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Resumo

Propõe-se uma extensão para problemas de disunificação de primeira-ordem adicionando
suporte a operadores de ligação de acordo com a abordagem nominal. Nesta abordagem,
abstração é implementada usando átomos nominais ao invés de variáveis de ligação como na
representação clássica de termos e renomeamento de átomos é implementado por permutações.
Em lógica nominal problemas de unificação consistem de perguntas equacionais da forma
s ≈α

? t (lê-se: s é α-equivalente a t?) consideradas sobre problemas de freshness da forma
a#?t (lê-se: a é fresco em t?) que restringem soluções proibindo ocorrências livres de átomos
na instanciação de variáveis. Além dessas questões equacionais e freshness, problemas de
disunificação nominal incluem restrições na forma de disequações s ̸≈α

? t (lê-se: s é α-
diferente de t?) com soluções dadas por pares consistindo de uma substituição σ e um conjunto
de restrições de freshness na forma a#X tal que sobre estas restrições a σ -instanciação de
equações, disequações, e problemas de freshness são válidas. Mostra-se, reutilizando noções de
unificação nominal, como decidir se dois termos nominais podem ser feitos diferentes módulo
α-equivalência. Isso é feito extendendo resultados anteriores sobre disunificação de primeira
ordem e definindo a noção de soluções com exceção na linguagem nominal. Uma discussão
sobre a semântica de restrições em forma de disequações também é apresentada.





Abstract

An extension of first-order disunification problems is proposed by taking into account binding
operators according to the nominal approach. In this approach, bindings are implemented
through nominal atoms used instead of binding variables and renaming of atoms are imple-
mented by atom permutations. In the nominal setting, unification problems consist of equational
questions of the form s ≈α

? t (read: is s α-equivalent to t?) considered under freshness prob-
lems a#?t (read: is a fresh for t?) that restrict solutions by forbidding free occurrences of
atoms in the instantiations of variables. In addition to equational and freshness problems,
nominal disunification problems also include nominal disunification constraints in the form
of disequations s ̸≈α

? t (read: is s α-different to t?) and their solutions consist of pairs of a
substitution σ and a finite set of freshness constraints in the form of a#X such that under these
restrictions the σ -instantiation of the equations, disequations, and freshness problems holds. By
re-using nominal unification techniques, it is shown how to decide whether two nominal terms
can be made different modulo α-equivalence. This is done by extending previous results on
first-order disunification and by defining the notion of solutions with exceptions in the nominal
syntax. A discussion on the semantics of disunification constraints is also given.





Table of contents

Introduction 1

1 Nominal Abstract Syntax 5
1.1 Nominal Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Substitutions and Permutation Action . . . . . . . . . . . . . . . . . 6
1.2 Equality and Derivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Properties of # and ≈α . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Nominal Constraint Solving and Unification . . . . . . . . . . . . . . . . . . 21

1.3.1 Nominal Constraint Solving . . . . . . . . . . . . . . . . . . . . . . 21
1.3.2 Equational Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.3 Nominal Unification . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Nominal Disunification Constraints 33
2.1 Generalized Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Solving Nominal Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Nominal Universal Algebra 41
3.1 A More General Derivation System . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Instantiating Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.2 Permutating Atoms: α-equivalence . . . . . . . . . . . . . . . . . . 44
3.1.3 Proof-theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Denotational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 Nominal Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Semantic Freshness . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.3 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.4 Equivariant Functions . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Nominal Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.1 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



xx Table of contents

3.3.2 The Ground Initial Algebra F(T,D) . . . . . . . . . . . . . . . . . . 59
3.3.3 Completeness for Equality Derivations . . . . . . . . . . . . . . . . 61
3.3.4 Completeness for Freshness . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Homomorphisms, Subalgebras and Product Algebras . . . . . . . . . . . . . 67
3.4.1 Homomorphisms and Homomorphic Images. . . . . . . . . . . . . . 67
3.4.2 Subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.3 Product Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.4 Atoms-abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Varieties and Equational Classes of Algebras . . . . . . . . . . . . . . . . . 71
3.5.1 Surjections Out of Initial Algebras . . . . . . . . . . . . . . . . . . . 72
3.5.2 Injections Out of Initial Algebras . . . . . . . . . . . . . . . . . . . 74
3.5.3 The Nominal HSP Theorem . . . . . . . . . . . . . . . . . . . . . . 75

4 Conclusions and Future Work 77

References 79

Appendix A ZFA Set Theory and Equivariance 83

Appendix B Complete Proofs 87
B.1 Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



Introduction

Nominal techniques can be used to reason about systems with binders. The binding structure
of these systems always requires a method to deal with α-equivalence between objects in the
system, i.e., objects (usually the parse tree representation of the concrete syntax) are considered
equal if they differ only by the name of bound variables. For instance, in the syntax of λ -
calculus, terms like λx.xy and λ z.zy should be considered equivalent, despite their syntactical
differences.

It is common in the literature to consider the α-equivalence relation as part of the syntactical
structure of terms of the language. One often says “terms are considered syntactically identical
if they are α-convertible”. This means that one considers the quotient of the set of terms by
the α-equivalence relation. So one has the problem of which representative of α-equivalence
classes should be chosen. One of the most popular strategies to solve this problem is called the
“Barendregt Variable Convention”: choose representatives for which the bound variables are
mutually distinct and distinct from any free variable in the current context. This strategy solves
the problem for handwritten proofs and calculations, but not for implementations. Another
treatment of α-equivalence is to get rid of equivalence classes by considering de Bruijn indices
instead of variable names. Using de Bruijn indices, free and bound variables are indexed as
naturals and thus all objects have unique representations so that one does not need to worry
about representatives of equivalence classes. This approach facilitates the implementation of
systems with binders but at the cost of readability.

The nominal approach diverges from those above in two important ways: first, one can
reason about α-equivalence in a readable way, very close to informal practice, while still
remaining fully formal since α-renaming is embedded in the nominal syntax; second, nominal
α-equivalence is easy to implement in computer systems.

Nominal terms have atoms (a,b,c . . .) used to represent object-level variables, and variables,
or unknowns (X ,Y, . . .) used to express variables on the meta-level. Atoms can be abstracted
by a binder operator but cannot be instantiated by a substitution, whereas variables cannot
be abstracted but can be instantiated by a substitution. For instance, the nominal term [a] t
represents the abstraction of atom a in t. To rename an atom a to another atom b we make
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use of an atom permutation. Permutations are built as lists of atom swappings of the form
(a b). The action of π = (a b) over [a] t, denoted by π · t gives as result the term [b] t ′ where t ′

is obtained by the replacement of all occurrences of a by b and all occurrences of b by a in t.
The action of an atom permutation π over a meta-variable X will be ‘suspended’ in X , written
as π ·X , and will be ‘executed’ only when X is instantiated. The α-equivalence relation over
nominal terms is built using permutations and a freshness relation between atoms and terms,
written as a#t, which means that a cannot occur free in t.

Nominal techniques have been widely explored and investigated for the last years [18, 3, 26].
Nominal unification has also been developed [29, 13], and more recently, works on unification
modulo equational theories [1, 2, 4] have also been developed. Unification is the problem of
finding a substitution σ that makes two terms ‘equal’ i.e., sσ ≈α tσ . In the nominal setting,
α-equality comes with freshness conditions for atoms, which should be taken into account
when dealing with nominal unification problems. For instance, the problem of unifying λ [a]X
and λ [b]Y reduces to the problem of unifying X ≈α

? (b a) ·Y under the condition that a#Y .
Therefore, a solution to a nominal unification problem will be a pair ⟨Γ,σ⟩ consisting of a set
of freshness constraints Γ, and a substitution σ over the variables appearing in the problem.
Several applications of nominal unification exist, for instance, in logic programming [14],
automatic deduction and theorem proving [24], among others.

This work is about nominal disunification, that is, the problem of solving nominal unification
questions enriched with disequations, i.e., constraints of the form s ̸≈α

? t. For example, consider
the unification problem λ [a]X ≈α

?
λ [b]Y as above, but imposing the condition that solutions

can neither map X to the atom a nor Y to the atom b. This condition may be given as a set
of disequations, and solutions should be computed in such a way that they (and therefore,
their instances) satisfy the imposed restriction. The nominal disunification constraint is then
represented as a pair of equational and disequational problems:〈

λ [a]X ≈α
?

λ [b]Y || X ̸≈α
? a, Y ̸≈α

? b
〉

Imposing such conditions has some side-effects that need to be addressed in order to be able
to formally state a definition of solution. In a more general view, a nominal disunification
problem is given as P = ⟨∆ ⊢ s1 ≈α

? t1, . . . ,sn ≈α
? tn | ∇ ⊢ u1 ̸≈α

? v1, . . . ,um ̸≈α
? vm⟩, and a

solution to such problem is a pair ⟨Γ,σ⟩ of a context Γ and a substitution σ , such that σ makes
terms of each equation equal, but leaves those of the disequations different, while satisfying the
freshness constraints ∆ and ∇.

The strategy proposed by Buntine and Bürckert [9] to solve systems containing first-order
equations and disequations is followed in the current work. But its extension to the nominal
setting is not straightforward since the notions of equality and disequality are different and



Introduction 3

the freshness side conditions add extra constraints to the problem. The standard nominal
unification algorithm [29] can be reused to provide solutions to nominal unification problems,
and following Buntine and Bürckert’s approach, we show that nominal disequations can be
treated in a nominal term-algebra.

Related Work. Disunification problems have been studied extensively in the first-order
framework [15, 16, 9, 17, 6, 28] and also in the higher-order one [25].

Buntine and Bürckert [9] solve systems of equations and disequations in equational theories
with a finitary unification type; they investigate E-disunification problems with two main
applications in mind: the first application is to give a generalization for logic programming to
include negation clauses in such a way that solution to queries can be expressed as substitutions
other than the limited form of negation, called negation as failure.

The second applications is related with the use of E-disunification as a mechanism to
drastically reduce the solution space of the unification algorithm for some equational theories.
For instance, they showed that associative-commutative unification problems (a.k.a. AC-
unification problems) are in fact a kind of so called AC1-disunification problems (associative-
commutative functions with a unity 1) that have a solution space considerably smaller than the
solution space of standard AC-problems. Differently, Comon and Lescanne [16, 15] consider
more general problems, called equational problems, which include universally and existentially
quantified variables in the algebra of rational trees or in the quotient term-algebra T (F,X) by
a congruence =E . They propose a set of transformation rules on equational problems of the
form ∃w∀y : P1 ∧ . . .∧Pn, where Pi, for i = 1..n, is a called a system, that is, an equation of
the form s = t or ⊤, or a disequation s ̸= t or ⊥, or a disjunction Pi1 ∨ . . .∨Pini of systems.
Their strategy consists of applying transformation rules to the equational problem until a kind
of solved form is reached. These problems have applications in sufficient completeness for
algebraic specifications defined by sets of rewriting rules.

In [17], Fernández shows that E-disunification is semi-decidable when the theory E is pre-
sented by a ground convergent rewrite system, and gives a sound and complete E-disunification
procedure based on narrowing. Baader and Schulz [6] show that solvability of disunification
problems in the free algebra of the combined theory E1 ∪ . . .∪En is decidable if solvability
of disunification problems with linear constant restrictions in the free algebras of the theories
Ei(1 ≤ i ≤ n) is decidable. Lugiez [25] introduces higher-order disunification problems and
gives some decidable cases for which equational problems can be extended to higher-order
systems.
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Contributions. The main contributions of the work done in this dissertation can be summa-
rized as follows.

1. We have included proofs for all the results, complementing the related work.

2. We extend first-order disunification problems to the nominal framework introducing
nominal constraint problems.

3. We extend the notion of substitution with exceptions to solution pairs that consist of
a freshness context and a substitution, with exceptions (Definition 2.2). In addition,
a version of the Consistency Test Algorithm (Algorithm 1) to deal with pairs with
exceptions is proposed.

4. We propose a sound, complete, and terminating (provided nominal unification is finitary)
procedure (Algorithm 2) to solve nominal disunification constraints that reuses the
nominal unification algorithm.

5. We prove that the Representation Theorem holds in the nominal approach to disunification
(Theorem 2.1).

6. From the semantics point of view, we show that Birkhoff’s HSP Theorem (Theorem 3.12),
as in the first-order case, does not hold for nominal disequations (Example 3.6).

The results we obtained in this work, presented mainly in Chapter 2, have been accepted
for publication in the Proceedings of LSFA 2019 [5].

Outline of the dissertation. Chapter 1 establishes the main required notions on nominal
syntax, α-equality, and unification. Chapter 3 introduces notions from nominal universal
algebra by working on a detailed revision of all the construction needed to prove the nominal
version of the so called HSP Theorem, Theorem 3.12. Chapter 2 introduces the nominal
constraint problems as well as a generalized notion of instantiation and proves some results on
the consistency of pairs with exceptions. Section 2.2 shows how to solve nominal constraint
problems by reusing the nominal unification algorithm. Chapter 4 concludes the dissertation.



Chapter 1

Nominal Abstract Syntax

This chapter introduces the basic concepts and definitions on nominal terms, constraint solving,
and nominal unification. The notation is consistent with standard works on nominal techniques
such as [18] and [22].

1.1 Nominal Terms

Fix countable infinite disjoint sets of variables X= {X ,Y,Z, . . .} and atoms A= {a,b,c,d, · · ·}.
Variables represent meta-level unknowns and atoms object level variable symbols. Atoms are
identified by their name, so it is redundant to say two atoms a and b are different. A signature Σ

is a set of term-formers such that each f ∈ Σ is assigned a unique non-negative integer n, called
the arity of f , written as f : n.

A permutation π is a bijection A→ A with finite domain, i.e., the set supp(π) := {a ∈
A | π(a) ̸= a} is finite. Write id for the identity permutation. The composition of two
permutations π and π

′ is denoted as π ◦π
′. We also write a permutation π as a list of swappings

π = (a1 b1)(a2 b2) . . .(an bn) and denote by (P,◦) the group of all permutations with finite
support. We may abbreviate (P,◦) as P.

Definition 1.1 (Nominal Terms). Let Σ be a signature disjoint from A and X. The set T (Σ,A,X)
of all nominal terms is inductively generated by the following grammar:

s, t,u,v ::= a | π ·X | [a] t | f (t1, . . . , tn)

Terms are called, respectively, atoms, moderated variables, abstractions, and functions
application. Nominal terms are like first-order terms with the addition of atoms, abstractions,
and a built-in notion of binder. Atoms are just members of A, as said earlier they represent
object-level variables. A moderated variable is a variable that has a suspended permutation,
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intuitively, a suspension π ·X represent ‘permute π in whatever X is instantiated to’. Note that
X is not a nominal term but id ·X is. However, the abbreviation of id ·X to X is used when no
ambiguity arises. An abstraction [a] t is intended to represent a term t (the scope of [a]) with
all occurrences of the atom a bounded by the binder operator [·]. Atoms not in the scope of a
binder [·] are called free.

Example 1.1. Let Σλ := {lam : 1,app : 2} be the signature for the λ -calculus (for a complete
axiomatization of the λ -calculus within the nominal syntax the reader is referred to [21]). If
one consider λ -variables as atoms λ -terms can be inductively generated by the grammar:

e ::= a | lam([a]e) | app(e,e)

To simplify notation, write app(s, t) as st and lam([a]s) as λ [a]s. The following are examples
of nominal terms:

(λ [a]a)X (λ [a] (λ [b]ba) c)d

Definition 1.2. The pair s ≡ t denote syntactic equality between terms.

Remark 1.1. Note that if π = γ then π ·X ≡ γ ·X , since permutations are bijections. In nominal
syntax there is no quotient by abstraction, e.g. [a]a ̸≡ [b]b.

1.1.1 Substitutions and Permutation Action

Substitution is not an easy notion to define in a system with binders because it needs to avoid
the capture of free variables occurrences. For example, consider the λ -term (λy.yx), one can
think of this term as the function that ‘takes the input y and apply it to x’. The substitution
[x/y] applied to (λy.yx) without any restriction give as output the λ -term (λy.yy) which has the
function interpretation of ‘takes the input y and apply it to itself’. Notice that in the resultant
term the former x, substituted for y, is now bounded: it has been captured by the abstractor
λ . The capture of free variables changes the semantics of λ -terms, in the sense that λ -terms
are abstractions for the behavior of functions: changing how functions behave also changes its
semantics.

Binders appears not only in the λ -calculus context. Maybe a more iluminating example1

would be a function like f (y) = y+x which becomes f (y) = y+y if x is renamed for y. Perhaps
is now more easy to see what we mean by a change on the semantic of a term by free variable
capturing. The same happens in first-order logic when we consider formulas like ∀y.y > x
which does not have the same semantics as ∀y.y > y. These requirements could be summarized
as the following:

1For a more mathematical inclined audience.
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Substitutions of free variables in a term cannot change the semantics of that term.

One approach to tackle ‘the binding problem’ is by defining a special kind of substitution,
called renaming, that only map bound variables in a term to other fresh variables, and then
builds the notion of a general substitution on top of this renaming operation. For instance,
before the application of [x/y] in (λy.yx) rename the binding variable y in (λy.yx) to a fresh
variable z obtaining (λ z.zx). Finally, apply the substitution (λ z.zx)[x/y] to get λ z.zy.

Another attempt is to define an equivalence relation on terms, called α-equivalence, and
put the renaming side conditions inside this definition. Again, renaming is the basis of α-
equivalence. For a more detailed discussion the reader is referred to [8, Definition 2.1.11].

The nominal approach differs from the previous by making a distinction between two kinds
of variables: first, the meta-level variables (just call them variables); second, the object-level
variables (call them atoms). Meta-level variables are unknowns that can be instantiated to
other nominal terms. In constrast, atoms are constant-like variables that represent object-level
unknowns which can be bounded by a binder operator, and renaming is implemented via the
use of permutations of names.

We shall now define how permutations and substitutions act on general terms, denoted by
π · t and tσ , respectively.

Definition 1.3 (Action of Permutation). The object-level action of a permutation π on a term t
is defined by induction on the structure of t, as follows:

π ·a ≡ π(a) π · (γ ·X)≡ (π ◦ γ) ·X π · [a] t ≡ [π ·a] (π · t)
π · f (t1, . . . , tn)≡ f (π · t1, . . . ,π · tn)

Intuitively, π propagates through the structure of t until it reaches an atom or a moderated
variable. It can be proven (by a simple induction on the structure of terms and using the
definition given above) that composition and identity of permutations extend to terms, that
is: (π ◦ γ) · t ≡ π · (γ · t) and id · t ≡ t. This fact will be used extensively in the reasoning that
follows.

As usual, substitutions are defined as maps from variables to nominal terms. They are
the way we instantiate variables, that is, replace the occurrence of a variable X by a nominal
term t, denoted as [X/t]. The action of a substitution can be extended from variables to terms
according to the definition below.

Definition 1.4 (Action of substitutions). The meta-level action of a substitution σ on a term t,
denoted as tσ , is inductively defined by:

aσ ≡ a (π ·X)σ ≡ π · (Xσ) ([a] t)σ ≡ [a] (tσ) f (t1, . . . , tn)σ ≡ f (t1σ , . . . , tnσ)
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Intuitively, σ propagates through the structure of a term until it reaches an atom or a
moderated variable. Atoms are treated like constants by the substitution, and when it reaches a
suspension π ·X then σ acts on X and afterwards π acts on Xσ . For example, take π = (a b)
and σ = [X/b] then ((a b) ·X)σ ≡ (a b) ·b ≡ a.

Remark 1.2. The composition of two substitutions will be denoted by σ ◦ τ (abbreviated by
στ) and means: first apply σ and then apply τ to the resultant term.

t(σ ◦ τ)≡ tστ ≡ (tσ)τ

Remark 1.3. Substitutions do not avoid capture of variables by itself. For instance, take
([a] t)σ ≡ [a] (tσ) the substitution σ does not avoid capture of a in t by the abstraction.

The next lemma guarantees that substitutions and permutation actions commute.

Lemma 1.1 (Commutation Lemma). π · (tσ)≡ (π · t)σ .

Proof. The proof is by induction on the structure of t and using Definitions 1.3 and 1.4. The
base case is trivial since atoms are not affected by substitution actions. For moderated variables:

π · ((π ′ ·X)σ)≡ π · (π ′ · (Xσ))

≡ (π ◦π
′) ·Xσ

≡ (π ◦π
′ ·X)σ

≡ (π · (π ′ ·X))σ

For abstractions:

π · ([a] tσ)≡ [π ·a]π · (tσ)

I.H≡ [π ·a] (π · t)σ
≡ (π · [a] t)σ .

Finally, for function application:

π · f (t1, . . . , tn)σ ≡ f ((π · t1)σ , . . . ,(π · tn))σ
I.H≡ f (π · (t1σ), . . . ,π · (tnσ))

≡ π · ( f (t1, . . . , tn)σ).
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Definition 1.5. The meta-level permutation action tπ on terms t is inductively defined by:

aπ ≡ π(a) (γ ·X)π ≡ (πγπ
−1) ·X ([a] t)π ≡ [aπ ] tπ

f (t1, · · · , tn)π ≡ f (tπ
1 , · · · , tπ

n )

Remark 1.4. Note that the meta-level action of a permutation on a suspension is the conjugation
(as in abstract algebra) of γ by π . In fact, we can view the definition given above as the action
of the group P by conjugation on terms. The conjugation of two elements from P, as usual, is
denoted by ρ

π = πρπ
−1.

The next lemma translates the predicted behavior of compositions π ◦ρ acting on terms.
They act like P-conjugation on A.

Lemma 1.2. For any term t and permutations π and ρ , tπ◦ρ ≡ tρπ

.

Proof. The proof is by induction on the structure of t and using Definition 1.5.

The base case follows by aπ◦ρ ≡ π(ρ(a))≡ π(aρ)≡ aρπ

.

For abstractions we have:

([a] t)π◦ρ ≡ [aπ◦ρ ] tπ◦ρ

≡
[
aρπ
]

tπρ

I.H≡
[
aρπ
]

tρπ

≡ ([a] t)ρπ

The most interesting case is:

(γ ·X)π◦ρ ≡ (πρ)γ(πρ)−1 ·X
≡ π(ργρ

−1)π−1 ·X
≡ πγ

ρ
π
−1 ·X

≡ (γρ)π ·X
≡ (γ ·X)ρπ
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Finally the case for function application follows by:

f (t1, . . . , tn)π◦ρ ≡ f (tπ◦ρ

1 , . . . , tπ◦ρ
n )

I.H≡ f (tρπ

1 , . . . , tρπ

n )

≡ f (t1, . . . , tn)ρπ

The next lemma states that Definitions 1.3 and 1.5 are definable in term of each other, in
the presence of substitution.

Lemma 1.3. Given a term t and a permutation π , let σ be a substitution that maps each X
mentioned in t to π ·X and σ

′ that maps each X mentioned in t to π
−1 ·X . Then:

π · t ≡ tπ
σ and tπ ≡ (π · t)σ ′

Proof. The proof follows by induction on the structure of t.

