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RESUMO

Neste trabalho, apresentamos dois estudos de problemas de estabilidades em escoamen-

tos de �uidos magnéticos. O primeiro é um estudo sobre a estabilidade de um escoamento

de Poiseuille no plano bidimensional de um �uido magnético na presença de um campo mag-

nético aplicado. O �uido é incompressível e sua magnetização é acoplada ao escoamento por

meio de uma equação fenomenológica simples. Os autovalores do sistema linearizado são

calculados usando um esquema de diferenças �nitas e estudados com relação aos parâmetros

adimensionais do problema. Estudamos os casos de campos magnéticos aplicados horizon-

tal e vertical. Nossos resultados indicam que o escoamento é desestabilizado pela presença

de um campo magnético aplicado horizontalmente, enquanto que é estabilizado quando

um campo é aplicado verticalmente. Caracterizamos a estabilidade do �uxo calculando

os diagramas de estabilidade em termos dos parâmetros adimensionais e, o mais impor-

tante, determinamos a mudança do número de Reynolds crítico em termos dos parâmetros

magnéticos. Além disso, mostramos que o limite superparamagnético, no qual a magneti-

zação do �uido é desacoplada da hidrodinâmica, recupera o mesmo número de Reynolds

crítico puramente hidrodinâmico, independentemente da direção do campo aplicado e dos

valores dos outros parâmetros magnéticos adimensionais. O segundo estudo é sobre a ins-

tabilidade de Plateau-Rayleigh para jatos de �uidos magnéticos. Apresentamos uma teoria

superparamagnética simpli�cada que leva em consideração a permeabilidade magnética da

região externa. Nossos resultados indicam que a estabilidade do jato é apenas marginal-

mente afetada quando se considera uma região externa magneticamente permeável. Em

seguida, construímos uma teoria completa para um �uido magnético na qual a equação de

evolução da magnetização, idêntica à usada no primeiro problema, é levada em consider-

ação. No regime de ondas longas, construímos um sistema de leis de conservação que é usado

como base para uma análise de estabilidade linear. A construção desta teoria provou ser

complicada porque as condições de contorno para as grandezas magnéticas tiveram que ser

consideradas cuidadosamente ao longo da superfície livre de jato. Os resultados indicam que

a estabilidade do sistema é marginalmente melhorada quando a magnetização relaxa com o

�uxo em escalas de tempo moderadas. Por outro lado, o termo precessional na equação de

evolução da magnetização tende a aproximar o sistema de um regime superparamagnético.

Palavras-chave: Estabilidade hidrodinâmica, Fluidos magneticos, Equação de Orr-

Sommerfeld, Equação de Shliomis, Instabilidade de Plateau-Rayleigh.



ABSTRACT

In this work, we present two studies of problems of instabilities in �ows of magnetic �uids.

The �rst one is a study on the stability of a two-dimensional plane Poiseuille �ow of a

magnetic �uids in the presence of an applied magnetic �eld. The �uid is incompressible

and its magnetization is coupled to the �ow through a simple phenomenological equation.

The eigenvalues of the linearized system are computed using a �nite di�erence scheme

and studied with respect to the dimensionless parameters of the problem. We study the

cases of horizontal and vertical applied magnetic �elds. Our results indicate that the �ow

is further destabilized by the presence of a horizontal applied magnetic �eld, whereas it

is stabilized when a vertical applied �eld is present. We characterize the stability of the

�ow by computing the stability diagrams in terms of the dimensionless parameters and,

most importantly, we determine the change of the critical Reynolds number in terms of the

magnetic parameters. Furthermore, we show that the superparamagnetic limit, in which the

magnetization of the �uid is decoupled from the hydrodynamics, recovers the same purely

hydrodynamic critical Reynolds number, regardless of the applied �eld direction and of the

values of the other dimensionless magnetic parameters. The second study is the Plateau-

Rayleigh instability for jets of magnetic �uids. We present a simpli�ed superparamagnetic

theory that takes into consideration the magnetic permeability of the outer region. Our

results indicate that the stability of the jet is only marginally a�ected when considering a

magnetically permeable outer region. We then built a complete theory for a magnetic �uid

in which the magnetization evolution equation, identical to the one used in the �rst problem,

is taken into account. In the long waves regime, we constructed a system of conservation

laws that are used as the basis for a linear stability analysis. The construction of this theory

proved to be complicated because the boundary conditions for the magnetic quantities had

to considered carefully across the jet free surface. The results indicate that the stability

of the system is marginally improved when the magnetization relaxes with the �ow over

moderate time scales. On the other hand, the precessional term in the magnetization

evolution equation tends to approach the system to a superparamagnetic regime.

Keywords: Hydrodynamic stability, Magnetic �uids, Orr-Sommerfeld equation, Shliomis's

equation, Plateau-Rayleigh's instability.
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CHAPTER 1

INTRODUCTION

Magnetic �uids are colloidal suspensions of very small magnetizable particles that, be-

come magnetized and react under the presence of an applied magnetic �eld [33]. This gives

these magnetic �uids the property of being remotely controlled by magnetic �elds, making

them suitable for a vast number of applications [33, 30]. Applications include magnetic tar-

geting of a drug: in which the chemotherapeutic drug is coated with a magnetic �uid and

injected into the cancerous tumor and using a suitable magnetic �eld, the drug is located

and maintained at a speci�c area of the tumor, maximizing its e�ectiveness [17, 19]. Mag-

netic hyperthermia is a cancer therapy in which magnetic particles are strategically placed

into the tumor, under the action of alternating magnetic �elds, the magnetic nanoparticles

absorb a large amount of energy and transform it into heat, thus acting signi�cantly against

the tumor [20, 22]. In the area of magnetic resonance imaging (MRI), magnetic nanopar-

ticles are useful as contrast agents. Paramagnetic contrast agents have been used for a

long time, but more recently superparamagnetic iron oxide nanoparticles have also been

found to in�uence the contrast of magnetic resonance imaging. Di�erent of the paramag-

netic contrast agents, superparamagnetic nanoparticles can be functionalized and adapted

to various kind of soft tissue [23, 24]. In fact, the invention of ferro�uids is attributed to

the development of liquid rocket fuels that could be pumped in the absence of gravity via

magnetic �elds [32]. The response of magnetic �uids to the presence of a magnet allows

us to control the �ow of the �uid and this particular feature has opened a wide range of

applications in di�erent areas of knowledge.

Since the late nineteenth century, the areas of hydrodynamic stability and magneto-

hydrodynamic (MHD) have been widely studied by the scienti�c community. Later, in the

mid-twentieth century, the arti�cial creation of magnetic �uids gave rise to what is known
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today as ferrohydrodynamics (FHD). Similar to MHD, FHD results from a combination of

the equations of �uid dynamics and electromagnetism. We emphasize that MHD is related

to electrically conducting �uids, thus involving electrical and magnetic quantities, whereas

FHD only deals with �uids that are not electrically conductive, and therefore only magnetic

quantities are considered in the magnetostatic limit.

In the �rst part of this work, the linear analysis of hydrodynamic stability predicts the

response of a �uid �ow in laminar regime to small perturbations. Brie�y, a disturbance

of small amplitude is imposed in the base state �ow in the governing equations. If the

amplitude of this small perturbation grows with time, the �ow is unstable to small distur-

bances. If the amplitude of the disturbances decays with time, the �ow is stable. In case

the perturbation does not grow or decay, the �ow is neutrally stable and our forces are

concentrated to �nd the critical value of the parameter for which transition happens, that

is, to identify the Reynolds critical number.

If the external applied magnetic �eld is absent, the �uid behaves like an ordinary sus-

pension, this is because the Brownian motion randomly orients the magnetic dipoles of the

particles, resulting in a non-magnetized medium. On the other hand, in the presence of an

applied external magnetic �eld, the magnetic dipoles begin to sense, due to the magnetic

�eld gradients, the magnetic force and at the same time, the magnetic torques resulting

from the misalignment between the dipole and the magnetic �eld.

There have been studies of hydrodynamic stability and transition of �ows of magnetic

�uids in the presence of magnetic �elds, but most of them were related to conducting mag-

netizable magnetic �uids in the context of magnetohydrodynamics, such as [11], and only a

few were related to non-conducting magnetic �uids, in the context of ferrohydrodynamics.

A classical example of the latter studies is the theoretical investigation of a plane Couette

�ow of a magnetic �uid in the presence of an applied magnetic �eld [60]. An unstable regime

was found for some values of the relevant parameters. The Taylor-Couette instability of

magnetic �uids was also broadly studied in di�erent contexts, such as its destabilization

driven by temperature gradients [54] or its stabilization obtained by an array of magnets

[35]. More recently, a thorough numerical bifurcation analysis was carried out in [13] focus-

ing in understanding the early appearance of turbulence in Couette �ows of magnetic �uids

under the presence of magnetic �elds. Finally, there have also been studies of interfacial

instabilities, either in free surface problems [10] or in two-�uid interfaces [46]. However,

in these two last references, the �ows are either rheometric or inertia plays no role on the

early dynamics of the instabilities.

The second part of this investigation started during an academic visit to the University of

British Columbia in Canada. The aim was to study a new problem that combines magnetic

�uids and a promising application of them. We have chosen to study the nonlinear stability

problem of a slender cylindrical jet, known as the Plateau-Rayleigh stability problem.
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The phenomenon of break-up of a liquid jet into droplets has attracted the attention

of researchers and engineers in the last centuries. The problem was �rst investigated by

Lord Rayleigh, initially for �ows in the inviscid limit in [47], and then for the viscous

case in [48]. Since then, the problem has taken several directions and also the di�erent

technological applications have been increasing, among them are the process of atomization,

ink-jet printing, drug delivery and manufacturing systems.

The break-up is caused by the presence of small external disturbances which grow spa-

tially due to capillary instability, as described by Rayleigh [47]. In the case of capillary

instability, the growth rate of disturbances is caused by the opposite e�ect of the axial and

radial curvature of the interface that was initially observed by Savart (1833) and investi-

gated by Plateau (1873).

1.1 Stability in Fluid Mechanics

In this work, we present two studies that combine the classical theory of hydrodynamic

stability and the non-Newtonian �uid known as magnetic �uids, also called as ferro�uids.

The �rst study is about the problem of linear stability analysis of a magnetic �uid �ow

between parallel plates. The second one is about the Plateau-Rayleigh stability problem

and the formation of droplets from a cylindrical jet of magnetic �uid.

1.1.1 Intuitive ideas of stability or instability

Consider the following system governed by an ordinary di�erential equation with initial

value problem (IVP): 
du

dt
= f(u),

u(0) = u0.
(1.1)

In this problem, the points u∗ at which f(u∗) = 0 are called equilibrium points:

du∗

dt
= f(u∗) = 0, (1.2)

and if u0 = u∗, the system remain valid at

u(t) = u∗, ∀t. (1.3)

At this stage, we can ask what happens to the system when a small disturbance up is

introduced, that is:

u(t) = u∗ + up(t). (1.4)

Substituting this expression in (1.1), we have in the left-hand side

du

dt
=
d(u∗ + up)

dt
=
du∗

dt
+
dup
dt

=
dup
dt
, (1.5)
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and using a Taylor series around u∗, the right hand side is given by,

f(u) = f(u∗ + up) = f(u∗) + f ′(u∗)up +O(u2p). (1.6)

From (1.5) and (1.6) we can formulate a new IVP:
dup
dt

= f ′(u∗)up,

up(0) = up0.
(1.7)

The ordinary di�erential equation with initial condition in (1.7) is a initial value problem

and its solution is given by,

up(t) = up(0) exp (f ′(u∗)t). (1.8)

The behavior of the solution up(t) depends on the amplitude up(0), the sign of f ′(u∗) and

the evolution is given by the dependency of the temporal variable t in the exponential

function. The possible outcomes are given in Table (1.1). If we obtain f ′(u∗) with positive

sign, this indicates that up(t) grows and that the equilibrium state will not be maintained,

for this reason u∗ is unstable. If f ′(u∗) is equal to zero, this means that up(t) will be

constant and equal to up(0) = u0 − u∗ and that u does not depend on u∗ being that u∗ has

a neutral behavior for either growth or decrease of u(t) and if f ′(u∗) is negative, the value

of up negligible for large enough times, in this case u∗ is said stable.

Table 1.1: Stability analysis depending on the sign of f ′(u∗).

If f ′(u∗) > 0 f ′(u∗) = 0 f ′(u∗) < 0

up Increase Constant Decrease

u∗ Unstable Stable (neutral) Stable

Let's consider u ∈ R3 a vector valued function that satis�es the following ODE with an

initial value problem, 
du

dt
= f(u),

u(0) = u0.
(1.9)

with f : R3 → R3. The linearized system for the perturbation up is given by:
dup
dt

= ∇f(u∗)up,

up(0) = up0.
(1.10)

In this expression ∇f(u∗) indicates the Jacobian matrix of f . As in the previous case, the

solution can be found by setting up = veλt,

λ(veλt) =
d(veλt)

dt
= ∇f(u∗)veλt.
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Thus,

λv = ∇f(u∗)v. (1.11)

The stability depends on the eigenvalues λ of ∇f(u∗) and its respective associated eigen-

vectors v on (1.11). The concepts presented here give us an idea of what stability means

in the sense of ODEs, where the ampli�cation of a small disturbance causes the system to

leave the equilibrium state. In what follows we will use these concepts for the �ow of a

�uid.

1.2 The Present Investigation

Considering the �rst problem, the purpose of this work is to examine the coupled prob-

lem of the stability of a ferro-hydrodynamics �ow between a two rigid parallel plates, in

which the new feature is the use of a phenomenological magnetization equation coupling

the magnetism of the �uid to the �ow. In the present investigation, linear stability of a

ferro�uid �ow between two parallel plate walls under an applied magnetic �eld is analyzed.

For this, a base state is determined by assuming the hydrodynamic unidirectional fully

developed �ow. To continue the analysis, two dimensional perturbation is imposed to the

base state. The linearized perturbations equations are expressed in terms of the amplitude

function by introducing plane waves disturbances. These equations are then reduced into

a Orr-Sommerfeld type system involving the magnetization disturbances. The generalized

eigenvalue problem is solved by a �nite di�erence scheme as reported in the references

[7, 25]. The results are compared with purely hydrodynamic case. A dimensionless mag-

netic parameter is identi�ed and the marginal stability curves and the critical Reynolds

numbers for a di�erent magnetic parameter values are obtained.

The e�ect of applied magnetic �eld on the �ow stability is studied, and a particular

attention is made in the following question: Does the applied magnetic �eld stabilize or

destabilize the �ow? For a given magnetic parameter, can a Reynolds number that stabilizes

the �ow be found?

Next, considering the second problem, the purpose of this work is to examine the cou-

pled capillar-magnetic problem of the Plateau-Rayleigh stability when a magnetic �uid is

considered. In the present investigation, a stability analysis of a magnetic �uid cylinder

jet �ow under an applied magnetic �eld in the axial direction is carried out. To this end,

the hypothesis of disturbances of with long wavelengths is assumed to derive an asymptotic

approximation of the Navier-Stokes equations. To continue the analysis an equation for the

evolution of the magnetization is considered. The linearized perturbations equations are

expressed in terms of the amplitude function by introducing a time and spatial depending

exponential function. These equations are then reduced into a dispersion equation type
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involving the magnetization disturbances. The results are compared with purely hydrody-

namic case and the previous works. Dimensionless magnetic parameters are obtained.

The e�ect of applied magnetic �eld on the �ow stability is studied, and a particular

attention is made in the following question: Does the applied magnetic �eld stabilize or

destabilize the �ow? Is there a physical parameter that prevents the formation of drops?

What is the relation which new magnetic mode? not mentioned before. What can we

conclude about the pinch-o� when a magnetic �uid is considered?

The rest of this work is structured as follows: in part I, a general introduction and

a review of the main concepts used in this research are presented. In Chapter 2, the

classical hydrodynamic stability model problem, as well as the governing equations and

physical parameters of the problem, are presented. In Chapter 3, the fundamental results

about magnetic �uids and magnetization evolution equations are derived. In Part II, the

stability of plane parallel �ows of magnetic �uids is presented. In Chapter 5, the classical

problem of hydrodynamic stability of parallel plate �ows and the Orr-Sommerfeld equation

are presented. In Chapter 6, the linear stability analysis and the base state �ow is carried

out and the numerical method used to solve the plane parallel �ow for symmetric magnetic

�uids is presented. The results are presented for two di�erent con�gurations of applied

�elds, following [44, 62]. In Part III, the Plateau-Rayleigh instability problem is presented.

In chapter 9, the inviscid and viscous Plateau-Rayleigh instability for the hypotheses of long

wavelengths are derived. A numerical solution for the non-linear problem is obtained and

compared with [69]. In Chapter 10, the long wave approximation of the Plateau-Rayleigh

instability for super-paramagnetic �uids is presented. The linear stability is compared with

[33] and the non-linear numerical approach is compared with [66]. In chapter 11, the non-

linear governing equations for the long wavelengths approximation of the Plateau-Rayleigh

instability for magnetic �uids are derived. The numerical solution of this approach is use

to study the pinch-o� and perform the stability analysis. Finally, a discussion and some

directions for future work are presented in Chapters 7 and 12.
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CHAPTER 2

THE EQUATIONS OF HYDRODYNAMICS

In this chapter, we present the set of equations that govern the �ow of a �uid. We follow

the classical references which give us tools to carry out the proposed research.

2.1 Preliminaries

We start with the work done by Osborne Reynolds in his famous paper [49], and with

Fig. (2.1) where a sketch of the experiment done by him is shown.

Reynolds' experiment (1883) has shown the existence of two types of �ow, laminar �ow

and turbulent �ow. The objective of the experiment was to visualize the water �ow pattern

through a glass tube with the help of a tracer (dye). As illustrated in Fig. (2.1), a glass

tube, at the end of which a convergent tube is �tted, is kept within a reservoir and linked

to an external system containing a valve, which has the function of regulating the �ow. A

coloring liquid is injected into the tube that makes it possible to visualize the �ow patterns.

For small �ow rates the coloring liquid forms a continuous thread parallel to the axis of

the tube, see Fig. (2.2) (a). Higher �ow rates induce oscillations that are ampli�ed as the

�ow rate increases until it ends with the disappearance of the thread, that is, a complete

mixing inside the glass tube of the coloring liquid, indicating that the thread was diluted

by the �ow. It is possible to conclude that two di�erent types of �ow occur and that the

two types are separated by a transition. In the �rst case, in which colored threads are

observed, it is concluded that the particles travel without transverse agitation, maintaining

the cylindrical shape with which it was generated. In the second case, the particles have

important transversal speeds, since the thread disappears due to the dissolution of the
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Figure 2.1: Sketch of the experiment done by Osborne Reynolds, taken from his 1883 paper

[49].

particles in the water volume, see Fig. (2.2) (c).

For a laminar �ow, the �uid moves in parallel layers, that slide relative to one another. In

this regime, any tendency for instability is dampened by viscous shear forces. For turbulent

�ow, the particles present a chaotic movement at the macroscopic level, that is, the velocity

has components that are transversal to the dominant direction of the �uid �ow.

The transition between these two regimes happens when inertial e�ect ar large enough

to prevent the viscous dissipation of local instabilities of the �ow. Non linear inertial

mechanisms amplify these disturbances and destroy the ordered laminar �ow structure

and then unsteady disordered motion dominates the dynamics of the �ow. The parameter

identifying the transition is the Reynolds number, which is given by,

Re =
Inertial Forces
Viscous Forces

=
ρUD

η
,

which are respectively the density of the �uid ρ, the average velocity of the tube U , the

diameter of the tube D and the dynamic viscosity of the �uid η, in Reynolds experiment. In

other �ows, the parameters changes accordingly, but it is always inertial e�ects and viscous

e�ects that determine the transition. For example, for the �ow between parallel plate the

Reynolds number is de�ned in Section 5.1.

We can now intuitively understand that if a �uid maintains its velocity pro�le as time
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Figure 2.2: Sketch of the three di�erent types of �ow classi�ed by Reynolds's work [49]. a)

Laminar b) transitional and c) Turbulent.

evolves will be called stable, and if it changes to another type of �ow we will call this type

of �ow unstable.

The natural question we can ask ourselves at this moment is whether we can explain

these phenomena from the dynamic point of view.

2.2 Conservation Equations

In this section, we are going to de�ne the equations that govern the �ow of �uids, for

this, we are going to start with the continuum hypotheses. In general, a �uid is a material

that deforms continuously when subjected to a shear stress [4].

The continuum hypotheses gives us a clear idea of what is the concept of continuous

deformation [4]. In a context of continuum mechanics, we deal with the macroscopic prop-

erties of the medium, for example: temperature, velocity, pressure, speci�c mass and others.

These properties are taken as average values found in elements of volume with a large di-

mension compared to the free mean path of the molecules, so that these dimensions are

large enough to allow that the discontinuity e�ects of matter do not appear, but in such

a way that these dimensions are small compared to the dimension of the medium. By ac-

cepting the continuum hypotheses, we admit that the elements of volume, of in�nitesimal

dimensions, contain a large number of molecules. Consequently, the medium is considered

as a continuum, so that the di�erential and integral calculus machinery can be applied and

their properties de�ned point by point.

The Knudsen number Kn is the dimensionless physical parameter to verify the validity

of the continuum hypotheses and is de�ned as:

Kn =
λ

L
, (2.1)

10



where λ is the molecular free mean path and L is a representative macroscopic scale of the

�ow. If the Knudsen number is close to one, this means that the molecular mean free path

is comparable to the length scale, Kn ∼ 1, so that the hypotheses is not a good approach,

problems of this type belong to the area of statistical mechanics. If the Knudsen number

is much less than one, Kn � 1, the continuum hypotheses is strictly valid and its study is

focused on classical �uid mechanics.

The �uid �ow is governed by a set of balance equations: the continuity equation, the

linear momentum equation, the angular momentum equation and the energy equation. In

this work, we do not consider e�ects of temperature changes, so that in the isothermal

case, the later is not needed. In the following, we present a brief deduction of the other

equations. The reader interested in a more detail derivation of these equations is invited to

check reference [4].

In what follows, we are going to determine how an intensive1 property of the �uid varies

when it is limited to a control volume of the analyzed system. In order to do this, we

are going to use the Leibniz's Rule [27], for a real function f(x, t) de�ned in a rectangle

R = [a, b] × [c, d] ∈ R × R, integrable in x for t ∈ R, then the temporal derivative of the

integral quantities can be written as

d

dt

� b

a

f(x, t)dx =

� b

a

∂f(x, t)

∂t
dx, (2.2)

for constant integration limits. For integration limits depending on time, the result is

obtained in the following form,

d

dt

� b(t)

a(t)

f(x, t)dx =

� b(t)

a(t)

∂f(x, t)

∂t
dx+ f(b(t), t)b′(t)− f(a(t), t)a′(t). (2.3)

Considering a function described in terms of a control volume V ∈ R, where R is a con-

tinuous euclidean space, so that this volume is time dependent, since its boundaries S are

deformable. Therefore, we obtain Leibniz's theorem as being

d

dt

�
V (t)

f(x, t)dV =

�
V (t)

∂f(x, t)

∂t
dV +

�
S(t)

f(x, t)uknkdS (2.4)

where uknk is the inner product between the velocity �eld u, with components uk, k = 1, 2, 3,

and the unitary vector n, with components nk, k = 1, 2, 3, that is normal to the surface

S. By Eq. (2.4), the Leibniz's rule reduces to the Reynolds's transport theorem where (·)
denotes any intensive �uid property

d

dt

�
V

(·)dV =

�
V

∂(·)
∂t

dV +

�
S

(·)u · ndS. (2.5)

1An intensive property is independent of the amount of mass. The value of an extensive property varies

directly with the mass.
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Therefore, we can �nd the mass conservation equation by taking (·) = ρ, where ρ is the

�uid density:
d

dt

�
V

ρdV =

�
V

∂ρ

∂t
dV +

�
S

ρu · ndS. (2.6)

Using the divergence theorem [3] on the second term of right side,

Dm

Dt
=

�
V

∂ρ

∂t
dV +

�
V

∇ · (ρu)dV. (2.7)

Expression above with m constant give us,
�
V

(
∂ρ

∂t
+∇ · (ρu)

)
dV = 0. (2.8)

This expression is valid for an arbitrary volume V , then by applying the Du Bois-Raymond

lemma [3],
∂ρ

∂t
+∇ · (ρu) = 0, (2.9)

If a �ow is incompressible, then ρ is constant and we get the continuity equation:

∇ · u = 0. (2.10)

We know that the movement of rigid bodies (Material points) is governed by the New-

ton's second law, ∑
F = ma, (2.11)

or, equivalently, ∑
F = m

du

dt
, (2.12)

that is a of �rst order ODE if we write it in terms of the velocity u of a body. A generalization

for a �uid is carried out by taking into account that a �uid is a material that is deformed

continuously under the presence of forces. In fact, the �uids acquire the shape of the

container where they are and do not have a preferred con�guration. Fluids can be found

in nature as liquid, gas and plasma state. Hence, to describe mathematically the �ow of

a �uid, we are going to consider a �uid as a set of particles (material points) and we are

going to apply Newton's second law to describe their individual movement.

In a context of �uid dynamics, it is possible to describe the properties of the �uid

particles, that is, position, velocity, density, temperature, etc. The process of determining

these instantaneous properties is di�cult. This is know as Lagrangian description. On the

other hand, the Eulerian description uses a �xed frame of reference, and the particles that

pass through a point assume the properties of this particular point.

In what follows, we are going to adapt the above discussion to Newton's second law.

Firstly, we de�ne the operator material derivative, when applied to a property of a particle
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of the medium that moves with velocity u, give us as a result the total derivative in relation

to the time of the property of that particle in movement, the expression is given by:

d

dt

∣∣∣∣
Lagrangian

=
∂

∂t
+

∂

∂x

dx

dt
+

∂

∂y

dy

dt
+

∂

∂z

dz

dt
=

D

Dt
, (2.13)

or using a vector notation,
D(·)
Dt

=
∂(·)
∂t

+ (u · ∇)(·). (2.14)

Then, dividing by a volume V , Newton`s second law (2.12) for each �uid particle is written

as

ρ

(
∂u

∂t
+ u · ∇u

)
=
∑

f . (2.15)

The forces acting on the �uid particles can be divided in two types: �eld forces, that have

remote action, for example, gravity, electromagnetic forces, etc., by example ff = ρg, and

surface forces fs, that are related to contact, for example, friction. Hence the forces acting

on the �uid particle can be written as:∑
f = fs + ff. (2.16)

Finally, the angular momentum equation can also be derived in terms of �rst principles [4].

In the case of Newtonian �uids, the angular momentum equation implies the symmetry

of stress tensor (see Section 2.3). For the case of magnetic �uids, the angular momentum

equation is still a matter of discussion [44, 33] and, we will postpone the derivation of this

equation to Chapter 3.

2.3 Stress Tensors

From the mechanics of continuum media, we can write the surface forces as,

fs = ∇ · σ, (2.17)

with σ being the stress tensor of the �uid. Replacing Eq. (2.17) in Eq. (2.15) and (2.16),

we obtain

ρ
Du

Dt
= ∇ · σ + ρg, (2.18)

which is known as the Cauchy equation describing the motion of the �uid.

Equations for σ describes the material and they are called constitutive equations. They

are proposed based in experimental observations and theoretical hypotheses. Written in

another reference system a constitutive equation must not change its form, this condition

is known as material frame indi�erence (MFI) and a constitutive equations satisfying the

MFI principle are called objective.
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For a Newtonian and incompressible �uids, the stress tensor σ is given by,

σ = −pI + η
(
∇u + (∇u)t

)
, (2.19)

where p is the pressure and I is the identity tensor, forming the isotropic part of the stress

tensor and the second term on right-hand side, is the deviatoric part of the stress tensor

where η is the dynamic viscosity of the �uid and the superscript t indicates the transpose

of a tensor quantity, associated with the shear stresses acting over the material.

By taking the Newton's second law (2.15) with (2.16) in consideration and by developing

the divergence of (2.19) with the aid of the continuity equation (2.10), we can �nd

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇p+ η∇2u + ρg. (2.20)

This is the Navier-Stokes equation. This equation represents the conservation law of mo-

mentum of a �uid �owing in a given domain. In (2.20), we have three equations, in x, y

and z-directions, however we have four variables, three from velocity components u, v and

w and the pressure p to be determined, hence in order to close the full system we are going

to require one additional equation: the mass conservation equation. So that, the �ow of a

�uid is governed by the following system of partial di�erential equations, ρ

(
∂u

∂t
+ u · ∇u

)
= ∇p+ η∇2u + ρg,

∇ · u = 0.
(2.21)
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CHAPTER 3

MAGNETISM AND MAGNETIC FLUIDS

In this Chapter, we will present the main results about the �uid that is part of this

study.

3.1 Ferro�uids

Ferro�uids are colloidal suspension of nano-sized ferromagnetic particles dispersed in a

non-magnetic base liquid, that usually is a Newtonian �uid [30, 33]. They have a dark

appearance and the ferro-magnetic particles are typically magnetite, cobalt, etc., with an

average diameter of 10 nanometers. The base liquid can be oil, mineral oil, ester or kerosene

[33].

For ferro�uids to be suitable for practical applications, they must be stable in relation

to the formation of aggregates due to the attractive forces between the particles. The

interaction between the particles occurs by several mechanisms, among them are: the van

der waals forces and the magnetic force due to the interaction between the dipole moments

of the particles. Short-range forces create aggregates in the suspension. To avoid this, a

thin sheet of surfactant is applied on the surface of the magnetic particle, which acts as a

repellent layer, preventing the formation of aggregates [21]. On the other hand, there are

magnetoreological suspensions (SMR) synthesized as magnetizable microparticles, dispersed

in a non-magnetizable base �uid. This class of magnetic suspensions is di�erent from other

ferro�uids due to the microscale size of the particles. In this way, SMR are not subject to

the Brownian movement that is induced by molecular thermal agitation, so they are more

unstable in relation to the formation of aggregates and with greater magnetic memory [14].
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According to [33], the stability of a ferro�uid is preserved when the thermal energy kT

associated with the Brownian movement is greater than or equal to the magnetic energy

µ0MdHvp, where k is the Boltzmann constant, T is the �uid temperature, µ0 is the magnetic

permeability of the vacuum, Md is the magnetization of the solid part constituted by the

particles, H is the intensity of the magnetic �eld and vp is the volume of the particle.

The maximum diameter of the spherical particles that satisfy the stability condition is

determined by the following expression:

d ≤
(

6kT

πµ0MdH

)1/3

, (3.1)

which means that to guarantee the stability of a magnetic suspension, the magnetic particles

must be small, for example approximately 10 nm.

The practical applications of �uid dynamics in engineering, until the last decades, were

restricted to systems in which the magnetic and electric �elds did not intervene. However,

the combination of magnetic �elds in polarized �uids attracted the attention of the scienti�c

community for its promising applications in various areas of knowledge, see [36].

3.2 The Magneto-static Limit of Maxwell's Equations

3.2.1 The Maxwell's Equations

The Maxwell's equations are a set of four partial di�erential equations that govern

electromagnetic theory that related electrical and magnetic quantities [18]. These quantities

are given by: the electric displacement vector De, the free charge density ρe, the intensity

vector or density of magnetic �ux vector B, with Tesla units [T], the current density or

current �ux vector J, the electric �eld vector E and the intensity of magnetic �eld H.

The equations are given by Gauss's Law of the electricity, Gauss's law of the magnetism,

Ampère's law and Faraday's law, which are given by:

∇ ·De = ρe Maxwell Gauss's First Law

∇ ·B = 0 Maxwell Gauss's Second's Law

∇×H = J +
∂De

∂t
Ampère's Law

∇× E = −∂B

∂t
Faraday's Law

3.2.2 The Magnetostatic Limit

In the context of ferrohydrodynamics, only the magnetic quantities are considered and

the electrical quantities are not involved when a magnetic �uid is �owing, that is, the free

16



current density J, the electric displacement De and the applied electric �eld E are zero.

These simpli�cations correspond to the magnetostatic limit of the Maxwell's equations

[33, 59], and generates the following set of equations:

∂B

∂t
= 0, (3.2)

∇ ·B = 0, (3.3)

∇×H = 0. (3.4)

3.3 The Boundary Conditions

In this section, the conditions that must be satis�ed by the magnetic vector �elds in the

interface between two media with di�erent magnetic properties will be determined.

Consider two �uids with di�erent magnetic properties called �uids 1 and 2 and the

interface between them, as an example two magnetic permeabilities µ1 and µ2 respectively

for each �uid. Let's consider an in�nitesimal volume containing part of the domain of

the �uid1, the interface and the �uid2. We are going to analyze the �ux of the magnetic

induction �eld B and the applied �eld H, so that we can understand what happens across

the boundary that divides the two media.

