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Abstract

This work is divided in two parts. In the first one, we apply variational methods to

study existence and multiplicity of solutions for a class of elliptic nonlinear bound-

ary value problems in the upper half-space. We are mainly interested in the critical

growth on the boundary and we exploit the most diverse variations of growth condi-

tions inside the domain. In the second part of the work, we study problems defined

in the whole space RN . Namely, we first concern with multiplicity of solutions for a

singular problem and, finally, we obtain an existence result for an indefinite planar

equation with critical exponential growth

Keywords: Nonlinear boundary conditions; half-space; self-similar so-

lutions; critical trace problems; sign-changing solutions; concave-convex

problems; symmetric functionals; singular problems.



Resumo

Este trabalho está dividido em duas partes. Na primeira, aplicamos métodos varia-

cionais para estudar existência e multiplicidade de soluções para uma classe de prob-

lemas eĺıpticos com condição de fronteira não linear no semi-espaço superior. Con-

sideramos, em especial, o crescimento cŕıtico no bordo e exploramos as mais diversas

variações de condições de crescimento no interior do domı́nio. Já na segunda parte do

trabalho, estudamos problemas definidos em todo o espaço RN . A saber, primeira-

mente estamos interessados em multiplicidade de soluções para um problema singular

e, por fim, obtivemos um resultado de existência para uma equação planar indefinida

com crescimento cŕıtico exponencial.

Palavras-chave: Condições de fronteira não-linear; semi-espaço; soluções

auto-similares; problemas de traço cŕıtico; soluções que trocam de sinal;

problemas do tipo côncavo-convexo; funcionais simétricos, problemas sin-

gulares.



Contents

Introduction 10

1 Sign-changing solutions for an elliptic equation with critical nonlin-

ear boundary condition 21

1.1 Variational setting and preliminary results . . . . . . . . . . . . . . . 25

1.2 Proof of Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3 A Nehary type approach for λ∗N < λ < λ1 . . . . . . . . . . . . . . . . 37

1.4 Proof of Theorem B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Multiplicity of solutions for a concave-convex type problem 46

2.1 Variational setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2 Proofs of Theorems C and D . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 Proofs of Theorems E and F . . . . . . . . . . . . . . . . . . . . . . . 60

3 Multiplicity of solutions for a superlinear problem 67

3.1 Variational framework and the Palais-Smale condition . . . . . . . . . 69

3.2 Proof of Theorem G . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Proof of Theorem H . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 A singular problem in RN 84

4.1 Proof of Theorem I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Proof of Theorem J . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Indefinite problem with exponential critical growth in R2 99

5.1 Variational framework and technical results . . . . . . . . . . . . . . 101

5.2 Proof of Theorem K . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8



Introduction

Let RN
+ =

{
(x′, xN) : x′ ∈ RN−1, xN > 0

}
be the upper half-space. In the first part

of this work, we consider nonlinear boundary value problems of type

(P )


−∆u− 1

2
(x · ∇u) = a(x)f(u), x ∈ RN

+ ,

∂u

∂η
= b(x′)|u|p−2u, x′ ∈ RN−1,

where ∂
∂η

denotes the outer unit normal derivative, we have identified ∂RN
+ ' RN−1,

2 < p ≤ 2∗ := 2(N − 1)/(N − 2), the potentials a and b satisfies suitable conditions

and the nonlinearity f : RN
+ → R is a continuous function.

The operator appearing in the right-hand side of the first equation of (P ) naturally

appears when we look for self-similar solutions, that is, solutions of the special form

w(x, t) = t−λu(t−1/2x), for the following nonlinear heat equation

wt −∆w = 0, x ∈ RN
+ × (0,+∞),

∂w

∂η
= |w|p−2w, x′ ∈ RN−1 × (0,+∞).

Among other advantages, this type of solution provides qualitative properties like

global existence, blow-up and asymptotic behavior (see e.g. [57, 58, 69]). Moreover,

they preserve the PDE scaling and so carry simultaneously information about small

and large scale behaviors. The connection with (P ) is that, if we put w into the heat

equation, we see that the profile u needs to verify the same equation in (P ) with

a, b ≡ 1 and f(u) = 1/(2(p− 2))u.