The base case is trivial since atoms are not affected by substitutions.

For abstractions we have: π · [a] t ≡ [π(a)]π · t and by induction hypothesis follows that
[aπ ]π · t ≡ [aπ ] tπ

σ ≡ ([a] t)π
σ .

The case for suspensions follows by:

π · (γ ·X)≡ πγ ·X
≡ πγπ

−1 · (π ·X)

≡ πγπ
−1 · (Xσ)

≡ (πγπ
−1 ·X)σ

≡ (γ ·X)π
σ .

For function application f (π · t1, . . . ,π · t1) induction hypothesis gives π · ti ≡ tπ
i σ , and

we conclude π · f (t1, . . . , tn)≡ f (t1, . . . , tn)π
σ .

The proof of (γ ·X)π ≡ (π · (γ ·X))σ ′ follows the same reasoning:

(γ ·X)π ≡ πγπ
−1 ·X

≡ πγ · (π−1 ·X)

≡ π · (γ ·X)σ ′
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1.2 Equality and Derivability

This section concentrates in the study of nominal α-equivalence. The predicate for α-equality
(≈α ) in nominal terms relies on the notion of ‘fresh variable’ (#):

– a#t means that atom a cannot occur free in t;

– s ≈α t means that s is α-equivalent to t.

Constraints are generated by the grammar

P,Q,C := a#t | s ≈α t.

The first constraint a#t is called a freshness constraint whereas the second s ≈α t is called
an α-equality constraint. A freshness constraint of the form a#a or a#X is called primitive (or
reduced). We may drop set brackets and write a#t, b#u for {a#t,b#u}.

A context, denoted by greek letters ∆,Γ, . . . is a set of primitive freshness constraints, it is
called consistent if it does not contain any constraint of the form a#a.

With the predicates for freshness (#) and α-equality (≈α), Fernández and Gabbay [18]
present a derivation system defined by the rules in Figures 1.1 and 1.2 to express validity of
freshness and α-equality constraints. This system generates an equality theory, in the sense of
Theorem 1.4.

Definition 1.6. An α-equality is a pair s ≈α t where s and t are terms.

(#ab)
a#b

π
−1(a)#X

(#X)
a#π ·X

(#a)
a# [a] t

a#t (#b)
a# [b] t

a#t1 · · ·a#tn (# f )
a# f (t1, . . . , tn)

Fig. 1.1 Derivation rules for freshness

To define ≈α consider the difference set of two permutations:

ds(π,γ) := {a ∈ A | π(a) ̸= γ(a)}.

In the rules defining ≈α below, ds(π,γ)#X denotes the set of constraints {a#X | a ∈ ds(π,γ)}.
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(≈α a)a ≈α a
ds(π,γ)#X

(Ds)
π ·X ≈α γ ·X

t1 ≈α u1 · · · tn ≈α un (F)
f (t1, . . . , tn)≈α f (u1, . . . ,un)

t ≈α u (Abs-a)
[a] t ≈α [a]u

(b a) · t ≈α u b#t
(Abs-b)

[a] t ≈α [b]u

Fig. 1.2 Derivation rules for α-equivalence

Definition 1.7. Define a notion of α-derivability by the deduction rules in Figures 1.1 and 1.2.

1. Write ∆ ⊢ a#t when a derivation of a#t exists using the elements of ∆ as assumptions.
We say ∆ ⊢ a#t is derivable or just ∆ ⊢ a#t.

2. Write ∆ ⊢ s ≈α t when s ≈α t can be derived such that the derivation uses (at most)
assumptions from ∆. We say ∆⊢ s≈α t is derivable or just ∆⊢ s≈α t and write ∆0 t ≈α u
(or even ∆ ⊢ s ̸≈α t) when ∆ ⊢ t ≈α u is not derivable.

Example 1.2. Below we give some examples of derivation trees, in the first we derive
a#(Xλ [a]Y ) in the syntax of untyped λ -calculus with the assumption a#X . The second is a
trivial α-equivalence equality, we use it as an example to show how derivations are constructed.

a#X

(#a)
a# [a]Y

(# f )
a#λ [a]Y

(# f )
a#(X λ [a]Y )

(≈α a)
b ≈α b

(b a) ·b ≈α a
(#a)

b#a
(Abs-b)

[a]a ≈α [b]b

The dashed line above represents a computation with the permutation action (b a) ·a, not an
application of a derivation rule.

Definition 1.8. We extend notation for tπ , π · t and tσ to freshness contexts ∆ as follows:

∆
π := {π ·a#X | a#X ∈ ∆}

π ·∆ := {π ·a#π ·X | a#X ∈ ∆}
∆σ := {a#Xσ | a#X ∈ ∆}

Note that ∆
π is a freshness context, but π ·∆ and ∆σ need not be.

1.2.1 Properties of # and ≈α

In this subsection some syntactical properties of freshness and α-equality constraints will be
developed.
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Definition 1.9. The functions atms(t) and var(t) will be used to compute the set of atoms and
unknowns in a term, respectively. They are defined by:

atms(a) = {a}
atms([a] t) = atms(t)∪{a}

var(a) = /0

var([a] t) = var(t)

atms(π ·X) = supp(π)

atms( f (t1, . . . , tn)) = ∪iatms(ti)

var(π ·X) = {X}
var( f (t1, . . . , tn)) = ∪ivar(ti)

This definition can be extended to constructions more complex than terms, e.g. a list (as in
atms(∆,s, t)) or a substitution. By this we mean the atoms or variables appearing anywhere
within the brackets. More specifically, atms(∆,s, t) means {a | a#X ∈ ∆}∪atms(s)∪atms(t).
Note that this extension will also be used for the function var(·).

The next lemma states that if two permutations are identified in their action (that is,
ds(π,γ) = /0) then they are also equivalent, in the sense that they are logically indistinguishable.

Lemma 1.4. Suppose ∆ is a context. If ds(π,γ) = /0 then:

1. ∆ ⊢ π ·a#t iff ∆ ⊢ γ ·a#t,

2. ∆ ⊢ a#π · t iff ∆ ⊢ a#γ · t,

3. ∆ ⊢ π · s ≈α t iff ∆ ⊢ γ · s ≈α t,

4. ∆ ⊢ s ≈α π · t iff ∆ ⊢ s ≈α γ · t.

Proof. Consider π ̸= id. If π = id the result is trivially true.

1. Note that ds(π,γ) = /0 precisely when π(a) = γ(a) for every atom a, so π ·a ≡ γ ·a and
the result follows.

2. We work by induction on the derivation of a#π · t from ∆. There are five cases to consider
and the analysis is based on the last rule applied in the derivation.

(a) The derivation concludes in (#ab): then π · t ≡ b so t ≡ c, for some atom c, and
since π ·b ≡ γ ·b, the base case follows.

(b) The derivation concludes in (#X):

Then ∆ ⊢ a#π ·X and π
−1(a)#X ∈ ∆. Since ds(π,γ) = /0, one has γ

−1(a) = π
−1(a),

therefore, there is a proof of ∆ ⊢ a#γ ·X .
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(c) The derivation concludes in (#a):

Then ∆ ⊢ a#π · ([b]s) and π ·b ≡ a. Since γ ·b ≡ a we use (#a) to build a derivation
of a#γ · [b]s.

(d) The derivation concludes in (#b):

Then ∆⊢ a#π · [b]s, π ·b≡ b′ ̸≡ a (otherwise the rule (#a) is applied), and ∆⊢ a#π ·s
is derivable. By induction hypothesis, ∆ ⊢ a#γ · s is derivable, and by rule (#b),
there is a derivation of ∆ ⊢ a#γ · [b]s.

(e) The derivation concludes in (# f ):

Then ∆ ⊢ a#π · f (t1, . . . , tn) and ∆ ⊢ a#π · ti for 1 ≤ i ≤ n is also derivable. By
induction hypothesis, ∆ ⊢ a#γ · ti. From rule (# f ), ∆ ⊢ a#γ · f (t1, . . . , tn) is derivable.

3. The proof is by induction on the derivation of ∆ ⊢ π · s ≈α t, by analysing the last rule
applied.

(a) The base case is trivial since π ·a ≡ γ ·a for all atoms a.

(b) The derivation concludes in (Ds):

Derive ∆ ⊢ π · τ ·X ≈α τ
′ ·X from ∆ ⊢ a#X for every a#X in ds(π ◦ τ,τ ′). Since

ds(π,γ) = /0, the identity (π ◦ τ) ·a ≡ (γ ◦ τ) ·a holds, for every atom a. Therefore,
ds(πτ,τ ′)= ds(γτ,τ ′). We can now write a derivation concluding in ∆⊢ τ ·τ ·X ≈α

τ
′ ·X , from the same hypothesis, by applying (Ds).

(c) The derivation concludes in (Abs-a):

Then we derive ∆ ⊢ [π ·b]π · s ≈α [a] t from ∆ ⊢ π · s ≈α t, with π · b ≡ a. By
induction hypothesis, ∆ ⊢ γ · s ≈α t, besides γ ·b ≡ a, therefore, we use (Abs-a) to
conclude ∆ ⊢ [γ ·b]γ · s ≈α [a] t.

(d) The derivation concludes in (Abs-b):

Then ∆⊢ [π ·a]π ·s≈α [b] t is derivable from ∆⊢ (b π(a))◦π ·s≈α t and ∆⊢ b#π ·s,
with π · a ̸≡ b. Since ds(π,γ) = /0 and π · a ≡ γ · a, it follows that ds((b π · a) ◦
π,(b γ ·a)◦ γ) = /0. By induction hypothesis, ∆ ⊢ (b γ ·a) · γ · s ≈α t and by part 2,
∆ ⊢ b#γ · s. By applying rule (Abs-b) we conclude ∆ ⊢ [γ ·a]γ · s ≈α [b] t.

(e) If the derivation concludes in (F) just apply the induction hypothesis and (F).

4. Follows the same reasoning as in item 3.

The next theorem shows that nominal logic is equivariant, in the sense that derivable
freshness (a#t) and equality (s ≈α t) are invariant under the action of permutations.
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Theorem 1.1 (Object-level equivariance). For any permutation π:

1. if ∆ ⊢ a#t then ∆ ⊢ π ·a#π · t;

2. if ∆ ⊢ s ≈α u then ∆ ⊢ π · s ≈α π ·u.

Proof. Consider π ̸= id. If π = id the result is trivially true.

1. The proof is by induction on the derivation rules from Table 1.1, by analysing the last
rule applied in ∆ ⊢ a#t.

(a) Base case is trivial.

(b) The last rule is (#X):

Then ∆ ⊢ a#γ ·X is derivable and γ
−1 ·a#X ∈ ∆. Notice that

(π ◦ γ)−1 ·π ·a ≡ (γ−1 ◦π
−1 ◦π) ·a ≡ γ

−1 ·a

Therefore, (π ◦ γ)−1 ·π ·a#X ≡ γ
−1 ·a#X ∈ ∆, and the result follows from

(π ◦ γ)−1 ·π ·a#X ∈ ∆
(#X)

∆ ⊢ π ·a#(π ◦ γ) ·X

(c) The last rule is (#a):

Notice that ∆ ⊢ π ·a#π ·([a] t) is the same as ∆ ⊢ π ·a# [π ·a]π · t, which is derivable
using (#a).

(d) The last rule is (#b):

Then ∆ ⊢ a# [b] t is derivable from ∆ ⊢ a#t. By induction hypothesis ∆ ⊢ π ·a#π · t,
therefore, there is a derivation Π

Π

∆ ⊢ π ·a#π · t (#b)
∆ ⊢ π ·a#

[
π ·b′

]
π · t

where π ·b′ ≡ b, and the result follows.

(e) The last rule is (# f ):

Then ∆ ⊢ a# f (t1, . . . , tn) is derivable from ∆ ⊢ a#t1, . . . ,a#tn. By induction hypoth-
esis, ∆ ⊢ π ·a#π · t1, . . . ,π ·a#π · tn and ∆ ⊢ π ·a#π · f (t1, . . . , tn) is derivable using
(# f ).

2. The proof is by induction on the rules from Table 1.2, by analysing the last rule applied
in ∆ ⊢ s ≈α u.
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(a) For the base case:

From ∆ ⊢ a ≈α a one can trivially deduce ∆ ⊢ π ·a ≈α π ·a.

(b) The last rule is (Ds):

Then ∆⊢ τ ·X ≈α γ ·X is derivable from ∆⊢ ds(τ,γ)#X . Note that ds(π ◦τ,π ◦γ)=

ds(τ,γ), therefore, ∆ ⊢ (π ◦ τ) ·X ≈α (π ◦ γ) ·X is derivable using (Ds).

(c) The last rule is (Abs-a):

Then ∆ ⊢ [a]s ≈α [a]u is derivable from ∆ ⊢ s ≈α u. By induction hypothesis there
is a derivation of ∆ ⊢ π · s ≈α π ·u, and we build a derivation for ∆ ⊢ [π ·a]π · s ≈α

[π ·a]π ·u using (Abs-a), which is the same as π · [a]s ≈α π · [a]u.

(d) The last rule is (Abs-b):

Then ∆ ⊢ [a]s ≈α [b]u is derivable from ∆ ⊢ (b a) ·t ≈α u and ∆ ⊢ b#t. By induction
hypothesis, ∆ ⊢ (π ◦ (b a)) · t ≈α π ·u, and ∆ ⊢ π ·b#π · t is derivable from the first
part. Since ds(π ◦ (b a),(π ·b π ·a)◦π) = /0 and by part 3 of Lemma 1.4, there are
derivations Π1 and Π2 such that

Π1

∆ ⊢ ((π ·b π ·a)◦π) · t ≈α π ·u
Π2

∆ ⊢ π ·b#π · t
(Abs-b)

∆ ⊢ [π ·a]π · t ≈α [π ·b]π ·u
which proves this case.

(e) If the derivatoin ends with (F):

By induction hypothesis, ∆ ⊢ π · si ≈α π · ti, for 1 ≤ i ≤ n. Finally, with (F) we
conclude ∆ ⊢ π · f (s1, . . . ,sn)≈α π · f (u1, . . . ,un).

Corollary 1.1. For any permutation π: ∆ ⊢ a#π · t if, and only if, ∆ ⊢ π
−1 · a#t. Similarly,

∆ ⊢ π · t ≈α u if, and only if, ∆ ⊢ t ≈α π
−1 ·u.

Proof. Follows by directly by equivariance, Theorem 1.1.

The next lemma states that freshness derivability is preserved under α-equality.

Lemma 1.5. If ∆ ⊢ t ≈α u then ∆ ⊢ a#t if, and only if, ∆ ⊢ a#u.

Proof. The proof is by induction on the structure of t. The base case is trivial.

(a) If t = π ·X , then ∆⊢ π ·X ≈α γ ·X is derivable from ∆⊢ ds(π,γ)#X . Now if ∆⊢ a#π ·X then
∆ ⊢ π

−1(a) ·X . There are two cases to consider: first, π(a)≡ γ(a) and trivially γ
−1(a)#X ;

second, π(a) ̸≡ γ(a) but since ∆ ⊢ ds(π,γ)#X by assumption, the result follows.
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(b) Suppose t = [b] t ′ then u is either [b]u′ or [c]u′. In the first case, ∆ ⊢ t ≈α u is derivable
using (Abs-a), so ∆ ⊢ t ′ ≈α u′. It follows from I.H that if ∆ ⊢ a#t ′ then ∆ ⊢ a#u′, and
by using (#b) whe have that ∆ ⊢ a# [b] t ′ implies a# [b]u′. For the latter case, note that
∆ ⊢ t ≈α u is derivable using (Abs-b) so both ∆ ⊢ (c b) · t ′ ≈α u′ and c#t ′ are derivable. By
I.H a#(c b) · t ′ implies a#u′. Equivariance, using π = (c b), gives a#t ′ and by (#b) a# [c]u′.

(c) Supoose t = f (t1, . . . , tn), then u = f (u1, . . . ,un) and ∆ ⊢ ti ≈α ui. By using I.H we get
∆ ⊢ a#ti implies ∆ ⊢ a#ui. The conclusion follows using (# f ).

The next result summarizes an important property of derivations: we do not need any
assumption a#X if a does not appers in the syntax of s, for a#t, or in the syntax of s, t for
derivations of s ≈α t.

Theorem 1.2 (Strengthening). Suppose a /∈ atms(s, t). Then:

1. ∆,a#X ⊢ b#s implies ∆ ⊢ b#s.

2. ∆,a#X ⊢ s ≈α t implies ∆ ⊢ s ≈α t.

Proof. In both cases, the proof is by induction on the derivation rules for freshness Figure 1.1
and/or α-equality (Figure 1.2).

1. The analysis follows by checking the last rule applied in the derivation of ∆,a#X ⊢ b#s.

(a) Base case: when the last rule is (#ab) or (#a) the result follows trivially.

(b) The last rule is (#X):

Then ∆,a#X ⊢ b#π ·X . If a /∈ atms(π ·X) = supp(π) then π
−1 · b ̸≡ a, and by

Corollary 1.1, π
−1 · b#X ∈ ∆. Therefore, by applying (#X) ∆ ⊢ b#π ·X , and the

result follows.

(c) The last rule is (#b):

Hence ∆,a#X ⊢ b# [c]s is derivable from ∆,a#X ⊢ b#s. By the induction hypothesis
∆ ⊢ b#s, and we derive ∆ ⊢ b# [c]s using (#b).

(d) The last rule if (# f ):

Then by induction hypothesis, ∆ ⊢ b#si for 1 ≤ i ≤ n. We derive a# f (s1, . . . ,sn)

with (# f ).

2. The analysis follows by checking the last rule applied in the derivation of ∆,a#X ⊢ s ≈α t.
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(a) The base case is trivial, since ⊢ a ≈α a is always derivable.

(b) Suppose the last rule is (Ds):

Then ∆,a#X ⊢ π ·X ≈α γ ·X , hence ∆,a#X ⊢ ds(π,γ)#X . The result will follow
if we prove that ∆ ⊢ ds(π,γ)#X is derivable. In fact, since a /∈ atms(π ·X ,γ ·X)

follows that a /∈ supp(π)∪supp(γ). Therefore, π ·a ≡ γ ·a ≡ a and a /∈ ds(π,γ).
Hence, ∆ ⊢ ds(π,γ), and ∆ ⊢ π ·X ≈α γ ·X follows by (Ds).

(c) The last rule is (Abs-a):

Then ∆,a#X ⊢ [c] t ≈α [c]u is derived from ∆,a#X ⊢ t ≈α u. Induction hypothesis
gives us a derivation for ∆ ⊢ t ≈α u and, we conclude ∆ ⊢ [c] t ≈α [c]u using (Abs-a).

(d) The last rule is (Abs-b):

Then ∆,a#X ⊢ [c] t ≈α [d]u can be derived from ∆,a#X ⊢ (d c) ·t ≈α u and ∆,a#X ⊢
d#t. By the inductive hypothesis we have ∆ ⊢ (d c) · t ≈α u, and by the first part
∆ ⊢ d#t. It is now possible to derive ∆ ⊢ [c] t ≈α [d]u using (Abs-b) from the above
premises.

(e) The last rule is (F):

Then ∆,a#X ⊢ f (t1, . . . , tn) and by induction hypothesis ∆ ⊢ ti, for 1 ≤ i ≤ n. There-
fore, by (F), ∆ ⊢ f (t1, . . . , tn).

Lemma 1.6. Fix π and γ permutations. If ∆ ⊢ a#s for each a ∈ ds(π,γ) then ∆ ⊢ π · s ≈α γ · s.

Proof. The proof is by induction on the structure of terms.

1. For the base case suppose s ≡ c, for some atom c. If c ∈ ds(π,γ) then ∆ ⊢ c#c contra-
dicting our assumption that ∆ ⊢ a#s. (Observe that no context can prove a freshness
constraint of the form a#a for any atom a). So c /∈ ds(π,γ) and ∆ ⊢ π · c ≈α γ · c.

2. If s ≡ τ ·X then ∆ ⊢ a#τ ·X for all a ∈ ds(π,γ). By applying rule (Ds), one has the
derivation:

∆ ⊢ ds(πτ,γτ)#X
(Ds)

∆ ⊢ (πτ) ·X ≈α (γτ) ·X

This derivation has the proof obligation ∆ ⊢ ds(πτ,γτ)#X . Let a ∈ ds(πτ,γτ) and
consider the atom τ(a). We have two cases to analyze:
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(a) If τ(a) ∈ ds(π,γ) then π(τ(a)) ̸≡ γ(τ(a)). Note that in this case a ∈ ds(πτ,γτ).
It remains to show a derivation to ∆ ⊢ a#X . By assumption we have ∆ ⊢ τ(a)#τ ·X ,
and by (#X) ∆ ⊢ a#X .

(b) If τ(a) /∈ ds(π,γ) then π(τ(a))≡ γ(τ(a)) and a /∈ ds(πτ,γτ), and we have nothing
to prove.

3. Suppose s ≡ [b] t. Then we have that either b ∈ ds(π,γ) or not. In the first case, observe
that the derivation step

∆ ⊢ (γ ·b π ·b) · (π · t)≈α γ · t ∆ ⊢ γ ·b#π · t
(Abs-b)

∆ ⊢ [π ·b] (π · t)≈α [γ ·b]γ · t

has two proof obligations: ∆ ⊢ (γ ·b π ·b) · (π · t)≈α γ · t and ∆ ⊢ γ ·b#π · t. We derive
them in the items below.

(a) Notice that ds((γ ·b π ·b)◦π,γ) = ds(π,γ)\{b}2. Now the inductive hypothesis
can be applied which give us

ds((γ ·b π ·b)◦π,γ)#t
(I.H)

∆ ⊢ (γ ·b π ·b) · (π · t)≈α γ · t
The dashed line above represent a shorthand notation for the use of the induction
hypothesis from the premise ds((γ ·b π ·b)◦π,γ)#t.

(b) Since b ∈ ds(π,γ) then:

π ·b ̸≡ γ ·b =⇒ b ̸≡ (π−1
γ) ·b

=⇒ γ ·b ̸≡ (γπ
−1

γ) ·b
=⇒ (ππ

−1
γ) ·b ̸≡ (γπ

−1
γ) ·b

=⇒ π(π−1
γ) ·b ̸≡ γ(π−1

γ) ·b

So, π
−1

γ ·b ∈ ds(π,γ) and by assumption ∆ ⊢ π
−1

γ ·b# [b] t. Since π
−1 ̸= id we

derive ∆ ⊢ π
−1

γ ·b#t by using (#b). Finally, by equivariance, ∆ ⊢ γ ·b#π · t.

Combining items (1) and (2) above the derivation is done.