In order to determine the condition for the magnetic induction B, consider a cylindrical

volume δV , in which the upper and lower face forms a disk of radius r, height ε and total

area δS. Consider the vector �elds B1 and B2 crossing the regions of �uid1 and �uid2
respectively, as the Fig. (3.1) shows.

Applying Gauss's theorem to volume δV and vector �eld B, we obtain an equivalent

expression for the closed surface as follow,

0 =

�
δV

∇ ·B dV =

�
δS

B · n̂ dS, (3.5)

in which n̂ is the exterior normal vector to the surface. From Maxwell's equations in the

magneto-static limit, Eq. (3.3), the analysis is reduced to calculate the normal component

of B on the upper, lower and lateral faces.
�
δS

B · n̂ dS =

�
lateral Area

B · n̂ dS +

�
Upper Area

B2 · n̂ dS +

�
Lower Area

B1 · n̂ dS. (3.6)

Calculating the close integral of the lateral side:
�
lateral Area

B · n̂ dS ≤
�
lateral Area

|B · n̂| dS =

�
lateral Area

1 dS|B||n̂|| cos(θ)| = 2πrε|B|.

We are going to consider ε small in order to approximate our geometry to the interface so

that we can neglect the lateral in�uence of the magnetic induction B. Geometrically, the
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Figure 3.1: The sketch represents the cylindrical in�nitesimal volume δV in the interface

between two magnetic �uids, �uid1 and �uid2 with their respective magnetic induction �eld

B1 and B2.

normal vector is in the same direction of B2 and in the opposite direction of B1.
�
δS

B · n̂ dS =

�
Upper Area

B2 · n̂ dS −
�
Lower Area

B1 · n̂ dS, (3.7)

Again, from the geometry we consider both faces are the disk of radius r and doing ε tend

to zero the contribution of this integral is negligible, we can express,
�
Upper Area

(B2n −B1n) dS = 0. (3.8)

This leave us to conclude that the normal components of B1 and B2 have to maintain

continuity in the interface:

B1n = B2n. (3.9)

An equivalent expression is given by:

(B1 −B2) · n̂ = 0. (3.10)

In order to determine the condition for the applied magnetic H, we use the Stokes's

Theorem to a closed orientated curve C and the applied magnetic �eld H, as the Fig. (3.2)

shows. In this expression the integral over the closed contour is zero by using the magneto-

static limit Eq. (3.4) for the applied magnetic �eld H. Using Stokes theorem, we obtain

that:

0 =

�
S

(∇×H) · n̂ dS =

�
C

H · t̂ dC. (3.11)
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Figure 3.2: The sketch represents the closed orientated path in the interface between two

magnetic �uids, �uid1 and �uid2 with their respective applied magnetic �elds H1 and H2.

The analysis is reduced to calculate the tangential component of H on the upper, lower and

lateral faces.�
C

H · t̂ dC =

�
lateral sides

H · t̂ dC −
�
Upper side

H2 · t̂ dC +

�
Lower side

H1 · t̂ dC. (3.12)

From the orientation of the curve the orientation of H2 in the tangential direction is negative

and for H1 it is maintained positive. Calculating the integral in the lateral faces, we get
�
lateral sides

H · t̂ dC ≤
�
lateral sides

|H · t̂| dC =

�
lateral sides

1 dC|H||̂t|| cos(θ)| = 2|H|ε. (3.13)

By the geometry of our contour, as we tend ε to zero, and we can neglect the contribution

of the integral in Eq. (3.13) and we obtain:
�
C

(H2t −H1t) dC = 0 (3.14)

that let us conclude,

H1t = H2t. (3.15)

Or an equivalent expression can be,

n̂× (H1 −H2) = 0. (3.16)

Therefore, the boundary magnetic conditions are given by the continuity of the normal

induction Eq. (3.10) and tangential applied �eld Eq. (3.16).
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3.4 The Magnetization

In this section, we are going to de�ne a local mean property of ferro�uids, the mag-

netization in the macroscopic sense. For this we are going to de�ne the magnetic dipole

moment or also called the magnetic moment, which comes from the nano-scale properties of

the diluted particles in a colloidal magnetic suspension. We follow the development made

by [6].

The magnetic dipole moment m is de�ned by considering a close path with transversal

area ∆A, with an electric current �ux I constant. By de�nition, the magnetic dipole

moment associated to this path, is given by

m = I∆A n̂, (3.17)

in which n̂ is the unitary normal vector to ∆A, de�ned by the direction of the electric cur-

rent. Let's consider the magnetic dipole moments distributed in homogeneous statistically

form and independent of the material volume δV , made up of a su�ciently large number

of magnetic particles, in this form the mean value of dipole moments in δV has small vari-

ations in the scale ∆V . Then, by the ergodicity hypothesis, the volumetric mean value of

the dipole moments is equivalent to the mean of the probability distribution associated to

the dipoles moments of the particles in δV . Thus, the magnetic moments mean volumetric

value distributed in δV is de�ned as,

〈m〉(x, t) = lim
δV ′→δV

1

δV ′

�
δV ′

m(y, t)dV, (3.18)

where x is a �xed position in the material volume δV , and y is a mobile position inside of

the in�nitesimal volume, that allows to calculate the mean local property value, being able

to be in the base �uid or particle domain, as in Fig. (3.3).

To avoid temporal dependence in (3.18), we consider a volumetric mean for a determined

time t of equilibrium or permanent regime.

Now, as in Fig. (3.3), we can decompose the volume δV as the union of two sets, the �rst

containing the base �uid and the second containing the volume of the magnetic particles.

Let's consider N the number os magnetic particles in δV with particle volume vp. Splitting

the integral (3.18) in two integrals, one over the base �uid part δV�uid and the other in over

the magnetic particles,

〈m〉(x) = lim
δV ′→δV

1

δV ′

(�
δV�uid

m(y)dV +

�
∑N
k=1 v

k
p

m(y)dV

)
. (3.19)

The �rst integral takes into account the carrier �uid and since it is not magnetizable,

m(y) = 0 for each y ∈ δV�uid. Therefore, the magnetization is concentrated in the magnetic
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Figure 3.3: Figure shows a representation of a volume δV of a magnetic suspension, with

the magnetic nano-particles k has associated a dipole moment mk represented by a vector.

particles and is given by:

〈m〉(x) = lim
δV ′→δV

1

δV ′

�
∑N
k=1 v

k
p

m(y)dV. (3.20)

Considering that the particle k has a dipole moment mk as in Fig. (3.3), and that all

magnetic particles have the same vp:

〈m〉(x) =
1

δV

N∑
k=1

mkvp, (3.21)

the summation can be converted into a mean if we divide it by N . Consequently, de�ning

N/δV as being the particles density number n and the magnetisation at x can be given by:

〈m〉(x) = nvpm̄, (3.22)

where m̄ is the mean value of the dipole moments, and is given by:

m̄ =
1

N

N∑
k=1

mk. (3.23)

Alternatively, φ = nvp is the volumetric fraction of the particles in δV .

We can now de�ne the local magnetization M of a ferro�uid as being given by the mean

moment of dipole of the particles divided by the volume vp, that is:

M :=
〈m〉
vp

= nm̄, (3.24)

where m̄ is the component of the mean magnetic moment per particle along the �eld

direction.
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If the mean value 〈m〉 is zero, that is, each particle is aligned in a di�erent direction, then
M = 0. If all the particles are aligned in the direction of the �eld, then the magnetization

of the suspension reaches the saturation of magnetization Ms. In this case,

Ms = nm̄s, (3.25)

We de�ne the magnetization of the solid material Md, composed by the particles.

Md =
m̄s

vp
, (3.26)

now combining this equation with (3.24), we have:

Ms = nm̄s = nvpMd = φMd,

from where we obtain:

Ms = φMd. (3.27)

Since a magnetic �uid is a suspension of magnetic particles, it is convenient to de�ne the

saturation magnetization of the medium as a function of both the magnetization solid

material Md, as well as the volumetric fraction φ of suspended magnetic particles, as in

Eq. (3.27) and we can infer that the saturation of magnetization of the continuous liquid

medium corresponds to a percentage of the magnetization of the suspended magnetic solid.

3.5 The magnetization of a Ferro�uid

3.5.1 The equilibrium Magnetization

The magnetization of equilibrium describes the state of a magnetizable medium at rest,

where all the magnetic dipole moment of the particle suspended in the base �uid were

oriented partially in the direction of the applied magnetic �eld and reach a permanent

regime. When the magnetic dipole moments of the suspension are totally orientated in the

direction of the applied magnetic �eld, the magnetization of the medium reach its maximum

value, named the magnetization of saturation Ms, as in Eq. (3.27). In this manner, the

magnetization of equilibrium is limited by the magnetization of saturation, M0 ≤Ms.

The mean of the magnetic dipole moments 〈m〉 can be theoretically calculated from the

angular density function of probability Pθ, such that for a collection of N particles with

independent magnetic dipole moments, the number of particles in the con�guration between

θ and θ + dθ is given by the probability Pθdθ, with θ the angle that a determined vector

magnetic moment m of a particle causes the applied �eld H. Thus, considering that the

mean m̄ satis�es the previous conditions and from of the discrete de�nition of m̄ expressed
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in equation (3.23), the mean of standard probability in integral form is given by Rosensweig

[33]:

m̄ = êH

� θ

0

(m cos θ)Pθ(θ)dθ. (3.28)

where êH = H/|H|. For magnetic moments with independent orientations, a normalized

probability density function P (θ), with
�
P (θ)dθ = 1 in all the interval θ, is typically a

distribution given by McQuarrie (1976) with exponential factor of Boltzmann:

P (θ) =
1

2
sin θ exp

(
− E

kT

)
. (3.29)

In this context, E corresponds to the energy needed to misalign the magnetic dipole moment

m of its alignment parallel, or preferential, with the magnetic �eld applied H.

Being dE = Tmdθ and Tm = mH sin θ the intensity of the magnetic torque per unit of

particle volume. The intensity of the magnetic dipole moments is considered m equal for

all suspended particles, however, due to variations in orientation of m of each particle, it

is necessary that the calculation of the average probability given by equation (3.28) is per-

formed for arbitrary orientations. The given integral solution in (3.28), for the probability

density P (θ) of magnetic dipole moments independent orientations, results in:

m̄ = m
(
cothαh − α−1h

)
= mL(αh). (3.30)

where the Langevin function L(α) being the average result, coming from the condition

that the magnetic dipole moments of the suspended particles were not necessarily oriented

towards the applied magnetic �eld.

The dimensionless parameter

αh = mH/kT, (3.31)

represents the ratio between the magnetic forces Fm ∼ mH/l and Brownian forces FB ∼
kT/l, where l is a characteristic suspension length scale, for example, the diameter of the

suspended particles. Overall, the equilibrium magnetization of a magnetic �uid is well

described by the Langevin equation, as shown by Odenbach [30]:

M0

Ms

= cothαh − α−1h = L(αh). (3.32)

Substituting Eq. (3.27) in (3.32), provides:

M0

Md

= φL(αh). (3.33)

From an analysis of equation (3.31) it is possible to infer that αh � 1 describes the case

in which the external �eld dominates the movement of the particles, which do not present

relevant response to the thermal �uctuations of the Brownian movement and remain aligned
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towards the applied �eld. If αh � 1 the suspension has a magnetization very small due

to the in�uence of the Brownian forces and the magnetic moments have a distribution of

random orientations. In such cases, it is possible to represent the Langevin function by a

Taylor series around αh in the form,

L(αh) =
αh
3
− α3

h

45
+

2α5
h

945
+ . . . , (3.34)

with the limit L(αh) ≈ αh/3 representing the condition of �uid paramagnetism.

This last expression is the model for the equilibrium magnetization of Langevin.

Figure 3.4: Figure shows the Langevin function (solid-line) and the equilibrium magne-

tization values plotted for small values of αh, with the asymptotic solution for αh � 1:

M0/φMd = αh/3 in a regime paramagnetic.

3.6 The Magnetic Relaxation Time

The magnetic relaxation time τ is another physical parameter, which is the time scale

in which the material relaxes until it reaches its equilibrium magnetization M0.

The Brownian relaxation time, τB, that involve the rotation of the magnetic particle

together with its �xed dipole moment and is given by

τB =
3η0vp
kB T

. (3.35)
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In this expression, vp is the total particle volume, including the surfactant layer that avoids

the formation of aggregates, η0 is the viscosity of the carrier �uid, kB is the Boltzmann

constant and T is the absolute temperature of the �uid.

The Néel relaxation time, τN , whose dipole moment rotates freely relative to the particle

and is given by:

τN = f−10 exp

(
K vp
kB T

)
. (3.36)

In this expression, K is the anisotropic constant of the particle, f0 is the Lamour fre-

quency of the magnetic moment and its value is approximately 109 s−1, and represents a

phenomenon of quantum characteristic, this time scale is out of the scope of continuum

mechanics.

From both expression (3.35) and (3.36), it is clear that for a smaller particles the Néel

time is much smaller than the Brownian time τN � τB, but considering a larger particles,

the Brownian time is much less than the Néel time, that is τb � τn, as shown in Fig. (3.5).

When the τn ≈ τB, the e�ective relaxation time τe� is given by:

1

τe�
=

1

τB
+

1

τN
. (3.37)

In Fig. (3.5), the magnetic relaxation times are shown for the following data: η0 = 0.1 Pa s,

2 nm surfactant layer, absolute temperature T = 300 K and anisotropic constantKs =

100kJ/m3 and Ks = 10kJ/m3

Figure 3.5: Figure shows Néel, Brownian and e�ective relaxation time using the formulas

Eqs. (3.36), (3.35) and (3.37).
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3.6.1 Out of the Equilibrium

In this section, we comment on some works in the direction of �nding an evolution

magnetization equation for a magnetic �uid �ow. Initially, we must say that until today

this is an open problem, and several works are on the way to consolidate this equation.

Its derivation requires both experimental and theoretical knowledge in the topic of the

continuum mechanics.

The �rst attempts were done by Shliomis in the works of (1967), (1968) and (1972)

initially these works do not take the term of equilibrium magnetization that was deduced in

Section (3.5.1). Later, we have the work of Felderhof (1999) in which the equilibrium mag-

netization term already intervenes and is valid for an incompressible �uid and an external

applied �elds of low intensity:

The model for the evolution equation was proposed by Shliomis (1974),

DM

Dt
= Ω×M +

1

τ
(M0 −M). (3.38)

where τ is the magnetization relaxation time and M0 is the equilibrium magnetization and

Ω = 1
2
∇×u. If this equation do not have the �rst term in the right-hand side, the referred

di�erential indicates a growing as the function exp(−t/τ) and the limit when time goes the

function is close to the equilibrium magnetization M0.

Later, it was proposed by Shliomis (2001),

∂M

∂t
+ u · ∇M = −1

τ
(M−M0) + Ω×M− µ0

6φ
(M×H)×M. (3.39)

In general, this equation is accepted by the scienti�c community, because it brings the

most important phenomena when considering the �ow of a magnetic �uid. The third term

incorporates the viscous magnetic torques into the equation proposed by Felderhof (1999).

The proposed equations for the evolution of magnetization described by the above equations

were developed for an equivalent Brownian magnetic relaxation time τB. For an equivalent

Néel magnetic relaxation time τN , the determination of the magnetization requires that

the rotational speed e�ects of the internal magnetic dipole moment to the particle must be

incorporated through an additional angular momentum balance equation, see [45].

3.7 The Magnetic Stress Tensor

The magnetic stress tensor, or the Maxwell stress tensor, provides a quantitative de-

scription of the �eld forces and also the surface forces density present in the magnetic �uid.

Since ferro�uids are a colloidal suspension of magnetic nano-particles in a base �uid, this
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behavior can be quantitatively described as the combination between the Newtonian part

and the Magnetic part of the suspension.

σ = σh + σm, (3.40)

where σh is the tensor that incorporates the behavior of the Newtonian �uid and σm the

Maxwell stress tensor, the latter incorporating the magnetic behavior of the nano-particles

found in the colloidal suspension.

The next steps are in the direction of �nding an expression for Maxwell's tensor of

tensors σm.

We consider a set V of magnetic dipoles around a point in the domain space. Brown's

theorem [5] states that the distribution dipoles set in V is equivalent to a density distribution

ρV and is given by:

ρV = −µ0∇ ·M, (3.41)

Once H is a force per pole unit, the local density of force f is:

f = ρV H. (3.42)

This generates a magnetic force, where ρV is the magnetic dipole density. From the consti-

tutive equation for the magnetic induction B,

B = µ0 (H + M) , (3.43)

this expression together with the Maxwell's equation in the magnetostatic limit Eq. (3.3)

leaves us to express the magnetic force density ρV in the following form,

µ0∇ ·H = −µ0∇ ·M = ρV . (3.44)

Substituting ρV in Eq.(3.42), we deduce that:

f = µ0H(∇ ·H), (3.45)

and using vector identities in Eq. (3.45), it is possible to express it as:

f = ∇ ·
(
−µ0H

2I

2
+ µ0HH

)
. (3.46)

This implies that the Maxwell stress tensor is given by,

σm = −pmI + µ0HH, (3.47)

where pm = µ0H
2/2 is the magnetic pressure. It must be noticed that in a non-polarized

media, where there is no magnetization, the magnetic induction B takes the form B = µ0H,

which allows us to generalize the Maxwell stress tensor as;

σm = −pmI + BH, (3.48)

or since µ0 is a constant, it can be manipulated to get µ0HH = H(µ0H) in Eq. (3.47),

leaving us to modify (3.45) in order to obtain a second version of the Maxwell stress tensor,

σm = −pmI + HB. (3.49)
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3.8 The Equations of Motion of a Ferro�uid

In this section, the equation for a magnetic �uid �ow will be deduced. Let's consider an

incompressible, barotropic and magnetic �uid �ow described by the Cauchy equation given

in (2.18). Substituting (3.40) in Eq. (2.18), we get:

ρ
Du

Dt
= ∇ · (σh + σm) + ρg. (3.50)

The hydrodynamic part is well known and is given by the following expression:

∇ · σh = ∇ · (−pI) + 2µ∇ ·D, (3.51)

where p is the pressure and D is the deformation tensor, using Gibbs notation on the

right-hand side of Eq.(3.51) allows to obtain:

∇ · σh = −∇p+ µ∇2u. (3.52)

In order to complete the expression in Eq. (3.50), we develop the divergence of the magnetic

stress tensor ∇ · σm, for this, we use the two formulation: BH and HB presented in

Eq. (3.48) and Eq. (3.49) respectively.

Formulation BH

First, we start with the divergence of the magnetic stress tensor σm using the formulation

BH in Eq. (3.48), which after some vector calculations is given by:

∇ · σm = µ0(M · ∇)H. (3.53)

By consequence, the modi�ed NSE for magnetic �uid �ows for the formulation BH of the

magnetic stress tensor is given by:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ η∇2u + µ0(M · ∇)H. (3.54)

The e�ect of the magnetic part is present in this equation in the term µ0(M · ∇)H, which

is known as the Kelvin force.

Formulation HB

We are going to take the divergence of σm using the formulation HB in Eq. (3.49),

∇ · σm = µ0 [(H · ∇)M + M(∇ ·H) + H(∇ ·H)] (3.55)
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Using the vector identity

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B,

with A = M and B = H,

∇× (M×H) = M(∇ ·H)−H(∇ ·M) + (H · ∇)M− (M · ∇)H. (3.56)

Maintaining the �rst and third term of the right-hand side,

M(∇ ·H) + (H · ∇)M = H(∇ ·M) + (M · ∇)H +∇× (M×H). (3.57)

Replacing this expression in Eq. (3.55) and using the information of the divergence of the

magnetic induction Eq. (3.3)

∇ · σm = µ0(M · ∇)H + µ0∇× (M×H). (3.58)

The second in the case of the formulation HB, is given by the expression

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ η∇2u + µ0(M · ∇)H + µ0∇× (M×H). (3.59)

In this expression can be identi�ed the presence of the Kelvin force and the other magnetic

contribution is given by µ0∇ × (M × H), known as the Torque force. Comparing both

expressions (3.54) and (3.59), it is clear that the second formulation brings an additional

magnetic term and incorporates di�erent mechanisms of interaction of the magnetic �uid

with the applied �eld.

Lack of symmetry of Maxwell stress tensor

In this section, we are going to study the in�uence of internal torques on the stress

tensor symmetry for �uids that react polarly. In order to do this, we consider the balance

of the angular momentum L of a �uid particle, what is given by,

DL

Dt
=
∑

T, (3.60)

where
∑

T is representing the sum of torques that acts over a volume δV , which is assumed

to be in�nitesimal. Taking δL = (x× ρu)dV what implies

L =

�
V

x× ρudV. (3.61)

By substituting (3.61) in (3.60),

D

Dt

(�
V

x× (ρu) dV

)
=
∑

T, (3.62)
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in expression (3.62), mathematically it is required that the derived material be inserted into

the integrand. This is done due to a consequence of the Reynolds Transport Theorem and

the continuity equation (2.10) applied on the right-hand side of Eq. (3.62), which gives:

D

Dt

�
V

ρ(x× u)dV =

�
V

ρ
D

Dt
(x× u)dV. (3.63)

We consider the contribution of the torque forces as a combination of �eld torques Tv and

surfaces torques Ts, as follows: ∑
T =

∑
Ts +

∑
Tv. (3.64)

Now, using Eq. (3.64) and (3.63) into Eq. (3.62) yields
�
V

ρ
D

Dt
(x× u)dV =

∑
Ts +

∑
Tv, (3.65)

with surface torques given by:∑
fs =

�
S

n̂ · σ dS =

�
S

t̂ dS. (3.66)

Developing the terms involved in the right hand side of Eq. (3.65)∑
Ts =

�
S

x× (n̂ · σ) dS =

�
S

x× t̂ dS, (3.67)

with the traction t̂ = n̂ · σ, and �eld torques given by:∑
Tv =

�
V

(x× (ρg) + ρTm) dV. (3.68)

It must be observed that the term ρg is related with the torque associated to the gravita-

tional forces per unit by mass and the term ρTm corresponds to the inner magnetic torque

of a magnetic �uid as a reaction to an external magnetic �eld per unit by mass.

Substituting Eqs. (3.67)-(3.68) in (3.65),
�
V

ρ
D

Dt
(x× u) dV =

�
S

x× t̂ dS +

�
V

(x× (ρg) + ρTm) dV. (3.69)

Using Gibbs notation to express the integrand of the �rst term on the right-hand side,

x× t̂ =x× (n̂ · σ),

=ξijkxjnlσklei.

Note that ξijkxjσkl = Til,
�
S

x× t̂ dS =

�
S

Tilnlei dS =

�
S

T · n̂ dS. (3.70)
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Now, if we develop the expression n̂ ·Tt,

n̂ ·Tt =niei · (Tjkejek)t,
=niTikek,

with this we proved T · n̂ = n̂ ·Tt. This simpli�cation we can write Eq. (3.67) as follow,�
S

x× (n̂ · σ) dS =

�
S

T · n̂ dS,

=

�
S

n̂ ·Tt dS,

=

�
V

∇ ·Tt dV,

in this expression we used the Divergence theorem applied to �eld Tm over a in�nitesimal

volume V . Now, we develop the integrand of this expression,

∇ ·Tt =
∂

∂xi
ei · (Tjkejek)t,

=
∂

∂xi
ei · Tjkekej,

=
∂

∂xi
Tjkek ei · ej,

=
∂

∂xi
Tikek,

which in turn we can write it in the following form,

∂

∂xi
Tikek =

∂

∂xi
ξijkxjσpk,

=ξijk
∂

∂xi
(xjσpk),

=ξijk

(
∂xj
∂xi

σpk + xj
∂σpk
∂xi

)
,

=ξijk

(
δjiσpk + xj

∂σpk
∂xi

)
,

=ξijkδjiσpk + ξijkxj
∂σpk
∂xi

,

=ε : σ + x× (∇ · σ),

where ε is third order Levi-Civita permutation tensor and σ is the second order stress

tensor. Finally we obtain,�
S

x× (n̂ · σ) dS =

�
V

(
ε : σ + x× (∇ · σ)

)
dV. (3.71)

Next step, we write Eq. (3.69) replacing the equivalent term of the right-hand side,�
V

ρ
D

Dt
(x× u) dV =

�
V

ε : σ + x× (∇ · σ) dV +

�
V

(x× (ρg) + ρTm) dV, (3.72)
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placing all terms on the left hand side of the equation, we get
�
V

[
ρ
D

Dt
(x× u)− ε : σ − x× (∇ · σ)− (x× (ρg) + ρTm)

]
dV = 0, (3.73)

Here, we apply the Du Bois-Raymond lemma to the integrand over a arbitrary in�nitesimal

volume V , and develop the integrand of the integral by expanding the term ρ
D

Dt
(x× u)

ρ

(
x× Du

Dt

)
+ ρ

(
Dx

Dt
× u

)
− ε : σ − x× (∇ · σ)− (x× (ρg) + ρTm) = 0 (3.74)

in this expression we must note that Dx/Dt and u are parallel what implies that the second

term is canceled, and grouping terms involving the cross product with x

x×
(
ρ
Du

Dt
−∇ · σ − ρg

)
− ε : σ − ρTm = 0. (3.75)

Note that the term between parentheses is the Cauchy equation (2.18) implying that this

term is zero and therefore we obtain the �nal version of the angular momentum equation:

ε : σ + ρTm = 0, (3.76)

Now, we are going to prove that the presence of the internal torques generated by an

external magnetic �eld breaks the symmetry of the stress tensor for magnetic �uids. In

order to do this we are going to expand the term

ε : σ = (σ23 − σ32)e1 + (σ31 − σ13)e2 + (σ12 − σ21)e3, (3.77)

In the expression (3.76), we can infer that if the Tm = 0 then σ23 = σ32, σ31 = σ13 and

σ21 = σ12, that implies the symmetry of the stress tensor σ = σt as it is the case of

stress tensors for Newtonian �uids. Now, we consider the case in which there is a magnetic

contribution of an external magnetic �eld expressed by Tm 6= 0, which implies

σ 6= σt (3.78)

which can be read as the stress tensor no longer being symmetrical in the presence of an

external magnetic �eld in the case that we work with a magnetic �uid.

32



Part II

Stability of plane parallel �ows of

magnetic �uids
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CHAPTER 4

INTRODUCTION

The problem of hydrodynamic stability was formulated for the �rst time in the nine-

teenth century, in the theoretical works by Helmholtz [41], Lord Kelvin [42] and Rayleigh

[47]. The �rst experimental work on this subject was made by Osborne Reynolds in [49],

who performed an experiment of a �uid �owing in a pipe. By using a tracer, he observed and

characterized the �ow transition from the laminar to a turbulent regime. The contribution

of Reynolds's work was the association of this transition phenomenon to a dimensionless

parameter, which would later be known as the Reynolds number. This dimensionless pa-

rameter can be understood as the relation between inertial and viscous forces acting on a

moving �uid particle. He showed that the laminar �ow breaks down when the dimensionless

parameter exceeds critical value, and that the turbulence quickly arrives. If the Reynolds

number is below 2000, this corresponds to a laminar regime �ow, if the Reynolds number is

above 4000, this indicates a turbulent regime �ow and between 2000 and 4000 it is known

as a �ow in the transition regime. Due to the precision of the equipment these numbers

have changed as the years have passed.

At the same time, Rayleigh [47] studied the parallel �ows stability in the inviscid limit.

The most important result of this period is the Rayleigh's Theorem, which establishes a

necessary condition for the stability of the �ow based on the existence of an in�ection point

of the velocity pro�le. This condition applied to plane Poiseuille �ow immediately indicates

�ow stability. Hence viscosity should be the cause of a linear instability. Later, Fjørtoft

[29] found a stronger necessary criterion for instability.

Later, the work of Orr [50] and Sommerfeld [53], in which hydrodynamic stability has

been studied within the scope of viscous �uids, were published. These works de�ned the

basis for the linear stability analysis of �ows through the well-known Orr-Sommerfeld equa-
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tion (OSE). For small Reynolds numbers, the plane Poiseuille �ow is stable, but Heisenberg

[55] proposed that it is unstable for large Reynolds numbers. He did not arrive at a critical

value beyond which instability begins, but he calculated four points of the neutral curve of

stability using an heuristic method to approximate the OSE. Several works would follow, in

which the methods of asymptotic analysis for this equation were applied [56, 57]. The �rst

numerical work to solve the Equation was due to Thomas [26], he used �nite di�erences

to approximate the derivatives of OSE. He con�rmed the instability of the plane Poiseuille

predicted by Heisenberg and found the critical values Re = 5780 and α = 1.026. Later,

Orzag [15] used approximation by means of Chebyshev polynomials to �nd accurate critical

values for the Reynolds number Rec = 5772.22 and αc = 1.02056.

The original application conceived by Papell [32] involves pumping magnetic �uid through

pipes with the aid of magnetic �elds. Some studies of similar setups have already been car-

ried out in [34] (see also references therein). In fact, in [34] thorough experimental and

numerical studies of the �ow of ferro�uids in a pipe in the presence of an applied magnetic

�eld has been carried out for both laminar and turbulent regimes. The aim of the work

was to characterize the pressure drop as a function of the magnetic �eld properties, the

frequency of an oscillatory applied �eld being the crucial parameter of the study. The work

also assessed the role laminar and turbulent regimes on the measurements. However, there

was no mention about the transition between these regimes in this work.

In [45], the authors studied the 2D planar-Couette magnetic �uid �ow when an applied

magnetic �eld is imposed transverse to the �ow direction as in a previous study by [62] who

also studied the e�ect of a parallel magnetic �eld. It was observed a dissipation e�ect when

the applied magnetic �eld is time independent, but with spatially varying �elds the mid-

plane symmetry was broken. Imposing periodic boundaries conditions the system of velocity

and spin evolution equation is solved. Considering a slow �ow, it was found theoretically

and numerically that the �ow can be destabilized by a spatially varying magnetic �eld and

this is related to the spatial gradient of the external �eld.

In [44], the authors have investigated the 3D unidirectional state �ow of a sheared fer-

ro�uid between two parallel plates when an applied magnetic �eld is imposed transversally

to the direction of the �ow. In this numerical approach, the authors used the modi�ed

Navier-Stokes equation, the magnetization evolution equation and the spin evolution equa-

tion. With a time independent magnetic �eld, it is reported a dissipative e�ect on the �ow,

while a time dependent or rotating transversal �eld show more control of the �ow. The

authors emphasize that a next step is this study is to perform a complete stability analysis

and it is in this direction that our work goes. We note that in these two studies the authors

place micro-electro-mechanical systems as a favorable scenario for the applications of these

results.
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CHAPTER 5

OVERVIEW OF THE BASIC RESULTS OF

HYDRODYNAMIC STABILITY

In this chapter, we are going to review the principal results of the theory of hydrody-

namics stability, following the literature [7, 25]. We will use the same concepts for a typical

ODE to study this case concerning to a �uid �owing. We follow the following steps:

� Identify the equilibrium point.

� Perturb and linearize the the system around the equilibrium point.

� Find a governing equation for the perturbations of the system.

� Obtain the eigenvalues of the system.

� Study the linear stability of the system.

5.1 The Base State

Consider a �ow between two parallel plane plates as in Fig. (5.1) separated by a distance

2l. Consider an incompressible �uid in which the �ow velocity is given by u = [u, v, 0]t, the

density of the �uid ρ and its dynamic viscosity is η.

The �uid �ow is described by the continuity equation (2.10) and the Navier-Stokes

equation (2.20). However, due to the considerable number of parameters that involve the

study of the �ow of a �uid, it is advisable to reduce the amount of these parameters by
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forming groups of dimensionless parameters. This is known as the Pi-Buckingham Theorem.

In order to do this, we use typical scales of all variables involved in our problem;

x ∼ L; u ∼ U ; t ∼ L/ U ; p ∼ ρU2, (5.1)

we are able to built dimensionless variables,

u∗ =
u

U
; x∗ =

x

L
; t∗ =

tU

L
; p∗ =

p

ρU2
, (5.2)

This kind of scale is known as Bernoulli scale. Substituting in the Navier-Stokes equation

(2.20) and dropping the asterisk we get

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u +

1

Fr2
g, (5.3)

and the unchanged continuity equation (2.10),

∇ · u = 0, (5.4)

where, Re is the Reynolds number and is given by,

Re =
ρUL

η
. (5.5)

Each problem has its characteristics and a set of speci�c dimensionless parameters can be

de�ned. The NSE equations can be scaled in several forms, however, this allows comparison

between di�erent �uid �ows. For two �ows, if they have identical dimensionless parameters,

then these �ow are called dynamically similar.

