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Resumo

Neste trabalho, estudamos problemas elipticos semilineares com parametros em
todo espaco RY (N > 3) envolvendo nao linearidades, que podem apresentar sin-
gularidades, e potencial com sinal indefinido. Nosso objetivo principal é estabelecer
a existéncia de regioes extremais para a existéncia, nao-existéncia e multiplicidade de
solucoes positivas tanto para problemas envolvendo uma equacao quanto para sistemas.

No caso de nao linearidades singulares, nossa abordagem ¢é baseada em um refi-
namento do método da Variedade Nehari que inclua pontos de inflexao da aplicacao
fibracao gerada pelo funcional energia associado ao problema, finas estimativas e pro-
priedades dos niveis de energia sobre componentes conexas da Variedade de Nehari
e um novo teorema de supersolucao. Para nao linearidades nao singulares, usamos
o Grau Topologico de Leray-Schauder, o método de sub-supersolucao e estimativas

a-priori das solucoes.

Palavras-chave: Singularidade; regioes extremais dos parametros; multi-
plicidade, existéncia e nao existéncia de solugoes; Método de Nehari para
funcionais nao-diferenciaveis; método de fibragao, Grau de Leray-Schauder,

sub-supersolugao, Teorema de supersolugao
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Abstract

In this work, we study semilinear elliptic problems with parameters on the whole
space RY (N > 3) involving nonlinearities, that may present singularities, and potential
with indefinite sign. Our main objective is to establish the existence of extremal regions
for the existence, non-existence and multiplicity of positive solutions for both problems
involving equation and systems.

In the case of singular nonlinearities, our approach is based on a refinement of
the Nehari manifold method that includes inflection points of the fiber map generated
by the energy functional associated to the problem, fine estimates and properties of
levels of energy on connected components of the Nehari manifold, and a new supersolu-
tion theorem. For non-singular nonlinearities, we use the Leray-Schauder Topological

Degree, the sub-supersolution method, and a priori estimates of the solutions.

Keywords: Singularity; extremal regions of the parameters; multiplicity, ex-
istence and non-existence of solutions; Nehari method for non-differentiable
functionals; fibering method, Leray-Schauder degree, sub-supersolution, su-

persolution theorem
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Introduction

In this thesis, we present a study on the issues related to non-existence, existence

and multiplicity of positive solutions to the following class of problems

(

~Au+V(z)u = f(\ z,u,v) in RN,

4 ~Av+V(z)v = g(\ x,u,v) in RY, (H)

/ Vuldr < oo, Voldr < oo, u,v € HY(RY),
\ JRN RN

where N > 3 and the functions f, g satisfy some technical conditions, which will be

mentioned later on and may present singular behavior of one of the following types:

(S); the function f is singular at v = 0, that is, lim f(\, z,u,v) = oo for all fixed

u—0t
(A, z,v) € (0,00) x RY x R,

(S)2 the functions f and g are singular with respect to v and v at u = 0 and v = 0
respectively, that is, hH(l) f(\ z,u,v) = 400 and lin%g()\,x,u,v) = +o0, for all
u— v—>

fixed (A, z,v), (A, z,u) € (0,00) x RY x R.

Although Problems of the type (H) have been extensively studied in recent years,
there are many interesting questions related to these classe of problems. However, on
the whole space RY there are few results about problems that can present singular
behavior in nonlinearities.

According to the specificities of f and g, a refinement of Nehari manifold and
the fibering method, Leray-Schauder degree and sub-supersolution techniques were
employed. To use such methods some difficulties occur. For example, due to the lack

of differentiability of the energy functional associated to the problem, the sets defined



similarly to the classical Nehari manifold are not manifold as in the case of functionals
are of class C'. Nevertheless, we continue using the usual numeclature for these sets.
In Chapter 1, to use the Nehari manifold method, the main difficulties come from the
non-differentiability of the energy functional and the fact that the intersection of the
boundaries of the connected components of the Nehari set is non-empty. We overcome
these difficulties by exploring topological structures of that boundary to build non-
empty sets whose boundaries have empty intersection and minimizing over them by
controlling the energy level.

In Chapter 2, we introduced a new idea of modifying an elliptic systems in its
standard form to a new elliptic systems to generalize the ideas of Chapter 1. In this
new context of elliptic systems with singular nonlinearities, we will obtain a continuous
curve that plays a similar role to the extremal value obtained in Chapter 1. To show
the global existence of solutions, we prove a new supersolution theorem for systems
with indefinite potentials and apply it to prove our main result.

In Chapter 3, in addition to the lack of compact embbedings of Sobolev spaces
into Lebesgue, we have the additional difficulties of choosing the appropriate spaces to
work and extending to the whole space RY a sub-supersolution theorem of Cheng-Zhang
[17] dealt on bounded domains. This result was very important to obtain multiplicity
of radial solutions as well. We also need of new a priori estimates for some extremal
curves and a new idea to obtain multiplicity of non-radial solutions claimed in the
Corollary

Next, we present precisely what was developed in each chapter.

In Chapter 1, we consider the scalar case of (H) with g(\ z,u,v) = 0 for all
(A, z,u,v) € R x RY x R? and we study the singular superlinear and subcritical
Schrodinger equation

—Au+ V(z)u = Aa(r)u™" + b(z)u? in RY,
(Py)

u>0, RY, / Vuldr < oo, u € H'(RY),
RN
when the potential b may change its sign, 0 < a € L%(RN), bt # 0,0 € L=®(RY),
V : RY — R is a positive continuous function, 0 < v <1 <p < 2*—1, N > 3 and
A > 0 is a real positive parameter.

Since the pioneering work by Fulks-Maybee [30] on singular problems, this kind
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of subject has drawn the attention of several researchers. They showed that if Q C R3
is a bounded region of the space occupied by an electrical conductor, then u satisfies

the equation
E%(x,t
cuy — kAu = ( ),
u”

where u(z,t) denotes the temperature at the point = € Q and time ¢, E(z,t) describes
the local voltage drop, u” with v > 0 is the electrical resistivity, ¢ and k are the specific
heat and the thermal conductivity of the conductor, respectively.

Due to the applications or mathematical purposes, the issues on multiplicity (both
local and global) of solutions for elliptic problems have been largely considered in the
last decades. In 1994, Ambrosetti-Brezis-Cerami in [I], by exploring the sub and super
solution method and Mountain Pass Theorem, proved a global multiplicity result, i.e.,

there exists a A > 0 such that the problem

— Au = Aa(z)|u]""2u + b(z) |ulP~*u in €,
(@x)

u>01in ©, u =0 on 012,
admits at least two positive solutions for 0 < A < A, at least one solution for A = A
and no solution for A > A, when Q C R” is a smooth bounded domain, a = b = 1,
1 <v<2<p<?2 and 2* is the critical Sobolev exponent. Considering more general
operators and hypothesis, problem was generalized by Figueiredo-Gossez-Ubilla
[23, 22].

Recently, a number of authors have studied problems like by using only
variational methods, to wit, the Nehari manifold and the fibering method of Pohozaev
[53] (see [41], 58, 60, [61]). In 2018, Silva-Macedo in [58] took advantage of the C'-
regularity of the energy functional associated to problem (Q),)) with a = 1 to refine the
Nehari’s classical arguments and show multiplicity of solutions beyond the Nehari’s

extremal value

Y

— p—2 J— 2 ﬁ
- (B22) (22 . (1l
p—7 P =7/ OSueH@).Jo ub1de>0 [ [ plyidy] 72 [ [ ajulvdz]
as defined in II’yasov [42].

Similar issues have been considered for singular problems of the type
— Au = Xa(z)u™” + b(z)uP in Q,

u>01in €, u=0 on 0f),



where 0 < v < 1 < p < 2*—1,Q C RV is a smooth bounded domain. In 2003,
Haitao in [40] proved a global multiplicity result for Problem (R,)) with a = b =1 by
combining sub-supersolution and variational methods. In 2008, Yijing-Shujie in [60)]
considered the problem (R,)) with potentials a,b € C(Q) satisfying a > 0,a % 0 and b
may change sign. They proved a local multiplicity result, i.e., there exists a A > 0 such
that the problem admits at least two non-negative solutions for each A € (0, A).
Still in this context of bounded smooth domains, we refer the reader to [52} 21, [45] [61]
where different techniques, more general operators and non-linearities were considered.

On RY there are a few results related with existence, multiplicity and non-
existence of solutions for Problems like . By using the sub and super solu-
tion method combined with perturbation arguments, the authors Carl-Perera [I5],
Gongalves-Santos [37], Cirstea-Ridulesco [19], Edelson [28] proved existence of C*(RY)-
solutions.

With respect to the variational techniques point of view, as far as we know,
there is just one, to wit, Liu-Guo-Liu [46] in 2009 proved a local multiplicity result of

DY2(R¥Y)-solutions for the equation
—Au = a(z)u™" + \bo(x)u?, 2 € RY u >0,

where N > 3\ > 00 <~y <1l<p<2—-10<ac Lm0 [R"),0<be
LT=F) (RY) and b may change sign. They combined a local minimization over the

ball with an extension of the Mountain Pass Theorem for nonsmooth functionals (see
Canino-Degiovani [I3]). Due to the their techniques, it is not hard to see that their
extremal value that still guarantees multiplicity of solutions is less than

pry

.. 2)p-1
A= inf () , (1)
0SUEX, [ blulpt1dz>0 URN b|u|p+1dﬂpfl [fIRN a|u|1—7dx]
where - .
- (p+1)r 1 (14\7 (p—1
UE W) W)

because they were able to show multiplicity of solutions just in the A-variation of the
parameter A that still produces the second solution with positive energy.
By using a new approach, we were able to prove multiplicity of solutions for

Problem beyond 5\, that necessarily implies that all the solutions found by this



method have negative energies. Besides this, we were also able to characterize a \-
behavior of the energy functional along these solutions.
To state our main results, let us assume that V : RY — R is a positive continuous

function that satisfies

(V)o Vo= iE%fN V(z) > 0, and one of the following conditions:

(7) lim V(z) = oc;
|z|—o00
(ii) 1/V € LYRY);
(i47) for each M > 0 given the L({z e RN : V(z) < M }) < 0.

Define
X = {u € H'RY): / V(z)uldr < oo} ,
RN
and observe that ®, : X — R defined by

1 A 1
Dy(u) = 2||U|\2 — 1_/ a(z)u|"Vdz — 1 b(z)|ulP+ dw,

where
Jull? = [ (Vaf + V()i
RN

is well-defined and continuous. One of the main difficulties to approach the problem
is the lack of Gateaux differentiability of the energy functional ®,, which is due
to the presence of the singular term.

We say that v € X is a solution of if

/IR{N VuVy + V(x)updr = )\/

RN

a(x)u"pdx +/ b(x)uPpdr for all p € X.

RN
Related to the structure of the functional ®,, let us set (see Hirano-Saccon-Shioji

[41] and II’yasov [42])

by

1y Pty
A — (H_7> (P;l) inf (|l %) 7
* = Ity )
P+ P+ 7Y/ 0SueX, [pn blulPtidz>0 U}RN b’u‘p—&-ldx} p—1 URN a’u‘l—'ydx]
(2)
which relates with A > 0 defined at by

PR st

Our first result is



Theorem 0.0.1 Suppose that 0 < v < 1 < p < 2 — 1,0 < a € LT (RY), b €
Le(RN), b7 #£ 0, (V) and [a/b]ﬁ ¢ X if b > 0 in RN hold. Then there exists an
e > 0 such that the problem has at least two positive solutions wy,uy € X for each
0 < XA < A\ + € given. Besides this, we have:

d*® d*®
a) T;\(tu)‘)hﬂ >0 and T;\(tub‘)‘tzl <0 for all 0 < X < A\ + ¢,

b) there exists a constant ¢ > 0 such that ||wy|| > ¢ for all 0 < A < A\, + €,

¢) uy is a ground state solution for all0 < X < A, ®x(uy) <0 for all0 < X < A\, +e€

d li =
and T us]| = 0,

d) the applications A — @ (uy) and A — Py (wy) are decreasing for 0 < A < A\.+e€

and are left-continuous ones for 0 < X\ < A,

e) CAD)\(w,\) >0 for 0 <A< A, Q5 (ws) =0 and Px(wy) < 0 for A< A< A+ e (see
A in ),

Remark 0.0.1 In fact, the hypothesis [a/b]ﬁ ¢ X if b> 0 in RY is required just for
A <A<\, te

The second result gives us an estimate on how big the number ¢ > 0 can be,
under additional assumptions on a and b.
Theorem 0.0.2 Suppose that the hypotheses of Theorem|0.0.1 hold. Moreover, assume
that there exists a smooth bounded open set Q C RN such that b > 0 in Q and a €

L>(Q). Then there exists \* > 0 such that the problem (Py|) has no solution at all for
A > X, Moreover, we have the exact estimate

pty 1N+t [p—1)\s1
0< A <X =X (i> (p—) |

p—1
where Ay := M\ (Q) > 0 is given in Lemma[L.5.1]

Some comments are in order now:

a) Theorem is new in the literature by showing multiplicity of solutions with

negative energies as well,

b) traditionally two solutions are found by minimizing the energy functional over
connected components of the Nehari manifold which are separated in the sense
that their boundaries have disjoint intersection. In this work we go further,
because we find solutions in the case where such intersection is not empty even

in the context of singular problems,



c) the characterization of the A-behavior about continuity and monotonicity of the

energy functional along the solutions is new as well,

d) Theorem and Theorem induce us to conjecture that there exists a
bifurcation point A > 0 with A\, + ¢ < A < X\* for which the two solutions

collapse.

The results of Chapter 1 are published in the preprint [54]. Summarizing our

results in a picture we have

Energy

A*

Fig. 1 Energy depending on A

In Chapter 2, we study existence, multiplicity and non-existence of H!(RY)-

solutions for the following system

( —Au+V(x)u = Aa(x)u™" + - i ﬁb(x)ua_lvﬂ in RY,
4 —Av+ V(z)v = pe(z)v™ + b b(z)uv®~in RY, (Py)
a+ 3 ’
u,v >0, RY, / Vqux—k/ Volde < oo, u,v € HY(RY),
\ RN RN

where 0 < a,cin RV, b+ £ 0, V : RV — R is a positive continuous function; 0 < v <
l<a,fB;2<a+ <2 N>3and A\, u > 0 are real parameters. The potential V'
and the functions a, b and ¢ satisfy some technical conditions, which will be mentioned
later on.

Problems involving singular nonlinearities have been deeply studied in the last

decades in the context of scalar problems (see |40}, 60], 52, 211, 45, [61] again for fur-
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ther details). However, there are few works dealing with systems of type 1) with
indefinite potential even in bounded domains.

Unlike the singular case, there are a variety of works treating elliptic systems with
nonsingular nonlinearities. In bounded domain, we would like to quote here, in addi-
tion to the works already mentioned above for elliptic systems, the works of Wu [64],
Velin [63], Alves-de Morais filho-Souto [3], Bozhkov-Mitidieri [I1], Silva-Macedo [57],
Bobkov-1I'yasov [9] [10] and references therein, where the authors have used variational
methods to show their main results.

In 2018, the authors Silva-Macedo in [57] considered the following system:

—Apu = MulP7% + af (z)|u]* 2 |v|Pu in Q,
—Agv = plo|? + Bf (@) [ul*|v| v in Q,

(u,v) € Wy (€) x Wy (9),

where 2 C R is a smooth bounded domain with A\, € R, 1 < p,q < oo, f € L>(Q)
and f has indefinite sign, that is, /™ and f~ are not identically zero in €. Also, the
exponents and function f satisfy some other technical conditions (see [57]). Denote
by A1 and g the first eigenvalue of the operators —A, and —A, respectively. Using
the Nehari manifold method and the fibering method they proved the existence of a
extremal curve v* C R x R such that the system has at least one positive solution for
(A p) € {\p) e Rf x Ry (A, 1) < (A, p) <77}, and for each o = (Ao, o) € 7,
there exists a positive real number ¢, > 0 such that the system has at least one positive
solution for (A, 1) € [Ag, Ao + €5) X 1o, fto + €5 ). This result improves the works [9] [10)]
and [11].

As we mentioned above, about singular elliptic systems there are few results deal-
ing with problems of the type . By using non-variational methods, the works of
Alves-Corréa-Gongalves [2], Giacomoni-Schindler-Takéac [33], Manouni-Perera-Shivaji
[29], Gongalves-Carvalho-Santos [35], Hai [39] and references therein, showed existence
of solutions for small parameters, but they did not get multiplicity results. Using the
Nehari manifold method and the fibering method of Pohozaev the authors Carvalho-
Silva-Santos-Goulat [16] considered nonnegative potentials and Goyal [34] dealt with
some indefinite potential to show local multiplicity results, but only minimizing the

energy functional over connected components of the Nehari manifold which are sepa-
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rated in the sense that their boundaries have disjoint intersection. Therefore, the set
of parameters where they found a solution is not the best possible, so it is possible to
improve their results and this is one of the objectives of Chapter 2.

For unbounded domains we would like to quote here Marano-Marino-Moussaoui
[48] and references therein, where the authors use non-variational methods to prove
their results and Benrhouma [8] and references therein, where the authors used trun-
cation arguments combined with variational methods to prove their results. Moreover,
in these works they do not prove multiplicity of solutions and their potentials are
nonnegative.

There are two difficulties in approaching the problem 1} The first one is
the same as in Chapter 1, that is, the non-differentiability of the energy functional
and the fact that the intersection of the boundaries of the connected components of
the Nehari set is non empty. The second one is that considering the problem with
no related parameters (A, p), as previous works have done, a few information can be
obtained about the set of parameters (A, ) such that 1} has a solution. Thus, the
main idea to overcome this difficulty is to modify problem to problem (f’,\yg,\) for
every 6 > 0 fixed. With this modification we are able to solve a system similar to that
considered in Chapter 1 (see (2.15)-(2.16)) and find an extremal value . (6), in the sense
of the applicability of Nehari method. By varying 6 > 0 we have a continuous curve
['(0) = (M(6),0X(0)) which is the boundary of a set of parameters (A, ) for which
there is a solution for the system 1' and this set is bigger than those considered by
previous works. In addition, we obtain multiplicity of solution for parameters above
of T'(f) but close to it. In particular, our results improve or complete the above works
and generalize to the system the results obtained in the Chapter 1.

To state our main results, let us assume that V : RY — R is a positive continuous

function that satisfies the conditions:

V) Vo= inf V 0
(V)o Vo S (z) >0,
(V)1 1)V € LYRY).
Define
X = {u c H'(RY) :/ V(z)u?dr < oo}, F=XxX,
RN

9



and denote by U = (u,v) points of E. With these, we say that U = (u,v) € E is a
solution of (Py,) if

/RN [(VuVp + V(x)upldr + / VoV + V(z)vd]da

RN
= )\/ a(x)u‘”goda:—l—,u/ c(x)v "pdx
RN RN
a a—1, 8 S a, f—1
+ b(x)u* v pdr + b(z)u*v”  pdx

a+ [ Jry o+ Jry

for all U = (¢,v) € E.

In fact, we will prove that a solution of the problem must be always ev-
erywhere positive in RY whenever )\, 1 be positive. These kind of solutions will be
named as positive solutions, while solutions (u,v) such that uv = 0 will be called as
semitrivial. These type of solutions can occurs just on the semi-axes.

About the potentials, let us assume that them satisfy:

(A1) a,c € L®(RN) N LT (RY) N LYRY),

*

(A2) b+ £ 0 and b € L®(RN) 0 L7 a5 (RV),

1 B
a(z) | a+B+v—1 | ¢(z) | A=) (at+B+y—1)
(43) [ |77 [ TR ¢

These assumptions imply that the functionals

JU) = Jul + o2, Krn(U) = A /

a(x)|u|'"dx + ,u/ c(x)|v|' Vdx
RN

RN
and
L(U) = / b(x)|u|®|v|’dx
RN
are well-defined and continuous on E, which lead us to infer the same to the functional

®,, 1 E — R defined by

1 1 1
Cru(U) = 5J(U) ~ T,YKML(U) ot d

L(U).

However, this functional is not Gateaux differentiable due to the presence of the singular
terms.

Now, for every (a,b), (c,d) € R? let us denote by
](a7b>7 (Cu d)] = {(1 - t)(a7b> + t(C, d) 0<t< 1}

10



and

[(a,b), (c,d)[= {1 —t)(a,b) + t(c,d) : 0 <t < 1}.
Our first result of Chapter 2 is

Theorem 0.0.3 Suppose that 0 < v <1 < o,3;2 < a+ B < 2% 0 < a,c in RY,
(A1)—(A2), (V)o— (V)1 and (A3) if b > 0 in RN hold. Then there exist two continuous
simple arc Ty = {(A(0), i(0)) : 0> 0}, T = {(\(0),11(0)) : 0 >0} C RS x R, with
To(0) < T(0) for all & > 0; X(A), \.(0) non-increasing; [i(6), j1.(6) non-decreasing and
(i(0) = OX0), 1. (0) = OX(0) satisfying the property: for each 6 > O there exists an
e = €(0) > 0 such that the problem has at least two positive solutions Wy, Uy € E
for each (X, 1) €](0,0),T(0) + (e, 0€)| given. Besides this, writing (\, i) = (X, 6\) we

have:

a) LB 4Uy)| > 0 and T2 (W), < 0 for all (A, 1) €](0,0),T(0) + (e, 66)],

at? at?
b) there exists a constant ¢ > 0 such that ||Wy|| > ¢ for all (A, 1) €](0,0),T(6) +
(€, 0¢)],

¢) Uy is a ground state solution for all (\,p) €](0,0),T(0)], ®rox(Ux) < 0 for all

(As 1) €](0,0), 1(6) + (¢, 0¢)[ and lim [[U,[| =0,

d) the applications X — @y gx(Uy) and X —— @y 9x(W)) are decreasing for 0 < X <
A(0) + € and are left-continuous ones for 0 < XA < A\.(0),

6) (I))\79)\(W)\) >0 fO’f’ ()\,u) G](O, 0),F0(9)[, (I)Fo(a)(Wj\(e)) =0 and (I))\,g,\(W)\) <0 fOT

(A, 1) €]T6(0),T(0) + (€, Oe)|.

Remark 0.0.2 In fact, the hypothesis (A3) is required just for (A, u) € [T(6),1(0) +
(€,0¢)[ for each 6 > 0.

Our second result is about extremal regions of existence of positive solutions.
We have not been able to use the approach of the Theorem to prove it and we
need of a new argument. It is based in a new supersolution theorem and we have to
keep in mind that, since the potential b may change its sign the principle of comparison
cannot be used in our case, and therefore, the usual sub-supersolution theorems cannot
be applied directly here. To overcome this difficulty, we proved a new supersolution
theorem, to be precise the Theorem [0.0.4]

For convenience let us define supersolution for the problem and state the

supersolution Theorem.
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Definition 0.0.1 Let (\,u) > (0,0). A function U = (u,v) € E is said to be a
supersolution of 1) ifw, >0 a.e. in RY and

> )\/ a(x)ﬂ‘”gpdx%—u/ c(x)v "pdx
RN RN

B
Oé+,8 RN

/R N [VaVy +V(z)up|dr + /R VoV + V(2)o))de

(6]
Oé“—ﬁ RN

for all ¥ = (p,9) € E,.

_|_

b(x)a™ 0" pdx + b(x)ua v’ epda

Theorem 0.0.4 Suppose that 0 < v < 1 < «a,03; 2 < a+ [ < 2,0 < a,c in
RN, (A1) — (A2) and (V)o — (V)1 hold. Assume that the problem (‘IBXE) admits a
supersolution for some (X, 1) > (0,0). Then the problem (P 1) has at least one solution

Usz = (ux, vg) with 5 (Us ;) < 0. In particular, we have that the problem 1) has

at least one solution Uy, satisfying ®»,.(Ux,) < 0 for all (0,0) = (A, p) < (N, 7).

Our second result is related with extremal region of existence of positive solutions
is.
Theorem 0.0.5 Suppose that 0 < v <1 < a,3; 2 < a+ B < 2*;0 < a,c in RY,
(A1) — (A2), (V)o— (V)1 and (A3) if b > 0 in RN hold. Then:

a) there exists an extended function I'* : (0,00) — R x R (R = RU {+o0}), with
T*(0) = (\*(0), *(0)) and p*(0) = OX*(0) such that system (P,|) has at least
one solution Uy, for (A, 1) € © and no solution for (A, p) ¢ ©, where

6 = {(\ ) (0,0) < (A ) T*(6), 0> 0}U{(A,0): A € [0,00)}
U{(0,p) - € 0,00)}.
Moreover, we have @y ,(Uy,) < 0 if (A, ) € ©\ {I'*(0) : 6 > 0} and ) ,(Uy )
<0 if (\p) €T(8) for 8> 0 if () € RY x RS,

b) if in addition there exists a smooth bounded open set Q C RN such that b > 0 in
Q, then T* C Ry x Ry and T : (0,00) — Ry x Ry is a continuous curve, with

0 < A*(0) non-increasing and 0 < p*(6) non-decreasing. In particular,
{T°(6) = (" (6), 1°(8)) : 6 > 0} = 9O 1 (R x RY)

and (Pr-(g)) has at least one solution for all § > 0.

To ease the interpretation of the conclusions of the above results, we draw them
in the below graphics. We are writing T'.(8) = T'(8) + (e, fe).
Next, we list some of the main contributions of study of (Py_)) the literature:

12



a)

c)

0,0

Mg A A

NO= {U:d>k(tU) has critical points that are inflection points}
two solutions with (D)\(U)\)<O and <[>)\(W)\) >0

Theorems 0.0.3 and 0.0.5

two solutions with ¢A(U)\)<0 and <I>)\(W)\)<0
I one solution with ¢A(U)\)<0

there is no positive solution

Theorem is new in the literature by showing the existence of two curves,
in one of them occurs the transition of positive to negative energy of one of the
solutions (the other solution always has negative energy) and the other curve
stands for the transition of the applicability of the Nehari Method. Besides this,
it shows multiplicity of solutions beyond the critical curve to applicability to
Nehari Method, which lead to existence of at least two solutions with negative
energy. Moreover, as far as we know this result is new even when the potential

is nonnegative,

as in the case of scalar problems, traditionally two solutions for elliptic systems
are found by minimizing the energy functional over connected components of
the Nehari manifold which are separated in the sense that their boundaries have
disjoint intersection. In this work we go further, because we find multiplicity of
solutions in the case where such intersection is not empty even in the context of

singular problems,

the Theorem is new in the literature by considering indefinite potential.

The idea of its proof can be made in the context of scalar problems or bounded

13



domain, being new in these contexts as well,

d) the Theorem is new in the literature because it proves existence of the
extremal region for existence of positive solutions to problems of type 1} As

far as we know, this result is new even when potential b is nonnegative.

In Chapter 3, we consider V(x) = 0 for all x+ € RY and we approach the multi-

parameter elliptic system

—Au = w(z) fi(u)g (v) in RV,
—Av = pw(z) fo(v)ga(u) in RY, (Payu)

|z|—o00

u,v > 0in RY and u(z),v(z) — 0
with respect to the parameters A\, € Rt where N > 3 and Rt = [0,00). The
potential w and the functions f;,g; (i = 1,2) satisfy some technical conditions, which
will be mentioned later on.

In the last decades many authors have studied existence of solutions for elliptic

systems in bounded domains, see for instance [4, [I8] 17, 25 26, 27, 50] and references

therein. Cheng-Zhang in [I7] studied the system

—Au = Afi(z,u)gi(z,v) in Q,
—Av = pfa(w, v)gs(a,u) in O,

u,v>01in Q, u,ve H(Q),

where Q@ C RY(N > 3) is a smooth bounded domain, the functions g; € C(Q x
RY RI)(RE = (0,00)) and f; € C(Q x RY, R ) (i = 1,2) satisfy:

(CZ)1: fiygi € C"l(’”)(Q X (—=r,7),R), for each r > 0 and some a(r) € (0, 1),
(CZ)y: g1 and gy are bounded above on  x R,
(CZ)3: gi(z,s1) < gi(x, s2) for s < s9,

(CZ)4: the inequality

min fi(z, )
Al . z€Q
—————— < liminf
min g;(z,0)  s—oo s
xef)

holds, where A\; > 0 is the first eigenvalue of (—A, H}(Q)),
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(CZ)s: there exist pi(z), pa(z) € C(LRY) and g1, ¢ € (1, i) such that
fi(x> S)

lim i p;i(z) uniformly with respect to z € Q.
5—+00 s4i

They proved the existence of a bounded extremal curve that separates Rj xRy
into two subsets O; and O, such that the system has no positive solution for (A, u) €
O, has at least two positive solutions for (A, u) € O; and at least one positive solution
for (A, pt) in the extremal curve. We would like to point out that the idea of constructing
of curve in [I7] comes from of the work of Lee [47] in 2001, and the construction of
curves presented by us is different from these.

In the works above mentioned the authors took advantage of the compact em-
beddings of Sobolev spaces into Lebesgue spaces LP(Q2) (1 < p < (N +2)/(N — 2))
to use the compact-operator theory on these natural functions spaces. In particular,
in [I7] the authors explored the boundedness from below by positive constants of the
non-linearities, the positivity of the first eigenvalue of (—A, H3(Q2)) and combined sub-
supersolution method with fixed point index on these natural settings to prove their
main results.

After these works, some natural questions arise: when the problem , on
the whole space, has the property of global multiplicity of solutions and how different
shapes the extremal curves may have. We have not found any results about these issues
in literature up to now even for bounded domains. To begin to answer these questions,
we have to have in mind that the lack of compact embbedings of Sobolev spaces into
Lebesgue ones prevent us to build a spectral theory and compact operators associated
to the problem on these natural functions spaces. Besides these, unlike to the
case of bounded domains, the boundedness of the potential w from below by a positive
constant may yields a first principal eigenvalue null, see for example [50].

To overcome these obstacle, we consider appropriated assumptions on w that
make possible the space DV2(RY) being compactly embedding into a Lebesgue space
weighted by this potential. In this new context, a spectral theory becomes possible,
which is essential in our approach to show non-existence of solutions to problem .
Among the assumptions that make possible to show the existence of a principal first
eigenvalue, we should have w € L*(R") and this prevent us to use the blow up method

to prove priori estimates for solutions of the problem (P, ), because of lim inf w(z) = 0.
T—r00
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More specifically, let us assume (see an example of such w in [5]):

(W): w e C (RN, RY) for some a € (0,1) and there exists W € C(Rg, Ry) such that
0 < w(z) < W(|z|) for all z € RN\ {0},

(W)a: / 2>~ VW (|z|)dx < oo,
RN
(W)z: W e LYRN) N Le(RY),
(W)y: /RN %dy < m% for all z € RV \ {0} and for some constant C' > 0.

Under the hypotheses (W), — (W)y, it was proved in [5, [55] that the problem

—Au = w(z)u in RY,

— 0

(A)

w>0inRY, u(z

has a first eigenvalue 6; > 0 with positive eigenfunction associated ¢; € D%2(RY).
Moreover, ¢, is simple, isolated and any eigenfunction associated to it has a defined

signal.
After this, we can fix our assumptions on the non-linearities f;, g; for i € {1,2}.
(H)y: fi,9i € CO)((—r,7),RY), for each r > 0 and some a(r) € (0, 1),
(H)2: 0 < inf gi(s) < supg;(s) < oo,
s€R seR

(H)s: gi(s1) < gi(s2) for s1 < s9,

(H)y4: 5(10) < liminf fi(s) < oo, where d; > 0 is the first eigenvalue of ,
g’L S§—00 S

(H)s5: there exist py,ps > 0 and ¢y, ¢ € (1, %) such that lim fils) = p;.

s—oo 8%

To state our main results, let us set that a pair of functions (u,v) € DV2(RY) x

DVY2(RY) is a solution of (Py)) if u,v > 0 in RY; u(x),v(z) e 0, and

/Vuv¢d:c = )\/w(a:)fl(u)gl(v)qﬁd:c and /Vvvwdx = ,u/w(x)fg(v)gg(u)wdx

for all (¢,v) € D¥?(RY) x DV2(RY).

First we are going to prove the existence of a bounded extremal curve for
a global multiplicity result of radially-symmetric positive solutions for , that is,
solutions (u,v) of satisfying (u(z),v(z)) = (u(|z]),v(|z|)) for every z € R,
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Theorem 0.0.6 Assume (W), —(W)y, (H); — (H)s fori= 1,2 and that w is radially

symmetric. Then:

a) there exists a continuous simple arc T = {(A(t), u(t)) : t > 0}, with 0 < A(t)
non-increasing, 0 < pu(t) non-decreasing and u(t) = t\(t), connecting (\,0) and
(0, fix), for some 5\*, fi. > 0, that separates Ry xRy into two disjoint open subsets
©, and O, such that system has no radially symmetric positive solutions, at
least one or at least two radially symmetric positive solutions according to (A, p)
belongs to O, T or Oy, respectively. Moreover, T U[0,\,] U [0, fi.] = 06y,

b) there exists N>\, and ¥ > iy such that the system has no radially sym-
metric positive solution for (A, p) € {(X,0): A > 5\*} U{(0,p) : > i}, at least
one semi-trivial radially symmetric positive solution for (A, u) € {(5\*, 0), (0, %)}
or at least two semi-trivial radially symmetric positive solutions for (A, u) €
{(XN0): A< 5\*} U{(0,p) : < i*}.

Our second result does not require w be necessarily radially symmetric, but we
are not able to prove a global multiplicity result. Without the assumption of symmetry
for w the region of existence of solutions given in the theorem below may be bigger

than él.
Theorem 0.0.7 Assume that (H); — (H)4 for i =1,2 and (W), — (W)4 hold. Then:

a) there exists a continuous simple arc T, with the same properties as those one in
Theorem which separates Ry x Ry into two disjoint open subsets ©1 and
Oy such that system has no positive solution and has at least one according
to (A, ) belongs to ©y and ©1, respectively. Moreover, I' U [0, A\,] U [0, ] = 00,
for some A\, ps > 0,

b) there exists \* > Ao and p* > p, such that the system (P, has no positive
solutions for (A, ) € {(A,0): A >N} U{(0,u):pu>p*} and at least one for
(A 1) € {(A0) s A <A FUL(0, ) o pp < i}

In the next Corollary, the solutions are not necessary radially symmetric, but the

potential w is still one.

Corollary 0.0.1 Assume that (W), — (W)y, (H)1 — (H)5 fori = 1,2 hold and w is
radially symmetric. Let (:)1, f, O and ©5 as in Theorems|0.0.6| and[0.0.7]. ]f@l\gl £,
then the system has no positive solution, at least one and at least two ones
according to (A, p) in Os, T or ©, \f‘, respectively.