It is important to show the connection between problem (P ) and the following

important class of nonlinear boundary value problems

−∆v = g(x, v), x ∈ RN
+ ,

∂v

∂η
= h(x′, v), x′ ∈ RN−1. (0.1)

Its mathematical importance arises, for instance, in the study of conformal deforma-

tion of Riemannian manifolds [29, 42, 43, 56], problems of sharp constant in Sobolev
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trace inequalities [38,41] and blow-up properties of the solutions of related parabolic

equations [47,60]. This kind of equations also appears in several applied contexts like

glaciology [77], population genetics [6], non-Newtonian fluid mechanics [39], nonlinear

elasticity [32], among others.

There is a vast literature concerning nonnegative solutions for (0.1). Using the

moving plane method, Hu [59] obtained nonexistence of positive solutions when g ≡ 0

and h(v) = vq, with 1 < q < N/(N − 2). Similar results were obtained by Chipot et

al. in [31] in the case that g(v) = avp and h(v) = vq with 1 < p ≤ (N + 2)/(N − 2),

1 < q ≤ N/(N −2), with one the inequalities being strict, and a > 0 (see also [94] for

existence and multiplicity results in the double subcritical case). In dimension N = 2

and g ≡ 0, Cabré and Morales [21] presented necessary and sufficient conditions

on h(v) for the existence of layer solutions, that is, bounded solutions that satisfy

some monotonicity properties. When g ≡ 0 and h(v) = (N − 2)vN/(N−2), existence of

positive solution decaying as |x|2−N at infinity was obtained by Escobar [41] using the

conformal equivalence between the unit ball in RN and the half-space (see also [91]).

In the same paper, it was considered the case g(v) = N(N − 2)v(N+2)/(N−2) and

h(v) = bvN/N(N−2). Later, Chipot et al. [30] removed the decay assumption by using

the shrinking sphere method to give a complete description of positive solutions when

g(v) = av(N+2)/(N−2) and h(v) = bvn/(N−2). Similar results were obtained by Li and

Zhu in [66], including a 2-dimensional version with exponential type nonlinearities.

Notice that, if u is a solution of (P ), then the function v = exp(|x|2/8)u verifies

(0.1) for

g(x, v) = −
(
N

4
+
|x|2

16

)
v + ã(x)f(exp(−|x|2/8)v), h(x′, v) = b̃(x′)|v|2∗−2v,

where ã(x) = a(x) exp(|x|2/8) and b̃(x′) = b(x′) exp
(
− |x′|2

4(N−2)

)
. Differently from the

former cases, this problem is not homogeneous and the nonlinearity g is unbounded

in the spatial variable. Hence, the techniques used in the aforementioned works do

not apply and we need to perform a different approach to deal with the drift term

inside the domain.

In order to overcome this, notice that, if we set

K(x) = exp(|x|2/4),

we have that 2∇K = xK and the first equation in (P ) can be rewritten as

−div(K(x)∇u) = K(x)a(x)f(u), in RN
+ .

Hence, it is natural to look for finite energy solutions belonging to the Sobolev space

D1,2
K (RN

+ ) defined as the closure of C∞c (RN
+ ) with respect to the norm

‖u‖ =

(∫
RN+
K(x)|∇u|2dx

)1/2

.
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This kind of space was first introduced by Escobedo and Kavian [44] who considered

a problem in the whole space RN . The upper half-space case was presented in [47],

where it is proved that D1,2
K (RN

+ ) is compactly embedded into the weighted Lebesgue

space

LrK(RN
+ ) =

u ∈ Lr(RN
+ ) : ‖u‖r =

(∫
RN+
K(x)|u|rdx

)1/r

< +∞

 ,

for any 2 ≤ r ≤ 2∗. By taking r = 2 in particular, we can solve the linear problem

associated with (P ), namely

(LP )


−∆u− 1

2
(x · ∇u) = λu, in RN

+ ,

∂u

∂ν
= 0, on RN−1,

and use spectral theory to obtain a sequence of eigenvalues (λj)j∈N such that

0 < λ1 < λ2 ≤ · · · ≤ λj ≤ · · ·

with lim
j→∞

λj = +∞. Moreover, as we will see later, the first eigenvalue is exactly

λ1 = N/2.