In this section we are going to construct a base state based on the hypotheses of steady

fully developed uni-directional �ow. The steady-state �ow refers to the condition where the

�uid properties at any single point in the system do not change over time, this is ∂(·)/∂t = 0,

in which the dot represents a �uid property. We �rst clarify the notion of fully developed

velocity �eld: we say that a �ow is fully developed when velocity does not change along the

�ow direction as shown in Fig. (5.1). This leads us to establish a �rst simpli�cation,

∂u

∂x
= 0. (5.6)

Due to (5.6) we have, from continuity equation (5.4), that ∂v/∂y = 0, this is, v is constant

along the y direction. Since v = 0 on the plates (no-slip condition), we can conclude that

the component of the velocity �eld is identically zero and we can express the velocity �eld

as

u = u(y) êx, (5.7)

which is consistent with the hypotheses of uni-directionality. In addition, Eq. (5.7) leads

us to establish that convective transport of linear momentum will be absent in this limit,

u · ∇u = 0.
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Entrance region flow Developing flow

 

Fully developed flow

 

Figure 5.1: Sketch of a fully developed �ow between two parallel plates with the thickness

of the hydrodynamic boundary layer δ = δ(x).

Considering the restrictive conditions obtained above and applying them to Eq. (5.3),

gives us the following set of equations, in the x-direction:

∂2u

∂y2
= Re

∂p

∂x
, (5.8)

and in the y-direction
∂p

∂y
= − 1

Fr2
g. (5.9)

Now, we can integrate (5.9) in relation to y, which gives:

p = − 1

Fr2
gy + c(x). (5.10)

It can be inferred, by Eq. (5.9) that there is no change in the horizontal component of the

pressure, however there is a change in its vertical component. It should be noted that the

pressure in (5.9). By deriving (5.10) in relation to x:

∂p

∂x
= c′(x). (5.11)

This indicates that the ∂p/∂x is a function that depends exclusively on x. By consequence,

since the left-hand side of (5.8) depends on y, both ∂2u/∂y2 and ∂p/∂x take a constant

value, we consider the last one as,

∂p

∂x
=
p0 − pL
L

= −G, (5.12)

where G is a positive constant. In order to �nd the velocity pro�le we integrate two times

(5.8):

u(y) = −Re G
y2

2
+ c1y + c2, (5.13)
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where c1 e c2 are constants to be found from the no slip boundary conditions, u(±1) = 0,

which implies that c2 = Re G/2 and that c1 = 0. We obtain the velocity pro�le, where the

sub-index b indicates the base state,

ub(y) =
Re G

2

(
1− y2

)
. (5.14)

By taking Re G/ 2 = 1 as in [7], we can normalize the Poiseuille parabolic velocity pro�le.

Figure 5.2: Sketch of the Poiseuille �ow pro�le ub(y) between two rigid parallel plates.

5.2 The Linear Stability Problem

In order to analyze the �ow stability, we impose a small perturbation on the base state

solution as in Fig. (5.3),

u = ub + u′, p = pb + p′. (5.15)

We consider the unidirectional three-dimensional problem in which the base �ow is given

by ub = ub(y) êx with y ∈ [−1,+1] and ub being the Poiseuille velocity pro�le (5.14).

Figure 5.3: Sketch of the Poiseuille �ow pro�le between two rigid parallel plates when a

small disturbance is introduced.
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The perturbations in the x and z directions are considered as plane waves with associated

wave number given by α and β respectively, both real numbers since the solutions are

required to be bounded as x, y → ±∞, and the frequency w which is a complex number

associated with the grow or decay of the variable t ∈ [0,+∞). The amplitude of these

perturbations are expressed here by a tilde, depending on the variable y. We can write the

perturbations as:

u′(x, t) = (ũ(y), ṽ(y), w̃(y)) exp i(αx+ βz − ωt), (5.16)

and the disturbed pressure,

p′(x, t) = p̃(y) exp(i(αx+ βz − ωt)). (5.17)

We note that a derivative with respect to spatial variable x corresponds to to a multiplication

of the disturbed variable by a factor iα the disturbed variable, while a derivative with respect

to z corresponds to multiply by iβ the disturbed variable.

Substituting the disturbed variables Eqs. (5.16) into the continuity Eq. (2.10), we get:

iαũ(y) +Dṽ(y) + iβw̃(y) = 0, (5.18)

where D = d/dy represents the di�erential operator with respect to the variable y of the

unknown amplitude function. We will use this expression in a later step, so we write it as

follow

i (αũ+ βw̃) +Dṽ = 0. (5.19)

which is valid for y ∈ [−1, 1]. The propagation vector k is given by (α, β), its magnitude k

is the wave number being given by

k = (α2 + β2)
1
2 . (5.20)

From the propagation frequency ω, we can de�ne the velocity propagation of the perturba-

tions c = cr + ici as being

c =
ω

k
=

ω√
α2 + β2

. (5.21)

By replacing the Eqs. (5.16)-(5.17) into the NSE (5.3) and keeping the notation d/dy for

the derivative of a base state function, in this case the Poiseuille pro�le �ow Eq. (5.14), we

have the corresponding perturbed equations for the NSE in the x-direction:

iα(ub − c)ũ+ ṽ
dub

dy
= −iαp̃+

1

Re

(
D2 − k2

)
ũ, (5.22)

then in the y-direction

iα(ub − c)ṽ = −Dp̃+
1

Re

(
D2 − k2

)
ṽ, (5.23)
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and in the z-direction

iα(ub − c)w̃ = −iβp̃+
1

Re

(
D2 − k2

)
w̃. (5.24)

This system of equations contains four unknown functions ũ, ṽ, w̃, p̃ and the system consid-

ers four equations (5.19) and (5.22)-(5.24). In order to reduce the system we di�erentiate

Eq. (5.22) with respect to x, that is to say multiply Eq. (5.22) by iα and take the derivative

of Eq. (5.24) with respect to z, i.e. multiply by iβ. Once these steps are done we will add

both expressions and use the continuity Eq. (5.19) for the disturbed variables to obtain:

iα(ub − c) (iαũ+ iβw̃) + iαṽ
dub

dy
= −k2p̃+

1

Re

(
D2 − k2

)
(iαũ+ iβw̃) , (5.25)

note that we are basically taking the divergence of the perturbed NSE. We eliminate ũ, w̃

to leave the Eq. (5.23) in terms of ṽ by using Eq. (5.19), Eq. (5.25) is rewritten only in

terms of ṽ:

−iα(ub − c)Dṽ + iαṽ
dub

dy
= −k2p̃− 1

Re

(
D2 − k2

)
Dṽ. (5.26)

This equation contains ṽ and p̃. In order to obtain an expression containing one of the

variables we take the derivative of Eq. (5.26) with respect to y, that is,

−iα(ub − c)D2ṽ + iαṽ
d2ub

dy2
= −k2Dp̃− 1

Re

(
D2 − k2

)
D2ṽ. (5.27)

we can use the resulting equation to eliminate the term Dp̃ from Eq. (5.23), which after

some algebraic manipulations can be written as:

−iα(ub − c)
(
D2 − k2

)
ṽ + iαṽ

d2ub

dy2
= − 1

Re

(
D2 − k2

) (
D2 − k2

)
ṽ. (5.28)

Dividing by iα, we obtain

1

iαRe

(
D2 − k2

)2
ṽ − (ub − c)

(
D2 − k2

)
ṽ +

d2ub

dy2
ṽ = 0. (5.29)

This last expression is called the Orr-Sommerfeld equation (OSE) and is the starting point

for hydrodynamic stability studies of �ows between parallel plates. Eq. (5.29) is a fourth

order ODE in ṽ, and so for the system to be closed we need four boundary conditions. For

our case, where the �ow is given by Fig. (5.2), comprised between two parallel plates, the

condition of no-slip implies that:

ṽ(−1) = ṽ(+1) = 0. (5.30)

The other two conditions are obtained from the zero-shear condition:

Dṽ(−1) = Dṽ(+1) = 0. (5.31)
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Eq. (5.29) describes the evolution of the amplitude of the perturbations ṽ(y) of the velocity

pro�le for a given choice of Re, α, β and the parabolic pro�le ub(y). Depending on the

combination of the parameters, it is possible for the velocity c to assume complex values,

see Eq. (5.21). If this happens, and ci > 0, the amplitude of the disturbance will grow over

time and the disturbance will be called the temporarily unstable.

We de�ne the following Orr-Sommerfeld di�erential operator LOS as follows:

LOS =
i

αRe
(D2 − α2)2 + (ub − c)(D2 − α2)− d2ub

dy2
, (5.32)

with D denoting a di�erentiation of the perturbations with respect to y, allowing us to

write Eq. (5.29) in the following form,

LOS ṽ = 0. (5.33)

In the following, we will discuss some technical results that allow us to evaluate the

stability of the �ow from OSE (5.29).

5.2.1 The Theorem of Squire

The problem of linear stability was presented and it consider the OSE (5.29) together

with the boundary conditions (5.30)-(5.31). For a given α, k, Re and the base state ub(y) it

is possible to establish whether the �ow is stable or not by analyzing the exponential part

of the disturbed ansatz (5.16)

exp (−ikct) = exp (−ikcrt) exp (kcit). (5.34)

where the c is expressed in complex form c = cr + ici. The above expression indicates that

exp (−ikcrt) is the oscillatory part of the disturbances and exp (kcit) is the term that give

us information about the stability: if ci takes negative values this corresponds to an stable

mode and if ci takes positive values and the exponential grows on time that indicates an

unstable mode.

Theorem 5.1 (Squire's theorem) If a growing 3D disturbance can be found at a given

Reynolds number, then a 2D growing disturbance exist at a lower Reynolds number.

Proof: Let's consider a velocity base state ub(y). Consider an unstable 3D disturbance

with Reynolds number Re3D and a wave-number (α3D, β3D) with k23D = α2
3D + β2

3D. The

corresponding associated OSE solution with c, ṽ and ci > 0 is given by:

1

iα3DRe3D
(D2 − k23D)2ṽ =

(
(ub − c)(D2 − k23D)− d2ub

dy2

)
ṽ. (5.35)
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Now consider a 2D disturbance with Reynolds number Re2D and a wave-number (α2D, 0),

that is, β2D = 0 and consequently k2D = α2D, then the corresponding 2D OSE solution is:

1

iα2DRe2D
(D2 − α2

2D)2ṽ =

(
(ub − c)(D2 − α2

2D)− d2ub

dy2

)
ṽ. (5.36)

Comparing Eqs. (5.35) and (5.36), they will be the same if k3D = α2D and α2DRe2D =

α3DRe3D, which provides:

Re2D =
α3D
k3D

Re3D, (5.37)

from these conditions, we found the same growing solution Eq. (5.35) with c, ṽ and ci > 0.

Hence it can be establish that for an unstable 3D disturbance at Re3D with α3D, β3D,

k23D = α2
3D + β2

3D, there exists an unstable 2D disturbance at Re2D with α2D = k3D.

Finally shown that Re2D ≤ Re3D. In fact, since k23D = α2
3D + β2

3D, we have k3D ≥ α3D or

α3D/k3D ≤ 1, and replacing this expression into Eq. (5.37), we get Re2D ≤ Re3D. Therefore,

we can conclude that a 2D disturbance is unstable for a Reynolds number lower than a

Reynolds number for a 3D disturbance.

It is shown through Squire's theorem (1933), that a disturbance in the form of a wave

propagating obliquely in relation to the �ow, is more stable than in the case of a disturbance

that propagates parallel to the �ow, which means that the minimum Re critical value for

instability occurs in the case of a two-dimensional disturbance spreading along the �ow

direction.

With this additional information, we can write the Eq. (5.29) in the form of a di�erential

operator LOS , this is, the Orr-Sommerfeld operator, acting over a an amplitude ṽ = ṽ(y),

LOS ṽ ≡
(

1

iαRe
(D2 − α2)2 − (ub − c)(D2 − α2) +

d2ub

dy2

)
ṽ = 0. (5.38)

This expression can be expressed by a dispersion relation

D(α,Re, ub(y); c) = 0, (5.39)

for a a given α, Re and a velocity pro�le ub(y), getting and eigenvalue c associated to an

eigenvector ṽ.

5.3 The inviscid limit

We will consider the non-viscous theoretical case, that is, assuming the extreme case

when Re →∞ in Eq. (5.29).

(ub − c)(D2 − α2)ṽ − d2ub

dy2
ṽ = 0. (5.40)
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This equation is called the Rayleigh's Equation and is a second order ODE. In this way,

we need only two boundary conditions: the no-slip condition on each wall ṽ(±1) = 0. The

case in which Re → ∞ is said to be Singular, since Re−1 is multiplying the largest order

derivative of Eq. (5.29).

From Eq. (5.40) we can determine some stability criteria of the �ow at small perturba-

tions. We shall now present the classical results of the inviscid theory.

Theorem 5.2 (Rayleigh's in�ection point Theorem) Suppose ub and
dub

dy
are contin-

uous functions with y ∈ [−1,+1].

A necessary condition, but not su�cient, for inviscid instability is that the base �ow has

a in�ection point.

Proof: Let's suppose an inviscid unstable �ow, i.e., Re → ∞ and ci > 0. In addition, we

suppose that ṽ is a non-trivial solution of the OS's equation, that is, ṽ is not identically

zero.

If ub(y)−c = 0, we must note that ub(y) takes real values and c = cr+ ici takes complex,

then ub(y) = c implies ci = 0. This leads us to a contradiction with �rst assumption ci > 0.

Therefore,

ub(y)− c 6= 0 (5.41)

Dividing (5.40) by (5.41),

D2ṽ − α2ṽ − ṽ

ub − c
d2ub

dy2
= 0, (5.42)

Note that if ṽ is a solution of (5.40), then its complex conjugate v̄ also it is going to be a

solution of (5.40). Multiplying (5.42) by v̄,

v̄D2ṽ − α2|ṽ|2 − |ṽ|2

ub − c
d2ub

dy2
= 0, (5.43)

and integrating in the interval [−1,+1], yields:

� +1

−1
v̄D2ṽdy −

� +1

−1
α2|ṽ|2dy −

� +1

−1

|ṽ|2

ub − c
d2ub

dy2
dy = 0, (5.44)

where |ṽ|2 = ṽ v̄. Integrating by parts the �rst term on the LHS of (5.44),

Dṽ v̄

∣∣∣∣+1

−1
−
� +1

−1

(
|Dṽ|2 + α2|ṽ|2

)
dy −

� +1

−1

|ṽ|2

ub − c
d2ub

dy2
dy = 0. (5.45)

First term on LHS of (5.45) cancels using boundary conditions. Note that |Dṽ|2 = Dṽ Dv̄;

−
� +1

−1

(
|Dṽ|2 + α2|ṽ|2

)
dy −

� +1

−1

|ṽ|2

ub − c
d2ub

dy2
dy = 0. (5.46)
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Here, we consider the complex conjugate of ub − c,

ub − c̄ = ub − (cr − ici) = ub − cr + ici.

Using this expression, by multiplying on the numerator and denominator of the second term

of LHS, gives us

−
� +1

−1

(
|Dṽ|2 + α2|ṽ|2

)
dy −

� +1

−1

(ub − cr + ici)|ṽ|2

|ub − c|2
d2ub

dy2
dy = 0. (5.47)

In this expression we can extract its real part,

−
� +1

−1

(
|Dṽ|2 + α2|ṽ|2

)
dy −

� +1

−1

(ub − cr)|ṽ|2

|ub − c|2
d2ub

dy2
dy = 0, (5.48)

and its complex part:

ci

� +1

−1

|ṽ|2

|ub − c|2
d2ub

dy2
dy = 0. (5.49)

In this equation, as ci > 0, the expression with integral must be zero. We are going to

denote the integrand of (5.49) by f , and we note that is f is a continuous function.

In the following, we show that f = 0.

By contradiction, i.e., ∃ y0 ∈ (−1, 1) such that f(y0) > 0 without of generality, then

0 =

� +1

−1
f(y) dy >

�
Bε(y0)

f(y) dy > 0, (5.50)

the �rst inequality comes from continuity of f , (∀y ∈ Bε(y0)without of generality f(y) > 0).

Where the left and right side of this expression leads us to a contradiction

From (5.41),
d2ub

dy2
|ṽ|2 = 0 ∀y ∈ (−1,+1). (5.51)

Since ṽ 6≡ 0 , i.e., ∃y∗ such that ṽ(y∗) 6= 0, then satisfying (5.51)

d2ub

dy2
(y∗) = 0. (5.52)

Therefore, ∃y∗ ∈ (−1, 1) such that
d2ub

dy2
(y∗) = 0.

Now, regarding the real part of Eq. (5.44), we can state the following result:

Theorem 5.3 (Fjørtoft's Theorem) Assume that ub and dub

dy
are continuous with y ∈

[−1,+1]. Then a necessary condition for instability is

d2ub

dy2
(ub − uc) < 0, (5.53)

for some y ∈ [−1,+1] and where uc is a �ow velocity at the in�ection point.
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Proof: Consider an Eq. (5.48), as follows:
� +1

−1

(ub − cr)|ṽ|2

|ub − c|2
d2ub

dy2
dy = −

� +1

−1

(
|Dṽ|2 + k2|ṽ|2

)
dy. (5.54)

Using the Rayleigh's in�ection point Theorem, we obtain the existence of a point yc in

which d2u(yc)/dy
2 = 0 and uc = u(yc) and we have that the integral in (5.49) is equal to

zero, then we add to the left-hand side the expression,

(cr − uc)
� +1

−1

(
|ṽ|2

|ub − c|2

)
d2ub

dy2
dy = 0. (5.55)

We can cancel the value of cr and we obtain,� +1

−1

(
(ub − uc)|ṽ|2

|ub − c|2

)
d2ub

dy2
dy = −

� +1

−1

(
|Dṽ|2 + k2|ṽ|2

)
dy. (5.56)

In this case, the integral on the left-hand side takes negatives values which indicates that
d2ub

dy2
(ub − uc) must be negative for some y ∈ [−1,+1].

Starting from this result, and applying it to the speci�c case of �ows of a symmetric

base pro�le, we present the following corollary, without proof:

Corollary 5.4 (Result of Tollmien) For a symmetric pro�le in a channel, the existence

of an in�ection point
d2ub

dy2
= 0 is not only necessary, but is also su�cient for instability.

For a Poiseuille �ow pro�le between parallel plates, we have ub(y) = 1 − y2, with y ∈
[−1,+1], as in Eq. (5.14) with d2ub(y)/dy2 = −2 6= 0, ∀ y ∈ [−1,+1]. That is, the �ow

pro�le has no in�ection point, and then, by the Rayleigh in�ection point theorem, we can

conclude that it is stable in the inviscid limit. This result clearly violates the Reynolds

experimental observations and therefore indicates that the instability of parallel out�ows

must be associated in some way with �nite Reynolds numbers, i.e., viscosity is also a

destabilizing factor in high Reynolds number �ows.

5.4 Numerical Solution of the Orr-Sommerfeld Stabiliy

Problem

In this section, we present the numerical method based on �nite di�erences to solve

the generalized eigenvalue problem given by the Orr-Sommerfeld equation (5.29) with the

boundary conditions (5.30)-(5.31), following [7, 8].

The Orr-Sommerfeld equation can be recast into the form of an eigenvalue problem

given by (
1

iαRe
(D2 − α2)2 − ub(D2 − α2) +

d2ub

dy2

)
ṽ = −c(D2 − α2)ṽ. (5.57)
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With the �nite di�erence technique, the di�erential operator LOS in Eq. (5.38) is approx-

imated by matrix operators, where A and B are matrices and c is the eigenvalue of the

problem to be found, as follows:

A ṽ = cB ṽ. (5.58)

We use second-order central di�erences to approximate the second and fourth-order deriva-

tives that appear on left-hand side of Eq. (5.57), that is:

D2ṽn ≈
ṽn−1 − 2ṽn + ṽn+1

h2
, (5.59)

and

D4ṽi ≈
ṽi−2 − 4ṽi−1 + 6ṽi − 4ṽi+1 + ṽi+2

h4
. (5.60)

In order to impose the boundary conditions ṽ = 0 and Dṽ = 0 in y = ±1, we consider

a partition of the domain interval [−1,+1] in N + 1 mesh points {ṽ1, . . . , ṽN+1} with a

step-size h = 2/N . The boundaries establish that ṽ1 = 0 = ṽN+1 and Dṽ1 = 0 = DṽN+1,

that is, ṽ0 = ṽ2 and ṽN+1 = ṽN−1. Then, for example, the discretization for the node i = 2

is given by,

D4ṽ2 ≈
7ṽ2 − 4ṽ3 + ṽ4

h4
, (5.61)

An analogous result can be derived for the node i = N .

The �nite di�erences for the interior nodes i = 3, . . . , N − 1, we use centered �nite

di�erences following the formula (5.60) getting a system of N − 1 equations for N − 1

unknowns. The matrix A is pentadiagonal and the matrix B is tridiagonal. Next, we

present the coe�cients for both matrices, for the matrix A we have:

A =



ǎ1 a2 a3 0

a2 a1
. . . . . .

a3
. . . . . . . . . a3
. . . . . . a1 a2

0 a3 a2 ǎ1


, (5.62)

where the components of the matrix A are given by:

ǎ1 =

(
−ubα2 − d2ub

dy2
+
iα3

Re

)
− 2

h2

(
ub − 2iα

Re

)
+

7

iαRe h4
, (5.63)

a1 =

(
−ubα2 − d2ub

dy2
+
iα3

Re

)
− 2

h2

(
ub − 2iα

Re

)
+

6

iαRe h4
, (5.64)

a2 =
1

h2

(
ub − 2iα

Re

)
− 4i

αRe h4
, and a3 =

1

iαRe h4
, (5.65)
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where the ǎ1 satisfying the condition (5.61). The matrix B is given by:

B =


b1 b2 0

b2
. . . . . .
. . . . . . b2

0 b2 b1

 , (5.66)

and their components being

b1 : −
(

2

h2
+ α2

)
, and b2 :

1

h2
. (5.67)

We solve the generalized eigenvalue problem Eq. (5.58) using EIG MatLab function.

The EIG function of A and B returns a diagonal matrix of generalized eigenvalues and a

full matrix whose columns are the corresponding eigenvectors.

The problem of hydrodynamic stability was represented by a dispersion equation Eq. (5.39),

in it are the parameters that are part of our problem and normally generate a 3D graph as

Fig. (5.4), which is di�cult to interpret. For this reason we will analyze adequate combi-

nations of parameters in 2D.

Figure 5.4: An example of a dispersion relation obtained from the Orr-Sommerfeld equation

for a partition of α and Re numbers in m and n parts respectively and an speci�c node (αi,

Rej; ci).

According to our discretization procedure will take m elements to partition the interval

αmin and αmax and n elements for the interval Remin to Remax. Initially, we take an α and
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go through all the Reynolds numbers parallel to the axis of the abscissa, as in Figure 3, then

we go to the next number of α and continue with the process. In each case we calculate the

minimum value of the complex part of the set of eigenvalues obtained and it is this value

which will represent the node (αi,Rej) as shown in Fig. (5.5).

Figure 5.5: A graphical scheme of the discretized parameter space αVs. Re. The iterative

process starts with αmin and solves the eigenvalue problem for all Re in the chosen range.

Once these steps are �nished, another value of α is taken until α = αmax.

In Fig. (5.5), we obtain a total of m × n points (αi,Rej; ci), which form a discretised

representation of the surface de�ned by the dispersion relation, as shown in Fig. (5.4) and

in it three options for values of ci: ci < 0, ci = 0 and ci > 0. With these results, we can

identify a curve with ci = 0 that divides the αVs.Re plane into two regions, one inside in

which the values ci > 0 and another outside with ci < 0.
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Figure 5.6: Growth rates as functions of the wave number of the disturbances for di�er-

ent values of Re. Note the we show three di�erent possibilities of con�gurations: stable,

marginally stable and unstable con�gurations.

To obtain the graph of ciVs.α, we consider the set of points {(αi, Rej; ci) | 1 ≤ i ≤
m, 1 ≤ j ≤ n} obtained in Fig. (5.6). By �xing the Reynolds number, we take the α points

and their corresponding ci from the bottom to the top parallel to the ordinates axis. In this

way, we obtain the Rej-Curves in the ciVs.α plane, as in Fig. (5.5). Note that for small α,

the values of ci are negative (stability region) and hence the curve does not pass from the

line ci = 0. If we increase α, the constant Re vertical line will cross modes fo which ci = 0

and ci > 0, that is, unstable modes. These results are shown in Fig. (5.6).

In the following Fig. (5.7), some contour lines are shown for the bifurcation diagram,

for various values of ci. We observe that ci negatives are in the outer region and positive

values of ci are in the inner region de�ned by the curve ci = 0, which we call the marginal

stability curve.. Even more, we can see that as these curves approach the marginal curve

they decrease their value.
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Figure 5.7: Bifurcation diagram with contour lines for di�erent values of ci evaluated in

(αi, Rej) for N = 128, Re ∈ [4000, 14000] and α ∈ [0, 1.2] taking nα = 64 and nRe = 32.
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Figure 5.8: This diagram shows the numerical error produced by the �nite di�erence method

using N = 162, 192, 224, 256, 320, 384 points in the mesh and its correspondents critical

values Rec. Solid-line indicates the �tted curve and the limit h = 0 found the numerical

critical value Re = 5775.94. Dash-line indicates the critical Reynolds number in Re =

5772.22, �nding an error less than 1%. The error-bars indicate a 0.5% con�dence interval

on the obtained value of Re.
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CHAPTER 6

STABILITY OF SYMMETRIC MAGNETIC

FLUIDS

In this chapter, we are going to present two cases of hydrodynamic stability for symmet-

ric magnetic �uids. The �rst of them, for the case of magnetic �uids in the superparamag-

netic limit and the second for a magnetic �uid considering the Kelvin force in the modi�ed

Navier-Stokes equation together with an evolution magnetization equation.

We consider a two-dimensional �ow of between two rigid parallel plates separated by a

distance of 2l. The horizontal direction is denoted by x and the vertical by y and all the

components of the magnetic vector quantities are denoted by subscripts 1 for horizontal

and 2 for vertical components. The horizontal and vertical components of the velocity �eld

are denoted by u and v, respectively.

Following [12], Eqs. (3.54), (2.10), (3.3), (3.4), (3.43) and (3.39) are made dimensionless

by assuming that the typical length scale is l, the typical velocity scale U is the average

velocity on the channel and a typical applied �eld intensity H0 as the appropriate scale for

the applied �eld and the magnetization of the magnetic �uid. Therefore, a typical scale for

the induction �eld is µ0H0. As a result, Eqs.(11.33), (3.4) and (3.3) remain unchanged in

dimensionless variables and we obtain:

∂u

∂t
+ u ·∇u =−∇p+

1

Re
∇2u + Cpm M · ∇H, (6.1)

and
∂M

∂t
+ u · ∇M =

1

τ ∗
(χ0H−M) +

1

2
(∇× u)×M, (6.2)
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where

Re =
ρUl

η
, Cpm =

µ0H
2
0

ρU2
, and τ ∗ =

τU

l
, (6.3)

are, respectively, the Reynolds number of the �ow, the magnetic pressure coe�cient and

the dimensionless magnetization relaxation time. Finally, Eq. (3.43) becomes simply

B = H + M. (6.4)

The boundary conditions for this problem are no-slip velocities at the parallel walls,

that is,

u(x,±1) = 0, (6.5)

and continuity of normal magnetic induction and tangential magnetic �eld the interface,

that is,

n ·B|y=±1 = 0, n×H|y=±1 = 0, (6.6)

where n stands for the normal outward vector of the boundaries.

6.1 Super-Paramagnetic Case

Considering the modi�ed Navier-Stokes equation with Kelvin force. Let's address the

super-para-magnetic case by taking the limit τ ∗ = 0 in the dimensionless evolution equation,

M = χ0 H, (6.7)

where the magnetization M is aligned with the applied �eld H with constant χ0. Equation

(6.7) is the constitutive equation for the magnetization of a superparamagnetic magnetic

�uid. In this limit, the magnetization of the �uid does not depend on the velocity �eld. The

Kelvin force in Eq. (6.1) is now written as χ0H · ∇H and, because H and M are collinear,

there are no magnetic torques in the system and the last term on the RHS in Eq. (6.1) is

identically zero. Magnetic forces are only present if there is a gradient of magnetic �eld.

We introduce the disturbed variables and write the new system keeping the �rst order

disturbances, as follows:

∂u′

∂t
+ ub · ∇u′ + u′ · ∇ub = −∇p′ + 1

Re
∇2u′

+χ0Cpm (H · ∇H′ + H′ · ∇H) ,

(6.8)

Following the standard derivation of the Orr-Sommerfeld equation in Section (5.2), we take

the divergence of Eq. (6.8) in u′,

∂∇ · u′

∂t
+∇ ·

[
ub · ∇u′ + u′ · ∇ub

]
= −∇2p′ +

1

Re
∇2∇ · u′

+χ0Cpm ∇ · (H · ∇H′ + H′ · ∇H) .

(6.9)
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The second term on the left-hand side can be written as follows,

∇ ·
(
ub · ∇u′ + u′ · ∇ub

)
= 2

dub

dy

∂v′

∂x
. (6.10)

The perturbation of the incompressibility �uid equation (2.10) produces an equivalent ex-

pression for the disturbed variables, substituting this expression in Eq. (6.9), the �rst term

on the left-hand side and the second term on right-hand side are canceled. We can express

the Laplacian of the disturbed pressure in Eq. (6.9) as;

∇2p′ = −2
dub

dy

∂v′

∂x
+ χ0Cpm ∇ · (H · ∇H′ + H′ · ∇H) . (6.11)

Now, taking the Laplacian of the component in the y-direction of Eq. (6.8),

∂∇2v′

∂t
+∇2

(
ub
∂v′

∂x

)
= −∂∇

2p′

∂y
+

1

Re
∇4v′ (6.12)

+χ0Cpm ∇2

(
H1

∂H ′2
∂x

+H2
∂H ′2
∂y

+H ′1
∂H2

∂x
+H ′2

∂H2

∂y

)
. (6.13)

By substituting Eq. (6.11) in Eq. (6.12), we get:

∂∇2v′

∂t
+∇2

(
ub
∂v′

∂x

)
= − ∂

∂y

[
−2

dub

dy

∂v′

∂x
+ χ0Cpm ∇ · (H · ∇H′ + H′ · ∇H)

]
+

1

Re
∇4v′ + χ0Cpm ∇2

(
H1

∂H ′2
∂x

+H2
∂H ′2
∂y

+H ′1
∂H2

∂x
+H ′2

∂H2

∂y

)
. (6.14)

Developing the Laplacian on the left-hand side and the derivative with respect to the y

variable on the right-hand side:

−
((

∂

∂t
+ ub

∂

∂x

)
∇2v′ − d2ub

dy2
∂v′

∂x
− 1

Re
∇4v′

)
=

∂

∂y
[χ0Cpm ∇ · (H · ∇H′ + H′ · ∇H)]

− χ0Cpm ∇2

(
H1

∂H ′2
∂x

+H2
∂H ′2
∂y

+H ′1
∂H2

∂x
+H ′2

∂H2

∂y

)
. (6.15)

On the left-hand side of this expression, we have the Orr-Sommerfeld operator, which for

Cpm = 0 takes the solution of the known case of OSE. We can write it as:

LOS v̂ =χ0Cpm
∂

∂y
[∇ · (H · ∇H′ + H′ · ∇H)] (6.16)

−χ0Cpm ∇2

(
H1

∂H ′2
∂x

+H2
∂H ′2
∂y

+H ′1
∂H2

∂x
+H ′2

∂H2

∂y

)
. (6.17)

yielding:

LOS v̂ = χ0Cpm
∂

∂x

(
∂ ((H · ∇)H ′1 + (H′ · ∇)H1)

∂y
− ∂ ((H · ∇)H ′2 + (H′ · ∇)H2)

∂x

)
. (6.18)

This last expression can be considered as the stability analysis equation for the superpara-

magnetic case (6.7).
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Because of the unidirectionality of the �ow, the only permissible magnetic �elds are

such that Hb
1 = Hb

1(y) and Hb
2 = Hb

2(y).

LOS ṽ = χ0Cpm iα

[(
dHb

1

dy
iα +

dHb
2

dy
D

)
H̃1 +

(
dHb

1

dy
D − dHb

2

dy
iα

)
H̃2

]
. (6.19)

Note that, now, the RHS of Eq.(6.19) does not contain any ṽ-dependence. In fact, the

RHS is a non-homogeneous forcing term and, therefore, does not a�ect the eigenvalues

and eigenfunctions of the di�erential operator LOS. We then conclude that the stability

of the �ow is not a�ected by the presence of magnetic �elds in this case and the critical

Rec is identical to the hydrodynamical case. Therefore, the stability of the plane parallel

Poiseuille �ow of a magnetic �uid can only be a�ected by an applied magnetic �eld if the

magnetization of the �uid depends on the �ow velocity.