Now for ¢ = 1,2 let us assume:
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(H)g: fi(s1) < fi(s2) for s < s,

b

(H)7;: 0< limgiTa)goo

t—o00

(H)g: lim Filt) = 0.

t—oo

An example of functions satisfying (H)g — (H)s are as follows:
fils) = m+arctg(s), gui(t) =™, fo(t) =7 + arctg(t), ga(s) = ™ Vs,t €R,

where 60,65 > 0 are constant.
In our next result the extremal curve is unbounded in both directions A\

and .

Theorem 0.0.8 Assume that (W), — (W)y, (H)1,(H)s and (H)¢ — (H)s fori=1,2
hold. Then there ezists a continuous simple arc I' = {(\(t),u(t)) : ¢t > 0}, with
0 < A(t) non-increasing; 0 < u(t) non-decreasing; pu(t) = tA(t); 11_{% ['(t) = (00,0); and
tlgglo ['(t) = (0,00), that separates Ry x Ry into two disjoint open subsets ©; and O,
such that the system has no positive solution and has at least one according to
(A, ) belongs to O9 and O, respectively.

In the next theorem the extremal curve is bounded in the direction A and

unbounded in the direction pu.

Theorem 0.0.9 Assume (W), — (W)y, (H)1, (H)s, (H)e for i = 1,2 hold. Suppose
that (H)q, (H)y4 are satisfied for i = 1 and (H); — (H)g are satisfied for i = 2. Then
there exists a continuous simple arc I' = {(A(t), u(t)) : ¢t > 0}, with 0 < A(t) non-
increasing; 0 < u(t) non-decreasing; pu(t) = tA(t); 11_{% ['(t) = (A, 0) for some A\, > 0;
and tlg(r)lo ['(t) = (0,00), that separates Ry x Ry into two disjoint open subsets ©, and
Oy such that the system has no positive solution and has at least one according
to (X, p) belongs to O9 and O, respectively.

In the next theorem the extremal curve is bounded in the direction ;. and

unbounded in the direction ).

Theorem 0.0.10 Assume (W), — (W)y, (H)1, (H)s, (H)g for i = 1,2 hold. Suppose
that (H)7—(H)g are satisfied fori =1 and (H )y, (H)4 are satisfied fori = 2. Then there
exists a continuous simple arc I' = {(\(t), u(t)) : t > 0}, with 0 < A\(t) non-increasing;
0 < u(t) non-decreasing; p(t) = tA(t); 151(1) I'(t) = (00,0); and tlggo I'(t) = (0, ) for
some p, > 0, that separates RE x RY into two disjoint open subsets O and Oy such
that the system has no positive solution and has at least one according to (A, )
belongs to ©y and ©1, respectively.
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To ease the interpretation of the conclusions of the above results, we draw them in the

below graphics.
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Below, let us highlight some contributions of this work to the literature:

a) Theorem is new, because it presents a complete picture of the global multi-
plicity of radially symmetric solutions for elliptic systems with multi-parameters

in the whole space,

b) Theorem [0.0.7 and Corollary partially extend the main result in [I7] to the

whole space,

¢) Theorem extends to the whole space a similar result proved in [I7] for
bounded domains . The key point to prove Theorem is that the potential
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w : RY — (0,00) has to have appropriated properties to allow us to work with

topological degree theory,

d) our approach contributes with a fine analysis to overcome the natural difficulties

that problems in R bring up,

e) to the best of our knowledge, Theorem [0.0.8} |0.0.9 and |0.0.10| are new and they

have not been considered in literature up to now even for bounded domains.
They give a complete description of unbounded regions of existence and
nonexistence of positive weak solutions for the problem (P, ,f). The key point
to prove them is Theorem together with the representation of Riesz given
in (3.1)).

We would like to point out that the results of Chapter 3 have already been
accepted for publication in the paper [6].

This thesis has the following structure. In Chapter 1, in the first section we study
some topological structures associated to energy functional ®, and apply them in the
next sections. In Section 1.2, we show the multiplicity of solutions for 0 < A < A,. In
Section 1.3, taking advantage of the solutions obtained in Section 1.2 and the results
obtained in Section 1.1, we show multiplicity of solutions for A = \,. In section 1.4,
by controlling the energy levels we prove multiplicity of solutions for A, < A. Finally,
in the last section, we prove the Theorem and Theorem [0.0.2]

In Chapter 2, we present in the first section a new concept of critical point for
non-differentiable functionals and we prove abstract theorem for this class of function-
als. This theorem is new in the literature and we will apply it to prove that certain
minimums over the Nehari manifold are solutions of system . In Section 2.2,
we start by proving that certain minimums over the Nehari manifold are solutions of
system (Py,)). Besides this, we introduce the modified problems (P, g3), for each 6 > 0
fixed, and study some topological structures associated to the energy functional ®, gy,
which help to build the curves I', [ as claimed in Theorem . In Section 2.3, we
show the multiplicity of solutions for 0 < A < A.(6).

In Section 2.4, we show multiplicity of solutions for A = A,(#). In section 2.5,

controlling the energy levels we prove multiplicity of solutions for \.(6) < A and we
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prove the theorem [0.0.3l Finally, in the last section, we prove the Theorem and
the Theorem [0.0.5

In Chapter 3, in first section we introduce the spaces where we will work and we
prove a sub-supersolution theorem that will be essential to prove the multiplicity of
positive solutions to system (P, ,[). This result extends to the whole space a similar
result proved in [I7] for bounded domains. In Section 3.2, we build the extremal curves

claimed in the Theorems [0.0.6H0.0.10] and Corollary [0.0.1] In the last section we prove
the Theorems [0.0.6H0.0.10] and Corollary (0.0.1]
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Notation and Terminology

c and C are possibly different positive constants which may change from line to

line,
b™ = max {b,0} is the positive part of the function b,

S = {u € B: ||u|]| = 1} is the unitary sphere, where where (B, || - ||) is a Banach

space,

(®'(u),) denotes the Gateaux derivative of ® at u with respect to the direction
Y € B,

|B1(0)] is the volume of the unit ball in RY,

if © is a measurable set in RY, we denote by £(2) the Lebesgue measure of €,
The spaces RY are equipped with the Euclidean norm /z% + - - - + 22,

B,(x) denotes the ball centered at x € RY with radius > 0,

the Banach space BxB = {(u,v) : u,v € X} is equipped with the norm ||(u,v)|| =

max {||ul|, ||v]}, where (B,]| - ||) is a Banach space as well,
B(u,r) denotes the ball centered at u € B x B with radius r > 0,

the notation (a,b) > (¢,d) means a > ¢ and b > d. Similarly, (a,b) > (c,d)

means a > ¢ and b > d for all (a,b), (c,d) € R?,

for (a,b), (¢, d) € R? denote by |(a,b), (c,d)] = {(1 —t)(a,b) +t(c,d) : 0 <t <1}
and |(a,b), (¢, d)[= {1 —t)(a,b) + t(c,d) : 0 <t < 1},



|llim (u(z),v(x)) = (| l‘im u(z), ‘ llim v(z)) for functions u,v : RY — R,
z|—00 z|—00 | =00

dist(u,v) = ian|u(x) — v(z)| for functions u,v : RN — R,
T€R

[O,X]:{(A,o):ogAgﬂ} and [0, i) = {(0, 1) : 0 < pu < i} for any A, fi > 0,

deg(I —T,W,0) denotes the Leray-Schauder degree of I — T in W with respect
to 0, where W C B is a bounded open set in a Banach space B and T: W — B

is a compact operator.
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Chapter 1

Multiplicity of solutions for
singular-superlinear Schrodinger
equations with indefinite-sign

potential

In this chapter, we show the multiplicity and non-existence of positive solutions
for the following superlinear and subcritical Schrédinger equation
—Au+V(z)u = Xa(z)u™ + b(z)u? in RY,

(Py)
u >0, RN,/ Vuldr < oo, u € HY(RY),
RN

when the potential b may change its sign, 0 < a € L%(RN), bt # 0,0 € L=®(RY),
V : RN — R is a positive continuous function, 0 < v <1 <p < 2*—1, N > 3 and
A > 0 is a real positive parameter.

To show the multiplicity of solutions we use the Nehari manifold and the fibering
method of Pohozaev for non-differentiable functionals. We were motivated by Silva-
Macedo [58] and would like to point out that due to the lack of Gateaux differentiability
of the energy functional @, the ideas in [58] do not apply directly here. Thus, through
of new proofs and new arguments we generalize some results of [58| to prove the Theo-
rem [0.0.1] As we already mentioned, we intend to minimize the functional ®, over the

Nehari manifold when the intersection of its connected components is non empty, and



we overcome these difficulties by exploring topological structures of that boundary to
build non-empty sets whose boundaries have empty intersection and minimizing over
them by controlling the energy level. To achieve this, we need of estimates in the
projectors that are new even in the non-singular case as in [58].

This chapter follows the following structure. In the first section, we study some
toplogical structures associated to the energy funcional associated to the problem .
So, we introduce the Nehari manifold associated with the problem and study some
of its properties as well. In the Section 1.2, we show the multiplicity of solutions to

problem to A € (0, \,), where

+7 pry

|-

_ (1t (p—1 : (el
A= | —— — inf = _
PENS NPT ORI T o bulp o] [ fow alulda]

In Section 1.3, using the results obtained in the sections 1.1 and 1.2, we show the
multiplicity of solutions to (P,)) when A = \,. Here we point out an additional difficulty
that we had what is to prove that the sequences of solutions u,, and w,, obtained in
Section 1.2 converge strongly, with A\, T A, to functions u,, and w,,, respectively,
which are solutions of problem (P,,). This is due to the lack of comparison principle.

In Section 1.4, we show the multiplicity of solutions to ([P,) when X is bigger
than A, but close to it. Finally, in Section 1.5 we prove the Theorems [0.0.1] and
0.0.2] To show non-existence of solutions claimed in Theorem [0.0.2] we were motivated
by Figueiredo-Gossez-Ubila [23, 22]. To prove it, we use interior regularity and an
integration by parts formula given in [23] 22|, that appears in it an eigenfunction
associated to an eigenvalue problem in a bounded domain. To the best of our knowledge
this result has not still been considered when the potential b changes its signal.

For convenience, below we recall once again all the assumptions required in the
potential V' throughout this chapter.

Let us assume that V' : RV — R is a positive continuous function that satisfies

(V)o Vo= inf V(z) > 0, and one of the following conditions:
z€eR

(4) i V(z) = oo;

(¢i) 1/V € LY(RN);

(i11) for each M > 0 given the L({z € RV : V(z) < M }) < oc.
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We also remember that

X = {u € H'RY): /RN V(z)uldr < oo} :

and @, : X — R, defined by

1

A 1
P S 2__ - 1=y g, _ = p+1
) =5l = 2= [ a@lude = — [,

is the energy functional associated to the problem (P,), where

full = [ (9 + V(@)

1.1 Topological structures associated to the energy

functional

Throughout this chapter, let us assume the hypotheses of Theorem to prove
some topological properties for the functional ®,. Let us endow X with the inner

product
(u,w) = VuVw + V(z)uwdz,

RN
which turns X into a Hilbert space with induced norm given by ||u||*> = (u,u). As

a consequence, one deduces immediately from (V')y that X is embedded continuously

into H'(RY). The below Lemma was proved in |7, 20, 51].

Lemma 1.1.1 The subspace X is continuously embedded into LY(RY) for q € [2,2*]
and compactly embedded for all q € [2,2%).

It follows from Lemma [[LT.1] that

Lemma 1.1.2 If A > 0 then ®) s a continuous and weakly lower semicontinuous

functional.

Proof We prove that @, is weakly lower semicontinuous (the proof of the continuity is

almost similar). Take {u,} C X such that u,, — u. It follows from Lemma that
U, — uin LYRY), u, — u a.e. in RY and |u,(z)| < g,(7) a.e. in RY.
for some g, € LY(RY). Since 0 < v < 1, we obtain
a2 — a5 — 0 and [Jup|"Y — [u* Y75 < 2792 € LHRY) ace. in RY.
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From a € L+ (RY), the Holder inequality and the Lebesgue dominated convergence

theorem, we conclude that

1

[ ol = el <[ atsda ([l = a7 o,
RN RN
Again, by using Lemma- and b € L=(R"), we have that [ b(z)|u, [P dz —

Jan 0(z)|ufPTdz holds which completes the proof.

|
Since we are interested in positive solutions, let us constrain ®, to the cone of

non-negative functions of X, that is,
X:={ue X\{0}:u>0}.
Define the C*°-fiber map ¢, , : (0,00) — R by

ralt) = (1) = Sl - ﬂﬂ“/ <nwﬂd_t”1/zmnwﬂd
au(t) = Pp(tu) = 1_7RNa:ru x ] RNZL‘U x,

for each u € X and A > 0 given. It is clear that

Qb,,\,u(t) = t[u]* - t_W)\/ a(z)|u|'Vdz — tp/ b(x)|uPde,
RN N

R

dezwm%ﬂr%u/‘awaMWﬂﬂ*/‘mmwﬁwx (L.1)
RN RN

and if v € X is a solution of , then u € Ny, where
N, = {u € X,y |ul)? — / a(x)|u|'"dx — )\/ b(x)|ulPde = O}
RN RN
—{uex, 6, m=0}.

Although N, does not have enough regularity, let us refer to it as the Nehari manifold

associated to from now on. It is classical to split it in three disjoint sets
Ny = {u e Ny« [ul]? —i—’y)\/ a(x)|ul*Vdx —p/ b(x)|ulPtdr < 0}
RN RN
wE N : r,(1) < o} ,

N = {u e Ny o ||ul]? —1—7)\/ a(z)ul'Vdx —p/ b(z)ufPtdr > 0}
RN RN
—{ue Ny :6),0) >0},
N = {u e Ny« ||ul]? +’y)\/ a(x)|ul*dx —p/ b(x)|u[Ptde = 0}
N RN

we N : oy, (1) = }
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We will study the structure of the sets Ny , NV, Ny and show existence of solutions on
N and N)". The easiest case is when ) = (). One of our main contributions to the
literature of singular problems is to show existence of solutions on N, and N, beyond
the extremal value, for which N} is not empty anymore.

The next proposition is straightforward.

Proposition 1.1.1 Letu € X; and A > 0. If [blu[P™dz <0, then ¢y, has only one
critical point at t¥(u) € (0,00), which satisfies ¢ ,(t}(u)) > 0. If [blu[Tdz > 0,
then there are three possibilities:

(I) there are only two critical points for ¢x.. The first one is t§ (u) with ¢y ,(t5 (u)) >
0 and the second one is t, (u) with qﬁ’/{m(t;(u)) < 0. Moreover, ¢y, is decreas-
ing over the intervals [0,t} (u)], [ty (u),o0) and increasing over the the interval
[t (u), t (u)] (evidently 0 < t] (u) < t; (u)),

(II) there is only one critical point t3(u) > 0 for ¢x., which is an inflection point.

Moreover, ¢y, is decreasing for t > 0,

(I1I) the function ¢y, is decreasing for t > 0 and has no critical points.

Let us study the set NY. One can easily see that if u € N} then [,y blu[’*'dz > 0,

therefore, we introduce the set

Zt = {u € X, / blu[Pdr > O} :
RN

Observe that Z* is a cone. For u € Z* consider the system
¢l)\,u(t) = ¢:,u(t) =0,
that is
t||ul|* — t‘%\/ a(x)|ul*dz — tp/ b(x)|ulPtdr =0,
RN RN
|Jul)? + ”y)ﬂf”l/ a(x)|ul'Vdx —ptpl/ b(z)|ufPTdr = 0.
RN RN
The system has a unique solution which is given by (#(u), A(u)), where

( 1 1
1 T 2 T
= (L) e
D+ fRN blu|pttdx

(s "

URN b|u|2’+1d:ﬂ ot URN a|u|1—7d$} |
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where

14+
Cly,p) = [ —2 P=2),
i (p+7 P+

From the definition of A(u) we conclude that

Proposition 1.1.2 Suppose that uw € Z*. Then, if X € (0,\(u)) the fiber map @y
satisfies (I) of Proposition while Grw)u satisfies (11) and if X € (A(u),00) it

must satisfies (I11).

Define
A = inf A(u).

ueZ+t

Lemma 1.1.3 The function \ defined in (1.2) is continuous, 0-homogeneous and un-
bounded from above. Moreover, N\, > 0 and there exists u € Z such that A, = A(u).

Proof The continuity and 0-homogeneity are obvious. From these properties, it follows
that the rest of the proof can be done by considering A restricted to the set ZT NS,
where S = {u € X : |lu|| = 1}. To prove that A is unbounded from above, first
note that the functional Fy, : X — R defined by F(u) = [px blu|PT'dz is continuous
and therefore F, '((0,00)) NS is an open set in S. Moreover, since Fy(tu) = tP*1F,(u)
for ¢t > 0, it follows that F, '((0,00)) N'S # S and therefore there exists a sequence
{u,} € F,1((0,00)) N'S such that Fy(u,) — 0 in X. Consequently

= 00,

. . Clyp
g, Alm) = 0, =
[Je lual*da] = [ oo aun ' 2da]

which proves that A is unbounded from above. Now observe that

A= inf Au) > cC(,p)llallyip I >0

ueZtns

for some ¢ > 0. To end the proof, take {u,} C Z* NS such that \(u,) — A.. So, it
follows from Lemma [[.1.1] that

U, =~ u € X, u, — uin LYRY) for each ¢ € [2,2*) and wu,(z) = u(z) a.e. in RY,

which lead us to infer that u # 0. Otherwise, we would have

A = lim A(u,) = lim Cf];p)
B " S Dlua Pz )P [ fow alun ' dz]

= 00,
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which is an absurd. Let v = ﬁ e X, NS. If u, » v in X, it would follow by the

weak lower semi-continuity of the norm that
Av) = A (i) = M) < liminf A(up) = A,

but this is impossible. It follows that v € ZT NS and A(u) = A.. This ends the proof.
]

Proposition and Lemma [1.1.3| are described on the following pictures:

Au) Pu
A
ty (u)
0 D 0 : t
Zt ={ue X;: [bluftds > 0} [ blulPttdz <0
¢>\,u ¢A7u gb)\,u
£ (u)
0 : t t
AN

0N t;(u)\ t 0
{u): A< AMw)}  {(\u): AMu) =)} {u): A > Au)}

From Proposition and Lemma we obtain

Lemma 1.1.4 For each A\ > 0 we have that Ny, Ny # 0. Moreover:
a) NY =0 for 0 < X < A\,

b) NY # 0 for A > ..

Proof First we will to prove that Ny, Ny # 0. By Lemma for each A > 0 there
exists u € Z* such that A < A(u). Thus by Proposition [I.1.2] there exist { (u) < ¢, (u)
such that ¢} (u)u € Ny and ¢, (u)u € Ny . Hence Ny # 0, Ny # 0.

To prove a) we first note that if w € Z* then from Lemma there holds
A(u) > M. Hence, if A € (0,\,) it follows from Proposition that u ¢ NQ. If
u ¢ Z*, then [py blufP™'dz < 0 and by Proposition , ®x has only one critical
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point at ¢ (u) € (0,00), which satisfies ¢y ,(t{(u)) > 0 which implies again that
u ¢ N7Y. Therefore NY = ) for 0 < A < \,.

Now we prove b). Indeed, from the definition of A(u) we know that
t(u)u € ./\/:{)(u).

From Lemma we know that for each A > A\*, there exits v € ZT such that
A(u) = X\ which ends the proof.

n

Now we characterize the Nehari set VY . Note that the singular term forces

the non-differentiability of the function A(u) at some points, however, at the global

minimum points we prove that it has null derivative.

Lemma 1.1.5 There holds

Vo= {u eN,, : / bluPdz > 0, \(u) = )\*} , (1.3)
RN
and
0) = @+ 1) [ Wayrvds = (1= [ aleuwds =0, o e X, (1)
RN RN

holds for each uw € N given.

Proof The characterization of N is a consequence of Lemma [1.1.3] Let us prove
(1.4) by splitting the proof in three steps. First, let rewrite the function A(u) as

A(w) = C(v,p) f(u)g(u), where

1 ul|?)
o gy — P
[fa Dlulptidz] =

Step.1. (f'(u),v) there exists for all ¢» € X and for all u € N} .

In fact, for such u,v given, it follows by continuity that [,y blu + t[P™1 > 0
for ¢ > 0 small enough. Therefore g(u + ti) is well defined for ¢ > 0 small enough
and (¢'(u),) there exists. Since, u is the minimum point for A(u), we have that

AMu +t)) — AMu) = Mu +tp) — A >0, ¥ ¢ > 0 enough small, that implies
(9(u+1) = g(w) f(u+t) = —g(u)(f(u + 1) = f(u)).

Since,

flu+t) — f(u) = —h(t)™? U}RN alu + ty|'Vdx — /

a|u]1_7d:c} :
RN

31



where
alul'dz, 0(t) € [0,1],

h(t) =
is a measurable function such that h(t) — h(0) = [on alul'""dz # 0 with ¢t — 07T, it

o(t) /RN alu + ' dz + (1 — 0(t)) /RN

follows from Fatou’s lemma, that
—2

) 0)f () > g(u) [ / a|u|1—vdx] lim inf
RN t—0t t

> g(0) | [ alulas] T [ a6

/ alu + t|'=7 — alu|*7
dx
RN

0o > (g'(u

u(z), if wu(x)#D0,

where
G(z) =
oo, if wu(z)=0.

So, by taking 1 > 0, ¢ € X above, we obtain that G(x) = v~ (z) for all z € R",
that is, « > 0 in RY. This implies that 0 < [y au 7ide < oo for all ¢ € X,. As a

consequence, we have (j'(u), 1) there exists, where j(u) = [pn alu|'Vdz, ¢ € X. To
~! and hence

end the proof, we just note that f(u) = [j(u)]
-2

! =—(1- =74 “Yabd
R I I

holds.
Before proving ((1.4)), let us prove the Step 2 by assuming without loss of generality

that ||u|| = 1.
Step.2. There holds
2(u, ) — (p+ 1)/ b(x)uPipdr — (1 — 7))\*/ a(z)u™"pdx >0, Vip € X, (1.5)
RN RN
Indeed, since u € X is minimum point of A(u) such that [ blu|P*'dz > 0, we have
(252) ) T — 1) (53 1) 75 [ baiarva
i p—1 RN -1
i) [H (u)]
[F'(u)] 7=
(1.6)
G | [ e va]
_(1 - 7) BT 14y > 07
()
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for all ¢ € X, where

F(u) = /R b{a)u*dr and H(u) = /]R _au' s, (1.7)

Once using that v € N} , we are able to infer that

—1 1
H(u) = / au' Vde = 2"~ and F(u) = / bz de = — .
RN )‘* (p + ’7) RN p + y

Thus, by using these expressions in (|1.6)), we get ([1.5)) after some manipulations.
Finally, by using the characterization (1.3) and adjusting an argument from
Graham-Eagle [38], we are able to show the equality (1.4)).

Step.3. There holds

2(u, ) — (p+ 1)/ b(z)uPrpdr — (1 — 7))\*/ a(x)u” "pdr =0, V¢ € X.

RN RN

To do this, let us set ¥ := (u+ )t € X, for € > 0. Since ([1.5)) holds, it follows from

splitting the whole space in {u + ep > 0} and {u + ep < 0}, that
0<2(u,¥) — (p+1)/

RN

=2l - (p+1) [

RN

b(x)uPVdr — (1 — 'y))\*/ a(x)u” "Wdx

RN

b(x)uPtrdr — (1 — V)A*/ a(x)u'dz  (1.8)

+e [/RN 2(VuVy + V(z)uy) — (p+ 1)b(x)uPyp — (1 — fy))\*a(a:)UVw)d:z:]

—2/ (|Vul* + V(z)u*)dz + (p+ 1) / b(x)uP(u + e)dx
{utep<0} {utep<0}

+(1 — )\ / au” " (u+ e)dx — 26/ (VuVy + V(z)uy)de.
{utep<0} {utep<0}
Now, by using 0 < 7 < 1 and again splitting {u + e < 0} in {u+ ey <0}N{b <
0} and {u+ e <0} N {b> 0}, we obtain
0<209) - (p+1) [

RN

b(x)uPpdr — (1 — 7))\*/ a(x)u” "pdx

<e€ {/RN Q(VUV@/J + V(CIT)U@M - (p + 1)b(flj)up¢ — (1 — ’y))\*&(l’)u_’Yw)dx (1‘9)

- 26/ (VuV + V(z)up)de + e(p+ 1) / b(z)uPdx.
{utep<0} {

utep<0,{b<0}}

Since the measure of the domains of integration {u + e» < 0} and {u + ep < 0}N
{b < 0} tends to zero as € — 0, we have from ({1.9) that

0< /RN(2(VuV¢ + V(z)uw) — (p+ Db(z)uPy — (1 — y)Ma(z)u™")dx

=%%W—@+U/

RN

b(x)uPpdr — (1 — v))\*/ a(x)u” "pdx

RN
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holds. So, the equality is a consequence of taking — in the above inequality. This

ends the proof. m

The following result will be very important to show multiplicity of solutions to
problem 1) at A = A, and in particular it shows that these solutions belongs to N,

and N, respectively.

Corollary 1.1.1 The problem (Py,) has no solution uy, € Ny .

Proof 1If there exists a solution uy, € N} for (P, ), then it would follows from Lemma

) that
/ [(p — Db(x)u — (14 v) a(zx)uy de =0,V € X,
RN

that is,
(p— )b(z)u}_(z) = (1 +7)A\a(z)u, ' (z) ae. in RY.

Therefore we have two possibilities. If b(z) < 0 in Q@ C RY with £(2) > 0, then
(1+7)a(z)u,” < 0in Q, which is an absurd. If b > 0 in RY, then

Uy, —

*

] e

which is an absurd again. ]

The following result will be essential in order to prove the existence of multiple
solutions for A > A, as well. Due to the presence of the singular term, the arguments

used for regular cases, see for instance Corollary 2 in (see [58]), does not work anymore.

Lemma 1.1.6 The set Ny is compact.

Proof First, we note that u € Ny implies that

(1+v)|IUII2=(7+p)/

b(@)[ul"* dz and (p—D)|lull* = Au(y +p) / a(@)|ul' ",
RN

RN

Thus, by using the Hélder’s inequality and the Sobolev embeddings X < LPFL(RY),
L*(RY), we obtain

c<|ull <C (1.10)

for some ¢, C' > 0.
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Set {u, } C N} . Thus we may assume that u, — v € X in X, u, — u in LY(R")
for ¢ € [2,2*) and u > 0. This, together with ((1.10]), imply that

0 < ¢ < liminf ||u,|]* = (M) lim / b(z)|u, [P da
n—00 1+ y n—oo JpN

_ ((’lyj_?;)) /RN b(a) [ulP*da,

Now, we claim that u, — u» in X. Indeed, if not, it would follow from the

that is, u # 0.

continuities of F' and H (see (1.7))), that

14~ Pty

Au) = (H—7) <p_ 1> [ (”“ﬁ)’” < liminf A(un) = A,

p+7 p+7 f]RN b|u|P+1dx} U}RN a|u|1—7dx]

which is an absurd, therefore, u,, — v in X and consequently N, /{)* is compact. This

ends the proof. [ ]

Below, by taking advantage of Lemma [1.1.4] we define for each A > 0 the non-

empty set
Ny = {u e X, : / blufPt'dz > 0, ¢y, has two critical points} ,
RN

and the set

Vi = {u € X, / blu[PTdx < 0} :
RN

Let Ny UN, 7 be the closure of NAUN. " with respect to the norm topology. After

which may be empty.

a few modifications in the proofs of Propositions 2.9, 2.10 and Corollary 2.11 in [58],

we have
Proposition 1.1.3 There holds:
(i) if M, A2 € (0,\,), then Ny, = Na,,

1) ifu € N UN+, then tu € Ny UN for allt > 0, that is, NAUNG s a positive
A A A
cone generated by the set NyF UN, . More specifically,

NAUN+:{tu:t>O, ueNFUNL T,
(1ii) there holds
Ny UNY = Ny UNS U {tuct >0, we MY U {0},
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(1v) the function ty, is continuous and P~ : SHK — N UNY. defined by P~ (w) =

tr, (w)w is a homeomorphism, where

ty(w) ifwe /\Af,\*,

t = 1.11
A (w) {t?\*(w) otherwise, (L11)

(v) the function sy, is continuous and P* :' S — N UN) defined by P*(u) =

sx, (w)u is a homeomorphism, where

o (1) = { t(u) ifue Ny UNG

1.12
t§ (u)  otherwise, (112)

(vi) the set NY C Ny, has empty interior, where N, is endowed with the induced
topology of the norm on X.

As a fundamental ingredient to show multiplicity of solutions for Problem ({P)])
beyond Nehari’s extremal value, we have to prove the continuity and monotonicity of
the energy functional constrained on Ny and N . To do these, let us define J; :

/\AfAUJ\Af/\Jr—>Rand Jy : Ny — R by
J¥(u) = @, (¢ (w)u) and J; (u) = P(¢5 (w)u) (1.13)
and denote their infimum by
i =1inf {JF(v) 1w e N} and Jy =inf {J; (u) 1 u € Ny },

respectively.
Unlikely of the non-singular case, the proof of the regularities of the functions
1 (u) and t; (u) here are more delicated. However, by inspiring on ideas found in [41],

we are able to overcome these obstacles.

Lemma 1.1.7 Let u € X, and I C R be an open interval such that t5(u) are well
defined for all A € I. Then:

a) the functions I > X\ — t5(u) are C®. Moreover, I > X\ — t; (u) is decreasing
while I 5 X\ — 5 (u) is increasing.

b) the functions I > X — Ji(u) are C* and decreasing.

In particular, both claims hold true for I = (0, \.) and all u € X, given.
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Proof Let us begin proving a). To show that I > A — t5(u) are C™, define the
C*°-function F' by

F(\te, f,g) =et —\ft™ — gt for (\ t,e, f,g) €1 x (0,00) x R?,

and set

er=IlulPs i = [ aluldrand o= [ upids,
RN RN
For X" € I, we have that
IAF (Nt (), e, fi, ,
R G0 o A

RN

+ -1 +1
—p(t5 (u))” /RN b(z)|ulP™dx > 0,

+ + o
because ¢, (u)u € N};. Since

/ 8F /
F(X,t](u),e1, fr,g1) = 0 and E()\ st (), e, fi,g1) >0,

it follows from the implicit function theorem that ¢{(u) € C®((\" — ¢, \" + €),R)
for some € > 0 and hence, by the arbitrariness of A", we conclude that the function
I3 X — t](u) is C*. Moreover, since F(\, t{ (u), e, f1,91) = 0 we also have

OF (Nt (u), ex, f1,q1) N OF (Nt (u), ex, f1,q1) dtf (u)

O\ ot i 0,
that is,
dty (u) _ (5 (w)~ 7 fon a|u|1*7dx .
Al 2+ ()7 fon aw)ful ' da PP o b@)u[Frde ~

where the last inequality is a consequence of tj{(u)u € N /\+ . Therefore, the function
I3 X — t{(u) is increasing. In a similar way, we can prove that [ 3 X\ — ¢, (u) is C™
and decreasing.

Now let us prove b). Since ¢} (u) > 0 and

Oy DA [ i,
Iy (u) = x(t) (wu) = 2~ I[ul]* — - /RN()H d
_(ti_<u)>p+1/ b(x}|u|p+1dx,

p+1
it follows from item a) the C>-regularity for J; (u) with respect to . Besides this, we

have

AT e ) ()
S = @) - B [ o)l

+())1 Y
— _—(t)\l(—))v /RN a(x)|u|'""dx < 0,
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where we used the fact that ¢ (u)u € N to obtain the last inequality, that is, I 3
A = J{ (u) is decreasing. Similarly, we can prove that I 3 A\ — J; (u) is a continuous

and decreasing function. [ ]

As a consequence of the monotonicity proved above, after some adjusts on the

proof of Corollary 2.15 in [58], we can prove the below Corollary.

Corollary 1.1.2 Suppose that u & J\A/';r Then

lim £ (u) = tx. (), lim £ () = 5. (v)

lim Jy'(u) = @, (ta. (w)u), lim Ty (u) = @y, (s, (w)w),

where ty, (u) and sy, (u) are defined at (1.11) and (1.12), respectively.

1.2 Multiplicity of solutions on the interval 0 < A < A,

In this section we show the existence of two solutions for problem when
A € (0,\). Some ideas are motivated by the work of Hirano-Sacon-Shioji [41]. Like

them, first we show the existence of uy € Ny and wy € Ny such that

Dy(uy) = JY, Px(wy) = Jy,

0< VuV + V(z)uyipdr — )\/

RN RN

a(z)uy "pdr — / b(z)ulpde, Vi € Xy
RN

and

RN RN

a(z)w, "pdx — / b(z)whpdr,Vip € X .

RN
The next step will be to adjust the arguments used to prove the Step 3 of Lemma[1.1.5
to show that the last inequalities are in fact equalities, that is, uy € Ny and wy € Ny

are solutions for problem (Py)).

To carry out this strategy, let us begin by proving the next Lemma.
Lemma 1.2.1 Let A > 0. Then:

a) for allu € Ny, we have that

A
|ul|? < —(7_*11’)/ a(@)|ul' " dx (1.14)
p RN

holds. In particular sup {|[ul| : u € N3} < cc.
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b) for all w € Ny, we have that

]2 < (7“’)/ bl |+ da (1.15)
(1+7)
holds and sup {||w|| : w € Ny, ®\(w) < M} < oo for each M > 0 given. More-
over
inf {||w|| : w € Ny} > 0.
Furthermore,
0> Jy = inf ®y(u) > —oc0 and Jy := inf ®y(w) > —oc. (1.16)

ueN;F weNy
Proof Item a) is a consequence of gbl/{u(l) > 0, Hoélder and Sobolev embedding.
The inequalities of b) and inf {||w||: w € Ny} > 0 are direct consequences
of ¢:{7u(1) < 0, Hélder and Sobolev embedding. Now fix M > 0 and w € N such that
®,(w) < M. By using Holder and Sobolev embeddings, we obtain

1 2, 1 1
- Ol <d <M

where C' is a positive constant. Since 0 < 1 — v < 2, we have
sup {|[w]] : w € Ny, ®)(w) < M} < oco.