In the second case, b /∈ ds(π,γ), write c ≡ π · b ≡ γ · b and construct a derivation as
follows:

2Observe that in the composition, (γ · b π · b) ◦ π , b is mapped as b 7→ π · b 7→ γ · b while it is mapped as
b 7→ γ ·b by γ .
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ds(π,γ)#t
(I.H)

∆ ⊢ π · t ≈α γ · t
(Abs-a)

∆ ⊢ [c]π · t ≈α [c]γ · t

4. Finally, if s ≡ f (t1, . . . , tn), then by induction hypothesis, if ∆ ⊢ a#ti for each a ∈ ds(π,γ)

and all 1 ≤ i ≤ n then ∆ ⊢ π · ti ≈α γ · ti. Hence the result follows from (F).

Theorem 1.3 (Weakening). Suppose ∆ ⊢ ∇σ , i.e., ∆ ⊢ a#Xσ , for all a#X ∈ ∇. Then

1. ∇ ⊢ b#s implies ∆ ⊢ b#sσ .

2. ∇ ⊢ s ≈α t implies ∆ ⊢ sσ ≈α tσ .

Proof.

1. The proof is by induction on the derivation of ∆ ⊢ b#s.

(a) The base case, rule (#ab), and the rule (#a) are straightforward.

(b) The derivation concludes in (#X):

Then ∇ ⊢ b#π ·X is derivable from ∇ ⊢ π
−1 ·b#X . Using this fact we have π

−1 ·
b#X ∈ ∇. By assumption, ∆ ⊢ ∇σ . Therefore, in particular, ∆ ⊢ π

−1 · b#Xσ .
Equivariance, Corollary 1.1, ensures the existence of a derivation for ∆⊢ b#π ·(Xσ),
and by the Commutation Lemma (Lemma 1.1), ∆ ⊢ b#(π ·X)σ .

(c) The derivation concludes in (#b):

Then ∆ ⊢ b# [c]s and by induction hypothesis ∆ ⊢ b#sσ . Therefore, by (#b) derive
∆ ⊢ b# [c] (sσ).

(d) If the derivation concludes in (# f ) just apply the induction hypothesis and use (# f ).

2. The proof is by induction on the derivation of ∇ ⊢ s ≈α t.

The base case is trivial. We prove the result for the case (Ds), the other cases are similar
and simpler.

Suppose the last rule is (Ds):

Then ∇ ⊢ π ·X ≈α γ ·X is derivable from ∇ ⊢ ds(π,γ)#X . By assumption, ∆ ⊢ ∇σ .
Hence, ∆ ⊢ a#Xσ for all a ∈ ds(π,γ). The result now follows from Lemma 1.6.
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Fix a consistent context ∆. As usual, ≈α is an equivalence relation if it is reflexive,
symmetric, and transitive. Also, ≈α is a congruence if it is an equivalence relation closed by
formation of terms, i.e., if ∆ ⊢ s ≈α t then ∆ ⊢ f s ≈α f t and ∆ ⊢ [a]s ≈α [a] t.

The next theorem states that ≈α is a congruence under a consistent context. That is, the
logic generated by ≈α is an equality theory over the set of nominal term T (Σ,A,X).

Theorem 1.4. ≈α is a congruence in a consistent context.

Proof. Let ∆ be a consistent context. We first prove that ≈α is an equivalence relation.

1. Reflexivity: ∆ ⊢ s ≈α s, for all terms s.

The proof is by induction on s. For a complete proof see Lemma B.1.

2. Symmetry: if ∆ ⊢ s ≈α t then ∆ ⊢ t ≈α s.

The proof is by induction on the depth of the derivation ∆ ⊢ s ≈α t, see Lemma B.2.

3. Transitivity: if ∆ ⊢ s ≈α t and ∆ ⊢ t ≈α u then ∆ ⊢ s ≈α u.

This is Lemma B.3

Now that ≈α is an equivalence relation, it follows by (Abs-a) and (F) that ≈α is a congruence.

1.3 Nominal Constraint Solving and Unification

We first look for a systematic way to answer the questions ‘is a fresh for t?’, denoted as a#?t,
and ‘does there exist a proof for s ≈α t?’, denoted as s ≈α

? t. We call these questions constraint
problems, and to answer these questions we study the Nominal Unification Theory, which is
concerned about finding (if it exists) a substitution σ that solves a constraint problem s ≈α

? t
(resp. a#?t), that is, σ such that sσ ≈α tσ (resp. a#tσ ).

1.3.1 Nominal Constraint Solving

Note that since syntactic equality ‘≡’ between nominal terms s and t is not considered up-to-
α-equivalence, answering the questions a#?t and s ≈α

? t for ground terms (var(s, t) = /0) is
nothing but a structural analysis: for instance, a is fresh for a ground term t, if whenever a
occur in t it appers under the scope of an abstraction [a]t ′ in t. However, for nonground terms
(var(t) ̸= /0), a#?t may depend on freshness assumptions made on variables occurring in t. In
this subsection, we give an algorithm to decide these questions for arbitrary terms s and t.
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In the definition below we decorate the predicates # and ≈α with “? ” to emphasize that we
are interested in the decision problem generated by these predicates.

Definition 1.10. A constraint problem Pr is a finite set of freshness constraints of the form a#?t
(read: “is a fresh in t?”) and α-equality constraints of the form s ≈α

? t (read: “is s α-equivalent
to t?).

Example 1.3. Consider the constraint problem Pr = {a#? f (a), [b] f (a)≈α
? [c] f (c)}. By using

rules in Figures 1.1 and 1.2 we obtain derivations for the constraints (without the question
mark):

a#a(#f)
a# f (a)

a ≈α c
(F)

f (a)≈α f (c)

(#ab)
c#a (# f )

c# f (a)
(Abs-b)

[b] f (a)≈α [c] f (c)

• In the first derivation we need to show a#a, which is trivially false.

• In the second, the premise from the left ask us to show that a ≈α c which is again
impossible. From the right we solve the freshness constraint by ending the proof with
the axiom (#ab).

We may conclude that the constraints in the problem are false. Let us work on another example.

Example 1.4. Consider the problem Pr = {a#?(X λ [b]Y )} in the signature of untyped λ -
calculus. There is a derivation of the constraint (without the ‘?’):

a#X

a#Y (#b)
a# [b]Y

(# f )
a#λ [b]Y

(# f )
a#(X λ [b]Y )

Note that the leaves of the derivation tree are the freshness constraints a#X and a#Y . Therefore,
if a#X and a#Y then we would get the desired constraint, that is, a#X ,a#Y ⊢ a#(X λ [b]Y ).

Instead of going back and forth from #? to ≈α
? and # and ≈α , we introduce the set of

Simplification Rules, first proposed by Urban, Pitts, and Gabbay in [29] and later by Fernández
and Gabbay in [18], which implements a decision algorithm for solving nominal constraint
problems.

The rules from Fig. 1.3 defines a reduction relation on problems. Write Pr =⇒ Pr′ when
Pr′ is obtained from Pr by the application of a simplification rule, and write ∗

=⇒ for the
transitive and reflexive closure of =⇒ .
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a#?b,Pr =⇒ Pr

a#?
π ·X ,Pr =⇒ π

−1(a)#?X ,Pr π ̸= id

a#? [a] t,Pr =⇒ Pr

a#? [b] t,Pr =⇒ a#?t,Pr

a#? f (t1, · · · , fn),Pr =⇒ a#?t1, · · · ,a#?tn,Pr

a ≈α
? a,Pr =⇒ Pr

π ·X ≈α
?

γ ·X ,Pr =⇒ ds(π,γ)#X ,Pr

f (s1, · · · ,sn)≈α
? f (t1, · · · , tn),Pr =⇒ s1 ≈α

? t1, · · · ,sn ≈α
? tn,Pr

[a] t ≈α
? [a]u,Pr =⇒ t ≈α

? u,Pr

[b] l ≈α
? [a]r,Pr =⇒ (a b) · l ≈α

? r,a#l,Pr

Fig. 1.3 Simplification rules for unification problems

Example 1.5. Recalling Examples 1.3 and 1.4 and using the Simplification Rules (Figure 1.3)
we obtain the following reductions:

{a#? f (a), [b] f (a)≈α [c] f (c)} ∗
=⇒ {a#a,a ≈α c}

{a#?(X λ [b]Y )} =⇒ {a#?X ,a#?
λ [b]Y} =⇒ {a#?X ,a#? [b]Y} =⇒ {a#?X ,a#?Y}

The entailment relation ∆ ⊢ Pr establishes some kind of notion of derivability for problems
under a consistent context.

Definition 1.11. Let ∆ be a consistent context. Write ∆ ⊢ Pr when a proof of C exist, for all
C ∈ Pr, using the derivation rules from Figure 1.1 and 1.2, and elements of ∆ as assumptions.
We say that ∆ entails Pr, written ∆ ⊢ Pr. In this case we say that ∆ is a solution of Pr.

Termination of Simplification rules. We now prove the termination of the procedure gener-
ated by the application of simplification rules.

Definition 1.12 (Size of terms/constraints).
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1. The size of a nominal term t, denoted as |t|, is defined inductively by:

|a|= 1

| [a] t|= 1+ |t|

|π ·X |= 1

| f (t1, . . . , tn)|= 1+ |t1|+ · · ·+ |tn|
|π · t|= |t|

2. The size of a constraint is given by

|a#?t|= |t| and |t ≈α
? u|= |t|+ |u|

Lemma 1.7. The relation =⇒ defined by the Simplification Rules in Figure 1.3 is terminating.

Proof. We consider the measure µ(Pr) of a constraint problem given by the multiset of sizes of
the constraints in Pr. We must show that whenever Pr =⇒ Pr′ the measure strictly decreases,
i.e., µ(Pr)>mul µ(Pr′). In fact, the rules decreases the measure since each rule either replace
a constraint by possible many simple ones or erase the constraint from the problem. The
interesting cases are for suspension and abstraction:

µ(π ·X ≈α
?

γ ·X ,Pr) ={|π ·X |+ |γ ·X |}∪µ(Pr)

>mul{|a#X | | a ∈ ds(π,γ)}∪µ(Pr)

µ([b] l ≈α
? [a]r,Pr) ={| [b] l|+ | [a]r|}∪µ(Pr)

>mul{|(a b) · l|+ |r|, |l|}∪µ(Pr)

The other cases follows from the same reasoning.

Corollary 1.2. The relation =⇒ is confluent.

Proof. Since the simplification rules do not overlap they are locally confluent, by the Newman’s
Lemma confluence follows by strong normalization, Lemma 1.7.

As a consequence, the simplification rules define a function from constraint problems Pr to
their unique normal forms, denoted as ⟨Pr⟩nf.

Definition 1.13. We say an α-equality constraint u ≈α
? v is reduced when one of the following

holds:

1. u and v are distinct atoms. For example, a ≈α
? b is a reduced α-equality.
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2. u and v are applications with different term-formers (e.g. f (t)≈α
? g(s)).

3. u and v are two different variables (e.g π ·X ≈α
?

γ ·Y are reduced.)

4. u and v are different term constructors at the root. For example, [a]s ≈α
? f (t).

Definition 1.14. We say a freshness constraint a#t is reduced when it is of the form a#a or
primitive, e.g. a#X . We call the first inconsistent. Say a problem Pr is reduced when it consists
of reduced constraints, and inconsistent when it contains an inconsistent constraint.

Lemma 1.8. [Characterization of Normal Forms]

1.
〈
a#?s

〉
nf

is a context ∆.

Note that ∆ need not to be consistent, i.e., ⟨a# f (a)⟩nf = {a#a}.

2.
〈
t ≈α

? u
〉
nf

is of the form ∆∪Contr∪Eq, where ∆ is a consistent context, Contr is a
set of inconsistent reduced freshness constraints, and Eq is a set of reduced equality
constraints.

3. ⟨Pr⟩nf = ∆∪Contr∪Eq, as above.

Proof. We check the simplification rules from Fig. 1.3 and note that a problem is reduced if,
and only if, it is in normal form.

Lemma 1.9.

1. If Pr ∗
=⇒ Pr′, then Γ ⊢ Pr if, and only if, Γ ⊢ Pr′.

2. Γ ⊢ Pr if, and only if, Γ ⊢ ⟨Pr⟩nf.

Proof.

1. The proof follows by induction on the number n of steps in the simplification Pr ∗
=⇒ Pr′.

In each inductive step there are 12 rules to consider.

The base case, n = 0, is trivially holds.

For the inductive step, suppose Pr n−1
=⇒ Pr′′ =⇒ Pr′. There are 12 rules to consider, so

we work on one case as an example. The others follow the same reasoning:

By induction hypothesis Γ ⊢ Pr iff Γ ⊢ Pr′′, suppose that Pr′′ has the form

[b] l ≈α
? [a]r,Pr =⇒ (a b) · l ≈α

? r,a#l,Pr.

By inspection of the derivation rules we can conclude that Γ ⊢ [b] l ≈α [a]r can only be
derived by the rule (Abs-b), and it has as proof obligation exactly Γ ⊢ (a b) · l ≈α r and
Γ ⊢ a#l.
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2. Follows directly from the first part since =⇒ is convergent, one can reach the normal
form after finitely many steps.

Lemma 1.10. If Γ is consistent and Γ ⊢ Pr, then Pr is consistent. Moreover, if Pr is in normal
form, then it does not contain equality constraints.

Proof. By Lemma 1.9, a consistent context cannot derive an inconsistent Pr.

Theorem 1.5. Let Pr be a problem and consider ⟨Pr⟩nf its formal form, i.e., ⟨Pr⟩nf = ∆∪
Contr∪Eq, and Γ be a consistent context. Then Γ ⊢ Pr if, and only if, Contr and Eq are empty.

Proof. By Lemma 1.9, Γ ⊢ Pr if, and only if, Γ ⊢ ∆,Contr,Eq. The result now follows from
Lemma 1.10 since Γ is consistent.

Theorem 1.6. Let Γ and ∆ be consistent contexts, and Pr and Pr′ be any problems. Then

1. The algorithm generated by application of simplification rules is correct: Γ ⊢ Pr if, and
only if, ⟨Pr⟩nf = ∆ and Γ ⊢ ∆.

2. The entailment relation on problems satisfies a form of the cut rule:

Γ ⊢ ∆ Γ,∆ ⊢ Ψ

Γ ⊢ Ψ

Proof.

1. Suppose Γ ⊢ Pr. By Theorem 1.5, ⟨Pr⟩nf = ∆ and, by Lemma 1.9, Γ ⊢ ∆. Conversely, if
⟨Pr⟩nf = ∆ and Γ ⊢ ∆, then using the same results, it follows Γ ⊢ Pr.

2. Suppose Γ ⊢ ∆ and Γ,∆ ⊢ Ψ. Then, Γ ⊢ C for each C ∈ ∆. Hence, ∆ ⊆ Γ and Ψ ⊆ Γ.
Therefore, Γ ⊢ Ψ, as required.

1.3.2 Equational Problems

In general, Equational Problems, i.e., problems in which the main predicate is equality, usually
splits into three cases:

– equality checking asks if two terms s and t are equal. A solution is a value true or
false.
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– unification asks if two terms s and t can be made equal. A solution is a substitution σ

such that sσ = tσ .

– matching asks if a term s can be matched with some term t. A solution is a substitution
σ such that t = sσ .

In the nominal setting there is a version of these problems above as well. This is expected
since nominal is ‘equational’ in its very nature. Note that we have studied the first problem
in the previous subsection, constraint solving solves the nominal equality check (α-equality
check). Since α-equality is defined in terms of the freshness predicate, all solutions of the
nominal versions of the problems above are restricted to a freshness context. For instance, the
α-equality checking problem [a]X ≈α [b]X is true when restricted to the context a#X ,b#X .

Several works have been done towards the solvability/decidability of α-equality problems,
and due to its importance its useful to have at least α-equality check and Nominal Matching
algorithms as fast as possible.

In a nominal equational problem, terms s and t are called ground if var(s, t) = /0, linear if
each variable occurs at most once and non-linear if a variable can occur multiple times in s or t.
In Table 1.1, we transcript a list for the complexity of each of these cases proposed by Calvèz
and Fernández [11].

Case Alpha-equivalence Matching

Ground linear linear
Non-ground and linear log-linear log-linear
Non-ground and non-linear log-linear quadratic

Table 1.1 Complexity of Matching and α-equality check.

1.3.3 Nominal Unification

As discussed above, nominal unification is the problem of deciding whether two nominal terms
can be made α-equivalent by instantiating their variables. We usually are not interested only in
a decision procedure but also in constructively building a substitution that solves the problem.
Urban, Pitts and Gabbay in [29] showed that nominal unification is decidable, and gave an
algorithm which finds the most general solution (Definition 1.16) to a nominal unification
problem, if one exists. The nominal unification algorithm in [29] is very similar with the
classical Martelli and Montanari [7] approach to fist-order unification: nominal unification
problems are transformed by a set of simplification rules on problems and the solution is
computed along the way.
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Definition 1.15. A nominal unification problem Pr is a pair ⟨∇,P⟩ consisting of a consistent
freshness context ∇ and a finite set P of freshness constraints of the form a#?t and α-equality
constraints (for short, α-equations) of the form s ≈α

? t.

Definition 1.16. A solution for a nominal unification problem Pr = ⟨∇,P⟩ is a pair of the form
⟨Γ,σ⟩ where Γ is a consistent context and σ a substitution such that the following conditions
hold:

1. Γ ⊢ ∇σ ;

2. Γ ⊢ a#tσ , for all a#?t ∈ P;

3. Γ ⊢ tσ ≈α sσ , for all s ≈α
? t ∈ P;

4. Xσ ≡ Xσσ .

If there is no such ⟨Γ,σ⟩ we say that Pr is unsolvable.

Let Pr be a unification problem as above, U (Pr) denote the set of all solutions of Pr.
Solutions are compared by the following partial order, called instantiation ordering.

Definition 1.17. Let Γ1 and Γ2 be consistent contexts, and σ1 and σ2 substitutions. Then
⟨Γ2,σ2⟩ is an instance of ⟨Γ1,σ1⟩ on a set of variables V⊆X, denoted by ⟨Γ1,σ1⟩ ≤V ⟨Γ2,σ2⟩,
when there exists some substitution δ such that

for all X ∈ V, Γ2 ⊢ Xσ1δ ≈α Xσ2 and Γ2 ⊢ Γ1δ

If we want to be more specific we may write ⟨Γ1,σ1⟩ ≤V
δ
⟨Γ2,σ2⟩.

In the rest of this work the set of variables V will consist of the variables of the problem,
i.e., V= var(Pr), and the superscript will be omitted.

Lemma 1.11. The instantiation ordering ≤ defines a partial order on U (Pr).

Proof. The proof can be found in [18], Lemma 29.

A least element of a partially ordered set is one which is related via ≤ to every element of
the set.

Definition 1.18. A most general (or principal) solution to a problem Pr is a least element of
U (Pr).
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Unification Algorithm. The nominal unification algorithm, called unify in the next sections,
consists of applying the simplification rules, enriched with the instantiation rules given below,
to a problem Pr = ⟨∆,P⟩ until no more rules can be applied.

π ·X ≈α
? t,Pr

[X/π−1·t]
=⇒ Pr[X/π

−1 · t], if X /∈ vars(t)

t ≈α
?

π ·X ,Pr
[X/π−1·t]
=⇒ Pr[X/π

−1 · t], if X /∈ vars(t)

Remark 1.5. The instantiating rules above only deals equational constraints. If we have an
equality constraint X ≈α

? t it is obvious we should instantiate X to t, but there is no obvious most
general instantiation making the freshness constraints a#?X true since a freshness constraint
a#X have the meaning: a cannot occur free in any instance of X . This induces infinitely many
substitutions, for instance, X/ f (b),X/g( f (c)), . . ., therefore, we represent these infinitely many
possible substitutions by the constraint a#X , which says that we can instatiate X to any term as
long as it does not have free occurrences of a.

Example 1.6. Consider the signature of lambda-calculus as in Example 1.1 and the problem
below. We apply the algorithm unif to the problem to get:

{(λ [a]X)Z ≈α
? (λ [b]Y )b} =⇒ {λ [a]X ≈α

?
λ [b]Y,Z ≈α

? b}
[Z/b]
=⇒ {λ [a]X ≈α

?
λ [b]Y}

∗
=⇒ {(b a) ·X ≈α

? Y,b#?X}
[Y/(b a)·X ]
=⇒ {b#?X}

To form the solution pair ⟨Γ,σ⟩, we form Γ with the remaining constraints and take the
composition of the labelled substitutions used along the way of computation as σ .

Solution: ⟨b#X , [Z/b,Y/(b a) ·X ]⟩

Lemma 1.12. The unification procedure given by the simplification rules from Fig. 1.3 and
instantiating rules terminates.

Proof. We form a lexicographic measure on unification problems given by µ
′(Pr) = (n,µ(P))

where

– n is the number of variables of the problem,

– µ(P) is the multiset measure defined in Lemma 1.7.

Note that at each application of rules in a unification problem either the number of variables
decreases by one (decreasing the measure) or the number of variales on the problem remains
unchanded and the complexity µ(P) decreases, as we have showed in Lemma 1.7.
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Definition 1.19. A unification problem s ≈α
? t is reduced when one of the following holds:

1. s and t are distinct atoms.

2. Precisely one of s and t is a moderated variable and the other term mentions that variable.

3. s and t are applications with different term-formers.

4. s and t have different term constructors at the root and neither is a moderated variable.

We call all reduced unification constraints inconsistent.

Normal forms are unique modulo renaming of variables, as in standard first-order unification.
The normal form of a unification problem Pr by =⇒ is defined as expected and denoted
by ⟨Pr⟩nf. It consists of a set of equations and freshness constraints in reduced form. Pr
has a solution iff ⟨Pr⟩nf contains only consistent reduced freshness constraints, i.e., freshness
constraints of the form a#X .

Lemma 1.13 (Unification Normal Forms).

– ⟨a#s⟩nf = ⟨⟨a#s⟩nf ,id⟩

–
〈
s ≈α

? t
〉
nf

= ⟨∆∪Contr∪Eq,σ⟩, where ∆ is a consistent freshness context, Contr is
an inconsistent freshness context, Eq is a set of inconsistent unification constraints, and
σ is a substitution.

Regarding the complexity of nominal unification, Calvèz and Fernández [10] gave an poly-
nomial implementation for the nominal unification problem. However, the actual complexity of
the problem is still a open problem since Higher-order pattern unification, which is a closely
related problem [12], is linear [27].

Matching Problems In Chapter 3, we solve a matching problem (in context). We briefly
describe this kind of problems here. For an efficient implementation the reader is referred to
[11].

Definition 1.20. A matching problem (in context) is a pair (∆ ⊢ t)≈? (∇ ⊢ r), where ∇,∆ are
consistent contexts and t,r are nominal terms. The solution to this matching problem, if it
exists, is a substitution θ such that:

–
〈
∇, t ≈α

? r
〉
nf

= ⟨∆′,θ⟩.

– ∆ ⊢ ∆
′.
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– Xθ ≡ X for X ∈ vars(∆, t)

We say that θ solves the matching problem.