6.2 Base State: Kelvin force

The �ow of a ferro�uid in the presence of a magnetic �eld is described by the continuity

equation (2.10), the modi�ed Navier-Stokes equation (3.54), Maxwell's equations (3.3), and

(3.4) and the magnetization evolution equation (3.38), as in [33]. The system of equations

is written in terms of its components, given by:

∂u

∂x
+
∂v

∂y
= 0, (6.20)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
+ Cpm

(
M1

∂H1

∂x
+M2

∂H1

∂y

)
, (6.21)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
+ Cpm

(
M1

∂H2

∂x
+M2

∂H2

∂y

)
, (6.22)

∂M1

∂t
+ u

∂M1

∂x
+ v

∂M1

∂y
= − 1

τ ∗
(M1 −M01)−

1

2
M2

(
∂v

∂x
− ∂u

∂y

)
, (6.23)

∂M2

∂t
+ u

∂M2

∂x
+ v

∂M2

∂y
= − 1

τ ∗
(M2 −M02) +

1

2
M1

(
∂v

∂x
− ∂u

∂y

)
, (6.24)

∂H2

∂x
− ∂H1

∂y
= 0, (6.25)

∂B1

∂x
+
∂B2

∂y
= 0, (6.26)

B1 = H1 +M1, B2 = H2 +M2. (6.27)

We �rst clarify the notion of fully developed velocity and magnetic �eld: we say that a �ow

is fully developed when velocity does not change along the �ow direction. This leads us to

establish a �rst simpli�cation,
∂u

∂x
= 0,

∂M1

∂x
= 0. (6.28)
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Due to (6.28) we have, from continuity equation (6.20), that ∂v/∂y = 0, this is, v is constant

along the y direction. Since v = 0 on the plates (impenetrability condition), we can conclude

that component of the velocity �eld is identically null and we can express the velocity �eld

as

u = u(y) êx. (6.29)

This is consistence with the uni-directional hypotheses. If the ratio between the length L in

the �ow direction and the distance that separates the plates 2l is small, this is l � L, the

continuity equation (2.10) allows us to write V � U , where U, V are the typical scales of

u, v respectively and by consequence ∂v/∂y = 0, this is, v is a constant in the perpendicular

direction to the �ow and since v = 0 in the plates, v is identically null, as derived previously.

This analysis leads us to establish that convective transport of linear momentum will be

absent in this limit, u · ∇u = 0.

From the uni-directional condition, we assume that both H and B have the following

form:

H = (H1(y), H2(y)), B = (B1(y), B2(y)). (6.30)

where function components H1, H2, B1 e B2 depend only on variable y as (5.7). In this

case, we impose that the �elds satisfy Maxwell's equations (3.3) and (3.4). Equation (3.3)

provides dB2/dy = 0, then B2 is constant and Equation (3.4) indicates that dH1/dy = 0,

then H1 is also constant. With these additional simpli�cation, the magnetic �elds can be

expressed by,

H = (H1, H2(y)), B = (B1(y), B2), (6.31)

where H1 and B2 are constants. We note that the magnetization �eld M is obtained

from dimensional Eq. (6.4). Now, we are in conditions to establish the velocity pro�le and

magnetic base states.

Considering the restrictive conditions obtained above and applying them to Eqs. (6.21)-

(6.24), gives us the following set of equations:

∂2u

∂y2
= Re

∂p

∂x
, (6.32)

∂p

∂y
= Cpm M2

∂H2

∂y
, (6.33)

0 = − 1

τ ∗
(M1 −M01) +

1

2
M2

∂u

∂y
, (6.34)

0 = − 1

τ ∗
(M2 −M02)−

1

2
M1

∂u

∂y
. (6.35)

We emphasize that the �rst coordinate of H in (6.31) is constant and cancels the corre-

sponding component of the Kelvin force, that is, there is no in�uence of the magnetic force

in the horizontal component �ow direction. There is a change in the pressure along the

vertical direction due to the dependence of M2 and the derivative of H2 on y.
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6.2.1 The velocity base state

Let consider steady-state, uni-directional and fully developed �ow. From Eqs. (6.32)-

(6.33) we obtain;

∂2u

∂y2
= Re

∂p

∂x
, (6.36)

∂p

∂y
= Cpm M2

∂H2

∂y
. (6.37)

In these equation, no-magnetic in�uence of Kelvin force is observed in the horizontal di-

rection of Navier-Stokes equation, but it is present in the vertical variation of the pressure

and, we note that the term on the left hand side of (6.37) depends on the y variable. From

this, we can integrate (6.37) in relation to y, getting:

p = Cpm

�
M2(y)

∂H2(y)

∂y
dy + c(x). (6.38)

It can be inferred that there is no change in the horizontal component of the pressure,

however there is a change in its vertical component. It should be noted that the pressure

in (6.37) contains partial derivatives in the two components and that the integration in

relation to one of them derives in the inclusion of a function of the other variable, added in

(6.38) as c(x). By deriving (6.38) in relation to x:

∂p

∂x
= c′(x). (6.39)

This indicates that the ∂p/ ∂x is a function that depends exclusively on x. By consequence,

since the left hand side of (6.36) depends on y, ∂p/ ∂x is constant and we consider it as,

∂p

∂x
=
p0 − pL
L

= −G. (6.40)

In order to �nd the velocity pro�le we integrate two times (6.36):

u(y) = −Re G
y2

2
+ c1y + c2, (6.41)

where c1 e c2 are constants to be found with the no slip boundary conditions, u(±1) = 0,

which implies that c2 = Re G/ 2 and that c1 = 0 and, we obtain the velocity pro�le, where

the subscript b indicates the base state,

ub(y) = 1− y2. (6.42)

By taking Re G/ 2 = 1 as in [7], we can conclude that the velocity pro�le, for the mag-

netic �elds (6.31) that satis�es the Maxwell's equations, is the parabolic velocity pro�le of

Poiseuille.
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6.2.2 The magnetic base state

In order to �nd the magnetic base state, we consider Eqs. (6.34)-(6.35)

1

τ ∗
(M1 − χ0H1)−

1

2
M2

∂u

∂y
= 0, (6.43)

1

τ ∗
(M2 − χ0H2) +

1

2
M1

∂u

∂y
= 0, (6.44)

where the linear approximation for the equilibrium magnetization M0 is assumed,

M0 = χ0 H. (6.45)

In the system of equations above we want to compute functions M1 = M1(y) and M2 =

M2(y), and it should be noted that the component of H1 of the applied magnetic �eld is

constant and that the second component depends on the variable y, this is H2 = H2(y). In

this case, we use Eq. (6.27), which gives:

H2(y) = B2 −M2(y), (6.46)

where B2 is constant. With this consideration we have a linear system of equations

M1 −
1

2
τ ∗
dub(y)

dy
M2 = χ0H1, (6.47)

1

2
τ ∗
dub(y)

dy
M1 + (1 + χ0)M2 = χ0B2. (6.48)

with unknown M1,M2 and constant values of H1, B2, which give us some scenarios to be

studied.

Therefore, the solution of the linear system (6.47)-(6.48) for M1 is given by:

M1(y) =

χ

(
(1 + χ)H1 +

τ ∗

2

dub(y)

dy
B2

)
1 + χ+

(
τ ∗

2

dub(y)

dy

)2 , (6.49)

and for M2 is;

M2(y) =

χ

(
B2 −

τ ∗

2

dub(y)

dy
H1

)
1 + χ+

(
τ ∗

2

dub(y)

dy

)2 . (6.50)

These functions (6.49)-(6.50) are the components in the horizontal and vertical direction

respectively of the magnetic base state Mb.

Some scenarios have been studied following the references [44, 62], where the conditions

Hb
1 = 1 and Bb

2 = 0 were used, getting

M b
1(y) =

χ(1 + χ)

1 + χ+ (yτ ∗)2
, M b

2(y) =
χyτ ∗

1 + χ+ (yτ ∗)2
,
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and for Hb
1 = 0 and Bb

2 = 1, we have:

M b
1(y) =

−χyτ ∗

1 + χ+ (yτ ∗)2
, M b

2(y) =
χ

1 + χ+ (yτ ∗)2
.

With these expressions, we can determine the functions Hb
2(y) and Bb

1(y) from Eq. (6.27).

As an example, if we take χ0 = 1, Hb
1 = 1 and Bb

2 = 0, the magnetization base states are

presented in Fig. (6.1) for di�erent values of τ ∗. We note that for very small values of τ ∗,

the magnetization base state is almost undisturbed by the �ow.

6.3 The Stability Equations

6.3.1 Linear stability analysis

The stability of the �ow is based on the temporal evolution of small disturbances in-

troduced in the system [25]. This is done by perturbing all the variables of the problem

around the base state in Section (6.2.1) and Section (6.2.2)

u = ub + u′, p = pb + p′, H = Hb + H′, M = Mb + M′, (6.51)

that is, writing

u = (ub(y) + u′(x, y), v′(x, y)) and p = pb(x, y) + p′(x, y), (6.52)

for the hydrodynamical variables, and

H = (Hb
1 +H ′1(x, y), Hb

2(y) +H ′2(x, y)), (6.53)

B = (Bb
1(y) +B′1(x, y), Bb

2 +B′2(x, y)), (6.54)

for the applied magnetic �eld and magnetic induction, respectively, and

M = (M b
1(y) +M ′

1(x, y),M b
2(y) +M ′

2(x, y)), (6.55)

for the magnetization of the magnetic �uid. All the variables with a ′ symbol denote

perturbations. We assume that the perturbations are small and, therefore, after substituting

the variables above on the governing equations, they can be linearized by retaining only

linear terms in perturbations. Therefore, we obtain:

∂u′

∂t
+ ub

∂u′

∂x
+ v′

dub

dy
= −∂p

′

∂x
+

1

Re
∇2u′ + Cpm

(
M b

1

∂H ′1
∂x

+M b
2

∂H ′1
∂y

+M ′
2

dHb
1

dy

)
, (6.56)

∂v′

∂t
+ ub

∂v′

∂x
= −∂p

′

∂y
+

1

Re
∇2v′ + Cpm

(
M b

1

∂H ′2
∂x

+M b
2

∂H ′2
∂y

+M ′
2

dHb
2

dy

)
, (6.57)

∂M ′
1

∂t
+ ub

∂M ′
1

∂x
+ v′

dM b
1

dy
=

(χ0H
′
1 −M ′

1)

τ ∗
+

1

2

(
−∂v

′

∂x
M b

2 +
∂u′

∂y
M b

2 +
dub

dy
M ′

2

)
, (6.58)

∂M ′
2

∂t
+ ub

∂M ′
2

∂x
+ v′

dM b
2

dy
=

(χ0H
′
2 −M ′

2)

τ ∗
+

1

2

(
∂v′

∂x
M b

1 −
∂u′

∂y
M b

1 −
dub

dy
M ′

1

)
, (6.59)
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Figure 6.1: Magnetization base states for χ0 = 1, Hb
1 = 1 and Bb

2 = 0, calculated from

Eqs. (6.49), (6.50). The red-line represents M b
1(y) and the black-line represents M b

2(y).

The top graph was obtained for τ ∗ = 10−2, the center one for τ ∗ = 10−1 and the bottom

one for τ ∗ = 0.5.
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as well as
∂u′

∂x
+
∂v′

∂y
= 0, (6.60)

and

∂B′1
∂x

+
∂B′2
∂y

= 0, (6.61)

∂H ′2
∂x
− ∂H ′1

∂y
= 0. (6.62)

Now, considering that the perturbations are of the form of plane waves

Γ′(x, y, t) = Γ̃(y)eiα(x−ct), (6.63)

where Γ′(x, y, t) is a generic function representing any of the perturbation variables and

Γ̃(y) its amplitude, i =
√
−1, α is the wave number of the perturbations and c is their

propagation velocity. Therefore, with this ansatz, di�erentiations with respect to x are

now replaced by a multiplication by iα and di�erentiations with respect to time are now

replaced by a multiplication by −iαc. Substituting Eq.(6.63) in the linearized equations,

and performing some algebraic manipulations (see Appendix A for more details), we obtain

the following equation for the amplitudes of the vertical velocity perturbations:

LOS ṽ = Cpm

[
iα
dM b

2

dy
DH̃1 − α2dM

b
1

dy
H̃1 + α2dH

b
2

dy
M̃2

]
, (6.64)

where LOS is the Orr-Sommerfeld di�erential operator, de�ned in (5.32). Considering that

the perturbed version of Eq. (3.2) gives, in terms of amplitudes of perturbations,

H̃1 = −M̃1 and H̃2 = −M̃2, (6.65)

and taking into account Eq.(6.61), then Eq.(6.64) can be further simpli�ed to

LOS ṽ = Cpm iα
dM b

1

dy
M̃1. (6.66)

Furthermore, the perturbations of the magnetization evolution equations are:

(A+ 2cα2)M̃1 = BM̃2 −
(
M b

2(D2 − α2) + 2iα
dM b

1

dy

)
ṽ, (6.67)

(A+ 2cα2)M̃2 = −BM̃1 +

(
M b

1(D2 − α2)− 2iα
dM b

2

dy

)
ṽ, (6.68)

where the functions A and B are given by:

A = 2

(
iα(1 + χ0)

τ ∗
− α2ub

)
and B = iα

dub

dy
. (6.69)

Equations (6.66)-(6.68) form a system of three coupled linear ODEs for the unknowns

amplitudes ṽ(y), M̃1(y) and M̃2(y) and the unknown propagation velocity c. In fact, c
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is the eigenvalue of this system of equations for a given wave number α. If c = cr + ici

is a complex number with positive complex part ci then, from Eq. (6.63), the disturbance

with wave number α grows exponentially in time and the system is said to be unstable.

Therefore, in order to understand the stability of this system, we need to calculate the

eigenvalue c. In the section below, we present the numerical method used to achieve that

goal.

6.3.2 Numerical solution

The solution of the system composed by Eqs.(6.66)-(6.68) is carried out numerically

via a second order �nite di�erence method [25]. We discretize the interval [−1, 1] in the

y-direction in N + 1 mesh points separated by a step size ∆y = 2/N so that the coordinate

of each point is given by yj = (j − 1)∆y − 1. The amplitudes at the mesh points are

ṽ(yj) = ṽj, M̃1(y
j) = M̃ j

1 and M̃ j
2 (yj) = M̃ j

2 , for j = 1, . . . , N + 1.

The boundary conditions for the amplitudes of the perturbations are ṽ1 = ṽN+1 = 0,

Dṽ1 = DṽN+1 = 0, M̃1
1 = M̃N+1

1 = 0 and M̃1
2 = M̃N+1

2 = 0. With this approach, we obtain

a system of 3(N − 1) equations for the 3(N − 1) unknowns ṽj, M̃ j
1 and M̃ j

2 , j = 2, . . . , N .

The resulting system of equations can be rearranged into a generalized eigenvalue problem

in matrix form as:

Pw̃ = cQw̃, (6.70)

where w̃ = (ṽ2, . . . , ṽN , M̃2
1 , . . . , M̃

N
1 , M̃

2
2 , . . . , M̃

N
2 )T and the matrices P and Q are block

coe�cient matrices obtained from the discretized set of equations. The matrices involved in

the generalized eigenvalue problem presented in Eq. (6.70) are given by the block matrices

P =

 P11 P12 0

P21 P22 P23

P31 P32 P33

 and Q =

 Q1 0 0

0 Q2 0

0 0 Q3

 . (6.71)

The matrix P11 is the standard pentadiagonal matrix obtained in the purely hydrodynamical

stability problem as in Section (5.4). The matrix P21 is tridiagonal, whereas P12 is diagonal,

and their elements are given by:

{P21}j,j+1 = {P21}j,j−1 =
M b

2

∆y2
, (6.72)

{P21}j,j = −
(

2

∆y2
+ α2

)
M b

2 + 2iα
dM b

1

dy
, (6.73)

{P12}j,j = −iαCpm
dM b

1

dy
. (6.74)
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The matrix P31 is also tridiagonal, with elements given by:

{P31}j,j+1 = {P31}j,j−1 = −M
b
1

∆y2
, (6.75)

{P31}j,j =

(
2

∆y2
+ α2

)
M b

1 + 2iα
dM b

2

dy
. (6.76)

The other matrices in the matrix P are diagonal matrices with elements given by:

{P22}j,j = {P33}j,j = A, {P23}j,j = −{P32}j,j = −B, (6.77)

with A and B as in Eq.(6.69).

The matrix Q1 is the standard tridiagonal matrix obtained in the purely hydrodynamical

stability problem as in Section (5.4), whereas the matrices Q2 and Q3 are diagonal matrices,

with elements given by

{Q2}j,j = {Q3}j,j = −2α2. (6.78)

We note that the base state functions appearing in the above matrix components are

evaluated at yj.

Equation (6.70) is implemented in MatLab with the eig routine, which gives as results

the eigenvalues c and the eigenvectors w̃ of Eq. (6.70). We have checked our algorithm

by determining the critical Reynolds number for the onset of instability of the purely hy-

drodynamical problem, Rehc (see de�nition and further details about the critical Reynolds

number in Section 6.4.1), for which Cpm = 0. We �nd Rehc = 5775.94, which gives an error

of less than 1% when compared with the reference value of Rehc = 5772.22 given in [25].

6.4 Results

In the following, we present the results that were obtained for the linear stability analysis

of the plane Poiseuille �ow for four di�erent base state magnetic �elds. We consider a

horizontal applied �eld, for which we assume Hb
1 = ±1 and Bb

2 = 0, and a vertical applied

�eld, for which we assume Hb
1 = 0 and Bb

2 = ±1. Note, however, that the applied �elds are

not strictly horizontal or vertical, as there are non-zero y−dependent componentsHb
2(y) and

Bb
1(y). Since these are small, as can be inferred from Fig.6.1, therefore the applied �elds are

almost horizontal and vertical, respectively, and we have opted to keep this nomenclature.

Finally, we also assume that χ0 = 0.513 to obtain the results presented in this section. This

is the typical value of magnetic susceptibility for the experiments performed in [31], which

is within the range for χ0 given in [62]. All results presented in this Section were obtained

for N = 256. For this choice of N , the error in the estimated value of Rehc is under 1%.
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6.4.1 Horizontal applied magnetic �eld

We consider here the case of an external horizontal applied magnetic �eld given by

Hb
1 = 1 and Bb

2 = 0. For a given con�guration of the parameters Re, Cpm , χ0, τ ∗ and

α, we solve Eq.(6.70) and �nd the 3(N − 1) eigenvalues c = cr + ici of the system. In

Fig.6.2, we plot some of the eigenvalues obtained for one particular set of parameters and

we observe that all but one of the eigenvalues of the system have negative imaginary part ci:

this eigenvalue is the one with the largest ci and will be called, from now on, as the critical

eigenvalue. Because the critical eigenvalue in this case has a positive imaginary part, we

conclude that the �ow is unstable for the values of the parameters used to generate Fig.6.2.

Figure 6.2: The eigenvalues with the smallest absolute complex part of the system Eq.(6.70)

plotted on the complex plane, obtained for Re = 8619.5, Cpm = 5 × 106, χ0 = 0.513,

τ ∗ = 10−2 and α = 0.9807. The applied magnetic �eld is horizontal, with Hb
1 = 1 and

Bb
2 = 0 and N = 256. The insert shows the unstable eigenvalue with positive ci above the

dashed line ci = 0. All the other eigenvalues of the system have very large negative values

of ci.
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If we now collect the imaginary part of the critical eigenvalue for di�erent values of wave

number α, we construct a dispersion relation for this problem, which is presented in Fig.6.3.

For values of Re: Re1 = 1000, Re2 = 1951.3, Re3 = 4101.1, the critical eigenvalues have

negative imaginary part and, therefore, the �ows are stable. As the value of Re increases,

there is an increase in the value of ci and, for a given critical Rec, there will be an αc for

which ci = 0. This is called the neutral growth mode. Any further increase in Re will lead

to a critical eigenvalue having positive ci for a certain range of α. Consequently, the �ow is

unstable under these conditions.

Figure 6.3: The complex part of the critical eigenvalue as a function of the wave number

α for di�erent values of Re: Re1 = 1000, Re2 = 1951.3, Re3 = 4101.1 and Re4 = 8619.5.

The other parameters are the same as the ones used in Fig.6.2.

The results in Fig.6.3 can be consolidated into a stability diagram in which all the wave

numbers α of the neutral growth modes are plotted for di�erent values of Re. This plot is

presented in Fig.6.4, which was obtained for di�erent values of the magnetic parameter Cpm .

The value of Rehc , for which Cpm = 0, is presented in Fig.6.4 as the dashed vertical line.

The solid lines represent the values of α for which ci = 0 at a given Cpm . The points lying

inside these lines represent unstable modes for which ci > 0 and the points lying outside

denote stable modes, ci < 0. We can observe that there is a decrease in the value of the

minimum Rec for which a neutral mode is achieved when Cpm increases. This indicates that

the �ow is destabilized by the presence of the applied �eld. The observed decrease in Rec

is of around 1700 for the range of Cpm tested in this case, which represents only a reduction
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of around 30% on Rec for a signi�cant change of Cpm over two orders of magnitude. In fact,

the values of Cpm for any change at all on the instability of the �ow to be perceived are

actually very high, starting at the order of 106. For lower values, only insigni�cant changes

on Rec are observed. This is due to the fact that the base state magnetization of the �uid

is very little a�ected by the applied �eld when τ ∗ is small, with a τ ∗2 also appearing in

the perturbation equations, namely multiplying Cpm in Eq.(6.66). In this case, the �uid

behaves almost as a superparamagnetic magnetic �uid, in which limit the magnetic �eld

does not a�ect the hydrodynamic instability, as discussed in 6.7.

Figure 6.4: The stability diagram showing α of the neutral growth disturbances as a func-

tion of Re, for di�erent values of the magnetic parameter Cpm . The dashed vertical line

represents the value of Rehc . The other parameters are the same as the ones used in Fig.6.2.

The in�uence of τ ∗ on Rec is presented in Fig.6.5, where the critical values of Rec

were computed for di�erent values of τ ∗. We observe that the values required to detect

an observable change in Rec grow signi�cantly with the decrease of τ ∗. It is interesting to

note, nevertheless, that the decay rate of Rec with Cpm seems to be a power-law of the type

Cpm
γ, with a decay rate γ that is fairly independent on the value of τ ∗, at least for the few

values tested in this work: γ = −0.1593 for τ ∗ = 10−2, γ = −0.1541 for τ ∗ = 5.5 × 10−3,

and γ = −0.1627 for τ ∗ = 10−3.

Finally, if we invert the sign of the horizontal applied magnetic �eld, i.e. Hb
1 = −1,

we observe no change on the results presented here for Hb
1 = 1. In fact, by inverting the

sense of the applied �eld, the magnetization of the �uid also changes sign, both the base
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state and the perturbations. Since the sign of the RHS of Eq.(6.66) remains unchanged,

the stability results also remain unchanged.

Figure 6.5: In�uence of the dimensionless relaxation time τ ∗ on the value of Rec, for di�erent

values of the magnetic parameter Cpm . From left to right, the curves were determined for

τ ∗ = 10−2, 5.5×10−3 and 10−3, respectively. The dashed horizontal line represents the value

of Rehc . The heavy lines represent the power-law �t of the results (see text for details). The

other parameters are the same as the ones used in Fig.6.2. Note the results are plotted in

a log-log scale.

6.4.2 Vertical applied magnetic �eld

We consider now the case of a vertical applied magnetic �eld given byHb
1 = 0 andBb

2 = 1.

The stability diagram for this problem is presented in Fig.6.6 and the stability behavior is

now di�erent from the one observed for the case of the horizontal applied magnetic �eld:

the �ow is stabilized as the value of Cpm increases. As before, the same change of two orders

of magnitude of Cpm results in an increase of about 30% on the value of Rec.
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Figure 6.6: The stability diagram showing α of the neutral growth disturbances as a function

of Re, for di�erent values of the magnetic parameter Cpm for the vertical applied magnetic

�eld. The dashed vertical line represents the value of Rehc . The other parameters are the

same as the ones used in Fig.6.2.

The in�uence of τ ∗ on the increase of Rec is presented in Fig.6.7 and it is now observed

that the increase in Rec is signi�cantly a�ected by τ ∗, contrary to the results presented

in Fig.6.5 for the horizontal applied magnetic �eld. For τ ∗ = 10−2, the rate of increase

is γ = 0.1638. It changes to γ = 0.1634 for τ ∗ = 5.5 × 10−3 and assumes the value of

γ = 0.0706 when τ ∗ = 10−3. Note that when τ ∗ decreases to 0, the system should recover a

superparamagnetic-like behavior (see 6.7) and, therefore, the value of Rec for all values of

Cpm should be Rehc . Therefore, the slower growth for τ ∗ = 10−3 is already a manifestation of

this asymptotic limit, which seems to occur faster in the vertical case than in the horizontal

case. Finally, similarly to the case of a horizontal applied �eld, no changes were observed

when the results were calculated for Bb
2 = −1.

6.5 Discussion and �nal remarks

In this work, we have performed a linear stability analysis of the plane parallel �ow of

a magnetic �uid in the presence of an applied magnetic �eld. The results indicate that

the �ows are made more unstable when the applied magnetic �eld is horizontal, whereas
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Figure 6.7: In�uence of the dimensionless relaxation time τ ∗ on the value of Rec, for di�erent

values of the magnetic parameter Cpm . From left to right, the curves were determined for

τ ∗ = 10−2, 5.5×10−3 and 10−3, respectively. The dashed horizontal line represents the value

of Rehc . The heavy lines represent the power-law �t of the results (see text for details). The

other parameters are the same as the ones used in Fig.6.2. Note the results are plotted in

a log-log scale.

a stabilization of the �ow is achieved for a vertically applied magnetic �eld. However, the

values of the magnetic pressure coe�cients that were needed to generate an observable

di�erence on the stability of the �ows are very large, far beyond the range observed the

experimental setup of [34]. In the case of the largest intensity of applied magnetic �eld in

a turbulent �ow in [34], the parameters used in the present work would be Cpm ≈ 1.2 and

Re ≈ 3100. Similarly, in [46] values of Cpm ∼ 1− 5 (called Ma in their work) were enough

to generate the interfacial instabilities.

We believe that the reasons for the range of Cpm obtained in this work is so far from the

ones mentioned above can be the following. The �rst one is directly due to the choice of the

relaxation time appearing in the magnetization evolution equation. We have chosen to use

the range τ ∗ ∼ 10−3 − 10−2, which seems to be reasonable for the most common magnetic

�uids �owing in normal laboratory conditions [34, 71, 31]. However, if we choose slightly

larger particles of a few µm in diameter, the relaxation times might be larger than the ones

used here and the in�uence of the magnetic �eld on the �ow can be more signi�cant, as the

base state magnetization will be further away from equilibrium and the RHS of Eq.(6.66)

will have a larger weight on the eigenvalues of the stability problem. A quick test of our

code with τ ∗ = 10−1 indicates that Cpm ∼ 102 are enough to produce observable change on
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the stability of the �ow in the case of a vertical applied magnetic �eld. This range is already

closer to the experimental observed values. On the other hand, it is not clear whether the

model of the magnetization evolution used in this work is adequate to produce reliable

estimates for a real case scenario in which magnetic �uids have such large relaxation times.

The second reason, and most likely the most relevant one, can be that the transition

to turbulence in a pipe �ow of a magnetic �uid is not a�ected when magnetic torques are

not present on the �uid, that is, when the �uid behaves as a symmetric and/or superpara-

magnetic magnetic �uid. The extremely large Cpm obtained in this work indicate that the

transition of the �ow will follow its normal hydrodynamical course. In this sense, our results

have a strong similarity with Rayleigh's inviscid instability criterion. His work has shown

that inertia by itself is not enough to destabilize a Poiseuille �ow, since its velocity pro�le

has no in�ection point and, by experience, these �ows are unstable. A conclusion of the

results presented here are, therefore, that the Kelvin force can (and does) change the route

of the �ow to the base state, but that does not change the rheology of the �uid nor the

inner structure of the base state in a way as to signi�cantly alter the stability of the �ow.

6.6 Future directions

In this section, we are going to discuss the next steps in this investigation. We want

to study the full magnetic problem that considers the torque force in the modi�ed Navier-

Stokes equation and the precessional term in the magnetization evolution equation.

As in the Section 6.2, the �ow of a ferro�uid in the presence of a magnetic �eld is de-

scribed by the continuity equation (6.79), the modi�ed Navier-Stokes equation (6.80) and

this time considering the torque force, Maxwell's equations (6.82, 6.83) and the magne-

tization evolution equation (6.81) with precessional term, as in [52]. These equations in

dimensionless form are described by:

∇ · u =0, (6.79)

∂u

∂t
+ u · ∇u =−∇p+

1

Re
∇2u + Cpm(M · ∇)H +

Cpm

2
∇× (M×H), (6.80)

∂M

∂t
+ u · ∇M =− 1

τ ∗
(M−M0) + Ω×M− Cpm Re

6φ
(M×H)×M, (6.81)

∇×H =0, (6.82)

∇ ·B =0, with B = H + M, (6.83)

In order to perform the linear stability analysis we need to determinate the base state for

the velocity and magnetic �elds. The velocity base state is based on the hypotheses of

steady fully developed uni-directional �ow in the presence of and external applied magnetic

�eld.
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The velocity base state

Let consider steady-state, uni-directional and fully developed �ow. From Eq. (6.80), we

obtain:

∂2u

∂y2
=Re

∂p

∂x
− Cpm

2

∂ (M1H2 −M2H1)

∂y
, (6.84)

∂p

∂y
=Cpm M2

∂H2

∂y
. (6.85)

In Eq. (6.85), because there is not explicit dependency of x-variable in the term (M1H2 −M2H1)

this equation does not change and only we have modi�cation of the Eq. (6.84) compared to

the previous case in Section 6.2.

We note that if there is no magnetic contribution, that is Cpm = 0, we recover the

parabolic pro�le of Poiseuille, as in Eq. (5.14). Therefore, we expect a non-symmetric

pro�le as a result of magnetic contribution.

The magnetic base state

In order to �nd the magnetic base state, we consider Eq. (6.81) in both x and y com-

ponents:

0 =− 1

τ ∗
(M1 − χ0H1) +

1

2
M2

du

dy
− Cpm Re

6φ
(M1H2 −M2H1)M2, (6.86)

0 =− 1

τ ∗
(M2 − χ0H2)−

1

2
M1

du

dy
+

Cpm Re

6φ
(M1H2 −M2H1)M1, (6.87)

where the equilibrium magnetization is approximated by M0 = χ0 H.

In the system of equations above we want to compute functions M1 = M1(y) and

M2 = M2(y), and it should be noted that the component of H1 of the applied magnetic �eld

is constant and that the second component depends on the variable y, this is H2 = H2(y).

In this case, we use constitutive equation for the magnetic induction B, that is:

H2(y) = B2 −M2(y), (6.88)

where B2 constant. With this consideration we obtain a non-linear system of equations,

M1

τ ∗
− 1

2

du

dy
M2 =

χ0H1

τ ∗
− Cpm Re

6φ
(M1(B2 −M2)−M2H1)M2, (6.89)

1

2

du

dy
M1 +

(1 + χ0)M2

τ ∗
=− χ0B2

τ ∗
+

Cpm Re

6φ
(M1(B2 −M2)−M2H1)M1. (6.90)

Observe that this system haveM1,M2 unknowns functions of y andH1 and B2 constants.

At the same time, if we consider non-magnetic contribution Cpm = 0, then we recover the

explicit expressions for M1 and M2 obtained in Eq. (6.49) and (6.50).

72



In future works, we intend to solve the system of partial di�erential equations formed

by Eq s (6.84), (6.89) and (6.90) to obtain the velocity and magnetic base states, then

we can perform the stability analysis with similar arguments as in Section (6.3.1). There

are already results about the calculation of the base states, for example in [43], where the

authors found that the base state slightly loses symmetry as an e�ect of a uniform magnetic

�eld, and this will be the direction that our investigation.
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CHAPTER 7

CONCLUSION AND FUTURE

DIRECTIONS

In this part of thesis, we studied the linear stability analysis for a two-dimensional �ow

of symmetrical magnetic �uids between two rigid parallel plates. We have presented the

set of equations that govern this problem and that are formed by: the continuity equation,

the Navier-Stokes equations modi�ed by the magnetic forces, the magnetization evolution

equation proposed by Shliomis [52] and Maxwell's equations.

