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1. Automorphism group Am

The automorphism group Am of the 1-rooted m-regular tree Tm is
isomorphic to the restricted wreath product recursively defined as

Am = Am o Sm =

(
m−1∏
i=0

Am

)
o Sm,

where Sm is the symmetric group of degree m. Then each α ∈ Am

has the form
α = (α0, α1, ..., αm−1)σ(α)

where α0, α1, ..., αm−1 ∈ Am and σ(α) ∈ Sm.
For α ∈ Am, the set of automorphisms

Q(α) = {α, α0, ..., αm−1} ∪m−1
i=1 Q(αi )

is called the set of states of α and this automorphism is said to be
finite-state provided Q(α) is finite.



1. Automorphism group Am

The binary regular tree T2:

∅

0

00

000 001

01

010 011

1

10

100 101

11

110 111

...

If α ∈ A2 = A2 o S2 = (A2 ×A2) o S2 then α = (α0, α1)σ(α),
where α0, α1 ∈ A2 and σ(α) ∈ S2.



2. State-closed groups

A subgroup G of Am is state-closed (or, self-similar) if Q(α) is a
subset of G for all α in G .

Example

a) (The binary adding machine) The group G1 = 〈α = (e, α)(0 1)〉
is a state-closed subgroup of A2.

α e
0|1

1|0 0|0, 1|1
;

b) The group G2 = 〈τ = (e, τ, e, τ)(0 1)(2 3)〉 is a state-closed
subgroup of A4.

τ e
0|1, 2|3

1|0, 3|2 0|0, 1|1, 2|2, 3|3
;



2. State-closed groups

c) (Grigorchuck, 1980) The finitely generated 2-group

〈σ = (0 1), u = (e, v), v = (σ,w),w = (σ, u)〉

is a state-closed subgroup of A2 (Grigorchuck group);

d) (Gupta, Sidki, 1983) The finitely generated p-group

〈σ = (0 1 ... p − 1), γ = (γ, e, ..., e, σ, σp−1)〉

is a state-closed subgroup of Ap, p odd prime (Gupta-Sidki group);



2. State-closed groups

e) (Muntyan, Savchuk) The free product C2 ∗ C2 ∗ C2 and the free
group F2 of rank 2 are isomorphics to the state-closed groups

C2 ∗ C2 ∗ C2 ' 〈a = (b, b)(0 1), b = (a, c), c = (c , a)〉

and
F2 = 〈ab = (bc, ba)(0 1), bc = (ac, ca)〉.

d) (Grigorchuck, Zuk, 2000) The Lamplighter group
C2 o Z ' (⊕ZC2) o Z is isomorphic to the state-closed group

〈α = (α, β), β = (α, β)σ〉.



3. Finite Mealy automata
A finite Mealy automata is a Turing machine defined by a
quadruple A = (Q,Y , f , l) where:

I Q is a finite set of states;

I Y is a finite set of letters (alphabet);

I f : Q × Y → Q is the state transition function;

I l : Q × Y → Y is the output function.

If l(q, ∗) is invertible for any q ∈ Q we said that the Mealy
automata A is invertible and each state q ∈ Q can be interpreted
as an automorfism of an 1-rooted m-regular tree T|Y |:

q = (f (q, y1), ..., f (q, y|Y |))l(q, ∗)

q f (q, yi )
yi |l(q, yi )



4. Transitive state-closed groups

A group which is finitely generated, state-closed and finite-state in
Am is called an automata group of degree m.

A subgroup G of Am is called transitive if its is transitive on the
tree’s first level.

A virtual endomorphism is a homomorphism f : H → G where H is
a subgroup with finite index in G

(Nekrashevych and Sidki, 2004) A subgroup G of Am is transitive
state-closed if, and only if, there exist a subgroup H with index m
in G and a virtual endomorphism f : H → G such that

〈K ≤ H | K C G ,K f ≤ K 〉 = 1.



4. Transitive state-closed groups

(Silva, Steinberg - 2005, IJAC) The Lamplighter group Cn o Z is a
transitive automata group of degree n.

(Sidki, - 2017, JA) The Lamplighter group Cp o Zd (d ≥ 2 and p
prime) is a transitive automata group of degree p2. More that,
Cp o Zd is not transitive state-closed of a prime degree q.

(Sidki, - 2018, GGD) Let G = B o X be a transitive state-closed
wretah product of abelian groups. If X is torsion free then B is a
torsion group of finite exponent. In particular, Z o Z cannot a
transitive state-closed group.

(Bartholdi, Sidki - 2020, GGD) Let B be a finite abelian group.
Then B o Zd is a transitive automata group of degree 2|B|.



5. Intransitive state-closed groups

Example

(dos Santos, Sidki, - 2020, submitted) The wreath product Z o Z
is isomorphic to the automata group of degree 3

〈γ = (γ, e, α), α = (e, α, e)(0 1)〉 ' 〈γ〉 o 〈α〉

e

α γ

0|0, 1|1, 2|2

1|0

0|1, 2|2

2|2
0|0

1|1



5. Intransitive state-closed groups

A subgroup G of Am is state-closed if, and only if, there exist
subgroups H1, ...,Hs of finite index in G and virtual
endomorphisms f1 : H1 → G , ..., fs : Hs → G such that
[G : H1] + ...+ [G : Hs ] = m and

〈K ≤ ∩si=1Hi | K C G ,K fi ≤ K , ∀i = 1, .., s〉 = 1.

Theorem
Let A be a finitely generated abelian group and B = Tor(A). Then
G = A o Zd is an automata group of degree 2|B|+ 4. In particular,
for A = Zl the degree can be reduced to 4.



5. Intransitive state-closed groups

Theorem
Let p a prime number then Cp o Z2 is a state-closed group of
degree p + 1. Indeed, Cp o Z2 is generated by

α = (α, ασ, ..., ασp−1, αβ),

σ = (e, ..., e, σ)(0 1 ... p − 1)

and
β = (e, ..., e, α).

In particular, the group C2 o Z2 is state-closed of degree 3. Note
that this representation is not finite-state.



5. Intransitive state-closed groups

Theorem
Let G be a state-closed group of degree m. Then the following
hold.

1) G (ω) is a state-closed group of degree m + 1; in particular, for
G = Z, the representation of the group Z(ω) is of degree 3
and is in addition finite-state.

2) Let K be a regular subgroup of Sym({1, ..., s}). Then the
restricted wreath product G o K is a transitive state-closed
group of degree n.s, for some integer n; in particular, the
group (Z o Z) o C2 is a transitive automata group of degree 4.



5. Intransitive state-closed groups

1) The group Z(ω) is isomorphic to

〈α1 = (e, α1, e)(0 1), αi = (αi , αi , αi−1) | i = 2, 3, 4, ...〉

which is faithful and finite-state.

e α1 α2 α3 ...

0|0, 1|1, 2|2

0|1, 2|2 2|2 2|2 2|2

1|0 0|0, 1|1 0|0, 1|1



5. Intransitive state-closed groups
2) The group (Z o Z) o C2 is generated by the following automaton:

e

α γ

ασ

σ

0|0, 1|1, 2|2, 3|3

0|2, 1|3, 2|0, 3|1

0|1, 2|2, 3|3

1|0 0|0

2|2, 3|3

3|2 1|1

0|0, 1|1, 2|3



5. Intransitive state-closed groups

Questions

1. Is the group C2 o (Z o Z) transitive state-closed?

2. Is there a faithful state-closed representation of degree 3 for
the group Zl o Zd when l , d ≥ 2?

3. Is there a faithful finite-state and state-closed representation
for the group C2 o Z2 of degree 3?
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