Now, let us prove the two first inequalities in (1.16)). First, let u,, C N} such
that ®y(u,) — J;. Thus, if follows from the boundedness of A} proved in a) that,
up to a subsequence, u, — u in X and hence —oo < ®,(u) < liminf @y (u,) = J;". To

show the first inequality, we use ([1.14)) in the expression of ®,(u) to infer that

0 = (gt ) 1 = (G L, e

< (s m) 1 - (G2 ) 1"
_ ( (L+7)(p — 1))) el <0

2(1=)(p+1

holds, that is, J;7 < 0.

In a similar way we can prove that —oco < ®,(w) < liminf ®y(w,) = J, . This

ends the proof. [ ]

Now we show that the infimum value is achieved in both Nehari manifolds Ny

and N, .
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Lemma 1.2.2 Let 0 < A\ < \.. Then there exist uy € Ny and wy € Ny such that
Py(uy) = Jy and @y (wy) = J; .
Proof First, we will show that there exists uy € N} such that @, (uy) = j;’ Let
{u,} C Ny such that ®,(u,) — J;. So, it follows from Lemma a) that, up to a
subsequence, u, — uy in X and uy > 0. Suppose on the contrary that u, = 0, then
0 = ®)(uy) < liminf &) (u,) = j;r < 0, which is impossible, that is, uy # 0 and so
uy € X4

Let us prove that uy € N;. First, we claim that {u,} converges strongly to u,

in X. On the contrary, we would have that ||uy|| < liminf ||u,|| and thus

liminf gy, (6 () tn) > @), (6 (un)un) = 0,

n—oo

which implies that qb;,un (¢ (w)uy,) > 0 for sufficiently large n. It follows from Propo-
sition and Lemma applied to the fiber map ¢y, that 1 =t} (u,) <t} (uy)

holds for larger n. Therefore, by coming back to the fiber map ¢, ,,, we obtain from

Proposition again that @, (7 (uy)uy) < P(uy) and consequently
Jy < JY (u) = &5 (t (u)u) < liminf @y (u,) = Jy,
which is an absurd, that is, u,, — u in X and hence

Oy (1) = Tim ¢y, (1) =0 and ¢y, (1) = lim ¢y, (1) >0.  (L17)

Since from Lemma b) we have that N? =0 for 0 < A < ), we must conclude
that uy € Ny and @, (uy) = J; .

Next, let us prove that there exists wy € N, for which ®,(w,) = j/\’ holds. Let
{w,} C N be such that ®,(w,) — j;. As above, we have that w,, — wy in X and
wy > 0. Assume on the contrary that wy = 0 then, from Lemma b) we obtain
the absurd

0 < inf {|Jw|” : w € Ny } <liminf [[w,]]* < liminf (v +p) / blw, [P dr =0
n—00 n—00 RN

(1+7)

where the last equality follows from the compact embedding X into LF™!(R”), hence
wy # 0 and so wy € X . By repeating the above arguments, we have [ blw,|P*'dz > 0.
We claim that {w,} converges strongly to w, in X. Suppose not. Then we may

assume that ||w, —w,|| — 6 > 0 and apply Brezis-Lieb lemma to infer that

92 / 1"
Iy =awn) + 55 dau, (1) +6° =0, and 6, +6” <0
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holds. So, we would have QS/)\’wA(l) < 0 and gb;’w(l) < 0. As a consequence of

Proposition and Lemma m there exists a t; € (0,1) such that ¢, (ty) =
0, Py, (ty) <0and tywy € Ny .

By setting ¢(t) = ¢ w, (t) + % for ¢ > 0 we conclude that 0 < ¢, <1, ¢'(1) =0
and ¢ (ty) = 6°t, > 0, which together with Proposition lead us to conclude that

g is increasing on [t , 1]. Thus, we have
Ty =lm @y (wa) = g(1) > g(ty) > b, () = Paltywn) 2 Jy,

which is a contradiction, that is @ = 0 and {w,} converges strongly to w, in X. After
this, we obtain that wy, € N, and ®,(w,) = J;, as done at li This ends the

proof. [ ]

Lemma 1.2.3 Let 0 < A < A.. Then there exists ¢g > 0 such that:
a) Pr(ux+ €ep) > Pr(un),
b) ty(wy+ep) = 1 as el 0, where t; (wy + €) is the unique positive real number,
given by Proposition satisfying ty (wx + e)(wy + eh) € Ny

for each v € X, given and for each 0 < e < ¢.
Proof Let 1 be a function in X . First, let us prove a). It follows from (|1.1]) that

O ren(1) = lurted| P17 /

a(m)|u,\+e¢|1_7dx—p/ b(x)|ur+ep|Ptdz, € >0,
RN

RN

which combined with the continuity of ¢ ,, ey (1) in € > 0 and the fact that gbi{m (1) >
0, because uy € Nyf, implies that there exists an €y > 0 such that ¢”y ,, 1ey(1) > 0 for
all 0 < e <g.

Fix 0 < € < ¢. Then from ¢") ,,, yey(1) > 0, we obtain

Py (ur+et) = druyren(l) = Oruyten(ty (urte)) = Oa(ty (ur+e)(urtep)) > Oy(uy)

where the last inequality follows from Lemma|1.2.2] because uy, ¢} (uy +€v))(uy+€) €
Now we prove b). By defining F': (0,00) x R* — R by F(t,e, f,g) = et —A\ft™7 —

gt?, we have that F'is a C'*° function,

F<17617f17gl) = Qﬁl)\,w)\(l) = 07
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because wy € Ny, and

dF

%(17617f17g1> = gb;/\,wA(l) < 07

due to the fact that wy € Ny, where

er = [lwll*, fi :/ alwy|'"dz and g Z/ blwy [P d.
RN RN

Therefore, it follows from the implicit function theorem and from

E(ty (wy + ), [lwx + 6¢|I2,/ a(z)lwy + ezbll_”dﬂ%/ b(x)|wy + ep|PFldr) = 0,
RN RN
thanks to Proposition [1.1.1], that
t(||wx + ewHQ,/ a(z)wy + ew\lydx,/ b(x)|wy + e[ dr) =t (wy + e)
RN RN

for € > 0 small enough, where ¢t : B — A is a C*°-function where A and B are open

neighborhoods of 1 and (eq, f1, 91), respectively. The continuity of ¢ implies the claim.

This finishes the proof. [ ]
Lemma [1.2.3] implies
Lemma 1.2.4 Let 0 < A < A.. Then for each i € X given, there hold au, "1, aw, " €
L'(RY),
/]RN VuprVo + V(z)uypde — /RN()\CL(J:)U/\Swdx + b(x)ubpdz) > 0 (1.18)
and
/RN Vu Vi + V(z)urpdr — /RN()\a(x)u;d@/)dx + b(x)ulpdr) > 0 (1.19)

In particular, uy, wy > 0 almost everywhere in RY.

Proof Let 1) € X . First, let us prove the inequality (|1.18)). After some manipulations,
we obtain from Lemma item a), that

[lux + ey|]” — HUAH2_/ blux + P! — blus [P
2e RN (p+1)e

> )\/ aluy + e[t~ — a’U,\|1_7dx
RN (1 _’Y>€

holds for sufficiently small € > 0.
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By using similar arguments as in the proof of Lemma [1.1.5] we obtain from the
last inequality that uy > 0 in RY, au, "¢y € L*(RY) and

VuV + V(z)uripdr — / (Aa(z)uy dr + b(z)ubpdr) > 0.

RN RN

To prove ([1.19), we note that

ity (wrte)(wrted)) > Pa(wn) = Grwy (1) > Paw, (y (Wrte)) = o (t) (wr+ep)wy),

where the first inequality follows from Lemma and the second inequality comes
from Proposition [1.1.1

After some manipulations, we obtain from the above inequality that

_ [wx + €| > = [Jwx|]? / blwy + e [P — blw, [P
t 2 —t ptl d
Y (wy + €y) 5 L (wy + €y) - TESIE x
1-v _ 1—y
> b (wy + €¢>1_7A/ alwy + €| alwa |77
RN (1—7)e

holds for € > 0 small enough.
So, by applying Lemma item b), we obtain wy > 0 in RY, aw, "¢y € L'(RY)
and

Vw Vi + V(z)wypde — / (Aa(z)wypdx + b(x)whypdr) > 0

RN RN

holds. This completes the proof. |

Proposition 1.2.1 Let 0 < A < A,. Then u, € ./\/’)\+ and wy € N; are solutions of

Problem .

Proof First we will show that u, is a solution for . To this end, let ¢ € X and

define U, = (uy + €)™ € X for each € > 0 given. Therefore, it follows from Lemma

that the inequality (1.18)) holds true with W, in the place of 9.
Now, by adapting the proof of Step 3 of Lemma with

|[ual* — )\/ a(x)|uy|""Vdr — / b(x)|uy[Pdr =0 (because uy € Ny)
RN RN

in the place of (|1.8)), we are able to show that u, is a solution for Problem . In a
similar way, w, will be a solution for as well.
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1.3 Multiplicity of solutions for A = ),

In this section we prove the existence of at least two solutions for Problem (Py,) by
using the multiplicity result given in Proposition for 0 < A < A, and performing
a limit process. The next proposition is a consequence of the monotonicities and
regularities of the functions ] (u), t; (u), J;" and J given by Lemmall.1.7]
Proposition 1.3.1 There holds:

a) the functions (0, \,] 2 A — j/\i are decreasing and left-continuous for A € (0, \,),

b) lim Jy=Ji.

Proposition 1.3.2 The problem (Py,) admits at least two solutions wy, € N,  and
Uy, € N ;“ .

Proof First, let us show that there exists a solution wy, € N, for (Py,). Let {\,} C
(0, A) be such that A, 1 A, and {wy,} C N, as in Proposition Suppose on
the contrary that ||w,, || — oo, hence after applying the Holder inequality, Sobolev
embedding and the fact that wy, € N, , we obtain

_ 1 1 _
Iy, = Pa,(wy,) = (5 - m) [wr,? + An (m - E) /RN a(x)|wy, " dx

1 1 1 1
>(=z——— ) ||wn|P+C | —— — —— ) |Jw, |7,
_(2 pH)H ol (p+1 1_7)H ol

which implies by Proposition that co > lim j/\; > 00, which is a contradiction.
Therefore {w,, } is bounded and we can assume that w,, — wy, in X,

wy, — wy, in LIRN)V ¢ € [2,2%),

Wy, — Wy, a.e. RY,

there exist h, € LI(RY) such that |wy,| < h,

with wy, > 0.

Thus, once w,, is a solution for Problem (P,,) it follows that

(ws., ) — /R bl gz > A, /R a(n)G () (1.20)

for all 1) € X, where G is understood as G(x) := w, ' (z) if wy, (x) # 0 and G(x) := oo
if wy, (z) = 0. Tt follows that 0 < [,y a(x)G(z)idr < co, which implies wy, (x) > 0 in
RY and

i) = [ el vde = A [ al@eivde v e X, (20
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Moreover, it follows from Lemma[1.1.2| and Fatou’s lemma that

lim sup(wy, , wy, — wy,) < limsup /\n/ a(z)w, "dx + lim sup —)\n/ a(z)w, "wy, dx
n—00 n—00 RN " n—00 RN "
- )\*/ a(x)wi*—wdx — lim inf/ Ana(x)w, "wy, dx
RN RN "
< )\*/ a(r)w, Vdr — / liminf A\, a(x)w, "wy, dx
RN RN !

)\*/ a(z)w, "dx — )\*/ a(z)w, dx =0
RN RN

that is,

? <limsup(wy,, wy, — wy,) + limsup —(wy, , wy, —wy,) <0,

limsup |[wy, — wy.

*

which implies that wy, — w,, in X.

As a consequence of this, we have that

Oy oy, (1) =lim) . (1) =0and ¢y_,, (1) =lim¢y ,, (1)<0

which implies, by the first equality, that wy, € N,,. We also have from Lemma
b), that

0 < (L 4)[|wa.

= (1+~) lim ||wy,|| <(y+p) lim / b(x)wijldx
n—00 n—00 JpN
=(y+p) / b(a)uwh ™ de,
RN

that is, [,n b(z)wf " dz > 0 and hence wy, € Ny UNY .

By using that wy, € N, that is,

2 —)\*/ a(x)|wsy, 1_7dx—/ b(x)|wsy,
RN RN

holds, taking ¥, = (wy, + e)t € X, for ¢ € X, e > 0 given, as a test function in

PR e =0

[[wa,

(1.21) and following similar arguments as done in the proof of the Proposition [1.2.1}
we are able to conclude that wy, is a solution of (Py,). Moreover, wy, € N, due

to Corollary [1.1.1] Finally, it follows from the strong convergence, Proposition [1.2.1],
Proposition and Proposition [I.1.3] (iv), (v), (vi) that

D), (wy,) =lim®, (w,) = lim j/\_n = j/\_ = inf { @, (tr. (w)w) : w € Ny, UNY }
(1.22)

holds, that is, wy, € N is a global minimum of ®,, constrained to Ny UN7Y .
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In order to show the existence of a second solution for Problem (Py,), we proceed
in a similar way, that is, pick a {\,} C (0, \,) such that X, 1+ A, and {uy,} C N} as
given by Proposition [I.2.1] After some manipulations, we obtain that uy, — u,, in X
for some 0 < uy, € Ny, UN} , which is a solution for Problem (P}, ).

Besides this, if [,y b(z)u} 'dz > 0 and (b:{*m* (1) = 0, then u,, would be a
solution for the problem (Py,) in N} , but this is impossible by Corollary . So we

have gzﬁi{*’m* (1) > 0 in this case. On the other side, if [,y b(x)u’)’jldx < 0, then we have

S 0 =l B0, [ atopdae—p [ a0
RN RN

So, in both cases, we have gzﬁl)/\*yuA (1) > 0 which implies that u,, € N . We also have
that uy, € N is a global minimum of ®,, constrained to N, /\t UNY as well. This ends

the proof.

Before proving the multiplicity of solutions for Problem (P,)) when A > A, let us

gather further information on the sets

S;*:{wej\f/\::JL(w):jL} and SL:{UG./\/IZJ;Z(U)ZJ;\Z}. (1.23)

Corollary 1.3.1 We have that:
a) Sy, and S;l are non-empties,

b) there exist cx,,Cx. > 0 such that ¢y, < [jul,[|w] < Ci, for all u € Sy and
w e S, ,

¢) ifue Sy USY, then u is a solution for Problem (Py.).

Proof The item a) follows immediately from ([1.22]), while b) is a consequence of Lemma
1.2.1} Finally, the proof of the item c) is similar to that of Proposition m

1.4 Multiplicity of solutions for A > A,

In this section we show the existence of solutions for problem ({P)) when A is

greater than A, but close to it. The idea is to minimize the energy functional ®, over

46



subsets of Ny and Ny, which are projections of subsets of Ny and N} that have
positive distances to N f*. To do this, we do a finer analysis on these sets and we

obtain new estimates that are new even in the non-singular case as in [58].

Proposition 1.4.1 Let ¢ < C. Assume that A\, | .

a) suppose that w, € N, satisfies c < ||wy,|| < C. If (t;n(wn))gqﬁ;mwn(t;n (wy)) — 0,
then d(w,, Ny ) — 0 as n — oo,

b) suppose that u, € Ny satisfies ¢ < [|u,|| < C. If (tj{n(un))%g\mun (tx (un)) =0,
then d(u,, NY ) = 0 as n — co.

Proof We prove only a) since the proof of b) follows the same strategy. It follows from
Lemma b) that there exists a positive constant ¢ such that [y blw,|[P*'dz > c.
We claim that the same holds for [y alw,|'~dz. To prove this, let us first prove that
ty (wn) — 6 € (0,00).
Now, by applying Proposition m, there exist s, = t;fn (wy) <ty (wy) =ty

such that

2 l|wn][? = th A Jon alwy ' da — 2 [0 blw, [P dx = 0,

I lwnl? + 57y fow a1 — 71 [y bluo, PPl = of1),

s2||wp||* — s\, fRN alw,|*"7dr — s fRN blw,[PTdx = 0,

where the second line is a consequence of the assumption (t;\n(wn))ng;mwn (ty, (wn)) —
0.

So, by solving the system formed by the first and third equation of the above sys-
tem treating the integrals as unknown, and substituting them into the second equation,

we obtain
Pty 1+~
7) (r) +p—1)—-(+p) (r)

< \PTY
() -

Besides this, it follows from C' > ||w,|| > ¢, Lemma |[1.2.1} the first and third

[Jwnl %5 =o(1), n—oo. (1.24)

equations of system above and s, < t, that there exists positive constants ¢, C’, 0, «
such that t,, s, € [¢,C], t, = 0, s, — a and ||t,w,|| > ¢ By using these informations
and taking limit on ([1.24]), we conclude that s,/t, — 1 and § = «, because t = 1 is

the only zero of the function

g(t) = L+ + (p—1) = (y+p)t' ™.
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Once s,w, € N, , we obtain from Lemma a) that [ alw,|'""dx > c¢. Follows

that
10w, ||* — A [pn al@w,|' "V da — [on D|0w,[PT dx = o(1),

10w, |)? + YA [on alfw,|'"7dx — p [on D|0w, [P dx = o(1)

and infer that
p—1  [[w,]?

=X to0(1), n = o0,
Y+ Jon alfw,|'d (1)

and
L+ [[fw,

vy+p f]RN b|Ow,, |PHdz
Therefore, it follows from (1.2]) and by 0-homogeneity that

=14o0(1), n — 0.

Awn) = MOw,) = (1 +0(1)) 71 (A +0(1)) = As, 11— 00,

and w, is a bounded minimizing sequence for \,. Moreover, by following similar
arguments as done in the proof of Lemma [1.1.6] we obtain, up to a subsequence, that

w, — w € Ny and consequently d(w,, Ny ) — 0 as n — oo. This ends the proof.

Define
);,d,C’ = {w € N); : d<w7N)(\)*) > d7 HwH S C} )

and
/\t,d’c = {u e Ny d(u,NY ) > d,c < HuH},
for ¢, C,d > 0 given. As an immediately consequence of Proposition [1.4.1] we have.

Corollary 1.4.1 Fiz c¢,C,d > 0. Then there exist € > 0 satisfying:

a) there exists 6 < 0 such that (t;(w))2¢;’\7w(t;(w)) < G for all X € (A, A\ + €)
and w € Ny ;¢ In particular, we have that ty (w)w € Ny and w € N, for all
A€ (A, A +e),

b) there exists 6 > 0 such that (tf (u))?¢,(tf(u)) > & for all X € (A, A\ + €) and
u € Ny 4. In particular, we have that t{ (u)u € Ny and u € Ny UN for all
AeE (At o).

To do a good choice of the parameter d > 0 in the last corollary, we prove the

next result, where the sets S} and S} were defined at (1.23).

Proposition 1.4.2 There holds:
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a) d(Sy., N.) >0,

b) d(SY ,NY ) > 0.

Proof We just prove a) because the proof of b) follows similar arguments. Assume by
contradiction that d(S5 , Ny ) = 0. Then, there exist w, € S5 and v, € N} such that

|wy, — vyl — 0 as n — oo and

(wn, V) = A, /awn"’wd:ﬁ + /bwﬁwdaz, Vi e X, VneN

holds, where this equality is a consequence of w,, being a solution for Problem (P,)
as claimed in Corollary [1.3.1] Since N} is a compact set, see Lemma |1.1.6| we may
assume that v, — v € N/ /e* and hence w,, — v as well. From Fatou’s Lemma we

conclude that
(v,9) > )\*/av_”wdx—i- /bv”zﬁdw, Ve X,

that is, we arrived in the same situation as in (1.20)) with v € N} . So, by following the
same arguments as done after 1) we are able to show that v € N /9* is a solution
for Problem (P, ), but this is impossible by Corollary [1.1.1} which ends the proof. m

After Corollaries[1.3.1], and Proposition[1.4.2] we are in position to introduce

na- ¢ = inf {J/\’(w) TwE N;*,d—,o} and j;fdtc = inf {J;(w) Cw E Nxt,dtc}
(1.25)
for each 0 < ¢ < ¢y,, C > O, (see Corollary for both) Ay < A < A, + € (see
Corollary and 0 < d* < d(S},NY) (see Proposition which implies that
Sy, C N, 4 ¢ and Sy CcNY a+. The proofs of the next propositions are similar to

that of Propositions 4.5, 4.6,4.7 in [58].

Proposition 1.4.3 The \-functions j;d_ o and j;dJr o are decreasing and there holds:

a) imJ_, .= JC
) A adc Aw?
b) lim J,. =Ji.
) Al«)‘* )\,d+,C >\*

Proposition 1.4.4 There exists € > 0 such that J, constrained to N,\: 4—c has a
minimizer W € Ny, o for all X € (A, Ax +€7) given.
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Proposition 1.4.5 There exists € > 0 such that J\ constrained to ./\//\Jr 4+ has a

minimizer iy € ./\f;r gt o Jor all X € (A, A+ €T) given.

Unlike the non-singular case, local or global minimizers for the energy functional
constrained to Nehari sets, are not necessarily solutions for Problem . In the
next Proposition we will establish that this claim is true under our assumptions. The
main point in order to prove that the minima found in Propositions [T.4.4] are
solutions of is to prove that w, and u, are interior points of N;’d,’c and /\/'/\t’d+7c
respectively.

Proposition 1.4.6 There exists € > 0 such that the problem admits at least two
solutions wy € Ny and uy € Ny for each A € (A, s +€).

Proof First, let us take advantage of the existence of the minimizer wy € N, N d-.c to
build a solution for Problem in NV, . Let us do this by reminding that the defini-
tions given at and implies that we can consider w) =t} (w))wy € N, .
Below, let us prove that w) is a solution for Problem (P,)) if A > A, varies in an appro-
priate range. To this end, firstly we prove that w, is a interior point of N Nd—C for A

close \,, which is equivalently to prove

Claim: there exists an ¢; > 0 such that
H?B,\H <C, Ve ()\*,)\*+€1>, (126)

where C' > (', and C, > 0 is given by Corollary [1.3.1]
Indeed, let A\, | A. and denote w,, = w,. Due to the boundedness of /\/’A_ PR
we may assume that w,, — w in X. In fact, we have that w,, — @ in X, otherwise we

would have ||@|| < liminf ||@,|| which implies

0= ¢y, 5(tr. (@) < liminf ¢y (tr.(0)),

where t,, is given by Proposition m (iv). It follows that there exists k such that
gb;n’wn(t,\* (w)) > 0 for n > k, that is, t}(w,) < ty, (@) < t, (w,) by Proposition m
Therefore

[t (@) < lim inf [, (1, |
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which lead us to

Dy, (ty, ()W) < liminf @y (¢, (0)w,) < lim i/\nf Dy, (ty, (W) 0y) = A;, (1.27)

where the Proposition a) was used to get the last equality. Moreover, it follows
from Proposition b), Proposition and Corollary that

Jr = lim J3 < lim @ (

.= lim J§ , (U (0)w) = @y, (th, (w)0)

ATL

holds for any A, 1 A,. By combining the last inequality with we get a contradic-
tion and hence w,, — w in X.

As a consequence of this strong convergence and Lemma b), we obtain
Jol@PHdr > 0 and @) _;(1) = 0 and ¢, (1) < 0, which means by Proposition m
that @ € N,  UNY . Since

d(w, Ny ) = lim d(w,, Ny ) >d™ >0,

n—oo
we have that @ ¢ N} , that is, © € N_.

To conclude the proof of the claim, we just need to show that w € S . First
note that similar arguments as done in the proof of Proposition a) proves that
ty,(W,) — t € (0,00). From the strong convergence w, — w in X, we get that
qb:\*’w(t) =0 and (bl)/\*’w(t) < 0, which lead us to conclude that ¢ = 1 since @ € N,  and
Proposition |1.1.1} From Proposition [1.4.3|and the strong convergence again, we obtain

Dy, () = lim ®y, (ty, (Wn)0,) = Jy,

nNAx

which means that w € S, . Therefore, from Corollary we conclude that

liTSUPHﬁMH < [[o]] < Ci..

Since C' > ()., the claim is true. This ends the proof of the claim.

To complete the proof that w, := ty (wy)wy € N, is a solution to Problem
(Py), let us perturb w, by appropriate elements of X, and perform projections of it
over Ny, . and Ny. Let ¥ € Xy and A € (A, A\ + €1). Since Wy € N, we are
able to apply the implicit function Theorem, as done in Lemma b), to prove that
ty (Wx+0v) (see Proposition is well defined, is continuous for # > 0 small enough
and ¢y (wx + 0y) — 1 as 0 — 0.
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Thus, it follows from (1.26) and d(1wx, Ny,) > d~ (see definition of Ny ) that
([t (@x 4 09) (s + 0)|| < C and d(ty (@x + ) (@ + 0¢), Ny ) > d”,
holds for 6 > 0 small enough, which implies
ty, (x + 00)(wr + 0Y) €Ny 1 (o (1.28)
Therefore, by and Corollary , we obtain
tA(O)ty (Wx + 0) (Wx + O1p) =: £ (t5 (Wr + 0) (W + 0))t, (0x + 1)) (wx + 1)) € N
By applying Proposition [.4.4], we have
O (tA(0)ty, (Da+00) (Dr+0v)) = J5 (ty (a+0) (Br+00)) = Ty - o = Palty (D2) D),
which lead us to conclude that
PA(IA(O)Ey, (Wx + 0Y) (W + 01p)) = Pa(ty (Wa )ty (Wx + 0Y)wy), (1.29)

holds for all # > 0 small enough, after using Proposition [1.1.1
Again, due to the fact that ) (w\)w, € N, , we are able to apply the implicit
function Theorem, as in Lemma b) with the same function F' at the point

(3 @), 1, / alis['da, / blin [+ de )
RN RN

to show that t,(0) — ¢, (w) as # — 0. Since (1.29)) can be read as

[[[dx + 6" — [[a] %]

(tx(0)t5, (10x + O1)))* ;
(A (O)ty, (W + OU))PTY [ by + O)PHY — baby )P
- p+1 / 0 dx
> O, (1w_A j 0 / a(dy + ew)lev o)

we can follow the arguments done in Lemma [1.2.4] Fatou’s Lemma and ¢,(0) — ¢} (0)

as 6 — 0, to infer that
(15 ()2 (i, ) — (¢ (1)) / birldr > (t (@) A / wi b,

that is,
(wy, ) —/bwf\zﬁdw > A/awivwdx.
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To conclude that wy € Ny is a solution from (Py)), we do as in Proposition m
To complete the proof of Proposition [I.4.6] let us follow the arguments done just above

with minors adjustments. First, by setting ux = 3 (u\)uy € Ny, with 4y € Ny, .
being the minimizer of J\" constrained to N, /\t 4+ as given in Proposition , and
adjusting the proof of the above claim, we also prove the below claim.

Claim: there exists an €5 > 0 such that
[lax]| > ¢, VA€ (A, Ak + €2),

where ¢ < ¢y, and ¢, > 0 is given by Corollary

After this claim, by perturbing @, by appropriate elements of X, performing
projections of it over N, /\Jr e and N, and following the same strategy, we can prove
that uy € Ny} is a solution from (Py).

Finally, the proof of Proposition follows by taking ¢ = min {e;, e} > 0, that is,
for each A € (A, A\« + €) the problem admits at least two solutions uy € N, and
wy € N, . This ends the proof. n

1.5 Proof of Theorems

In these section, we are going to prove the main Theorems of this Chapter.
Theorem Suppose that 0 < v <1 <p < 2*—-1;,0 < a € Lﬁ(RN), b €
L®(RN), b+ #£ 0, (V)o and [a/b}ﬁ ¢ X if b > 0 in RY hold. Then there exists an
¢ > 0 such that the problem has at least two positive solutions w,y,u, € X for

each 0 < A\ < A\, + € given. Besides this, we have:

A2y

) d2® (tuk)‘t:1 > (0 and W(twk)‘tzl <QOforall0 < A< A\, + €,

dt?

b) there exists a constant ¢ > 0 such that ||w,|| > ¢ for all 0 < A < A\, + ¢,

¢) wy is a ground state solution for all 0 < A < A, @ (uy) <O0forall0 < A < A\, +e€

and /l\lir(l) [|lux]| =0,

d) the applications A — @, (uy) and A — @, (w,) are decreasing for 0 < A < A\, +e

and are left-continuous ones for 0 < A < A,
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€) ®x(wy) >0 for 0 < X < A, ®5(w;) =0 and ®y(wy) < 0 for A < X < A, + € (see

\in ),

Proof First, we note that the multiplicity is given by Propositions|1.2.1} [1.3.2|and [1.4.6]

About qualitative statements, we point out that a) is a consequence of Proposition
1.1.1} The statement b) follows from Lemma and Sobolev embeddings. Let us
prove ¢). To prove that u, is a ground state solution for each 0 < A < \,, let us assume
that w is another solution for Problem (Py). Then w € N} UN, by either Lemma
a) or Corollary . If w € Ny, then ®y(uy) = J < ®5(w) by definition of
j;\“ . On the other hand, if w € Ny, it follows from Proposition and definition
of Ji that ®y(w) > ®x(tfw) > J;i = ®,(uy) holds. So, combining both cases, we
conclude that uy is a ground state solution for Problem (P,). Now, by we have
that ®)(uy) <0 forall 0 < A < A+ €. From and Sobolev embeddings, we have

that }\iH(l) l|ur|| = 0. The statement d) follow from Propositions [1.3.1}, [1.4.3
—>

Finally, let us prove the item e). First, we note that A and A, as defined at and
, respectively, are such that A < A, and A = inf{\(w) : w € X and Jan Dw [Pt dx >
0}, where (A(w),i(w)) is the unique solution of the system Orw(t) = O,QS:\’w(t) = 0.
So, it follows from Proposition m that there exists a w; € N, N solution of Problem
(P5)-

Now, by applying Proposition [1.1.1], we obtain that

Dr(wr) = Prwy (1) = drw, (EH(wn)) = Pat(wr)wy) > 5, (Hwr)wr) =0, (1.30)

holds for each 0 < A < X given, where wy € N, , is the solution of given by
Proposition |1.2.1]
On the other hand, by proceeding as done in Lemma [I.1.3] we are able to prove

that there exists a w € X, such that A = A(w) and P5(w) = ¢5,,(1) =¢; (1) =0.
Hence, the Proposition imply that ¢t~ (w;) = 1, which lead us

0= @X(w) > @X(wﬁ) = J;. (1.31)

As a consequence of 1) and of the fact that j}\’ is a decreasing and left-

continuous function, we have that ®;(w;) = J . =0 So, this inequality together with

1.31)) lead us to conclude that JN)\_ = ®;(w;5) = 0. The rest of the proof follows from
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the fact that the function J; = ®,(wy) is decreasing for 0 < A < A, + ¢, as showed in

Propositions [I.3.1] [I.4.3 n
Below, we are going to prove Theorem [0.0.2]

Theorem Suppose that the hypotheses of Theorem[0.0.1hold. Moreover, assume

that there exists a smooth bounded open set Q2 C RY such that b > 0 in  and

a € L>(Q). Then there exists \* > 0 such that the problem has no solution at

all for A > \*. Moreover, we have the exact estimate

pty ’Y"‘l % p—l %
0<Aw<Y=Af1(__) C__) ’
p—1 P+

where A\; > 0 is given in Lemma [1.5.1}]
To prove the theorem we will need a preliminary lemma. Take a smooth bounded

domain  C RY and consider the eigenvalue problem

—Au+V(x)u = dm(x)u in Q
(Aa)
u>0inQ, ue Hy(5),
where m(x) = min{a(z),b(z)}. So, by a classical argument and Theorem 3 in Brezis-

Nirenberg [12], we have.

Lemma 1.5.1 The first eigenvalue A1 of the problem (Agl|) is positive. Moreover, its
associated eigenfunction e, is positive, e; € C1(Q) N H?(Q) and de;/Ov < 0 on 95,

where v € RY is the unit exterior normal to OS).

Proof [Proof of Theorem [0.0.2] Let us define g : (0,00) — R by g(t) = A\t +

tP~1 and note that

is the its unique global minimum whose minimum value is given by

GO\ == g(ty) = Aim ( ) (p+7) |

which provides the existence of a A* > 0 such that g(A\*) = Ay, that is,

T (Y
p—1 P+

Assume that u), € X, is a solution for Problem (P,)). By Brezis-Nirenberg

)\*:)\

’_"U

Theorem (see [12] Theorem 3 again), we have that u,” € L*(K) for every K CC
which implies by Theorem 12.2.2 (see J. Jost [43]) that uy € HQ’%(K) and

—Auy = Aa(x)u, " + b(x)ul — V(z)uy a. e. in Q,
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and after a classical bootstrap argument, we obtain that uy € H?(Q) N C(Q). Now we

apply Lemma 3.5 of Figueiredo-Gossez-Ubilla 23] to conclude that
/ VuaVe + V(z)equrdr < A\ / m(z)ejupdz. (1.32)
Q Q

So, it follows from the definition of A\*, (1.32)) and the fact that u, is a solution fo
Problem (Py), that

/m(az)()\*u;7 +ub)erdr > N\ / m(z)uyerdr > / VeiVuy + V(z)ejupde
0 0 0
:)\/a(:c)uA"’eldaz—i—/b(a:)uf\eldx.
Q 0

Since a(z),b(z) > m(x) in €, the last inequality lead us to

X"/a(x)uKWeldx#—/b(x)uf(eldx Z/m(x)()fuﬂ—l—ui)eﬁx
Q Q Q
> )\/a(x)ugweldx%—/b(x)u’;eldx,
Q Q

which implies that A* > A. This ends the proof.
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Chapter 2

Extremal regions and multiplicity of

positive solutions for singular

superlinear elliptic systems with

indefinite-sign potential

In this chapter, we study the following elliptic system with singular nonlinearities

—Au+V(x)u = Aa(z)u™ + ot D

B
a4+ f

—Av + V(z)v = pe(z)v™7 + b(x)

b(x)u® o in RY,

w,v >0, RN, / Vu2+/ Vv? < oo, u,v € HY(RY),
\ RN RN

(]5>\7,L)

where 0 < a,cin RV, b+ £ 0, V : RY — R is a positive continuous function; 0 < v <

l<a,f;2<a+p<2% N>3and A\, u > 0 are real parameters.