Linear stability analysis was performed for an applied magnetic �eld proposed by [46, 62],

and the base state of both �ow and magnetization were identi�ed. Therefore, by introduc-

ing a small disturbance on the base states, it was possible to �nd an Orr-Sommerfeld type

di�erential equation involving information about the magnetization of the �uid. The criti-

cal parameters controlling the magnetic e�ects on the �ow were identi�ed as the magnetic

pressure constant and the dimensionless magnetization relaxation time. Subsequently, the

numerical approach to solve the extended generalized eigenvalue problem using �nite dif-

ferences was presented.

The marginal stability curves were found for two cases: for an applied magnetic �eld

in the �ow direction and for an applied magnetic �eld perpendicular to the �ow direction.

Our results have shown that for high intensity magnetic �elds the �ow behavior is a�ected

by the magnetic e�ects. For a �eld in the �ow direction, a decrease in the critical Reynolds

number was identi�ed, which indicates an advance on the onset of the instability. For a

�eld transversal to the �ow direction, the results show an increase of the critical Reynolds

number, which indicates a stabilization of the system. For low intensity �elds, no change
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on the stability has been observed. This is the case of the magnetic �uids present in the

industry where the average diameter of the magnetic particles is 10 manometers, which

provides a very short magnetic relaxation time.

In future works, we plan to study the in�uence of magnetic torques on this problem.

Preliminary results have shown that the base state for the �ow is no longer Poiseuille's

parabolic pro�le and this, in addition to the in�uence of the precessional term in the mag-

netization evolution equation, can bring a new dynamics to the stability problem. On the

other hand, we intend to study this problem for magnetorheological �uids which present and

average magnetic particle diameter of order micrometers, and which allows us to consider

considerably longer magnetic relaxation times.
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Part III

Long-wave approximation of

Plateau-Rayleigh instability of magnetic

�uids
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CHAPTER 8

INTRODUCTION

The Plateau-Rayleigh instability has attracted the attention of the scienti�c community

for the last centuries. If we consider a liquid cylinder and introduce a small disturbance

on the radius, they grow due to surface tension and cause the breakup into drops and

satellite drops. This phenomenon is part of our daily life, for example, when a jet of tap

falls downwards into the sink or when honey falls down by its own weight, and a vast list of

industrial applications. Among the industrial application we can mention, the atomization,

inkjet printing, drug delivery, fuel injection, as quoted in [73, 74, 75].

One of the promising applications of ferro�uids that is under implementation is in the jet

printing industry as mentioned in [72]. Due to the nano size of the ferromagnetic particles

and their magnetic response, it is possible to use them to give security to documents that

are printed on paper, for example: as an additional security measure in passports or to leave

a magnetic impression on books that can be read later by a magnetic reader in libraries.

In [61], there is a complete treatment of liquid jet problems, which happen on a small

and large scales. These e�ects are related to the surface tension due to the cohesive in-

termolecular forces that promote jet rupture. Among applications are aerosol, agricultural

irrigation, jet engine technology. The liquid jets involve the study of the free surface, hy-

drodynamic stability and the formation of singularities that lead to the rupture of the drop.

The jets are an ideal scenario to observe liquid properties such as surface tension, viscosity

and non-Newtonian rheology, at the same time, other studies are directed to study the jet

dynamics of the jet in front of the e�ect of temperature in the system or considering a

surrounding �uid with di�erent characteristics.

We �rst mention the Rayleigh's work for inviscid �uids [47] in which a dispersion equa-
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tion is found that relates instability to the terms of the cylinder radius, surface tension

and liquid density. Later, Rayleigh also incorporated the viscosity on the dynamics of the

perturbations [48], that result is a classic reference and many authors mention this work

for the viscous case.

In order to �nd new models, several works were developed. For instance, in Eggers and

Dupont's work [64], the authors studied the viscous Plateau-Rayleigh problem, and they

used the Taylor's series in the radial direction and truncated it to obtain a reduced model

of the Navier-Stokes equations, retaining the leading orders of the equations in the radial

and axial directions. The obtained one-dimensional equations facilitates the study of the

Plateau-Rayleigh problem, both of the stability and of the numerical aspect, and a study

of the pinch-o� is also made. The authors reproduce examples with high-viscosity �uids,

which agree very well with previous experiments [76].

In the work of Balmforth and al. [65], the authors assumed the long wavelengths hy-

pothesis, this is the cylinder radius is much less than the wavelength of the disturbances,

and this introduces a small parameter that allows to �nd an asymptotic approximation of

the Navies-Stokes equations for viscoplastic �uids, in which the Herschel-Bulkley model is

used.

Among the works involving ferro�uids, we can cite the work of Rosensweig [33]. It

presents a compendium of problems on the stability of ferro�uids. Among them, one that is

of our interest is the problem of a inviscid magnetic liquid jet, in which the short wavelengths

hypothesis is assumed. The equations that govern this problem are the same for an inviscid

�uid, but the magnetic e�ect is taken into account by considering a modi�ed magnetic

pressure. In this analysis, the velocity of the jet motion is considered to be small, so

that the e�ect of the surrounding liquid on the disintegration of the jet may be neglected.

An uniform �eld is applied to the jet positioned co-axially to the cylinder. Basically, we

must solve a Laplace equation for the magnetic potential and satisfy the magnetic boundary

conditions, both in the normal and tangential direction. As a result of this stability analysis,

the authors present a dispersion relationship involving the frequency, the wave number, the

applied magnetic �eld and the magnetic permeability of the �uid. The analysis lead to

conclude that, in the absence of the �eld, the Rayleigh classic result is recovered, indicating

the onset of instability when the wavelength of the disturbance exceeds the perimeter of

the jet. The authors [33, 61] conclude that in theory the jet can be stabilized using a

longitudinal magnetic �eld. This approach is also quoted in [61].

In the work of Entov and al. [66], the authors studied the jet stability of magneto-

rheological �uids, for this, they use a power-law model for the stress tensor in which vari-

ous approaches could be studied, for example, shear-thinning or shear-thickening or simply

Newtonian, together with Maxwell's magnetic stress tensor at the super-paramagnetic limit,

where the long-wavelength hypothesis was assumed. The evolution equations for the mag-

78



netic liquid jet are given by the continuity equation and the conservation of liquid �ux.

The magnetic e�ect can be seen in two places: one of them is in the viscosity, where the

rheology has a small modi�cation as an e�ect of the magnetic �eld applied to the �uid.

The other place is in the modi�ed pressure in the form of an additional magnetic pressure.

The magnetic �eld �ux is taken constant, where the magnetic applied �eld is inversely

proportional to the square of the free boundary radius, thus evolving the boundary close

to zero provides a high magnetic �eld that increases viscosity. In this work, a numeri-

cal study about the pinch-o� is also carried out and the breakup time is estimated. The

authors were able to conclude that the magnetic e�ect changes signi�cantly the viscosity

due to the non-Newtonian rheological approach. this magneto-viscous e�ect slows down

the capillary breakup and shifts the most unstable wavelength, and leads it to long waves

corresponding to small wave-number. In the other hand, the e�ect of the magnetic pressure

counteracts the capillary pressure, emulating a kind of elastic behavior. From the linear

stability analysis, it can be concluded that a high enough magnetic �eld can prevent the

breakup completely.

In Furlani and Hanchak's work [69], they present a numerical study to predict the

instability and breakup of a viscous liquid jet of a Newtonian �uid. In this new approach,

the authors use the method of lines (MOL) to transform the one-dimensional system of

partial di�erential presented in [61] to a system of ordinary di�erential equations using

a staggered uniform mesh for the discretisation of the spatially dependent variables of

the jet. Two problems were studied to demonstrate the method: an in�nite micro-thread

Newtonian �uid and a driven-nozzle liquid jet. The authors con�rm their results with other

works that involve other numerical methods and verify that this numerical approach allows

ease of implementation and is faster computationally, they enable a quick analysis of the

jet parameters, of the breakup and of the satellite drop formation.

This work will take the follow direction: initially, we are going to establish the classic

result of the Plateau-Rayleigh instability, �rst for a inviscid case and then for a viscous �uid.

Next, we will formulate the Plateau-Rayleigh instability for the limit of long wavelengths

and we will compare our results with the short wavelength theories. We continue with the

analysis of superparamagnetic magnetic inviscid �uid for long wavelengths and compare the

linear stability results with the work cited in [33]. We also present the superparamagnetic

viscous �uid case and compare this result with [66], both the linear stability and the pinch-

o� analysis. Finally, we present the full magnetic �uid model, in which we consider the

magnetization evolution equation of Shliomis [52].
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8.1 General framework for the Rayleigh-Plateau insta-

bility

In 1873, Joseph Plateau [63] characterized this instability through experimental obser-

vation, built on the work of Savart. He identi�ed the instability arose when the liquid

column length exceeded the cylinder diameter of about approximately 3.13 [63]. Later,

Lord Rayleigh corroborated the Plateau's work and gave a theoretical explanation of this

physical observation.

The behavior of this phenomena derives from the existence of a small perturbation in

any physical system. All real �ows have some external disturbances that can be considerate

non-negligible and that will increase exponentially in unstable systems. In general this

deformation of the cylindrical column, sometimes called varicose perturbation, is presented

as a series of periodic sinusoidal displacement, as in Fig. (8.2). In this case, for certain

wavelengths, the perturbation waves will grow larger in time.

In this con�guration, when the displacement amplitude increases, the liquid column will

no longer have a constant radius of curvature. From the problem geometry and considering

shot times or small lengths, the jet is a cylinder with an axial curvature radius 1/R0 and

longitudinal curvature radius equal to zero. In Fig. (8.1), the perturbed cylinder has areas

with positive curvature and others with negative curvature. The pinched sections have

higher pressure, this is 1/R is greater, and the bulging sections (belly region) have lower

pressure, producing a �uid �ow as a result of the e�ect of the pressure gradient. The internal

�ux causes the growth of the displacement amplitude which initiates the formation of the

droplets and they form when the pinched section ruptures and the belly areas transform

into a sequence of small droplets.

Figure 8.1: A diagram showing the con�guration of the free surface in cylindrical coordi-

nates. The horizontal dashed line represents the axis of symmetry in r = 0.
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This is described by the momentum equation along the radial direction

ρ

(
∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z

)
= −∂p

∂r
+ µ

(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+
∂2u

∂z2

)
, (8.1)

then in axial direction

ρ

(
∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

)
= −∂p

∂z
+ µ

(
∂2w

∂r2
+

1

r

∂w

∂r
+
∂2w

∂z2

)
, (8.2)

and the continuity equation,
∂u

∂r
+
∂w

∂z
+
u

r
= 0. (8.3)

where u and w are the radial and the axial velocities.

The boundary conditions, calculated at the free surface of the jet which is related to the

mean curvature, express the relation between the pressure di�erence, across the free surface

with the normal stress is given by

n̂t ·Σ · n̂ = −σκ, (8.4)

where Σ is the stress tensor, κ is the mean curvature of the free surface, here de�ned as

∇ · n̂, σ is the surface tension and n̂ is the unit normal vector to the free surface, which

points from the inside to the exterior of the cylinder as shown the Fig.(8.1). If we consider

the external zone to be empty (vacuum), then the tangential stresses along the surface of

the jet can be equated to zero

n̂t ·Σ · t̂ = 0, (8.5)

where t̂ is the tangent vector to the free surface, de�ne by r = R(z, t), again as shown in

Fig. (8.1).

Finally, the kinematic condition at the free surface requires that a particle at the free

surface to remain there so that F (r, z, t) = r −R(z, t) must satisfy:

DF

Dt
= 0, (8.6)

this can be also expressed as,
∂R

∂t
+ w

∂R

∂z
= u, (8.7)

The e�ect of the pressure inside the cylindrical liquid jet is a function of the curvature

of the surface, which is given by the Young-Laplace equation, as it can be seen in [67]:

p = σ

(
1

R1

+
1

R2

)
. (8.8)

It is also written as (see Appendix II.4),

p = σ

 1

R
(

1 +
(
∂R
∂z

)2) 1
2

−
∂2R
∂z2(

1 +
(
∂R
∂z

)2) 3
2

 . (8.9)
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The Young-Laplace equation gives an expression for the pressure di�erence over an interface

between two �uids terms of the surface tension coe�cient σ and the principal radii of

curvature R1 and R2.

8.2 The Plateau-Rayleigh Instability

8.2.1 The Inviscid Case

In this section, we present the classical result of the Plateau and Rayleigh about the

instability of a cylindrical �uid jets due the surface tension, for this purpose we follow the

references [7, 9].

Consider a column of �uid of radius R0 with density ρ in which we neglect its viscosity µ

and the e�ects of gravity g, this case is commonly called inviscid �ow. The pressure inside

the column is assumed to be constant p0 and it is calculated by balancing the normal stress

at the boundary. We also assume zero external pressure which yields,

p0 =
σ

R0

. (8.10)

Note that from Eq. (8.9) the radii of curvature R1 is R0 and the R2 takes in�nite value for

cylindrical column con�guration.

Figure 8.2: On the left-hand side, we have the unperturbed cylinder of radius R0 (base

state). On the right-hand side, the perturbed cylinder in which the surface is given by

R = R(z, t).

The base state consider the radius constant R0 of the unperturbed cylinder, as on the

left-side of Fig. (8.2) and we consider the radial perturbed state in the right-hand side of

Fig. (8.2), as follows:

R = R0 + εe($t+ikz), (8.11)
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where $ ∈ C is the frequency and k is the wave-number and ε is a small perturbation such

that ε � R0. By the axial symmetry R does not depend on θ, that is, R is a function

depending on z and t.

The governing equations of a inviscid �uid in cylindrical coordinates are given by the

axial and radial components equation, the latter is

ρ

(
∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z

)
= −∂p

∂r
, (8.12)

and in the axial component,

ρ

(
∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

)
= −∂p

∂z
, (8.13)

these two equations together with the continuity equation in cylindrical coordinates (8.3)

form the system of partial di�erential equations that governs the nonlinear problem.

8.2.2 The stability analysis

We consider the following ansatz for the disturbed variable:

(u′, w′, p′) = (U(r),W (r), P (r))e($t+ikz), (8.14)

where u′ is the radial velocity, w′ is the axial velocity and p′ is the pressure of the perturba-

tions. We substitute these perturbations in Eqs. (8.12)-(8.13) and retain only O(ε) terms,

that is, we consider only the linear terms in perturbations. Keeping the terms of order O(ε)

in Eq. (8.12) yields,

ρ
∂u′

∂t
= −∂p

′

∂r
, (8.15)

and substituting in Eq. (8.13) provides,

ρ
∂w′

∂t
= −∂p

′

∂z
. (8.16)

We note that a temporal derivative of the ansatz Eq. (8.14) contributes a factor of$, while a

spatial derivative contributes with a factor of ik with i =
√
−1 and a radial derivative implies

a derivative of the amplitude function. Substituting the ansatz Eq. (8.14) in Eqs.(8.15)-

(8.16), provides for Eq. (8.15),

ρ$U(r) = −dP (r)

dr
, (8.17)

while for Eq. (8.16),

ρ$W (r) = −ikP (r). (8.18)

Developing the incompressibility Eq. (8.3), keeping the terms order O(ε) and substituting

the ansatz perturbations Eq. (8.14)

dU

dr
+ ikZ(r) +

U(r)

r
= 0. (8.19)
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Solving the system of Eqs.(8.17)-(8.18) and (8.19) by deriving Eq.(8.18) in relation to radial

component

ρ$
dW

dr
= −ikdP

dr
, (8.20)

then, we substitute the derivative dP/dr by the expression in Eq. (8.17)

ρ$
dW

dr
= ikρ$U. (8.21)

Simplifying ρ$, and taking the radial taking the radial derivative of Eq. (8.19), we get

d2U

dr2
+ ik

dW

dr
+

d

dr

(
U(r)

r

)
= 0. (8.22)

Expanding the radial derivative of the third term of the left hand side

d2U

dr2
+ ik

dW

dr
+

1

r

dU

dr
− U

r2
= 0, (8.23)

Multiplying by r2 and substituting the term dW/dr using Eq. (8.21)

r2
d2U

dr2
+ (ik)2r2U + r

dU

dr
−R = 0, (8.24)

Factorizing the terms involving the amplitude R

r2
d2U

dr2
+ r

dU

dr
− (1 + (kr)2)U = 0, (8.25)

The expression above is the modi�ed Bessel equation of order 1 with factor kr [2], whose so-

lution is a linear combination of the modi�ed Bessel functions of �rst and second kind I1(kr)

and K1(kr) respectively. In order to main regularity of solution, we note that K1(kr)→ 0

as kr → 0, allowing us to access the solution of U(r),

U(r) = C I1(kr), (8.26)

where C is a constant to be found. By using Eq. (8.17) and replacing the solution of the

Bessel equation (8.26),
dP (r)

dr
= −ρ$CI1(kr), (8.27)

and by using the Bessel functions identity I ′0(ξ) = I1(ξ) [2], and integrating we have

P (r) = −ρ$
k
CI0(kr), (8.28)

8.2.2.1 Boundary conditions

The kinematic condition (8.7) on the free surface for the perturbed variables (8.11) and

(8.14) indicates,
∂R

∂t
= u, (8.29)
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which is valid at the boundary r = R0. Introducing the ansatz (8.14) in expression above,

allows us to obtain:

ε$e($t+ik) = U(R0)e
($t+ikz). (8.30)

Replacing U(R0) from Eq. (8.26), gives us,

ε$ = CI1(kR0), (8.31)

from where we can determine the value of the constant C as,

C =
ε$

I1(kR0)
. (8.32)

We replace the value of C in the expression of U(r) in Eq. (8.26), as follows;

U(r) =
ε$

I1(kR0)
I1(kr), (8.33)

and substituting the value of C in Eq. (8.28), we get a �nal expression for P ,

P (r) = − ερ$2

kI1(kR0)
I0(kr). (8.34)

The boundary conditions requires a normal stress balance at the free surface,

p0 + p′ = σ∇ · n̂. (8.35)

We write the curvature as in Eq. (8.9), where R1 and R2 are the principal radii of curvature

on the free surface. The expression for R1 contains a square root involving a derivative of

the free surface that contributes to the stability analysis with terms O(ε2) and we discard

that term, then terms O(1) and O(ε) are maintained with the free surface R. Substituting

(8.11) and using the binomial expansion to develop R1 = R, yields:

1

R1

=
1

R0

− ε

R2
0

e($t+ikz). (8.36)

Now, we �nd a expression for R2, which is related with the second derivative of R

1

R2

= εk2e($t+ikz). (8.37)

Substituting Eq.(8.36) and (8.37) into Eq. (8.35) yields;

p0 + p′ =
σ

R0

− εσ

R2
0

(1− (kR0)
2)e($t+ikz), (8.38)

here we use the expression for p0 from Eq. (8.10),

σ

R0

+ p′ =
σ

R0

− εσ

R2
0

(1− (kR0)
2)e($t+ikz), (8.39)
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Canceling the �rst terms in both sides and substituting p′ by its respective expression in

Eq. (8.34)

P (r)e($t+ikz) = − εσ
R2

0

(1− (kR0)
2)e($t+ikz), (8.40)

we obtain the following expression for P (r):

P (r) = − εσ
R2

0

(1− (kR0)
2), (8.41)

substituting the expression of P by using Eq. (8.34) and evaluating at r = R0,

−ερ$
2I0(kR0)

kI1(kR0)
= − εσ

R2
0

(1− (kR0)
2). (8.42)

Isolating the $2 term, we �nally obtain:

$2 =
σkR0I1(kR0)

ρR3
0I0(kR0)

(1− (kR0)
2), (8.43)

which is expressed in dimensionless form using $ = $
√
ρR3

0/σ and k = kR0, providing:

$2 =
kI1(k)

I0(k)
(1− k2). (8.44)

This expression is called Dispersion Equation. This is a relation between the frequency $

and the wave-number k and it is possible to conclude the following: if kR0 < 1, then $2 = a

with a ∈ R+, which implies that $ =
√
a > 0 and getting a factor of e

√
at in the considered

ansatz producing an unstable state as the time goes by. If kR0 > 1, then $2 = −a with

a ∈ R+, implying $ = i
√
a and giving us a factor of ei

√
at in the ansatz yielding a stable

(oscillatory) state as time evolves.

Figure 8.3: Figure shows the growth rate $ = $
√
ρR3

0/σ as a function of the wave number

k = kR0 for a cylinder liquid jet in the inviscid limit.
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The representation of this kind of instability is shown in Fig. (8.3). With this, the

liquid jet is unstable when the wavelength are larger than 2πR0, this is, if kR0 < 1, then

(kR0)
−1 > 1 and multiplying by 2πR0, yields λ > 2πR0. If kR0 > 1, then (kR0)

−1 < 1 and

multiplying by 2πR0, yields λ < 2πR0 getting stable modes.

The equation (8.44) is valid short and long wave-lengths, but a particular limit of our

interest is taken when we consider long wave-lengths, for this the recall the limit of the

Bessel function Iα(x) and Γ(n) = (n− 1)!;

Iα(x) =
+∞∑
n=0

(−1)n

n!Γ(n+ α + 1)

(x
2

)α x→0
≈ 1

Γ(α + 1)

(x
2

)α
(2)

Taking α = 0 and α = 1, provides;

I0(x)
x→0→ 1, I1(x)

x→0→ x

2
. (8.45)

By replacing this information in Eq. (8.44), we get:

$2 =
k
2

2
(1− k2), (8.46)

this equation will be invoked throughout this work.

8.2.3 The Viscous Case

In this subsection, we present the result of the Plateau-Rayleigh instability for a viscous

�uid �ow.

After presenting the result for the inviscid instability, Rayleigh in 1982 [48] extended his

work regarding Plateau-Rayleigh instability for viscous �uid �ows, as a result of his work

he found a dispersion relation involving the wave number k and the frequency $, however,

he used the ansatz proportional to exp(i$t − ikz), which produced a complex expression

that involves the Bessel functions of �rst and second order, from which it is di�cult to draw

conclusions. In general, the scienti�c community refers to this result, but they only use an

asymptotic approximation of it, in the limit of very large viscosity in comparison to inertia

[61], which can be expressed in the following form

i$ = − σ

2R0η

1− (kR0)
2

1 + (kR0)2(1 + (J0(ikR0)/J ′0(ikR0)2)
. (8.47)

Later, the work of Chandrasekhar in 1961 [9] approached the problem using a di�erent

ansatz: proportional to exp($t+ ikz), which allowed the use of Bessel functions I0, I1 and

its derivatives, getting

$ = − σ

2R0η

1− (kR0)
2

1 + (kR0)2(1− (I0(kR0)/I1(kR0)2)
, (8.48)
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again this approach is valid for a very viscous �ow.

Later, Eggers and Dupont's work came [64], in which they used a linear approximation

around w = 0 and R = R0 leads us to �nd the following dispersion relation in non-

dimensional form,

$2 =
σ(kR0)

2

2ρR3
0

(1− (kR0)
2)− 3η(kR0)

2

ρR2
0

$. (8.49)

in this equation, if we consider the viscosity η = 0, then we recover the inviscid limit

Eq. (8.44) when k → ∞. This limit is called the strong viscous limit. The Eq. (8.49) has

been reported in [9, 64].
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CHAPTER 9

LONG WAVES APPROXIMATION OF THE

PLATEAU-RAYLEIGH INSTABILITY

9.1 The Long-Wave Approximation

The problem of determining the time evolution of the �uid jet is nonlinear because: �rst,

the Navier-Stokes equations that govern the �uid �ow are nonlinear. Second, the boundary

conditions to be applied at the free surface of the jet are nonlinear and third, the surface

of the jet is a free surface, in the sense that its position must be found as a part of the

solution technique. These all make part of a nonlinear free boundary value problem.

The assumption of the long wave-lengths approximation, or sometimes called slender

�uid jet, in which one of the typical length scales is smaller (very much smaller) than the

others leads to a signi�cant simpli�cation of the problem. In fact, it becomes possible to

regard the �ow as essentially one dimensional and to obtain a closed coupled set of equations

for the evolution of the velocity and the free surface, see by example [65].

In this work, we assume that the initial radius of the cylinder R0 is much less than

the wavelength λ, that is, R0 � λ. By doing this, we introduce a small parameter in our

problem given by:

ε =
R0

λ
� 1, (9.1)

then the re-scale radial position is r = εr̄.
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Figure 9.1: Geometry of the problem, the long-wave limit is characterized by using long

wavelengths compared to the initial ratios R0.

9.2 The inviscid case

In this Section, we consider the Navier-Stokes equations in cylindrical coordinates for

an incompressible inviscid �uid: �rst we enunciate the equation in the radial direction

ρ

(
∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z

)
= −∂p

∂r
, (9.2)

then the equation in the axial direction

ρ

(
∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

)
= −∂p

∂z
, (9.3)

and the continuity equation in cylindrical coordinates

1

r

∂(ru)

∂r
+
∂w

∂z
= 0. (9.4)

The velocity �eld is given by u = (u, 0, w), and due that there is not movement in the

θ-component we do not consider the equation in θ-direction. The pressure is given by p

from Eq (8.9).

In Fig. (9.1), the initial cylinder radius is R0 and the radial function depends only on

z and t variables. The variable λ is the wave-length, and in this case it is being analyzed

the case of long wave-lengths, this case is also known as long-wave limit, i.e. R0 � λ,

this hypotheses generates small parameter ε = R0/λ � 1 as in Eq. (9.1). Under this

observations also is assumed that,

r → εr, u→ εu,
∂

∂r
→ ε−1

∂

∂r
, u� w. (9.5)
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Which these modi�cation we re-scale the Eq. (9.2)-(9.3) and (9.4). From re-scaling Eq. (9.3):

ρ

(
∂w

∂t
+ εu

1

ε

∂w

∂r
+ w

∂w

∂z

)
= −∂p

∂z
, (9.6)

then after cancellation of parameter ε we maintain the initial Eq. (9.2). This indicates that

Eq. (9.3) does not change with this limit. But with Eq. (9.2)

ρ

(
ε
∂u

∂t
+ ε2u

1

ε

∂u

∂r
+ εw

∂u

∂z

)
= −1

ε

∂p

∂r
(9.7)

simplifying and putting the ε term in the left-hand side yields

ρε−2
(
∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z

)
= −∂p

∂r
. (9.8)

The last equation changes in relation to Eq. (9.2) and in order to scale this expression,

it has to be assumed that ∂p/∂r = 0 or that p is independent of r, implying that the

p-function depends only on z and t, that is, p = p(z, t). Regarding Eq. (9.3) indicates no

dependency on variable r, then we can conclude that w = w(z, t), and through the project

we are going to assume that w does not depend on r. Also there is no change with the

continuity equation (9.4), once we replace the proposed scale

ε2

ε2r

∂(ru)

∂r
+
∂w

∂z
= 0, (9.9)

and after simplify the ε's we get the unchanged Eq. (9.4). Integrating Eq. (9.4) with respect

to r ∈ [0, R]: �
∂(ru)

∂r
dr +

�
r
∂w

∂z
dr = 0, (9.10)

we remark that the w-function does not depend on r, getting

u = −R
2

∂w

∂z
. (9.11)

Using the boundary condition,
∂R

∂t
+ w

∂R

∂z
= u. (9.12)

substituting u from Eq. (9.11) in the last expression provides,

2R

(
∂R

∂t
+ w

∂R

∂z

)
+R2∂w

∂z
= 0, (9.13)

when the �rst term is written as a second time derivative of the square of R and the second

and third terms are condensed as a second spatial derivative of wR, as follows

∂(R2)

∂t
+
∂(R2w)

∂z
= 0. (9.14)

Regarding Eq. (9.3), we note that w does not depend on r and hence the r-derivative is

neglected, getting the expression

ρ

(
∂w

∂t
+ w

∂w

∂z

)
= −∂p

∂z
. (9.15)

The equations (9.14), (9.3) and (8.9) form the reduced system of partial di�erential equa-

tions in terms of R and w for the problem of Plateau-Rayleigh in the long-wave limit.
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9.2.1 The stability analysis

For the stability analysis, we solve the system of partial di�erential equations Eqs. (9.14)

and (9.15) by considering the following perturbations for R and w,

R ≈ R0 + εR1, w ≈ εW1, (9.16)

in which the disturbed parameters R1 and W1 are given by:

R1,W1 ∝ exp($t+ ikz). (9.17)

In this expressions, we consider the perturbation of the cylinder of the free boundary R, and

the third component of the velocity �eld, also the typical ansatz is taken as the previous

Section (8.2.1).

In order to �nd the stability expression, we �rst introduce the above perturbations (9.16)

in Eq. (9.14)
∂(R0 + εR1)

2

∂t
+
∂(εW1(R0 + εR1)

2)

∂z
= 0, (9.18)

and keeping the terms of order ε, O(ε), we obtain:

2R0$R1 + ikW1R
2
0 = 0. (9.19)

Regarding Eq.(9.15), the expression of p is given by Eq. (8.9), in which the expression

(∂R/∂z)2 together with the perturbation R0+εR1 yield a expression of order O(ε), and it is

neglected in this approximation. By introducing the above perturbations on the momentum

w-equation, we get

ρ

(
ε
∂W1

∂t
+ ε2W1

∂W1

∂z

)
= −σ ∂

∂z

(
1

R0 + εR1

− ∂2(R0 + εR1)

∂z2

)
, (9.20)

when the second term of O(ε2) on the left side is neglected and the second term on the

right side contains a constant R0 is also canceled,

ρε
∂W1

∂t
= −σ ∂

∂z

(
1

R0 + εR1

− ε∂
2R1

∂z2

)
, (9.21)

developing with binomial expansion the �rst term on the right side provides

ρε
∂W1

∂t
= −σ ∂

∂z

(
1

R0

(
1− εR1

R0

)
− ε∂

2R1

∂z2

)
, (9.22)

and eliminating the inner parentheses on the right-hand side and the corresponding time

derivative of the ansatz on the left-hand side provides a factor of $,

ρε$W1 = −σ ∂
∂z

(
1

R0

− εR1

R2
0

− ε∂
2R1

∂z2

)
, (9.23)
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distributing the z-derivative on the parentheses, replacing an spatial derivative that provides

a factor of ik, placing the −εik factor outside the parentheses, and then we simplify the ε

term, taking the denominator of R2
0 outside of the parentheses, provides:

ρ$W1 =
σik

R2
0

(
1− (kR0)

2
)
R1. (9.24)

From Eqs. (9.18) and (9.24), substituting W1 and maintaining the growth-rate kR0 in the

expression, we get:

$2 =
σ(kR0)

2

2ρR3
0

(1− (kR0)
2), (9.25)

which in dimensionless form is given by:

$2 =
k
2

2
(1− k2). (9.26)

The Eq. (9.26) is know as the dispersion relation equation for the stability of a liquid jet

considering the long wave-lengths approximation. If we take the limit kR0 → 0 and replace

Figure 9.2: Figure shows the growth rate w = $
√
ρR3

0/σ as a function of the wave number

k = kR0 for an inviscid cylinder liquid jet in the long wavelength approximation (solid-line)

compared with the classical dispersion relation of the Plateau-Rayleigh instability (dashed-

line).

the approximate value of Besssel functions I0 and I1 into the Eq. (8.44), allows us to �nd

the Eq. (9.26) for the long wave-lengths limit.
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9.3 The viscous case

We consider the following governing equations in cylindrical coordinates for a viscous

incompressible �uid: The equation in the radial direction is

ρ

(
∂u

∂t
+ u

∂u

∂r
+ ŵ

∂u

∂z

)
= −∂p

∂r
+ η

(
∂

∂r

(
1

r

∂(ru)

∂r

)
+
∂2u

∂z2

)
, (9.27)

and the equation in the axial direction is given by

ρ

(
∂ŵ

∂t
+ u

∂ŵ

∂r
+ ŵ

∂ŵ

∂z

)
= −∂p

∂z
+ η

(
1

r

∂

∂r

(
r
∂ŵ

∂r

)
+
∂2ŵ

∂z2

)
, (9.28)

and we maintain the continuity equation that is given by Eq. (9.4).

1

r

∂(ru)

∂r
+
∂ŵ

∂z
= 0. (9.29)

The velocity �eld is given by u = (u, 0, ŵ), the pressure p and the viscosity η and due

that we do not have movement in the θ-component we do not consider the equation in

θ-direction.

In Fig. (9.1), radius of the initial cylinder is R0 and the radius function depends only on

z and t variables. The variable λ is wave-length, and in this case it is being analyzed the

case of long wave limit, i.e. λ� R0. Under this modi�cations also is assumed that r → εr,

u → εu and ∂/∂r → ε−1∂/∂r, also u � w. Which these modi�cation we have to re-scale

the above equations.