The thesis has five chapters. In the first three, we consider different versions of

problem (P ), by varying the assumptions on a, b and f . In the two last chapter we

consider only the first equation in (P ) but in the whole space RN. Despite having

intersections, any chapter can be read independently. In what follows we present the

main results of each chapter.

Chapter 1

In the first chapter, we consider our first variation of problem (P ), namely

(P1)


−∆u− 1

2
(x · ∇u) = λu, x ∈ RN

+ ,

∂u

∂η
= |u|2∗−2u, x′ ∈ RN−1,

where 2∗ := 2(N − 1)/(N − 2) and λ > 0 is a parameter.

Problem (P1) is strongly linked to the classic problem

−∆u = λu+ |u|2∗−2u, u ∈ H1
0 (Ω),

where Ω ⊂ RN is a bounded domain, N ≥ 3 and λ > 0 is a parameter. This equa-

tion comes from the Yamabe’s problem, which deals with the existence of Riemannian

metrics with constant scalar curvature. In a seminal paper, Brezis and Nirenberg [19]
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proved that the existence of positive solution is related to the interaction of the pa-

rameter with the first eigenvalue λ1,Ω > 0 of the spectrum σ(−∆, H1
0 (Ω)). Among

other things, they showed that the above equation has a positive solution whenever

N ≥ 4 and λ ∈ (0, λ1,Ω). This was the starting point of an effusive literature concern-

ing this critical equation. We especially quote here the paper of Capozzi, Fortunato

and Palmieri [23], which obtained solution for λ ≥ λ1,Ω and Cerami, Solimini and

Struwe [25], which proved the existence of a sign-changing solution if 0 < λ < λ1,Ω

and N ≥ 6.

The authors in [47] considered the subcritical version of (P1), that is, the same

problem with 2∗ replaced by p ∈ (2, 2∗). Among other results, they obtained the

existence of a positive solution if λ < λ1. The critical version was recently considered

in [48] and the situation turns to be more delicate. After proving the trace embedding

D1,2
K (RN

+ ) ↪→ L2∗
K (RN−1), where

L2∗
K (RN−1) =

{
u ∈ L2∗(RN−1) : u 2∗ =

(∫
RN−1

K(x′, 0)|u|2∗dx′
)1/2∗

< +∞

}
,

the authors showed that, in the critical case, there is no self-similar solution to the

equation. Besides this, they obtained a positive solution whenever N ≥ 7 and the

parameter λ verifies

λ∗N =
N

4
+
N − 4

8
< λ < λ1.

We notice that, since λ1 = N/2, the above range is nonempty.

The first main result completes the above study by considering the case λ > λ1.

Standard arguments show that positive solutions are not expected and therefore we

look for sign-changing solutions. More specifically, we prove the following:

Theorem A. If N ≥ 7 and λ > λ1 is not an eigenvalue of (LP ), then problem (P1)

has a sign-changing solution.

In the proof, we apply the Linking Theorem [83] to the energy functional

Iλ(u) =
1

2
‖u‖2 − λ

2
‖u‖2

2 −
1

2∗
u 2∗

2∗ , u ∈ D1,2
K (RN

+ ).

Since standard arguments can not be used to verify the linking geometry, we need

to perform a detailed study of the structure of solutions of the eigenvalue problem

(LP ) and prove a trick projection result (see Lemma 1.1.4 and Proposition 1.1.5).

The assumption that λ is not an eigenvalue of (LP ) is a non-resonant type condition

of technical nature and assures that Palais-Smale sequences are bounded. Actually,

the arguments used in [23, 83] do not work in unbounded domains and therefore we

need to perform a different approach here (see Proposition 1.1.6).

Now, we come back to the range where positive solution exists and ask if it is

possible to obtain another solution. In this new setting, we prove the following:
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Theorem B. If N ≥ 7 and λ ∈ (λ∗N , λ1), then problem (P1) has a sign-changing

solution.