A matching problem can be seen as a particular kind of unification problem. The conditions
in the definition above ensure that: ∆ ⊢ t ≈α rθ and ∆ ⊢ ∇θ , and so ⟨∆,θ⟩ ∈ U

(
∇, t ≈α

? r
)
.

We can think of the solution to (∆ ⊢ t)≈? (∇ ⊢ r) as a unification problem such that it solves〈
∆, t ≈α

? r
〉

without instantiating any variables in t. Also, denote by matching((∆ ⊢ t) ≈?

(∇ ⊢ r)) = θ the call for this algorithm with solution θ .

Example 1.7.

1. Consider the matching problem b#X ⊢ X ≈? Y,b#X ⊢ (a b) ·X ≈? Y .

{b#X ,X ≈? Y,(a b) ·X ≈? Y} [Y/X ]
=⇒ {b#X ,(a b) ·X ≈? Y}
=⇒ {a#X ,b#X}

Solution for the Unification problem: ⟨{a#X ,b#X}, [Y/X ]⟩

Notice that by the second condition of Definition 1.20 this matching problem does not
have a solution. In fact, one has b#X 0 a#X ,b#X .

2. Consider the problem b#X ,X ≈? a,(b a) ·X ≈? Y .

{b#X ,X ≈? a,(b a) ·X ≈? Y} [Y/(a b)·X ]
=⇒ {b#X ,X ≈? a,(b a) ·X ≈? (a b) ·X}

=⇒ {b#X ,X ≈? a}

This problem also does not have a solution.

Remark 1.6. From the above examples one can see that Definition 1.20 does not express only
matching modulo α-equivalence since we can use ∇ to specify constraints which must be
satisfied by the matching solution. When the conditions in ∇ are satisfied we say the matching
is triggered.





Chapter 2

Nominal Disunification Constraints

In this chapter, we follow the approach proposed by Buntine and Bürckert [9] for solving a
system of equations and disequations. Our approach, as in the first-order case, depends on the
unification type of a (nominal) theory T . Fix the nominal algebra T (Σ,A,X) with the empty
set of axioms, that is, terms are considered up to the built-in α-equivalence. The results in this
section can be extended to any theory T provided unification is decidable and finitary for this
theory; pure α-equivalence has been chosen to make examples and proofs easier to follow.

In chapter 3 we study nominal universal algebra and define precisely what we mean by a
nominal equational theory.

Definition 2.1. A (nominal disunification) constraint problem P is an ordered pair P = ⟨E || D⟩
where E is a nonempty set of nominal equations-in-context ∆ ⊢ s ≈α t and D is a (possible
empty) set of nominal disequations-in-context ∇ ⊢ p ̸≈α q, as follows:

E = {∆1 ⊢ s1 ≈α
? t1, · · · ,∆n ⊢ sn ≈α

? tn}
D = {∇1 ⊢ p1 ̸≈α

? q1, · · · ,∇m ⊢ pm ̸≈α
? qm}

The sets ∆1, . . . ,∆n,∇1, . . . ,∇m are consistent contexts. We call them the initial freshness
conditions that are imposed on equations (disequations) in the problem P .

In the case any of the ∆i or ∇ j of a problem is empty we may write an equation(disequation)-
in-context just as si ≈α

? ti (p j ̸≈α
? q j) instead of /0 ⊢ s ≈α

? t. We also may consider the
equations and disequations of the problems under the same context, ∆ := ∪∆i and ∇ := ∪∇ j.

Remark 2.1. A constraint problem is equivalent to an existentially closed formula:

P := ∃X⃗
((∧

∆i ⊢ si ≈α ti
)
∧
(∧

∇ j ⊢ p j ̸≈α q j

))
.
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We solve these formulas in the nominal term-algebra T (Σ,A,X) (see [19, 22]), this is the
logical task of finding witnesses/solutions for the variables in P , that is, a pair ⟨Γ,σ⟩ where
σ is a substitution for the variables of the formula such that under some (possible empty)
consistent context Γ we have Γ ⊢ Pσ .

To give some intuition on the construction of solution pairs, consider the constraint problem
below:

P =
〈
(b a) ·X ≈α

? Y || [a]X ̸≈α
? [b]Y

〉
(2.1)

The intended effect of a solution ⟨Γ,σ⟩ of P is that it needs to solve the equation
(b a) ·X ≈α

? Y and the disequation [a]X ̸≈α
? [b]Y where solving this disequation means

Γ 0 [a]Xσ ≈α [b]Y σ , i.e., ⟨Γ,σ⟩ is not a solution of the equation [a]X ≈α
? [b]Y which will

be called the associated equation to the problem [a]X ̸≈α
? [b]Y . Notice that,

⟨Γ,σ⟩= ⟨ /0, [Y/(b a) ·X ]⟩ (2.2)

solves the constraint problem P above. The main goal of this section is show how to construct
these solutions.

In general, instantiation plays an important role in unification theory. It is by instances of
more general unifiers (instantiation closure) that one produces a finite representation of all other
solutions of a unification problem. Therefore, it is helpful to have the property of instantiation
closure to solutions of constraints problems as well. Unfortunately, this is not the case since we
are solving constraints in the nominal term-algebra T (Σ,A,X). For an example, let Q be the
constraint problem:

Q=
〈
X ≈α

? Y || X ̸≈α
? a
〉

The pair ⟨Γ,σ⟩= ⟨ /0, [X 7→ (a b) ·Z,Y 7→ (a b) ·Z]⟩ solves Q. However, if we instantiate this
solution with δ = [Z 7→ b] the instance ⟨ /0, [X/a,Y/a]⟩ is not a solution of Q.

Example 2.1. Let ⟨Γ,σ⟩= ⟨ /0, [Y/(b a) ·X ]⟩, as in (2.2). Consider the pair

⟨Γ′,σ⟩= ⟨b#X , [Y/(b a) ·X ]⟩.

Notice that ⟨Γ,σ⟩ ≤ ⟨Γ′,σ⟩, therefore ⟨Γ′,σ⟩ solves (b a) ·X ≈α
? Y . In addition, ⟨Γ′,σ⟩ is

a solution of the equation [a]X ≈α
? [b]Y associated to [a]X ̸≈α

? [b]Y . It can not solve (2.1)
since it solves the equations and the associated equation [a]X ≈α

? [b]Y .

The reader may wonder if such an anomaly is caused by the context assumptions added on
the initial problem or, reasonably enough, even by the α-equivalence embedded in the theory of
nominal terms. Certainly, context assumptions seem to cause some difficulties. Firstly, because
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that the notion of instantiation may introduce new freshness constraints, as in Example 2.1.
Secondly, freshness conditions on the equational part of a constraint problem can interact with
solutions and, as showed in the example below, even change the solvability of a problem.

Example 2.2. Consider the following modification of the original problem (2.1):

P ′ =
〈
b#X ⊢ (b a) ·X ≈α

? Y || [a]X ̸≈α
? [b]Y

〉
Notice that P ′ does not have a solution: every time we solve b#X ⊢ (b a) ·X ≈α

? Y we always
solve the equation [a]X ≈α

? [b]Y associated to [a]X ̸≈α
? [b]Y .

We will work on this type of issues in the remaining of the dissertation. First, we define
precisely what we mean by a solution of nominal constraint problems. Keep in mind that
our goal is the development of a nominal generalization for the already established notion
of instantiation of solutions (Definition 1.17), but this needs to be done in such a way that
instantiation closure still holds.

2.1 Generalized Instantiation

In this section, some notions initially established in [9] will be extended into the nominal
framework. The main difference is the lifting of the notion of substitution with exceptions
to pairs of the form ⟨Γ,σ⟩ consisting of a consistent freshness context and a substitution, in
addition of course, to the fact that α-equality is axiomatized in nominal terms which adds some
complexity when compared to syntactic equality. Besides, we have adapted the Consistency
Test Algorithm (Algorithm 1) to deal with pairs with exceptions.

Definition 2.2. A pair with exceptions, denoted as ⟨Γ,σ⟩−Ψ, consists of a pair ⟨Γ,σ⟩ and an
I-indexed family of the form Ψ = {⟨∇l,ψl⟩ | l ∈ I}.

Pairs with exceptions will be used as a representation of solutions of a constraint problem
that has restrictions on how they can be instantiated. For instance, in the problem Q above,
solutions of the equation X ≈α Y can be instantiated in any way except for the instances where
X is mapped to a.

Definition 2.3 (Pair instances).

– A pair ⟨Γ,σ⟩ is said to be an instance of a family Ψ = {⟨∇l,ψl⟩ | l ∈ I}, denoted by
Ψ ≤ ⟨Γ,σ⟩, if and only if each instance of ⟨Γ,σ⟩ is an instance of some ⟨∇l,ψl⟩ in Ψ.
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– A pair ⟨∆,λ ⟩ is an instance of a pair with exceptions ⟨Γ,σ⟩−Ψ, written ⟨Γ,σ⟩−Ψ ≤
⟨∆,λ ⟩, if and only if ⟨∆,λ ⟩ is an instance of ⟨Γ,σ⟩ but not of Ψ.

Definition 2.4. A pair with exceptions ⟨Γ,σ⟩−Ψ is consistent if and only if it has at least one
instance.

For example, the pair with exceptions ⟨b#X , [Y/(b a) ·X ]⟩−{(b#X , [Y/(b a) ·X ])} from
Example 2.2 is inconsistent. The following lemma is a useful characterization of consistency
for pair with exceptions.

Lemma 2.1 (Inconsistency Lemma). A pair with exceptions ⟨Γ,σ⟩−Ψ is inconsistent if and
only if ⟨Γ,σ⟩ is an instance of Ψ.

Proof.

(⇒) If ⟨Γ,σ⟩ is an instance of Ψ then all instances ⟨∆,γ⟩ ≤ ⟨Γ,σ⟩ is an instance of some
⟨∇i,ψi⟩ in Ψ, so by Definition 2.3 ⟨Γ,σ⟩−Ψ has no instances hence it is inconsistent.

(⇐) Conversely, suppose ⟨Γ,σ⟩ −Ψ is consistent and ⟨Γ,σ⟩ is an instance of Ψ. Then
there exists an instance ⟨∆,λ ⟩ of ⟨Γ,σ⟩−Ψ. Hence ⟨Γ,σ⟩ ≤ ⟨∆,λ ⟩. Since ⟨Γ,σ⟩ is an
instance of Ψ we have ⟨∇i,ψi⟩ ≤ ⟨Γ,σ⟩, by transitivity

⟨∇i,ψi⟩ ≤ ⟨Γ,σ⟩ ≤ ⟨∆,λ ⟩

a contradiction with Definition 2.3.

Recalling Definition 3.11, we say that a pair with exceptions ⟨Γ,σ⟩−ψ is inconsistent on
a Σ-algebra A iff instances(⟨Γ,σ⟩−Ψ) = /0 in A, where

instances(⟨∇,ρ⟩) = {⟨∇,ρ⟩ς | for all valuation ς}.

Corollary 2.1. If ⟨Γ,σ⟩−ψ is inconsistent on T (Σ,A,X) then it is inconsistent on the ground
algebra F(CORE,D).

Proof. If ⟨Γ,σ⟩−ψ is inconsistent on T (Σ,A,X) then each instance ⟨Γ′,σ ′⟩ of ⟨Γ,σ⟩ is in
turn an instance of some ⟨∆l,ψl⟩ ∈ Ψ, i.e., in terms of Definition 1.17, there exists δ such that

for all X ∈ X, Γ
′ ⊢T (Σ,A,X) Xσ

′ = Xψlδ and Γ
′ ⊢ ∆lδ .
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The result follows from Corollary 3.5. Notice that the converse is not true in general. For
instance, consider the theory T as in Example 3.6, all pair with exceptions are inconsistent on
F(T,D) since it has only one equivalence class but this not happens in T (Σ,A,X).

Corollary 2.2. Let ⟨Γ,σ⟩−Ψ be a pair with exceptions. If there is some ⟨∇l,ψl⟩ ∈ Ψ such
that there exists a substitution δ satisfying

Γ ⊢ Xσ ≈α Xψlδ , for all X ∈ vars(P).

Then ⟨Γ,σ⟩−Ψ is inconsistent if and only if Γ ⊇ ⟨∇lδ ⟩nf.

Proof. Consider the pair with exceptions ⟨Γ,σ⟩−Ψ as above. From assumption, σ is an
instance of ψl over the context Γ. By the inconsistency lemma this pair with exceptions is
inconsistent iff ⟨Γ,σ⟩ is an instance of Ψ. The result follows from the fact that Γ ⊢ ∇lδ iff
Γ ⊇ ⟨∇lδ ⟩nf.

The above corollary enables us to algorithmically test if some pair with exceptions is
consistent provided that we have already solved the matching-in-context problem (Γ ⊢ Xσ)≈?

(Γ ⊢ Xψ) (for all variables X appearing in the constraint problem) where Xσ is the pattern (see
[18, Definition 45]). That is, for each ψl we solve the unification problem

Γ ⊢ X1σ ≈α
? X1ψl, · · · ,Xnσ ≈α

? Xnψl

without instantiating variables of Xiσ , for all 1 ≤ i ≤ n. The solution of this matching problem
(if it exists) will be denoted by δ . In [11], the authors give an efficient implementation for the
matching problem.

input :⟨Γ,σ⟩−ψ a finite pair with exceptions
output :true if the input is consistent false otherwise

1 foreach ⟨∇l,ψl⟩ ∈ Ψ do
2 if matching(Γ,X1σ ≈? X1ψl, · · · ,Xnσ ≈? Xnψl) = δ then
3 if Γ ⊇ ⟨(∇lδ )⟩nf then
4 return false and stop
5 end
6 end
7 end
8 return true

Algorithm 1: Consistency Test
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2.2 Solving Nominal Constraints

Finally, we give the formal definition of a solution of a nominal constraint problem and also
construct a finite representation for the solution set.

Definition 2.5. Let P =
〈
∆ ⊢ s1 ≈α

? t1, · · · ,sn ≈α
? tn || ∇ ⊢ p1 ̸≈α

? q1, · · · , pm ̸≈α
? qm

〉
be a

nominal disunification constraint problem. A solution of P is a pair ⟨Γ,σ⟩ of a consistent
context Γ and a substitution σ satisfying the following conditions:

1. ⟨Γ,σ⟩ is a solution of the equational part E of P .

2. ⟨Γ,σ⟩ satisfies the disequations in the disequational part D of P , that is:

(a) Γ 0 ∇σ , or

(b) Γ 0 pσ ≈α qσ , for all p ̸≈α
? q in D.

input : A disunification problem P = ⟨E || D⟩.
output : A finite set S of pairs with exceptions (can be the empty set).

1 let ⟨Γ,σ⟩ := unify(E) ;
2 let Ψ :=

⋃
pi ̸≈α

?qi∈D

{⟨∇i,ψi⟩= unify(∇i, pi ≈α
? qi)}

3 if consistent(⟨Γ,σ⟩−Ψ) then
4 return ⟨Γ,σ⟩−Ψ

5 else
6 return /0
7 end

Algorithm 2: Disunification Algorithm

Definition 2.6. We call a set S of pairs with exceptions a complete representation of the
solutions of the constraint problem P iff S satisfies the following conditions:

1. If ⟨Γ,σ⟩−Ψ ≤ (∆,λ ) for some ⟨Γ,σ⟩−Ψ in S then ⟨∆,λ ⟩ solves P .

2. If ⟨∆,λ ⟩ solves P then it is an instance of some ⟨Γ,σ⟩−Ψ in S.

3. ⟨Γ,σ⟩−Ψ is consistent for all ⟨Γ,σ⟩−Ψ ∈ S.

Similar to nominal unification problems, we are interested in generating a complete finite
representation for the set of solutions to a constraint problem P . We use Algorithm 2 to compute
such a representation in the form of a pair with exceptions ⟨Γ,σ⟩−Ψ where ⟨Γ,σ⟩ is a solution
for the equations in P and the family Ψ = {⟨∆l,ψl⟩} is formed by taking each pair ⟨∆l,ψl⟩ as
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the solution of the associated equations ∆ ⊢ pl ≈α
? ql, 1 ≤ l ≤ m. Termination of Algorithm 2

follows from the termination of unify, and correctness (soundness and completeness) follows
from the Representation Theorem below.

Theorem 2.1 (Representation Theorem). Let

P =
〈
∆ ⊢ s1 ≈α

? t1, · · · ,sn ≈α
? tn || ∇ ⊢ p1 ̸≈α

? q1, · · · , pm ̸≈α
? qm

〉
be a nominal constraint problem. Define the family

Ψ :=
⋃

p̸≈α
?q∈D

U
(
∇, p ≈α

? q
)
.

Then the set S = {⟨Γ,σ⟩−Ψ | ⟨Γ,σ⟩ ∈ U (E) and Ψ ̸≤ ⟨Γ,σ⟩} is a complete representation
of solutions for the constraint problem P .

Proof.

1. Take ⟨Λ,λ ⟩ an instance of some ⟨Γ,σ⟩−Ψ in S. Then ⟨Γ,σ⟩ ≤ ⟨Λ,λ ⟩ and it is not
an instance of Ψ. Since unification problems are closed by instantiation it follows
that ⟨Λ,λ ⟩ solves the equational part of P . It remains to show that ⟨Λ,λ ⟩ solves the
disequational part of P . Suppose by contradiction that ⟨Λ,λ ⟩ satisfies ∇ ⊢ pl ≈α ql for
some ∇ ⊢ pl ̸≈α ql in D. Therefore, ⟨Λ,λ ⟩ is an instance of ⟨∇l,ψl⟩ (a solution of the
associated unification problem ∇ ⊢ pl ≈α

? ql in D) and every instance of ⟨Λ,λ ⟩ is an
instance of ⟨∇l,ψl⟩ then Ψ ≤ ⟨Λ,λ ⟩, a contradiction.

2. Suppose ⟨Λ,λ ⟩ solves P . Then, ⟨Λ,λ ⟩ solves the equational (disequational) part of
P . Consider ⟨Γ,σ⟩ ∈ U (E) a solution of E, then we conclude that ⟨Γ,σ⟩ ≤ ⟨Λ,λ ⟩. In
addition, ⟨Λ,λ ⟩ solves the disequational part of P as well, that is;

Λ 0 ∇λ or Λ 0 pλ ≈α qλ , for all p ̸≈α
? q ∈ D (2.3)

Assume ⟨Λ,λ ⟩ is an instance of Ψ. Then all instances of ⟨Λ,λ ⟩ is an instance of some
⟨∇l,ψl⟩ in Ψ. Hence, there is some ⟨∇l,ψl⟩ in Ψ such that

⟨∇l,ψl⟩ ≤ ⟨Λ,λ ⟩,

a contradiction with (2.3). Therefore, ⟨Λ,λ ⟩ cannot be an instance of Ψ and, we conclude
that ⟨Λ,λ ⟩ is an instance of ⟨Γ,σ⟩−Ψ, as required.
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Remark 2.2.

1. Note that any ground instance of a pair with exception representing a solution of a
constraint problem P is also a solution of P . We can restrict solutions to ground instances,
but this does not mean that if a problem is solvable in the term-algebra T (Σ,A,X) it is
also solvable in the ground algebra F(CORE,D), as discussed earlier in Example 3.6.

2. If one wants to solve a disunification problem in the initial ground algebra, by Lemma
2.1, one needs to test if all ground instances of the solutions to the equational part E are
an instance of the exceptions ψ . For some nominal theories this is not an easy task.

3. We have a restricted instantiation closure, as it is not transitive. In fact, ⟨ /0, [X/Z]⟩ is
an instance of the pair with exception ⟨ /0, [X/Y ]⟩− ⟨ /0, [X/a]⟩. Note that ⟨ /0, [X/Z]⟩ ≤
⟨ /0, [X/a]⟩ but the latter is not an instance of ⟨ /0, [X/Y ]⟩−⟨ /0, [X/a]⟩.

Example 2.3. Consider the constraint problem P below:

P =
〈
λ [a]X ≈α

?
λ [b]Y || X ̸≈α

? Y,X ̸≈α
? a
〉
.

First apply unif to the equational part of the problem obtaining as result:

⟨Γ,σ⟩= ⟨b#X , [Y/(b a) ·X ]⟩ (2.4)

Then solve the associated equations of the disequational part to combine them as a family of
pairs with exception:

Ψ = {⟨ /0, [X/Y ]⟩,⟨ /0, [X/a]⟩} (2.5)

Finally form the pair with exception ⟨Γ,σ⟩−Ψ by the combination of (2.4) and (2.5). We can
check consistency of ⟨Γ,σ⟩−Ψ using Algorithm (1).



Chapter 3

Nominal Universal Algebra

This chapter concentrates on two important tasks: the first is that of defining nominal algebras
and give to them a semantic in nominal sets [22]; the second is to show that a collection of
these algebras is equational (Definition 3.28) if, and only if, they form a variety [19] (Definition
3.27); this is called HSP Theorem (Theorem 3.12).

3.1 A More General Derivation System

An equality assertion is a pair t = u where t and u are terms. A nominal theory T is a pair
T = (Σ,Ax) consisting of a signature Σ and a set of axioms (in the form of equality judgements)
∇ ⊢ t = u, with terms t and u built over Σ, and ∇ a consistent context.

Derivations in a theory T = (Σ,Ax) are defined by the rules in Figures 1.1 and 3.3. We say
Π is a valid derivation in T when the following two conditions are satisfied:

• Π mentions only terms built over Σ.

• Π mentions only instances of (ax∇⊢t=u) such that (∇ ⊢ t = u) ∈ Ax.

As in Chapter 1, ∆,∇,Γ . . . represent consistent freshness contexts. Write ∆ ⊢ s = t, if
there exists a valid derivation Π using the elements in ∆ as assumptions. We may abbreviate
‘∆ ⊢ s = t is derivable in T ’ to the affirmative statement ‘∆ ⊢T s = t’.

Example 3.1. Let us consider some classical examples of nominal theories.

(a) CORE is a family of theories with no axioms. Theorem 3.5 shows that derivability in CORE
(using rules from Figs. 1.1 and 3.3), i.e., ∆ ⊢CORE s = t, is equivalent to derivability in the
theory of α-equivalence (using the rules from Figs. 1.1 and 1.2), ∆ ⊢ s ≈α t, as defined in
Chapter 1.
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(b) In some applications of nominal algebra it is useful to explicitly express the behavior
of a capture avoiding substitution operator, denoted by sub, in an algebraic treatment.
Therefore, we define below in Fig. 3.1 the axioms of the theory SUB, first introduced by
Gabbay in [20].

var7→ ⊢ a[a 7→ X ] =X
(# 7→) a#Y ⊢ Y [a 7→ Y ] =Y
( f 7→) ⊢ f (Y1, . . . ,Yn)[a 7→ X ] = f (Y1[a 7→ X ], . . . ,Yn(a 7→ X))

(abs 7→) b#X ⊢ ([b]Y )[a 7→ X ] =[b] (Y [a 7→ X ])

(id 7→) ⊢ Y [b 7→ b] =Y
(η 7→) a#X ⊢ [a]sub(X ,a) =X

For each term-former f (including sub), there is one axiom ( f 7→).
Fig. 3.1 Axioms for the theory SUB.