We start by re-scaling Eq. (9.28):

ρ

(
∂ŵ

∂t
+ εu

1

ε

∂ŵ

∂r
+ ŵ

∂ŵ

∂z

)
= −∂p

∂z
+ η

(
ε−2

r

∂

∂r

(
r
∂ŵ

∂r

)
+
∂2ŵ

∂z2

)
. (9.30)

This indicates that Eq. (9.30) must to be balanced in order to maintain the same scale. In

order to do this we introduce,

ŵ = w(z, t) + ε2w2(r, z, t), (9.31)

Replacing this expression into Eq. (9.30), note that the factor ε−2 on the right-hand side is

simpli�ed by the new expansion of w, we get;

ρ

(
∂w

∂t
+ w

∂w

∂z

)
= −∂p

∂z
+ η

(
1

r

∂

∂r

(
r
∂w2

∂r

)
+
∂2w

∂z2

)
. (9.32)

But introducing the scale in Eq. (9.27), yields

ρ

(
ε
∂u

∂t
+ εu

∂u

∂r
+ εw

∂u

∂z

)
= −1

ε

∂p

∂r
+ η

(
1

ε

∂

∂r

(
1

r

∂

∂r
(ru)

)
+ ε

∂2u

∂z2

)
. (9.33)
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In order to scale this expression, ∂p/∂r = 0 it seems to be same order of viscous term,

∂2u/∂z2 term is order epsilon but other term it is order O(ε−1). Due to leading order of

u ≈ −r
2

∂w

∂z
, it has to be assumed that ∂p/∂r = 0 or p is independent of r, then p = p(z, t).

Regarding Eq. (9.28) indicates no dependency of variable r, then we can conclude that

w = w(z, t), and through the project we are going to assume w not depending of r. Also

there is no change with the continuity equation (9.29). Integrating Eq. (9.29) for r ∈ [0, R],

and calculating as the previous section, we get Eq. (9.14).

Now, we are going to �nd the boundary conditions, normal and tangent stress condition

at the free surface, given by the normal boundary condition

n̂t ·Σ · n̂ = −σκ, (9.34)

and the tangencial boundary condition,

n̂t ·Σ · t̂ = 0, (9.35)

The stress tensor fo axysymmetric incompressible jet expressed in cylindrical coordinates

is given by;

Σ =


2
∂u

∂r
0

∂w

∂r
+
∂u

∂z
0 2

u

r
0

∂w

∂r
+
∂u

∂z
0 2

∂w

∂z

 , (9.36)

with Σ = −pI + 2ηD, where D being the Strain-rate tensor given by

D =
∇u+∇ut

2
.

The Normal stress at the free surface is given by;

n̂ =

(
1, 0,−ε∂R

∂z

)
/

√
1 + ε2

(
∂R

∂z

)2

,

and tangent stress at the free surface is given by

t̂ =

(
ε
∂R

∂z
, 0, 1

)
/

√
1 + ε2

(
∂R

∂z

)2

.

Finding the normal stress expression using the Eq. (9.34),

p− η

(
2
∂u

∂r
− 2ε

∂R

∂z

(
∂w2

∂r
+
∂u

∂z

)
+ 2ε2

(
∂R

∂z

)2
∂w

∂z

)
= σ

(
1

R
− ∂2R

∂z2

)
. (9.37)

From normal stress condition Eq. (9.37), eliminating term of orderO(1), and from continuity

Equation Eq. (9.29) of a value of u = −r∂w
2∂z

, as in Eq. (9.11), then the pressure is given

by;

p = σ

(
1

R
− ∂2R

∂z2

)
− η∂w

∂z
. (9.38)
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Now, using the Eq. (9.35) to �nd a expression for the tangential stress;(
1 + ε2

(
∂R

∂z

)2
)
ε

(
∂w2

∂r
+
∂u

∂z

)
+ 2ε

∂R

∂z

(
∂u

∂r
− ∂w

∂z

)
= 0. (9.39)

Keeping terms of order O(ε),

∂w2

∂r
= −2

∂R

∂z

(
∂u

∂r
− ∂w

∂z

)
− ∂u

∂z
, (9.40)

and using the expression u = −r
2

∂w

∂z
,

∂w2

∂r
= 3

∂R

∂z

∂w

∂z
+
R

2

∂2w

∂z2
. (9.41)

We consider the momentum reduced Eq.(9.28) ;

ρ

(
∂w

∂t
+ w

∂w

∂z

)
= −∂p

∂z
+ η

(
1

r

∂

∂r

(
r
∂w2

∂r

)
+
∂2w

∂z2

)
, (9.42)

substituting the Eq. (9.38) in this equation

ρ

(
∂w

∂t
+ w

∂w

∂z

)
+ σ

∂

∂z

(
1

R
− ∂2R

∂z2

)
− η∂

2w

∂z2
= η

(
1

r

∂

∂r

(
r
∂w2

∂r

)
+
∂2w

∂z2

)
, (9.43)

multiplying by r this equation, each term is a�ected but it is simpli�ed with the denominator

of the �rst term on the right-hand side,

r

[
ρ

(
∂w

∂t
+ w

∂w

∂z

)
+ σ

∂

∂z

(
1

R
− ∂2R

∂z2

)
− η∂

2w

∂z2

]
= η

(
∂

∂r

(
r
∂w2

∂r

)
+ r

∂2w

∂z2

)
, (9.44)

integrating this expression for 0 ≤ r ≤ R, we note that both w and R do not depend on

r, adding similar terms ∂2w/∂z2 that appear in both sides replacing the term ∂w2/∂z by

using Eq. (9.41), and eliminating the inner parentheses on the right-hand side, provides:

R2

2

[
ρ

(
∂w

∂t
+ w

∂w

∂z

)
+ σ

∂

∂z

(
1

R
− ∂2R

∂z2

)]
= η

(
3R

∂R

∂z

∂w

∂z
+
R2

2

∂2w

∂z2
+R2∂

2w

∂z2

)
,

(9.45)

adding similar terms involving ∂2w2/∂z
2, multiplying by 2/R2 and factorizing 3, then con-

densing the notation of the parentheses on the left-side,

ρ

(
∂w

∂t
+ w

∂w

∂z

)
+ σ

∂

∂z

(
1

R
− ∂2R

∂z2

)
=

3η

R2

∂

∂z

(
R2∂w

∂z

)
, (9.46)

�nally, we get the momentum equation for the jet dynamics by placing the term of pressure

on the left side,

ρ

(
∂w

∂t
+ w

∂w

∂z

)
= −σ ∂

∂z

(
1

R
− ∂2R

∂z2

)
+

3η

R2

∂

∂z

(
R2∂w

∂z

)
, (9.47)
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The stability analysis

Let consider the following system of partial di�erential equations consisting of Eqs. (9.14)

and (9.47). In order to �nd the dispersion equation we consider perturbation as follows

R ≈ R0 + εR1, w ≈ εW1, (9.48)

where R0 is the initial radius of the cylinder and R1 andW1 are the corresponding disturbs,

which we assume to take the form

R1,W1 ∝ exp($t+ ikz), (9.49)

where i =
√
−1.

We start our analysis by substituting the above perturbations into the Eq. (9.14)

∂[(R0 + εR1)
2]

∂t
+
∂[εW1(R0 + εR1)

2]

∂z
= 0, (9.50)

developing the time and spatial partial derivatives, we keep terms O(ε), which provides:

2R0R1$ + ikW1R
2
0 = 0, (9.51)

this expression is the relation between disturbs R1 and W1, in it also are involved the initial

radius and k and w,

W1 = − 2$

ikR0

R1. (9.52)

Considering the pressure p as in Eq. (8.9), we solve the Eq. (9.47), by analyzing by parts.

First, we introduce the perturbations, as follows

ρ

(
ε
∂W1

∂t
+ ε2W1

∂W1

∂z

)
= −σ ∂

∂z

(
εR1

R2
0

− ε∂
2R1

∂z2

)
+

3η

R2
0

∂

∂z

(
(R0 + εR1)

2ε
∂W1

∂z

)
.

(9.53)

some terms are neglected as the second term of the left-hand side which is order O(ε2),

while the second term on the right-hand side contains R2 in the denominator and it is used

the binomial expansion to maintain R2
0. here we keep the terms order O(ε) for the complete

expression

ρε
∂W1

∂t
= −σ

(
− ε

R2
0

∂R1

∂z
− ε∂

3R1

∂z3

)
+ 3εη

∂2W1

∂z2
, (9.54)

where the time derivative contributes with a factor ε multiplying the amplitude W1 while

an spatial derivative contributes with ik multiplying the amplitude, applying this we get

ρε$W1 = −σ
(
−ikεR1

R2
0

− ε(ik)3R1

)
+ 3εη(ik)2W1, (9.55)
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leaving the εik factor outside the parentheses, simplifying the ε, and substituting the am-

plitude W1 from Eq. (9.52), allows us to obtain:

−2ρR1

ikR0

$2 =
σik

R2
0

(
1− (kR0)

2
)
R1 − 3ηk2

−2R1

ikR0

$, (9.56)

after some algebraic manipulations,

$2 =
σ(kR0)

2

2ρR3
0

(
1− (kR0)

2
)
− 3

η

ρ
k2$. (9.57)

From Eqs. (9.52) and (9.24), substituting W1, we get;

$2 =
σ(kR0)

2

2ρR3
0

(1− (kR0)
2)− 3η(kR0)

2

ρR2
0

$. (9.58)

which in dimensionless form is given by:

$2 =
k
2

2
(1− k2)− 3

Re
k
2
$, (9.59)

where the Reynolds number Re is given by:

Re =

√
ρσR0

η
= Oh−1, (9.60)

the last being the inverse of the Ohnesorge number Oh, that is the relation between the

viscous and the capillary forces. The above Eq. (9.59) is know as the dispersion relation

equation for the stability of a viscous liquid jet in the long wave-length approximation. If

we neglect the viscous term in Eq. (9.59), we recover the inviscid dispersion relation given

by Eq. (9.26).

In Fig. (9.3), We observe that the growth rates are reduced when the Reynolds number

decreases, this is because the viscosity mechanism maintains the streamlines and prevents

them from deforming. We don't observe cuto� of the wave numbers set values.

9.3.1 Numerical approach to the nonlinear regimes

We consider the slender jet approximation of the Plateau-Rayleigh instability problem.

These equations consider the evolution equation for velocity �eld w = w(z, t)

∂w

∂t
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ 3

η

ρ

1

R2

∂

∂z

(
R2∂w

∂z

)
, (9.61)

and the equation for the evolution of the surface R(z, t),

∂

∂t

(
R2
)

+
∂

∂z

(
R2w

)
= 0, (9.62)
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Figure 9.3: Figure shows the growth rate $ = $
√
ρR3

0/σ as a function of the wave-number

k = kR0 for several values of Re = 0.1, 1, 10, 100, for a viscous cylinder liquid jet assuming

the long wavelength limit.

where the parameters involved in these equations are the density ρ, the viscosity η and the

surface tension coe�cient σ for the pressure equation (8.9).

p = σ

R−1(1 +

(
∂R

∂z

)2
)− 1

2

− ∂2R

∂z2

(
1 +

(
∂R

∂z

)2
)− 3

2

 . (9.63)

The asymptotic approximation strictly applied generates a pressure term as in Eq. (9.47),

but in order to bring more information about the term that plays an important role in this

non-linear behavior, we keep the full pressure term (8.9), as previous works did [65, 66, 69].

Our problem presents a considerable amount of physical parameters, so we are going to

consider characteristic scales to dimensionless the above set of equations. We consider the

capillary velocity vc to scale the velocity w, and for the radius the initial jet radio R0 and

for the time scale the capillary tc, as follow

w ∼ vc =
√
σ/ρR0, z ∼ R0, t ∼ tc =

R0

vc
=
√
ρR3

0/σ (9.64)

which in dimensionless form takes the form t∗ = t/tc. With these dimensionless parameters

the system of equations that govern the jet dynamics are given by

∂w

∂t
+ w

∂w

∂z
= −∂p

∂z
+

3

Re

1

R2

∂

∂z

(
R2∂w

∂z

)
, (9.65)
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The dimensionless evolution equation (9.62) for the surface R(z, t) remains unchanged and

the scaled pressure equation it is expressed without the coe�cient of surface tension in

Eq.(9.63). Because we are concentrated in study the pinch-o� we solve numerically the

system (9.63)-(9.65) above and we consider a steady cylinder and a perturbation of the free

surface as the initial condition

R(z, 0) = R0(1 + δ cos(kz)), (9.66)

where δ � 1 and the wavenumber k is given by

k =
2π

λ
, (9.67)

in which λ is the wavelength and our computational domain, which partitioned in n mesh

points. We assume periodic boundary conditions,

R0 = Rn−1, R1 = Rn, R2 = Rn+1. (9.68)

We use with δ = 0.05 corresponding to a 5% of the initial radius as mentioned in [69]. We

discretize the system (9.62)-(9.65) and solve resorting the method of lines (MOL), which

consist in transform the partial di�erential equations in a system of ordinary di�erential

equations as proposed by [69], where the spatial derivatives are written as �nite di�erences.

We start with the kinematic condition (9.62), which can be written as

2R
∂R

∂t
= − ∂

∂z

(
R2w

)
, (9.69)

following [69], the discretization for the n points in the mesh (1 ≤ i ≤ n) are given by

dRi

dt
= −

R2
i+1/2wi −R2

i−1/2wi−1

2Ri∆z
, (9.70)

where the half-points of R are given by

Ri+ 1
2

=
Ri +Ri+1

2
, Ri− 1

2
=
Ri +Ri−1

2
.

By replacing these expressions in (9.70), we get

∂Ri

∂t
= −(Ri +Ri+1)

2wi − (Ri +Ri−1)
2wi−1

8Ri∆z
, (9.71)

yielding n di�erential equations for each mesh point i for (1 ≤ i ≤ n). In what follows, we

present the ODE for each node. We start with node i = 1,

∂R1

∂t
= −(R1 +R2)

2w1 − (R1 +R0)
2w0

8R1∆z
, (9.72)

where the values of R0 and w0 are ghost values out of the domain mesh points, for this we

consider periodical boundary conditions by replacing the values of Rn−1 and wn−1 respec-

tively. Then we consider the intermediate points for i = 2, . . . , n − 1 using the Eq. (9.71).
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We note that in equation for i = n appears the term Rn+1, out of the mesh domain, but

we changes its values by the corresponding periodic value R2, getting the equation exactly

equal to ∂R1/∂t, that is,
∂Rn

dt
=
∂R1

dt
. (9.73)

Now, we discretize the momentum Eq. (9.61), for this equation we �rst discretize the ad-

vective term,

Advectioni = −(w+
i d
−
i + w−i d

+
i ), (9.74)

where

w+
i = max(wi, 0), w−i = min(wi, 0),

with

d+i =
wi+1 − wi

∆z
, d+i =

wi − wi−1
∆z

.

We note that for i = 1 we need to consider the boundary conditions due to the presence of

the ghost value w0.

The equation for the pressure(9.63) is discretized by

Pressurei =
Ci+1 − Ci

∆z
. (9.75)

with centered �nite di�erence for Ci+1

Ci =
1

RiA
1/2
i

− Ri+1 − 2Ri +Ri−1

∆z2A
3/2
i

, (9.76)

with Ai also is given by the centered approximation

Ai =

(
1 +

(
Ri+1 −Ri−1

2∆z

)2
)
, (9.77)

valid for i = 1, . . . , n and again as the previous remarks, the boundary points yield the R0

and Rn+1 terms which must be changed with the boundary conditions (9.68).

The contribution of the viscous term is given by

Viscousi =
1

R2
i+1/2

R2
i+1(wi+1 − wi)−R2

i (wi − wi−1)
∆z2

. (9.78)

when Ri+1/2 is introduced as above

Viscousi =
4

(Ri+1 +Ri)2
R2
i+1(wi+1 − wi)−R2

i (wi − wi−1)
∆z2

. (9.79)

then, substituting the advection, pressure and viscous expressions in the discretized mo-

memtum equation (9.61), it takes the following form

dwi
dt

= −(w+
i d
−
i + w−i d

+
i )− Ci+1 − Ci

∆z
+

12

Re

R2
i+1(wi+1 − wi)−R2

i (wi − wi−1)
(Ri+1 +Ri)2∆z2

, (9.80)
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valid for i = 2, . . . , n− 1. Then for i = 1 we have

dw1

dt
= −(w+

1 d
−
1 + w−1 d

+
1 )− C2 − C1

∆z
+

12

Re

R2
2(w2 − w1)−R2

1(w1 − w0)

(R2 +R1)2∆z2
,

where the term w0 must be changed by the periodic boundary condition wn−1. Finally, for

i = n have to maintain valid the boundary conditions which led to establish that

∂wn
dt

=
∂w1

dt
. (9.81)

Once the system of di�erential equation is establish we use the MatLab function Ode23t

to solve the system formed by (8.9) and (9.65), subject to initial condition (9.66) and

boundary conditions (9.68). For our test cases we use data published by [70] and [69], the

�rst one used a Galerkin �nite element method to study the instability of an axisymmetric,

incompressible Newtonian liquid cylinder and the second one presented a numerical model

to predict the breakup of viscous micro-jets of Newtonian �uid using the method of lines

(MOL) to achieve its objective, this is the direction we took. In the Table (9.1), we compare

the scaled breakup time with the data from [70] and [69], taking in consideration that our

code used 500 mesh points and took less than a minute to run.

Table 9.1: Comparison of the scaled breakup time of the numerical model with [69, 70] and

our code.

Re k Ashgriz et al. Furlani et al. Our code

200 0.2 25.2 25 24.87

0.45 12.9 12.6 12.63

0.7 10 9.7 9.71

0.9 14.5 11 11

10 0.2 26.7 27.9 27.48

0.45 14.3 14.3 14.35

0.7 11.6 11.4 11.47

0.9 14.8 14.4 14.39

0.1 0.2 230.6 227 234.86

0.45 243.6 238 245.79

0.7 311.9 305 312.58

0.9 628.2 634 627.51

In Fig.(9.4), we observed that for smaller Re, the growth rates are decreasing, this means

that, it will take more time to evolve the growth, that is, breakup times become larger. For

large Re, Fig. (9.4) shows that as the Re is increased the break-up time converges to a

critical value and this corresponds to the inviscid case break-up time.
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Figure 9.4: Figure shows the time break-up against Reynolds numbers Re =

0.1, 0.2, 0.3, ...300, 400, 500 in loglog scale with N = 500 and k = 0.7.

We compare our results with [69] by extracting data using web resources, see Fig. (9.5).

We used Re = 200, 0.1 and wavenumbers k = 0.45, 0.7. From that, we observe a very

good agreement of the nonlinear shapes near break-up time obtained in our code with

those presented in [69]. Note that, the break-up time can not be measured very accurately

because of the MatLab subroutine used in this work. This routine, Ode23t, which uses

trapezoidal method with adaptive time step, does not allow a the user the time step and

we have to rely on its built in criteria to reach as close as possible to the singularity.

Furthermore, the data from [69] was extracted artisanally and there are also �uctuations

on the values. However, despite all that, the agreement is excellent.

In Fig. (9.6), we analyze the sensitivity of the pro�les close to the singularity for Re =

200 for di�erent mesh sizes N = 135, 270 and 540. As mentioned before the agreement is

very good and gets better as we increase the number of points in the mesh. The error-bars

show a range of 9% of the initial radius of the undisturbed pro�le. It is only near high

curvature regions that the di�erences become noticeable. For smaller Re viscosity prevents

the formation of large curvature regions and excellent agreement with the results of [69] is

obtained even for a modest number of points, see Fig. (9.7).

We have reproduced the results cited in [69] for the viscous case, for this we have taken

wave numbers 0.2, 0.45, 0.7 and 0.9 together with Reynolds numbers Re = 0.1, 10, 200. As

a computational domain we use only a wavelength λ and periodic boundary conditions.

From the Fig.(9.3) for the viscous case, we observe that when the Reynolds number is

increased, the stability curve becomes more �attened, this indicates that the viscosity delays

instability and the breakup time is slowed down. Fixing the wavelengths, we observe that as
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Figure 9.5: Figure shows the comparison between the shape of the free-surface at pinch-o�

(clock-wise from top left) of [69] (circles) and our result (solid-line) for: Re = 200, k = 0.7;

Re = 200, k = 0.45; Re = 0.1, k = 0.45; Re = 0.1, k = 0.7.
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Figure 9.6: Figure (left) shows the data sensibility taken from [69] with an error 0.09 of

the radius. The pinch-o� pro�les was calculated for N = 135, N = 270 and N = 540; for

Re = 200 and k = 0.7. Figure (right) shows the data sensibility close the pinch-o� near

the time breakup.

Figure 9.7: Figure shows the data sensibility taken from [69] with an error 0.06 of the radius

with the pinch-o� pro�les for N = 135, N = 270 and N = 540; for Re = 0.1 and k = 0.70.
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the Reynolds number grows the neck bed becomes smaller and thus delaying the break-up,

this can be observed in Table (9.1).

Figure 9.8: Figure shows the evolution of the surface until the break-up, the Reynolds

number Re = 10 and the wavenumber k = 0.7 for t = 0, 4, 8, 10, 11.4. Last �gure shows the

state of the cylinder evolution shortly before the break-up.

In Fig. (9.8), we present a evolution of the surface for Re = 10 and k = 0.7. Initially,

we start with top left �gure with time t = 0, and continue with the top right �gure, then
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for t = 8 we have the the middle left �gure and then right �gure for t = 0, �nally for

t = 11.4 the surface was deformed until a moment before the breakup. The bottom right

graph shows the last �gure re�ected through the z-axis, obtaining the con�guration of the

cylinder deformed until a moment before break-up.

Figure 9.9: The top �gures show the break-up time dependence on the wave number of the

disturbance for Re = 200 (top left) and Re = 0.1 (top right). Both results were obtained

for N = 500. Bottom left graph shows the break-up time of mode k = 0.7 as a function of

Re for N = 500. Finally, bottom right graph shows the mesh dependence of the break-up

time for k = 0.7 and Re = 10.

We observed in Fig. (9.3), that as Re decreases the maximum value of the growth rate

takes smaller values and with it k also decreases. In Fig. (9.9), left �gures consider Re = 200

and Re = 10, and k small, that is long waves,it takes more time to break-up. For k near 1,

those modes correspond to very small growth rates and then they take longer to evolve. The

�gure on the top right, shows a case in which the viscosity term is considerable, Re = 0.1.

Note the much larger break-up times obtained in these cases. Now, shorter waves can take

almost 3 times as long to break-up as the longer waves. Bottom right graph shows the

mesh dependence of the break-up time for �xed value of k = 0.7 and Re = 200, we observe
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that as the number of mesh points is increased the break-up time converges. Our standard

mesh of 500 points overestimated the break-up time by less then 1%.
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CHAPTER 10

THE PLATEAU-RAYLEIGH INSTABILITY

FOR SUPER-PARAMAGNETIC FLUIDS

10.1 The inviscid Super-paramagnetic Case

In this section we are going to analyze the case of a inviscid incompressible magnetic

�uid. The governing equations are given by the momentum equations in the radial direction

ρ

(
∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z

)
= −∂p

∂r
, (10.1)

and the momentum equation in the axial direction

ρ

(
∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

)
= −∂p

∂z
, (10.2)

and the continuity equation in cylindrical coordinates

1

r

∂(ru)

∂r
+
∂w

∂z
= 0. (10.3)

For the case of a ferro�uid, we must satisfy the magneto-static limit of the Maxwell's

equations, for this we recall expressions Eq. (3.3) and (3.4): where the constitutive equation

for the magnetic induction is given by Eq. (3.43). Eq. (3.4) indicates that there exists a

function ψ de�ning H.

In this case, we consider an uniform magnetic applied �eld H0 in the z-direction, that

is:

H = H0êz +∇ψ. (10.4)
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With this applied magnetic �eld, magnetism is presented in the treatment of the boundary

condition. We remark that the magnetic applied �eld satis�es Maxwell's Eqs. (3.4)-(3.3).

Since we are assuming the super-paramagnetic hypotheses, in which the magnetization is

aligned with the applied magnetic �eld H, that is:

M = χ0H, (10.5)

the magnetic induction takes the form

B = µH, (10.6)

then Eq. (3.3) implies that ψ must satisfy Laplace's equation in Cartesian coordinates,

∇2ψ = 0. In cylindrical coordinates, which is our environment, Laplace's equation without

the θ-component is
1

r

∂

∂r

(
r
∂ψ

∂r

)
+
∂2ψ

∂z2
= 0. (10.7)

In order to perform the long-wave approximation as the previous cases, we replace r by εr

and evaluating that limit in Laplace's equation (10.7), gives us:

ε−2

r

∂

∂r

(
r
∂ψ

∂r

)
+
∂2ψ

∂z2
= 0. (10.8)

The above equation must be balanced due the presence of the ε−2 parameter, in order to

do that we assume a expansion for ψ as follows:

ψ = Ψ(z, t) + ε2ψ2(r, z, t). (10.9)

In this expression Ψ is a function only of z and t while ψ2 depends also on r. With this

modi�cation the Eq. (10.8) is balanced and takes the following form:

1

r

∂

∂r

(
r
∂ψ2

∂r

)
+
∂2Ψ

∂z2
= 0. (10.10)

Now, it is possible to �nd an expression for ψ2 in terms of Ψ in Eq. (10.10) by leaving it on

the left-hand side: and multiplying by r and integrating with relation to r, which provides:

r
∂ψ2

∂r
= −r

2

2

∂2Ψ

∂z2
+ c1, (10.11)

where c1 is a constant and dividing by r, again integrating with relation to r, we obtain:

ψ2 = −r
2

4

∂2Ψ

∂z2
+ c1 ln(r) + c2, (10.12)

where c1 and c2 are constants (both independents of r) to be found. In order to maintain

regularity inside the cylinder, we note that when r → 0, we have ln(r) → ∞, indicating

that we must cancel the logarithm coe�cient, that is, c1 = 0, yielding:

ψ2 = −r
2

4

∂2Ψ

∂z2
+ c2, (10.13)
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with this modi�cation, Eq. (10.9) for ψ provides:

ψ = Ψ(z, t)− ε2 r
2

4

∂2Ψ

∂z2
+ ε2c2(z, t). (10.14)

Now, we impose the boundary condition that must be satis�ed in the interface. First, the

normal boundary condition (3.10) is expressed by:

µn̂ · ∇ψ1 = µ0n̂ · ∇ψ2, (10.15)

and the tangential boundary condition (3.16) in written as:

t̂ · ∇ψ1 = t̂ · ∇ψ2, (10.16)

Sub-index 1 and 2 indicate the cylinder inside and outside region respectively in which n̂

is the unitary normal vector to the free surface and t̂ is the unitary tangent vector to the

free surface. Taking F (r, z, t) = r −R(z, t) = 0, the normal vector is given by

n̂ =
∇F
|∇F |

. (10.17)

where the nabla operator ∇ must be scaled taking into account the long wavelength limit:

∇ =

(
ε−1

∂

∂r
, 0,

∂

∂z

)
. (10.18)

Applying the nabla operator to the free surface F , provides the unitary normal vector:

n̂ =

(
1, 0,−ε∂R

∂z

)
/

(
1 + ε2

(
∂R

∂z

)2
) 1

2

, (10.19)

Now, we compute the tangent unitary vector which is orthogonal to the normal vector,

t̂ =

(
ε
∂R

∂z
, 0, 1

)
/

(
1 + ε2

(
∂R

∂z

)2
) 1

2

. (10.20)

Thus the Eq. (10.15) is given by the expression

µ

(
1, 0,−ε∂R

∂z

)
·
(
ε−1

∂ψ

∂r
, 0,

∂ψ

∂z

)
= µ0

(
1, 0,−ε∂R

∂z

)
·
(
∂ψ

∂ξ
, 0,

∂ψ

∂z

)
, (10.21)

in this expression the denominator of the normal vector was simpli�ed because it is the

same in both sides, and after making the dot product

µ

(
ε−1

∂ψ

∂r
− ε∂R

∂z

∂ψ

∂z

)
= µ0

(
∂ψ

∂ξ
− ε∂R

∂z

∂ψ

∂z

)
. (10.22)

The tangential boundary Eq. (10.16) is given by(
ε
∂R

∂z
, 0, 1

)
·
(
ε−1

∂ψ

∂r
, 0,

∂ψ

∂z

)
=

(
ε
∂R

∂z
, 0, 1

)
·
(
∂ψ

∂ξ
, 0,

∂ψ

∂z

)
, (10.23)
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in this expression the denominator of the tangential vector is simpli�ed in both sides and

developing the dot product we get the expression for the tangential boundary condition

∂R

∂z

∂ψ

∂r
+
∂ψ

∂z
= ε

∂R

∂z

∂ψ

∂ξ
+
∂ψ

∂z
, (10.24)

Now, we are going to �gure out the expression for the pressure across the boundary. Fol-

lowing the Rosenzweig's reference [33], the pressure is given by:

p+ pm + pn = p0 + pc, (10.25)

where the pm is given by:

pm = µ0

� H

0

MdH, (10.26)

and from B = µ0(H +M) with B = µH, allows us to obtain

pm = µ0

� H

0

MdH =

� H

0

(µ− µ0)HdH =
1

2
(µ− µ0)H

2, (10.27)

and pn = 1
2
µ0M

2
n and p0 is the environmental pressure and pc = σH the mean curvature of

the boundary. With these expressions we have:

p+
1

2
(µ− µ0)

� H

0

MdH = σH = σ

(
1

R
− ∂2R

∂z2

)
. (10.28)

10.1.1 The case of a magnetically impermeable outer region

In order to �nd a solution for our problem we are going to assume the vacuum per-

meability µ0 = 0, which implies that the right-hand side of Eq. (10.22) is neglected, that

is:

µ

(
ε−1

∂ψ

∂r
− ε∂R

∂z

∂ψ

∂z

)
= 0, at r = R, (10.29)

then substituting ψ by its expression in Eq. (10.14) and multiplying by 2R, we get,

∂2Ψ

∂z2
R2 + 2R

∂R

∂z

(
H0 +

∂Ψ

∂z

)
= 0, (10.30)

which allows us to obtain:
∂

∂z

(
R2

(
H0 +

∂Ψ

∂z

))
= 0, (10.31)

and solving one derivative on the last di�erential equation, the expression between paren-

theses is equal to a constant C, which is independent of z and evaluating in t = 0, C takes

the initial values of C = R2
0H0, then we can express the applied �eld in the following form:

H0 +
∂Ψ

∂z
= R2

0H0R
−2, (10.32)
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which is inversely proportional to the square of the free surface. Substituting the last

expression Eq.(10.32) in Eq. (10.28) yields:

p = σ

(
1

R
− ∂2R

∂z2

)
− 1

2
µR4

0H
2
0R
−4. (10.33)

With the expression for the pressure Eq. (10.33), we replace this equation into the Eq. (10.2),

which is treated as the previous Section.

ρ

(
∂w

∂t
+ w

∂w

∂z

)
= − ∂

∂z

(
σ

(
1

R
− ∂2R

∂z2

)
− 1

2
µR4

0H
2
0R
−4
)
, (10.34)

introducing the partial derivative with relation to z in the parentheses and developing the

derivative of R−4, we have

ρ

(
∂w

∂t
+ w

∂w

∂z

)
= −σ ∂

∂z

(
1

R
− ∂2R

∂z2

)
− 2µR4

0H
2
0

R5

∂R

∂z
. (10.35)

In order to present this expression in dimensionless form, we consider the scales used in

9.64, where vc is the capillary velocity, R0 is the initial jet radius and tc is the time scale,

w ∼ vc =
√
σ/ρR0, z ∼ R0, t ∼ tc =

R0

vc
=
√
ρR3

0/σ,

calling the dimensionless magnetic pressure parameter

Cpm =
µR0H

2
0

σ
, (10.36)

this parameter can be understood as the relation between the magnetic pressure (resistance

magnetic force) and the driving forces. By substituting the above scale we arrive to the

dimensionless version of Eq. (10.35)

∂w

∂t
+ w

∂w

∂z
= − ∂

∂z

(
1

R
− ∂2R

∂z2

)
− 2Cpm

R5

∂R

∂z
. (10.37)

The stability analysis

In this subsection, we are going to perform the stability analysis for the inviscid super-

paramagnetic case. For this, we consider the following perturbations

R ≈ R0 + εR1, w ≈ εW1, (10.38)

where the disturbed variables are given by

R1,W1 ∝ exp($t+ ikz) (10.39)

Now, we introduce the ansatz above into Eq. (10.34), provides

ρε$W1 = − ∂

∂z

(
σ

(
1

R0

(
1− εR1

R0

)
− ε∂

2R1

∂z2

)
− 1

2
µ
R4

0H
2
0

R4
0

(
1− 4ε

R1

R0

))
. (10.40)

113



Introducing the spatial z-derivative into the parenthesis on the right hand side of the last

equation and keeping the terms of order O(ε), we get:

ρε$W1 = −
(
σ

(
− ε

R2
0

∂R1

∂z
− ε∂

3R1

∂z3

)
+ 2εµ

H2
0

R0

∂R1

∂z

)
. (10.41)

after simplifying by a term ε, and manipulating

ρ$W1 =
σik

R2
0

(
1− (kR0)

2
)
R1 − 2µ(ik)

H2
0

R0

R1. (10.42)

The relation between W1 and R1 is given by Eq. (9.52) and solution for W1 = −2
R1

ikR0

$:

−2
ρR1

ikR0

$2 =
σik

R2
0

(
1− (kR0)

2
)
R1 − 2µ(ik)

H2
0

R0

R1. (10.43)

Simplifying R1 and isolating $, yields

$2 =
σ(kR0)

2

2ρR3
0

(
1− (kR0)

2
)
− µ(kR0)

2

ρ

H2
0

R2
0

. (10.44)

Obtaining the Dispersion relation for the inviscid superparamagnetic case with magnetic

applied �eld of magnitude H0 and magnetic permeability µ.

