Seminário de Álgebra

On genus of a finitely generated free group.

Andrei Jaikin The Autonomous University of Madrid

19/03/2021 14:30 Horas Zoom

Abstract.

Let \mathcal{F} , \mathcal{S} and \mathcal{N} be the formations of finite, finite soluble and finite nilpotent groups, respectively and denote by \mathcal{C} one of these formations. Let Γ be a finitely generated residually- \mathcal{C} group. The \mathcal{C} -genus of Γ , denoted by $\mathcal{G}_{\mathcal{C}}(\Gamma)$, consists of isomorphism classes of finitely generated residually- \mathcal{C} groups G having the same quotients in \mathcal{C} as Γ .

Let F be a finitely generated free group. The groups in $\mathcal{G}_{\mathcal{N}}(F)$ were introduced by Baumslag with the name of **parafree** groups. If F is not abelian, then $\mathcal{G}_{\mathcal{N}}(F)$ is infinite. However, it is still open whether $\mathcal{G}_{\mathcal{F}}(F)$ and $\mathcal{G}_{\mathcal{S}}(F)$ consist of a single element. The case of $\mathcal{G}_{\mathcal{F}}(F)$ is a well-known problem attributed to Remeslennikov. In my talk I will show that the groups in $\mathcal{G}_{\mathcal{F}}(F)$ and $\mathcal{G}_{\mathcal{S}}(F)$ are residually nilpotent. This result answers a question of Baumslag.