On Finiteness of some verbal subgroups in profinite groups

João Azevedo * Department of Mathematics University of Brasília

26/03/2021 14:30 Horas

Abstract

A group word $w = w(x_1, x_2, ..., x_n)$ is an element of the free group F of rank n. If G is any group, we denote by G_w the set of all elements of G obtained by replacing $x_1, x_2, ..., x_n$ in w by arbitrary elements $g_1, g_2, ..., g_n$ of G, and by w(G) the subgroup generated by G_w . The word w is said to be concise in a class of groups C if, for each $G \in C$ such that G_w is finite, then w(G) is also finite.

In the context of profinite groups G, we write w(G) to denote the *closed* subgroup generated by all *w*-values in G. In [1], E. Detomi, B. Klopsch and P. Shumyatsky introduced a stronger version of the classical notion of conciseness. We say that a group word w is *strongly concise* in a class of profinite groups C if, for every $G \in C$ such that the cardinality of G_w is less than 2^{\aleph_0} , it follows that w(G) is finite.

In this talk, we consider profinite groups admitting a word w such that $|G_w| < 2^{\aleph_0}$ and w(G) is generated by finitely many w-values. We prove that Engel words of the form $[v, {}_n u]$ are strongly concise, for some u and v in F. We cover the cases where u and v are chosen suitably between commutator-closed words and powers of lower central and weakly rational words.

This is a joint work with Pavel Shumyatsky.

References

- E. Detomi, B. Klopsch, P. Shumyatsky, Strong conciseness in profinite groups, J. Lond. Math. Soc. (2). 102 (2020) 977–993.
- [2] J. P. P. Azevedo, P. Shumyatsky, On finiteness of some verbal subgroups in profinite groups, J. Algebra, to appear.

^{*}Supported by CNPq, e-mail: J.P.P.Azevedo@mat.unb.br