(c) Using the signature from Example 1.1 the theory LAM gives the first complete algebraic
treatment for the λ -calculus [21]. The theory LAM is defined by the axioms for SUB together
with a (β )-axiom, to represent β -conversion, and an (η)-axiom, to represent η-conversion,
as defined below in Fig. 3.2.

(β ) ⊢ (λ [a]Y )X =Y [a 7→ X ]

(η) a#X ⊢ λ [a] (X a) =X

Fig. 3.2 Axioms for (β ) and (η) conversion.

Observe that in the (η)-axiom the freshness side-conditions of η-conversion

λx.(M x) =η M if x is not free in M

is expressed, in nominal syntax, as the freshness judgement a#X ⊢ λ [a] (X a) = X .
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(refl)t = t
t = u (symm)u = t

s = u u = t (trans)s = t

t = u (cong[])
[a] t = [a]u

t = u (cong f )
f (t1, . . . , t, . . . , tn) = f (t1, . . . ,u, . . . , tn)

∇
π

σ (ax∇⊢t=u)
tπ

σ = uπ
σ

a#t b#t (perm)
(a b) · t = t

[a#X1, . . . ,a#Xn] ∆

...
t = u (fr) n ≥ 1,

a /∈ atms(t,u,∆)t = u

Fig. 3.3 Derivation rules for equality

The (fr) rule permit the introduction of freshness assumptions [a#X1, . . . ,a#Xn] into the
derivation of t = u from assumptions ∆, for the newly choosen atom a not occuring in t,u and
∆. These assumptions behave like in the introduction rule →i in natural deduction, they need
to be discharged. Assumptions are usually labelled with natural numbers and get the same
label for all assumptions on the same atom. The rules (ref), (symm), and (trans) ensure that
equality is in fact an equivalence relation, whereas (cong[]) and (cong f ) states that equality is a
congruence.

3.1.1 Instantiating Axioms

The reader may now have more intuition on the motivations for the ‘permutative convention’:
atoms are identified by its name, so two atoms a and b are always considered different objects.
This convention is embedded in the α-equality theory itself for instance a ≈α b cannot be
derived in CORE. But nominal theories permit the use of equality axioms to generate theories
that may have provable equality between two atoms1. For example, from the theory T with a
single axiom ⊢ a = f (X) one may derive:

(ax⊢a= f (X))
a = f (X)[X/c]

a = f (c)

(ax⊢a= f (X))
(a b) ·a = (a b) · f (X)[X/c]

b = f (c)
(symm)

f (c) = b
(trans)

a = b

In the derivation above dashed lines represent the computation of substitutions and permutation
actions when we instantiate the axiom ⊢ a = f (X).

1The permutative convention still remains valid: two atoms can be ‘provable equal’ in a nominal theory but in
our metamathematical setting for nominal techniques these atoms are still considered different.



44 Nominal Universal Algebra

Note that by the form of the axiom rule, ∇
π

σ (ax∇⊢t=u)
tπ

σ = uπ
σ

, in order to ‘instantiate’
the axiom ∆ ⊢ t = u using a permutation π and substitution σ one first is required to derive the
proof-obligation ∇

π
σ . For instance, the (η)-axiom for η-conversion in Fig. 3.2;

a#X ⊢ λ [a] (X a) = X

states that ‘provided a is fresh for any instance of X one can derive λ [a] (X a) = X’. The rule
(axa#X⊢λ [a](X a)=X) (abbreviated as (axη) for simplicity) derives an instantiated version of (η)

provided one can give derivations of the freshness condition (a#X)π
σ . For example;

(#b)
a#b(η)

λ [a] (b a) = b
a#a

λ [a] (a a) = a

the derivation on the left is valid, whereas the derivation on the right is not.

3.1.2 Permutating Atoms: α-equivalence

The (perm) rule is used to express α-equivalence. To see this, the following derivations are
valid in CORE (the theory with no axioms):

(#a)
a#b(#b)

a# [b]b
(#b)

b# [b]b
(perm)

[a]a = [b]b

a#X(#b)
a# [b]X

(#a)
b# [b]X

(perm)
[a] (b a) ·X = [b]X

Then ⊢CORE [a]a = [b]b and a#X ⊢CORE [a] (b a) ·X = [b]X . To see that the last step of the
derivations above are really instances of (perm), note that [a]a ≡ (b a) · [b]b and [a] (b a) ·X ≡
(b a) · [b]X .

3.1.3 Proof-theoretical Results

In this section, we basically states the same results from Subsection 1.2.1. The proofs follow
the same spirit as before but now in a more general setting.

Equivariance. The first important property about nominal theories is that derivations are
closed under applications of permutations.

Definition 3.1. We extend notation for tπ and ∆
π to nominal theories: given a nominal theory

T = (Σ,Ax) we write T π := (Σ,Axπ) where Axπ is such that ∇
π ⊢ tπ = uπ ∈ Axπ if, and only

if, ∇ ⊢ t = u ∈ Ax.
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We use the technical lemma below to reason about meta-level equivariance. That is,
derivability of ∆ ⊢T t = u is closed under the meta-action T π of a permutation in the the theory
T .

Lemma 3.1. If ∆ ⊢T t = u then ∆ ⊢T π t = u.

Proof. By induction on derivations, all cases are done by an analysis of the last rule applied in
the derivation of ∆ ⊢T t = u. We work on one non-trivial case, that is, the case for the axiom
rule (ax∇⊢t=u). Therefore, if the last rule applied is the axiom rule our derivation has the form

∇
γ
σ

tγ
σ = uγ

σ

and by induction hypothesis we need to show that

I.H
∆ ⊢T π ∇

γ
σ

∆ ⊢T π tγ
σ = uγ

σ

By Lemma 1.2, this is equivalent to show that

∆ ⊢T π ∇
πγπ−1

σ

∆ ⊢T π tπγπ−1

σ = uπγπ−1

σ

Finally, notice that this is nothing but an instance of (ax∇π⊢tπ=uπ ) taking as permutation γπ
−1

and substitution σ , and using Lemma 1.2 in the same way as before.

Theorem 3.1 states that derivable equality is closed under permutation at the meta-level.

Theorem 3.1 (Meta-level equivariance). For any permutation π:

1. if ∆ ⊢ a#t then ∆
π ⊢ π(a)#tπ ,

2. if ∆ ⊢T t = u then ∆
π ⊢T tπ = uπ .

Proof.

1. Follows directly from Equivariance (Theorem A.1).

2. Suppose ∆ ⊢T t = u. By Equivariance (Theorem A.1) follows that

∆
π ⊢T π tπ = uπ .

Now using Lemma 3.1 we obtain

∆
π ⊢

T ππ−1 tπ = uπ
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Using Lemma 1.2 we conclude that T ππ−1

≡ T ππ−1
≡ T , and then

∆
π ⊢T tπ = uπ .

The next theorem is the analogous of Theorem 1.1 to general nominal theories.

Theorem 3.2 (Object Level Equivariance). For any permutation π:

1. if ∆ ⊢ a#t then ∆ ⊢ π(a)#π · t,

2. if ∆ ⊢T t = u then ∆ ⊢T π · t = π ·u.

Proof. The proof is by induction on derivations, by an analysis of the last rule applied.

1. It follows by the same proof given in Theorem 1.1, since freshness derivations does not
depend on the equational theory T we are considering.

2. The proof follows the same lines of the proof for Theorem 1.1. We work on the non-trivial
case, that is, the case for axiom rule.

Suppose that the last rule applied is (ax∇⊢t=u):

Them ∆ ⊢T tγ
σ = uγ

σ is derived from ∆ ⊢ ∇
γ
σ . The goal is to derive

∆ ⊢T π · tγ
σ = π ·uγ

σ

By the Commutation Lemma (Lemma 1.1) this is equivalent to derive ∆ ⊢T (π · tπ)σ =

(π ·uγ)σ . Now define a substitution σ
′ that maps each X ∈ var(∆, t,u) to π ·X , then by

Lemma 1.3 we have to derive

∆ ⊢T tγπ

(σ ′
σ) = uγπ

(σ ′
σ).

By Lemma 1.2 this is equivalent to tπγ(σ ′
σ) = uπγ(σ ′

σ), and it follows from (ax∇⊢t=u)

by taking

∇
πγ(σ ′

σ)
(ax∇⊢t=u)

tπγ(σ ′
σ) = uπγ(σ ′

σ)

this is equivalent to



3.1 A More General Derivation System 47

π ·∇γ
σ (ax∇⊢t=u)

tπγ(σ ′
σ) = uπγ(σ ′

σ)

Finally, by the induction hypothesis, ∆ ⊢ π ·∇π
σ and the result follows.

Substitution and strengthening. We can apply a substitution of terms for variables provided
those terms violate no freshness assumptions imposed on the variables.

Theorem 3.3. Suppose ∆
′,∆ and σ are such that ∆

′ ⊢ a#tσ , for every a#t ∈ ∆. Then, the
following hold:

1. If ∆ ⊢ a#t then ∆
′ ⊢ a#tσ .

2. If ∆ ⊢T t = u then ∆
′ ⊢ tσ = tσ .

Proof.

1. It follows from the proof for the first part of Theorem 1.3, since freshness derivations do
not depends on the theory T .

2. The proof follows by induction on the derivation of ∆ ⊢T t = u. For (fr) we use Equivari-
ance (Theorem A.1) to rename the freshly chosen atom a if it is mentioned by ∆

′, tσ or
uσ .

With the next theorem we can ‘remove’ the freshness assumptions that does not appear in
anywhere in s or t. This property is called strengthening.

Theorem 3.4 (Strengthening). Suppose a /∈ atms(s, t). Then:

1. ∆,a#X ⊢T b#s implies ∆ ⊢T b#s.

2. ∆,a#X ⊢T s ≈α t implies ∆ ⊢T s ≈α t.

Proof. The freshness case follows from the proof for Theorem 1.2, since freshness derivations
do not depend on the theory T , and note that the equational case is exactly the rule (fr).
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The equivalence (under derivability) of ≈α and CORE. Example 3.1-(a) have described a
nominal theory called CORE, i.e., the theory without any axiom. The next theorem stablish the
connection between derivability in the deduction system defining ≈α (rules from Figs. 1.1 and
1.2), and the derivability in the nominal theory for CORE (using the rules from Figs. 1.1 and
3.3). This equivalence has an important application since ≈α is practical for implementation
purposes, on the other hand, CORE is more suitable for theoretical purposes.

Theorem 3.5. ∆ ⊢CORE t = u is derivable if, and only if, ∆ ⊢ t ≈α u is derivable.

Proof. Suppose ∆ ⊢CORE t = u, the proof now follows from an inductive reasoning on the depth
of derivations. By using the induction hypothesis it suffices to show:

1. ≈α is an equivalence relation and a congruence. This follows by Theorem 1.4.

2. If ∆ ⊢ a#t and ∆ ⊢ b#t then ∆ ⊢ (a b) · t ≈α t.

The proof can be found in Appendix B, Lemma B.4.

3. ∆,a#X1, . . . ,a#Xn ⊢CORE t = u where a /∈ atms(t,u,∆) then ∆ ⊢ t ≈α u. By induction
hypothesis,

∆,a#X1, . . . ,a#Xn ⊢ t ≈α u

and the result follows by Strengthening (Theorem 1.2).

Conversely, the proof is by induction on the derivation of ∆ ⊢ t ≈α u. As usual, we do an
analysis of the last rule applied in the derivation of ∆ ⊢ t ≈α u, we work on some cases:

1. The base case, ∆ ⊢ a ≈α a, is proved in CORE as an instance of (refl).

2. Suppose the last rule is (F): then by induction hypothesis we get ∆ ⊢CORE ti = ui for
1 ≤ i ≤ n, then ∆ ⊢CORE f (t1, . . . , tn) = f (u1, . . . ,un) is derivable from instances of (trans)
and (cong f).

3. The last rule if (Abs-a): then by induction hypothesis, ∆ ⊢CORE t = u then derive ∆ ⊢CORE
[a] t = [a]u by using (cong []).

4. The last rule is (Abs-b): the inductive hypothesis provide derivations Π of ∆ ⊢CORE
(b a) · t = u and Π

′ of ∆ ⊢ b#t. The following derivation is a proof of ∆ ⊢CORE [a] t = [b]u.

Π
′

b#t(#b)
b# [a] t

(#a)
a# [a] t

(perm)
[b] (b a) · t = [a] t

(symm)
[a] t = [b] (b a) · t

Π

(b a) · t = u
(cong[])

[b] (b a) · t = [b]u
(tran)

[a] t = [b]u
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3.2 Denotational Semantics

We give the basic notions about nominal sets, which provide the underlying set theory for which
an interpretation of nominal terms and nominal algebras is more suitable. Nominal Sets enable
the study of properties which are invariant under permutation of names, and were originally
introduced by Gabbay and Pitts [23] but the mathematical foundations goes back to the 30’s set
theory and the logic of ZFA (based on the Zermelo-Fraenkel). For more details, we adress the
reader to [26].

3.2.1 Nominal Sets

Recall that we denote by A the set of all atoms and by P the set of all permutations π : A→ A
with finite support. We give to P a group structure by taking ◦ (permutation composition) as
the operation in P. To ease notation denote the group (P,◦) just by P.

Definition 3.2. A P-action · on a set X is a function · : P×X → X , written in infix notation as
π · x, satisfying:

– id · x = x,

– π · (γ · x) = (π ◦ γ) · x, for all π,γ ∈ P and for all x ∈ X .

In this case, call the pair (X , ·) a P-set. We also say that the action · fix x ∈ X when · acts
trivially on x, i.e., π · x = x.

Example 3.2.

1. If P′ is any subgroup of P, we get a P′-action on the set of atoms A by defining · as
function application such that π ·a = π(a).

2. In a more general setting we let Σ be a (single-sorted) algebraic signature.Thus Σ =

(Σn | n ∈ N) is a countable infinite family of sets. The elements of each Σn are the n-ary
operations of the signature. We can then inductively build the set T (Σ,X) of algebraic
terms with variables from X using the rules:

x ∈ X
x ∈ T (Σ,X)

t1 ∈ T (Σ,X) · · · tn ∈ T (Σ,X) f ∈ Σn

f (t1, . . . , tn) ∈ T (Σ,X)
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This is the way we usually construct terms for instance in first-order languages.

There is an action of Sym(X) (the symmetric group of X) on Σ given by applying a
permutation to variables where they occur in algebraic terms; as defined below:

π · x = π(x)

π · f (t1, . . . , tn) = f (π · t1, . . . ,π · tn)

Note that in the case for the inductive construction of T (Σ,A,X) this example agrees
with Definition 1.3.

The next definition plays an important role in the theory of nominal sets, that is, the support
of a element in a set equipped with an action.

Definition 3.3. Let (X , ·) be a P-set. A set of atomic names A ⊆ A is a support for an element
x ∈ X if, and only if, for all permutations π ∈ P

(∀a ∈ A. π(a) = a) =⇒ π · x = x.

By considering a bijection between A→ N we can use results from the theory of groups to
prove results about nominal sets. Consider the classical theorem below.

Theorem 3.6 (Factorization of Permutations). Every permutation π ∈ Sn (the group of finite
permutations of the elements {1,2, . . . ,n}) is a product of transpositions.

Proof. It suffices to factor cycles:

(1 2 . . . r) = (1 r)(1 r−1) . . .(1 2)

This theorem can be translated via the bijection A→ N to the following statement about
permutation of names.

Theorem 3.7 (Factorization of Nominal Permutations). Every permutation π ∈ P is a product
of swappings

π = (a1 ar)(a1 ar−1) . . .(a1 a2)

As a corollary,
π(a1) ̸= a1, a1 ̸= ai, 1 < i ≤ r, and ai ̸= π(ai) (3.1)

We use the theorem above to derive the following characterization of support in terms of
swappings.
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Lemma 3.2. Let X be a P-set and x ∈ X . A subset A ⊆ A supports x, if and only if,

∀a1,a2 ∈ A\A. (a1 a2) · x = x. (3.2)

Proof. Notice that if a1,a2 ∈ A \A then (a1 a2) · a = a holds for any a ∈ A. Therefore, if A
supports x then for all permutation π that f ix every element of A, π also fix x. In particular,
(a1 a2) · x = x since (a1 a2) fix A, and hence (3.2) holds.

Conversely, suppose A satisfies (3.2) and take a permutation π fixing every element of
A. We must show that π fixes x. By Theorem 3.7, π can be written as the composition
π = (b1 br−1)(b1 br−2) . . .(b1 b2) satisfying (3.1). Since π fixes every elements of A, each
swapping is such that a1,bi /∈ A and hence by (3.2), (a1 bi) fixes x. Therefore, π must also fix x
since it is the composition of all the (a1 ai), and hence A supports x.

Clearly each element of a P-set is supported by A, which is an infinite set. We will be
interested in elements that are finitely supported in the sense that there is some finite set of
atomic names that is a support for the element.

It can be shown [26, Theorem 2.7] that if an element x of a P-set X has finite support then
there is a unique least finite set of atoms A ⊆ A that supports x.

Definition 3.4. Let (X , ·) be a P-set and x ∈ X . Denote by supp(x) the least set of atoms
supporting x.

We also use the following characterization of support:

supp(x) = {a ∈ A | {b ∈ A | (a b) · x ̸= x} is not finite} (3.3)

Thus, for any a ∈A, a /∈ supp(x) holds if, and only if, (a b) ·x = x holds for all, but finitely
many b ∈ A.

Definition 3.5. A nominal set X is a P-set (XS, ·) such that all elements x ∈ X have finite
support. In this case we also say that X is finitely supported.

Notation: We may denote a nominal set X = (XS, ·) just by X when no confusion arises, the
set XS is called the underlying set of the nominal set X .

Example 3.3.

1. The set A of all atoms, with action defined by π ·a = π(a) is a nominal set; the support
of a is {a}.
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2. The set Λ of all λ -terms (Example 1.1), with action defined by Definition 1.3, has finite
support. It turns out that the support of a λ -term is the set of atoms occuring in it.

3. The powerset P(A)= {X |X ⊆A}, with action π ·X = {π ·a | a∈X}, is not a nominal set.
To see this let us order A as {a1,a2,a3, . . .} and consider X = {a1,a3,a5, . . .} ∈ P(A).
We claim that there is no finite set A of atoms supporting X . To prove this claim, we
suppose that is not the case, i.e., there is A = {b1, . . . ,bn} that supports X . Then, choose
any pair c2k,c2k+1 ∈A\A, it follows that (c2k c2k+1) ·X ̸=X , a contradiction with Lemma
3.2.

4. We say that X ⊆ A is cofinite if A \X is finite. The set Pfs(A) of finite and cofinite
subsets of A with action inherited from P(A) is a nominal set. The support is calculated
in Example 3.4.4.

5. If X and Y are nominal sets then their disjoint union X +Y := {x ∈ X | x /∈ Y}∪{y ∈ Y |
y /∈ X} is a nominal set.

6. If X and Y are nominal sets then the product X ×Y = {(x,y) | x ∈ X ∧y ∈Y} with action
defined as in Definition 3.7 is a nominal set. The support of (x,y) is the union of the
supports of x and y.

7. The empty set is a nominal set.

3.2.2 Semantic Freshness

In many applications of nominal sets one is more interested (like in our case) in the comple-
mentary notion of an atom a being in the support of an element x ∈ X .

Definition 3.6. Given nominal sets X and Y , and elements x∈X and y∈Y . Define the predicate
#sem, written as x #sem y, and say that x is fresh for y if the two elements have disjoint support,
that is:

x #sem y ⇐⇒ supp(x)∩supp(y) = /0

Write a #sem x when a /∈ supp(x), and say a is fresh for x.

Example 3.4.

1. We have distinct notations for freshness: the first is freshness in the nominal syntax,
written just as #, and the second we denote by #sem to describe semantic freshness.

2. The set A of all atoms with action π ·a = π(a) is a nominal set; the support of an atom
a ∈ A is just {a}. Note that for x,y ∈ A, x #sem y precisely when x ̸= y.
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3. If a ∈ A and X is a nominal set with x ∈ X , we write a #sem x when a /∈ supp(x).

4. The support of A\{a} ∈ Pfs(A) is {a} so b #sem A\{a} but not a #sem A\{a}.

The finiteness of support compared with the infiniteness of A leads to the following principle
for choices of new names.

Choose-a-Fresh-Name Principle If X1, . . . ,Xn are finitely many nominal sets and if x1 ∈
X1, . . . ,xn ∈ Xn are elements of them, then there is an atomic name a ∈ A satisfying a #sem
x1 ∧·· ·∧a #sem xn.

Lemma 3.3. Let x ∈ X be an element of a nominal set X . For all a,b ∈ A, if a #sem x, b #sem x
then (a b) · x = x.

Proof. Since a #sem x and b #sem x, we have that a,b /∈ supp(x). The result now follows from
Lemma 3.2.

The next lemma states that the properties from derivable (syntactic) freshness (#) extends
in a natural way to semantic freshness (#sem).

Lemma 3.4. Suppose x,y ∈ X and X a nominal set. Then,

1. If x = y then a #sem x iff a #sem y.

2. If a #sem x for every a ∈ ds(π,γ) then π · x = γ · x.

3. If a #sem x then π(a) = π · x.

4. If x = y then π · x = π · y.

Proof.

1. If x = y, then supp(x) = supp(y). Therefore, a #sem x if, and only if, a #sem y.

2. We have that a /∈ supp(x) for each a ∈ ds(π,γ). Therefore, π · x = γ · x.

3. Follows directly from Equivariance (Theorem A.1).

From Example 3.3-(3) we can seee that a #sem X does not imply that a #sem x for every
x ∈ X . But for those subset that are finitely supported we have:
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Lemma 3.5. Let X be a nominal set and Y ⊆ X finitely-supported. If

a1 #sem Y, . . . ,an #sem Y

then there exists some y ∈ Y such that a1 #sem y, . . . ,an #sem y.

Proof. Fix any y′ ∈ Y . By the Choose-a-Fresh-Name-Principle there is a choice b1, . . . ,bn

of fresh names such that bi #sem Y and bi #sem y′, for 1 ≤ i ≤ n. Then by Part 2 of Lemma
3.4 (b1 a1) · · ·(bn an) ·Y = Y . Define y = (b1 a1) · · ·(bn an) · y′, note that this element is in Y
by Definition 3.2, and we conclude ai #sem x for 1 ≤ i ≤ n by Part 3 of Lemma 3.4 and the
assumption bi #sem y.

3.2.3 Products

We now study one way to build new nominal sets from given nominal sets X1, . . . ,Xn, i.e., by
taking the cartesian product of these sets and defining a suitable product action. The cartezian
product is used to construct products nominal algebras later in this chapter.