To show the multiplicity of solutions for 1} we will use the Nehari manifold

method and the fibering method again. As in Chapter 1, the functional associated to
the problem 1} is not Gateaux differentiable. As we already mentioned, by consid-

ering the problem with unrelated (A, i), as previous works have done, few information

can be obtained about the set of parameters such that 1} has solutions. Thus,
the main idea to overcome this difficulty is to modify the problem 1' to (f’Mg ») for

each 6 > 0. With this modification, we are able to solve a similar system to that one



considered in Chapter 1 (see (2.15))-(2.16)) and find \.(f) as an extremal value in the
sense of the applicability of Nehari method. By varying 6 > 0 we get a continuous
curve T'(A) = (A\.(0), 6).(6)), which represents a part of the boundary of the set of the
positive parameters (A, p) for which there is a solution for the system , and this
set is bigger than those considered by previous works. In addition, we obtain multi-
plicity of solution for parameters above f(@), but close to it. These results generalize
to the system the results obtained in the Chapter 1.

This chapter follows the following structure. In the first section, we present a new
definition of critical points for non-differentiable functionals and prove a new abstract
theorem for functionals of this type. We will also present some consequences of this
abstract result and it will be applied in the next section. In Section 2.2, we use the
abstract Theorem of Section 2.1 to show that some local minimizers over the Nehari
manifold of functional associated with system are critical points in the sense of
the abstract Theorem, and therefore, solutions of the system. After this, we study some
topological structures associated to the energy functional associated with the modify
problem (15,\,9,\) for each 8 > 0. So, we introduce the Nehari manifold associated with
the problem (P)\’g)\) and study some of its properties as well, in a similar way to that
done in Chapter 1. We also built the extremal curves claimed in the Theorem |0.0.3

In Section 2.3, we show the multiplicity of solutions to the problem (]5,\,%) for
A€ (0, M.(6)), where 6 > 0 is fixed (see for the definition of A.(#)). In Section
2.4, we show the multiplicity of solutions to (Pygy), when A = X, () and in Section 2.5,
we show the multiplicity of solutions to (IBM ») when A is greater than \.(f), but close
to it and at the end of this section we prove Theorem [0.0.3] Many results obtained in
sections 2.2, 2.3, 2.4 and 2.5 are generalizations of those obtained in Chapter 1.

In the last section, we prove the supersolution Theorem and the Theorem
0.0.5l To show the supersolution theorem we were inspired by Struwe [59], and com-
bined a truncation argument with Perron’s method to prove the existence of solution
to the truncated problem. After this, through a fine analysis we obtain that the solu-
tions of truncated problem converges to a solution of our problem. The next step is,
through some preliminary lemmas, to show the existence of the function I'* stated in

the Theorem [0.0.5( and finally proves the Theorem [0.0.5]

o8



To state our main results, let us set
X = {ueHl(RN):/RNV(a:)uzdx<oo}, E=XxX,
and assume
(V)o Vo= inf V(z) >0,
(V)1 1)V e LYRY),

(A1) a,c € L®(RN) N LT (RY) 0 LY(RN),

(A2) b £ 0 and b € L®(RY) N L¥=55 (RV),

1 B
a(z) | atB+7=1 | ¢(z) | A=7)(a+B+7—1)
(A3) [%} ’ [gg] NI gy

As a consequence of these assumptions, we have well-defined the functionals

JU) = U1

K, (U) :)\/ a(x)|u|1_7dx+,u/ c(x)|v|'d,

RN RN

L) = [ ool

o« (J(U), V) = / VuVe + V()uglds + / VoV + V(@)old,
RN RN
o (L'(U),V)p == b(x)|u|**ulv|’pdr + i/ b(x)|u|*|v|’2vipda.
’ oth Jrw o+ Jry
and

o )W = [ al@l upde g [ el v

RN RN
if
/ a(x)|u| ' Tupdr € R and / c(x)|v| "' Tupdr € R
RN RN

hold, where U = (u,v),V = (p,¢) € E.
With these notations, a pair U = (u,v) € E is a solution of (P, if

(J'(U),¥)p — (K}, (U), ¥)p — (L'(U),¥)r =0,
forall W € E.
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2.1 An Abstract existence theorem for non-differentiable

functionals on cones

In this section, we will give a new notion of critical points for non-differentiable
functionals and prove a new abstract theorem. Throughout this section, we assume
that F'is a Banach space, C C F a cone with C N (—C) = {0} and < the partial order
defined on C. We also assume that C is reproducing, that is, C — C = F (see Deimling
[24] p. 219). So, for each u € F we have that u = u™ — u~, where u*,u™ € C.

Let [ : F — RU{+o0} be a functional such that I = ® 41, with ® € C'(F,R)
and ¢ : F — RU {400} be proper, that is, D(¢)) = {u € F : ¢(u) < 400} # (). The
set D(v) is called the effective domain of 9.

We state a new definition of critical point.

Definition 2.1.1 A point u € D(v) is said to be a critical point of I if, for eachv € F,
there exist an €y > 0 (which may depends on v) and a function £ : [0,¢] — Ry such
that:

i) £(€) > 1 ase — 0,
it) &(e)u € D(y),
iii) the inequality
I(&(€) (u + ev)) = I(&(€)u) = 0, (2.1)
holds for every 0 < € < €.
We will now make some remarks about our definition of critical point.

Remark 2.1.1 Some observations:

a) if u € F is a local minimum point of I, then I(u+ ev) — I(u) > 0 for all small
€ > 0, what is the definition (2.1)) by taking {(e) = 1,

b) assume that ¥ is a conver and lower semicontinuous function and uw € D(3) is
a critical point in the sense of . Moreover, for each v € F', assume that the
function 1 : [0, €] — R defined by 1h(e) = 1h(E(e)v) is continuous. Then

(@ (u), v —u) +9(v) —¥(u) >0,
that is, u is a critical point in Szulkin’s sense (see [62]). In fact, it follows from
&1
(§(e)(u+e(v—u))) — <1>(£(6)U)} N V(é(e)(u +e(v—u))) —P(E(e)u)

>0

)
€ €
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which tmplies by the mean value theorem and convezity of 1, that

(®'(k(€)), §(€) (v —w)) +P(&(e)v) — (&(e)u) = 0,

holds for 0 < € < €y, where k(€) — u as € — 0. Doing e — 0 in the last inequality,
using i), the continuity of ¥(£(e)v), and lower semicontinuity of 1, we obtain the

claim,

c) the above conclusion holds if we assume the function 1 be a homogeneous instead

of ¥ being a continuous function,

d) a minimum point over the natural subsets of the Nehari manifold splitting are
critical points in sense of Definition[2.1.1. We remember that this is true in spite
of I being a non-differentiable functional.

Keeping in mind the particular case of Remark b), as pointed out in Moameni
[49], it is well known that the solutions of may not be solutions of equations of
the type
(@' (u),v) + (Y'(u),v) =0, for all v € F, (2.2)
unless that D(1) = F. Therefore, in addition a point u € D(1)) to be a critical point
of I, additional hypotheses must be introduced for it be a solution of a equation of the
type .
In this section, our aim is giving conditions for that a critical point in the sense

of Definition [2.1.1] be a solution of equations of type
(®'(u),v) + Lu](v) =0, for all v € F,

where L[u] : FF — R is a linear map.

Let us assume that u € F satisfies the condition:

(L) there exists a linear map Lfu| : F* — R such that
Jim sup W(E(E) (u—+ ev)) — (E(e)u)

€l0 €

< Llujv,
for every v € C.

The main result of this section is the following theorem.

Theorem 2.1.1 Let uw € D(1p) NC. Assume that for each v € C there exist an ¢y > 0
and a function & : [0,6)] — Ry satisfying the conditions i), ii) of Definition m
and

1(&(e) (u+ ev)) = I(E(€)u) = 0,

for 0 < e < ey. Assume also (L), and the conditions:
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(a)y the inequality L{ulv <0, for every v € C,
(a)y the equality (®'(u),u) + Llu](u) =0,

1
(a)s the inequality limsup —(®'(u), (u +ev)”) <0
el0 €

hold. Then, u is a solution of the equation

(@' (u),w) + Lu](w) =0, for every w € F.

Proof Let v € C and ¢y and &(¢) as in the Definition So,
P(E(e)(u+ ev)) — @(6(6)?0} N V(E(E) (u+ ev)) — P(E(e)u)

>0
€ €

and using the mean value theorem in the functional ® and (L), and doing € | 0, we
obtain that

(®'(u),v) + Llu](v) >0, (2.3)
for every v € C.
+

Let w € F, ¢ > 0 and remember that u 4+ ew = (u + ew)
(u+ ew)" € C, it follows from (2.3) that

— (u+ ew)”. Since

(®'(w), (u+ ew)") + Lluf((u + ew)")
= (P'(u),u+ ew+ (u+ew)” )+ Liul(u+ ew + (u+ ew)™)
('(u), u) + Llu](u) + € [(&'(w), w) + Lu](w)]
+ (P(w), (u+ ew) ™) + Llu]((u + ew)").
So, using this last inequality and (a); — (a)2, we have
0 < €[(®(u), w) + Llul(w)] + (¥'(u), (u+ ew)”)

and this implies by (a); that

0 <(®'(u),w) + Lul(w) + linelisoup %(@'(u), (u+ ew)™)

<(®'(u), w) + Llu(w),

that is,

0 < (®'(u), w) + Llu](w),
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for every w € F. Replacing w by —w in the last inequality above, we finally derive
that
(®'(u), w) + Llul(w) = 0,

for every w € F. [ ]

Looking at the proof of Theorem [2.1.1] it also proves the following Corollary.

Corollary 2.1.1 Assume that u is a critical point of I and (L), holds. Moreover,
assume that the conditions:

(a)y the inequality L{ulv <0, for every v € C,
(a)y the equation (P'(u),u) + Lu](u) =0,

1
(a)3 the inequality limsup —(®'(u), (u +ev) ") <0
el0 €

hold. Then, u is a solution of the equation
(@' (u),w) + Lu](w) =0, for every w € F.
To state and prove the next corollary, let us remember the concepts of subdiffer-
ential and subgradient.

Let ¢ : F — R be a proper functional and v € D(¢). The subdifferential of ¢ at
u is the subset d¢(u) of F*, defined by

0p(u) ={ne F*:(nv—u) <o) — ¢(u), forallve F}.

The elements of 0¢(u) are called subgradients of ¢ at w.

Now we have the corollary.

Corollary 2.1.2 Assume that ¢ is a convex and lower semicontinuous functional.

Moreover, assume (L)y, the hypotheses (a)1, (a)s of Theorem and v satisfies

B(tv) = 79 (v) and éL[u]u — w(w), (2.4)

for everyt >0, v € E and some o € R\ {0}. If u € C is a critical point of I, then u
is a solution of the equation

(@' (u),w) + Lul](w) =0, for every w € F.
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Proof 1t is sufficient to show that the condition (@) of Theorem is satisfied. We
have from Remark b) that w is a critical point in Szulkin’s sense, which implies
together with Proposition 2.183 of Carl-Khoile-Montreanu [14] that 0 € {®'(u)} +
0Y(u), and therefore, there exists n € d¢(u) such that

(P (u), w) = —(n, w) (2.5)

for every w € F.

Now, by definition of n and (2.4]), for 0 < € < 1, we have that

L L fufu = [(1— 0 — 1) 9(u) = $(u — eu) — (u) > —eln, u),

«

[(1—e)* —1]
and dividing this last expression by €, and doing € — 0, we obtain
—LluJu = —(n, u). (2.6)

On the other hand, as w is critical point, by using the mean value theorem, we

have that

b(E(e)(u+ ev)) — P(E(e)u)

€

(®'(k(€)), ev) + >0, (2.7)

for every v € C, 0 < € < €y, where k(e) = u as € — 0, and € and {(€) are as in the

Definition 2.1.1} So, we may divide (2.7)) by €, do € — 0 and use (L); to obtain that
((u), v) + Lluo = 0,

for every v € C. In particular, taking v = w in this last inequality and using (2.5)), we
conclude that

—(n,uy > —Lu|u. (2.8)

From ([2.6) and (2.8)) it follows that —(n,u) = —L[u]u and combining this with
(2.5)) we conclude that
(@' (u), u) + L{u|u = 0.

The proof is complete.
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2.2 Reduction to one-parameter of (P, ) and extremal

region to applicability of Nehari’s method

In this section, let us to prove some topological properties for the functional ®, ,

associated to the problem 1) Let us denote by
X = {ueHl(RN):/ V(:c)uzd:z:<oo}, E=XxX
RN
and endow X with the inner product

(u,w) = VuVw + V(z)uwde,
RN
which turns X in a Hilbert space with induced norm given by ||u||* = (u,u). As a
consequence, one deduces immediately from (V'), that X is embedded continuously
into H'(RY). From these properties of X follow that F is a Hilbert space with the
inner product (U, W) = (uy,wy) + (ug,ws), where U = (ug,wy), W = (u2,ws) and

||2_

induced norm given by ||(u,w)||* = (u,u) + (w,w). The below Lemma was proved in

[20].
Lemma 2.2.1 Assume that (V)o— (V)1 hold. The subspace E is continuously embed-
ded into LY(RY) x LY(RYN) for q € [1,2*] and compactly embedded for all q € [1,2*).

After this Lemma, we have well-defined the energy functional ®,, : £ — R
associated to the problem 1' given by

(I)/\,#(U> -

§J(U) - :K)\,;L(U) -

We can rewrite it as

05, (U) = @(U) +9(U),

where ® € C1(E,R) and 1 are defined by
L1y — L L) and o(0) = ——— K\ ()
a+ 3 " I D

Again, because of the singular terms @, ,, is not Gateaux differentiable. By using

Lemma the proof of the next lemma is very similar to the proof of lemma [1.1.2]

Lemma 2.2.2 If \,u > 0, then ¥ is a continuous and weakly lower semicontinuous

functional.

After this result, we have that the functional ®,, has the same structure of

functional I of Section 2.1. Our next goal will be to apply the Theorem [2.1.1]
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2.2.1 An application of Theorem [2.1.1

To prove multiplicity of solutions for 1) we will use a refinement of Nehari
manifold and the fibering method again together with Theorem to show that
some local minimizers over the natural subsets of Nehari manifold are solutions of the
system . From now on, let us assume that A\, 4 > 0 with A 4+ 4 > 0.

Now, let us see that £ = X x X has a cone reproducing. For each u € X we have
that u = ut —wu~, where v () = max {u(z),0} > 0 and v~ (z) = max {—u(x),0} >0,
and hence, the cone C = X, = {u €eX:u>0in RN} is such that X = X, — X,
that is, X, is a cone reproducing in X. As a consequence of this, we have that the

cone

By ={U€E:U=(unu)> (0,0}

is a cone reproducing of E.

For each U € E., we consider the fiber map ¢y, ) € C°((0, 00), R), defined by
du, () (t) = @y u(t), and the Nehari manifold associated to the problem (Py..)), defined
by

Nopw={U € B, |[U|]P = Kxu(U) = L(U) =0} = {U € Ey : ¢p55,9(1) =0} .
In order to find multiplicity of solutions for (P), ,, as in Chapter 1, we have the
following the decomposition: Ny, = Ny, UN) UNY , where
v =AU € Noyu U+ 7Epu(U) = (e + 8= 1)L(U) < 0}
- {U = N)\nu : /é,()\,u)(l) < 0} )

v ={U € Nay : UIP +7EK5,(U) = (e + 8 = 1)L(U) > 0}
={U eN,,: o (1) > 0},

N ={U e Ny lU|P +7vExu(U) = (e + B — 1)L(U) = 0}
= {U c N)\“u : /é,()\,,u)(l) = 0} .

The next proposition is straightforward.

Proposition 2.2.1 Let U € E.\{(0,0)} and X\ +p > 0. If L(U) < 0, then ¢y,
has only one critical point at t} ,(U) € (0,00), which satisfies ¢y, (o)) > 0. If
L(U) > 0, then there are three possibilities:
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(I) there are only two critical points for ¢y - The first of them is tzt\,u)(U) with
(ﬁ;}’(A’M)(t;u(U)) > 0 and the second one is t;;, (U) with <b/[/]7(/\7#)(t;#(U)) < 0.
Moreover, ¢y, is decreasing in the intervals [O,t&u)(U)], [t,0(U),00) and
increasing in the interval [tt\,u)(U)’ tou(U)] (evidently 0 < taﬂ)(U) <tio,U));

(II) there is only one critical point tko(/W)(U) > 0 for ¢y i, which is an inflection
point. Moreover, ¢y, ) is decreasing for t > 0,

(III) the function ¢y, is decreasing fort > 0 and hence there are no critical points.

The fiber analysis of Proposition [2.2.1] and Theorem [2.1.1] allows us to prove the

following proposition.

Proposition 2.2.2 Suppose that U = (u,v) € EL\{(0,0)} is a local minimizer for
Dy, on Ny such that U @ NY, and X+ p > 0. Then, U is a solution of (Py).

Proof We just prove the case \,u > 0, because the cases where, either A > 0 and
p=0or A=0and u > 0 are very similar. Since U ¢ ./\/'/{)7”, then either U € N/;u or
Ue /\/’;fu. First, assume that U € NA_,M' Then, there exists a r > 0 such that

Py, (U) <05, (W), YW € B(U)NNy,. (2.9)

Let us show that the conditions of Theorem are satisfied. First, let us
consider the function F' € C*(R3 x (0,00),R) defined by F(e, f,g,t) = te —t 7 f —

teth=1g. Since U € Ny, we have

F(IUI, K U), L)1) = 0 and 0 (102, K (0), L), 1) <0, (2.10)
which implies from the implicit function theorem that there exists an open set ) C R?
containing ([|U|?, K, ,(U),L(U)), an € > 0 and a function t € C*°(Q, (1 —€,1 +¢€))
such that F((e, f, g), t(e, f,g)) = 0 for (e, f,g) € Q and ((e, f, g),t(e, f,g)) is the only
solution to this equation in Q x (1 —¢,1+¢€).

It follows from and continuity of F' that %—f (e, f,g,t(e, f,g)) < 0 holds for
(e, f,g) € Q. Besides this, we obtain from ¥ = (¢, ) € E; that (||U + eV, K, (U +
V), L(U + e¥)) € Q for € > 0 small enough. Hence, from Proposition implies
that

t(|U + €V |?, Ky (U + €¥), L(U + €¥)) = ty (U +eV) = E(e),
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and since {(¢) =ty (U +e¥) — 1 as € — 0, we have
§(e)(U +e¥) € B.(U)NN ,,
for € small enough, so that Proposition and lead us to
0y (§(U) < @5 u(U) < @5 u(€(e)(U + €¥)),

that is, U is a critical point of @, , in the sense of the Definition 2.1.1], and this implies

that
1 KU + V) — K,y ,(U)] 2 [IU 4 €¥)* = ||UJP)
(€©) - < (€(0) ;
ars [ LU+ e¥) — L(U)]
~ (gl T

Dividing the last inequality above by € > 0, and doing € — 0, we obtain that

A / o(2)C(x) () + 1 / a(2) H(z)ob(x)dz < (B'(U), ), (2.11)

where & = J' — L/,

Cle) = u () ?f u(z) #0
oo if w(z) =0,

and
H(x) = v (z), if wv(x)#0

oo if w(z)=0.
So, by taking ¥ = (¢,1) > (0,0) in (2.11)), we conclude that U = (u,v) > 0 a.e.
in RY. Moreover, it follows from ([2.11]) and the continuity of ®' that

A/a(x)u”(x)gp(x)dm +u/c(:v)v'y(x)w(x)dx < 00,

for each (p, ) € F,. As a consequence of this, we may apply the Lebesgue’s dominated

convergence theorem and use the limit (e) — 1, as € — 0, to conclude that

LU} (T) = A / ale)u~ (o) p(z)dx — p / ()0 ()b ) da
Ky (U + ) — Ky (U)]

B (R
i — [Fu(E(e)(U + €¥)) — Ky u(§(e)U)]
el0 (1—7)e ’
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for every U = (p,%) € E,, whence we have well-defined the linear map L [U] : E — R
given by

LIU] (W) = —A / a(z)u (@) p(x)dz — / @ @) e()dr,  (212)

where U = (p,v), and so L[U]¥ < 0 for every U € E,. Therefore, the functional
Y = %KA,M satisfies the conditions (L); and (a); of Theorem with the linear
map L[U] defined in (2.12)). Since U € N, ,, the condition (a), is also satisfied. It only
remains to show the condition (a)s. Let us to do this. Let ¥ = (p,¢) € E and € > 0.
So, by evaluating ®'(U) at ¥~ = ((u + ep)~, (v + €p)”) € E, we have

bu® P (u + e@) " da

@), +e¥)) = [ VTt o) + Valu+ o)~

Tﬁbuavﬁ_l(v +e)"dx

= —/ VuV(u+ep) + Vu(u + ep) —
{utep<0}

+ / VoV(v+e)” + V(v +e)” —

bu® P (u + ep)dx

«
a+pf
ﬁ a, f—1

mbu v (v + e)dx

bu® P (u + ep)dx

— / VoV (v + e) + Vo(v + e) —
{v+ep<0}

§—6/ Vquo—i—Vugo—L
{u+ep<0} a+pf
g

— e/ VoV + Vo — ——bu0’ (v + e)da
{v+ey<0} «Q

+ 8
Let
Qf ={z e R : b(z) < 0,u(z) + ep(z) < 0}
and
Q5 = {z e R : b(z) < 0,v(x) + ep(z) <0}.

The last inequality above implies that

1
- [(@'(U), (U +e¥)7)] < —/ VuVp + Vupdr — / VoV + Vodr
€ {utep<0} {vtep<0}

+— i 5 Jo bu* P pdz +— / buvPLypde,

and since the measure of the domains of integration {u + ep < 0} and {v + ey < 0}
tends to zero as € — 0, Qf C {u+ ep < 0} and Q5 C {v + e < 0}, we have from the
above inequality that

limsup1 [(®'(U), (U +eV)7)] <0,

elo €
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holds. So, the condition (a)s is hold as well. Therefore, we may apply Theorem [2.1.1]
to conclude that U is a solution of 1'
When U € N, /\+ i the proof is very similar, so we omit it here. [ ]
Combining the proof of Theorem and the end of the proof of Proposition
we can prove the following proposition.
Proposition 2.2.3 Assume that U = (u,v) € EL\{(0,0)} satisfies the conditions:
(J'(U),U)p = (K}, (U),U)p = (L'(U),U) = |U|* = Kxu(U) = L{U) =0, (2.13)
0<(J'(U), ¥)p = (K} ,(U), V)p — (L'(U), ¥)p, (2.14)

for every W = (p,1) € E,. Then, either u> 0 orv >0 a.e. in RN, if either A > 0 or
1> 0, respectively, and U is a solution of 1}

2.2.2 Reduction to one-parameter of the problem (P, ,

In this section, we are going to reduce the study of the problem 1} to the

problem (15,\79,\) for 8, A > 0, that is, we will consider the problem

(

—Au+ V(z)u = da(zx)u™" + b(x)u* 1" in RY,

a+f
5
a+p

u,v > 0, RN,/ Vqux—i—/ Voldr < oo, u,v € H'(RY),
\ RN RN

—Av + V(z)v = Mc(x)v™7 +

b(x)u v’ in RY, (Pyox)

denote by @, = @, g the functional associated with (]5,\)\9), and by ¢p(t) = @ (tU),

t > 0 its fiber map. For convenience of the notations, let us denote by
on(U) =t5(0,U), tygn(U) =1t5(0,U) and 3 5, (U) = 3(0, U) (see Proposition [2.2.1]).

Let P ={U € E, : L(U) > 0}. To find the pair (\,t5(,U)) satisfying the con-
dition (I7) of Proposition [2.2.1} for each U € P, we have to solve the system ¢{; ,(t) =
Ua(t) =0, that is,
tU|? =t INKo(U) — t“TPLL(U) = 0,
(2.15)
U[|? + M7 K (U) — (a+ 8 — D2 L(U) = 0.

This system has a unique solution, which is given by (¢(U), A(6,U)), where

1

([ lty N[
= (a+6+7— 1) {L(U)}

atpty—1 (2.16)
(U1 =+~

[L(U)| 7= [Ky o (U)]

AB,U) = C(v, o, )
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and
14y

B 1+~ a2 a+ -2
conn= (o) (@heo) e

Similarly, when either A # 0 and 4 =0 or A = 0 and u # 0, for each U € P, we
may solve a similar system to the (2.16) to find

atB+y—1

(|U|[?) "=+
[L(U)]752 [K 1 o(U)]

AU) =C(v, . 8) (2.18)

and
atBty—1

(1)) ==
[L(U)]7572 [Ko1 (U)]

pU) = Cly,a,B)

, (2.19)

respectively.
From the definitions of A(0,U), A(U) and p(U), we conclude that the claim in

below Proposition holds true.

Proposition 2.2.4 Suppose that U € P. If:

(@) A € (0,\(0,U)), the fiber map ¢y satisfies (I) of Proposition while
dueuy satisfies (11), and if X € (A(0,U),00) it must satisfies (I11),

(b) A € (0,A(U)), the fiber map ¢u,no) satisfies (I) of Proposition while
du,\w0) satisfies (I11), and if X € (A(U), 00) it must satisfies (111),

(c) p € (0,u(U)), the fiber map ¢y, o, satisfies (1) of Proposition while
bu o,y satisfies (1), and if X € (u(U), 00) it must satisfies (I11).

Now, define
A(0) = 61[12;)\(9, U), 6 >0, (2.20)
Aw = &Epm’ (2.21)
pe = b p(U). (2.22)

Lemma 2.2.3 The function \(0,U) defined in (2.16|) is continuous, 0-homogeneous
and unbounded from above for each 8 > 0. Moreover, A\.(0) > 0 and there exists
U € PNS such that \.(0) = X\(0,U). The same statements are true for the functions

MU) and p(U) defined in (2.18]) and (2.19)), respectively.
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Proof We just prove the properties of the function A(6,U), because the proof of the
properties of functions A(U) and u(U) are very similar. The first, second and third
statements are proved as in Lemma [I.1.3]of Chapter 1. Let us prove the last statement.
By the Young’s inequality, (A2) and Sobolev embedding, we have

0< L(U) < —aj‘_ﬁ / |b||u|* TP da +—> / |b||v|* P dx
< c1]]b]| oy [|U |77 = 01||b||L°°(RN) = C,

for all U € PN'S and for some constant C; > 0.
On the other hand, from (A1), Holder inequality and Sobolev embedding we

obtain

Ky5(U) <er(llallz/aiy + el U

= cillallzyasqy + llell2/ay) = Ca,

for all U € PN'S and some constant Cy > 0.
As a consequence of these two last inequalities, using that A(0, U) is 0-homogeneous,

we obtain

A(6) = inf A(6,U) > cCla, B,)Cy w520y > 0.

To end the proof, take {U,} C P NS such that A(0,U,) — A.(0). So, it follows
from Lemma 2.2.1] that

U, = U = (u,v) € E and U,(z) — U(z) = (u(x),v(z)) > (0,0) a.e. in R,

and by the Lemma we have K 4(U,) — K1 4(U) and L(U,) — L(U).
These convergences lead us to infer that u # 0 and v # 0. Otherwise, we would

have L(U) = 0, and therefore,

A(0) = lim A6, U,) = lim Cﬂ?ﬁ ) = o0, (2.23)
e P L(U)] o2 [Kyp(Un))]

which is an absurd. Let W = e PNnS. It U, » U in E, it would follow by the

||U||

weak lower semi-continuity of the norm that

O, W) = A (9 ﬁ) _\0,U) < Timinf A0, U,) = A (6),

but this is impossible, that is, U € PNS and A\(0,U) = A\.(0). This ends the proof. m
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As a consequence of Lemma we have that the function T' : (0, 00) — R?
defined by
L) = (Au(6), 1(6)), where pu.(6) = 0. (6),

is well defined. We will see in this chapter that this function plays a role similar to the
extremal value introduced in the Chapter 1. Our next goal is to explore the properties
of T". To do this, first note that from Lemma for each 6 > 0, there exist Uy € PNS
and t(0, Up) > 0 such that

)\(9, Ug) = /\*(9) and t(9, UQ)UQ € ng(g)' (2.24)

The next lemma provides the main properties of the function I'.
Lemma 2.2.4 There holds:

a) the function T'(6) is bounded,

b) the function \,(6) is continuous, which implies that the function T'(6) is contin-

uous as well. Moreover, T'(8) is injective,
c) A(0) is nonincreasing and p.(0) is nondecreasing,
d) im I'(0) = (\,,0) and lim T(0) = (0, 1,.).

6—0 0—00

Proof To prove a), note that for each § > 0 the inequalities K;0(U) < K;(U)
and Ko1(U) < Ki)p1(U) are satisfied for every U € P NS, and by combining these

inequalities with (2.16]) and (2.18)) we have

A0, U) < A(U) and OA(6,U) < p(U),

and taking the infimum over PNS, we obtain from Lemma and (2.20))-(2.22)) that
A (0) < Ay and OA,(0) < p,. Hence, we have

IDO)] < VA2 + 422,

for every 6 > 0, and therefore I is bounded. The proof of a) is complete.

Let us prove b). First let T'(f;) = T'(f,), then by the definition of I' we have
A (01) = A (02) and 010,(01) = 03).(6), which implies that 6; = ;. Therefore, T is
injective.

Let us prove that I is continuous. Consider 6, — 6 and Uy, as in ([2-24). Since
Uy, € PNS, we have by Lemma@tha‘c there exists Uy € E such that Uy, — Uy in E
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and Uy, = (ug,,ve,) — Up = (ug,vp) a.e. in RV, with Uy = (ug,vy) > (0,0). Hence,
by Lemma we have K1, (Us,) — K19(Uy) and L(Uy,) — L(Uy), as n — oc.
First, we claim that uy # 0 and vy # 0. Indeed, if not, we would have L(Uy) = 0 and
using the item a) we obtain

so = lim C(v, a, §) - — lim A(6,) < /N T2,
e [L(Up,)]*7772 [K1p,(Up,)] "7

which is an absurd. Hence, uy #Z 0 and vy # 0, and also L(Uy) > 0, that is, Uy € P.
Now, we claim that Uy, — Uy in E. Indeed, if not, we would have that ||Uy|| <

liminf ||U, || = 1. Remembering that for each U € P,
n—oo
Ae(0n) < A (0,,0), (2.25)

|Us|| < 1, and ||Uy, || = 1, we get from (2.16)), Lemma and ([2.25)) that

A6, Uy) < C(ff; b,7) — liminf M(6,,, Up, ) = liminf \,(6,) < A8, U),
[L(Ug)]o+772 [K19(Ug)] "7 e

(2.26)
for every U € P. So, from ([2.26]) we obtain

A (0) = Inf A(6,U) < A(0,Up) < liminf A(6,,Up,) < inf A9, U) = \.(6),
€

UeP n—00

which is a contradiction. Therefore, Uy, — Uy and ||Uy|| = 1. As a consequence of
this, and (2.24), we have \,(0,,) — A(0,Up) as n — oo, and taking the limit in
(2.25) we conclude that

A(0) < A0, Up) < A0, U),

fOI‘ e\/ery Z) e P’ WhiCh lmpheS thal
< l J < ] l J g

and therefore A\.(6) = \(0, Up). This equality together with the convergence \.(6,) —
A0, Up) as n — oo, leads us to conclude that \.(6,) — A.(0), as n — oo. Therefore,
the function (0,00) 3 @ — \.(6) is continuous. Since I'(8) = (A\.(6),0\.(6)), we
conclude that T is continuous. The proof of the item b) is complete.
Let us prove c¢). For each §; < 6, and U € P, we have from definition of A(6y,U)
and (02, U) that
A(02,U) < A\(6,,U),
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which implies A\, (f2) < A\.(0;), by definition of A\.(6) and A.(6,). Hence, the function
A«(#) is monotone nonincreasing. Now, let us prove that the function () is monotone

nondecreasing. Firstly, note that for every § > 0 and U € P

(1) "=
ON0,U) = C(3,0,H)— o

[L(U)]=+772 [ K11 (U)]

holds, and this implies that
I A(01,U) < O20(62,U),

for 0 < 6y < 05, which leads us to conclude that p.(61) = 010.(61) < O2A.(02) = 1. (02),
by definition of \,(6;) and A, (6>). This ends the proof of c).

Finally, let us prove d). The proof that (191_1}1(1] A (0) = A\, and elggo O (0) = ps is
very similar to the proof of the item b), so we omit it here. By the item a) the function
A«(0) is bounded, therefore éig% 0X.(0) = 0, which implies that éig% I'(#) = (\,,0). To
conclude the proof of item c), it is sufficient to prove that eliigo A«(0) = 0. We have that
eh—glo OX.(0) = p., and hence 911_}120 A(0) = eh—{go 01 (0X.(0)) = 0, and this implies that
eli—>r£lo ['(0) = (0, px). The proof of lemma is complete. n

Propositions [2.2.2] 2.2.4] and Lemma [2.2.3] leads us the following proposition.
Proposition 2.2.5 For each 6 > 0, holds true:

a) Nf(‘)(o) # 0 and
N = {U € Nig) : U € PAO,U) = A*(Q)} .

Moreover, each U € N, satisfies
2(J'(U), W) — A(0) (1 = 7)(K1(U), W) — (a+ B)L'(U), ¥)p =0, (2:27)
for all U € E.
b) N gy =0 for each X € (0,,(6)) and N2y # 0 for each A € [A.(6),0).

