Closure Properties of the non-abelian Tensor Product and its Applications

Guram Donadze

University of Brasilia Department of Mathematics

gdonad@gmail.com

August 21, 2020

G. Donadze and X. Garcia-Martinez, Some generalisations of Schur's and Baer's theorem and their connection with homological algebra To appear in Mathematische Nachrichten Let *G* be a group acting on a group *H*, i.e. there is a homomorphism $\Phi: G \rightarrow Aut(H)$.

Let *G* be a group acting on a group *H*, i.e. there is a homomorphism $\Phi: G \to Aut(H)$. We denote $\Phi(g)(h)$ by ^{*g*}*h*, for $g \in G$ and $h \in H$.

Let *G* be a group acting on a group *H*, i.e. there is a homomorphism $\Phi: G \to Aut(H)$. We denote $\Phi(g)(h)$ by ${}^{g}h$, for $g \in G$ and $h \in H$. Moreover, we write conjugation on the left, so ${}^{g}g' = gg'g^{-1}$ for $g, g' \in G$. Let *G* be a group acting on a group *H*, i.e. there is a homomorphism $\Phi: G \to Aut(H)$. We denote $\Phi(g)(h)$ by ${}^{g}h$, for $g \in G$ and $h \in H$. Moreover, we write conjugation on the left, so ${}^{g}g' = gg'g^{-1}$ for $g, g' \in G$.

Definition

Let G and H be groups acting on each other. The mutual actions are said to be *compatible* if

$${}^{(h_g)}h' = {}^{h}({}^{g}({}^{h^{-1}}h')) \text{ and } {}^{({}^{g}h)}g' = {}^{g}({}^{h}({}^{g^{-1}}g')),$$

for each $g, g' \in G$ and $h, h' \in H$.

(Brown-Loday) Let *G* and *H* be two groups that act compatibly on each other. Then the *non-abelian tensor product* $G \otimes H$ is the group generated by the symbols $g \otimes h$ for $g \in G$ and $h \in H$ with relations

> $gg' \otimes h = ({}^{g}g' \otimes {}^{g}h)(g \otimes h),$ $g \otimes hh' = (g \otimes h)({}^{h}g \otimes {}^{h}g'),$

for each $g, g' \in G$ and $h, h' \in H$.

(Brown-Loday) Let *G* and *H* be two groups that act compatibly on each other. Then the *non-abelian tensor product* $G \otimes H$ is the group generated by the symbols $g \otimes h$ for $g \in G$ and $h \in H$ with relations

> $gg' \otimes h = ({}^{g}g' \otimes {}^{g}h)(g \otimes h),$ $g \otimes hh' = (g \otimes h)({}^{h}g \otimes {}^{h}g'),$

for each $g, g' \in G$ and $h, h' \in H$.

The special case where G = H and all actions are given by conjugation, is called the *tensor square* $G \otimes G$.

(Brown-Loday) Let *G* and *H* be two groups that act compatibly on each other. Then the *non-abelian tensor product* $G \otimes H$ is the group generated by the symbols $g \otimes h$ for $g \in G$ and $h \in H$ with relations

> $gg' \otimes h = ({}^{g}g' \otimes {}^{g}h)(g \otimes h),$ $g \otimes hh' = (g \otimes h)({}^{h}g \otimes {}^{h}g'),$

for each $g, g' \in G$ and $h, h' \in H$.

The special case where G = H and all actions are given by conjugation, is called the *tensor square* $G \otimes G$.

There is well-defined homomorphism $\lambda_2^G: G \otimes G \to [G, G]$ given by

 $g\otimes g'\mapsto [g,g'].$

イロン イヨン イヨン -

If *G* and *H* are finite groups (or *p*-groups, or nilpotent groups, or solvable groups, or polycyclic groups, or nilpotent-by-finite groups, or solvable-by-finite groups, or polycyclic-by-finite groups, or perfect groups) then $G \otimes H$ is a finite group (or *p*-group, or nilpotent group, or solvable group, or polycyclic group, or nilpotent-by-finite group, or polycyclic-by-finite group.

If *G* and *H* are finite groups (or *p*-groups, or nilpotent groups, or solvable groups, or polycyclic groups, or nilpotent-by-finite groups, or solvable-by-finite groups, or polycyclic-by-finite groups, or perfect groups) then $G \otimes H$ is a finite group (or *p*-group, or nilpotent group, or solvable group, or polycyclic group, or nilpotent-by-finite group, or polycyclic-by-finite group.