Definition 3.7. Given P-sets X1, . . . ,Xn we make the cartesian product

X1 ×·· ·×Xn := {(x1, . . . ,xn) | x1 ∈ X1, . . . ,xn ∈ Xn}

into a P-set by defining the action coordinate-wise:

π · (x1, . . . ,xn) := (π · x1, . . . ,π · xn)

When X1, . . . ,Xn are the same P-set we write the product as usual: Xn.

Definition 3.8. Let I be a countably infinite set and (Xi)i∈I an I-indexed collection of nominal
sets. Write

Πi∈IXi := {(xi | i ∈ I) | ∀i ∈ I. xi ∈ Xi}

for the cartesian product of the family (Xi)i∈I . Equip this set with the component-wise permuta-
tion action,

π · (xi)i∈I = (π · xi)i∈I.

This next result follows directly from the definition above.

Lemma 3.6. a #sem (xi)i∈I if, and only if, a #sem xi for every i ∈ I.
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3.2.4 Equivariant Functions

If (X , ·) and (Y, ·) are P-sets we say that f defines a function f ∈ (X , ·)→ (Y, ·) if it is a function
on underlying sets, i.e., f ∈ X → Y .

Definition 3.9. Suppose that X and Y are nominal sets. A function f ∈ X → Y is equivariant if
for all permutations π ∈ P:

π · f (x) = f (π · x)

Lemma 3.7. Suppose f : X → Y is an equivariant function between the nominal sets X and Y .
Then if A is a support for x ∈ X , then it is a support for f (x) ∈ Y . In particular,

supp( f (x))⊆ supp(x).

Proof. Suppose A ⊆ A supports x ∈ X , and let π be a permutation such that π fixes every
element of A. By Definition 3.3, π · x = x and hence f (x) = f (π · x) = π · f (x) since f is
equivariant. Thus A also supports f (x) in Y . Therefore if X and Y are nominal sets and x ∈ X ,
then supp(x) supports f (x) and hence contains the smallest support, supp( f (x)).

Corollary 3.1. If a #sem xi, for i ≤ i ≤ n, then a #sem f (x1, . . . ,xn).

3.3 Nominal Algebra

We use nominal sets to give a semantics to nominal algebra signature and theories. This choice
is adequate, since nominal sets better represent directly the notion of freshness and permutation
action. We begin by saying what we mean by nominal algebra.

Definition 3.10. [Σ-algebra] A nominal Σ-algebra A consists of:

1. A domain nominal set A = (AS, ·) with underlying set AS and action ·.

2. An equivariant map atom :A→AS to interpret atoms; we write the interpretation atom(a)
of a as aA ∈ A.

3. An equivariant map abs : A×AS → AS such that a #sem abs(a,x) always, to interpret
abstraction.

4. An equivariant map fA : An
S → AS for each term-former f : n ∈ Σ to interpret term-

formers.
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Nominal Algebras are usually denoted by A,B.

As expected, a valuation ς in a Σ-algebra A maps unknowns X to elements ς(X) ∈ AS.
Below we define a equivariant function J·K to interpret nominal terms.

Definition 3.11. Let A be a nominal algebra. Suppose that t ∈ T (Σ,A,X). The interpretation
of t with relation to the valuation ς in A, denoted as JtKA

ς
, is defined inductively by:

JaK
ς
= aA Jπ ·XK

ς
=π · ς(X) J[a] tK

ς
= abs(a,JtK

ς
)

J f (t1, . . . , tn)Kς
= fA(Jt1Kς

, . . . ,JtnKς
)

The interpretation JtKA
ς

may be written just by JtK
ς

if A is understood.

Lemma 3.8. Let A be a Σ-algebra and ς a valuation to the domain AS. Then π · JtK
ς
= Jπ · tK

ς
.

Proof. The proof is a standard induction on the structure of t, see Lemma B.5 for a complete
proof.

Definition 3.12. Suppose that A is a Σ-algebra. Define the notion of validity by:

a) J∆KA
ς

is valid when a #sem ς(X) for each a#X ∈ ∆.

b) J∆ ⊢ a#tKA
ς

is valid when the validity of J∆KA
ς

implies a #sem JtKA
ς

, and

c) J∆ ⊢ t = uKA
ς

is valid when the validity of J∆KA
ς

implies JtKA
ς
= JuKA

ς
.

A model of a theory T is a Σ-algebra A such that J∆ ⊢ t = uKA
ς

is valid for every axiom
∆ ⊢ t = u in Ax and every valuation ς .

Definition 3.13. For a nominal theory T , define the validity with respect to T for judgements
form as follows:

1. Write ∆ |=T a #sem t when J∆ ⊢ a#tKA
ς

for all models A of T .

2. Write ∆ |=T t = u when J∆ ⊢ t = uKA
ς

for all models A of T .

Note that, in constrast with derivable freshness #, for which the theory T does not matter at
all, semantic freshness #sem does depend on the theory T . We will see an example later, first
we need to build some more structures and prove some results.



3.3 Nominal Algebra 57

3.3.1 Soundness

An important property one seeks in a logical framework is that of the equivalence between syn-
tactic operations and operations on semantic models of that language, this is called Soundness.

To ilustrate, consider the theory LAM defined in Example 3.1. If one builds a derivation
in LAM showing that λ [a] (b a) = a it is desirable that this equality is valid in all models (Σ-
algebras) of LAM. That is the meaning of soundness: whenever manipulation done following
the derivation rules of the system (Figs. 1.1 and 3.3) produce sound equalities inside all models
of T .

Soundness results have also an practical application: its possible to reason about equality on
semantic objects (in our case, inside nominal algebras) in an automated way. We put computers
to manipulate symbols, they are very good at it, and prove that these syntactic operations are
indeed sound. The next theorem says that Nominal Algebra is indeed sound for freshness and
equality derivations.

Theorem 3.8 (Soundness). Let T = (Σ,Ax) be a theory. Then:

1. If ∆ ⊢ a#t then ∆ |=T a #sem t.

2. If ∆ ⊢T t = u then ∆ |=T t = u.

Proof. Let A be a model of T . We must show that if a#t (resp. t = u) is derivable from ∆

using the rules from Figs. 1.1 and 3.3, then J∆K
ς

implies a #sem JtK
ς

(resp. JtK
ς
= JuK

ς
) for any

valuation ς . In both cases the proof is by induction on the depth of the derivation ∆ ⊢ a#t and
∆ ⊢ t = u.

1. Let Π be a derivation of ∆ ⊢ a#t.

For the base case, suppose Π ends with the axiomatic rule (#a). Then a#b is derivable
(and a ̸= b). It must be shown that a #sem bA, note that this folows from Example 3.4,
Item 2.

For the inductive step:

(a) If Π ends with the application of (#X):

The inductive hypothesis gives us π
−1(a) #sem ς(X) and we conclude a #sem π ·ς(X)

by equivariance.

(b) If Π ends with (#a) then a #sem abs(a,JtKς
), by Definition 3.10.

(c) The cases for (#b) and (# f ) follow directly from the induction hypothesis and by
Lemma 3.7.
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2. Let Π be a derivation of ∆ ⊢ t = u.

The cases for (refl), (symm), (trans), (cong []) and (cong f ) follow easily by properties of
equality.

For the inductive step:

(a) If Π ends with an application of (perm):

By induction hypothesis, a #sem JtK
ς

and b #sem JuK
ς
. From Lemma 3.3 follows that

(a b) · JtK
ς
= JuK

ς
, finally by equivariance (Lemma 3.8) one get Jπ · tK

ς
= JtK

ς
.

(b) If Π ends with an application of (ax∇⊢t=u):

Suppose J∇
π

σK
ς

for any ς . Then π(a) #sem (Xσ)ς holds for all a#X ∈ ∇. By
equivariance, a #sem π

−1 · JXσK
ς

for all a#X ∈ ∇. Let ς
′ be defined by

ς
′(X) = π

−1 · JXσK
ς
, for every X .

Then a #sem ς
′(X) for all a#X ∈ ∇, so J∇K

ς
holds. Since ∇ ⊢ t = u is an axiom of

T , we know JtK
ς ′ = JuK

ς ′ . By the Item (4) of Lemma 3.4, π · JtK
ς ′ = π · JuK

ς ′ also
holds. Equivariance give us Jπ ·uK

ς ′ = Jπ ·uK
ς ′ . By a standard induction reasoning

on the syntax of terms one can show Jπ · tK
ς ′ = Jtπ

σK
ς

and Jπ ·uK
ς ′ = Jtπ

σK
ς

to
finally conclude Jtπ

σK
ς
= Juπ

σK
ς
.

(c) Suppose Π ends with (fr):

Then ∆ ⊢T t = u is derived from ∆,a#X1, . . . ,a#Xn ⊢ t = u, where a /∈ atms(∆, t,u).
By ZFA Equivariance (Theorem A.1), applyed considering the derivability relation
⊢T , the following is provable for a′ not occuring in atms(∆, t,u).

∆,a′#X1, . . . ,a′#Xn ⊢T t = u

We also retain the inductive hypothesis for ∆,a′#X1, . . . ,a′#Xn ⊢T t = u by ZFA
Equivariance. Now, by the Choose-a-Fresh-Name Principle select an atom a′ /∈
atms(∆, t,u) such that a′ #sem ς(Xi) for 1 ≤ i ≤ n. Then by the inductive hypothesis,

q
∆,a′#X1, . . . ,a′#Xn ⊢T t = u

y
ς
.

But this is equivalent to J∆ ⊢T t = uK
ς

since
q

a′#X1, . . . ,a′#Xn ⊢T t = u
y

ς
, and the

result follows.
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3.3.2 The Ground Initial Algebra F(T,D)

A very known strategy to build models for equational theories is to add constants in the signature
to construct an infinite number of elements of the language and then quotient these elements by
provable equality. In the nominal setting, adding a term-former with arity zero only give us
a supply of elements with empty support (a#d is derivable for every a ∈ A and d : 0). In this
section, we study a way to build an initial nominal algebra with such extra elements but with
nonempty support.

As in [19], let D be a set of term-formers disjoint from Σ, they are called ‘extra term-
formers’. Then the set F(Σ,D) of ground nominal terms is generated by the grammar:

g ::= a | [a]g | f (g1, . . . ,gn) | d(a1, . . . ,am)

Where f : n range over elements of Σ
n and d : m ranges over elements of Dm.

Remark 3.1. Note that the initial ground (nominal) algebra is the analogous in nominal setting
to the initial first-order ground algebra T (Σ)�E, where E is a set of equational axioms. In what
follow we will see how to effectively build a nominal algebra from this set of ground terms.

We first give to F(Σ,D) a P-set structure by defining the action of a permutation π on
g ∈ F(Σ,D) exactly as in Definiton 1.3.

Lemma 3.9. The set F(Σ,D) of ground terms is a nominal set with the P-action as above.
Moreover supp(g) = {a ∈ A | a ∈ atms(g)}.

Proof. We need to show that every g ∈ F(Σ,D) has finite support. Consider the equation (3.3)
and note that precisely when a ∈ atms(g), the set {b ∈ A | (a b) · x ̸= x} is not finite.

Corollary 3.2. As a corollary, a /∈ atms(g) if, and only if, a #sem g.

Proof. Follows directly from Lemma 3.9.

Lemma 3.10. Let g ∈ F(Σ,D) then a /∈ atms(g) implies ⊢ a#g.

Proof. By induction on the structure of g using the rules from Fig. 1.1.

Definition 3.14. Write (congd) for an instance of the (cong f ) rule when f ∈ D. We denote by
[g]T the set of ground terms g′ such that a derivation of ⊢T g = g′ exists that does not mention
(congd) for any d ∈ D.

Note that the set [g]T has the meaning of ‘derivable ground equality’; we denote by
F(T,D) = {[g]T | g ∈ F(Σ,D)} the set of all such [g]T , sometimes called the set of all ground
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terms up to T . We give to F(T,D) a P-set structure by defining the P-action π · [g]T = [π ·g]T .
The finite (Lemma 3.10) support of [g]T is the set {a ∈ A | 0 a#g}. Therefore, F(T,D) is a
nominal set. Note also that if ⊢ a#g then a #sem [g]T . Next we prove a technical lemma.

Lemma 3.11. Let [g]T ∈ F(T,D). Then a1 #sem [g]T , . . . ,an #sem [g]T if, and only if, there
exists some g′ ∈ [g]T such that ⊢ a1#g′, . . . ,⊢ an#g′ are all derivable.

Proof. Suppose a1 #sem [g]T , . . . ,an #sem [g]T . Lemma 3.5 ensures the existence of g ∈ [g]T
such that a1 #sem g′, . . . ,an #sem g′. So by Lemma 3.9 ai /∈ atms(g′) and by Lemma 3.10 we
conclude ⊢ a1#g′, . . . ,⊢ an#g′.

Now we have in hand all ingredients to build the so promised ‘nominal initial algebra’. The
construction is analogous to the first-order definition of algebras out of terms quotiented by
derivable equality.

The initial algebra F(T,D) is defined overloading the notation from the set of all elements
[g]T , but this should cause no confusion since one can easily distinguish the algebra F(T,D)

from its domain set F(T,D) = {[g]T | g ∈ F(Σ,D)} from the context.

Definition 3.15. Let T = (Σ,Ax) be a theory and D a possible empty set of term-formers
disjoint from Σ. The initial algebra of T over D is the Σ-algebra with:

1. Domain nominal set as F(T,D) = {[g]T | g ∈ F(Σ,D)}.

2. Interpretation of atoms aF(T,D) = [a]T

3. Interpretation of abstraction abs(a,x) = [[a]g]T for some g ∈ x.

4. Interpretation of functions given by f F(T,D)(x1, . . . ,xn) = [ f (g1, . . . ,gn)]T for some g1 ∈
x1, . . . ,gn ∈ xn, for each term-former f : n ∈ Σ.

Lemma 3.12. Under the same conditions as in Definition 3.15, F(T,D) is a (nominal) Σ-
algebra.

Proof sketch. We have showed that the domain set F(T,D) = {[g]T | g ∈ F(T,D)} is a nominal
set. For the interpretation functions it must be shown that they are well defined, i.e., the choices
for g ∈ x and g1 ∈ x1, . . . ,gn ∈ xn does not matter, and that they are equivariant. Finally, we must
show that a #sem abs(a,x) holds always. For a full detailed proof see [19, Lemma 6.11].

Lemma 3.13. Consider t ∈ F(Σ,D) as above. Suppose that Xσ ∈ F(Σ,D) for every X ∈
vars(t). Lets ς be a valuation to the domain F(T,D) such that Xσ ∈ ς(X) for every X ∈
vars(t). Then [tσ ]T = JtK

ς
.
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Proof. By a standard induction on the structure of t. The proof can be found in Appendix B,
see Lemma B.6.

Theorem 3.9. Let T be a nominal theory. The initial algebra F(T,D) is a model of T .

Proof. The proof can be found in the Appendix B, see Theorem B.1.

Example 3.5. Consider the theory ATOM with one axiom ⊢ a = b. Notice that a #sem [a]ATOM,
since [a]ATOM = A. Its not hard to verify that this property holds for all models J·K of ATOM.
Hence, |=ATOM a#a but also 0 a#a.

This example has an immediate consequence on completeness of nominal algebra under
freshness derivations, i.e., we can show that a #sem [a]ATOM but not ⊢T a#a. In general, ∆ |=T

b #sem t does not imply ∆ ⊢ t necessarily.

3.3.3 Completeness for Equality Derivations

For this subsection, fix a signature Σ, a theory T = (Σ,Ax), Σ-terms t,u, and a freshness context
∆. We study the completeness of nominal algebra for equality derivations, i.e., if ∆ |=T t = u
then ∆ ⊢T t = u. We state this result as Theorem 3.10 below and take the rest of this subsection
to prove it.

Theorem 3.10 (Equality Completeness). If ∆ |=T t = u then ∆ ⊢T t = u.

To prove the completeness theorem we study a somewhat nontrivial construction, but the
main idea is quite simple: we only need a specific model and a specific valuation to this model
that preserves sufficient information on the semantics of ∆ |=T t = u to allow us to reconstruct
a syntactic derivation of ∆ ⊢T t = u.

We begin by separating the sets of variables and atoms occuring in ∆, t,u, and use the
sets below to regain informations about the atoms and variables used in the semantic equality
∆ |=T t = u.

Definition 3.16. Let X = var(∆, t,u) and let A= atms(∆, t,u). For each Xi ∈ X :

– let aXi1, . . . ,aXik be the atoms in A (in some arbitrary but fixed order) such that aXil #Xi /∈∆;
for all 1 ≤ l ≤ k.

– let dX : k be a term-former.

For each unknown X /∈ X , let dX : 0 be a term-former, and consider the set D of all dX , for
each unknown X ∈ X.
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Definition 3.17. Let σ be the following substitution:

Xσ = dX(aXi1, . . . ,aXik) (X ∈ X )

Xσ = dX() (X /∈ X )

The fixed model we shall consider, perhaps with no surprises, is the initial algebra F(T,D)

with D as defined in Definition 3.16 above and the valuation ς given by ς(X) = [Xσ ]T .
The reader may ask: why do we consider this model? The answer is also quite simple:

initial models have the beauty of simplicity. Elements of F(T,D) are ground representations of
provable equality within the theory T and freshness constraints are decidable just by looking
in the syntax of the equality representatives, since there is no need to consider freshness
assumptions of the form a#X .

The model F(T,D) is just simple enough and still carry all information about the equality
assertions made by the axioms of the theory. Let us begin with some technical results.

Lemma 3.14. [tσ ]T = JtKF(T,D)
ς

and [uσ ]T = JuKF(T,D)
σ

.

Proof. We show that [tσ ]T = JtKF(T,D)
ς

by induction on the syntax of t, we work on the two
most interesting cases:

Suppose t ≡ π ·X , with X ∈ X :

[π ·Xσ ]T = [π ·dk(⃗a)]T Jπ ·XK
ς
= π · ς(X)

= π · [dk(⃗a)]T = π · [Xσ ]T

= π · [dk(⃗a)]T

Suppose t ≡ [a] t, we have:

[[a] tσ ]T = abs(a, [tσ ]T ) J[a] tK
ς
= abs(a,JtK

ς
)

IH
= abs(a, [tσ ]T )

The initial model validates the freshness constraints in ∆. This is ilustraded in Lemma 3.15
below.

Lemma 3.15. J∆KF(T,D)
ς

is valid.

Proof. Suppose a#Xi ∈ ∆, we must show that a #sem ς(Xi). By Definition 3.16, Xi ∈ X
so ς(X) = [dX(aXi1, . . . ,aXik)]T . But also a /∈ {aXi1, . . . ,aXik} by construction; trivially, a /∈
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atms(dX(aXi1, . . . ,aXik)), hence by Lemma 3.10, ⊢ a#dX(aXi1, . . . ,aXik) is derivable. Finally, by
Lemma 3.11 we get a #sem [dX(aXi1, . . . ,aXik)]T as required.

Definition 3.18. Let Π be a derivation of ⊢T tσ = uσ without using (congd). Let A′ be A
extended with:

– atoms mentioned anywhere in Π;

– a set B of fresh atoms, in bijection with A, fixed as aXil 7→ bXil .

– one fresh atom c such that c doest not occur in A,Π,B.

Remark 3.2. Note that in the definition above the existence of the the atoms in B and the fresh
atom c is due to the Choose-a-Fresh-Atom-Principle.

Let ∆
′ be ∆ extended with freshness assumptions a′#X for every X ∈ X and a′ ∈ A′ \A.

For the rest of this subsection let g,h range over arbitrary ground terms g and h over F(Σ,D)

that mentions only atoms from A′ \ (B∪{c}).

Definition 3.19. Define an inverse mapping (−)−1 from ground terms as above to terms in Σ

inductively as follows:

a−1 ≡ a ([a]g)−1 ≡ [a]g−1 f (g1, . . . ,gn)
−1 ≡ f (g−1

1 , . . . ,g−1
n )

dX(a′Xi1
, . . . ,a′Xik

)−1 ≡ πX(a′Xi1
, . . . ,a′Xik

) ·X (Xi ∈ X )

dX()
−1 ≡ c (Xi /∈ X )

With the abbreviation

πX(a′Xi1
, . . . ,a′Xik

) := (a′Xi1
bXi1) · · ·(a

′
Xik

bXik)(bXi1 aXi1) · · ·(bXik aXik)

The inverse mapping is equivariant over the atoms we care about, i.e., atoms in A′ \ (B∪
{c}).

Lemma 3.16. Let π be a permutation that only mentions atoms from A′ \ (B∪{c}), then
∆
′ ⊢CORE (π ·g)−1 = π ·g−1.

Proof. We reason by induction on the structure of the ground term g. The base case is trivially
true using Definition 3.19. The only non-trivial inductive step is when g ≡ dX(a′Xi1, . . . ,a

′
Xik)

with X ∈ X . We must show

∆
′ ⊢CORE πX(π(a′Xi1), . . . ,π(a

′
Xik)) ·X = (π ◦πX(a′Xi1

, . . . ,a′Xik
)) ·X
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By Lemma 1.6 it suffices to show

∆
′ ⊢ ds(πX(π(a′Xi1), . . . ,π(a

′
Xik)),π ◦πX(a′Xi1

, . . . ,a′Xik
)))#X .

Notice that π doest not mention any of the bXil , so π takes an atom a′Xil
and maps it to a′Xi j

,
hence ds(πX ,π ◦πX)⊆A′, and the results follows.

Lemma 3.17. ∆
′ ⊢CORE (tσ)−1 = t and ∆

′ ⊢CORE (uσ)−1 = u

Proof. It suffices to prove ⊢CORE (vσ)−1 = v for each subterm v of t and u. We do this by
induction on the structure of v. The most interesting case is when v = π ·X , i.e., we need to
show that ∆ ⊢CORE (π ·Xσ)−1 = π ·X . This is equivalent to

∆
′ ⊢ ds(πX(π(aXi1), . . . ,π(aXik)),π)#X

which is true by an analysis analogous from the Lemma 3.16 above.

Corollary 3.3. If ∆ ⊢T g−1 = h−1 then ⊢T g = h.

Proof. By Lemma 3.17 and transitivity (tran).

The next Lemma shows how to construct a derivation of ∆ ⊢T t = u from a ground derivation
of ⊢T tσ = uσ . This is almost what we need for a complete derivation of ∆ ⊢T t = u using the
semantic of F(T,D).

Lemma 3.18. If ⊢T tσ = uσ without using (congd) then ∆ ⊢T t = u. For freshness, if ⊢ a#tσ
then ∆ ⊢ a#t.

Proof. Suppose we could transform a derivation Π of ⊢T tσ = uσ (⊢ a#tσ ) into a derivation
of ∆

′ ⊢T (tσ)−1 = (uσ)−1 (∆′ ⊢ a#(tσ)−1). Given that, the result follows from Lemma 3.17
since we deduce ∆

′ ⊢T t = u and obtain ∆ ⊢T t = u by the Strengthening Theorem 3.4. For
freshness, the result follows from Lemmas 3.17 and 1.5.