$2 =
σ(kR0)

2

2ρR3
0

(1− (kR0)
2)− µ(kR0)

2H2
0

ρR2
0

. (10.45)

which in dimensionless form is:

$2 =
k
2

2
(1− k2)− Cpm k

2
. (10.46)

If we consider non-magnetic in�uence, Cpm = 0 , we recover the dispersion relation for a

inviscid �uid for long wave-lengths previously found in Eq. (9.26). A graph of the dimension-

less quantity $ = $/
√
ρR3

0/σ as a function of k = kR0 in terms of Cpm = 0.01, 0.1, 5/4π,

is shown in Fig. (10.1), in it we can observe that the growth $ decreases its value when

Cpm increases, and also the range of values for the wave number k moves to zero. It can be

inferred that the magnetization stabilize the system and that a Cpm su�ciently strong can

stabilize completely the growth rates.

In what follows, we cite the result mentioned in [33], where the author has commented a

result from Tartakov (1975), in which he has studied the stability of �uid cylinders. His point

of departure was the same equations of momentum and magnetic �uid as us, with the term

of viscosity neglected and assuming that the gravitational force is absent. With the same

technique used in Section 8.2.1, for an inviscid �uid for wave-lengths without restriction,

Bessel's equation must be solved for an uniform applied magnetic �eld in the axial direction

of the cylinder. Noting that the magnetostatic limit of the Maxwell's equations indicates
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Figure 10.1: Figure shows the dispersion Eq. (10.46) of the dimensionless quantity $ =

$
√
ρR3

0/σ as a function of k = kR0 for the magnetic parameters Cpm = 0.01, 0.1, 5/4π.

that Laplace's equation must be solved, both inside and outside of the cylinder, and the

matching condition is concentrated in the treatment of the magnetic boundary normal

condition, he concluded that the magnetic e�ect is concentrated in the pressure term,

getting the following dispersion relation

$2 =
σkI1(kR0)

ρR2
0I0(KR0)

(1− (kR0)
2)− k2H2

0 (µ− µ0)
2I1(kR0)K0(kR0)

ρ[µI1(kR0)K0(kR0) + µ0I0(kR0)K1(kR0)]
. (10.47)

This expression was found using the ansatz exp(i($t + kz)), given a result with the sign

changed, but after a change of variable of the frequency, we get Eq. (10.47). The �rst

term on the right-hand side is related to the capillary pressure that brings instability to the

system, the second term is related to the magnetic e�ect and counteracts to the capillary

pressure, stabilizing the system [33].

If we consider no magnetic e�ect in Eq. (10.47), this is H0 = 0, we recover the �rst case

solution Eq. (8.44). Next, we use the long wavelength limit, i.e. kR0 goes to zero together

with µ0 = 0 and considering the Bessel functions limits I0(x)
x→0→ 1 and I1(x)

x→0→ x

2
we

obtain the dispersion relation Eq. (10.46). From Eq. (10.46), we can conclude that both

terms, the capillary pressure and the magnetic term counteracts, in fact, if

µH2
0

ρR2
0

≥ σ

2ρR3
0

, (10.48)

indicates that a magnetic parameter µR0H
2
0/σ ≥ 1/2 enables to stabilize the system.
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10.1.2 The case of a magnetically permeable outer region

In this subsection, we are going to consider the magnetic permeability not equal to zero,

for this purpose we consider Eq. (10.14) and the normal boundary condition Eq. (10.22):

µ

(
−ε∂

2Ψ

∂z2
R

2
− ε∂R

∂z

(
H0 +

∂Ψ

∂z

))
= µ0

(
∂ψ

∂ξ
− ε∂R

∂z

∂ψ

∂z

)
. (10.49)

The left hand-side corresponds to ψ inside the cylinder and the right-hand side corresponds

to the outside region, where ∇ψout = (∂ψ/∂ξ, 0, ∂ψ/∂z). For the outer solution we must

satisfy also the Laplace's equation, where the radius in the surrounding media is ξ (r → ε)

with ξ = εR, which in cylindrical coordinates is:

ξ−1
∂

∂ξ

(
ξ
∂ψ

∂ξ

)
+
∂2ψ

∂z2
= 0. (10.50)

In order to �nd a solution for Eq. (10.50), we take the Fourier Transform, yielding:

ψo → F(k) = ψ̂(ξ, k) with ψ̂ = [βI0(kξ) + αK0(kξ)], (10.51)

where I0 and K0 are the modi�ed Bessel functions of �rst and second kind respectively. In

order to satisfy regularity β = 0, because when kξ → 0, I0(kξ)→ 0. It is important to note

that the Fourier transform and its inverse are given by:

F(k) =

� +∞

−∞
ψze

−ikzdz, F−1(z) = (2π)−1
� +∞

−∞
ψ̂(z)eikzdk. (10.52)

In order to avoid sign problems, we are going to use:

ψ̂ = α(k)K0(kξ). (10.53)

for the match condition ψ̂ → αK0(kξ), with ξ = εR, that means Ψ̂ = ψ̂ at ξ = 0.

α =
Ψ̂

ln(ε−1)
. (10.54)

In the above equation K0(ς) ≈ − ln(ς/2) and we applied that to K0(kξ) with ξ = εR. In

order to �nd a expression from the normal boundary condition in Eq. (10.15),We calculate

∂ψ/∂ξ for the exterior solution through the inverse Fourier transform and the properties

of the modi�ed Bessel function of the second kind (see the details in appendix) with K1 =

−K ′0 = 1/ς, note that K0 ≈ − ln
ς

2
, giving us:

∂ψ

∂ξ
= − Ψ

εR ln(ε−1)
. (10.55)

Substituting ∂ψ/∂ξ in Eq. (10.15):(
−∂

2Ψ

∂z2
R

2
− ∂R

∂z

(
H0 +

∂Ψ

∂z

)) ∣∣∣
r=R

=
µ0

εµ

(
∂ψ

∂ξ

∣∣∣
ξ→O(ε)

− ε∂R
∂z

∂ψ

∂z

)
. (10.56)
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In this expression in order to �nd a solution we are going to take µ0 = µ̂0ε
2 ln(ε−1).(

−∂
2Ψ

∂z2
R

2
− ∂R

∂z

(
H0 +

∂Ψ

∂z

)) ∣∣∣
r=R

= − µ̂0ε
2 ln(ε−1)

εµ

Ψ

Rε ln(ε−1)
. (10.57)

Making simpli�cations and multiplying by −2R, we get:(
∂2Ψ

∂z2
R2 + 2R

∂R

∂z

(
H0 +

∂Ψ

∂z

))
= 2

µ̂0

µ
Ψ. (10.58)

This expression can be reduced to:

∂

∂z

(
R2

(
H0 +

∂Ψ

∂z

))
= 2

µ̂0

µ
Ψ. (10.59)

Now, we have to solve the following problem.

p =σ

(
1

R
− ∂2R

∂z2

)
− 1

2
µH2, (10.60)

∂

∂z

(
R2

(
H0 +

∂Ψ

∂z

))
=2

µ̂0

µ
Ψ, (10.61)

ρ

(
∂w

∂t
+ w

∂w

∂z

)
=− ∂p

∂z
, (10.62)

∂(R2)

∂t
+
∂(wR2)

∂z
=0, (10.63)

The stability analysis

With the following perturbations and considering ε how our disturbing parameter:

R ≈ R0 + εR1, w ≈ εW1, H ≈ H0 + εH1, (10.64)

with the disturbed variables,

R1,W1, H1 ∝ exp($t+ ikz), (10.65)

with i =
√
−1. Combining Eq. (10.60) with Eq. (10.62) and introducing perturbed expres-

sions, then keeping terms order ε, provides:

ρ$W1 = σ
(ik)

R2
0

(
1− (R0k)2

)
R1 + µ(ik)H0H1. (10.66)

This expression involves term W1, R1 and H1, then we proceed to obtain W1 in terms of

R1 from Eq. (10.63),

W1 =
−2$

ikR0

R1, (10.67)

and then H1 is obtained from Eq. (10.61) deriving in z and using the relation H1 = ∂Ψ1/∂z,

which gives:

H1 =
−2R0H0k

2

2(µ̂0/µ) + (R0k)2
R1, (10.68)
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Replacing W1 from Eq. (10.67) and H1 from Eq. (10.68) in Eq. (10.66):

$2 =
σ(kR0)

2

2ρR3
0

(
1− (kR0)

2
)
− µH2

0 (kR0)
4

ρR2
0 (2(µ̂0/µ) + (kR0)2)

, (10.69)

This expression is the dispersion relation for the super-paramagnetic full case, and we must

note that taking H0 = 0, this is, non-magnetic in�uence, we recover the Eq. (9.26) and

taking µ̂0 = 0, then we get the Eq. (10.46). The dimensionless expression is given by:

$2 =
k
2

2

(
1− k2

)
− Cpm k

4(
2(µ̂0/µ) + k

2
) , (10.70)

where the dimensionless quantity $ = $
√
ρR3

0/σ and k = kR0. Again, we note that

Cpm = 0 recovers the case inviscid case Eq. (9.26) for long wavelengths and taking µ̂0 = 0

recovers the previous inviscid superparamagnetic case reported in Eq. (10.46). In fact,

comparing both magnetic terms in Eq. (10.46) and Eq. (10.70), it is possible to obtain

Cpm k
2 ≥ Cpm k

4

(µ̂0/µ) + k
2 ,

and considering that the capillary term is the same in both cases, allows us to conclude

that the $ for the case µ0 = 0 is less or equal to $ for the case µ0 6= 0, getting:

$2
µ=0 ≤ $2

µ6=0,

and because the magnetic permeability of a �uid is much greater than the vacuum magnetic

permeability, the term µ̂0/µ appears to be very small, indicating that the supermagnetic

case with µ0 = 0 adequately approximates the case µ0 6= 0. In Fig. (10.2), two cases are

observed: the solid-line considers µ0 = 0 and the dotted-line represents µ0 6= 0, in which

the dotted-line is greater than the solid-line but this value depends on µ̂0/µ, if it is very

small, there will be no changes.

10.2 The viscous magnetic case

In this section we consider the magnetic viscous liquid cylinder, in the superparamag-

netic limit. This study must basically a combination fo the previous results of Section 9.3

and Section 10.1. In this analysis, we also consider an applied magnetic �eld orthogonal to

the cylinder surface and in the axial direction.

The governing equation are given by the momentum equations in the radial direction

ρ

(
∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z

)
= −∂p

∂r
+ η

(
∂

∂r

(
1

r

∂(ru)

∂r

)
+
∂2u

∂z2

)
+ Magnetic terms, (10.71)
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Figure 10.2: Figure shows the comparison between the case µ0 = 0 (solid-line) and the case

µ0 6= 0 (dotted-line), both using the value of Cpm = 0.1 and µ̂0/µ = 0.01.

and the momentum equation in the axial direction

ρ

(
∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

)
= −∂p

∂z
+ η

(
1

r

∂

∂r

(
r
∂w

∂r

)
+
∂2w

∂z2

)
+ Magnetic terms, (10.72)

in which the magnetic terms are representing the Kelvin force, M · ∇H, with viscosity η

and the continuity equation (9.29) in cylindrical coordinates that does not change.

For this reduced case, we assume the magneto-static limit of the Maxwell's equations

(3.4) and (3.3), which is given by M = χH, and where the magnetic induction takes

the form B = µ0(1 + χ)H = µH. As the Section 10.1, Eq. (3.3) indicates that exists a

function ψ such that H = −∇ψ. By Eq. (3.4), we have to satisfy the Laplace's equation

in cylindrical coordinates. We note that the applied magnetic �eld is given by a uniform

�eld in the axial direction of the cylinder H = (0, 0, H0) = H0ẑ, and with this assumption

the Kelvin force in the Eqs. (10.71) and (10.72) is neglected as the previous case analyzed

in Section 10.1. With these simpli�cations, the system of equation that govern the viscous

magnetic problem are reduced to those of the viscous case, the momentum equations (9.27)

and (9.28) and the unchanged continuity equation (9.29). This indicates that the magnetic

e�ect is transferred to the treatment of the free surface and that the reduced equations that

govern this problem, in the long wavelength limit, are exactly the same than the viscous

case.

The analysis continues with the magnetic boundary condition that must satisfy Eqs. (10.15)

and (10.16) and the Laplacian equation that must be solved inside and outside the cylinder,
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again as in the previous Section 10.1 and considering the modi�ed magnetic pressure quoted

by [33].

p =σ

(
1

R
− ∂2R

∂z2

)
− 1

2
µH2, (10.73)

∂

∂z

(
R2

(
H0 +

∂Ψ

∂z

))
=2

µ̂0

µ
Ψ, (10.74)

ρ

(
∂w

∂t
+ w

∂w

∂z

)
=− ∂p

∂z
+

3µ

R2

∂

∂z

(
R2∂w

∂z

)
, (10.75)

∂(R2)

∂t
+
∂(wR2)

∂z
=0, (10.76)

The stability analysis

In this section, we present the dispersion relation derived from the linear stability anal-

ysis for viscous magnetic cylinder under a uniform magnetic coaxially applied to the jet.

The perturbations of the jet radius, velocity and the magnetic �eld are looked in the

form

R ≈ R0 + εR1, w ≈ εW1, H ≈ H0 + εH1, (10.77)

with ε being the parameter of perturbation and the disturbed variables

R1,W1, H1 ∝ exp($t+ ikz). (10.78)

the calculation of the dispersion relation follows directly from the combination of the cases

studied of the Subsecs. 9.3 and 10.1.1 for the viscous and the inviscid superparamagnetic

approximations respectively, and takes the following form

$2 =
σ(kR0)

2

2ρR3
0

(1− (kR0)
2)− 3η(kR0)

2

ρR2
0

$ − µ(kR0)
2H2

0

ρR2
0

. (10.79)

The above expression is a relation between the frequency$ as a function of the wave-number

k, given the �uid and magnetic parameters ρ density, R0 initial radius, σ surface tension

coe�cient, η viscosity and µ magnetic permeability of the �uid. Usually expressed as a

dispersion relation D($, k), we present the Eq. (10.79) with the dimensionless parameters

$ = $
√
ρR3

0/σ and k = kR0, getting

$2 =
k
2

2
(1− k̃2)− 3

Re
k
2
$ − Cpm k

2
, (10.80)

where Re =
√
ρσR0/η is the Reynolds number considering the capillary velocity and Cpm =

µR0H
2
0/σ is the magnetic parameter. Eq.(10.80) is a second order algebraic equation with

linear term involving the viscosity term and independent term capturing the capillary and

the magnetic pressure terms, this expression agrees with the dispersion relation of [66] where

he took the entire magnetic pressure.
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Following the previous analysis of stability, the capillary pressure brings instability to

the system when k̃ = kR0 � 1. The viscosity term indicates that when viscosity is

increased the Reynolds number Re decreased and the breakup time is delayed but it is

reached, while the e�ect of the magnetic pressure prevents the breakup as the range of

dimensional wave-numbers is decreased when the magnetic parameter is increased. We

consider the graphs of the dimensionless quantity $
√
ρR3

0/σ against kR0, for several values

of the Re = 0.1, 1, 10, 100. In the Fig. (10.3) (Top), we take the magnetic parameter

Cpm = µR0H
2
0/σ = 0.01 and we observe that the magnetic e�ect it seems non dominant,

against the viscosity and the diagram is �attened when viscosity is decreased, indicating

lower growth rates, this in term of stability indicates that the breakup time involving the

viscous and magnetic in�uence is greater than the viscous breakup time.

In the Fig. (10.3) (Middle), we take the magnetic parameter Cpm = µ0R0H
2
0/σ = 0.1

and we observe that the magnetic e�ect it seems dominant, against to the viscosity and the

diagram is �attened when viscosity is decreased, but also the magnetic pressure shifted the

curve to the line kR0 = 0, indicating lower growth rates and less ($, k) unstable modes.

In the Fig. (10.3) (Bottom), we take the magnetic parameter Cpm = µ0R0H
2
0/σ = 5/4π

and again we observe that the magnetic e�ect it seems dominant, against to the viscosity

and the diagram is �attened when viscosity is decreased, but also the magnetic pressure

shifted the curve to the line kR0 = 0, indicating lower growth rates and less ($, k) unstable

modes.

10.2.1 Numerical approach to the nonlinear regimes

In this section, we are going to present the numerical solution to the nonlinear problem

of Plateau-Rayleigh instability for superparamagnetic �uids. For that, we mention and

compare our result with Entov et al.'s work in [66].

In [66], authors studied the one-dimensional theory of the capillary instability and the

breakup of jets considering magneto-rheological �uids. They performed linear instability

of the nonlinear jet pro�le using, similarly to us, the long-wave approximation. However,

they used a phenomenological rheology modi�cation of the viscosity due to the e�ect of the

magnetic �eld. They concluded that the magnetic �eld can prevent the early breakup of

the jet because of the formation of thin �at necks between droops that cannot deform due

to the high packing of magnetic �eld lines. Furthermore, they have considered only the

case in which the outer region is magnetically impermeable.

Let's consider the set of equations Eq. (9.62) and Eq. (10.37). The last one has the

term Cpm R
−5∂R/∂z, which brings the information about the magnetic applied �eld. The

discretization of all the terms in both equations remains the same as those used in Sec-

tion (10.2.1). In this case, the discretization of the magnetic term in the wi points of the
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Figure 10.3: Graph of the dimensionless quantity $ = $
√
ρR3

0/σ as a function of k = kR0

for various number Reynolds Re = 0.1, 1, 10, 100, with the magnetic parameter Cpm =

µ0R0H
2
0/σ = 0.01 (Top �gure), Cpm = 0.1 (Middle �gure) and Cpm = 5/4π (Bottom �gure)

with the long wavelength approximation.
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staggered mesh is given by:

1

R5

∂R

∂z

∣∣∣∣
i

=
Ri+1 −Ri

(0.5(Ri+1 +Ri))5
. (10.81)

As we can observe from de results in Fig. (10.4) the steady states present a long �at neck

connecting the two drops. The thickness of the necks increase signi�cantly as we increase

Cpm showing that when the magnetic �eld is more intense it becomes harder to pack the

magnetic �eld lines along the necks.

As we increase the Re, the �ow tends towards an inviscid regime. The shapes observed

at steady state are similar to the ones show before, with the exception of pronounced neck

near the drops for Re = 200. It seems that Re increases magnetic e�ect need to be stronger

to stabilize the �ow. It is interesting to notice that the evolution of the case Re = 10

already shows that the magnetic �elds prevented the formation of satellite drops in the

neck region. Details of this interaction still remains to be studied in further depth.
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Figure 10.4: Figures show the free surface evolution at time t = 0, 10, 15, 20, 24.8, this last

being the approximated scaled breakup time (left). Calculation was made for Re = 0.1 and

Cpm = 0.01 (Top), Cpm = 0.1 (Middle) and Cpm = 5/4π (Bottom) the breakup time curve

is re�ected through the axis OZ to replicate the pinch-o� (right).
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Figure 10.5: Figures show the free surface evolution at time t = 0, 10, 15, 20, 24.8, this last

being the approximated scaled breakup time (left). Calculation was made for Re = 10

(Top) and Re = 200 (Bottom) with Cpm = 0.1 and the breakup time curve is re�ected

through the axis OZ to replicate the pinch-o� (right).
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CHAPTER 11

THE PLATEAU-RAYLEIGH INSTABILITY

COUPLED WITH MAGNETIZATION

11.1 The full magnetic model

In this chapter we are going to present a study of the Plateau-Rayleigh instability for

a magnetic �uid considering its coupling with an evolution equation for the magnetization.

For that, we are going to consider the modi�ed Navier-Stokes equation Eq. (3.59), where

the HB formulation is used for the Maxwell stress tensor, we choose this formulation

because it brings information about the magnetic forces, the Kelvin and Torque forces, due

to the presence of magnetism in the system. At the same time, the magnetic evolution

Eq. (3.39) according to Shliomis [52] is considered, together with an incompressible �ow

and the Maxwell's equations in the magnetostatic limit Eqs.(3.3)-(3.4). In order to �nd the

solution of this problem, we are going to use the long wavelengths hypothesis Eq. (11.8),

that allows us to simplify our set of equations and transform them into a simpler set of

di�erential equations. Later, we will use this reduced set of partial di�erential equations to

establish the dispersion relationship and proceed to the non-linear analysis. In this process

we are going to recover the results that were obtained in the previous chapters.

11.1.1 Scaling arguments

Initially, we consider the modi�ed Navier-Stokes equation (3.59), in which the stress

tensor consider the Maxwell tensor with the the formulation HB as in Sub-Section (3.8),

126



which is given by

Σ = −pI + η
(∇u +∇ut)

2
+ µ0HB− µ0H

2

2
I, (11.1)

where Σ and I are second order tensors, M and I are �rst order tensors. The magnetic

stress tensor is scaled with the same scale of the pressure.

Also, we consider a magnetization evolution Eq. (3.39):

∂M

∂t
+ u · ∇M =

(M0 −M)

τ
+ Ω×M +

µ0

6φη
(M×H)×M, (11.2)

in which M is the magnetization, µ0 is the vacuum magnetic permeability, u the velocity

�eld, M0 is the magnetization equilibrium state, τ is the magnetic relaxation time, H is

the magnetic applied �eld, η is the viscosity and φ the volumetric fraction and

Ω =
1

2
∇× u, (11.3)

For the magnetic �uid �ow, we have a modi�ed equation of the Navier-Stokes equations

through the Maxwell stress tensor in the HB formulation as in Section 3.49, given by:

ρ
∂u

∂t
+ u · ∇u = −∇p+ η∇2u + µ0M · ∇H + µ0∇× (M×H). (11.4)

The system of equations (11.1), (11.2), (11.4) together with Maxwell's equations that we

write them again here:

∇×H = 0, ∇ ·B = 0, (11.5)

form the model we are going to follow to study the Plateau-Rayleigh problem. Due the large

number of parameter involved we dimensionless the above equations, for this, we choose

typical scales for �ow and magnetic variables.

u ∼ vc, r ∼ R0, z ∼ L, t ∼ tc, M ∼Ms, H ∼ H0, p ∼ σ

R0

. (11.6)

By using the above scale the radial and axial components are given by r = R0ř and z = Lž,

where variables with the check symbols are the dimensionless parameters. By doing this,

ε = R0/L � 1 is the small parameter assumed to reduce the system of equations above

mentioned, then w = vcw̌ and u = εvcǔ, the time is given by t = (L/vc)ť with vc =
√
σ/ρR0.

The magnetic stress tensor (11.1) inside of the cylinder is scaled with the same scale of the

pressure, this is Σ = (σ/R0)Σ̌ and the viscous and magnetic terms are scaled with pressure

as well, getting

Σ̌ = −p̌I +
η

vcL

(∇u +∇ut)

2
+ ȞM̌Cpm +

(
ȞȞ− Ȟ2

2
I

)
Cpm

H0

Ms

, (11.7)

where the magnetic parameter Cpm is,

Cpm =
µ0R0MsH0

σ
, (11.8)
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By using the Maxwell stress tensor, we obtain the corresponding modi�ed Navier-Stokes

equations for a magnetic �uid,

∂ǔ

∂t
+ ǔ · ∇̌ǔ = −∇̌p̌+

1

Re
∇̌2ǔ +

(
M̌ · ∇̌Ȟ + ∇̌ × (M̌× Ȟ)

)
Cpm . (11.9)

The parameter Cpm in (11.8) is a relation between the resistance magnetic force and the

capillary pressure, the viscous term is related to the Reynolds number Re = ρvcL/η and

again that is a relation between the inertial and the capillary pressure, (ηvc/L)/(σ/R0). For

the vacuum Maxwell stress tensor, we put M = 0 and p = 0, getting Σ̌ = O(H2
0/(σ/R0)) =

O(Cpm H0/Ms).

The normal component of B and the tangential component of H must be continu-

ous across the boundary, for this purpose the Maxwell condition for the magnetic �eld

in Eq. (11.5), indicates that there exists a potential ψ de�ning H. We incorporate the

co-axially applied magnetic �eld by taking H = H0ẑ + ∇ψ as in previous sections. This

condition must be satis�ed everywhere, and then we consider the potential Φ for the exterior

region.

The continuity of the normal induction �eld is given by Eq. (3.10), and expressed as

n · (∇ψ + M) = n · ∇Φ, (11.10)

in this expression n is the normal unitary vector and we consider a non magnetizable

medium in outside region. We scale the interior potential by using ψ = H0Lψ̌ and for

the exterior potential Φ = H0LΦ̌/ ln(1/ε). The scaling if the above equation is given by,

[Φ] = ε2MsL this is because M scales with Ms and the ε factor comes from the normal

vector, and the [Φ] ∼ ln(εR) then a derivative on the radial surrounding region is given by

[Φ] ∼ 1/εL, giving the scale for [Φ] as above.

The continuity of the tangential magnetic �eld is given by Eq. (3.16) and it is expressed

as

t · ∇ψ = t · ∇Φ, (11.11)

in this expression t is the tangent unitary vector, the left hand side scales like H0 the

right hand side scales with ln(1/ε)/L, then [Φ] = H0L/ ln(1/ε). Comparing the [Φ] in both

continuity conditions we have
H0

Ms

= ε2 ln(1/ε), (11.12)

this indicates that the vacuum Maxwell stress tensor is small, O(Cpm H0/Ms) � 1. with

this scale the continuity conditions take the following form

n · M̌ = n · ∇̌Φ̌ε2S, and t · ∇̌ψ̌ = t · ∇̌Φ̌

ln(1/ε)
, (11.13)

where the parameter S = H0/Msε
2 ln(1/ε) and using Eq. (11.12) takes the value 1. In other

hand, as the exterior potential Φ ∼ f(z) ln(ξ) with ξ being the external radius and regarding
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the tangential continuity conditions (11.13), then the spatial derivative
∂Φ

∂z
∼ f ′(z) ln(ε)

with the leading order, then Eq. (11.13) provides

1 +Hz =
1

ln(1/ε)

∂Φ

∂z
∼ f ′(z) ln(ε)

− ln(ε)
= −f ′(z), (11.14)

this indicates that Hz in independent of r.

For the magnetic evolution equation (11.2), using the proposed scales takes the form,

∂M̌

∂ť
+ ǔ · ∇M̌ =

(
M̌0 − M̌

)
T

+ Ω̌× M̌ + ((M̌× Ȟ)× M̌)N , (11.15)

with the magnetic parameters,

N =
µ0LMsH0

6ηφvc
, (11.16)

and the scaled magnetic relaxation time being,

T =
vc
L
τ, (11.17)

with the equilibrium magnetization given by:

M̌0 = L(α)
Ȟ

Ȟ
. (11.18)

We also have to satisfy the Maxwell's equations (11.5), this is by taking H = H0ẑ +∇ψ,
we must solve the Laplace's equation both inside and outside of the cylinder, as was done

in the previous Section (10.2) and the condition of the magnetic induction takes the form,

H0

Ms

∇2ψ +∇ ·M = 0. (11.19)

which indicates that only must by satisfy the divergence of the magnetization,

∇ ·M = 0. (11.20)

The normal stress balance across the boundary must satisfy

nt ·ΣIn · n− nt ·ΣOut · n = H, (11.21)

the full stress tensor consider the Newtonian �uid Σnf and the magnetic Σm parts and it

can be write as Σ = Σnf + Σm. From this expression, the Newtonian �uid stress tensor is

equal to 9.36 and the magnetic stress tensor considering the product of the �elds H and M

of the Maxwell stress tensor Eq. (11.7) and is giving by asymmetric stress tensor

ΣHM =

 ε2HrMr 0 εHrMz

0 0 0

ε(1 +Hz)Mr 0 (1 +Hz)Mz

 , (11.22)
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where the contribution of the Newtonian part to the normal stress across the boundary is

the same as in the viscous case, this is nt ·Σnf ·n = p− 2∂u/∂r, by doing this Eq.(11.21) is

p− 2
∂u

∂r
− nt · (ΣIn

HM + ΣIn
HH) · n− nt ·ΣOut

HH · n = σH, (11.23)

here both interior and exterior normal stress tensor of HH are the same and they can be

canceled, giving the following expression

p− 2
∂u

∂r
− nt ·ΣIn

HM · n = H, (11.24)

where we conclude that nt ·ΣIn
HM · n = O(ε)2, see Appendix (II.4) and it is not retained in

this expression, �nding

p− 2
∂u

∂r
= σH. (11.25)

The tangential stress across the boundary is given by

tt ·ΣIn · n = tt ·ΣOut · n, (11.26)

with a similar analysis for the normal stress the magnetic stress tensor is given by the

symmetric part corresponding to the diadic product of H and the asymmetric part related

to the diadic product of H and M,

tt · (ΣIn
HM + ΣIn

HH) · n = tt ·ΣOut
HH · n, (11.27)

then both interior and exterior tangential stress contribution of the diadic HH are the same

and they are neglected, and it must be con�rmed that tt ·ΣIn
HM ·n, as seen in Appendix (II.5).

To perform the long wave expansion, we �rst consider the dimensionless modi�ed Navier-

Stokes equation (11.9) in cylindrical coordinates and we remark that expression of the torque

force must be write in cylindrical coordinates as well. The radial component of Eq. (11.9),

that we consider without the check symbol, which is written as,

ε

(
∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z

)
= −1

ε

∂p

∂r
+

ε

Re
∇2u

+ Cpm ε

((
Mr

∂

∂r
+Mz

∂

∂z

)
Hr +

∂

∂z
(Mr(1 +Hz)−MzHr)

)
,

(11.28)

in this expression each r-derivative indicates that we have to multiply a factor of ε and the

same happens with u component of the velocity �eld, also notice that the factor epsilon is

multiplying the �rst component of H and M, this factor is factored so that it multiplies

the entire magnetic term. In the left hand side the factor is factorized and by using the

same reasoning as in Section 8.2.1 the viscous term has also the factor. The equation above

indicates that ∂p/∂r = 0, i.e., p is independent of r as deduced in the previous sections.
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Now, the axial component equation of Eq. (11.9) is given by

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= −∂p

∂z
+

1

Re
∇2w

− Cpm

((
Mr

∂

∂r
+Mz

∂

∂z

)
(1 +Hz) +

(
1

r

∂

∂r
(r(HrMz −Mr(1 +Hz))

))
,

(11.29)

in this equation factors of ε appears but it is simpli�ed in the term u∂w/∂r,Mr∂/∂r and the

last magnetic term. How was deduced above the term 1+Hz andMz and p are independents

of r so we can conclude like the Section 8.2.1, that w = w(z, t) is independent of r, that

cancels the second term on the left-hand side, This is also an argument that has been used

since the beginning of this study.

We continue to perform the expansion with Eq. (11.15), that we consider without the

check symbol, by analyzing the radial equation

∂Mr

∂t
+ w

∂Mr

∂z
=

(LHr −Mr)

T

+
Mz

2

(
∂u

∂z
− ∂w2

∂r

)
+NMz (Mr(1 +Hz)−MzHr) ,

(11.30)

The above equation is presented with the factor ε already simpli�ed, it was the contribution

of Hr and Mr and present in the expansion of w through w2.

∂Mz

∂t
+ w

∂Mz

∂z
=

(L(1 +Hz)−Mz)

T

−ε2Mr

2

(
∂u

∂z
− ∂w2

∂r

)
−ε2NMr (Mr(1 +Hz)−MzHr) ,

(11.31)

with the two last term being O(ε2) and retained the terms O(1) from this equation, we get

∂Mz

∂t
+ w

∂Mz

∂z
=

(L(1 +Hz)−Mz)

T
, (11.32)

we know that Hz is independent of r and Eq. (11.32) involves 1 +Hz and Mz leaving us to

deduce that nothing indicates that there is a dependency on r, then both 1 + Hz and Mz

are independents on r.