In order to explain the main steps for the proof, we define u+(x) = max{u(x), 0}
and u− = u+ − u. After that, inspired by the paper of Cerami, Solimini and Struwe

[25], we introduce the Nehari nodal set

Mλ = {u ∈ D1,2
K (RN

+ ) : u± 6= 0, I ′λ(u
±)u± = 0}

and prove that

dλ = inf
u∈Mλ

Iλ(u)

is attained by a solution u ∈ Mλ. Since we are dealing with the critical case, the

functional Iλ satisfies only a local Palais-Smale condition. So, we need to prove some

fine estimates (see Lemmas 1.4.2 and 1.4.3) involving the positive solution obtained

in [48] and a slight modification of the instanton functions founded independently by

Escobar [41] and Beckner [13]. This is essential to guarantee that dλ belongs to the

range where we have compactness. Since Mλ is not a differentiable manifold, it is

not easy to construct Palais-Smale sequences on the level dλ. In order to do this, we

adapt some ideas introduced by Tarantello in [90].

Chapter 2

In the second chapter, we deal with the following concave-convex type problem

(P2)


−∆u− 1

2
(x · ∇u) = λa(x)|u|q−2u, x ∈ RN

+ ,

∂u

∂η
= b(x′)|u|p−2u, x′ ∈ RN−1,

where N ≥ 3, λ > 0 is a parameter and 1 < q < 2 < p ≤ 2∗. If we denote by

r′ = r/(r− 1) the conjugated exponent of r > 1, we can present the basic hypothesis

on a, b in the following way:

(a0) a ∈ LσqK (RN
+ ) ∩ LN/2loc (RN

+ ) for some(
p

q

)′
< σq ≤

(
2

q

)′
;

(b0) b ∈ L∞(RN−1).

Since a and b can change it sign, we may define the sets

Ω+
a := {x ∈ RN

+ : a(x) > 0}, Ω+
b := {x′ ∈ RN−1 : b(x′) > 0}.
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In the first results of the second chapter we obtain existence of two nonnegative

solutions when roughly speaking the closure of the set Ω+
a intersects Ω+

b and the

parameter λ > 0 approaches zero. More specifically, denoting by Bδ(0) the open ball

centered at origin with radii δ > 0, we prove the following:

Theorem C. Suppose that a, b satisfy (a0) and (b0). If 1 < q < 2 < p < 2∗, then

there exists λ∗ > 0 such that, for any λ ∈ (0, λ∗), problem (P2) has at least two

nonnegative nonzero solutions provided

(ab) there exists δ > 0 such that

(Bδ(0) ∩ RN
+ ) ⊂ Ω+

a , (Bδ(0) ∩ ∂RN
+ ) ⊂ Ω+

b .

In the critical case we also obtain two nonnegative solutions, but now we need to

add a flatness condition on the potential b:

Theorem D. Suppose that N ≥ 7, p = 2∗ and the other conditions of Theorem C

are verified. Then there exists λ∗ > 0 such that, for any λ ∈ (0, λ∗), problem (P2)

has at least two nonnegative nonzero solutions provided

(b1) there exist M > 0 and σ > N − 1 such that

b ∞ − b(x′) ≤M |x′|σ, for a.e. x′ ∈ Bδ(0) ∩ ∂RN
+ .

The first solution will be obtained with a standard minimization argument while

the second one requires finer arguments. This is specially true when p = 2∗, since the

trace embedding we are going to use fails to be compact. Two points are important

to overcome this difficulty: a trick regularization study of the first solution on the

boundary and the application of an idea of Brezis and Nirenberg [19], together with

fine estimates of a modification of the instanton functions founded by Escobar [41]

and Beckner [13].

Still in the second chapter, we take advantage of the symmetry to get more and

more solutions (with no prescribed sign). Unfortunately, in this case we do not assume

that both the potentials are indefinite.

We prove the following:

Theorem E. Suppose that 1 < q < 2, a ≥ 0 and b 6≡ 0 satisfiy (a0) and (b0),

respectively. Then problem (P2) has infinitely many solutions in each of the following

cases:

1. 2 < p < 2∗ and λ > 0;

2. p = 2∗, b ≤ 0 and λ > 0;

14



3. p = 2∗ and λ > 0 is small.

Theorem F. Suppose that 1 < q < 2 < p < 2∗, a 6≡ 0 and b ≥ 0 satisfy (a0) and

(b0), respectively. Then, for any λ > 0, problem (P2) has infinitely many solutions.

The above theorems will be proved as application of suitable versions of the Sym-

metric Mountain Pass Theorem [3]. These versions were proved by Tonkes in the

paper [92] which strongly motivated our second chapter (see also [11, 12] for some

earlier results). In the critical case, when b ≤ 0, the boundary term is related with a

semi-norm and therefore we can argue as in the subcritical case. When p = 2∗ and b

is indefinite in sign, we borrow an argument from [10]. It can be proved that, when

b ≤ 0, the energy of the solutions given by Theorem E are negative and goes to zero.