Definition

A class of groups \mathcal{X} is said to be Schure class, if for any central extension $1 \rightarrow N \rightarrow H \rightarrow G \rightarrow 1$ of $G \in \mathcal{X}$, $[H, H] \in \mathcal{X}$.

イロト イヨト イヨト イヨト

Lemma

Let $1 \rightarrow N \rightarrow H \rightarrow G \rightarrow 1$ be a central extension of groups. Then, there exists a surjective homomorphism $G \otimes G \rightarrow [H, H]$ making the following diagram commutative:

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Lemma

Let $1 \rightarrow N \rightarrow H \rightarrow G \rightarrow 1$ be a central extension of groups. Then, there exists a surjective homomorphism $G \otimes G \rightarrow [H, H]$ making the following diagram commutative:

Theorem

The class of finite groups (or *p*-groups, or nilpotent groups, or solvable groups, or polycyclic groups, or nilpotent-by-finite groups, or solvable-by-finite groups, or polycyclic-by-finite groups, or perfect groups) is a Schure class.

<ロ> <同> <同> < 回> < 回> < 回> = 三

Let *G* be a group and $G \otimes G$ be its tensor square.

Let *G* be a group and $G \otimes G$ be its tensor square. There is a well defined action of *G* on $G \otimes G$ by

 $^{g_3}(g_1\otimes g_2)=\ ^{g_3}g_1\otimes \ ^{g_3}g_2,$

Image: Image:

< ∃ >

Let *G* be a group and $G \otimes G$ be its tensor square. There is a well defined action of *G* on $G \otimes G$ by

 $^{g_3}(g_1\otimes g_2)=\ ^{g_3}g_1\otimes \ ^{g_3}g_2,$

and there is also a well defined action of $G \otimes G$ on G given by

 $g_1 \otimes g_2 g_3 = [g_1, g_2] g_3.$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Let *G* be a group and $G \otimes G$ be its tensor square. There is a well defined action of *G* on $G \otimes G$ by

 $^{g_3}(g_1\otimes g_2)=\ ^{g_3}g_1\otimes \ ^{g_3}g_2,$

and there is also a well defined action of $G \otimes G$ on G given by

 $g_1 \otimes g_2 g_3 = [g_1, g_2] g_3.$

In this way, we can define the non-abelian tensor product $(G \otimes G) \otimes G$, denoted by $G^{\otimes 3}$.

<ロ> <四> <四> <四> <三</td>

Let *G* be a group and $G \otimes G$ be its tensor square. There is a well defined action of *G* on $G \otimes G$ by

 $^{g_3}(g_1\otimes g_2)=\ ^{g_3}g_1\otimes \ ^{g_3}g_2,$

and there is also a well defined action of $G \otimes G$ on G given by

 $g_1 \otimes g_2 g_3 = [g_1, g_2] g_3.$

In this way, we can define the non-abelian tensor product $(G \otimes G) \otimes G$, denoted by $G^{\otimes 3}$. Furthermore, for any ≥ 3 , we can inductively define the *n*-fold tensor product, denoted by $G^{\otimes n}$, by considering the actions of *G* and $G^{\otimes n-1}$ on each other defined by

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Let *G* be a group and $G \otimes G$ be its tensor square. There is a well defined action of *G* on $G \otimes G$ by

 $^{g_3}(g_1\otimes g_2)=\ ^{g_3}g_1\otimes \ ^{g_3}g_2,$

and there is also a well defined action of $G \otimes G$ on G given by

 $g_1 \otimes g_2 g_3 = [g_1, g_2] g_3.$

In this way, we can define the non-abelian tensor product $(G \otimes G) \otimes G$, denoted by $G^{\otimes 3}$. Furthermore, for any ≥ 3 , we can inductively define the *n*-fold tensor product, denoted by $G^{\otimes n}$, by considering the actions of *G* and $G^{\otimes n-1}$ on each other defined by

$${}^{g_n} \Big(\cdots ((g_1 \otimes g_2) \otimes g_3) \otimes \cdots \otimes g_{n-1} \Big) = \Big(\cdots (({}^{g_n}g_1 \otimes {}^{g_n}g_2) \otimes {}^{g_n}g_3) \otimes \cdots \otimes {}^{g_n}g_{n-1} \Big),$$

$${}^{(\cdots ((g_1 \otimes g_2) \otimes g_3) \otimes \cdots \otimes g_{n-1})}g_n = {}^{[\cdots [[g_1,g_2],g_3], \cdots, g_{n-1}]}g_n.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