Proof Let us prove a). From Lemma there exists U € P NS such that \(0,U) =

A (0), and hence tg*(e)(H,U)U € /\/}0(6), which implies that Ng(g) # (). This proves
the first part of the statement of item a). Now, once that Ng(g) # (), the equality

Ng(e) = {U € Np : U € PO U) = A*(H)} is obvious.
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The proof of ([2.27)) is similar to that done in Lemma , so let us summarize it
here. Let ¢ > 0 and ¥ € F,. Since U is the minimum point for A\(f, U), we have that

MO, U +t0) — \0,U) = M6, U + 1) — \,(6) > 0,

for all ¢ > 0 enough small, and applying the Mean Value Theorem, we have

(T o 4 N B .
(LU + t0))aioz  (L(U))aoe | Kie(U+19) (2.28)
> (MUY "7 g, 4wy ()]
(L) 7
= W) T2 )2 0+ ) — K0
(L))

where the function v(t) > 0 satisfies v(t) — K;4(U) as t — 0. Now, we may use the

Fatou’s Lemma in (2.28) to conclude that

2 (L) (J(0), ) — (S (L) (L), )| U

(L(U))= 5= (|U|)2) 752 Ky o(U)

(2.29)
> “('LU(“U;) (10 * (1= ) | [ alo)6@ipterts +0 [ ctavtis).
where

Ola) = u Y (x), if wu(x)#0
oo, if wu(x) =0,
and

0
0,

oo, if wv(x)
Taking ¥ = (p,v) > (0,0) in (2.29) we conclude that U = (u,v) > 0 in RY and
G(z) =u™7(x) and H(x) = v (z) for all z € RY. Hence, from (2.29) we have

2 (225550 ) (V) W) — (HRAS2) (L) (L), W)U

(2.30)
(L(U))e+7=2 (| U][*) *+5=2 K1(U)

at+B+y—1

(ljP) ==
(L(U))=e

2 (K1o(U) 7 (1 =) (K] 4(U), ¥)p,

for every U € E,.
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Using homogeneity we may assume, without loss of generality, that ||U|| = 1 and

from
1= MO Kap(U) = L(U) = 0 = 1+ A\ (0)K1(U) — (a+ 6 — DE(U),

we produce the equalities

I+~
a+pB+v—-1

a+pf—2
MO (a+B+y—-1)

L(U) = and K1 4(U) =

Now, replacing these equalities in (2.30)), after some manipulations, we obtain
2(J'(U), W) — Au(0) (1 = 9) (K p(U), W) — (o + B) (L'(U),¥)p 20, (2.31)

for every U € E,.
For U = (¢,9) € E e e > 0 define V" = ((u+ ep)™, (v + ep)™) € E,. Since
Ue ./\/'fo(@) we have

2= A(0)(1 = 7)K16(U) = (e + B)L(U) =0,

which implies, by substituting U+ in (2.31]), and following the same approach as done
in the proof of Proposition that

2(J'(U), W) g — Au(0) (1 =) (K o(U), W) — (o + B) (L'(U), ¥)p > 0
holds for every ¥ € E. So, by changing ¥ by —WV in the above inequality, we obtain
2(J'(U), W) — A(0)(1 = y)(K14(U), V)5 — (a + B)(L'(U), ¥)p =0,

for all ¥ € E. That is, U satisfies . The proof of item a) is complete.
The item b) it is a consequence of the definition of \.(6), Proposition and
Lemma [2.2.3l The proof is complete. ]
Now we make the remark.
Remark 2.2.1 The curve T has the following property: if (0, 0) < (\p) < f‘(@), then
N, =0, while (A, i) > T(0) implies N , # 0. This is true because (A, 1) > (0,0) can

be rewritten as (\, ) = (X, 0)), where @ = /X, and (0,0) < (X, p) < T'(0) is equivalent
to claim that A < \.(6). So, Lemma lead to the claimed.

We are now in position to generalize Corollary [I.1.1] of Chapter 1.
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Corollary 2.2.1 Let § > 0. The problem (wa(g)) has no solution U & NIQ(Q).

Proof 1If there were a solution U € /\/19( ) for (Pf(e))7 then it would follows from Propo-

sition (2.27)) that
-2
/ {—)\*(G)(l +7)au" + « (%

bu P o =0,YVp e X
a+5)u v}<p , V€

and
/ {—«9)\*(0)(1 +y)ev™" + B (%5’22) buavﬂ_l} =0,V eX

hold, that is,

a4+ —2

A(O) 1+ y)au™ =« < "

) bu®" '’ ae. in RY, (2.32)
and
a4+ —2

a+p

Now, we consider two possible cases: If b(z) < 0 in Q, for some Q C RY with

N (0)(1+7)cv™ 7 =p3 < ) buv? ! ae. in RY. (2.33)

Lebesgue measure positive, then (1 4+ v)a(z)u™ < 0 a.e. in €2, which is an absurd.

On the other side, assume that b(x) > 0 in RY. Then, multiplying by u(z) and
v(x) in (2.32) and (2.33)) respectively, we obtain

BAO) (1 +7) a(z)u' " (x) = abA(0) (1 +7) c(x)v' () a.e. in RY,

that is,

(x) = [fj{f{%} = u(z) ae. in RY (2.34)

and replacing (2.34) in (2.32) we have that

MO+ ) (e + B)] T [a(z)] =T [fac(z)| e
u(z) = ala+ 5 —2) } {m} {Ba(w) ] € X,
which is an absurd by (A3). -

The next lemma will be essential in order to prove the existence of multiple
solutions for the system (Py,|) for (\, ) > I'(6), with § > 0 fixed and (\, u) close to
r'(9).

Lemma 2.2.5 For each 6 > 0 the set Ngw) 1s compact.
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Proof First, observe that there exist positive constants ¢, C' such that
c<||U|| < C and ¢ < L(U). (2.35)

for all U € ./\/’19(0).
Let {U,} C Ng(g). From ([2.35)) we can assume that, up to a subsequence, U,, — U
in E and U, — U = (u,v) a.e. in RY, with u,v > 0. From Lemma [2.2.2| and ([2.35))

we have L(U) > ¢ > 0, which implies U € P. Now, let us prove that U, — U in E. In

fact, on the contrary, we would have that ||U|| < liminf||U,||. Then from Proposition
n—oo

a), Lemma and defintion of A, (#) we have

A(0) < M0,U) < liminf A(8, Uy,) = A.(6),

n—oQ

which is an absurd. Therefore U, — U in F and consequently ./\/?(0) is compact.
]
Now let us fix § > 0. Below, by taking advantage of Proposition b), we
define for each A\ > 0 the non-empty set

Naor = {U eE,:LU)= / b(z)|u|*|v|’dz > 0, ¢y has two critical points} :
RN

and the set
N = {U €L, L(U) = / b(x)|u|*v|’dx < 0}.
RN

Let /\A/'M)\ U/\A/’;re/\ be the closure of /\A/',\ﬁA U ./\A/’;re)\ with respect to the topology
norm.

As in Chapter 1, we have.
Proposition 2.2.6 There holds:
(1) if A, A2 € (0,0,(0)), then NA1,9A1 = NA2,9A2;

(13) if U € ./\A/)\,g,\ U/\A/';t“, then tU € /\A/',\ﬂ)\ UJ\A/’IQ/\ for all t > 0, that is, ./\A/’)\ﬂ)\ U./\A/)fe)\
is a positive cone generated by the set Ny, UN,,,. More specifically,

Naon UNT gy = {tU £ >0, U € Ny, UN o0}

(7i1) there holds

— N- \/+ . 0
roy = Mooy UNF ) U {tU >0, Ue fw)} u {0},
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(iv) the function ty, (g is continuous and P~ : S ﬁ/(ff(g) — Nf:(e) uNg(G) defined by
P=(W) = tr.y(W)W is a homeomorphism, where

(2.36)

£ (0, W) if W E Nay,

B .00, W) otherwise,

(v) the function sy, (g is continuous and P+ :S — ij(e) Ung(g) defined by P*(u) =

sx.0)(U)U is a homeomorphism, where

A , (2.37)
(0, 0) otherwise,

sx.(0)(U) = {

(vi) the set /\/})(9) C Nf(e) has empty interior, where Nf(e) 15 endowed with the induced
topology of the norm on E.

As a fundamental ingredient to show multiplicity of solutions for Problem (]5)\79 N
beyond the extremal curve f(@), we have to prove the continuity and monotonicity
of the energy functional constrained on Ny, and Ny, . To do these, let us define

IVt Naor UNy = Roand J; : Nygn — R by
JH(U) = ®,(t5(0,U)U) and J; (U) = ®x(t5 (0, U)U) (2.38)
and denote their infimum by
J¥ =mf {Jy(U): U e Ny} and Jy =inf {J; (U): U € Ny},

respectively.

The same proof of Lemma [I.1.7] of Chapter 1 also shows the following lemma.

Lemma 2.2.6 Let U € E, and I C R be an open interval such that t(0,U) are well
defined for all X € I. Then:

a) the functions I > X\ — t5(0,U) are C®(I). Moreover, I > X\ — t,(0,U) is
decreasing while I > X\ — t{(0,U) is increasing.

b) the functions I > X\ — J(U) are C=(I) and decreasing.

In particular, both claims hold true for I = (0,\.(0)) and all U € E given.

As a consequence of the monotonicity above, we have.
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Corollary 2.2.2 Suppose that U ¢ Then

r(e
lim ¢, (0,U) =t U,hmt*QU—S U
im 33 (0.U) =t o(U), Tim, #(0,U) = sx.0)(U)

i X (U) = @x.0)(tr.0 (D)), lim I (U) = Py, 0) (5.0 (U)U),

where ty, 9)(U) and sy, (U) are defined at ( - ) and (2.37), respectively.

Let us finish this section by introducing a curve that will play a role similar to
parameter defined at (|1|) of Chapter 1. To find the region where the system has solution
with its energy being positive we will consider the system ¢y (t) = ¢y, (t) = 0, that
is,

tl’ )\KIO(U) tats

—||U||2 LU)=0

a+f (2.39)
t|U1? - AﬂKL@(U) —t*PEIL(U) = 0.

for each U € P.
This last system has a unique solution which is given by (£(U), A\(6,U)), where

o]

at+B+y—1

(i) ==
[L(U)]7552 [K (U)]

t0,U) = {

A6, U) = Cly, ., B)

14y
A 1- a+ 3otz
Cva,8) = 27) { 5 } Cy, . B)
and C(7, «, ) is defined in ([2.17)).

So, similarly to (2.18)) and (2.19)), when either A # 0 and = 0 or A = 0 and

w # 0, for each U € P, we may solve a system similar to (2.39) to find

(1o i
[L(U)]772 (Ko (U))

~

AU) = C(v,a,B)

and
atpB+y—1

(Wwip) ==
[L(U)]#572 [, (U)]

U) =C(v,,B)

respectively. So, we can define

5(0) = inf AB, ) = L= {O‘+ﬁ]wA*(9),

UeP 2 2
S = inf A() = L= [2£8 S
* T Jep 9 2 *’
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Fose-

(1-7) {awr%

i = inf A(U) = .

UeP 2

and the function Ty : (0, 00) — R? defined by
To(0) = (Au(6), j1(6)), where f1.(6) = OA.(6).

We have that the inequality \,(0) < A,(#) holds, which implies that T'o(6) < T'(6)

for every 6 > 0.

The following lemma is a consequence of the Lemmas [2.2.3] and [2.2.4]

Lemma 2.2.7 There holds:

a) there exists U € P NS such that A\.(0) = \(0,U). The same statements are true
for the functions N(U) and j(U),

b) the function T'g(0) is bounded,

¢) the function A\.(0) is continuous, which implies that the function To(0) is contin-

uous. Moreover T'y(0) is injective,
d) \(0) is monotone nondecreasing and [i.(0) is monotone nonincreasing

e) lim Ty(0) = (A,,0) and lim T'(0) = (0, ).
6—0 60— 00

2.3 Multiplicity of solutions in the extremal region to
the applicability of the Nehari method

In this section we show the existence of two solutions for problem (P/\,GA) when
A € (0,A(0)), for each # > 0 fixed. To achieve this we will need some preliminary
results. After introducing the modified problem, we will use in this section the approach
of Chapter 1.

Let us continue to use the notation ®) = ®, y». We are going beginning to prove

the next Lemma.
Lemma 2.3.1 Let A > 0. Then:
a) for allU € Ny, we have that

U < A(O‘;f;jz_ D [/RN a(2)u]"dr + e/RN c(x)|’u\17d:c] (2.40)

holds. In particular sup {||U| : U € N, } < oo,
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b) for all W € Ny, we have that
-1 -1
< 2Bt =) / bfufloffde = @ TP gy (g
(1+7) RN (1+7)
holds and sup {||W|| : W € Ny ®2(W) < M} < oo for each M > 0 given.

Moreover

inf {||W|| : W e Ny} > 0.
Furthermore,

0>Jf = inf ®\(U)>—o00 and Jy, := inf ®\(W)> —cc. (2.42)
UeNT o, WENox

Proof The item a) is a consequence of (b/['M(l) > 0, Holder inequality and Sobolev
embedding. The inequalities of b) and inf {||[W]|: W € Ny} > 0 are direct
consequences of gb;;V 4(1) < 0, Holder and Young inequalities and Sobolev embedding.
Now fix M > 0 and W € N, such that ®,(W) < M. By using Holder and Sobolev

embeddings, we obtain

11 ) 1 1 -
o WI? + — W <P\(W)< M
(2 a—i—ﬁ)” | )\(a—l—ﬁ 1—7>CH 77 s W) < M,

where C' is a positive constant. Since 0 < 1 — v < 2, we have
sup {HWH : W€ Ny, ©A(W) < M} < 00.

Now, let us prove the two first inequalities in (2.42). First, let U, C N /\+ oy such
that ®,(U,) — j;r . Thus, it follows from the boundedness of N, j ox, broved in a), that,
up to a subsequence, U, — U in E and hence —oo < ®,(U) < liminf ®,(U,) = J;.
To show the first inequality, we use in the expression of ®,(U) to infer that

0= (o ) 10 =2 (@ g )

(5 (o

)8,
- ( M-t D) )”U” <0

holds, that is, J; < 0.
In a similar way, we can prove that —oo < @ (W) < liminf ®,(W,,) = J, . This

ends the proof. [ ]

Now we show that the infimum value is achieved in both Nehari manifolds N- )\* o)

and ./\/'A_ﬁ/\.
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Lemma 2.3.2 Let 0 < A < A\.(0). Then there exist Uy € Ny, and Wy € Ny, such
that ®5(Uy) = J; and ®5(W) = J; .

Proof First, we will show that there exists Uy € ;9)\ such that ®,(Uy) = J;. Let
{Un} € Ny, such that ®,(U,) — J5. So, it follows from Lemma [2.3.1 a) that, up
to a subsequence, U, — U, in E and U, > 0. Suppose, on the contrary, that U, = 0.
Then 0 = ®,(U,) < liminf ®,(U,) = J; < 0, which is impossible, that is, Uy # 0 and
so Uy € E,.

Let us prove that Uy € N, ;“ or- First, we claim that {U,} converges strongly to U,
in E. On the contrary, we would have that ||U,|| < liminf ||U,| and thus

hﬂiogf ¢lUn,A(tI(9> Un)Un) > ¢/UA,,\(’5;\F(97 UNU») =0,

which implies that ng’Um)\(tj(G, U\)U,) > 0 for sufficiently large n. It follows from
Proposition and Proposition b) applied to the fiber map ¢y, » that 1 =
t5(0,U,) < t1(0,Uy) holds for large n. Therefore, by coming back to the fiber map
¢u,.», we obtain from Proposition again that ®,(¢t1(0,U\)U,) < @,(U,) and

consequently
Jy < JH(UY) = Ox(tL(Ur)Uy) < liminf @,(U,) = Jy,
which is an absurd, that is, U, — U, in E and hence

v, (1) = lim ¢y (1) =0 and ¢y, \(1) = lim oy, 5(1) > 0. (2.43)

n—oo

Since from Lemma b) holds, we have that NY,, = 0 for 0 < X\ < A.(6), which
oblige us to conclude that Uy € Nyy, and ®,(U,) = J; .

Next, let us prove that there exists Wy € N, A0 that satisfies ®,(W,) = j/\_ . Let
{W.} C Ny, be such that ©,(W,) — J5. As above, we have that W, — W) in E
and Wy > 0. Assume on the contrary that W, = 0. Then, from Lemma b), we
obtain the absurd

(a+B+7—-1)
(1+7)

0 < inf {||[W|?*: W € Ny} <liminf ||W,||* < liminf L(W,) =0,
? n—oo n—o0

where the last equality follows from the compact embedding E into L**#(RY) so that
Wy # 0 and thus W) € E,. By repeating the above arguments, we have L(W)) > 0.
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We claim that {W,,} converges strongly to W) in E. Suppose not. Then we may

assume that ||W,, — W,|| = & > 0. So, by Brezis-Lieb Lemma, we infer that
~ li2 ’ 2 ” 2
J)T == @A(WA)"’?, (bW)\,/\(:l)—i_K/ :0, and ¢W)\)\+K/ S 0

So, we would have ¢y, (1) < 0 and ¢y, (1) < 0. As a consequence of Proposition

and Lemma b), there exists at, € (0, 1) such that Cblvm(t;) =0, QS;;V)\,)\(t;) <
0 and £y Wy € Ny,

By setting ¢(t) = quA,A(t)—l—% for ¢ > 0, we conclude that 0 < ¢, <1, ¢'(1) =0
and ¢ (t;) = k*t; > 0, which together with Proposition lead us to conclude that

g is increasing on [ty , 1]. Thus, we have
Iy =lm @y(Wo) = g(1) > g(ty) > duya(ty) = A((WA) = Ty,

which is a contradiction, that is kK = 0 and {W,,} converges strongly to W, in E. After
this, we obtain that Wy € N/\iGA and ¢, (W,) = j;, as done at 1) This ends the
proof. [ ]

As a consequence of Proposition we have the following proposition.

Proposition 2.3.1 Let 0 < A < A\.(0). Then Uy € Ny, and Wy € Ny, are solutions
of Problem (]5>\,9,\).

2.4 Multiplicity of solutions on boundary of the ex-
tremal region to applicability of Nehari method

In this section we prove the existence of at least two solutions for Problem
on the curve I'. To do this, it suffices to show that the problem (f’f(e)) has at least two
solutions for each 6 > 0 fixed. We will take advantage of the multiplicity result given in
Proposition for 0 < A < A\.(f) and perform a limit process. The next proposition

is a consequence of monotonicities and regularities of the functions t{(6,U),t; (6,U),
Jy and J given by Lemma [2.2.6]

Proposition 2.4.1 There holds:

a) the functions (0,\.(0)] > X\ — J& are decreasing and left-continuous for \ €
(0, 2.(6)),
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b) lim Jf=JF,..
) Mg(le) A A+ (0)

Proposition 2.4.2 The problem (Pyg)) admits at least two solutions Wy_ () € o)

and Uy, g) € ij(e) for each 6 > 0.

Proof First, let us show that there exists a solution Wy, ) € f_(f?) for (Pf(e)). Let
{An} € (0,M(0)) be such that A\, + A\.(0) and {Wy,} = {(un,vn)} C Ny 4, as in
Proposition Suppose on the contrary that ||W) || — oco. Hence after applying
the Holder inequality, Sobolev embedding and the fact that Wy, € N, 00, » WE Obtain

_ 1 1 1 1
J>\n — (I))\n(W)\n) — (5 - m) HW)\H||2 -+ /\n (Oé + /8 - 1 — 7) Kl,@(Wn)

1 1 1 1
> (= — Wi )2+ CX, - W, [I',
_(2 a+ﬁ)|| Al <a+ﬂ 1_7)|I Mol

which implies by Proposition that oo > lim j/\_n > 00, which is a contradiction.

Therefore {W,,} is bounded and we can assume that W, 6 — W, in E,

W)\n — W)\*(g) = (U)\*(Q),/U)\*(Q)) in LQ(RN) X Lq(RN)V qc [2, 2*),
Wy, — Wy, ae. in RY,
there exist h, € LY(R") such that Wy, | < h,

with Wi, 9y = (ux. (), vr.0)) = 0.

Thus, once W), is a solution for Problem (P, 45, ), we may use Fatou’s Lemma

to show that
0 < (S (Wa.0) ) e — MO g(Wa.0), Y — (L' (Wi, 0), V)&, (2.44)

for all ¥ € F,, that is, the condition ([2.14) of Proposition is satisfied.
Moreover, from Lebesgue’s dominated convergence Theorem and Fatou’s Lemma

we have

lim sup/ [Vu,V(un — ux, @) + V(@) un(un — ux, 6))dx
RN

= lim sup )\n/ a(x)un(x)ﬂ(un—u,\*(g))dx+/
L JrN

b(x)ul P (u, — u,\*(g))dl}
RN

= lim sup )\n/ a(a:)un(x)v(un—ux*(e))dflf}
L RN

=lim sup An/ a(:c)ui”(:c)d:c—)\n/ a(x)un(x)VuA*(g)d:c}
L Jry RN
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§)\*(9)/ a(a:)u)\*(a( x)dx — liminf \, / a(x)uy () Tuz, gy dx
RN

]RN

<2(0) /R ale)ul g (@)dr — A, (6) / a(w)ul Ty ()dz = 0,

RN
which implies that wu, — uy,g) in X. A similar argument show that v,, — vgr+(p) in X.

So, it follows W,, — Wy s in £ and this yields
W@ I” = A(0) K1o(Wi.0) — L(Wa.(9) = 0,

that is, the condition ({2.13]) of Proposition is satisfied. Therefore, by Proposition

2.2.3 we obtain W)y, () is a solution of problem (]51:(9)).

Moreover, we have that

¢WA*<9>,M9)<1) = lim ¢, ,, (1) =0and ¢WM9),,\*(9)(1> = lim gy, (1) <0,

which implies, by the first equality, that W) ) € NF(G We also have, from Lemma

2.3.1b), that

) (a-l—ﬁ—kv—l)/
0< (1 %% <1 blu,|*|v,|Pd
A+ DIWaoll < lim === | blun|[valdr

_ <a+ﬁ+7_1)L(Wn): (Of—i—ﬁ—l—"}f—l)

(1+7) (T+7)
that is, L(W), @) > 0 and hence W), 9 € N, UNf(‘)(e)' We point out that W (s €

()
Nf_((a) due to Lemma [2.2.5|

LWy, ),

Finally, it follows from the strong convergence, Proposition [2.3.1] Proposition

2.4.1] and Proposition [2.2.6] (iv), (v), (vi) that

(P)\*(g)(W)\*(Q)) = lim CI))\n(W)\n) = lim j/\_ = j)\_ ) (245)
= inf {5506, w)w) s w € N UNG, |

holds, that is, W), ) € Nr(e is a global minimum of @, ) constrained to Nf_(e) UNIQ(Q)
In order to show the existence of a second solution for Problem (Jsf(g)), we proceed
in a similar way, that is, pick a {\,} C (0, A.(f)) such that A, T A\.(0) and {U,,} C
N, /{‘; o», as given by Proposition After some manipulations, we obtain that Uy, —
Un.(o) in E for some 0 < U,, € Ner(e) U /\/19(9), which is a solution for Problem (pf(e))-

Besides this, if L(Uy, ) > 0 and ‘blI/A (9)’/\*(9)(1) = 0, then U, g would be a

solution for the problem ( F(@)) in N , but this is impossible by Proposition [2.2.5]
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So we have ¢’5A o (9)(1) > 0 in this case. On the other side, if L(U,, p)) < 0, then we

have

30, oy (D) = 10L0)|* + A0 Kip.(0)Un.0) = (@ + B = 2)L(Ux,(9)) > 0.

So, in both cases, we have ¢IIIA (e)7>\*(9)(1) > 0, which implies that Uy, ) € /\/;(9). We

also have that U, ) € o) is a global minimum of ®,, 4 constrained to ij(e) UND

(6)

as well. This ends the proof. [ ]

Before proving the multiplicity of solutions for Problem (Pygy) when A > X, (6),

let us gather further information on the sets

S/\_*(9) - {W = Nf_(g) : JA_*(G)(W) = Jj, (9)} (2.46)

and

Sx.0) = {U € Niy, + Mo (U) = jj*(e)} . (2.47)

Corollary 2.4.1 We have that:
a) S/\_*(g) and S;:(e) are non-empties,

b) there exist cy, (), Cx.9y > 0 such that cx,y < ||U,[|W| < Chr.o) for all U €
S;r*(@) and W € S)T*(e):

c) if U e S;*(B) U S;r*(e), then U is a solution for Problem (Isf(e)).

Proof The item a) follows immediately from ([2.45]), while b) is a consequence of Lemma
2.3.1] Finally, the proof of the item ¢) follows of Proposition [2.2.2] ]

2.5 Multiplicity of solutions beyond the extremal re-
gion to the applicability of the Nehari method

In this section we show the existence of solutions for problem (15,\,”) when A is
greater than A, (f) but close to it. The idea is to minimize the energy functional ®,
over subsets of /\/')fe)\ and /\/'):QA, which are projections of subsets of ./\/’;(0) and Nf_(e)
that have positive distances to N/ )(\)* (0),07.(0)"

Proposition 2.5.1 Let ¢ < C. Assume that A, | \.(0).
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a) suppose that W, € Nf_(a) satisfies ¢ < |[|W,|| < C. If

(t5, (6, W) by, (t5, (6, W) = 0,
then d(Wn,Nf(,)(e)) — 0 as n — oo,

b) suppose that U, € /\/’;(9) satisfies ¢ < ||U,|| < C. If

(ti_n (0’ Un))2¢/&n,)\n (t;\: (97 Un)) — 07

then d(Un,/\/’g(g)) — 0 as n — o0.

Proof We prove only a) since the proof of b) follows the same strategy. It follows
from Lemma b) that there exists a positive constant ¢ such that L(W,) > c.
We claim that the same holds for Kj¢(W,). To prove this, let us first prove that
ty, (0, W) = p € (0,00).

Now, by applying Proposition m there exist s, :=t} (6, W,) <ty (6,W,) =
t,, such that

t721||Wn||2 - tvlzify)‘nKLO(Wn) - t5+BL(Wn) =0,
tiHWn’P + t;_v)\nﬁ)/Kl,O(Wn> - tg—’—ﬁ(& + B - 1)L<Wn) = 0(1)7 (248)
SiHWnHQ - Si:,_v)‘nKl,G(Wn) - Sg—wL(Wn) =0,

where the second line is a consequence of the assumption

(t;n (97 Wn))2¢;vn,)\n (t;n (97 Wn)) — 0.

So, by solving the system formed by the first and third equation of the above
system, considering the integrals as unknown, and substituting them into the second

equation, we obtain

Sn

>o¢+ﬁ+'y—1

I+
W 1+~ (tn +(a+5—2)—(a+5+7—1)(j—2) "
n n =0 I

s p+
(=) -1

(2.49)
as n — oo.
Besides this, it follows from C' > ||W,]|| > ¢, Lemma the first and third

equations of system above and s, < t, that there exist positive constants ¢, C, P,

such that t,, s, € [¢,C], t, — 6, s, — a and |[t,W,|| > & By using these information
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and taking limit on (2.49)), we conclude that s,/t, — 1 and p = «, because t = 1 is

the only zero of the function
gt) =1+ N+ (a+8-2)— (a+B+v— 1.
Using the above information and manipulating in the first and second equations
of ([2.48]), we obtain
Wal 2 = A(0) Ky o (pWW) — L(pWo) = of(1),
pWall? + YA (0) Ko (pWa) = (a+ B = 1) L(pW,) = o(1).

Since s,W,, € N 4, , we obtain from Lemma a) that K;9(W,) > ¢. So coming

back in the above system and using this positive boundedness from below, we have

a+p—2 |pWa?
a+ B+ —1Kie(pWy)

= X(0) 4+ o(1), n — oo,

and
L+ pWa]]?

a+B+v—1L(pW,)
Therefore, it follows from (2.16)) and 0-homogeneity of A(6,-) that

=14o0(1), n — oo.

MO, W) = A0, pW,) = (1 + 0(1) 552 (A () + 0(1)) = A(0), n — oo,

and W, is a bounded minimizing sequence for A.(#). Moreover, by following similar

arguments as done in the proof of Lemma [2.2.5] we obtain, up to a subsequence, that

W, - W € ng(e) and consequently d(WW,,, 12(9)) — 0 as n — oo. This ends the proof.
[

Define

N wac = {W € Nigyy 1 dWNE ) > 4 IW]| < €,

and

N orae = {U € Nity - AU NG ) > die < U]}
for ¢, C,d > 0 given. As an immediately consequence of Proposition we have.
Corollary 2.5.1 Fizc,C,d > 0. Then there exist ¢ > 0 satisfying:

a) there exists 0 < 0 such that (t; (6, W))2¢;;[,7A(t; (0,W)) <6 forall X € (A(0), \(0)+
€) andA W e N/\:((,M’c. In particular, we have that t, (0, W)W € Ny, and
W e Nyor for all A € (A (0), \.(6) + o),
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b) there exists & > 0 such that (t1(0,U))%¢,(t5(0,U)) > 6 for all X € (A.(6), \.(0) +
e) and U € N 4. In particular, we have that t{(0,U)U € Ny, and U €
Naor UN gy for all X € (A(0), \(6) +€).

To do a good choice of the parameter d > 0 in the last corollary, we prove the

next result, where the sets S,\_*(e) and S;r*(g) were defined at (2.46) and ([2.47)).

Proposition 2.5.2 There holds:

a) d(Sy, ), N7, ) >0,

NG

b) (S ) NO ) >

NG

Proof We just prove a) because the proof of b) follows similar arguments. Assume by

contradiction that d(S;*(e)aNIQ(e)) = 0. Then, there exist Wy, € Sy, and V;, € NIQ(O)

such that [|[W,, — V,, || = 0 as n — oo and
(Wm \Il) = )\*(9)<dK1,9(Wn)a ‘IJ>E' + <dL(Wn>7 \I]>E7 Vw € E7 Vn eN

holds, where this equality is a consequence of W, be a solution for Problem (Pf(9)>

as claimed in Corollary [2.4.1] Since Ng(e) is a compact set, see Lemma [2.2.5, we may

assume that V,, - V ¢ Nf(‘)(o) and hence W,, — V as well. From Fatou’s Lemma we

conclude that

(V,0) > \(O)dK 1 g(V), V) g + (dL(V),¥)p, V¥ € B,

that is, we arrived in the same situation as in Proposition [2.2.3| with V' € ./\/'19(9)

by Proposition |2.2.3|follow that V' € ng(a is a solution for Problem (Pf(e))» but this is

impossible by Corollary [2.2.1] which ends the proof. n
After Corollaries[2.4.1] 2.5.1and Proposition [2.5.2] we are in position to introduce

Traee=mt {JTW) W NS g4 o} and Jhy =it {J5OV) W NG 00 )

(2.50)
for each 0 < ¢ < ¢y, C' > C), (see Corollary 2.4.1] for both) A.(f) < A < A.(0) + € (see
Corollary [2.5.1) and 0 < d* < d(Si(eri(‘)(e)) (see Proposition [2.5.2)) which implies
that S_ ) C /\/_ _ o and S;:(e) - N):t(@),dﬂc‘ The proofs of the next propositions

are snnllar to those of Propositions (1.4.3] [1.4.4] [1.4.5] of Chapter 1.
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Proposition 2.5.3 The A-functions j}\_d, o and j;“(ﬁ o are decreasing and there holds:

a) lim Jio o = J5 0
T
b) /l\lgl J,\,d+,c = Jx0)

Proposition 2.5.4 There exists €~ > 0 such that J5 constrained to N, has a

T A (0),d-,C
minimizer Wy, € N/\:(G),d,c for all X € (A\c(0), \c(0) + €7) given.

Proposition 2.5.5 There exists €™ > 0 such that J\ constrained to ./\/:\t(e) 4+ has a
minimizer Uy € ./\/:\t(e) gt o Jor all X € (A(0), \(0) + €7) given.

The main point in order to prove that the minima found in Propositions [2.5.4]

2.5.5are solutions of (]5,\79,\) is to prove that Wy and U, are interior points of A, a(6).d-.C

and N, /\t 0).d+ respectively.
Proposition 2.5.6 There exists ¢ > 0 such that the problem (]5,\,%) admits at least
two solutions Wy € Ny 4y and Ux € Ny, for each X € (A.(0), A.(0) + €).

Proof First, let us take advantage of the existence of the minimizer Wy € N, N (0).d- ¢ O
build a solution for Problem (P)\ﬁ)\) in NON- Let us do this by reminding that the def-
initions given at and 1' implies that we can consider W) =t (6, W,\)WA €
N vox- Below, let us prove that W) is a solution for Problem (15,\79,\) if A > \.(0) varies
in an appropriate range. To this end, firstly we prove that W, is a interior point of

N, (6).d-.c for A close A(0), which is equivalently to prove

Claim: there exists an ¢; > 0 such that
Wil < C, ¥ A€ (M(6), \(0) + €1), (2.51)

where C' > C)_g) and Cy, g > 0 is given by Corollary .
Indeed, let A, | A\.(#) and denote W), = W,. Due to the boundedness of
N/\:(g) J- > We may assume that W,\n —~ W in E. In fact, we have that W,, — W

in E, otherwise we would have ||[W|| < lim inf ||WW,,|| which implies

0= (]5/‘/1/7)\*(9)(25)\*(9)((9, W)) < lim inf QS;/T/n)\n (t)\*(g)(e, W)),

where ty, (9) is given by Proposition m (1v). It follows that there exists k such that
¢ o (ta@(0.W)) > 0 for n > k, that is, t] (6, W,) < tr. (W) < t; (6,W,) by
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Proposition [2.2.1} For convenience we will denote by
5 (W) =t (60,W,) and ¢; (W,,) =t; (6, W,).

Therefore
[t 0y (W)W * < lim inf [£x, (W)W,

which lead us to

CI) A (0 )(75)\ (W)W) < }\lnril)\ll(lef CI))\ ( A (6) (W)W ) }\gil)\u(l&f) (I))\ ( )\n(W )Wn) = J)\_*(O)’

(2.52)

where Proposition a) was used to get the last equality. Moreover, it follows from

Proposition b), Proposition and Corollary that

A/\_ = lim j_, < l1m D, (t (W)W) = (I))\*(g)(t,\*(g)(W)W)
holds for any A 1 A.(6). By combining the last inequality with (2.52)), we get a con-
tradiction and hence Wn —~WinE.
As a consequence of this strong convergence and Lemma b), we obtain
L(W) > 0 and ¢W)\ (0)( ) =0 and (b/t;v,x*(a)(l) < 0, which means by Proposition [2.2.1
— O .
that W € Nf(e) U./\ff(e). Since

AW, N2

F(9)> lim d(Wn,NO ) >d >0,

n—o0
T 0 . T —
we have that W & Nf(e)? that is, W € Nf(e)'

To conclude the proof of the claim, we just need to show that W e S;*(e)
First note that similar arguments as done in the proof of Proposition a) prove
that t;n(Wn) — t € (0,00). From the strong convergence W, = W in E, we get
that ¢,W’/\*(9) (t) = 0 and %1/,,\*(9) (t) < 0, which lead us to conclude that ¢t = 1 since

W e ./\/'F_( 0) and Proposition [2.2.1] From Proposition [2.5.3[ and the strong convergence

again, we obtain

Dy (o) (W) = Anlfin(e)q) W (1 )\n(Wn)Wn> = jx_*(ey

which means that W € S/\_*(g). Therefore, from Corollary [2.4.1] we conclude that

limsup ||Wy|| < [[W]| < Ch.9). Since C' > Cy, (), the claim is true. This ends the
A (0)

proof of the claim.
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To complete the proof that Wy := t; (W))W € N, »ox 18 a solution to Problem
(]5,\,9 ), let us perturb W, by appropriate elements of E., and perform projections of it
over Ny g 4 ¢ and N\ Let W € By and A € (A.(0), \.(0) + e1). Since W) € Nigoy

we are able to apply the implicit function Theorem, as done in the Proposition [2.2.2]

to prove that ¢, (9)(W>\ + p¥) (see Proposition [2.2.1)) is well defined, is continuous for

p > 0 small enough and t;*(g)(W,\ +p¥) — 1 as p — 0.

