Seminário de Álgebra

The Alternating Group as product of four conjugacy classes.

Martino Garonzi- UnB

20/11/2020 14:30 Horas

Zoom

Abstract.

In 1992, László Babai and Ákos Seress conjectured that if G is a non-abelian simple group then the diameter of any Cayley graph of G is bounded above by $(\log |G|)^c$ for some absolute constant c [1, Conjecture 1.7]. Babai's conjecture can be reformulated by saying that $(\log |G|)^c$ is an upper bound for the minimal positive integer m such that $(S \cup S^{-1})^m = G$ for every generating set S of G. For example, solving the Rubik's cube (cubo mágico) in the smallest number of moves is equivalent to finding the diameter of some Cayley graph of some group.

A normal subset of a group G is a subset S such that $gsg^{-1} \in S$ whenever $s \in S$, $g \in G$. Clearly, a subset is normal if and only if it is a union of conjugacy classes. Note that any normal subset generates a normal subgroup, therefore, in a non-abelian simple group, any normal subset distinct from $\{1\}$ is a generating set and it makes sense to consider Babai's conjecture in this particular situation. In 2001, Liebeck and Shalev famously proved that, if S is a nontrivial normal subset of G, then an even better bound holds, namely $c \cdot \log |G|/\log |S|$ [4, Theorem 1.1].

In other words, if $|S|^k \ge |G|^c$ then $S^k = G$.

It is natural to ask whether the same thing holds when instead of k copies of S we have distinct normal sets. Gill, Pyber and Szabó proposed a conjecture [3, Conjecture 2] later proved by Maróti and Pyber [5, Theorem 1.2], the following:

There exists a constant c such that, if S_1, \ldots, S_k are normal subsets of a non-abelian finite simple group G satisfying $\prod_{i=1}^k |S_i| \ge |G|^c$, then $S_1 \cdots S_k = G$.

In simple (but less formal) words, this says that if we have "large" normal subsets of a non-abelian simple group G, then their product equals G. In this spirit, we proved the following result [2, Theorem 1.1].

Theorem 1 (G., Maróti) Let Alt(n) be the alternating group on n letters. For any $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ such that whenever $n \ge N$ and A, B, C, D are normal subsets of Alt(n) of size at least $|Alt(n)|^{1/2+\varepsilon}$, then ABCD = Alt(n). Moreover, the constant 1/2 is best possible.

To prove this, one quickly reduces to assuming that A, B, C, D are conjugacy classes and then uses character theory. I will introduce the basic concepts that allow to prove this.

This was the content of a paper which was submitted in May 2020 and it was later accepted. If there is time, I will talk a little bit about the project I'm currently involved in, which concerns Babai's conjecture for classical simple groups.

Joint work with A. Maróti

References

- L. Babai, A. Seress, On the diameter of permutation groups. European J. Combin. 13 (1992) 231–243.
- [2] M. Garonzi, A. Maróti, Alternating groups as products of four conjugacy classes. arXiv: 2006.07703v1
- [3] N. Gill, L. Pyber, E. Szabó, A generalization of a theorem of Rodgers and Saxl for simple groups of bounded rank. arXiv: 1901.09255.
- [4] M. W. Liebeck, A. Shalev, Diameters of finite simple groups: sharp bounds and applications. Ann. of Math. (2) 154 (2001), no. 2, 383–406.
- [5] A. Maróti, L. Pyber, A generalization of the diameter bound of Liebeck and Shalev for finite simple groups. arXiv: 2003.14270v2.