
group

direct product of G and Z,

=Gx---xG
| —

n—times
G-gradings on 2
= {X1,---,Xn} — group of irreducible characters of G
unity of algebra of matrices M, (F7[H])
Jacobson radical of an algebra 2
nilpotent algebra, and a 0-bimodule

elements of F

DE Franga, A.M.D. June 28, 2019 Mat — UnB



144 Notation

(SHer GT-ideal generated by the subset S € F(X®)
(SHr T-ideal generated by the subset S € F(X)
Z(X) center of X

Zx(Y) center of Y in X

S semigroup

a | b means b is divisible by a

N Natural numbers

1 a t b means b is not divisible by a

% there is no an isomorphism

%6 there is no a G-graded isomorphism

D, P direct sum of vector subspaces

X, R tensor products of F-algebras

T the projection map of G x Zs to G

m(H) ={geG:geim(m)}

R associative ring

R homogeneous component of R of degree s € S

o 2-cocycle

a(g,h) 2-cocycle o applied in (g,h) € G x G
ox restriction of o to H

Al ={aeF:a" =1}

2\ = a € F such that o = A

AR

G

o>

G-graded immersion

there is no a G-graded immersion

S asymptotically contained

< X<SYmeans X cYand X #Y

>, sum

T(2A) T-ideal of all polynomial identities of

TC(21) GT-ideal of all G-graded polynomial identities of 2
X, X direct products of algebras (or groups)
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Notation 145

A

DISID)IS
0,

Z[I1,$2,ZL’3, - ]

XG

H < G means H is a normal subgroup of G
class of all f-commutative rings

varieties of G-graded algebras

(graded) homomorphisms of algebras (or modules)
Integer ring

polynomial ring over Z

quotient group Z/nZ

left submodule of M generated by S < M
subbimodule of M generated by S < M
neutral element of G (or of S)

elementary matrix of M, (F)

elementary matrix of M, (F7[H])

polynomial identity

G-graded polynomial identity

inverse element of g€ G, ie. g7lg=gg ' =e¢
subgroup of G

ZH-homomorphisms from ZG into M

algebra of matrices over F

algebra of matrices over twisted group algebra
right submodule of M

right submodule of M generated by S < M
symmetric group of order n

a countable set X = {x1,29,...}

a countable set | J . Xy, where X, = (219 29}
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INDEX

2-cocycle, 25 G-graded, 21
2-coboundary, 26 irreducible, 21
antisymmetric, 26 epimorphism, 20
equivalence, 26 faithful, 19
symmetric, 26 homomorphism, 20
trivial, 25 bijective, 20

2-bimodule graded, 22
G-Artinian, 37 homogeneous, 22
G-Noetherian, 37 image, 20
G-graded, 21 injective, 20

irreducible, 22 kernel, 20
epimorphism, 20 surjective, 20
graded irreducible, 19

subbimodule, 21 isomorphism, 20
homomorphism, 20 monomorphism, 20

bijective, 20 quotient, 20

graded, 23 graded, 22

homogeneous, 23 simple, 19

image, 20 submodule, 17, 21

injective, 20 submodule generated, 18

kernel, 20 G-graded

surjective, 20 2-bimodule, 21
irreducible, 19 G-Artinian, 37
isomorphism, 20 G-Noetherian, 37
monomorphism, 20 irreducible, 21, 22
quotient, 20 algebra, 14

graded, 22 division, 15
simple, 19 ideal, 15
subbimodule, 18 minimal, 15

graded, 21 simple, 15
subbimodule generated, 18 subalgebra, 15
unitary, 17 module, 21