Thus, it follows from (2.51)) and d(W)\,NIQ(Q)) > d~ (see definition of ./\/:\:(9) —c)

that
1650/ (Wa + pW) (Wi + p0)|| < C and d(t; 5 (Wi + p0)(Wy + p¥), N ,) > d
holds for p > 0 small enough, which implies
ty.0Wa + p0) (Wi + p¥) € Ny ) 4 o (2.53)
Therefore, by and Corollary , we obtain
tA(P)Ey, 9y (W + p0) (Wi + p¥) € Ny,

where
talp) =ty (t5. (o) (W + p0) (W) + p¥)).
By applying Proposition [2.5.4] we have

OA(EA(P)E5, (o) (Wi + pO) (W + p0)) = Ty (t5, (o) (Wi + p¥) (W) + pO))
e = Balty (W) ),

v

which lead us to conclude that
DA (D)5, (g) (Wi + pO) (W + pW)) > Dy (5 (WA)Ey (W + p0)W2),  (2.54)

holds for all p > 0 small enough, after using Proposition [2.2.1]
Again, due to the fact that t;(W,\)WA € J\/:\_’e/\, we are able to apply the implicit
function Theorem, as in the Proposition with the same function F' at the point

(07 ), A AR (), LOT))
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to show that ty(p) — t; (W) as p — 0. Since (2.54) can be read as

o I+ pwl2 = (152
(Ex(p)ty, ) (Wx + p¥))

p

()t o)W+ pW)* T LW, + p) — L(Wy)
a+p P

. (Ea(P)ty. 0y (WA + PO 7 Ky o (W + p0) — Ky o(W))

- 11—~ p ’

we can follow the arguments done in Lemma m, Fatou’s Lemma and ty(p) — t; (W)

as p — 0, to infer that
0 < (5 (Wa))*(J (W), 0) (15 (W) T ME (W), ©) =ty (Wa))* (L (W), ©) g,
for every ¥ = (p,¢) € E,, that is,

0 < (J'(Wa), W)g = MK p(Wa), ¥)p — (L'(W)), ¥) .

To conclude that Wy € N. Noxisa solution from (P)\ﬂ ), we applied the Proposition
2.2.0l

To complete the proof of Proposition [2.5.6, let us follow the arguments done
just above with minors adjustments. First, by setting U, = ¢} (9, UA)U,\ € N;:g)\,
with U, € N, (6).a+ . being the minimizer of Jy constrained to Nxt(e),dtc as given in
Proposition 2.5.5] and adjusting the proof of the above claim, we also prove the below
claim.

Claim: there exists an €3 > 0 such that
U5 > ¢, ¥V A€ (A(0), M (6) + €),

where ¢ < ¢y, g) and ¢y, 9) > 0 is given by Corollary .

After this claim, by perturbing Uy by appropriate elements of E., performing
projections of it over N ).+ and Ny and following the same strategy, we can
prove that Uy € /\/’;9)\ is a solution from (p)\vg)\).

Finally, the proof of Proposition follows by taking e = min {¢, e} > 0, that is, for
each A € (A\.(0), \.() +¢) the problem (P, g5) admits at least two solutions Uy € Nioa
and Wy € Ny, This ends the proof. n
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Now let us prove the Theorem [0.0.3

TheoremSuppose tht 0 <y <l<a,32<a+p<25%50<a,cinRY,
(A1)—(A2), (V)o—(V); and (A3) if b > 0 in RN hold. Then there exist two continuous
simple arc Ty = {(A(0), 1(0)) : 6 > 0}, T = {(A\.(0),11.(9)) : 0 >0} C Rf x R, with
To(0) < T(0) for all & > 0; A(A), \.(0) non-increasing; ju(0), 1, (f) non-decreasing and
[i(0) = OA(0), 11.(0) = O, (9) satisfying the property: for each § > 0 there exists an
¢ = €(#) > 0 such that the problem has at least two positive solutions Wy, U, € E
for each (X, 1) €](0,0),T(0) + (e, fe)[ given. Besides this, writing (X, 1) = (X, 0X) we
have:

a) T2 (17| > 0 and T2 (1W,)|,_, < 0 for all (A, ) €](0,0), T(0) + (¢, 06)],

dt? dt?

b) there exists a constant ¢ > 0 such that |[Wy|| > ¢ for all (X, u) €](0,0), () +
(€,0¢)],

¢) Uy is a ground state solution for all (X, ) €](0,0),T(6)], ®rp1(Uy) < 0 for all

(A 1) €](0,0),'(6) + (¢, 0¢)[ and lim [[UA]| = 0,

d) the applications A —— @, 95 (Uy) and A — P g5 (W) ) are decreasing for 0 < A <

A«(0) + € and are left-continuous ones for 0 < A < A.(6),
6) (P)\’QA(W)\) > ( for ()\,[L) E](O, 0), Fo(@)[, q)ro(@)(Wj\(e)) =0 and @AVQ)\(W)\) < 0 for
<>‘a ,u) G]FO(Q)a f(e) + (Ea 96)[

Proof For each (A, ) > (0,0) we can write (A, ) = (A, 0A), where § = £. Now,
after introducing the family of modify problems (f’w,\), with A > 0, and considering
the € = €(f) > 0 given in Proposition [2.5.6] the curves I'(¢),T'y(#) given in Lemmas
[2.2.42.2.7] the results obtained in the Sections 3.2, 3.3, 3.4 and in this current section,
the proof of Theorem follows in a similar way as done in the proof of Theorem [0.0.1] of

Chapter 1. -

2.6 The extremal region for the existence of positive

solutions

In this section, we will prove the supersolution Theorem [0.0.4] and Theorem [0.0.5]

Let us start remembering the definition of supersolution.
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Definition 1| Let (\,p) > (0,0). A function U = (u,v) € E is said to be a
supersolution of (Py,)) if @7 > 0 a.e. in RY and
/ VaV + V(z)upldr + / VoV + V(z)oy)dx
RN RN

> )\/ a(x)ua "pdz —i—u/ c(x)v™ "pdx
RN RN
a
8} + 6 RN

+ b(x)a™ 0" pdx + b(x)a*v" Mpda

(8} + 5 RN
holds for all ¥ = (p, ) € E,.

Now, for each n € N let us consider the truncated problem

—Au + V(x)u = Aa(z)g,(u) + =2=b(z)u®10f in RY,

a+p8
—Av + V(z)v = pe(x)g,(v) + Oﬁﬁb( r)uvPlin RY, (ISKLH)
(u,v) € E,

where

t+4)7 if t>0

gu(t) =
nY if t <0,

is a continuous function. The energy functional associated to the problem (]5)7} ) is the

functional @) ,,, € C'(E,R) defined by

BaaV) = T = KoalV) = 12,
where
Knpn(U) = A /RN o(2)Gon(u)dz + /RN ()G (v)dz
and

l%y(t + %)1*7 — ﬁ(%)liw if ¢ Z 0
n't if t <0,
) Z

Note that if U = (0,0) is a solution of (P)’f ,.), then it satisfies,

—Au+V(z)u = Aa(z)(u+ )77 + 22b(x)u* 0P in RY,

a+
—Av+ V(z)v = pe(z)(v+ )77 + Oﬁﬁb( r)u vt in RY,
u,v € X.

With these considerations we are already in position to prove our supersolution
theorem.

Theorem Suppose that 0 < v < 1 < o,0; 2 < a4+ < 2% 0 < a,c in
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RN, (A1) — (A2) and (V)g — (V)1 hold. Assume that the problem <]5Xﬁ) admits a
supersolution for some (X, 7z) > (0,0). Then the problem <]5Xﬁ) has at least one solution
Usz = (ux, vg) with @5 (Us ;) < 0. In particular, we have that the problem (Py,) has
at least one solution Uy , satisfying @, ,(Uy,) < 0 for all (0,0) £ (A, 1) < (A, 7).
Proof Let show that the problem has at least one solution U, , for all (0,0) 5
(A p) < (A7) with @ ,(Uy,) < 0 and thus, by taking (A, z) = (A, ) in the first
statement of the theorem, we have the claimed.

By assumption there is a supersolution U = (u,v) of the problem (]%ﬁ) and it

satisfies

/ VaVe + V(2)aglds + / VOV + V()50 dz

RN RN

20 [ a@r 2 e [ e+ ) s
8

a+ B Jry

(6]
Oé—{—ﬁ RN

+ b(z)a* 1o pdx + b(2)av? tde,
@

for every (¢,v) = ¥ € E., that is,

(!

A p,m

(U),¥) >0, (2.55)

for every (¢,v) = ¥ € E,. For simplicity let us denote by ®, ,,, = ®,,. Now note that

(©,((0,0)),¥) <0, (2.56)

for every (p,¢) =V € E,.

Now the proof will be done in some steps. The first one is as follows.
Step 1. The problem (]5;”#) has a solution U, satisfying (0,0) S U, = (up,v,) < U =
(u,v) a.e. RY.

The solution will be obtained by minimizing the functional ®,, over the set
M:={UeE:(0,0)<U=(uv)<U=(u,0)}.

We first observe that M is convex and closed with respect to the E-topology.

Furthermore, using the inequaility G,,(¢) < tll:j{ if t >0, for all U € M, we have

o) 2 -2 [ oo e [ @ [ e
2 1—’}/ RN 1—’}/ RN RN
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which implies that ®,, is coercive on M. To apply Theorem 1.2 of Struwe [59] we need
to show that ®,, is weakly lower semicontinuous on M. To this aim, let {Uy} C M
be an arbitary sequence that converges weakly to U in M. Then, U, — U almost
everywhere in RY as k — oco. Due (0,0) < Uy = (up,vx) < U = (@,?) in RY and
Lebesgue’s dominated convergence Theorem, we have

®,(U) <liminf @, (Uy),

k—o0

which implies that ®,, is weakly lower semicontinuous on M. So, by Theorem 1.2 of

[59], there exists U,, = (uy,v,) € M such that

o, (U,) = inf &,(U).

veM

Now let us prove that U, is a solution of (FN’A”M) Let (¢,) =V € E, ¢ > 0, and

consider
w = (Un +ep — E)+ y We i = (un + 690)7 )
2 im (ot e — D), 2= (ot )
Set
Ne := Uy + € — W +we and v, := v, + € — 2° + 2.
Then

Ue := Ne,ve) = Uy, + €V — (w0, 2°) + (we, ze) € M,
which implies that U, +t (U, — U,) € M, for all 0 < ¢t < 1. Since U,, minimizes ®,, in

M, this yields

0 < AP (Un, (Ue = Un)) = (@, (Un), (9,4)) = (@, (Un), (W, 2)) + (23,(Un), (we, o)),

so that

(P5.(Un), (0, 0)) 2 = (@5, (Un), (wS, 2%)) = (2, (Un), (we, 2e))] - (2.57)

a |

Now, for convenience of the notations, set

Hi(z,s,t) = Xa(z)gn(s) + b(x)s*1t?

«a
a—+f
and

Hy(z,s,t) = pe(x)g,(t) + b(x)s“tP 1,

a+f
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that is, by using (2.55)), we have

(@7, (Un), (wf, 2)) =(@,,(U), (w, 2) + (@}, (Un) = @,(U), (w, 2%))
>(®7,(Un) — @,,(0), (w", 2))

= /Q V(u, — )V (uy + e — ) + V(u, — @) (u, + €p —u)dx
—/ [Hy(x, up, vn) — Hy(x,0,0)] pdx
/Qe V(v, —0)V(v, + € —0) + V (v, —0)(v,, + € —0)dx
—/Q [Ho(z, U, v) — Ha(x, W, )] dx
V(u, =)V + V(u, —w)pdx
|Hy(x, up, v,) — Hy(2,,0)||p|dx

|H2<x7un7vn) - HQ(ZE,E,U)Hw’dZE,

—€

/
/

e/Q V(v, —0)Vp 4+ V (v, — v)¢dx
J

where

ez{xGRN:un+eg02ﬂ>un} andQez{xERN:vn+e¢2@>vn}.

Note that £(€2.) — 0 and £(Q2°) — 0 as € — 0. Hence by absolute continuity of

the Lebesgue integral, we obtain that

(@, (Un), (w, )

€

> o(€) where o(e) — 0, as € — oc. (2.58)

Now, using that (0, 0) satisfies (2.56]) and following similar arguments as done in
the proof of (2.58)), we obtain
(@7,(Un), (we, ze))

€

< o(€) where o(e) — 0, as € — oo, (2.59)

which implies, together with (2.57)), (2.58)) and (2.59)), that

(@, (Un), ¥) >0

for all ¥ = (¢,1) € E. Reversing the sign of U we see that (¢ (U,), V) = 0 for all
U € F, that is, U, is a solution of (P/’\lu)
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Now let us go to the second step.
Step 2. The sequence {U,,} = {(un,v,)} C E is bounded in FE.

Let us prove that the sequence {u,} is bounded in X. To prove the boundedness
of {u,}, note that 0 < (u,,v,) < (@,v) for every n € N. Hence,

1 Q
n2:)\/ n+ —) Tude + —— b “Pd
[|wn | - a(z)(u ~|—n) Updx + ol 8 (x)unvl dx

gA/ a(r)ulVdr + “ |b(z) |uCvP da
{zeRN :uy (z)>0} a+ 6 RN

S)\/ a(z)u' dr + |b(z) [a® 0" da
{zeRN 1y, (z)>0} a+ 5 RN

<\ e+ 2 ()@ vtd
< /H{Na(m)u :E—I—a_l_ﬁ RN|(I‘)|UU T,

which implies that {u,} is bounded in X. The proof of boundedness of {v,} follows
similarly. Therefore {U,,} = {(un,v,)} C E is bounded in E.

Using the step 2 let us go to the last one.

Step 3. Existence of solution for (Pj).
By step 2 the sequence {U,} = {(u,,v,)} C E is bounded in F and therefore

there is a function U, , = (uy,v,) > (0,0) a.e. RY such that
U, —Ux,in E, U, — L¥(RY) x L¥(RY), s € [1,2), U, — Uy, a.e. RY.

Let us show that Uy, = (uy,v,) > (0,0) a.e. RY. Using that U, is solution of

(f’;f“) and Fatou’s Lemma, we obtain that

(e
OK‘I‘B RN

1
> Alim inf/ a(z)(u, + =) Todr > A/ a(x)H (z)pdz
RN n R

N

/]RN [VurVo + V(z)uypldr — b(x)ui‘_lvgapdx

for all ¢ > 0, where
uy (@), i un(e) £0

oo, if wy(z) =0,

H(z) =

So, by taking ¢ > 0, ¢ € X, above, we obtain that H(z) = u,”(z) for all
r € RY, that is, uy > 0 in RY. This implies that 0 < fRN au, "pdr < oo for all

¢ € X,. As a consequence, we have

(6%
Oé‘i‘ﬁ RN

/RN VuaVo+V (x)urpldr— b(a:)uf\"lvﬁgodfn > )\/ a(z)uy " (z)pdz (2.60)

RN
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for all ¢ € X. In a similar way we can prove that v, > 0 in R" and

B

/R [TVt —= |

for all v € X,.

b(l‘)uf\‘vfj_lwdx > ,u/ c(x)v,”(z)dr (2.61)
RN

Now, our next goal is to prove that the sequence {U,} = {(u,,v,)} C E converges
strongly to Uy, in E and that Uy, is a solution of (Py,). To this aim, note that
(0,0) < (up,v,) < (u,v), and

a(x)ul™ < a(z)@ ™ a.e. RY and [b(z)||un|*|v,a|? < |b(2)|[T@]*[7)° a.e. RY,

where a(z)u'~" € LY(R") and |b(z)|[u|*[v]® € L'(R™). Therefore by Lebesgue’s domi-

nated convergence Theorem and Fatou’s Lemma, we have

lim sup/ Vu,V(u, —uy) + V(x)u, (uy, — uy)]de
1 -
=1lim sup / a(x (un + —) (un — uy)dx + / b(x)ue 8 (u, — uy)dx
R RN

1 -
= lim sup )\/ a(x (un —i——) (uy — uy)dx

= lim sup )\/
1 - 1 -
=lim sup )\/ a(x) (un(x) + —) updzr — )\/ a(x) (un(m) + —) updz
{zeRN uy, (z)>0} n RN n
1 -
<lim sup )\/ a(x)ul " (z)dr — )\/ a(z) <un(x) + —) updx
i {zeRN uy (z)>0} RN n

<limsup | A /]RN a(x)ul " (z)dz — A /RN a(x) (un(x) + %) a u,\dx]
) /R a(r)ul 7 (r)dr — Tminf /R ax) (un(x) + %) inds
<) /R ale)ul (@)~ A /R a(e)ul " (@)dr =0,

This information together with w,, — u, in X imply that

2

Fe
2

=
2
/_\
<
3
+
3|
~_
S
e
3
QL
5]
|
>~
T
2
=
=
7N
e
3
&
+
|
~_
4
<
>
QL
5]
| I |

tn — url® = (Un, tn — uy) — (ux, up — uy) — 0

as n — oo, that is u,, — uy in X. In a similar way we can prove that v, — v, in X.

Since (0,0) < (up,v,) < (u,v), we have that

1
a(x)(u, + =) Tu, < a(z)ul? < alz)ut~? ae RY,
n
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and

[b(@) | [va]” < [b(@)][a]*[0]" a.e. R”

hold. So, the convergence u, — wu) in X and Lebesgue’s dominated convergence

Theorem applied to

1 a
nQ:A/ ot =) e+ —— [ b(apusld
Juall? =X | al@)unt 1) unde s | blaiela,

lead us to obtain

|ull” = )\/RN a(x)u}\ﬂda: + oyl b(x)ui‘vﬁdx.
Similarly we may show that
2 1— ﬁ a, B
llvull* = ,u/RN c(x)v, Vdr + el 9 b(x)uv,dx
and therefore
1Usull? = Ex u(Un ) = L(Ux) = 0 (2.62)

As a consequence of (2.60)), (2.61)) and (2.62)), we conclude that function U, , sat-
isfies the conditions (2.13))-(2.14)) of Proposition and so Proposition implies
that Uy, is a solution of 1}

To prove that @, ,(Ux,) < 0, notice that ®,(U,) < ®,(U) for every n € N
and U € M. Thus, this inequality, the convergence U, — U, , in E, and Lebesgue’s
dominated convergence, lead to ®, ,(U, ) < ®,,(U) for all U € M, that is,

P u(Uny) = UH&E Py (U). (2.63)

Since tU € M and ®,,(tU) < 0 for 0 < t small enough, we have from (2.63)) that
@y, (Un,) < @,,(tU) < 0 for 0 < t small enough. The proof of this Theorem is
complete. [ ]

After proving Theorem [0.0.4] we are going to study the structure of the set

T = {()\,u) eR" xR": admits solution} :

First, using the classic Nehari manifold method for functional of class C*, it is
well known that problem (]5070) has a positive solution, therefore (0,0) € Y. Also, it
is well known that for every A > 0 and p > 0 the purely singular problems (]5,\70) and

(Py,.) have a positive solution, and thus (X,0), (0, ) € T for every A > 0 and y > 0.
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Again, for each 6 > 0 let us consider the system (IBM ») and define the sets
Ty = {)\ >0: (15,\79,\) admits solution} cT,

Ty = {)\ > 0: (Pyo) admits solution} T,
To = {u >0: (Py,) admits solution} cT

and the extended function
r*(0) = (A\*(0), 1" (0)), where p*(0) = X" (0) and \*(0) = sup(Ty) < c0.  (2.64)

Since, we already know from Proposition and Proposition [2.5.6] that 0 <
A (0) < M(A) < oo, we have I'(§) < T*(0) for every § > 0. Moreover, for each
0 < A < A\*(0) it follows from the definition of \*(#) and Theorem that problem
(Pyox) has a solution, that is, (0,A\*(f)) C Ys. Notice that I'*(d) € Ry x RJ when
A*(0) < 0.

Moreover, we have the following lemma.

Lemma 2.6.1 Assume \*(0) < co. Then the problem (Pr-)) has at least one solution
UF*(@) satzsfymg (I)F*(G)(UF*(H)> S 0.

Proof Let A\, € Ty C (0, \*(#)] be an increasing sequence such that A, — A*(#), and
Up = (tn,vy) := Uy, gx, be the solution of (Py, gy,) obtained in the Theorem m

Then,

J(U, MK (U, L(U,

and
J(U) ~ MKg(U,) — L(U,) = 0.
which implies together with Holder inequality and Sobolev embedding that there exists
a constant ¢ > 0 such that
[Unll = J(Un) < C,

that is, the sequence {U,} is bounded in E.

Thus, we can assume that there is a subsequence, still denoted by {U,}, and
a function Ur-g) = (ur+(9),Vor=(9)) = (0,0) a.e. RY such that U, — Ur+p) in E,
U, = Ursg) in L*(RY) x L¥(RY), s € [0,2*) and pointwise a.e. in RY. By letting

n — oo in the equality
(J'(Un), ¥) = (L'(Un), ) = A (K7 4(Un), ¥),
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for each ¥ = (p,¢) € E,, and following as in the proof of Theorem [0.0.4] we obtain
that Up« () = (ur+(9); Vor+(0)) > (0,0) a.e. in RY and

(J'(Ur+0)), ) = X (0)(K1 4(Up=9))) — (L' (Up=(9)), ¥) > 0 (2.65)

hold for every ¥ = (p,1) € E,. Moreover, from Lebesgue’s dominated convergence

Theorem and Fatou’s Lemma, we have

lim sup /RN VU,V (un — ur<9)) + V(2)tun(Un — ur))|dx

= lim sup )\n/ a(@)un ()77 (un — ur+(9) ul ™ 0 (wy, — ure(p))da
RN

= lim sup )\n/ a(x)un(x)_w(un—UA*(G))dx}
RN

= lim sup An/ a(a:)u}ﬂ(a:)da:—An/ a(x)un(x)_”uﬁ(e)dﬂﬁ}
L RN RN

<X(0) [ o)l (e)de ~timint A, [ aw)un(a) s
RN

RN

<\ () /RN a(a:)ui:(z)) (x)dz — \*(0) /RN a(x)ui:(ve)(x)dx =0,

which implies that w, — uy«g) in X. A similar argument show that v,, — vgr«(g) in X

as well. So, we have U,, — Ur+(g) in E and this yields
1Ur+ @[ = X*(0) K1,6(Ur+(0)) = L(Ur-9)) = 0. (2.66)

Hence, we obtain from ) and (|2 - that Ur-(g) satisfies the conditions (|2
(2.14) of Proposition and therefore Up-(g) is a solution of (Pp ©))- The proof of

this lemma is completed. [ ]

As a consequence of Lemma [2.6.1] we have.

Corollary 2.6.1 Assume that \*(0) < oo for all > 0. Then the set Y is closed.

Proof Let {(A\n, tn)} C Y be a sequence such that (A, i) = (A, u) € RT x RT. We
have three possibilities to consider now. If (A, u) = I'*(#), for some 6 > 0, we have
by Lemma that (\,u) = I'*(#) € T. Now, if A > 0 and p > 0, we can assume
that A, > 0 and p, > 0 for all n and rewrite (\,, ) = (An, Op\n) for 0, = /N,
So, by definition of A\*(#,) and (\,, i) € Yy, we have A\, < A\*(6,,) which implies by
Theorem and Lemma m that there exists a solution U, of (Py, ) satisfying
®5, 4. (Uy) < 0. Thus, as in the Lemma [2.6.1] we can show that there exists a solution
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Uy, of problem 1) that is, (A, ) € Y. Finally, when A = 0 or u = 0, we have from
Ty = (0,00) and T, = (0,00) that (A, z) € Y. This ends the proof. n
Our goal now is providing conditions for A\*() be finite for all § > 0.
Assume that 0 < m € L*(2) and consider the eigenvalue problem
—Au+ V(x)u = Am(x)u in Q,

(Aa)
u>0inQ, ue Hy(Q),

So, by a classical argument and Theorem 3 in Brezis-Nirenberg [12], we have.

Lemma 2.6.2 The first eigenvalue Ay of the problem (Agl|) is positive. Moreover, its
associated eigenfunction e, is positive, e; € C1(Q) N H?(Q) and de;/Ov < 0 on 05,

where v € RY s the unit exterior normal to OS).

We have the following lemma.

Lemma 2.6.3 Assume that there exists a smooth bounded open set Q C RN such that
b > 0 in Q. Then there exists n* = n*(0) > 0 such that the problem (Pygy) has no
solution for all A > n*.

Proof First we intend to regularize the solutions of the problem (P,\ygk) in ) using
interior regularity. Assume that U, = (uy,v)) € Ey is a solution for Problem (]5,\7“).
By Brezis-Nirenberg Theorem (see [12] Theorem 3 again), we have that there exists a
constant ¢ such that uy, vy > cd(x) = cd(x,00) in 2 and therefore u, ”, v, " € L>(K)

for every K CC (2. Using this information and Young’s inequality we have that

b(x)ue~Wf — V(2)uy € Lo (K),

_ oY
Aa(z)uy” + Pz

and

a b(z)u§v ™t = V(z)y € LO%/B(K),

Y N
c(x)vy, " + ot D

which implies by Theorem 12.2.2 of J. Jost [43] that uy, vy € HQ’K%B(K) and

—Auy = Aa(z)u,” + b(z)uS M — V(z)uy a. e in Q,

a
a+ 3
—Avy = Me(x)v, " + a

A a+

After a classical bootstrap argument, we obtain that uy, vy € H*(K)NC(K) for every

b(z)u§v? ™" — V(z)vy a. e. in Q.

K ccC Q. Without loss of generality we may assume that uy, vy € H2(Q2) N C(Q).
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For A > 1 by the comparison principle of Gongalves-Carvalho-Santos (see Theo-
rem 1.2 of [36] ) we have that uy > u and vy > v in Q, where u,v € C(Q) N H}(Q) are
the solutions of

—Au+V(x)u =a(x)u in Q,
u > 0in €,
and
—Av + V(z)v = bc(z)v™7 in Q,
v>0in Q,
respectively, and therefore, by Brezis-Nirenberg Theorem there exists a constant ¢ > 0
independent of A such that uy,vy > min{u(x),v(z)} > cd(z) = cd(z,09) in Q for
every A > 1.
From now on let us assume that A > 1. After regularizing the solutions, we may

apply Lemma 3.5 of Figueiredo-Gossez-Ubilla 23] to conclude that

/QVuAVel + V(z)equrdr < A\ /Qm(m)elu,\dx, (2.67)
and
/QVU)\VGI + V(z)equpdr < N\ /KZM(x)elv,\dx, (2.68)
where
#(z) = min {a(a:), icj_;b(x)dﬁ—l(x), Oe(a), Zci_;b(x)d“_l(x)} ,

¢ is a constant independent of X\ and A, is the first eigenvalue of with the weight
function m given above.

Now, let us define g, g5 : (0,00) = R by ga(t) = M7+t gg(t) = X771+
t%~1 and note that

1 1
- yH+1Y\\ B v+ 1\ A+
n= (V) = (3 (222)) 7 a0

are the uniques global minimum of g, and gs respectively, whose minimum value is

given by
o e (11T (aty
goz()\) -_ga(t)\)_)\ - <&_1> (Oé—1>,
and 1
. st [y 41\ P B4y
a0 =i =2 (355) (55,



which provides the existence of a n* = n*(#) > 0 such that

So, it follows from the definition of n*, (2.67)), (2.68) and the fact that (uy,v,) is

a solution for Problem (PA,(;,\), that
/ m(z)(n u,” +uf + 0oy + vf)elda: > )\ / m(z)(uy + vy)erdz
Q Q
> / Ve Vuy + V(z)ejuprdr + / Ve Vo, + V(z)ejvade
Q Q

~ [ Guatoy;” + erds (2.69)

b(z)uS Ml + Me(z)vy” + - P b(z)uSv

a
a+p + 06

holds. Since

we have from (|2.69))

B
+6

> / () (7 uy” + u§ + vy T+ o))erde
Q

o B
a—+p + 5

which implies that n* > A. This ends the proof. [ ]

/Q('r]*a(x)uﬂ += i Bb(m)uf\"lvf + 0" 0c(z)v, " + - b(z)uSv? ey d

b(z)usvi eyda,

> /Q (Aa(@)uy” +

b(x)us™ o) + Me(z)vy” + -

As a consequence of the Lemma [2.6.3] we have the following Corollary.

Corollary 2.6.2 Assume that there exists a smooth bounded open set @ C RN such
that b > 0 in Q. Then A*(0) < oo for all 6 > 0.

Let us prove some properties of the function I'* in the next lemma.

Lemma 2.6.4 Assume that there exists a smooth bounded open set Q C RN such that
b> 0 in . Then,

a) T*:(0,00) = R? is a continuous function and injective,
b) A*(0) is nonincreasing and p*(0) is nondecreasing,

¢) the Y N (RE x RY) = [* = {T*(8) = (\*(0), u*(0)) : 0 > 0}.
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Proof Firstly let us prove a). It is sufficient to prove that A*(#) is a continuous function.
If \*(#) were discontinuous, at say a point 6, then there would exist an ¢ > 0 and a
sequence 6, —» 6 such that [A*(6,,) — A*(0)| > €. So, up to a subsequence, there would

have two possibilities:

N (0,) < A*(8) or A*(6,) > \*(6),

for n sufficiently large. Assume that the first one holds. Let A\; < Ay such that
A (0,) < A1 < Ap < A*(6). Since OA; < O)g, then

O, N (0,) < O0,A1 < 0Ny < OX*(0),

for n large enough. Thus, by the definition of I'*(#) and Theorem the system
(Py,.65,) has a solution (u,v), which is a supersolution of (P, g,,). So, Theorem m
implies that the system (Py, g,x,) admits a solution (%, #), which lead us to conclude
that A\; < A*(6,,), but this is a contradiction. The second case runs in a similar manner.

Let us show that I'* is injective. If I'"*(0) = I'(p), then A*() = A*(p) and OX*(0) =
pA*(p) that implies § = p. Therefore, I'* is injective and this completes the proof of a).

Now, let us to prove b). Suppose by contradiction that there exists 0y, 6, € (0, 00)
with 6 < 05 and A\*(0;) < A\*(02). Then, we would have p*(61) = 01A*(01) < O1*(02) =
p*(62) and from I'*(6) € T (see Lemma and Theorem there would exist
(X, 010\) € Ty, such that ['(01) < (A, 01A) < I'(#2). By the definition of A*(6,) it follows
that A < A*(#;) which is a contradiction, because A*(6;) < A. The proof that p*(6) is
nondecreasing runs in a similar manner.

Proof of ¢). We first prove that T* C 9T N (Ry x RS). To this aim, note
that from Lemma and item a) we have that ['*(0) € (T N (R x RY)) for every
6 > 0, which implies B.(T*(#)) N (Y N (R x Ry)) # O for all € > 0. Now, fix
6 > 0 and let ¢ > 0 be arbitrary. Take a sequence {\;} such that A\, — A*(0), with
Ar > M(6) for every k. Since the problem (Py, gx,) has no solution (by definition
of A*(0)), and (A, 0Ar) € B.(I'*(0)) for sufficiently large k, we can conclude that
B.(T*(0)) N ((RF x RF\T) # 0. These arguments prove that T* C 9T N (RF x RY).

To complete the proof of ¢), it suffices to show (9T N (R x RF))\ € I'*. To
do this, we take (A, z) € (0T N (RY x RY)) and apply Corollary to obtain that
(A, ) € Ty C T for § = p/X. This implies, by the definition of A\*(#), that A < \*(0),
which leads us to infer that (A, ) < I'(#). Now, we claim that (A, u) = I'*(#). Indeed,
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if were (A, p) # I'*(0) = (A*(0),0)*(9)), then (A, p) < I'*(#), which would imply, by the
Lemma and Theorem m, that the problem (ﬁa,b) admits a solution for every
(0,0) < (a,b) < T*(0), and this imply that (\,u) € int(Y N (R x R)), but this is a
contradiction. Therefore, 9T N (R x R) = I'*. This concludes the proof of Lemma.
n
Finally, let us prove the Theorem [0.0.5]

TheoremSuppose tht 0 <y <1l<a,B;2<a+p<250<a,cinRY,
(A1) — (A2), (V) — (V); and (A3) if b > 0 in RY hold. Then:

a) there exists an extended function I : (0,00) — R x R (R = RU {4+o0}), with
T*(0) = (A*(0), u*(0)) and p*(0) = OX*(0) such that system (Py,)) has at least
one solution U, , for (A, i) € © and no solution for (A, ) ¢ ©, where

O ={(\ ) :(0,0) < (A ) <T*(0), 6> 0}U{(X,0): e [0,00)}

U{(0,p) s € [0,00)}.

Moreover, we have @, ,(U, ) < 0if (A, ) € © \ {T*(0) : 0 > 0} and @, ,(U,,)
<0if (A ) € T*(0) for 0 > 0 if T*(0) € RE x RY,

b) if in addition there exists a smooth bounded open set Q2 C RY such that b > 0
in Q, then I'* C Ry x Ry and T'* : (0,00) — Ry x R is a continuous curve,
with 0 < A*(f) non-increasing and 0 < p*(f) non-decreasing. In particular,
{T*(0) = (\*(0), u*(0)) : 6 > 0} = 90 N (R x R}) and (Pr«(p)) has at least one

solution for all § > 0.

Proof Let I'* defined by ([2.64)) and consider

O ={(\pu): (0,0) < (A ) <T*®), >0} UL(A0):A\e0,00)}

U{(0,p) - € [0,00)}.

Let us prove that T = © what implies that the problem 1) has at least
one solution for (A, x) € © and it has no solution for (A, u) ¢ ©, by definition of
T = O. First, consider (A, ) € T. We have three cases: (A, u) > (0,0), (A,0) for
A >0, and (0, ) for g > 0. Assume that (A, p) > (0,0) and set § = £. So, we have
that (X, ) = (), 0)) and the problem (P g,) admits solution, by definition of T, that
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implies by the definition of \*(#) that A < A*(6). As a consequence of this inequality,
we obtain (A, u) = (A, 0X) < IT'(0), so that (A, ) € ©. The other cases follow from
definition of ©. That is, T C ©.