We continue our analysis by deriving the set of equations that govern the full magnetic

problem, assuming the long wavelengths hypothesis. Let's consider the modi�ed Navier-

Stokes equations (11.9) with the magnetic contribution of the Kelvin and Torque forces.

We also consider the magnetization evolution equation proposed by [52] in (11.15) and the

Maxwell's equations together with the continuity equation and the jump conditions.

We start the analysis with the Navier-Stokes equations (11.9). As in the previous Sec-

tion, from the incompressibility equation for the velocity �eld u = (u, 0, w), we maintain

u = −r
2

∂w

∂z
. (11.33)

131



Considering that the pressure term as:

p =

(
1

R
− ∂2R

∂z2

)
+

2

Re

∂u

∂r
, (11.34)

and combining Eq. (11.33) with Eq. (11.34) we got,

p =

(
1

R
− ∂2R

∂z2

)
− 1

Re

∂w

∂z
. (11.35)

Now, we are going to use dimensionless w-equation of (11.9) without the check symbol, and

taking the H = (Hr, 0, 1+Hz) with the sub-index indicating the position vector component:

∂w

∂t
+ w

∂w

∂z
= −∂p

∂z
+

1

Re

(
1

r

∂

∂r

(
r
∂w2

∂r

)
+
∂2w

∂z2

)
+Cpm

(
1

r

∂

∂r
(rHrMz) +

∂

∂z
((1 +Hz)Mz)

)
.

(11.36)

Substituting the expression we got for the pressure p from Eq. (11.35),

∂w

∂t
+ w

∂w

∂z
= − ∂

∂z

(
1

R
− ∂2R

∂z2

)
+

1

Re

(
1

r

∂

∂r

(
r
∂w2

∂r

)
+ 2

∂2w

∂z2

)
+Cpm

(
1

r

∂

∂r
(rHrMz) +

∂

∂z
((1 +Hz)Mz)

)
.

(11.37)

The denominator on third and fourth term on the right-hand side involve r and the other

terms do not have dependency on r, then we can multiply by r and integrate by r in the

interval [0, R] and dividing by R2/2, allows us to �nd

∂w

∂t
+ w

∂w

∂z
= − ∂

∂z

(
1

R
− ∂2R

∂z2

)
+

1

Re

(
2

R

∂w2

∂r

∣∣∣∣
r=R

+ 2
∂2w

∂z2

)
+Cpm

(
2

R
Hr

∣∣∣∣
r=R

Mz +
∂

∂z
((1 +Hz)Mz)

)
.

(11.38)

We have to �nd a expression for second term on the right-hand side which is evaluated at

r = R, for that we �nd the viscous normal stress balance as in Eq. (11.24), which is given

by:
∂w2

∂r
+
∂u

∂z
+ 2

∂R

∂z

(
∂u

∂z
− ∂w

∂z

)
= 0, at r = R. (11.39)

Using Eq. (11.33) allows us to �nd a new expression for ∂w2/∂r in terms of R and w, then

substituting that expression in Eq. (11.38), and after further additional simpli�cation in
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the viscous term, gives us:

∂w

∂t
+ w

∂w

∂z
= − ∂

∂z

(
1

R
− ∂2R

∂z2

)
+

3

Re

(
1

R2

∂

∂z

(
R2∂w

∂z

))
+Cpm

(
2

R
Hr

∣∣∣∣
r=R

Mz +
∂

∂z
((1 +Hz)Mz)

)
.

(11.40)

The last expression has Hr and 1 +Hz and both can be extracted from the magnetization

evolution equation (11.15) in the radial direction and leaving out the check symbol. Using

the scaled variables and dropping out higher order terms.

DMr

Dt
=

(χHr −Mr)

T
+
Mz

2

(
∂u

∂z
− ∂w2

∂r

)
+NMz (Mr(1 + hz)−MzHr) . (11.41)

Where χ is given by the following expression:

χ =
L(ξH)

H
. (11.42)

Which L is the Langevin function and it is given by L(αh) = coth(αh) − α−1h , with ξ =

mH0K
−1T−1. The scaling process gives us ∇ ·M = 0 in Eq. (11.20), which in cylindrical

coordinates gives us:

Mr = −r
2

∂Mz

∂z
. (11.43)

Replacing Eq. (11.43) in Eq. (11.41), then evaluating on r = R and substituting u from

Eq. (11.33), and substituting ∂w2/∂r from Eq. (11.39), and after some additional algebraic

manipulations, give us:

D

Dt

(
−r

2

∂Mz

∂z

) ∣∣∣∣
r=R

=
1

T

(
χHr

∣∣∣∣
r=R

+
R

2

∂Mz

∂z

)
−3Mz

4

(
1

R

∂

∂z

(
R2∂w

∂z

))
+
MzR

4

∂2w

∂z2

+NMz

(
−R

2

∂Mz

∂z
(1 +Hz)−MzHr

∣∣∣∣
r=R

)
.

(11.44)

Considering the expression on the left-hand side, it is possible to prove that:

D

Dt

(
−r

2

∂Mz

∂z

) ∣∣∣∣
r=R

=
D

Dt

(
−R

2

∂Mz

∂z

)
, (11.45)

then after substitute Eq. (11.45) in Eq. (11.44), and leaving the term Hr

∣∣∣∣
r=R

on the left-

hand side,(
χ−NTM2

z

)
Hr

∣∣∣∣
r=R

= −R
2

∂Mz

∂z

+ T
(
D

Dt

(
−R

2

∂Mz

∂z

)
+

3Mz

4

(
1

R

∂

∂z

(
R2∂w

∂z

))
− MzR

4

∂2w

∂z2
+NMz

R

2

∂Mz

∂z
(1 +Hz)

)
,

(11.46)
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then after multiplying Eq. (11.46) by 2/R and isolating Hr, we get:(
χ−NTM2

z

) 2

R
Hr

∣∣∣∣
r=R

= −∂Mz

∂z

+ T
[

2

R

D

Dt

(
−R

2

∂Mz

∂z

)
+

3Mz

2

(
1

R2

∂

∂z

(
R2∂w

∂z

))
− Mz

2

∂2w

∂z2
+NMz

∂Mz

∂z
(1 +Hz)

]
.

(11.47)

Now, we are going to �nd an expression for 1 +Hz from Eq. (11.32), which provides

1 +Hz =
1

χ

(
T DMz

Dt
+Mz

)
. (11.48)

From the normal continuity conditions Eq. (11.13), and considering that n̂ = (1, 0,−εRz)

and M = (εMr, 0,Mz), we obtain the following relation:

∂

∂z

(
R2Mz

)
= −2R

(
∂Φ

∂ξ
− ε∂R

∂z

∂Φ

∂z

)
ε, (11.49)

but from the scaling analysis we know that:

∂Φ

∂ξ
(εR, z) ∼ − Φ

εR ln ε−1
, (11.50)

and after substituting this expression in Eq. (11.49) and keeping term order ε, we get:

∂

∂z

(
R2Mz

)
= 2

Φ

ln ε−1
, (11.51)

then deriving with relation to z,

∂2

∂z2
(
R2Mz

)
=

2

ln ε−1
∂Φ

∂z
. (11.52)

Now, it is possible to access to ∂Φ/∂z through the tangential continuity condition Eq. (11.13),

t̂ ·H = t̂ · ∇Φ

ln ε−1
.

Note that t̂ = (εRz, 0, 1) and maintaining terms order 1:

1 +Hz =
1

ln ε−1
∂Φ

∂z
, (11.53)

then, substituting this expression in Eq. (11.52), provides:

∂2

∂z2
(
R2Mz

)
= 2(1 +Hz). (11.54)

With the last expression, we are able to propose the reduced set of equations that allows

us to analyze the Plateau Rayleigh instability for long wavelengths. The set of equations

are given by Eqs. (11.40), (9.14), (11.54), (11.47) and (11.48).
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On the right hand side of Eq. (11.40), the capillary term, the viscous term, the magnetic

contribution of the kelvin and the torque force are present: the term (2/R)Hr at r = R is

given by the Eq. (11.47), which only involves terms with relation to w, R, Mz and 1 +Hz,

and because it is a large expression we write it in a separate equation. The Eq. (9.14) is

kept unchanged. Although Eq. (11.48) has the material derivative of Mz this is a formula

to calculate 1 +Hz, and we are going to substitute 1 +Hz from Eq. (11.54) in all equations

except in Eq. (9.14), this substitution allows us to obtain 3 partial di�erential equations

involving w, R and Mz. After additional algebraic operations the equations for the free

surface evolution Eq. (9.14) is given by:

∂R

∂t
+ w

∂R

∂z
= −R

2

∂w

∂z
, (11.55)

then the magnetization evolution equation Eq. (11.48) takes the following form:

∂Mz

∂t
+ w

∂Mz

∂z
=

1

T

(
−Mz +

χ

2

∂2

∂z2
(
R2Mz

))
, (11.56)

and the z-direction momentum Eq. (11.40) is given by the following expression:

∂w

∂t
+ w

∂w

∂z
= −∂

∂

(
1

R
− ∂2R

∂z2

)
+

3

Re

(
1

R2

∂

∂z

(
R2∂w

∂z

))
+

Cpm

χ−NM2
z T

(
−Mz

∂Mz

∂z
+ T

[
2Mz

R

D

Dt

(
−R

2

∂Mz

∂z

)
+

3M2
z [R2wz]z
2R2

− M2
zwzz
2

+
NM2

z

2

∂Mz

∂z

∂2

∂z2
(
R2Mz

) ])
+ Cpm

∂

∂z

(
Mz

2

∂2

∂z2
(
R2Mz

))
.

(11.57)

11.1.2 Limiting cases

In this sub-section we are going to validate the theoretical result obtained in equations

(11.55), (11.56) and (11.57) with the previous model obtained in the Section (10.2). Cer-

tainly the case of Cpm = 0, the case in which there is no magnetic interaction with the

�ow, leads us to the viscous case as in Section (9.3). For the magnetic case, we are going

to consider the superparmagnetic limit where T → 0, which allows us to access to the

magnetization through the evolution equation (11.56) and (11.54), obtaining that the mag-

netization is proportional to the applied �eld and the proportionality constant is given by

χ, i.e., Mz = χ(1 +Hz). Whit these considerations Eq. (11.57) reduces to:

∂w

∂t
+ w

∂w

∂z
= −∂

∂

(
1

R
− ∂2R

∂z2

)
+

3

Re

(
1

R2

∂

∂z

(
R2∂w

∂z

))
+

Cpm

2

∂M2
z

∂z
,

remarking that the magnetic parameter Cpm for the full model contentMs which is χH0 for

the superparamagnetic case, allowing us to obtain the magnetic parameter of Section (9.3).
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In other hand, Eq. (11.56) together with Eq. (11.54) allows to satisfy the superparamagnetic

limit. An additional approximation can be tested by using Eq. (11.54) an its limit when

µ0 = 0, which gives us Mz = R−2 and replacing this term in the last expression,

∂w

∂t
+ w

∂w

∂z
= −∂

∂

(
1

R
− ∂2R

∂z2

)
+

3

Re

(
1

R2

∂

∂z

(
R2∂w

∂z

))
− 2Cpm

R5

∂R

∂z
,

which is the same result of Eq. (10.37).

The equation (11.55) remains unchanged in all these cases since there are no magnetic

terms involved in it.

11.1.3 Linear stability analysis.

In this subsection, we perform the linear stability analysis for the full magnetic problem

to �nd the dispersion relation. To that end, we consider the following perturbed parameters:

R ≈ 1 + εR1, w ≈ εW1, M ≈ M̂0 + εM1, (11.58)

with M̂0 = M0/Ms and the disturbed variables being:

R1,W1,M1 ∝ exp($t+ ikz), (11.59)

in which, $ is the wavelength and k is the wave number with i =
√
−1.

The system of equations to be solved consider the momentum equation Eq. (11.57),

the magnetization evolution Eq. (11.48), the jump condition Eq. (11.56) and the surface

evolution Eq. (11.55). The later, after introduce perturbed variables provides the following

expression:

ε
∂R1

∂t
+ ε

∂W1

∂z
= 0, (11.60)

and replacing perturbed proportions,

2$R1 + (ik)W1 = 0. (11.61)

We continue the linear analysis with the equation of the evolution of magnetization (11.56)

by introducing the perturbed variables, provides:

T
(
ε
∂M1

∂t
+ ε

∂W1

∂z
M̂0

)
= χ− εM1 +

χ

2

(
ε
∂2M1

∂z2
+ 2ε

∂2R1

∂z2
M̂0

)
. (11.62)

Retaining terms of O(ε) and replacing perturbed proportions:

T ($M1 + (ik)W1M̂0) = χ−M1 +
χ

2

(
(ik)2M1 + 2(ik)2R1M̂0

)
. (11.63)

Now , we continue with the momentum Eq. (11.57) by substituting perturbed variables. The

left-hand side and �rst two terms of the right-hand side of Eq. (11.57) are treated as previous
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Section (9.3). We continue with the magnetic terms developing them independently and

substituting on the �nal expression. We develop the term M∂M/∂z, obtaining:

1

2

∂(M̂0 + εM1)
2

∂z
= ε(ik)M̂0M1, (11.64)

and continue with the following magnetic term of Eq. (11.57). Once we got the perturbations

for all magnetic terms, we present the momentum w-equation (11.57) keeping terms order

ε, which takes the following form:

$W1 = (ik)(1− k2)R1 +
3

Re
(ik)2W1

+Cpm

((
−(ik)M1M0 + T

[
−M0$(ik)M1 +

3

2
M2

0 (ik)2W1 −
M2

0 (ik)2W1

2
+
NM3

0 (ik)M1

χ

])
(

1

χ
+

(M2
0 + 2M1M0)NT

χ2

)
+

1

χ

(
T $(ik)M1M0 + 2(ik)M1M0

))
,

(11.65)

then grouping terms with W1, R1 and W1, taking the following form:

W1

(
$ +

3

Re
k
2

+
Cpm T M̂0k

2

1 +N M̂0T

)
= (ik)(1− k2)R1

+(ik)Cpm

(
− 1

1 +N M̂0T
− $T

1 +N M̂0T
− N M̂0T

1 +N M̂0T
+$T + 2

)
M1,

(11.66)

leaving the equation in terms of W1 by replacing R1 through Eq. (11.61) and M1 with

Eq. (11.63), allowing us to obtain:

$

[
$ +

(
3

Re
+

Cpm T M̂0

1 +N M̂0T

)
k
2

]
=
k
2

2
(1− k2)

−
(

1 +
$N M̂0T 2

1 +N M̂0T

)
M̂3

0k
4
Cpm

(2(T $ + 1)M̂0 + M̂2
0k

2
)
.

(11.67)

This expression is the relation dispersion for the full magnetic problem in term of $ and k,

and now the magnetic parameters Cpm , Re, T , N appear, bringing information about the

magnetization mechanism in�uencing the �uid �ow. In it the following can be observed: on

the left-hand side, the second term corresponds to the viscous term and then follows the term

that is compared with the viscous term, this term is a magneto viscous modi�cation due to

the presence of magnetization in this problem. On the right-hand side, initially we have the

capillary term and later we have the magnetic term that contains in the denominator $, the

new magnetic mode that makes the dispersion relation a third degree algebraic equation.

As it has been throughout this study, we are going to continue taking some particular

limits that allow us to recover the previously studied cases: the �rst of these cases is the

case Cpm = 0, in which we do not have magnetic interaction, for this case the left-hand
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side recovers the quadratic term $2 and the viscous term, then on the right-hand side only

contains the capillary term, thus obtaining the eq. (9.59).

We are going to evaluate the superparamagnetic case, when T → 0. In that case: the

third term on the left-hand side is canceled and then on the right hand side, we obtain the

superparamagnetic contribution equals to Eq. (10.70).

Figure 11.1: Figure shows the comparison between the cases Cpm = 0.01, 0.1, 0.5 with T = 0

(solid-line) and T = 0.1 (dotted-line), all using the value of N = 1 and Re � 1.

In Fig. (11.1), three cases are shown using Cpm = 0.01, 0.1, 0.5 with T = 0, 0.1. The

solid-lines corresponds to the superparamagnetic case T = 0 and the dotted-lines repre-

sents the cases in which there is a magnetic relaxation mechanism as a consequence of the

interaction of the magnetization with the �ow. Initially, low magnetic �eld (small Cpm),

the magnetic relaxation e�ect is very small and instability is not a�ected, being similar to

a superparamagnetic case. As we increase Cpm a more pronounce di�erence is observed on

the growth rates. Surprisingly the relaxation mechanisms reduces the growth rate, up to

10% for Cpm = 0.5. It is not clear what is the physical mechanisms behind this stabilization

of the �ow, but we speculate that the enhance magnetization of the �uid in the axial and

radial directions could be behind a larger response of the �uid to the applied magnetic �eld.

In Fig. (11.2), we veri�ed the in�uence of the magnetic parameter N , which is related

to the precessional term of the magnetic evolution equation (11.2), on the growth rates. We

observed that as we increase N growth rates increase. This indicates that the precessional

term is dominating the dynamics of the magnetization, preventing it to adjust to the �ow.

In this case, the system behaves as if the �uid were superparamagnetic.
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Figure 11.2: Figure shows the comparison between the cases N = 0 (solid-line) and N =

10, 100 (dotted-line), all using the value of T = 0.1, Cpm = 0.5 and Re � 1.

There are still many parameters and cases to study in this model: the e�ect of the

viscosity, via Re, has to be investigated in detail, as it will couple the �ow �eld to the

magnetization in di�erent ways. Furthermore we still have to explore the nonlinear regimes

in the full model and the asses the steady state shapes. This, among other are subject of

our current studies.
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CHAPTER 12

CONCLUSION AND FUTURE

DIRECTIONS

In this part of thesis, we studied the Plateau-Rayleigh instability using the limit of

long wavelengths for magnetic �uids. We have presented the set of equations that govern

this problem and that are formed by: the continuity equation, the Navier-Stokes equations

modi�ed by the magnetic forces, the magnetization evolution equation proposed by Shliomis

[52] and Maxwell's equations, in the presence of a uniform magnetic �eld applied in the

axial direction.

Initially, the equations for the Plateau-Rayleigh instability were derived for the asymp-

totic limit of long waves, for both inviscid and viscous non-magnetic �uids, and the classical

results of the problem were recovered. Thereafter, the super-paramagnetic problem was con-

sidered for both the inviscid and viscous cases. We have compared the inviscid problem with

[33] and viscous problem with [66]. At the same time, we have obtained a simple numerical

routine for the non-linear dynamics of drop breakup, following [69] and [66]. This work has

contributed by adding information about the magnetic permeability of the exterior �uid to

the cylinder. The results show that considering a magnetically permeable outer �uid is a

small correction of the impermeable case, however, this small correction makes the system

more unstable. From the analysis performed in this work, we found that the viscosity de-

lays the cylinder breakup time, but the magnetism prevents completely the breakup of the

cylinder if a magnetic �eld with an intensity su�ciently large is applied.

In addition, we consider a magnetic evolution equation proposed by Shliomis [52] where

the torques are incorporated with the precessional term. Then this equation with the
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modi�ed Navier-Stokes equation, the continuity equation and Maxwell's equations are used

to derive an asymptotic approximation for long waves. The linear stability analysis provides

a third degree algebraic equation for the dispersion relation, where the additional degree

brings information on the new magnetic mode. From our preliminary observations, the

theory presented here seems to be a small correction of the super-paramagnetic case when

the magnetic relaxation time is very small.

In future works, we plan to obtain the self-similar solution of the non-linear regimes.

Furthermore, we intend to explore this problem for magnetorheological �uids which present

and average magnetic particle diameter of order of micrometers, and which allows us to

study the system for longer magnetic relaxation times.
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APPENDIX A

In this appendix, we present the details to �nd an expression for the perturbation of

the modi�ed Navier-Stokes equations containing the Kelvin force and for the Magnetization

evolution equation.

I.1 Perturbation of modi�ed the Navier-Stokes equation

Let's consider the system of equations formed by the Eq. (6.56)-(6.57) together with the

disturbed continuity equation (6.60) and the disturbed version of the Maxwell's equations

in (6.61). We then continue with the same procedure done with the pure hydrodynamic

stability section (5.2) to �nd the fundamental stability equation that governs this case.

The system formed by Eqs. (6.56)-(6.57) with the perturbed variables (6.51) is written

in vector form:

∂u′

∂t
+ ub · ∇u′ + u′ · ∇ub =−∇p′ + 1

Re
∇2u′

+Cpm (M · ∇H′ + M′ · ∇H) , (1)

and the perturbed continuity equation Eq. (6.60) is rewritten here:

∂u′

∂x
+
∂v′

∂y
= 0, (2)

with the corresponding perturbed Maxwell's equations (6.61), that we write again,

∂H ′2
∂x
− ∂H ′1

∂y
= 0, (3)

∂B′1
∂x

+
∂B′2
∂y

= 0, with B′ = H′ + M′. (4)
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Taking the divergence of Eq. (1) in u′,

∂∇ · u′

∂t
+∇ ·

[
ub · ∇u′ + u′ · ∇ub

]
=−∇2p′ +

1

Re
∇2∇ · u′+ (5)

+Cpm ∇ · (M · ∇H′ + M′ · ∇H) . (6)

Second term on the left side can be written as,

∇ ·
[
ub · ∇u′ + u′ · ∇ub

]
= 2

dub

dy

∂v′

∂x
.

From Eq. (2), the Laplacian of pressure in Eq. (5) can be expressed by:

∇2p′ = −2
dub

dy

∂v′

∂x
+ Cpm ∇ · (M · ∇H′ + M′ · ∇H) . (7)

Now taking, the Laplacian of the component in direction y of Eq. (1),

∂∇2v′

∂t
+∇2

(
ub
∂v′

∂x

)
=− ∂∇2p′

∂y
+

1

Re
∇4v′ (8)

+Cpm ∇2

(
M1

∂H ′2
∂x

+M2
∂H ′2
∂y

+M ′
1

∂H2

∂x
+M ′

2

∂H2

∂y

)
. (9)

Substituting Eq. (7) in Eq. (8), we get:

∂∇2v′

∂t
+∇2

(
ub
∂v′

∂x

)
= − ∂

∂y

[
−2

dub

dy

∂v′

∂x
+ Cpm ∇ · (M · ∇H′ + M′ · ∇H)

]
+

1

Re
∇4v′ + Cpm ∇2

(
M1

∂H ′2
∂x

+M2
∂H ′2
∂y

+M ′
1

∂H2

∂x
+M ′

2

∂H2

∂y

)
. (10)

Developing the Laplacian in the left hand side and the expression with derivative with

respect to y in the right hand side,(
∂

∂t
+ ub

∂

∂x

)
∇2v′ − d2ub

dy2
∂v′

∂x
− 1

Re
∇4v′ = − ∂

∂y
[Cpm ∇ · (M · ∇H′ + M′ · ∇H)]

+ Cpm ∇2

(
M1

∂H ′2
∂x

+M2
∂H ′2
∂y

+M ′
1

∂H2

∂x
+M ′

2

∂H2

∂y

)
. (11)

The left-hand side, by putting Cpm = 0 is the Orr-Sommerfeld classical equation. Now the

expressions on right-hand side of the equation above are developed, using the sub-index

that indicates the partial derivative with respect to the variable.

−
((

∂

∂t
+ ub

∂

∂x

)
∇2v′ − d2ub

dy2
∂v′

∂x
− 1

Re
∇4v′

)
=

∂

∂y
[Cpm ∇ · (M · ∇H′ + M′ · ∇H)]

− Cpm ∇2

(
M1

∂H ′2
∂x

+M2
∂H ′2
∂y

+M ′
1

∂H2

∂x
+M ′

2

∂H2

∂y

)
. (12)
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On the left side, we have the Orr-Sommerfeld Operator, which for Cpm takes us to the

already known case. In this way, we can write the above expression as:

LOS v̂ =Cpm
∂

∂y
[∇ · (M · ∇H′ + M′ · ∇H)]

−Cpm ∇2

(
M1

∂H ′2
∂x

+M2
∂H ′2
∂y

+M ′
1

∂H2

∂x
+M ′

2

∂H2

∂y

)
. (13)

In order to make algebraic manipulations on the RHS of Eq. (13), we consider a vector X

with components X = (X1, X2), that simulates RHS above, then we obtain,

∂

∂y
(∇ ·X)−∇2X2 =

∂

∂x

(
∂X1

∂y
− ∂X2

∂x

)
, (14)

and applying this simpli�cation to Eq. (13) with X = (M · ∇H′ + M′ · ∇H), allows us to

access the following expression,

LOS v̂ = Cpm
∂

∂x

(
∂ ((M · ∇)H ′1 + (M′ · ∇)H1)

∂y
− ∂ ((M · ∇)H ′2 + (M′ · ∇)H2)

∂x

)
. (15)

The expression above is the stability analysis equation for the case of magnetic �uid, note

that by taking Cpm = 0, we obtain the typical Orr-Sommerfeld equation. Using the magnetic

�eld (6.31), we have H1 being a constant and H2 = H2(y) in order to satisfy the Maxwell's

equations. On the other hand, we remark that M1 and M2 functions depend on the y

variable, what incorporate additional simpli�cations to (15), as follows:

LOS v̂ = Cpm
∂

∂x

(
∂M b

1

∂y

∂H ′1
∂x

+
∂M b

2

∂y

∂H ′1
∂y
− ∂Hb

2

∂y

∂M ′
2

∂x

)
, (16)

then additional simpli�cations come from Eqs (6.65) together with (6.46) and substituting

the (6.63), allowing us to get Eq.(6.64).

I.2 Perturbation of the magnetization evolution equa-

tion

Let's consider the perturbed quantities of the magnetization evolution equation given

by (6.58)-(6.59) which we rewrite here in vector form:

∂M′

∂t
+ ub · ∇M′ + M′ · ∇ub =

(χ0H
′ −M′)

τ∗
+

1

2
(Ω′ ×M + Ω×M′) , (17)

where the approximation (6.45) is taken for the equilibrium magnetization M0.

The equation in the x-direction is given by:

∂M ′
1

∂t
+ ub

∂M ′
1

∂x
+ v′

dM b
1

dy
=

(χ0H
′
1 −M ′

1)

τ ∗

+
1

2

(
−∂v

′

∂x
M b

2 +
∂u′

∂y
M b

2 +
dub

dy
M ′

2

)
. (18)
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The equation in the y-direction is given by:

∂M ′
2

∂t
+ ub

∂M ′
2

∂x
+ v′

dM b
2

dy
=

(χ0H
′
2 −M ′

2)

τ ∗

+
1

2

(
∂v′

∂x
M b

1 −
∂u′

∂y
M b

1 −
dub

dy
M ′

1

)
. (19)

Replacing the ansatz (6.63), provides for the x-direction,

−iαcM̃1 + iαubM̃1 + ṽ
dM b

1

dy
=

(χ0H̃1 − M̃1)

τ ∗

+
1

2

(
−iαṽM b

2 +DũM b
2 +

dub

dy
M̃2

)
, (20)

and in the y-direction,

−iαcM̃2 + iαubM̃2 + ṽ
dM b

2

dy
=

(χ0H̃2 − M̃2)

τ ∗

+
1

2

(
iαṽM b

1 −DũM b
1 −

dub

dy
M̃1

)
. (21)

By multiplying iα both expressions and introducing Eq. (6.60), we get:

−(iα)2cM̃1 + (iα)2ubM̃1 + iαṽ
dM b

1

dy
=
iα(χ0H̃1 − M̃1)

τ ∗

+
1

2

(
−(iα)2ṽM b

2 −D2ṽM b
2 + iα

dub

dy
M̃2

)
, (22)

whit the same procedure in y-direction,

−(iα)2cM̃2 + (iα)2ubM̃2 + iαṽ
dM b

2

dy
=
iα(χ0H̃2 − M̃2)

τ ∗

+
1

2

(
(iα)2ṽM b

1 +D2ṽM b
1 − iα

dub

dy
M̃1

)
. (23)

Putting similar terms together:

−α2(ub − c)M̃1 + iαṽ
dM b

1

dy
=
iα(χ0H̃1 − M̃1)

τ ∗

+
1

2

(
α2ṽM b

2 −D2ṽM b
2 + iα

dub

dy
M̃2

)
. (24)

Doing the same with component y,

−α2(ub − c)M̃2 + iαũ2
dM b

2

dy
=
iα(χ0H̃2 − M̃2)

τ ∗

+
1

2

(
−α2ũ2M

b
1 +D2ũ2M

b
1 − iα

dub

dy
M̃1

)
. (25)

In order to close the system (17), we assume that Eqs (6.65) is satisfying (6.61) and

leave the system (24)-(25) in terms of M̃1, M̃2 and ṽ which is possible to access through

Eq. (15) and ub and its derivative, which are known.

152



APPENDIX B

II.3 Young Laplace mean curvature

The expression for the mean curvature κ is given by:

κ = ∇ · n,

where n is the unitary normal vector to the free surface r = R(z, t). In order to calculate

the expression for mean curvature, we consider a function F (r, z, t) = r − R(z, t) and note

that the normal vector is given by n = ∇F/|∇F |. The nabla operator ∇ must be expressed

in cylindrical coordinates, then ∇F is given by:

∇F =

(
∂F

∂r
,
1

r

∂F

∂θ
,
∂F

∂z

)
,

then considering the function F (r, z, t), last expression provides:

∇F =

(
1, 0,−∂R

∂z

)
,

which allows us to express the normal vector as,

n =

(
1, 0,−∂R

∂z

)
/

√
1 +

(
∂R

∂z

)2

.

With the normal vector expression, we calculate the mean curvature by using ∇ · n and

again we remark that the nabla dot product is compute using cylindrical coordinates, that

is,

∇ · n =
1

r

∂(rnr)

∂r
+

1

r

∂nθ
∂θ

+
∂nz
∂z

.
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where n = (nr, nθ, nz). Finally, substituting the normal vector expression we get,

∇ · n =
1

R

(
1 +

(
∂R

∂z

)2
)− 1

2

− ∂2R

∂z2

(
1 +

(
∂R

∂z

)2
)− 3

2

,

where the �rst term on the right hand side is radii of curvature R1 and the second term is

R2, which leads to write this last expression as ∇ · n = R−11 +R−12 .

II.4 Normal stress balance

In this section we verify the the following a�rmation

nt ·ΣIn
HM · n = O(ε2).

For this we must compute,

nt ·ΣIn
HM · n =

(
1, 0,−ε∂R

∂z

)
·ΣHM ·

(
1, 0,−ε∂R

∂z

)t

where n =

(
1, 0,−ε∂R

∂z

)
is the scaled unitary normal vector and ΣIn

HM is the stress tensor

considering the diadic product between H and M

nt ·ΣIn
HM · n =

(
ε2HrMr − ε2

∂R

∂z
(1 +Hz)Mr, 0, εHrMz − ε

∂R

∂z
(1 +Hz)Mz

)
· n,

= ε2HrMr − ε2
∂R

∂z
(1 +Hz)Mr − ε

∂R

∂z

(
εHrMz − ε

∂R

∂z
(1 +Hz)Mz

)
,

= ε2

(
HrMr − (1 +Hz)Mr

∂R

∂z
−HrMz

∂R

∂z
− (1 +Hz)Mz

(
∂R

∂z

)2
)
,

which con�rms our statement.

II.5 Tangential stress balance

In this section we verify the the following a�rmation

tt ·ΣIn
HM · n = O(ε).

For this we must compute,

tt ·ΣIn
HM · n =

(
ε
∂R

∂z
, 0, 1

)
·ΣHM ·

(
1, 0,−ε∂R

∂z

)t
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where t =

(
ε
∂R

∂z
, 0, 1

)
is the scaled unitary tangential vector, n as above and ΣIn

HM is the

stress tensor considering the diadic product between H and M

tt ·ΣIn
HM · n =

(
ε3HrMr

∂R

∂z
+ ε(1 +Hz)Mr, 0, ε

2HrMz
∂R

∂z
+ (1 +Hz)Mz

)
· n,

= ε3HrMr
∂R

∂z
+ ε(1 +Hz)Mr − ε

∂R

∂z

(
ε2HrMz

∂R

∂z
+ (1 +Hz)Mz

)
,

= ε3HrMr
∂R

∂z
− ε(1 +Hz)Mr − ε3HrMz

(
∂R

∂z

)2

− ε(1 +Hz)Mz
∂R

∂z
,

= ε

(
ε2HrMr

∂R

∂z
− (1 +Hz)Mr − ε2HrMz

(
∂R

∂z

)2

− (1 +Hz)Mz
∂R

∂z

)
.

which con�rms our statement.
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