There is a well-defined homomorphism $\lambda_n^G : G^{\otimes n} \to G$ defined on generators by

 $(\cdots ((g_1 \otimes g_2) \otimes g_3) \otimes \cdots \otimes g_n) \mapsto [\cdots [[g_1, g_2], g_3], \cdots, g_n].$

・ロン ・四マ ・ヨン ・ヨン 三甲

There is a well-defined homomorphism $\lambda_n^G \colon G^{\otimes n} \to G$ defined on generators by

 $(\cdots ((g_1 \otimes g_2) \otimes g_3) \otimes \cdots \otimes g_n) \mapsto [\cdots [[g_1, g_2], g_3], \cdots, g_n].$

Lemma

Let $1 \to N \to H \to G \to 1$ be an extension of groups such that $N \leq Z_n(H)$ for a fixed positive integer *n*. Then, there exists a surjective homomorphism $G^{\otimes n+1} \to \gamma_{n+1}(H)$ making the following diagram commutative:

《曰》《聞》《臣》《臣》

A class of groups \mathcal{X} is said to be Baer class, if for any *n*-central extension $1 \rightarrow N \rightarrow H \rightarrow G \rightarrow 1$ of $G \in \mathcal{X}$, $\gamma_{n+1}(H) \in \mathcal{X}$.

A class of groups \mathcal{X} is said to be Baer class, if for any *n*-central extension $1 \rightarrow N \rightarrow H \rightarrow G \rightarrow 1$ of $G \in \mathcal{X}$, $\gamma_{n+1}(H) \in \mathcal{X}$.

Theorem

The class of finite groups (or p-groups, or nilpotent groups, or solvable groups, or polycyclic groups, or nilpotent-by-finite groups, or solvable-by-finite groups, or polycyclic-by-finite groups, or perfect groups) is a Baer class.

A class of groups \mathcal{X} is said to be Baer class, if for any *n*-central extension $1 \rightarrow N \rightarrow H \rightarrow G \rightarrow 1$ of $G \in \mathcal{X}$, $\gamma_{n+1}(H) \in \mathcal{X}$.

Theorem

The class of finite groups (or p-groups, or nilpotent groups, or solvable groups, or polycyclic groups, or nilpotent-by-finite groups, or solvable-by-finite groups, or polycyclic-by-finite groups, or perfect groups) is a Baer class.

Remark. The class of Noetherian groups is not a Schure class.

A class of groups \mathcal{X} is said to be Baer class, if for any *n*-central extension $1 \rightarrow N \rightarrow H \rightarrow G \rightarrow 1$ of $G \in \mathcal{X}$, $\gamma_{n+1}(H) \in \mathcal{X}$.

Theorem

The class of finite groups (or p-groups, or nilpotent groups, or solvable groups, or polycyclic groups, or nilpotent-by-finite groups, or solvable-by-finite groups, or polycyclic-by-finite groups, or perfect groups) is a Baer class.

Remark. The class of Noetherian groups is not a Schure class.

Question. I do not know the class of residually finite groups is a Schure class.

A class of groups \mathcal{X} is said to be Baer class, if for any *n*-central extension $1 \rightarrow N \rightarrow H \rightarrow G \rightarrow 1$ of $G \in \mathcal{X}$, $\gamma_{n+1}(H) \in \mathcal{X}$.

Theorem

The class of finite groups (or p-groups, or nilpotent groups, or solvable groups, or polycyclic groups, or nilpotent-by-finite groups, or solvable-by-finite groups, or polycyclic-by-finite groups, or perfect groups) is a Baer class.

Remark. The class of Noetherian groups is not a Schure class.

Question. I do not know the class of residually finite groups is a Schure class.

Question. I do not know if the class of metabelian groups is a Baer class.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Non-abelian tensor product of finitely generated groups

Definition

Let *G* and *H* be groups with *H* acting of *G*. The *derivative* of *G* by *H* is the subgroup of *G* defined by

$$D_H(G) = \langle g \ {}^h g^{-1} \mid g \in G, h \in H \rangle.$$

Non-abelian tensor product of finitely generated groups

Definition

Let *G* and *H* be groups with *H* acting of *G*. The *derivative* of *G* by *H* is the subgroup of *G* defined by

$$D_H(G) = \langle g \ ^h g^{-1} \mid g \in G, h \in H \rangle.$$

Theorem

Let *G* and *H* be finitely generated groups acting compatibly on each other. Then $G \otimes H$ is finitely generated if and only if $D_G(H)$ and $D_H(G)$ are finitely generated.