On the other hand, in Theorem F, this energy goes to infinity, the same occurring

with the norm of the solutions.

We finally notice that the results of Chapter 2 were recently published in [53].

Chapter 3

The third chapter concerns with existence and multiplicity of solutions for the prob-

lem

(P3)


−∆u− 1

2
(x · ∇u) = f(u), x ∈ RN

+ ,

∂u

∂η
= β|u|2∗−2u, x′ ∈ ∂RN

+ ,

where N ≥ 3, β > 0 is a parameter and f : R→ R satisfies the following assumptions:

(f0) f : R→ R is continuous;

(f1) there exist a1, a2 > 0 and 2 < p < 2∗ := 2N/(N − 2) such that

|f(s)| ≤ a1 + a2|s|p−1, ∀ s ∈ R;

(f2) there holds

lim
s→0

f(s)

s
= 0;

(f3) there exists 2 < θ < 2∗ such that

0 < θF (s) ≤ f(s)s, ∀ s ∈ R \ {0},

where F (s) :=
∫ s

0
f(τ) dτ.

The first result of this chapter can be stated as follows:
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Theorem G. Suppose that f is odd and satisfies (f0) − (f3). Then, for any given

k ∈ N, there exists β∗ = β∗(k) > 0 such that problem (P3) has at least k pairs of

solutions, provided β ∈ (0, β∗).

In the proof, we apply a version of the Symmetric Mountain Pass Theorem. The

main task here is the management of Palais-Smale sequences and we follow ideas

presented in Silva and Xavier [87]. Since we are dealing with unbounded domains, the

former argument does not directly apply and we need to perform a trick adaptation of

Bianchi, Chabrowski and Szulkin’s ideas [15, 27] and the concentration compactness

principle due to Lions [67].

In the second result of the chapter, we do not require symmetry for f and obtained

the existence of nonnegative solution. In this case, the parameter β does not play

any role and we prove the following:

Theorem H. Suppose that N ≥ 7 and f satisfies (f0)− (f3). Then problem (P3) has

a nonnegative nonzero solution provided

lim
ε→0+

εN−2

∫ 1/ε

0

F

(
ε−(N−2)/2

[s2 + 1](N−2)/2

)
sN−1 ds = +∞. (0.2)

In the proof we follow the paper of Brezis and Nirenberg [19]. After obtaining

a local compactness condition for the associated functional, we need to prove that

it Mountain Pass level belongs to the correct range. At this point we perform some

fine estimates and use the technical condition (0.2). It was inspired by a similar one

which appeared in [19, Lemma 2.1] and it holds if, for instance, F (s) ≥ γ|s|p, for

some γ > 0.

Chapter 4

In Chapter 4, we are concerned with positive solutions for the singular equation

−∆u− 1

2
(x · ∇u) = µh(x)uq−1 + λu+ u2∗−1, in RN ,

where N ≥ 3, λ > 0, µ > 0 is a parameter, 0 < q < 1 and h has some somability

properties. Before presenting the condition on h, we need to say a few words about

the variational structure of the problem. After multiplying the equation by K(x) :=

exp(|x|2/4), it can be rewritten as

(P4)

−div(K(x)∇u) = µK(x)h(x)uq−1 + λK(x)u+K(x)u2∗−1, in RN ,

u > 0, in RN .

16



It is natural to look for solutions in the space D1,2
K (RN) defined as the closure of

C∞c (RN) with respect to the norm

‖u‖ :=

(∫
RN
K(x)|∇u|2 dx

)1/2

.

It was proved in [44] that D1,2
K (RN) is a Hilbert space which is continuously embedded

into the weighted Lebesgue spaces

LpK(RN) :=

{
u ∈ Lp(RN) : ‖u‖p :=

(∫
RN
K(x)|u|pdx

)1/p

<∞

}
,

for any p ∈ [2, 2∗].

