Number Theory Seminar

On Mahler's U_{m}-numbers

Ana Paula Chaves
IME-UFG

Date: 12/09/2019
Time: 16:00
Auditorium / MAT

Abstract

The genesis of transcendental number theory, took place in 1844 with Liouville's result on the "bad" approximation of algebraic numbers by rationals. More precisely, if α is an algebraic number of degree $n>1$, then there exists a positive constant C, such that $|\alpha-p / q|>C q^{-n}$, for all $p / q \in \mathbb{Q}^{*}$. Using this remarkable fact, he was able to build a non-enumerable set of transcendental numbers called Liouville numbers. Since then, several classifications of transcendental numbers have been developed, one of them proposed by Kurt Mahler in 1932. He splited the set of transcendental numbers on three disjoint sets: $S-, T-$ and U-numbers. In a certain sense, U-numbers generalize the concept of Liouville numbers. Yet, the set of U-numbers can be splited into U_{m}-numbers, that are numbers "rapidly" approximable by algebraic numbers of degree m.

On this lecture, the following result, made in cooperation with D. Marques, will be proved:

Theorem: Let $\omega: \mathbb{N} \rightarrow \mathbb{N}$, such that $\omega_{n} \rightarrow \infty$, as $n \rightarrow \infty$. Let $\xi \in \mathbb{R}$ be a Liouville number, such that there exists an infinite sequence of rational numbers $\left(p_{n} / q_{n}\right)_{n}$, satisfying

$$
\left|\xi-\frac{p_{n}}{q_{n}}\right|<H\left(\frac{p_{n}}{q_{n}}\right)^{-\omega_{n}},
$$

where $H\left(p_{n+1} / q_{n+1}\right) \leq H\left(p_{n} / q_{n}\right)^{O\left(\omega_{n}\right)}$.
Now, take $\alpha_{0}, \ldots, \alpha_{l}, \beta_{0}, \ldots, \beta_{r} \in \overline{\mathbb{Q}}$, with $\beta_{r}=1$ and $\alpha_{l} \neq 0$, such that $\left[\mathbb{Q}\left(\alpha_{0}, \ldots, \alpha_{l}, \beta_{0}\right.\right.$, $\left.\left.\ldots, \beta_{r}\right): \mathbb{Q}\right]=m$. Then, for $P(z), Q(z) \in \overline{\mathbb{Q}}[z]$, given by $P(z)=\alpha_{0}+\alpha_{1} z+\cdots+\alpha_{l} z^{l}$ and $Q(z)=\beta_{0}+\beta_{1} z+\cdots+\beta_{r} z^{r}, P(\xi) / Q(\xi)$ is a U_{m}-number.

References

[1] K. Alniaçik On the Subclasses U_{m} in Mahler's Classification of Transcendental Numbers. İstanb. Univ. Sci. Fac. J. Math. Phys. Astronom., 44, 39-82, 1972.
[2] A. P. Chaves, D. Marques An Explicit Family of U_{m}-numbers II. Preprint, 2019.
[3] A. P. Chaves, D. Marques, An Explicit Family of U_{m}-numbers I. Elem. Math 69, 18-22, 2014.
[4] W. J. LeVeque, On Mahler's U-Numbers. J. London Math. Soc. 1 (2), 220-229 1953
[5] K. Mahler, Zur Approximation der Exponentialfunktion und des Logarithmus. Teil I. J. Reine Angew. Math (166), 118-150 1932