To show that © C T, let (A, ) € ©. If either A = 0 or u =0, then (\, ) € T,
because the problems (P, ,) and (Py) have a solutions. Assume that (X, i) > (0,0).
Since (A, 1) € O, we have (A, u) < T*(0) = (A*(0),01*(0)) for some 6 > 0. If A*(0) < o,
follows of Theorem and Lemma that problem 1’ has a solution, that is,
(A, p) € Y. If A*(0) = oo, there exists a & > 0 such that (A, u) < (&,60£) and follows
from Theorem that problem 1) has a solution, that is, (A, ) € T that implies
© C T and T = O. The property of the solution stated in the item a) follows of
Theorem and Lemma [2.6.1] This ends the proof of a).

The item b) is a consequence of Lemma and item a). The proof of theorem

is now complete. [ ]
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Chapter 3

Extremal curves for existence of
positive solutions for multi-parameter

elliptic systems in RV

In this chapter, we are going to study the elliptic system
—Au = \w(z) fi(u)g (v) in RY,
—Av = pw(z) f2(v)ga(u) in RY, (Pru)
u,v > 0in RY and u(z),v(z) 2,
with respect to the parameters A, € RT, where N > 3 and RT = [0, 00).

System has no variational structure, so variational techniques do not ap-
ply here. The techniques used to prove the main results of existence of solutions of
this chapter are the Leray-Schauder Degree and the sub-supersolution methods. We
emphasize here that the representation of Riesz given in (3.1]) played a fundamental
role in proving some results. In fact, it allows us to obtain some estimates that replace
the famous Agmon-Douglis-Nirenberg Theorem and the Schauder estimates, both for
bounded domains.

Besides this, we will show how changing the hypotheses on nonlinearities impact
the shape of regions of existence and non-existence of solution.

This chapter has the following structure. In the first section, we will introduce the
spaces where we will work and prove the sub-supersolution theorem which will be our

main tool to show the existence of solutions. This Theorem extends to the whole space



the Theorem 1.2 of Cheng-Zhang [17]. In Section 3.2, we will prove some preliminary
lemmas and build the extremal curves as claimed in the main Theorems. In the last

section we prove our main Theorems.

3.1 Sub-Supersolution Theorem

In this section we will give some definitions and prove a sub-supersolution theorem
that will be essential to prove the multiplicity of positive solutions to our problem. Since
we are working in the whole space, one of the main difficulties to prove it is to find a
suitable open set in which the degree of Leray-Schauder of solution operator associated
to the problem be equal to 1.

Throughout this section, we will assume (W), — (W)y:

(W): w e C (RN RY) for some o € (0,1) and there exists W € C(Ry, Ry) such that

0 <w(z) <W(|z|) for all z € RV \ {0},
(W)a: /RN 2> MW (|2|)dx < oo,

(W)s: W € LYRN) N L®(RY),
e [ 20, <

o=y S for all z € RY \ {0} and for some constant C' > 0.

In particular, they permit us to find solutions vanishing at infinity with a velocity
of order least |z|> ™ and gradient of the solution in L?*(R"). To do this, let us set our

settings to work. We begin by remembering that
D'?*(RY) = {u e L* (RY) : |Vu| € L*(R"Y)}
is a Hilbert space endowed with the inner product

(u,v) = VuVudz,

RN
where 2* = 2N/(N —2) is the critical Sobolev exponent. Hereafter, ||.||2 designates the
norm associated with the inner product (,).

We know that D'2(RY) is not compactly embedded into any Lebesgue space,
which prevent us to have spectral theory on these spaces. However, under our hy-

potheses, we have well-defined the weighted Lebesgue space

L2 (RY) = {u :RY — R : uis Lebesgue measurable and / w(x)|u(z)|’de < oo}
RN
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that yields the embedding of D%?(RY) into it be compact (see [5]). Besides this,
L% (RY) is a Hilbert space endowed with the inner product
(U, )2 = / w(x)u(r)v(r)dr, Yu,v € L2 (RY).
RN
Aiming to find solutions that are continuous too, we introduce the Banach spaces
E = {u c C(RY,R) : sup |u(z)| < oo} and E, = {u € E : u(z) = u(|z|), Vo € RV}
zeRN
endowed with the norm ||ul| = sup |u(z)| for u € E. As proved in [5], we know that
z€RN
the embeddings E, E, — L2 (RY) are continuous as well. Besides this, we know from

[5] or [55] that there exists a unique weak solution u := S(v) € DV?(RY) of the problem

—Au = w(z)v in RY,

(L)
u € DVA(RY)

that satisfies lim u(z) = 0 for each v € E C L2 (RY). More specifically, besides this

|z| =00

vanishing property, the function u := S(v) satisfies

VuVodr = / w(x)vedr ¥ ¢ € DM(RY).

RN RN
They also proved that S : E — E; C E and that Riesz representation of w is
given by

) = S = Cx [ oy 3.1

RN |y—x

where Cy = (N(N — 2)|B;(0)])~! and

E, = {u € E: sup |2V 2|u(z)] < oo}.

TzeRN

In addition, we have:
e S is a compact linear operator in E (by (W), — (W)y),

o S(Cy

loc

(RV,R)N E) C C>*(RN,R), for some a € (0,1) (by (W),).

loc

As a consequence of the above information, we have the following lemma.

Lemma 3.1.1 The function ¥ : RY — R, defined by

U(zr)=Cy /RN %d(y, (3.2)

belongs to C*(RY,R) N Ey. In particular, ¥ € L®°(RY) and lim ¥(x) =0.

|z| =00
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Below, with the help of the compact embedding of D?(R¥) into L2 (RY), the
definition of the operator S and its properties, let us build a solution operator associated
to the problem

—Au = w(x)F(u,v) in RY,
—Av = w(z)G(u,v) in RY, (R)
u(z),v(x) el g0 0,
where F,G : R? — R are such that F,G € C*)((—r,r) x (—=r,7),R) for each r > 0
and some a(r) € (0,1).

To do this, first define F,G : E x E — E by F(u,v) = F o (u,v) and é(u,v) =
G o (u,v). So, we obtain from the locally Holder continuity assumption on F e G
that F, G are continuous and F(A),G(A) C F are bounded sets for any bounded set
A C E x F given, that is, the operator S: E x E —s E x E, given by

S(u,v) = (Sﬁ(u,v), S@(u,v)),

is compact, due to the compactness of S.

When we constrain to w radially symmetric, the above conclusions are still true.
Lemma 3.1.2 If w is a radially symmetric function, then S(E,) C E.. Therefore,
g(ET X E.) CE. x E. and V € E,., where U is defined at (3.2).

Proof To prove that S(E,) C E,, let v € E, and O : RY — RY be an orthogonal

linear operator. Then by the Riesz representation (3.1)), we have

S(U)(x):/R Mdy:/m Cyw(0~ 1 (2)v(071(2)

vy — v 071(z) — 22

_ / Onvw@)v() o g0 0(),

vz =O(@)N2"

after proceeding to the change of variable y = O~1(z). Therefore, S(v)(z) = S(v)(O(x))

for all z € RY and O : RN — R¥ orthogonal linear operator, which implies that S(v)
is a radially symmetric function. In particular, since ¥ = S(1) and 1 € E,., we have
v eE,. [

Now, we are in position to state and prove the sub-supersolution Theorem. Before
these, let us do two definitions.

Definition 3.1.1 A pair (u,v) € (C*(RY,R) N E)? is said to be a subsolution (strict
subsolution) of if

—Au < (<)w(x)F(u,v) in RY,

—Av < (Q)w(z)G(u,v) in RY,
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while (u,v) € (C?*(RN,R) N E)? is said to be a supersolution (strict supersolution) if

the both inequalities above are reversed.

and

Definition 3.1.2 A function H : R? — R is said to be quasi-monotone non-decreasing

with respect to t (or s) if,

H(s,t1) < H(s,ta) as ty <ty (or H(s1,t) < H(s2,t) as s1 < $3).

In the proof of the theorem below, a key point is to have an open set spanned by

the sub and supersolution. Unlike to the case in what €2 is a bounded domain, the set
(w,u) ={ue C(LR):u<u<uwin Q}

is not open anymore, when 2 is unbounded. In order to apply the degree theory, the
set (u, W) has to be modified.

The main result of this section is the next one.

Theorem 3.1.1 Assume that F,G € C*((—=r,r) x (=r,7),R) for every r > 0 and
some a(r) € (0,1) and (u,v), (@,V) be a subsolution and a supersolution of (R),

respectively, such that:
(1) (u(z),v(@)) < (u(z),v(x)) for every v € RY,

lim (u(z),v(x)) = (a1,a2) < (0,0) and lim (u(zx),v(z)) = (b1, be) > (0,0)

for some a;,b; € R with 1 =1,2,

(17) F(s,t) is quasi-monotone non-decreasing with respect to t and G(s,t) is quasi-

monotone non-decreasing with respect to s.
Then:

a) the degree
deg(I — S, W,0) =1 (3.3)

if additionally (u,v) and (u,v) are strict subsolution and supersolution of (R,

respectively, and all inequalities in (i) are strict, where
W= {(u,v) € Ex E: (u,v) < (u,v) < (T,v) in RY, M(u,v) > 0} (3.4)

and
M (u,v) = min {dist(u, w), dist(u, ), dist(v,v), dist(v,v)}.

In particular, the system has at least one solution (u,v) in W,
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b) the system has at least one solution (u,v) € W, where

W = [u,u] X [v,7] = {(u,v) EEXE: (uv) < (uv)<(u,)in RN},

that is, W is the closure of W in the || - ||.

Proof We begin proving the item a), that is, (3.3). To do this, first we are going to

prove that W C E x E is an open set in E x E. We note that it suffices to prove
(wu)={u€eF:u<u<uinRY and min {dist(u,u),dist(u,u)} >0} C E,
and
(v,0) ={v € E:v<v<7inRY and min{dist(v,v),dist(v,0)} >0} C E,

are open sets in . We will just prove that (u,u) is an open set, because of the proof

of (v,7) be an open set is similar. Let v € (u,u) and denote by
. : _ 6
6 := min {dist(u,w), dist(u,u)} >0 and r = 7"
So, by considering ¢ € B(u,r), we have
() = u(@)] < [[¢ —ul] <r,Vz € RY, (3.5)

which implies that

u(e) — 9(2)| 2 u(z) ~ u(z)| - Ju(z) ~ $(@)] > distlww) 5 2 & >0,

and therefore dist(u,1)) = xierﬂlng lu(z) — ¢(x)] > 0. Similarly we have dist(w,)) =
irﬁfN [a(x) — ¢(x)] > 0. Besides this, after some manipulations, definition of r and
?€>.5, we have u(z) < ¢(x) < u(z) for x € RY. These show that B(u,r) C (u,u) and,
in particular, (u,u) is an open set as claimed.

Now, we define the modified functions F*,G* : RY x R? — R by
F(2,y,2) = F(pu(2, 9, 2), Pi(2,y, 2)) and G*(z,y, 2) = G(pi(, 9, 2), Pr(2, 9, 2)),
where py, P, are given by
p(z,y, z) = max {u(z), min {y,u(x)}} and Pi(x,y, z) = max {v(z), min{z,0(x)}} .

So, we have:
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e u(z) < pi(x,y,2) < ulx), v(r) < P(x,y,2) < v(x) and therefore F*, G* are

continuous and bounded due to the assumptions on F, G,
o |pi(z,y1,21) — p1(, 42, 22)| < [y1 — 12| and

|P1($ayl,21) - P1($,y272’2)| < |21 - Z2|)V(‘r7y1721>a (x7y2a22> € RN X ]R2‘

These imply that the operators F*,G* : E x E — E, defined by F*(u,v) =
F* o (z,u,v) and G*(u,v) = G* o (z,u,v), are continuous and bounded, that is, T :

E x E — FE x E, defined by

T(u,v) = (SF*(u,v), SG*(u,v)),

is a compact operator. Moreover, T is the solution operator of the problem

—Au = w(x)F*(p, 1) in RY,

—Av = w(x)G*(¢,1) in RN, (M)
u(z),v(x) gy 0,

which means that (u,v) is a solution of the problem (M) in C?(R",R)? whenever
T(u,v) = (u,v). The C*(RY,R)>-regularity is a consequence of the standard elliptic
regularity theory.

To end the proof of the theorem we will prove four claims. The first one is:

Claim 1. 7= S in W.
Indeed, if (¢, 1) € W, then

pi(@, ¢(x), ¥(2)) = max {u(z), ¢(x)} = ¢(z)

and
Py(r, ¢(w), (x)) = max {u(x), (x)} = ().
Therefore, F*(¢,v) = F(¢,v), G*(¢,v) = G(¢,) and so T(o, ) is a solution
of as well, that is, T = S in W.
Let us do the second claim.
Claim 2. If (u,v) is a fixed point of T', then (u,v) € W.
Let us just prove that u < u in RY, because of the proof to the other three cases

are similar. First, we show that u < u in R by assuming that there were z, € RY
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such that u(xy) < u(zg). Since ‘1|im (u(z) —u(z)) = a; < 0 by (i), it would follows
Tr|—0o0
from our contradiction assumption and continuity of u — u that there exists an open

and bounded set 0y C RY such that
u < uin Qg and u = u on 09, (3.6)

which implies that © — u has a positive maximum on 2.

On the other hand, we obtain from the property of P; and assumption (i), that

Alu(a) — u(@)) > — w(z)Flu(), v(x)) + w() F*(u(z), o(x)) (3.7)
—w(x)Fu(x), Pi(z,u(z), v(x)) - w(z)F(u(x), v(x))

Zw(x) F(u(z), v(r)) — w(z)F(u(z), v(z)) = 0,

for all z € Qy. By the maximum principle (see Gilbarg-Trudinger [32], Theorem 2.3),
we have that sup(u—u) = sup(u—u) = 0, which leads us to a contradiction with ({3.6)).
Therefore u SQZOL in RV. e

Next, we prove that v < u in RY. Again, by contradiction, assume that there
were a x* € RY such that u(z*) = u(x*). Then, we would have A(u — u)(z*) < 0,

which implies by (3.7)) that 0 > A(u — u)(z*) > 0. Therefore u < u.

To end the proof of the claim, it is sufficient to prove that
min {dist(u,w), dist(u,u)} > 0.
Since

lim |u(z) —u(x)| =]a;| > 0and lim |u(z) —u(x)| = |as| > 0,

|z| =00 || =00
there exists R > 0 such that

u(e) — u(e)] > ) and u(z) ()] > 2],

for |x| > R. These inequalities and the fact that v < uw < @ imply, after some
manipulations, that min {dist(u,w), dist(u,w)} > 0. Hence by definition we have that
u € (u,a).

Claim 3. There exists an open ball B(0,r) such that T(E x E) c B(0,r) and
W C B(0,r). Since F* and G* are bounded, there exists a constant ¢; > 0 such

that
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for each (¢,v) € E' x E, which implies by Riesz representation (3.1)), that

IT(6, )] < el ¥,

for each (¢,1) € E x E, where V¥ is defined at (3.2)).

Besides this, since W is a bounded set, we are able to take a r > ¢;||¥|| such that

T(E x E) C B(0,r) and W C B(0,r). This ends the proof of the claim.
After these claims, we are in position to prove (3.3). To do this, first we note

that by the claim 1, we have that T = S in W, which leads us to
deg(I — S, W,0) = deg(I — T, W,0). (3.8)

If there were (u,v) € B(0,7)\W such that T'(u,v) = (u,v), then (u,v) would be
a solution of (M) such that (u,v) ¢ W, but this is a contradiction with the claim 2.

Hence,

0¢ (I—T)(BO./NW)

and

deg(I — T, W,0) = deg(I — T, B(0,7),0), (3.9)

by the excision property of the Leray-Schauder degree.
Now, define the homotopy

J(t, (u,v)) = I(u,v) —tT(u,v), (t,(u,v)) € [0,1] x B(0,r).

Suppose that there were a (t, (u,v)) € [0,1] x OB(0,r) such that tT'(u,v) = (u,v). If
t =1, then T'(u,v) = (u,v) and (u, v) would be a solution of (M) such that (u,v) ¢ W,
which is a contradiction with the claim 2. If 0 <t < 1, then, by the claim 3, we would
have

r =l 0)l = T (u,0)l| < tr <,

which is a contradiction again. That is, 0 ¢ J([0,1] x dB(0,r)).

Hence, by the invariance of the homotopy of the Leray-Schauder degree, we have

deg(I — T, B(0,7),0) = deg(I, B(0,7),0) = 1, (3.10)
whence, combined with (3.8]), (3.9)), (3.10), we obtain
deg(I — S,W,0) = deg(I — T,W,0) = deg(I — T, B(0,7),0) = 1.
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So, by the property of solution of Leray-Schauder degree, the problem admits a
solution (u,v) € W, that completes the proof of item a).

To finish the proof of the theorem, we just point out that just minors adjustments
are necessary in the approach of the proof of item a) to prove the item b), more
specifically, we have just to adjust the proof of above Claims to W and apply to Leray-
Schauder degree to the ball B(0,7) as given in Claim 3. These end the proof of the
theorem [B.1.11 [ ]

As a consequence of the Lemma we have the following corollary.

Corollary 3.1.1 If w is a radially symmetric function, then all the conclusions of

Theorem are still true if we change E by E,.

3.2 An extremal curve on the parameters for exis-

tence of one solution for the problem (P, ,

In this section, we will build the extremal curves I' and ' claimed in the main
Theorems and study their structures. One of the key points to prove the results of
this section is the choice of the appropriated spaces that permit us to apply some ideas
found in [I7] to whole space. To ease our statement, let us assume that w(z) satisfies
(W), — (W), throughout this section. Also, for completeness, below we recall once

again all the assumptions required in the nonlinearities throughout this chapter for
ie{1,2}:
(H)1: fi, i € C*0((=r,7r),RY), for each r > 0 and some a(r) € (0,1),
(H)2: 0 < inf gi(s) < sup gi(s) < oo,
s€R seR

(H)s: gi(s1) < gi(s2) for 51 < s9,

(H)q: gf(l()) < lim inf / "is)

< 00, where §; > 0 is the first eigenvalue of (A),

(H)s5: there exist py,ps > 0 and ¢, ¢2 € (1, %) such that
lim M = p;.
s—oo S

(H)e: fi(s1) < fi(s2) for 51 < s9,
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(H)s: 0 < lim %)

t—o00

(H)g: lim Jilt) = 0.

t—oo

< 00,

We begin by denoting the set
P={u€E:ux)>0VreR"}

and reminding that S : F — FE' is the solution operator of the linear problem .
After this, by denoting hi(u,v) = fi(u)g1(v), he(u,v) = fo(v)ge(u) and defining

Al (u,v) = AS[Thy(u,v) + (1 — 7)h1(u, 0)],

for each 7 € [0,1] and w,v € E, we obtain from Riesz representation (3.1) and (H);,
that

A3, 0)0) = Ox [ A (), o) + (1= 7)o, Oy > 0

rV |y
for (u,v) € E x E, which implies that Af(u,v) € P. Similarly, we have B](u,v) € P.
Hence, it follows from these information that 7Y , : E X E — E x E, defined by

T/\T’M(u,v) = (A% (u,v), B (u,v)), (3.11)

is well defined. Besides this, by using the assumption (H);, we have that Iy, is a
compact operator for each 7 € [0, 1], which implies that T} ,(u,v,7) := T3 ,(u,v) is a
compact operator as well.

With these, let us denote by
T:={(\p) € R xR* : Ty, has a fixed point in E x E},

int(Y) = the interior of T,
Yyud = {()\,,u) eRT xR : TA{M has a fixed point in E, X Er}

and

int(Y,qq) = the interior of T,qq.

The next Lemma shows in particular that T # ().
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Lemma 3.2.1 Assume that (H), holds for i = 1,2. For any r > 0 there exists a
(Ars ) € RE X Ry such that:

(1) [0, Ar] x [0, ]\ {(0,0)} C T,
(i) for each (A, ) € [0,A] x [0,1,]\{(0,0)}, Tx, has a nonzero fived point in
B(0,r) C E x E.

Proof Firstly, let us define the functions

ﬁi(s,t) _ hi(s,t) if (s,t) € [=r,r] x [—r, 7],

for any r > 0 and ¢ = 1,2, and set the positive numbers
vy= sup |hi(s,t)]>0andn= sup |hy(s,t)] > 0.
(s,t)eRxR (s,t)eRxR

In the sequel, let us build (A, i,;) depending on r,~ and 1. To do this, consider

the problem
—Au = dwhy (u, v),

—Av = pwhs(u, v), (@rp)
u(z),v(x) iy

and denote by S A the solution operator associated to (Q) Ap- 50, we know from Riesz

representation (3.1) and definition of 7 that

Ogu@%;MW/ w@%WWWW@»@gxﬂmm

RN |y — x|N—2

for all (¢,v) € E x E such that (u,v) = Sy ,(6,¢), where W is defined at (3.2). This
implies that 0 < u(z) <7, z € RY and A > 0 such that \y||¥| < r. In similar way,
we have 0 < v(z) <7, x € RY and p > 0 such that un||¥|] < r. So, for such A\, u >0
with A + u > 0, we have Sy ,(B(0,7)) C B(0,r).

Besides this, it follows from definition of k; in [—r, 7] x [—r, 7] and Riesz repre-

sentation , that
Sy p(u,v) = Tiu(u, v), V(u,v) € B(0,r), (3.12)
whence, together with Sy ,(B(0,7)) C B(0,r), become well defined the Homotopy
J(t, (u,v)) = I(u,v) — tgx,“(u,v) for (¢, (u,v)) € [0, 1] x m
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and so by Homotopy invariance of Leray-Schauder degree, we obtain
deg(I — Sy ., B(0,7),0) = deg(I, B(0,7),0) = 1,

for each (A, ) < (A, i), where (A, ) = (/29| 9|, /20 ).

Hence, by the solution property of the Leray-Schauder degree, there exists a
(u,v) € B(0,r) such that (u,v) = Sy, (u,v) whence implies by (3.12) that (u,v) =
Ty, (u,v). Therefore Ty , has a nonzero fixed point in B(0,7) for all (A, u) € [0, \,] x
[0, -]\ {(0,0)}. This completes the proof of Lemma. n

We note that in the proof of the next lemma it is very important that the solutions

of the system ([P, ) satisfies the conditions u(0) = max u(z) and v(0) = max v(x) to
zeR z€R

allow us to apply the blow up method. Since liminfw(x) = 0, we are not able to use

|z| =00

such method in general.

Lemma 3.2.2 Assume that (H), — (H)s,(H)s hold for i = 1,2 and w is radially

symmetric. One has
Suw = {(w,v) : TY ,(u,v) = (u,v), (A, p) € Iy x I, 7 € [0,1] and (u,v) € E, X E, },

is a bounded set, where I; = [a;, b;] for some constants b; > a; > 0 and i = 1, 2.

Proof Assume by the contradiction that there were sequences {( Ay, %)} C I X [0,1]
and {(ug,vx)} C E, x E, such that T;}’:M(uk,vk) = (ug,vx) and ]}erolo | (ug, v1)|| = o0.
So, by using that uy, v, are positive, continuous and decreasing, we have
My, := sup ug(x) = ur(0), Ny := sup vp(z) = vi(0)
zeRN zeRN

and M, + N, — oo as k — oo.

Without loss of generality, we may suppose that M, > N,. In this case, there
would be two sequences of numbers {\;} C I, {7} C [0,1] and a sequence of positive

solutions {(ug,vy)} of the family of equations

—AUk = )\kw(l‘)[Tkhl(uk,Uk) + (1 - Tk)hl(ukv O)]?

lim wug(x) =0
|z|—o0

satisfying lim |jug|| = oo.
k—o0
By rescaling the functions u; and v, by

2 2

Ur(y) = Uljrluk(aky) and Ty (y) = a,glflvk(aky) for y € RY,
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where
2

o My =1, (3.13)
we obtain from M > Ny, and (3.13) that 0 < T (y) < 1 for every y € RY, 03, — 0 as
k — oo and

sup Ug(y) = sup ug(y) =ug(0) =1 (3.14)
yeRN y€BR(0)

for all R > 0. Moreover, u, satisfies
—Aty(y) = Fi(y) in Bg(0), (3.15)

for all R > 0, where

2q1 —2 -2 -2

Fk(y) = )\kw(aky)a,jlfl [Tkhl(()']zlilﬂk<y), 051717k<y)) -+ (1 — Tk>h1(05171ﬂk(0ky), O)]

So, by taking R > 0 and R’ > R, we obtain from (H)s, (3.14) and some manip-

ulations, that
2q; -2 2q1

o fulof T ()] < e(an(y))® +o O < C

for some constant C' independently of £ € N and y € RY. This inequality, together
with (H)y and (W)s, imply

|Fe(y)| < ¢, y € Bp(0) and k € N (3.16)

for some constant ¢ > 0.

Since w;, € C*(RY,R) and F), € L>(Bg/(0)), we have that u, € W' (Bg/(0))
and Fj, € L™(Bgr/(0)) for all m € (1,00). Then by Theorem 10.2.2 in [43], we have
u, € W2™(Bg(0)) and

[Tkl |w2mBro)) < ClllkllLm By 0) + | FkllLm B, 00)])

where C' = C(m, N, Br/(0), Bg(0)). Hence, by combining (3.14)), and the last
inequality, we get
[Tl w2 By < ClIBr (0)]7 + ¢ == C,
where C' = C(m, N, Br/(0), Bg(0)) again.
Now, choose m > N large. By Sobolev compact embedding theorem, we obtain
that {u} is precompact in C**(Bg(0),R)(0 < a < 1), which implies that there

exists a subsequence 1y, converging to g in W™ (Bg(0)) N C**(Bg(0),R) satisfying
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ur(0) = 1. Besides this, by using that ug # 0, the maximum principle and o, — 0 we

obtain

—2
1

o Uk, (y) — oo with k; — oo in Bg(0). (3.17)

Therefore, it follows from (3.17) and (H )5 that

hm \Uql 1fl( Ty Ui, (y)) — (U ()" p1| =0

uniformly in Bg(0), which leads us to conclude that

2q -2

lim o1 1f1( 2 g (y) = (@r(y))pr for all y € Br(0). (3.18)

k‘j — 00

After this, we are almost in position to pass to the limit in (3.15)). By using (H)s,

we have that

g1(03 Tk, (y)) = 91(0) > 0 for all y € Br(0) (3.19)

and for every k; € N.

Finally, we may assume that A\, — A € [; and 7, — 7 € [0,1] as k — oo and

infer by (3.15)), (3.18]) and (3.19) that wg satisfies

—ATUp > au} in Bg and ug(0) = 1,

where a = A\g1(0)w(0)p; > 0.
Hence, the above argument together with a classical diagonal principle approach

lead us to obtain a 0 <7 € C'(RY,R) N W2 (RY) that satisfies
—AT > au™ in RY and (0) = 1, (3.20)
and so by setting z(z) = u(x/y/a) for x € RY, we obtain from that z satisfies
~Az > 2% in RY and 2(0) = 1,
which is impossible by Corollary IT of Serrin-Zhou [56]. The proof is complete. ]

In the next lemma we will prove that Y is a connected set.

Lemma 3.2.3 Assume that (H), and (H)s hold for i = 1,2. Suppose that Tfl’ﬁ has a
non null fived point (u,7) € E x E for some (X, i) € R* x R¥\ {(0,0)}. Then Ty, has
a non null fized point in E x E for any (A, 1) € [0,\] x [0,7] \ {(0,0)}. In particular,
T is a connected set. The same statements are true if (H)q,(H)s and (H)g hold for
i=1,2.
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Proof For any (X, u) € [0,A] x [0,7] \ {(0,0)}, it is easy to verify that (u,v) = (0,0)
and (w,7) are a pair of subsolutions and supersolutions to the system . So,
Theorem implies that the system has at least one solution for (A, u) €
[0, A] x [0,7] \ {(0,0)}, that is, Ty, has a non null fixed point in E x E for such (X, ).
To prove that T is a connected set, let us take (A1, p1), (A2, p2) € Y. Without loss of
generality, we may assume that (A1, 1) # (0,0) and (Ag, p2) # (0,0).

As we just proved, we have [0, A;] x [0, p1], [0, A2] X [0, po] € T and so there exists
a (A, ) € ([0, A\] x [0, 1]) N ([0, Aa] x [0, p2]). As a consequence of this, we are able
to connect (A1, 1), (A2, 2) € Y by a polygonal path in Y, which shows that T is a

connected set. The proof is complete. [ ]

In the next lemma, let us prove the main topological properties of set Y.

Lemma 3.2.4 Assume that (H); holds for i = 1,2. The following conclusions are

valid:
a) {(0,0)} € T and int(YT) is nonempty,

b) T is bounded if we assume (H)e — (H)4 for i = 1,2. If in addition we assume

(H)s and w radially symmetric the set Y,qq is closed,

c) the set T is unbounded in both directions if we assume (H)s, (H)g, (H)s for i =
1,2. Moreover, int(Y) is an unbounded set in both directions under the same

assumptions,

d) int(YT) is a bounded set in the direction \ and an unbounded one in the direction
p if we assume (H)s, (H)g fori=1,2, (H)a, (H)y fori=1 and (H)g fori =2,

e) int(Y) is an unbounded set in the direction X\ and a bounded one in the direction
p if we assume (H)s, (H)g fori=1,2, (H)s fori=1 and (H)y, (H)4 fori=2.

Proof First we notice that (0,0) € T, because of T ,(0,0) = (0,0). Let us prove
the item a). By the Lemma [3.2.1] given r > 0 there exists (A, y1,) > (0,0) such that
the operator T , has a fixed point in E x E for all (A, u) € (0,A) x (0, ). Therefore
(0, A) x (0, 1) € Y and T\ {(0,0)} is nonempty. After these information and Lemma
3.2.1, we have int(Y) # (. The prove of item a) is complete.

Now let us prove the item b). First we will to prove that T,,q is a closed set.

To do this let {(An, ftn)} C Yraq such that (A, p,) — (A, 1) > (0,0) as n — oo. If
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(A, ;) = (0,0), we know from a similar statement of item a) that (A, u) € T,qq. Then,
we have two cases to consider, namely: Ay > 0 or Ay = 0. Let {(u,,v,)} C E, x E,
such that Ty . (tn,vn) = (Un,v,). Consider first that Ay > 0. In this case we may
use Lemma and the compactness of T)}n’un to prove that up to subsequences
(Un, vn) = (u,v) in B, X E, as n — oo and (u,v) = Ty ,(u,v), that is, (A, 1) € Tyaq-

In the other case, that is, Ay = 0, we may assume without loss of generality that
A # 0and g = 0. By Lemma for each n € N, there exits u,, € F, such that
T/\lmo(un, 0) = (uy,0). Since A > 0 it is easy to see that the proof of Lemma may
be applied to prove that {u,} is a bounded sequence, which implies by the compactness
of Ty , that u, — u in E, as n — oo, up to subsequences, and (u,0) = T} (u,0), that
is, (A, 0) € T,qq. Therefore, T,,.4 is a closed set.

Now, we show that T is bounded. If T were unbounded, then there would be
sequences {(un,v,)} C E x E and {(An, tn)} C RT x RT such that T , (un,v,) =
(up, vy,) and either lim A, = oo or lim y,, = co.

Without loss of generality, suppose that lim )\, = oco. By combining this as-
sumption with (H); — (H)y, there exists an € > 0 and a sufficiently large £ € N such
that

Mef1(1)g1(s) = Ak fi(r)g1(0) > (01 +€),

for all s, € R*, which implies that
—Auy, = Mw(x) f1(ug)gr(vk) > (61 + €)w(z)ug (3.21)

due to the fact that Ty, (ug,vx) = (u, i)
Finally we can multiply by the eigenfunction ¢; > 0, corresponding to d1,
to get
(51/w($)uk¢1dx = /Vukv¢1dx > (0q —i—e)/w(x)uk(ﬁldx

that leads to d; > 01 + €, which is impossible. Thus T is a bounded set.

To prove c) is suffices to show that for each A > 0 there exists a u > 0 such that
Tiu has a nonzero fixed point and vice versa. To do this, let us fix A > 0. First let us
find an appropriated p and build a supersolution for (P, ,[). To do this, let 5 > 0 be
fixed. So, by defining the continuous function h : (0,00) — R by

_ fl(S) _ 1
s AWgi(to)
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and applying (H); and (H)s, we obtain lim h(s) = coand lim h(s) = —1/A||¥]|g1(to) <
S§—00

s—07t

0, which implies that there exists so = so(A, %) > 0 such that

MW f1(s0)g1(to) = so- (3.22)
Let ¢ € E be the solution of

—A¢ = w(x) f2(to)g2(s0) in RY,

¢ > 0in RY and ¢(x) i 0,
the parameter p > 0 such that v := u¢ < t, in RY and v € E be the solution of

—Au = M) fi(s0)g1(v) in BV,

u >0 in RY and u(z )H—>O<>

So, by the Riesz representation (3 , v < to, (H)3 and (| -, we obtain

u(@) = A\Cy /R ) w(fﬁ(jfj)vgg(”)dy < AT f2(s0)91(t0) < So- (3.23)

Finally, it follows from v < ¢, again, (3.23)), (H)s; and (H)g, that
—Au = w(x) fi(s0)g1(v) > Mw(z) fi(w)gi(v) in RY,
—Av = pw(x) f2(to)g1(s0) = paw () fo(v)ga(u) in RY
holds, which implies that (u,v) is a supersolution of (P, )). Since (0,0) is a subsolution
of (P ,)) and (0,0) < (u,v), we obtain from Theorem 3.1.1|that (P, ,)) admits a solution.

An analogous statement to u is justified in a similar way. This proves the item c).
The proofs of the items d) and e) follow from arguments done to prove the items
b) and c¢). The proof of lemma is complete. u
Before stating the next lemma, we need to set the notations:
d(int(T))
d(int(Y)) := the derived set of int(Y),
int(T) := the closure of int(Y)

:= the boundary of int(Y),

and apply the assumptions (H)i, (H)s and (H)g — (H)7 to obtain that
f1(8)g1(t) > pit and fo(t)ga(s) > pas, Vs, t € Ry (3.24)
hold, for some constants p;, po > 0. Besides these, let us denote by
p=0%/pipa. (3.25)
After these, we have.
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Lemma 3.2.5 Assume (H)y,(H)s holds fori = 1,2. If in addition:

a) the assumptions (H)y and (H)4 hold for i = 1,2, then there exists a (A, i) €
Ry x Ry such that

{(A0) s A e [0, \JJU{(0, 1) = 1 € [0, ]} € O(int(T)) andint(T) C [0, \] X [0, ps],
(3.26)

b) the assumption (H)g — (H)7 hold for i = 1,2, then
TC{(\p) eRY xR : Ap < p}, (3.27)

where p is defined at (3.25)),

¢) the hypothesis (H)g hold fori = 1,2; (H)s, (H)4 hold fori =1 and (H); hold for
1 = 2, then there exists N\, > 0 such that

T [0, \] x [0, 00),

d) the assumption (H)g holds for i =1,2; (H)s, (H)4 hold for i = 2 and (H)7 hold
for i =1, then there exists p, > 0 such that

T C [0,00) x [0, pta].