Due to the difficulties related to the operator and the singular nature of the

nonlinearity at the origin, we do not expect to find regular solutions. Hence, as usual

in the literature, we call u ∈ D1,2
K (RN) a solution for problem (P4) if it satisfies u > 0

a.e. in RN and, for any φ ∈ D1,2
K (RN), we have that h(x)uq−1φ ∈ L1

K(RN) and∫
RN
K(x)

[
(∇u · ∇φ)− µh(x)uq−1φ− λuφ− u2∗−1φ

]
dx = 0.

In our first result we obtain a solution when the paramenter µ > 0 is small. More

specifically, we shall prove the following:

Theorem I. Suppose that λ < N/2 and h > 0 satisfies

(h) h ∈ L1
K(RN) ∩ L2

K(RN).

Then there exists µ∗ > 0 such that problem (P4) has a solution, whenever µ ∈ (0, µ∗).

In the proof, we apply a minimization argument for a perturbed (nonsigular)

problem. We notice that condition λ < N/2 is necessary for the existence of a

solution. Indeed, it is proved in [44] that the linearized version of equation (P4) has

the pair (λ, u) = (N/2, ϕ1) as a solution, where ϕ1(x) = exp(−|x|2/4) > 0. So, if

u0 ∈ X is a solution, we may pick v = ϕ1 in the integral formulation to get(
N

2
− λ
)∫

RN
K(x)uϕ1 dx =

∫
RN
K(x)

[
µh(x)uq−1ϕ1 + u2∗−1ϕ1

]
dx > 0,

from which it follows that λ < N/2.

In our second result concernin (P4), we obtain another solution under an addi-

tional lower bound on the value of λ. More specifically, we prove the following:

Theorem J. Suppose that max{1, N/4} < λ < N/2, h > 0 is continuous and satisfies

(h). Then there exists 0 < µ∗ < µ∗ such that problem (P4) has at least two solutions,

whenever µ ∈ (0, µ∗)

17



In order to obtain the second solution, we apply the Mountain Pass Theorem to

a perturbed functional, together with a limit process. The extra assumption on λ is

related with the range of existence of positive solution for the case µ = 0 (nonsingular)

obtained in [44]. It is worth mentioning that the continuity of h may be replaced by

the weaker condition that the infimum of h is positive in any ball.

Chapter 5

In Chapter 5, we deal with the following equation

(P5) −∆u+
1

2
(x · ∇u) = a(x)f(u), x ∈ R2,

where a is a sign-changing potential and the nonlinerity f has an exponential critical

growth at infinity.

We follow [2] to impose the assumptions on the indefinite potential a. More

specifically, assume that

(a1) a : R2 → R is a bounded sign-changing continuous function;

(a2) if

Ω+ := {x ∈ R2; a(x) > 0}, Ω− := {x ∈ R2; a(x) < 0},

then dist(Ω+,Ω−) > 0;

(a3) there exists R > 0 such that a(x) < 0 for |x| ≥ R.

We are interested in the case that f is superlinear both at the origin and at

infinity, namely

(f0) f ∈ C(R,R) and there exists α0 > 0 such that

lim
s→+∞

f(s)

eαs2
=

{
0 if α > α0,

+∞ if α < α0;

(f1) lim
s→0

f(s)/s = 0.

Given r ≥ 2, it is proved in [50] that D1,2
K (RN) is compactly embedded into the

weighted Lebesgue space LrK(R2). Hence, we can define the constant

S2 := inf

{∫
R2

K(x)|∇u|2dx :

∫
R2

K(x)|u|2 dx = 1

}
.

Since Ω+ is far from Ω−, we can find ζ ∈ C∞(R2, [0, 1]) such that

ζ ≡ 1, in Ω+, ζ ≡ 0, in Ω−, M := sup
R2

|∇ζ| <∞.

Our technical assumptions on f can be stated as follows:
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(f2) there exist ν > 2 and 0 < θ < ν
[
2(1 +MS

−1/2
2 )

]−1

such that,

0 <
ν

θ
F (s) ≤ f(s)s, ∀ |s| > 0,

where F (s) :=
∫ s

0
f(τ) dτ ;

(f3) there exist K0, R0 > 0 such that

0 < F (s) ≤ K0|f(s)|, ∀ |s| ≥ R0;

(f4) if x0 ∈ Ω+ and r > 0 are such that a(x0) = maxΩ+ a and a(x) ≥ (maxΩ+ a)/2

in Br(x0), then

lim
s→+∞

sf(s)e−α0s2 ≥ β0 >
8

α0r2 ·maxΩ+ a
exp

(
r2

8
+

r4

512

)
.