2A-module G-grading
0-module, 17 support of, 14
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148 Index
G-module, 67 bounded index, 12
S-graded nilpotent, 12

ring, 14 Pl-algebra, 49

S-grading, 13
f-commutator, 84
2-coboundary, 68

abelian, 10
algebra, 11
PI-equivalent, 50
T-ideal, 49, 50
GPI-algebra, 49
GT-ideal, 48, 49
G-simple, 15
graded homomorphism, 16
adjoining a unit, 12, 115
associative, 11
center, 12
central, 12, 114
commutative, 11
[-commutative, 30
epimorphism, 13
free associative, 49
free graded associative, 48
graded
GPI-equivalent, 49
epimorphism, 16
free associative algebra, 48
immersion, 30
isomorphism, 16
monomorphism, 16
polynomial identity, 49
graded homomorphism
injective, 16
subjective, 16
graded isomorphism, 16
Grassmann Envelope, 52
group, 14
homomorphism, 13
bijective, 13
image, 13
injective, 13
kernel, 13
surjective, 13
ideal, 11
minimal, 11
left ideal, 11
minimal, 11
nil, 12

polynomial identity, 49
consequence, 50
Quaternion, 102
right ideal, 11
minimal, 11
subalgebra, 11
super-central, 115
super-commutative, 115
T-ideal, 50
twisted group, 29
unitary, 11
variety, 50
graded, 49

algebras

isomorphism, 13
monomorphism, 13

associative, 10

bimodule, 17

2-bimodule, 17

center

algebra, 12
group, 12
ring, 12
subalgebra, 12

central

subalgebra, 12

chain, 33

ACC, 34
ascending, 34
condition, 34
DCC, 34
descending, 34
condition, 34

character, 35
cocycle, 68
commutative, 10
commutator, 30

[-commutator, 30

compatible pair, 72
conjugation action, 72

dual

group, 37

Dubnov-Ivanov-Nagata-Higman Theorem, 93

DE Franga, A.M.D.

June 28, 2019

Mat — UnB



Index 149

element
minimal, 33
greatest, 33
least, 33
maximal, 33

field, 11

graded
finite, 14
free algebra, 48
ideal
minimal, 15
grading
canonical elementary, 30
elementary, 15, 96
canonical, 15, 30
finite, 14
group, 10
abelian, 10
center, 12
order of an element, 10
second cohomology, 67, 69
group character
dual, 37

homogeneous
component, 14
element, 14
homomorphism
2-bimodule, 20
2A-module, 20
algebra, 13
corestriction, 73, 74
graded
2-bimodules, 23
2A-modules, 22
algebra, 16
homogeneous, 22
homogeneous of (2, 2A)-bimodules, 23
restriction, 73
transfer, 73, 74

ideal
minimal graded, 15
verbal, 63
indeterminates, 48
invertible, 10

Jacobson radical

free, 62
Kothe’s Problem, 5, 92, 94, 96

linear transformation, 13
epimorphism, 13
image, 13
isomorphism, 13
kernel, 13
monomorphism, 13

lower bound, 33

Maschke’s Theorem, 35
matrix representation, 34
matrix representations
equivalent, 34
minimal
ideal, 11
left ideal, 11
right ideal, 11
module
left, 16
unitary, 16
right, 17
unitary, 17
monoid, 10
cancellative, 10, 77, 99
left, 10
right, 10
order of an element, 81
monomial, 48
multiplication, 10

Nagata-Higman Theorem, 4, 92
neutral component

central, 99, 103
neutral element, 10

partially ordered set, 33

Peirce Decomposition, 54

polynomial identity, 49
consequence, 50

graded, 49
poset, 33
chain, 33

projection map, 107, 118

representation, 34
irreducible, 34
orthogonality relations, 36

DE Franga, A.M.D.

June 28, 2019

Mat — UnB



150 Index

reducible, 34
completely, 35

trace, 35

ring, 10

f-commutative, 13, 85, 87, 91, 94

f-commutator, 84

associative, 10

center, 12

commutative, 10

ideal, 11

left ideal, 11

nil, 12
bounded index, 3, 12
nil index, 3

nilpotent, 3, 12
nilpotency index, 3

right ideal, 11

subring, 11

unitary, 10

Second Cohomology Group, 67
semigroup, 10, 84

action, 12, 84
Specht problem, 53

trace function, 35
twisted group algebra, 29

unitary, 10
unity, 10
upper bound, 33

vector space, 11
subspace, 11
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