Proof Let us prove a). First we will prove that
{XeRT : (N,0) € d(int(Y))} and {pu € R{ : (0,u) € d(int(Y))} (3.28)

are nonempty sets. By Lemma c), there exists a (Ao, o) € int(Y) C Ry x Ry.
So, by combining this information with Lemma , we have that (0, \g) x (0, pg) C
int(T), which implies that (Ao, 0) € 9(int(Y)) and (0, uo) € O(int(Y)). Therefore, the
sets defined in are nonempty and bounded by Lemma b). In particular, we

have that the numbers

A =sup{AeRY : (X,0) € d(int(T))} and p, =sup{p e Ry : (0,p) € A(int(T))}
(3.29)
are finite, which helps us to show that {(\., 0), (0, i)} C 9(int(Y))Nd(int(Y)). Indeed,
by definition of A, there exists {(A\g, 0)} C 9(int(Y)) such that (Ag, 0) — (A4, 0). Since
d(int(Y)) is a closed set, we obtain (\,,0) € d(int(Y)). Now, if (A\,0) € d(int(T)),
then (A,0) € d(int(Y)), because clearly (X,0) ¢ int(Y). Hence, (A\,0) € d(int(Y)).
Similarly we have (0, ) € 9(int(Y)) N d(int(Y)).
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As {(A,0), (0, i)} C O(int(Y)), to end the proof it is enough to prove that

{ON0) s A€ [0, A0 U{(0, 1) : € [0, )} C B(int (L))

In fact the above inclusion holds true. For any A\g € [0, \,), we obtain from (\,,0) €
d(int(T)) that there exists X, fi such that

(:\7 ﬂ) € (Z?’Lt(T)) N Bk*—ko((/\h 0))7
which implies by Lemma that (0,\) x (0, /2) C (int(Y)). Since
A =A< A=A < A= Ao,

we have \g < A. Again by Lemma , we have (X\g,0) € 9(int(Y)). Therefore,
{(A\,0): A€ [0,\)} C 9(int(T)). Similarly, one can show that {(0,x) : p € [0, )} C
Jd(int(Y)) holds as well.

Next, we prove that int(T) C [0, \,] x [0, u.]. In fact, if

(A7) € int(Y) and (N, 1) € [0, \,] x [0, ],

we have either A > \, or i > j,. Without loss of generality, by supposing that A > \,,
we obtain that there exists a sequence {(\, ux)} C int(Y) such that (A, ux) — (A, 70)
and A\ > A\, > A, for every k > ko and some ky > 0. By Lemma we have
(0, \r) x (0, pg) € int(Y). Thus {(M,0)} € d(int(Y)). Since Ay — X and d(int(Y)) is
a closed set, we obtain that (), 0) € d(int(Y)) and so by combining this information
with we conclude that \ < Ay, but this is a contradiction.

Let us prove of b). Let (A, p) € T. Then (u,v) = Ty ,(u,v) for some u,v € P. Since
¢ is the first eigenfunction of (A), we obtain from that

51/w(a:)u<b1dx = /VUV¢1d:C > pl)\/w(a:)vgzﬁlda:

and
51/w(x)v¢1dx = /V?}ngldx > pgp/w(x)ugbldm,
which implies that 62 > pypoAu. Hence T C {(\, u)RT x RT : A\ < p}, where p is
defined in ({3.25)).
Proof of ¢). As in the item a), we can prove that

A =sup {A € RY : (X,0) € d(int(T))} < oo
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and T C [0, \] x [0, 00).

Proof of d). As in the item a), we can prove that
e =sup {p € Ry : (0, 1) € O(int(Y))} < o0
and T C [0,00) x [0, u,]. This ends the proof of Lemma. n

Our next goal is to make a detailed study of the boundary d(int(Y)) of the set

int(T). To do this, first we define a family of straight lines
L(t) = {(A\tA) : A€ (0,00)}, t € (0,00)
and
A(t) = sup {)\ LA € M} , u(t) = tA(t) and T(t) = (A1), u(t)).

The next lemma ensures that ['(¢) is well defined for every ¢ > 0.
Lemma 3.2.6 Assume (H); and (H)s hold for i = 1,2. Then:

a) A(t) < A for every t > 0 if we assume in addition that (H)s and (H)4 hold for
i=1,2,

b) the estimate
L(t) < H(Vp/1) (3.30)
holds if we also assume (H)g— (H)s fori = 1,2, where H : (0,00) — R is defined
by H(t) = (t, p/t),
c) AMt) < Ao for every t > 0 if in addition we assume (H)g hold for i = 1,2;
(H)o, (H)4 hold fori=1 and (H); — (H)s hold fori =2,

d) A(t) < ps/t for every t > 0 if also we assume (H)g hold for i =1,2; (H)s, (H)4
hold fori =2 and (H); — (H)s hold fori = 1.

Proof The statement of a) is a consequence of Lemmas|3.2.3| a) and a). Let
us prove the item b). First we note that H(\/p/t) € L(t) for every t > 0 that implies

together with Lemmas [3.2.3] b) and definition of A(¢), that I'(t) < H(+/p/t) for

all t > 0. Now the items ¢) and d) are consequence of Lemmas [3.2.3] [3.2.4] a), |3.2.5|
¢),d), the definitions of A(t) and I'(¢). u

Now, we have the following.
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Lemma 3.2.7 Assume that (H), (H)s hold for i =1,2. Then, I'(t) € 0(int(Y)) for
every t > 0 if:

a) (H)s and (H), are also satisfied for i = 1,2,
b) when (H)¢ — (H)s are also satisfied fori = 1,2,

¢) (H)g is satisfied fori = 1,2, (H)q, (H)4 are satisfied for i =1 and (H)7 — (H)s

are satisfied for i = 2,

d) (H)g is satisfied fori = 1,2, (H)7 — (H)s hold fori =1 and (H)s, (H)4 hold true
fori=2.

Proof Let us prove just the item a), because of the proofs of the other items are
very similar. For any ¢ > 0 given, by the definition of A\(¢) there exists a sequence
{( M, )} € L(t) Nint(Y) that converge to (A(t), i), for some u € R*. Now, by the
definition of L(t) and this convergence, we have p = tA, and p = khﬁrgo pr = tA(t) =
p(t). Hence, (A(t), u(t)) = (A(t),n) € int(T), that is, T'(t) € int(T). We claim that
['(t) ¢ int(Y). Indeed, if I'(t) € int(Y), then there would be a r > 0 such that
B, (T(t)) C int(Y). Since B.(T'(t)) N L(t) # 0 and f(\) = tA is an increasing function,

there exists A > A(t) such that (A, t\) € B.(I'(t)) and so (A, tA) € int(Y), which is a
contradiction with the definition of A(¢). Therefore T'(t) € d(int(Y)). u

The next lemma give us a full description of the boundary of int(Y). Further-

more, it establishes the region of existence and nonexistence of positive solution for the
problem ([P ).

Lemma 3.2.8 Assume that (H); and (H)s hold for i = 1,2. Then the following

conclusions hold true:

a) T :(0,00) — R? is a continuous function if we also assume either (H)y, (H)4
or (H)G - (H)g,

b) A(t) is nonincreasing and p(t) is nondecreasing if we assume either (H)s, (H )4
or (H)g — (H)s as well,

¢) imI'(t) = (A, 0) and tli>rg> ['(t) = (0, ps) if we assume (H ) and (H)4, too,

t—0

d) T'(t) is injective if in addition we assume either (H)q, (H)4 or (H)s — (H)s,
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e) the d(int(Y)) is a simple closed curve and

O(int (1)) = {T(#) : t € (0,00)} U{(A, 0) : A € [0, \]} U{(0, ) = pu € [0, g}
(3.31)
if (H)y and (H)4 are satisfied as well,

f) the

mM = |J {0 el):(0,00<w<IB} (332

te(0,00)

U{(X,0): A€ [0, AP U0, 1) - € [0, ]}

if (H)s and (H)y are also satisfied,

g) IimI'(¢) = (00,0) and lim I'(t) = (0, 00) if in addition we assume (H)g — (H)s,

t—0 t—o00

h) the statements (3.31) and (3.32)) hold with the bounded intervals changed by un-
bounded ones of the form [0,00) if we also assume that (H)s — (H)s hold true.

All the above additional assumptions are made for i =1, 2.

Proof Firstly let us prove a). It is sufficient to prove that A(t) is a continuous function.
If A(t) were discontinuous at, say, a point ¢, then there would exist an € > 0 and a
sequence t, — t such that |\(¢,) — A(f)| > €. So, up to a subsequence, there would
have two possibilities:

At,) < A(t) or A(t,) > A(t),

for n sufficiently large. Assume that the first one holds. Let A\; < A; such that
)\(tn> <A< A< )\(t) Since th < t)\g, then

taA(tn) < thd1 < tha < tA(1),

for n large enough. Thus, by the definition of I'(¢) the system (Ph,1y,) has a solution
(u,v), which is a supersolution of (Py, 4., ). So, Theorem implies that the system
(Py, 1,1, ) admits a solution (@, 0), which lead us to conclude that Ay < A(¢,,), but this
is a contradiction. The second case runs in a similar manner.

Now, let us to prove b). Suppose by contradiction that there exists t1,ts € (0, 00)
with t; < ty and A(t1) < A(t2). Then, we would have u(t;) = t1A\(t1) < taA(t2) =
p(ty) and from I'(t3) € 9(int(Y)) there would exist (A, ) € int(Y) such that I'(t;) <
(A, 1) < I'(t2). By Lemma we have T'(t1) € (0,A) x (0, ) C int(Y) which is a
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contradiction, because of Lemma implies that I'(¢t1) € d(int(Y)). Similarly, if
there were t1,ty € (0,00) with t; < to and u(t;) > p(tz), then the definition of u(t)
would lead us to infer that A(t;) > A(t2) and this implies that I'(t2) € int(Y), which is
a contradiction again.

Let us prove the first statement of item ¢). To do this, first we note that the item

b) and Lemma imply that

Ae > lim A(t) =sup A(t) == A >0

holds. We claim that A, = \. If were A, > X, there would exist a (, ) € int(Y) such
that (A, ) € By _5((X+,0)) and (0,A) x (0,) C int(YT) due to the definition of ..
Therefore, these information together with the definition of A\(¢) imply that

A< A< A®)

holds for all ¢ > 0 small enough due to the fact that L(t) N {(X,0): 0 <8 < pu} #0
for all ¢ small enough. So, we obtain that A\ = 1iné A(t) > A > ), which is impossible.
—
Hence, lim A\(t) = A\ = A, and lim p(t) = lim tA(t) = 0, that is, im I'(¢) = (\,,0). This
t—0 t—0 t—0 t—0
proves the first statement of the item c).
To prove the second statement, first we note that the proof of 1tlim p(t) = py is
—00
similar to the proof of 111% A(t) = A«. Now, let us prove that ltlim A(t) = 0. Indeed, it
— —00
follows from Lemma a) and the definition of the norm |I'(¢)| that

VAL 2
0<\t) < Y—=
Vs AT
that lead to tlim A(t) = 0 and therefore tlim ['(t) = (0, us). This completes the proof
—00 — 00

of the item c).
Now, let us prove d). If I'(t) = I['(s), then A(t) = A(s) and tA(t) = sA(s) that
implies ¢t = s. Therefore, I' is injective and this completes the proof of d).

Proof of e). Firstly, we will prove (3.31)). It follows from Lemmas a) and
a) that

{T(#) : t € (0,00)}U{(N,0) : A€ [0, \]}U{(0, ) : € ]0, pe]} € O(int(Y))
and so, to complete the proof, it suffices to show
I(int(T)) C{T(t) : t € (0,00) U{(N,0): A€ [0, \]FU{(0, ) : w €0, pus] }
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To do this, by letting

(a,b) € Ot (1) \ {(A,0) : A € [0, A ]} UL(0, ) = po € [0, ]}, (3.33)

we have that

(a,b) € L(to)

for to = b/a, whence together with (3.33)), we obtain (a,b) € L(to) Nint(Y). Besides
this, just by definition of A(ty), we have that a < A(ty). Therefore,

{(a,0), (A(to), u(to))} C L(to) and a < A(to).

We are going to proof that a = A(tg). If a < A(tg), then b < u(ty). By definition
of I'(ty), there exists {(A\g, ux)} C int(Y) such that Ay — A(ty) and up — p(to) with

k — 4o00. Hence, there exists ky € N such that
a < A, < A(to) and b < pg, < p(to),
which implies, together with the Lemma [3.2.3] that
(a,b) € (0, \gy) X (0, pgy) C int(Y),
that is, (a,b) € int(Y), but this is a contradiction with (3.33)). So
(a,b) = (Alto), u(to)) € {I(t) - £ € (0,00)}

that shows (3.31)).

Finally, we show that d(int(Y)) is a simple closed curve. It is clear that

{02 A€ [0, A U0, 1) - € [0, ]}

is a continuous simple arc. In addition, by items ¢) and d) of Lemma [3.2.8, we have
that

{T'() : t € (0,00)} and {(A,0): A€ [0, \]}U{(0,n):pe[0,u]}

has just their end points {(A.,0), (0, px)} in common. So, this information, together
with the fact that I'(¢) is a simple arc, imply by (3.31)) that d(int(Y)) is a simple closed

curve.
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Proof of f). By definition, for any
(ab)e |J {OvmeLt):0<(\p) <TE)}
te(0,00)

given, there exists a t € (0, 00) such that
(a,b) € L(t), 0 <a < A(t) and 0 < b < pu(t). (3.34)

In view of Lemma [3.2.7 a), (A(t), u(t)) € L(t) N d(int(T)). Let (0,0) < (A, p) <
(A(t), p(t)). So, there exists (k,&) € int(Y) such that (A, u) < (k,&), which implies by
Lemmathat (A, 1) € int(Y) C int(Y). Therefore [0, \(t)] x [0, u(t)] C int(T) and

by (3.34) we have (a,b) € int(Y). This means that

U {uw e Lity:0< (M\p) <T(1)} Cint(T). (3.35)

te(0,00)
Besides this, we have from Lemma a) that

{N0): A€ 0 AT} UL(0,0) : g € [0, ]} € nf(T) (3.36)
holds. Hence, it follows from ({3.35)) and (3.36) that

U {Ouw) €L(t):0< () STOFU{A0): A€ [0, A} U{(0,1) : p € 0, 1]}

te(0,00)

C int(Y).
To end the proof, we claim that

int(T) ¢ | {(wm) € L) : (0,0) < (A ) T(HYU{(A0): A e [0,A]} (3.37)

te(0,00)
U{(0, ) s p € [0, ]} -

Indeed, for any (a,b) € int(YT), we obtain from Lemma a) that (a,b) € [0, \,] x
[0, ). If @ =0 or b= 0, we have

(a,0) € {0, 0): A€ [0, M} U{(0,10) < o € [0, 1]} (3.38)

Assume that a,b > 0. Let ¢t = b/a. Then (a,b) = (a,ta) € L(t) so (a,b) €
L(t) Nint(Y). By the definitions of A\(¢) and u(t), we have a < A(t) and b < pu(t).
Hence, (a,b) € L(t),0 < a < A(t) and 0 < b < p(t), that is,

(a.b)e |J {(nm) € L(t): (0,0) < (A p) <T(1)} (3.39)

te(0,00)
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Thus, the claim (3.37)) is a consequence of ([3.38) and (3.39)).

Let us prove the item g). First, we are going to prove Pn% A(t) = oo. To do
—
this, fix a A > 0. By Lemma ¢), there exists a p > 0 such that (A, ) € int(7).
Since (A, ) € L(to), where tg = u/\, we obtain from the properties of A(t) that
A(t) > A(to) > A for all t € (0,t), that is, lir% A(t) = oo. Now, it follows from ({3.30))
%
that lim p(t) = 0. Hence, imI'(¢) = (00, 0). The proof of lim I'(t) = (0, c0) follows in
t—0 t—0 t—o0
a similar way.
The proof of item h) is very similar to the proof of items e) and f) and we omit

it here. The proof of lemma is now complete. [ ]

Corollary 3.2.1 (of the demonstration) Assume (H),(H)s and (H)g hold fori =
1,2.

i) if (H)y and (H)y hold for i = 1 and (H)7; — (H)s hold for i = 2, then the
conclusions of items the a),b),d) of Lemma are still valid. Moreover, we
have Pr% I(t) = (A, 0),tlim ['(t) = (0,00),

— —00

O(int(T)) ={T(t) : t € (0,00)} U{(N,0): A€ [0, ]} U{(0, ) : € [0,00)}
and

nt(0) = | {0 € L) : (0,0) < (A ) ST(H)}UL(X0): A € [0,\]}

te(0,00)

V{0, ) = p € [0,00)},
where A\, is given in Lemma c).

it) if (H)y and (H)4 hold for i = 2 and (H); — (H)s hold for i = 1, then the
conclusions of items a),b),d) of Lemma hold true. Besides these, we have
2leirrcl)lj(t) = (00, O),tlim [(t) = (0, ps),
— —00

A(int(T)) ={L'(¢) : t € (0,00)} U{(A,0) : A € [0,00)} U{(0, 1) : pt € [0, 1]}
and

int(Y) = |J {(w) € L) : (0,0) < (A ) ST} U{(A,0): A € [0,00)}

te(0,00)

U{(0, ) - € 10, pl}
where p, is given in Lemma d).
The next lemma give us a full picture of the boundary of Y.
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Lemma 3.2.9 Assume that (H), and (H)s hold for i = 1,2. Then:
a) there exist \* > A, and u* > . such that
O(T) = {I'(t) : £ € (0,00)} U{(A,0): A € [0, T} U{(0, ) = pu € [0, 7]}
if we also assume (H)y and (H)4 fori=1,2,
b) O(Y) = 9(int(Y)) if we assume (H)g — (H)s, fori = 1,2, as well,
c) there exists \* > A\, such that
D) = {T(t) : t € (0,00)} U{(\,0) s A € [0, X} U{(0, ) : € [0, 50)}

if we assume in addition (H)g fori=1,2; (H)s,(H)4 fori=1 and (H)7; — (H)s
fori=2,

d) there exists p* > . such that
(Y) ={L'(t) : t € (0,00)} U{(A,0) : A€ [0,00)} U{(0, ) : pu € [0, 1]}

if we also assume (H)g fori = 1,2; (H); — (H)s for i =1 and (H)a, (H)4 for
1= 2.

Proof Let us prove a). If int(T) =T, then d(int(Y)) = d(int(Y)) due to the fact that
int(T) be an open set. So, by (3.31)), the lemma follows. If int(T) & T, then we claim
that

D £ Y\int(Y) C {(\,p) eRT X RY : A =0} . (3.40)

In fact, if (A, p) € T\int(Y) and (A, ) > (0,0), then by Lemmawe would

have [0, A] x [0, u] C int(T), which implies that (A, u) € int(Y), but this is a contra-
diction. Thus (3.40)) is satisfied.
So, by denoting

A" =sup{(X,0): (A,0) € d(T)} and p* = sup{(0, u) : (0, 1) € I(Y)},

we get from (3.40) and (3.29) that \* > A, and p* > p,.. Hence, this information
combined with Lemmas b) and [3.2.3} lead us to

{(X,0): A€ [0, NTFUL(0, 1) - € [0, 7]} € O(T) (3.41)

and

{HA0): A>XNFU{0,p) : p>p HNO(T) = 0. (3.42)
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Thus, it follows from Lemmas a), e) and (3.41)) that
{0) £ € (0,00 U{(A,0) : A€ [0, AT U{(0,) : A € [0,1]} CA(Y).  (3.43)

On the other hand, we obtain from Lemma a) and (3.42)) that

AT\ (int(7))) € {(X,0) : A€ (A, NTFU{(0, 1) = A € (i, 7]}

and 0(Y) = d(int(Y)) UO(YT\(int(Y))). This equality together with the Lemma m
e) imply that

A(T) C {T(t) : t € (0,00)} U{(\0): A€ [0, Ny U{(0, 1) : A [0,15]}  (3.44)

and so the item a) follows from ({3.43)) and (3.44])).
Now, let us prove b). By using Lemmas h) and[3.2.3] we have that d(int(Y)) C

J(T). On the other hand, if (A, u) € O(T), we may take a sequence in T converging to
(A, i) So, by using Lemma and the fact that 0(int(Y)) is a closed set, we obtain
that () C d(int(Y)).
The proof of the items ¢) and d) follow from similar arguments as those done to
prove the previous items a) and b). The proof of the lemma is now complete. [ ]
Let us end this section by doing the following observation:
Remark 3.2.1 We note that when w is radially symmetric the properties of the sets T
and int(), proved in the previous Lemmas, remain valid for the sets Y ,.qq and int(,qq)
Just redoing the equivalents proofs with the operator Tiu |E, xE,, using Lemma and
Corollary [3.1.1]. However, the extremal curves and parameters may be different from

the non-radial case. In this case we will denote the extremal curves by T and the

parameters by Aoy A, [y and [i*.

3.3 Proof of the main results

In this section we are going to prove our main results. First let us prove Theorem
[0.0.6] and use the notation set in Remark [3.2.1]
Theorem Assume (W), — (W), (H)1 — (H)5 for i = 1,2 and that w is radially

symmetric. Then:

a) there exists a continuous simple arc I' = {(A(), u(t)) : ¢t > 0}, with 0 < A(¢)

non-increasing, 0 < y(t) non-decreasing and p(t) = tA(t), connecting (\,,0) and
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(0, fi4), for some s, fi. > 0, that separates Ry x Ry into two disjoint open subsets
O, and O, such that system (Py,)) has no radially symmetric positive solutions,
at least one or at least two radially symmetric positive solutions according to

(X, ) belongs to ©,, T or Oy, respectively. Moreover, I' U 0, ;\*] U [0, fis] = 00,

b) there exists A* > X, and ji* > ji, such that the system (P, has no radially sym-
metric positive solution for (A, u) € {(X,0) : A > 5\*} U{(0,p) : pp > "}, at least
one semi-trivial radially symmetric positive solution for (A, u) € {(5\*, 0), (0, %)}

or at least two semi-trivial radially symmetric positive solutions for (A, u) €

{(\0): X< 5\*} U0, p) : < fi*}.

Proof We just prove the item a), because of the proof of b) is very similar. We
know from Lemma a),c),d) and e) that {f‘(t) :t € (0,00)} is a continuous simple
arc that separates R x Ry into two disjoint open subsets int(Y,qq) and Ry x R\

int(Y,qq). Let us denote by
01 = int(Traq) and Oy = RY x RE \ int(Lreq).

After these, it is direct application of Lemmas b), e), f) and a)

that I U ©; C int(Traq) C Trag. Besides this, we claim that ©y N Tyeq = 0. In
fact, if there were (A, u) € O N Y,aq, then we would obtain from Lemma that
(A, 1) € [0,A] x [0, z1] € int(Traq), which is a contradiction. So Oy N Yyreq = 0. Since
0,Ul C T, a4, it follows from definition of T, .4 that the system admits at least
one nontrivial positive solution for (A, u) € ©; UT.

We will prove the existence of the second solution of the system for (A, ) €
©,;. To do this, by fixing a (A, u) € O, we obtain from the fact that ©; is an open set
that there exist a (\, 1) € O, such that A < X and i < f. So, by definition of Y,.q,
there exist (@,0) € E, x E, such that Txl’ﬁ(ﬂ, 0) = (a,0) > (0,0), that is, (@,?) is a
nontrivial positive solution to system (P ).

After this, let us build a supersolution to the problem . To do this, we first

claim that there exists an € € (0,1) such that

(@) < (A= A)m, z € RY,
(2))] < (7 = p)mo, v € RY

N

A (i(e) + €, 3(x) + €) — b (ii(a),
ulha(ii() + €, b(x) + €) — haii(x),

(3.45)

N
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hold for all € € (0,¢), where
m = min {h(s,0) : s € [0, [|@]|]} and 7o = min{h2(0,¢) : ¢t € [0,]|7[[]}  (3.46)

are positives due to the assumption (H);.
If the claim were not true, then there would exist sequences {¢,} C (0,1) and

{z,} C RY satisfying €, — 0 and

Alhi (@) + €n, 0(xp) + €,) — ha(T(zy), 0(2n))] > (A — A)m > 0. (3.47)
Since hy € CO((—r,r) x (—r,7),RY) for some a(r) € (0, 1), where
r=max {[la] + 1, [[o] + 1},
we obtain from that there exists a constant k = k(r) > 0 such that
A2e9M) > (X = Ny > 0

and this implies that 0 = nh_)rgo A2 > (X = A)y > 0, which is impossible. Thus

there exist 1 > 0 such that the first inequality in is satisfied for € € (0,e1).
Similarly, we are able to find an €5 > 0 such that the second inequality of

is satisfied for any € € (0,e5). To finish the proof of the claim it is enough to take

e =min{ey, e}
So, it follows from (3.45)), (3.46)) and (H)s3 that
A =Xm — (A = Nh(a,0)
(A= N[m — hi(i,0)] <0,z € RY,
(ﬁ - PJ)[TIQ - h2(07 75)] < 073: € RN?

ARy (G + €,3 + €) — Ahy (@0, D)

IN A

A

/’Lh2<a + 6717 + 6) o Ehg(iﬁ,ﬁ,, 6)

for any € € (0,¢), whence we conclude that (w,7) = (4 +€,0 + €) is a supersolution for

for any € € (0,¢) given.

On the other hand, the pair (u,v) = (—¢, —€) is a subsolution of the system .
Moreover, it is clear that (@, v) and (u, v) satisfy the condition () of the Corollary [3.1.1]
which implies that

deg(I — Ty ,, W,0) =1, (3.48)

where W C (u,u) x (v,7) is defined at (3.4)).
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Let us do a new claim. There exists a R > 0 large enough such that

W¢ B0, R),
deg(I — T} ,, B(0,R),0) = 0.

PWIE
In fact, let (5\,,&) € O, with A > X and i > p. Consider R > 0 large enough such
that R > C,,Cy,, where Cr, and (7}, are the constants given in Lemma with
L =\, 5\] and Iy = [y, fi]. In addition, due to the boundedness of W, we may assume
that W C B(0, R/2) x B(0, R/2). Then, by combining Lemma with Homotopy

invariance, we have that
deg(I =Ty, B(0, R),0) = deg(I — T5 ., B(0, R),0) = 0, (3.49)
which implies by the additivity of Leray-Schauder degree, (3.48) and (3.49)) that

deg(I — T/\lw

B(0,R)\ W,0) = deg(I — T}

A0

B(0, R),0) — deg(I — Ty

A0

W,0) = —1.
(3.50)
Therefore, by and the operator Ti ., has at least two nontrivial fixed
points in F, x FE,, that is, the system admits at least two positive solutions for
(\p) € O;. The proof is now complete. [ ]

Now let us prove Theorem (0.0.7

Theorem Assume that (H); — (H), for i = 1,2 and (W), — (W), hold. Then:

a) there exists a continuous simple arc I'; with the same properties as those one in
Theorem [0.0.6, which separates Rj x R into two disjoint open subsets ©; and
O, such that system has no positive solution and has at least one according
to (A, 1) belongs to ©y and Oy, respectively. Moreover, I' U [0, \,] U [0, u.] = 00,

for some A, p, > 0,

b) there exists \* > A, and p* > pu, such that the system (P, ,)) has no positive
solutions for (A, ) € {(A,0) : A > XN} U {(0,p): > p*} and at least one for
(A1) € {(X0) s A <A FUL(0, ) s pp < i}

Proof We know from Lemma a),c),d) and e) that {I'(¢) : ¢ € (0,00)} is a con-

tinuous simple arc that separates Rf x Ry into two disjoint open subsets int(T) and

RS x R \ int(T). By denoting by

L={T(t):t€(0,00)}, ©; =int(Y) and Oy = Ry x Ry \ int(T),
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we obtain that ©; C int(Y). Besides this, we have O, N Y = (). In fact, if there were
(A, 1) € O N'T, then we would have by Lemma that (A, 1) € [0,A] x [0,u] C
m, which is a contradiction. So ©, N YT = (), that is, the system has no
solution for (A, ) € ©,. Since ©; C T, we obtain by definition of T that the system
admits at least one nontrivial positive solution for (A, u) € ©;. This ends the

proof of Theorem. [ ]

Let us prove the Corollary [0.0.1]
Corollary Assume that (W), — (W), (H)1 — (H)s5 for i = 1,2 hold and w is
radially symmetric. Let ©1,T, ©; and O, as in Theorems|0.0.6/and 0.0.7 If @1\61 £ (),

then the system has no positive solution, at least one and at least two ones
according to (X, i) in O, T or Oy \ I, respectively.

Proof Firstly we note by Theorem that the system has no positive
solution for (A, 1) € ©5 and by Theorem the system admits at least one
positive solution for (\, u) € . To prove the multiplicity of solutions as statement in
Corollary, let us write (©; \ I') = 6, U (6, \61) If (\, 1) € Oy, then the statement
follows from Theorem [0.0.6, Otherwise, if (A, 1) € (64 \61), we obtain from definition

of T,4q that has no radially symmetric positive solution, which implies that the
solution (u,v) obtained in Theorem satisfies (u,v) ¢ E,. x E,, that is, either u is
not radially symmetric or v is not radially symmetric as well. Assume that u ¢ E,.. So,
we are able to build a second solution. In fact, since v ¢ F,., there exist an orthogonal

map O and zy € RY such that

u(O(z0)) # u(xo). (3.51)

Now, by defining j,k : RY — R by j(z) = u(O(z)) and k(z) = v(O(x)), we
obtain from (3.51)) that (j,k) # (u,v). Besides this, by using Riesz representation
(3.1]), combining with the change of variables z = O~!(y) and w(O(z)) = w(z) for each
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2z € RY, we obtain

i) = u(0(@) = Cya [ HOREIELID,,

|N2
::CNA/" w(0(2)) /1 (u(O ()Dg(vKXZDLk

|2 — x|V
o | datisittoun,
— Oy /R ) w<z)"|z<i <Z>‘25}1£k(2))dz = AL, F)(@)

holds for each = € RY. Similarly, we have k(z) = B} (j, k)(x) for each € RY. That

is, due to , we have Ty (7, k) = (A\(4, k), By(j, k)) = (j, k), which proves that

(j, k) is a positive solution of the problem as well. This completes the proof of

Corollary. [ ]
Now let us prove the Theorem [0.0.8

Theorem Assume that (W), — (W)4, (H)1, (H)s and (H)g — (H)g for i = 1,2

hold. Then there exists a continuous simple arc I' = {(A(¢), u(t)) : ¢ > 0}, with
0 < A(t) non-increasing, 0 < p(t) non-decreasing and p(t) = tA(t), satisfying 11_{% I(t) =
(00,0) and tlgglo ['(t) = (0,00) that separates Ry x R{ into two disjoint open subsets
O, and ©, such that the system has no positive solution and has at least one
according to (A, ) belongs to O, and ©1, respectively.

Proof We know from Lemma [3.2.8/a),d), g), h) that {I'(¢) : t € (0,00)} is a con-
tinuous simple arc that separates Rj x R{ into two disjoint unbounded open subsets
int(T) and RS x Ry \ int(Y) satisfying lim ['(t) = (00,0) and Jim I'(t) = (0,00). So,
by denoting

0, = int(T) and O, = RY x RE \ int(T),

we obtain from Lemma 3.2.8 h) that TU®©; C int(T) holds. We claim that ©,NY = 0.
In fact, if there were (\,u) € ©; N YT, then we would have by Lemma that
(A, 1) € [0,A] x [0, 1] € int(Y), which is a contradiction. So ©, N Y = (), that is, the
system has no solution for (A, 1) € ©. Since ©; C T, we obtain by definition of
T that the system (P, ) admits at least one nontrivial positive solution for (A, 1) € ©;.
This ends the proof of Theorem. [ ]

Finally, we just note that the proofs of Theorems|[0.0.9/and |0.0.10] are very similar

to the proof of previous Theorems.
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Conclusion

In this work we constructed a region that produces a result of global existence of
positive solutions to problem 1) From our point of view this result is interesting
due to the loss of comparison principle and improves the results already existing in the
literature. However, we were unable to obtain the behavior of curve I'* to 8 — 0 and
6 — oo, which would lead us to boundedness or not of the extremal region ©. With
respect to Chapter 1, the approach of Section 2.6 of Chapter 2 can be applied to obtain
the existence of a parameter A, > 0 such that problem has at least one positive
solution uy with ®,(uy) < 0 for 0 < A < A,, and problem has no solution for
A > AL

Now let us point out some open questions. It is an open question when the
system (Py,)) (and equation (P)) admits multiplicity of solutions, even on the positive
semi-axes. Other open questions are about the boundedness or not of extremal curve
I'* and how smooth it is. Is it C* or C??

Related to Chapter 3, we constructed multiple extremal curves that produce dif-
ferent regions of existence and non-existence of positive solutions. Under the assump-
tions of radiality of the potential w and (H)s, we proved global multiplicity results
in Theorem and Corollary [0.0.1 We also concluded that different combina-
tions of the hypotheses (H), and (H)g lead to different shapes of the extremal curve
['(t). Besides these, it is not usual to use topological arguments to prove directly
sub-supersolution theorems in the whole space without approaching the problem by
auxiliary problems in bounded domains. We were able to do this and obtain infor-
mation about the Leray-Schauder degree of the compact operator associated with the
problem.

Now let us make some comments and point out some open questions. It is an open
question when the system (P, ) admits multiplicity of solutions under the hypotheses
(H); — (H)5 and w being not necessarily a radially symmetric potential. Other open
questions are to find appropriated assumptions to obtain global multiplicity results in

Theorems [0.0.8] [0.0.9] and [0.0.10, Our results answer partially the these questions by

establishing extremal curves and a complete study of the properties of the regions of

existence and nonexistence of positive solutions for elliptic systems in R .
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