Non-abelian tensor product of finitely generated groups

Definition

Let G and H be groups with H acting of G. The *derivative* of G by H is the subgroup of G defined by

$$D_H(G) = \langle g \ {}^h g^{-1} \mid g \in G, h \in H \rangle.$$

Theorem

Let *G* and *H* be finitely generated groups acting compatibly on each other. Then $G \otimes H$ is finitely generated if and only if $D_G(H)$ and $D_H(G)$ are finitely generated.

G. Donadze, M. Ladra, V. Z. Thomas, On some closure properties of the non-abelian tensor product, J. Algebra **472**, 399-413 (2017)

Let *G* be a finitely generated group. Then the following are equivalent:
(i) γ_{n+1}(*G*) is a finitely generated group;
(ii) γ_{n+1}(*H*) is a finitely generated group for any extension of groups 1 → N → H → G → 1 with N ≤ Z_n(H).

Let *G* be a finitely generated group. Then the following are equivalent: (i) $\gamma_{n+1}(G)$ is a finitely generated group;

(ii) $\gamma_{n+1}(H)$ is a finitely generated group for any extension of groups $1 \rightarrow N \rightarrow H \rightarrow G \rightarrow 1$ with $N \leq Z_n(H)$.

Corollary

The class of finitely generated perfect groups is a Baer class.

Let *G* be a finitely generated group. Then the following are equivalent:
(i) γ_{n+1}(*G*) is a finitely generated group;
(ii) γ_{n+1}(*H*) is a finitely generated group for any extension of groups 1 → N → H → G → 1 with N ≤ Z_n(H).

Corollary

The class of finitely generated perfect groups is a Baer class.

Remark. The class of Noetherian perfect groups is not a Baer class.

• □ ▶ • □ ▶ • □ ▶

Let Gr be a category of groups.

Let $\mathcal{G}r$ be a category of groups. For each $n \ge 1$, define a functor $T_n : \mathcal{G}r \to \mathcal{G}r$ by

 $T_n(G) = G/\gamma_n(G).$

Let $\mathcal{G}r$ be a category of groups. For each $n \ge 1$, define a functor $T_n : \mathcal{G}r \to \mathcal{G}r$ by

 $T_n(G) = G/\gamma_n(G).$

Let $H_2^{T_n}(G)$ denote the second non-abelian homology group.

Let $\mathcal{G}r$ be a category of groups. For each $n \ge 1$, define a functor $T_n : \mathcal{G}r \to \mathcal{G}r$ by

 $T_n(G) = G/\gamma_n(G).$

Let $H_2^{T_n}(G)$ denote the second non-abelian homology group.

Theorem

There is an epimorphism $\operatorname{Ker}\left(\lambda_n^G:G^{\otimes n}\to G\right)\to H_2^{T_n}(G).$

Let $\mathcal{G}r$ be a category of groups. For each $n \ge 1$, define a functor $T_n : \mathcal{G}r \to \mathcal{G}r$ by

 $T_n(G) = G/\gamma_n(G).$

Let $H_2^{T_n}(G)$ denote the second non-abelian homology group.

Theorem

There is an epimorphism
$$\operatorname{Ker}\left(\lambda_n^G:G^{\otimes n}\to G\right)\to H_2^{T_n}(G).$$

Corollary

Let *G* be a finite group (resp. *p*-group), then $H_2^{T_n}(G)$ is finite (resp. *p*-group).

Let $\mathcal{G}r$ be a category of groups. For each $n \ge 1$, define a functor $T_n : \mathcal{G}r \to \mathcal{G}r$ by

 $T_n(G) = G/\gamma_n(G).$

Let $H_2^{T_n}(G)$ denote the second non-abelian homology group.

Theorem

There is an epimorphism
$$\operatorname{Ker}\left(\lambda_n^G:G^{\otimes n}\to G\right)\to H_2^{T_n}(G).$$

Corollary

Let *G* be a finite group (resp. *p*-group), then $H_2^{T_n}(G)$ is finite (resp. *p*-group).

Corollary

If G is a superperfect group, then $H_2^{T_n}(G)$ is trivial.

Image: A matrix