The transformation of ⊢T tσ = uσ (⊢ a#tσ ) into ∆
′ ⊢T (tσ)−1 = (uσ)−1 (∆′ ⊢ a#(tσ)−1)

is inductive on Π.
If the derivation ends with an instance of (#ab),(#a),(#b) then the result follows by an

instance of the same rule, possibly by using the inductive hypothesis.
The case for (#X) is impossible by assumption. Let us work on the interesting with more

attention. Suppose Π ends with (# f ). There are three cases to consider:

1. The case of ⊢ a# f (g1, . . . ,gn) for f ∈ Σ: by assumption, ⊢ a#gi for 1 ≤ i ≤ n, and
we get ∆

′ ⊢ a#g−1
i by induction hypothesis. Now we can build a derivation of ∆

′ ⊢
a#(g−1

1 , . . . ,g−1
n ) using (# f ).



3.3 Nominal Algebra 65

2. The case of ⊢ a#dX() for dX ∈ D and X /∈ X : it follows from the axiom rule (#ab) that
⊢ a#c is always derivable.

3. The case of a#dX(aX ′
i1
, . . . ,aX ′

ik
) for dX ∈ D and X ∈ X : we must show ∆

′ ⊢ a#π ·X ,
where

π = (a′Xi1
bXi1) · · ·(a

′
Xik

bXik)(bXi1 aXi1) · · ·(bXik aXik).

By (#X), this follows form ∆
′ ⊢ π

−1(a)#X . Since a ̸= a′Xil
and also a ̸= bXil for all l, we

have
π
−1(a) = (bXik aXik) · · ·(bXi1 aXi1)(a)

We proceed by a case distinction on a:

– If a is in fact aXil for some l, then π
−1(a) = bXil , and the result follows since

bXil #Xi ∈ ∆
′ by construction.

– If a is none of the aXil for all l, then π
−1(a) = a. By construction a#X ∈ ∆ since

aXil are the only atoms in A for which aXil #Xi /∈ ∆. The result follows.

If the derivation Π of ⊢T tσ = uσ ends with an instance of (refl), (symm), (tran) or (cong[])
the result trivially follows by an instance of the same rule by possible using the inductive
hypothesis. Again we work on the more interesting cases:

Suppose the derivation ends with (perm): by the inductive hypothesis we have ∆
′ ⊢ a#g−1

and ∆
′ ⊢ b#g−1. Then

∆
′ ⊢T (a b) ·g−1 = g−1

using (perm). Using Lemma 3.16, we conclude

∆
′ ⊢T ((a b) ·g)−1 = g−1.

The result now follows from Corollary 3.3.
Suppose the derivation ends with (ax∇⊢v=w). Then ⊢ ∇

π
τ and ⊢T vπ

τ = wπ
τ for some

permutation π and substitution τ such that ∇τ,vτ and wτ do not mention any unknown. We
must show ∆

′ ⊢T (vπ
τ)−1 = (wπ

τ)−1. Define the substitution τ
′ such that Xτ

′ = (Xτ)−1 when
Xτ ̸= X and Xτ

′ = X when Xτ = X . It follows that (vπ
τ)−1 ≡ vπ

τ
′, (wπ

τ)−1 ≡ wπ
τ
′ and

(∇π
τ)−1 = ∇

π
τ
′, so it suffices to show

∇
′ ⊢T vπ

τ
′ = wπ

τ
′.

By (ax∇⊢v=w), this follows from ∆
′ ⊢∇

π
τ
′, i.e., ∆

′ ⊢ (∇π
τ)−1, which follows from the inductive

hypothesis using the assumption ⊢ ∇
π

τ .
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Putting the pieces together we finally show the main result of this subsection: semantic
equality, ∆ |=T t = u, implies syntactic equality, ∆ ⊢T t = u.

Proof of Theorem 3.10. Suppose ∆ |=T t = u, so J∆ ⊢ t = uKF(T,D)
ς

for the initial ground algebra
F(T,D) and the valuation ς defined as above. Now J∆K

ς
is valid by Lemma 3.15, so JtK

ς
= JuK

ς
.

By Lemma 3.14 we have [tσ ]T = JtK
ς

and [uσ ]T = JuK
ς
. Therefore, by construction ⊢T tσ = uσ

without using (congd). It follows by Lemma 3.18 that ∆ ⊢T t = u.

Now that we have finally proved Theorem 3.10 let us think about completeness for a
moment. Recall that in Example 3.5 we showed |=ATOM a #sem a but not ⊢ a#a, as an example
for incompleteness of nominal algebra with respect to freshness derivations.

Looking at Definition 3.10 the reader may ask: ‘atoms in nominal syntax are identified by
its name, so why allow for the interpretation of atoms to interpret two distinct atoms as equal
elements in the domain?’

Indeed, this seams to be the source of freshness incompleteness. But, if one add the
condition saying atom : A→ A is an injection one would have the property that JaK

ς
̸= JbK

ς
for

all atoms a,b ∈ A. But this condition would invalidate the soundness of the equality fragment.
To see this consider the theory ATOM. So ⊢ATOM a = b is trivially derivable, but any model of
ATOM satisfies JaK

ς
̸= JbK

ς
. The next subsection shows how to regain freshness completeness

without loosing soundness: semantic freshness is hidden inside the equality fragment.

3.3.4 Completeness for Freshness

Definition 3.20. Let ∆ ⊢ a#t be a freshness judgement. By the Choose-a-Fresh-Name-
Principle make a fixed but arbitrary choice of fresh atom b such that b does not occurs
in ∆,a, t. Write ∆

+ for the context ∆,b#X1, . . . ,b#Xn where {X1, . . . ,Xn}= var(t) and

∆
+ ⊢ (a b) · t = t

for the equality judgement obtained from ∆ ⊢ a#t as outlined above.

Theorem 3.11 (Completeness for Freshness). ∆ |=T a#t if, and only if, ∆
+ ⊢T (a b) · t = t.

Proof. Choose a model A of T and any valuation ς such that b #sem ς(X1), . . . ,b #sem ς(Xn).
By a standard induction on the structure of t one can show that b #sem JtK

ς
. Lemma 3.3 says

that a #sem JtK
ς

if, and only if, (a b) · JtK
ς
= JtK

ς
and from equivariance of the interpretation,

Lemma 3.8, the last part is equivalent to J(a b) · tK
ς
= JtK

ς
.

Now suppose ∆ |=T a#t. By Definition 3.13, a #sem JtK
ς

for any model of T and all ς such
that J∆K

ς
is valid. By the arguments above J(a b) · tK

ς
= JtK

ς
if b #sem ς(X1), . . . ,b #sem ς(Xn).

It follows from Equality Completeness, Theorem 3.10, that ∆
+ ⊢ (a b) · t = t.
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3.4 Homomorphisms, Subalgebras and Product Algebras

We now concentrates our study in the interaction between nominal algebras. The first mathe-
matical object that the reader may think of is perhaps the notion of homomorphism between
algebras. Indeed they can carry a lot of information from one algebra to another, since they
preserve interpretation.

3.4.1 Homomorphisms and Homomorphic Images.

Definition 3.21. For Σ-algebras A and B, a Σ-algebra Homomorphism from A to B is a
equivariant function θ : A → B such that

– θaA = aB,

– θabsA(a,x) = absB(a,θx),

– θ fA(x1, . . . ,xn) = fB(θx1, . . . ,θxn), for every f ∈ Σ.

Suppose A and B are Σ-algebras. Call B a homomorphic image of A if there is a surjective
Homomorphism from A to B.

The next lemma states that if a homomorphism preserves valuations then it also preserves
interpretation. We use it as a tool to prove a more important result, Lemma 3.20.

Lemma 3.19. Let θ : A → B be a homomorphism. Suppose ς is a valuation to A and ς
′

is a valuation to B. Also, suppose that θ(ς(X)) = θ(ς ′(X)), for all unknowns X . Then
θ(JtKA

ς
) = θ(JtKB

ς
).

Proof. We reason by induction on the structure of t. The base case is trivial. We work on two
interesting cases:

Suppose t ≡ π ·X ,

θ(Jπ ·XKA
ς
)≡ θ(π · ς(X))

≡ π · ς ′(X)

≡ θ(Jπ ·XKB
ς ′).
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Suppose t ≡ [a] t,

θ(J[a] tKA
ς
)≡ θ(absA(a,JtKA

ς
))

≡ absB(a,θ(JtKA
ς
))

I.H≡ absB(a,θ(JtKB
ς ′))

≡ θ(J[a] tKB
ς
)

Lemma 3.20. Suppose A and B are Σ-algebras and that B is a homomorphic image of A. If A
is a model of T , then so is B.

Proof. Fix some surjective homomorphism θ : A → B, choose any axiom (∇ ⊢ t = u) ∈ Ax,
and a valuation ς to B. It suffices to show that J∇ ⊢ t = uKB

ς
is valid. Suppose J∇KB

ς
is valid, by

definition this means that a #sem ς(X) for every a#X ∈ ∇.
For each unknown X define the set X = {x ∈ A | θ(x) = ς(X)} ⊆ A, by equivariance of

θ we get π ·X = {x ∈ A | θ(x) = π · ς(X)}. Therefore if π · ς(X) = ς(X) then π ·X = X and
it follows that supp(X )⊆ supp(ς(X)). Define the valuation ς

′ to A by setting ς
′(X) = x for

some choice of x ∈ X such that a #sem x for every a#x ∈ ∇, this choice exists by Lemma 3.5.
This construction makes J∇KA

ς ′ valid, and so since A is a model of T we have JtKA
ς ′ = JuKA

ς ′ .
Applying θ to both sides of this equation we get, using Lemma 3.19,

JtKB
ς
= JuKB

ς
.

Therefore, J∇ ⊢ t = uK
ς

is valid in B, as required.

3.4.2 Subalgebras

Definition 3.22. For Σ-algebras A and B call A a subalgebra of B, written as A ≤ B, if the
following conditions are satisfied:

– A ⊆ B,

– aA = bB, for all atoms a ∈ A,

– absA(a,x) = absB(a,x), for all atoms a ∈ A and all x ∈ A.

– The interpretation of functions is preserved on A, that is, for all f ∈ Σ, and all x1, . . . ,xn ∈
A, fA(x1, . . . ,xn) = fB(x1, . . . ,xn).
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What we are saying in this definition is that subalgebras are closed under the interpretation
of atoms, abstractions, and function interpretation which it inherits from B.

Lemma 3.21. Let A,B be Σ-algebras. Suppose B is a model of T = (Σ,Ax). If A≤ B then A
is a model of T .

Proof. Suppose (∇ ⊢ t = u) ∈ Ax and suppose ς is a valuation to A such that a #sem ς(X)

for every a#X ∈ ∇. Since ς is also a valuation to B which is a model of T , it follows that
JtKA

ς
= JuKA

ς
. Therefore, A satisfies all the axioms of T .

3.4.3 Product Algebras

Definition 3.23. Let (Ai)i∈I be a countable I-indexed family of Σ-algebras. The product
algebra P = Πi∈IAi is the Σ-algebra defined as:

– the domain is the product nominal set P = Πi∈IAi,

– aP = (aAi)i∈I ,

– absP(a,(xi)i∈I) = Πi∈Iabs
Ai(a,xi),

– For each term-former f : n, the component-wise interpretation function

fP((xi)
1, . . . ,(xi)

n) = ( f (x1
i , . . . ,x

n
i ))i∈I

Using Definition 3.10, one can easily show that the product algebra is indeed a nominal
Σ-algebra.

Lemma 3.22. For any I-indexed family of Σ-algebras (Ai)i∈I , if Ai is a model of T = (Σ,Ax)
for every i ∈ I then so is the product algebra P .

Proof. Suppose that ς is a valuation to P , take an axiom (∇ ⊢ t = u) ∈ Ax, and suppose
a #sem ς(X) for every a #sem X ∈ ∇.

For each i ∈ I we obtain a valuation ςi to the domain Ai of Ai by projecting to the i-th
component of ς(X). By Lemma 3.6 we have that a #sem ςi(X) for every a#X ∈ ∇. Since for
every i ∈ I each Σ-algebra Ai is a model of T , we obtain, for every i ∈ I:

pi(JtKAi
ς
) = pi(JuKAi

ς
)

where pi is the i-th projection. It follows that

JtKP
ς
= JtKP

ς
.
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3.4.4 Atoms-abstraction

Fix a nominal set X . Suppose x ∈ X and a ∈ A.

Definition 3.24. We define the set atom-abstraction [a]x by

[a]x = {(b,(b a) · x) | b #sem x}∪{(a,x)}

Write [A]X for the P-set such that:

– The underlying set is [A]X = {[a]x | a ∈ A, x ∈ X},

– The permutation action is π · [a]x = [π(a)]π · x.

Lemma 3.23. If X be a nominal set, x ∈ X and a ∈ A, then supp([a]x) = supp(x)\{a}.

Proof. The proof can be found in [23, Corollary 5.2].

Now we define the abstracted Σ-algebra [A]A out of A.

Definition 3.25. Suppose that A is a Σ-algebra. Define [A]A by:

– The domain set is the nominal set [A]A,

– a[A]A = [c]aA, for any c ̸= a.

– abs[A]A(a, [c]x) = [c]absA(a,x), for any c ̸= a.

– f [A]A([c]x1, . . . , [c]xn) = [c] fA(x1, . . . ,xn).

Lemma 3.24. [A]A is a nominal Σ-algebra.

Proof. The proof can be found in [19, Lemma 8.15]

Lemma 3.25. If y1, . . . ,yn ∈ [A]X then for any c ∈ A such that c #sem y1, . . . ,c #sem yn there
exists x1, . . . ,xn ∈ X such that yi = [c]xi for 1 ≤ i ≤ n.

Proof. Since yi ∈ [A]X , it is of the form yi = [d]xi, for some d ∈ A and xi ∈ X . Also, by
Definition 3.24;

yi = {(b,(b d) · xi) | b #sem xi}∪{(d,xi)}

from c #sem yi it follows, using Lemma 3.23, that c /∈ supp(yi) = supp(xi)\{d} so c #sem xi

then the pair (c,(c d) · xi) ∈ yi and we can take yi = [c]xi, as required.
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Lemma 3.26. If [a]x = [c]y then x = y.

Proof. From [c]x = [c]y and using Definition 3.24 we have that for every atom b such that
b #sem x: (b,(b c) · x) = (b,(b c) · y), so (b c) · x = (b c) · y and finally x = y.

Definition 3.26. If A is a Σ-algebra and ς is a valuation to A, then write [c]ς for the valuation
to [A]A such that X maps to [c]ς(X).

Lemma 3.27. Suppose that A is a Σ-algebra and ς a valuation to A. If c /∈ atms(t) then

JtK[A]A
[c]ς = [c]JtKA

ς

Proof. By a standard induction on t.

Corollary 3.4. Suppose that c /∈ atms(t,u). Then JtKA
ς
= JuKA

ς
if, and only if, JtK[A]A

[c]ς = JuK[A]A
[c]ς .

Proof. If JtKA
ς
= JuKA

ς
then [c]JtKA

ς
= [c]JuKA

ς
and the result follows from Lemma 3.27.

Conversely, suppose JtK[A]A
[c]ς = JuK[A]A

[c]ς . By Lemma 3.27 [c]JtKA
ς
= [c]JuKA

ς
. The result now

follows by Lemma 3.26.

Now we can prove the main result of this subsection.

Lemma 3.28. If A is a model of T then so is [A]A.

Proof. Suppose (∇ ⊢ t = u) ∈ Ax. Take ς a valuation to [A]A such that a #sem ς(X) for every
a#X ∈ ∇. Now choose some fresh atom c such that c /∈ atms(∇, t,u) and such that c #sem ς(X)

for every X in var(∇, t,u). By using Lemma 3.25, construct a valuation ς
′ to A such that

ς(X) = ([c]ς ′)(X) for every X in var(∇, t,u), and therefore such that

JtK[A]A
ς

= JtK[A]A
[c]ς ′ and JuK[A]A

ς
= JtK[A]A

[c]ς ′ .

By Lemma 3.27,
JtK[A]A

[c]ς ′ = [c]JtKA
ς ′ and JuK[A]A

[c]ς ′ = [c]JuKA
ς ′ .

By Lemma 3.23 a #sem ς
′(X) for every a#X ∈ ∇. Finally, since A is a model of T we have

JtKA
ς ′ = JuKA

ς ′ and therefore [c]JtKA
ς ′ = [c]JuKA

ς ′ . The result follows.

3.5 Varieties and Equational Classes of Algebras

Definition 3.27. A (nominal algebra) variety V for a signature Σ is a collection of Σ-algebras
∈-closed under homomorphic image, subalgebra, countable product, and atoms-abstraction.
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Definition 3.28. The collection V of Σ-algebras is called (nominal algebra) equational if there
is a theory T = (Σ,Ax) such that V is the collection of all models of T .

We now are able to state the main result of this chapter: a version of the HSP theorem for
nominal algebras.

Theorem 3.12 (Nominal HSP Theorem). A collection of Σ-algebras V is equational if, and
only if, it is a variety.

The proof of the HSP Theorem takes the rest of this section. Fix a theory T = (Σ,Ax) and a
collection V of Σ-algebras2.

3.5.1 Surjections Out of Initial Algebras

Finally, we give to F(T,D) its initiallity we talked about earlier. We first show that every
Σ-algebra A is the homomorphic image of some sufficient large initial algebra.

Lemma 3.29. Suppose A is a model of T = (Σ,Ax). Then the following determine a Σ-algebra
homomorphism from F(T,D) to A: for each term-former D

– a choice of n atoms a1, . . . ,an, and

– a choice of element θd(a1, . . . ,an) ∈ A such that supp(θd(a1, . . . ,an))⊆ {a1, . . . ,an}.

Proof. Define the relation θ ⊆ F(Σ,D)×A by:

– θd(π(a1), . . . ,π(an)) = π ·θd(a1, . . . ,an).

– θa = aA.

– θ [a]g = absA(a,θ [g]T ).

– θ f (g1, . . . ,gn) = fA(θg1, . . . ,θgn).

We first need to show that θ is a well defined function θ : F(T,D)→ A. That is, [g]T = [h]T
implies θg = θh. Indeed, let Π be a ground derivation of ⊢T g = h. Consider the construction
of the inverse mapping, Definition 3.19, and take σ a substitution as in Definition 3.17. Let
ς(X) = θ(Xσ). We claim that θg =

q
g−1y

ς
and θh =

q
h−1y

ς
.

2For now we do not assume V is a variety.
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Proof of the Claim. We prove it by induction on g. The atomic case is trivial. We work on one
inductive step: Suppose g ≡ [a]g′. So

θ [a]g′ = absA(a,θ [g′]T )
q
([a]g′)−1y

ς
=

q
[a] (g′)−1y

ς

= absA(a,
q
(g′)−1y

ς
)

= absA(a,θg′)

Now θ can be viewed as a function θ : F(T,D)→ A. Also, one can show π ·θg = θ(π ·g)
by induction on g. It follows that;

– π · (θ [g]T ) = π ·θg = θπ ·g = θ [g]T .

– θaF(T,D) = aA.

– θ f F(T,D)([g1]T , . . . , [gn]T ) = fA(θ [g1]T , . . . , [gn]T ).

So θ is a Σ-algebra homomophism from the initial ground algebra F(T,D) to A. So by Lemma
3.18, ∆ ⊢T g−1 = h−1. Therefore, the result follows by Soundness, Theorem 3.8.

Theorem 3.13. If A∈ V then there exists some (sufficiently large) set of fresh term-formers D
such that there exists a surjective Σ-algebra homomophism θ : F(T,D)→A.

Proof. As usual, we write |A| for the cardinality of A. Suppose that D is a set of term-formers
with cardinality at least |A| for every arity n > 0, and with no term-formers with cardinality 0.
We shall exhibit a suitable θ from F(T,D) to A.

For each permutation equivalence class {π · x | π ∈ P} ⊆ A choose a representative x ∈ A.
And for each such x,

– order the support of x as a1, . . . ,an, pick a unique n-ary term-former d ∈ D, and

– assign θd(a1, . . . ,an) = x.

For each remaining unassigned d(b1, . . . ,bn) assign θd(b1, . . . ,bn) to bA1 . By Lemma 3.29, this
choice extends to a homomophism θ from F(T,D) to A.

To see that θ is a surjection consider any x′ ∈ A. By construction there exists some
representative x such that x′ ∈ {π · x | π ∈ P}. So write x′ = π · x. Hence, x = θd(a1, . . . ,an)

and so x′ = x = θd(a1, . . . ,an).
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3.5.2 Injections Out of Initial Algebras

Fix a countable collection V of Σ-algebras. We now show that there exists a homomophism
from the initial algebra F(T,D) to the product Πi∈IBi.

Definition 3.29. Let A (Bi∈I) be a Σ-algebra (I-indexed family of Σ-algebras) such that A (Bi)

are all models of T , for i ∈ I. Let θi : A→Bi be a I-indexed family of homomophisms. Then
write θ = Πi∈Iθi for the natural map from A to Πi∈IBi, mapping x ∈ A to (θix)i∈I ∈ Πi∈IBi.

It is easy to verify that θ defined in Definition 3.29 is a Σ-algebra homomophism.

Definition 3.30. Let T = (Σ,Ax) where Ax is the collection of judments valid in all B ∈ V for
all valuations. Call T the theory generated by V .

Remark 3.3. In the definition above we are saying that (∇ ⊢ t = u) ∈ Ax exactly when for every
B ∈ V and every possible valuation ς to B, it is the case that if a #sem ς(X) for every a#X ∈ ∇

then JtKB
ς
= JuKB

ς
.

Theorem 3.14. Let V be a family of Σ-algebras and T be the theory generated by V . Suppose
D is any set of fresh term-formers (so D∩Σ = /0).

Then there exists a countable I-indexed set of Σ-algebras Bi ∈ V , for i ∈ I, such that there
exists a injective Σ-algebra homomophism θ : F(T,D)→P = Πi∈IBi.

Proof. Let I be the set of pairs (g,h) of ground terms in the signature Σ∪D such that [g]T ̸=
[h]T . Note that I is a countable set since F(Σ,D) is countable. Fix some arbitrary but fixed
i = (g,h) ∈ I. We assumed that 0T g = h, so by Corollary 3.3 ∆ 0T t = u, where t = g−1

σ and
u = h−1

σ , as in Lemma 3.18. By our assumption that T is generated by V , there exists some
model Bi in V and valuation ς such that J∆KBi

ς
is valid whereas JtK

ς
̸= JuK

ς
. Define the set

{c1, . . . ,cp} :=

( ⋃
X∈X

supp(ςX)

)
\A

where A and X are as in Definition 3.16. Write B′
i for [A]Bi and write ς

′ for [c1] . . . [cp]ς (see
Definition 3.26). Since V is closed under atoms-abstraction we have Bi ∈ V . By Corollary 3.4

JtKB
′
i

ς ′ ̸= JuKB
′
i

ς ′

We construct a choice θ by setting θd(a1, . . . ,an) = ς
′(X) for each d ∈ D, where X ∈ X is the

unknown corresponding to d, and a1, . . . ,an is the choice of atoms in order corresponding to d,
in the sense of Definition 3.16 and Def. 3.17.
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In order to use Lemma 3.29 to obtain a homomophism θ from F(T,D) to B′
i we must verify

that supp(ς ′(X))⊆ {a1, . . . ,an}. This is done as follows:
Suppose that a /∈ {a1, . . . ,an}. By the rules in Figure 1.1 ⊢ a#d(a1, . . . ,an). By Lemma

3.18, ∆ ⊢ a#d(a1, . . . ,an)
−1. By assumption J∆KB

′
i

ς ′ so by Soundness (Theorem 3.8) a #sem

Jd(a1, . . . ,an)K
B′

i
ς ′ . By using Definition 3.19 we can see that d(a1, . . . ,an)

−1 = X and with that
we deduce that a #sem ς

′(X). So it follows that supp(ς ′(X))⊆ {a1, . . . ,an}, as required.
It follows by the choice of Bi that θ := Πi∈Iθi, as in Definition 3.29, from F(T,D) to

P = Πi∈IB′
i is an injective Σ-algebra homomophism.

The next Lemma is the last piece of the puzzle, it says that the initial algebra F(T,D) is
always inside a variety in which T is the theory generated by it.

Lemma 3.30. Suppose V is a variety and suppose T is the theory generated by V . Then
F(T,D) ∈ V for every set of term-formers D.

Proof. By Theorem 3.14 there is some I-indexed family of Σ-algebras and a injective ho-
momophism θ : F(T,D) → P = Πi∈IBi. Since V is closed under products, P ∈ V . The
homomorphic image of F(T,D) is a subalgebra of P , and since V is closed under subalgebras
and homomorphic images the result follows.

3.5.3 The Nominal HSP Theorem

Finally, we give a proof for the Nominal HSP Theorem using most of the results proved so far.

Proof of the Nominal HSP Theorem. Suppose V is equational. So, by Lemma 3.22 V is closed
under products. Lemma 3.20 says V is closed under homomorphic images, by Lemma 3.21 V is
closed under subalgebras, and from Lemma 3.28 we know V is closed under atom-abstraction.
Therefore, V is a variety.

Conversely, suppose V is a variety. Let T be the theory generated by V . Let B be any model
of T . By Theorem 3.13 there exits some D such that B is the homomorphic image of F(T,D).
By Lemma 3.30 F(T,D) ∈ V . Since V is closed under homomophisms, B ∈ V as required.
Therefore V is equational.

We also consider the term-algebra T (Σ,A,X), as in the first-order case, this term-algebra is
generic (see [9]) for solving existentially closed equations.

Corollary 3.5. Let φ be the existentially closed equational judgement:

φ ::= ∃X⃗(∆ ⊢ s =T t).

Then ∆ ⊢F(T,D) φ if, and only if, ∆ ⊢T (Σ,A,X) φ .
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Example 3.6. Corollary 3.5 does not hold for disequations, to see this consider the theory
T = (Σ,Ax) where Σ = { f (_)} and Ax = {⊢ f (X) = a,⊢ [a] f (X) = a}. In T (Σ,A,X) one can
derive ⊢ f (b) = a and ⊢ f (b) = b:

(ax∆′⊢ f (X)=a)
⊢ id · f (X)σ = aσ

⊢ f (b) = a
(symm)

⊢ a = f (b)

(ax∆′⊢ f (X)=a)
⊢ (a b) · f (X)σ ′ = (a b) ·aσ

′

⊢ f (b) = b
(trans)⊢ a = b

by taking σ = {X/b} in the left branch and σ
′ = {X/a} in the right branch. The dashed lines

in the derivation above represent the result obtained after the application of substitutions σ and
σ
′, and the swapping of names in the axiom ⊢ f (X) = a. Therefore, every atom is in the same

equivalence class modulo T .
Also, from the axioms of T one can derive ⊢ f (t) = a and ⊢ [b] f (u) = a for any pair of

terms t and u. Hence it is possible to derive ⊢ t ′ = u′ for any non-variable terms t ′ and u′. The
other equivalence classes are for variables X ,Y,Z . . . .

It follows that ⊢T (Σ,A,X) ∃X .X ̸= a. However, F(T,D) (with D = /0) has only one equiv-
alence class, i.e., the class of all ground terms and atoms, therefore, 0F(T,D) ∃X .X ̸= a since
every ground term and atom are in the same equivalence class modulo T .



Chapter 4

Conclusions and Future Work

In this work, we have developed a method to deal with nominal equations constrained by
equality constraints in the form of nominal disequations. The approach adapts Buntine and
Bürckert’s first-order method to solve disequations taking into account the particularities of
nominal syntax and semantics. To the best of our knowledge, this is the first work that deals with
disequations in the nominal setting. The main result, Theorem 2.1, establishes the soundness
and completeness of the proposed approach.

As future work, we intend to investigate more specific applications of nominal constraint
problems; inspired from Buntine and Bürckert’s work we could seek some direct extensions
to nominal logic programming with negated equations and apply our results to more general
unification theories (for instance, AC and AC1-nominal unification problems). Also, the more
general approach to disunification followed by Comon and Lescane [16] using quantified
variables will be investigated.
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Appendix A

ZFA Set Theory and Equivariance

We use atoms in this dissertation — we introduce them when we say: ‘Fix a countable infinite
set A of atoms’ in Chapter 1.

We can represent atoms as natural numbers 0,1,2,3, . . . or as sets /0,{ /0}, . . . in principle
we might use some properties of atoms specific to their representation, such as a < b or a ∈ b.
However, in this dissertation we have not used none of these properties because we consider
atoms to be . . . atomic.

Here atomic has an specific meaning: atomic objects does not have internal structure, in
contrast with the examples given above. Set theorists call these atomic objects urelemente. A
consequence of this construction is that atoms can be distinguished apart — a ̸= b is always
true and a = b is always false. This give us the very important ability to rename atoms.
This is called equivariance property, it is an meta-mathematical tool to reason about nominal
structures such as nominal algebra, λ -calculus (represented as in Chapter 1).

Definition A.1. For the language of ZFA set thoery, in addition to the basic language of
first-order logic with equality, we assume:

• A binary predicate symbol ∈ called set membership.

• A constant term-former A called the set of atoms.

In the axioms of Fig. A.1, φ range over all predicates, φ [x/y] denotes the predicate obtained
by capture-avoiding substitution of x by y, and F(y) represent any function which can be
expressed in the language of ZFA sets. We also use the following sugar:
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(Sets) ∀x.((∃y.y ∈ x)→ x /∈ A)
(Extensionality) ∀x.(x /∈ A→ x = {z | z ∈ x})

(Comprehension) ∀x.∃y.(y /∈ A∧ y = {z ∈ x | φ}), if y is not free in φ

(∈-induction) ∀x.(∀y.(y ∈ x → φ [y/x])→ φ)→∀x.φ
(Replacement) ∀x.∃z.(z /∈ A∧ z = {F(y) | y ∈ x})

(Pairset) ∀x.∀y.∃z.(z = {x,y})
(Union) ∀x.∃z.(z /∈ A∧ z = {y | ∃y′.(y ∈ y′∧ y′ ∈ x)})

(Powerset) ∀x.∃z.(z = {y | y ⊆ x})
(Infinity) ∃x.( /0 ∈ x∧∀y.(y ∈ x → y∪{y} ∈ x))

Fig. A.1 Axioms of ZFA Set Theory

x ={z | z ∈ x} is sugar for ∀y.(∀z.(z ∈ x ⇐⇒ z ∈ y)→ x = y)

y ={z ∈ x | φ} is sugar for ∀z.(z ∈ y ⇐⇒ (z ∈ x∧φ))

z ={F(y) | y ∈ x} is sugar for ∀u.(u ∈ z ⇐⇒ ∃y.(F(y) = u∧ y ∈ x))

z ={x,y} is sugar for ∀u.(u ∈ z ⇐⇒ (x = u∨u = y))

z ={y | ∃y′.(y ∈ y′∧ y′ ∈ x)} is sugar for ∀y.(y ∈ z ⇐⇒ ∃y′.(y ∈ y′∧ y′ ∈ x))

z ={y | y ⊆ x} is sugar for ∀y.(y ∈ z ⇐⇒ ∀y′.(y′ ∈ y → y′ ∈ x))

/0 ∈x is sugar for ∃z.(z ∈ x∧∀z′.z′ /∈ z)

y∪{z} ∈ x is a sugar for ∃u.(u ∈ x∧∀u′.(u′ ∈ u ⇐⇒ u ∈ y∨u = z))

The syntatic sugar in set theory is very rich; in this description itself we use some other
sugars that may be ‘obvious’ for the reader.

Definition A.2. We define a permutation action on ZFA sets by:

π ·a = π(a) π ·X = {π · x | x ∈ X} (X /∈ A)

This definition is by ∈-induction, a standard method in set theory which relies on a well-
foundedness property implied by the axiom (∈-Induction).

Recall that φ ranges over predicates of ZFA. Write φ(x1,x2, . . . ,xn) to range over predicates
which mentions at most x1,x2, . . . ,xn as free variable symbols.
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Theorem A.1 (ZFA Equivariance). If φ(x1, . . . ,xn) is a predicate in ZFA set theory then

φ(x1, . . . ,xn) ⇐⇒ φ(π · x1, . . . ,π · xn)

is always provable, for any permutation π .

Corollary A.1. We can interchange φ(x1, . . . ,xn) and φ(π · x1, . . . ,π · xn) in a proof and in
validity on models.

The proofs and more results on ZFA can be found in [22, Appendix A] and [23].





Appendix B

Complete Proofs

This chapter concentrates complete proofs stated in the body of the dissertation.

B.1 Chapter 1

Lemma B.1. ≈α is reflexive, i.e., ∆ ⊢ s ≈α s, for all s.

Proof. The proof is by induction on the syntax of s. The atomic case, ∆ ⊢ a ≈α a, is always
derivable.

If s ≡ π ·X then since ds(π,π) = /0 one trivially derive π ·X ≈α π ·X using (Ds).
If s ≡ [a] t. Then by induction hypothesis, ∆ ⊢ t ≈α t. Therefore, ∆ ⊢ [a] t ≈α [a] t by

(Abs-a).
If s ≡ f (t1, . . . , tn) then by induction hypothesis, ∆ ⊢ ti ≈α ti for all 1 ≤ i ≤ n. The result

follows by (F).

Lemma B.2. ≈α is symmetric, i.e., if ∆ ⊢ s ≈α t then ∆ ⊢ t ≈α s.

Proof. The proof is by induction on the derivation of ∆ ⊢ s ≈α t by an analysis of the last rule
applied.

(a) The base case is trivial.

(b) The last rule is (Ds):

Then ∆⊢ π ·X ≈α γ ·X is derivable from ds(π,γ)#X . So, ∆⊢ γ ·X ≈α π ·X is also derivable
from ds(π,γ)#X .

(c) The last rule is (Abs-a):

Hence ∆ ⊢ [a]s ≈α [a] t is derivable from the premise ∆ ⊢ s ≈α t. The induction hypothesis
gives ∆ ⊢ t ≈α s and we derive ∆ ⊢ [a] t ≈α [a]s using (Abs-a).
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(d) The last rule is (Abs-b):

So ∆ ⊢ [a]s ≈α [b] t is derivable from the premises ∆ ⊢ (b a) · s ≈α t and ∆ ⊢ b#s. The
derivation step

∆ ⊢ (a b) · t ≈α s ∆ ⊢ a#t
(Abs-b)

∆ ⊢ [b] t ≈α [a]s

has two proof obligations: ∆ ⊢ (a b) · t ≈α s and ∆ ⊢ a#t which we derive in the items
below.

(i) By equivariance, Theorem 1.1, follows that ∆ ⊢ s ≈α (a b) · t is derivable, and by
induction hypothesis it follows that ∆ ⊢ (a b) · t ≈α s.

(ii) Since ∆ ⊢ b#s and by item (i) above ∆ ⊢ s ≈α (a b) · t, if follows from Lemma 1.5
that ∆ ⊢ b#(a b) · t is derivable. Finally, equivariance gives ∆ ⊢ (a b) ·b#t which is
equivalent to ∆ ⊢ a#t.

(e) The last rule is (F):

Then ∆ ⊢ f (s1, . . . ,sn)≈α f (t1, . . . , tn) is derivable from ∆ ⊢ si ≈α ti, for 1 ≤ i ≤ n. Apply
the inductive hypothesis to get ∆ ⊢ ti ≈α si, for 1 ≤ i ≤ n. Finally,

∆ ⊢ f (t1, . . . , tn)≈α f (s1, . . . ,sn)

is derivable using (F).

Lemma B.3. ≈α is transitive, i.e., if ∆ ⊢ s ≈α t and ∆ ⊢ t ≈α u then ∆ ⊢ s ≈α u.

Proof. The proof is by a simultaneous induction on the depth of the derivations for ∆ ⊢ s ≈α t
and ∆ ⊢ t ≈α u. First notice that since the rules for (≈α) are syntax-directed the derivations for
∆ ⊢ s ≈α t and ∆ ⊢ t ≈α u must end with rules of the same type. The atomic case is trivial.

1. The last rule is (Ds):

Then ∆ ⊢ π ·X ≈α γ ·X and ∆ ⊢ γ ·X ≈α τ ·X are derivable from ∆ ⊢ ds(π,γ) and
∆ ⊢ ds(γ,τ), respectively. We need a derivation

∆ ⊢ ds(π,τ)
(Ds)

∆ ⊢ π ·X ≈α τ ·X
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This follows from the fact that ds(π,τ)⊆ ds(π,γ)∪ds(γ,τ). Indeed, let a ∈ ds(π,τ),
and suppose by contradiction that a /∈ ds(π,γ)∪ ds(γ,τ). Hence, π(a) ̸= τ(a) and
π(a) = γ(a) = τ(a) which is a contradiction.

2. The last rule is for abstractions (Abs-a) and/or (Abs-b).

(a) Both derivations ends with (Abs-a).

Therefore, ∆ ⊢ [a]s ≈α [a] t and ∆ ⊢ [a] t ≈α [a]u are derivable from ∆ ⊢ s ≈α t
and ∆ ⊢ t ≈α u, respectively. By induction hypothesis we have that ∆ ⊢ s ≈α u is
derivable. Hence, ∆ ⊢ [a]s ≈α [a]u follows using (Abs-a).

(b) One of the derivations ends with (Abs-b). Suppose, without loss of generality,
∆ ⊢ [a]s ≈α [a] t and ∆ ⊢ [a] t ≈α [b]u.

Then ∆ ⊢ [a]s ≈α [a] t is derivable from ∆ ⊢ s ≈α t, and ∆ ⊢ [a] t ≈α [b]u is derivable
from ∆ ⊢ (b a) · t ≈α u and ∆ ⊢ b#t. The derivation step

∆ ⊢ (b a) · s ≈α u ∆ ⊢ b#s
(Abs-b)

∆ ⊢ [a]s ≈α [b]u

has two proof obligations: ∆ ⊢ (b a) · s ≈α u and ∆ ⊢ b#s. We prove them in the two
items below.

(i) Equivariance, Theorem 1.1, give us a derivation of ∆ ⊢ t ≈α (a b) · u and
combining this with the derivation of ∆ ⊢ s ≈α t and the induction hypothesis
results in a derivation of ∆ ⊢ s ≈α (a b) ·u. Again, by equivariance we have a
derivation of ∆ ⊢ (b a) · s ≈α u.

(ii) By hypothesis we have a derivation of ∆ ⊢ s ≈α t and ∆ ⊢ b#t. Hence by
Lemma 1.5 it follows that ∆ ⊢ b#s.

(c) Both derivations ends with (Abs-b).

Then ∆ ⊢ [a]s ≈α [b] t and ∆ ⊢ [b] t ≈α [c]u are derivable from (∆ ⊢ (b a) · s ≈α t and
b#s) and (∆ ⊢ (c b) · t ≈α u and c#t), respectively. Now the derivation

∆ ⊢ (c a) · s ≈α u ∆ ⊢ c#s
(Abs-b)

∆ ⊢ [a]s ≈α [c]u

has the proof obligations: ∆ ⊢ (c a) · s ≈α u and ∆ ⊢ c#s which we derive in the items
below.

(i) Combining the derivation for ∆ ⊢ (b a) · s ≈α t and ∆ ⊢ t ≈α (b c) ·u and using
the inductive hypothesis we get the derivation ∆ ⊢ (b a) · s ≈α (b c) ·u and by
equivariance:

∆ ⊢ (c b)◦ (b a) · s ≈α u
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Now notice that ds((c b)◦ (b a),(c a)) = {b,c}. By item (ii) we have ∆ ⊢ b#s
and since ∆ ⊢ b#s by hypothesis it follows, from Lemma 1.6, that

∆ ⊢ (c b)◦ (b a) · s ≈α (c a) · s

Induction hypothesis one more time gives the desired result, ∆ ⊢ (c a) · s ≈α u.

(ii) Since ∆⊢ c#t and ∆⊢ (b a) ·s≈α t, by Lemma 1.5, ∆⊢ c#(b a) ·s. Equivariance
give us the derivation ∆ ⊢ (b a) · c#s, which is equivalent to ∆ ⊢ c#s.

3. If the last rule is (F).

Then ∆ ⊢ f (s1, . . . ,sn) ≈α f (t1, . . . , tn) and ∆ ⊢ f (t1, . . . , tn) ≈α f (u1, . . . ,un) are deriv-
able from the premises ∆ ⊢ si ≈α ti and ∆ ⊢ ti ≈α ui, for 1 ≤ i ≤ n, respectively. We
derive ∆ ⊢ f (s1, . . . ,sn)≈α f (u1, . . . ,un) from the induction hypothesis and using (F).

B.2 Chapter 3

Lemma B.4. Let ∆ be a consistent context. If ∆ ⊢ a#t and ∆ ⊢ b#t then ∆ ⊢ (a b) · t ≈α t.

Proof. The proof is by induction on the structure of t:

(a) The base case: ∆ ⊢ a#c and ∆ ⊢ b#c can be easily derived since ∆ ⊢ (a b) · c ≈α c is
equivalent to ∆ ⊢ c ≈α c, which is an instance of (≈α a).

(b) In the case for t ≡ π ·X we have ∆ ⊢ π
−1(a)#X and ∆ ⊢ π

−1(b)#X , hence π
−1(a)#X and

π
−1(b)#X are in ∆. By meta-level equivariance ∆

π contains the freshness assumptions
a#X and b#X . Thefore, the result follows from the derivation below

∆ ⊢ a#X ∆ ⊢ b#X (Ds)
∆ ⊢ (a b) ·X ≈α X

(c) If t is an abstraction we consider two cases.

(i) The abstracted atom is either a or b, w.l.g, t ≡ [a] t. Then consider the following
derivation:

(refl)
∆ ⊢ t ≈α t

∆ ⊢ (a b) · ((a b) · t)≈α t

H
∆ ⊢ b#t (eqv)

∆ ⊢ a#(a b) · t
(Abs-b)

∆ ⊢ [b] (a b) · t ≈α [a] t
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(ii) The abstracted atom is different from a and b. Then consider the following derivation:

I.H
∆ ⊢ (a b) · t ≈α t

(Abs-b)
∆ ⊢ [c] (a b) · t ≈α [c] t

(d) If t ≡ f (t1, . . . , tn): by induction hypothesis one has derivations for ∆ ⊢ (a b) · ti ≈α ti, for
all 1 ≤ i ≤ n. Then ∆ ⊢ (a b) · f (t1, . . . , tn)≈α f (t1, . . . , tn) is derivable using (F).

Lemma B.5. Let A be a Σ-algebra and ς a valuation to the domain AS. Then π · JtK
ς
= Jπ · tK

ς
.

Proof. The proof is by induction on the structure of of t. The base case follows by equivariance
of atom.

(a) If t ≡ γ ·X , then;

π · Jγ ·XK
ς
= π · (γ · ς(X))

= πγ · ς(X)

= Jπ · (γ ·X)K
ς
.

(b) If t ≡ [a] t, then;

π · J[a] tK
ς
= π ·abs(a,JtK

ς
)

I.H
= abs(π(a),Jπ · tK

ς
)

= Jπ · [a] tK
ς

(c) If t ≡ f (t1, . . . , tn) then;

π · J f (t1, . . . , tn)Kς
= π · fA(Jt1Kς

, . . . ,JtnKς
)

= fA(π · Jt1Kς
, . . . ,π · JtnKς

)

I.H
= fA(Jπ · t1Kς

, . . . ,Jπ · tnKς
)

= Jπ · f (t1, . . . , tn)Kς

Lemma B.6. Consider t ∈F(Σ,D) as above. Suppose that Xσ ∈F(Σ,D) for every X ∈ vars(t).
Let ς be a valuation to the domain F(T,D) such that Xσ ∈ ς(X) for every X ∈ vars(t). Then
[tσ ]T = JtK

ς
.



92 Complete Proofs

Proof. The proof is by induction on the structure of terms.

(a) The base case, t ≡ a, follows from the fact that aσ ≡ a and JaK
ς
= [a]T .

(b) If t ≡ π ·X :

[(π ·X)σ ]T = π · [Xσ ]T

= π · ς(X)

= Jπ ·XK
ς

(c) If t ≡ [a] t:

[([a] t)σ ]T = [[a] tσ ]T

= abs(a, [[a] tσ ]T )

I.H
= abs(a,JtK

ς
)

= J[a] tK
ς

(d) If t ≡ f (t1, . . . , tn):

[ f (t1, . . . , tn)σ ]T = [ f (t1σ , . . . , tnσ)]T

= f F(T,D)([t1σ ]T , . . . , [tnσ ]T )

I.H
= f F(T,D)(Jt1Kς

, . . . ,JtnKς
)

= J f (t1, . . . , tn)Kς

Theorem B.1. Let T be a nominal theory. The initial algebra F(T,D) is a model of T .

Proof. Let ∆ ⊢ t = u be an axiom of T . Take ς a valuation to the domain F(T,D) and suppose
that J∆K

ς
is valid, that is, a #sem Xς(X) for every a#X in ∆. We must show that JtK

ς
= JuK

ς
.

Let X be the set of all variables in var(∆, t,u). By Lemma 3.11, for every X ∈ X there is
an element gX ∈ ς(X) such that ⊢ a #sem gX for every a#X ∈ ∆. Define σ as the substitution
such that Xσ ≡ gX if X ∈ X and Xσ ≡ X if X /∈ X .

By construction ⊢ a#Xσ for every a#X in ∆, hence ⊢T tσ = uσ by an application of the
rule (ax∆⊢t=u). It is clear that this is a ground derivation (it does not mention any variable
or instance of the rule (fr)), so [tσ ]T = [uσ ]T . Therefore, [tσ ]T = JtK

ς
and [uσ ]T = JuK

ς
by

Lemma B.6 and the result follows.