We prove the following existence result:

Theorem K. Suppose that (a1)−(a3) and (f0)−(f4) hold. Then problem (P5) admits

at least a weak nontrivial solution.

In the proof we apply the Mountain Pass Theorem. Since the potential a changes

it sign, it is not so easy to prove that Palais-Smale sequences are bounded. Conditions

(a2) and (f2) are important in this issue. Condition (f3) has first appeared in [36]

and provides a compactness property for the Palais-Smale sequence. With the aim of

overcome the difficulties imposed by the lack of compactness, since we are dealing with

the whole space R2, we invoke a version of the Trudinger-Moser inequality together

with assumption (f4) and the Moser’s functions to find the correct localization of the

mountain pass level. We notice that (f4) is weaker than lims→+∞ f(s)se−α0s2 = +∞,

which have been used in some former papers (see (g5) in [2] for instance).

We finally notice that the results of Chapter 5 are going to appear in [54].
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CHAPTER 1

Sign-changing solutions for an elliptic equation with critical

nonlinear boundary condition

Consider the following nonlinear boundary value problem

−∆v = f(x, v), in RN
+ ,

∂v

∂η
= g(x, v), on RN−1, (1.1)

where RN
+ =

{
(x′, xN) : x′ ∈ RN−1, xN > 0

}
is the upper half-space, ∂

∂η
denotes the

outer unit normal derivative and we have identified ∂RN
+ ' RN−1. Its mathematical

importance arises, for instance, in the study of conformal deformation of Riemannian

manifolds [29, 42, 43, 56], problems of sharp constant in Sobolev trace inequalities

[38,41] and blow-up properties of the solutions of related parabolic equations [47,60].

This kind of equations also appears in several applied contexts like glaciology [77],

population genetics [6], non-Newtonian fluid mechanics [39], nonlinear elasticity [32],

among others.

There is a vast literature concerning nonnegative solutions for (1.1). Using the

moving plane method, Hu [59] obtained nonexistence of positive solutions when f ≡ 0

and g(v) = vq, with 1 < q < N/(N − 2). Similar results were obtained by Chipot et

al. in [31] in the case that f(v) = avp and g(v) = vq with 1 < p ≤ (N + 2)/(N − 2),

1 < q ≤ N/(N −2), with one the inequalities being strict, and a > 0 (see also [94] for

existence and multiplicity results in the double subcritical case). In dimension N = 2

and f ≡ 0, Cabré and Morales [21] presented necessary and sufficient conditions

on g(v) for the existence of layer solutions, that is, bounded solutions that satisfy

some monotonicity properties. When f ≡ 0 and g(v) = (N − 2)vN/(N−2), existence of

positive solution decaying as |x|2−N at infinity was obtained by Escobar [41] using the

conformal equivalence between the unit ball in RN and the half-space (see also [91]).
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In the same paper, it was considered the case f(v) = N(N − 2)v(N+2)/(N−2) and

g(v) = bvN/N(N−2). Later, Chipot et al. [30] removed the decay assumption by using

the shrinking sphere method to give a complete description of positive solutions when

f(v) = av(N+2)/(N−2) and g(v) = bvn/(N−2). Similar results were obtained by Li and

Zhu in [66], including a 2-dimensional version with exponential type nonlinearities.

In this chapter, we deal with the boundary critical problem

(P1)


−∆u− 1

2
(x · ∇u) = λu, in RN

+ ,

∂u

∂η
= |u|2∗−2u, on RN−1,

where 2∗ := 2(N−1)/(N−2). Notice that, if u is a solution of (P1), then the function

v = exp(|x|2/8)u verifies (1.1) for

f(x, v) =

(
λ− N

4
− |x|

2

16

)
v, g(x, v) = exp

(
− |x|2

4(N − 2)

)
|v|2∗−2v.

Differently from the former cases, this problem is not homogeneous and the non-

linearity f is unbounded in the spatial variable. Hence, the techniques used in the

aforementioned works do not apply and we need to perform a different approach to

deal with the drift term inside the domain.

Before presenting our result is important to emphasize the similarity of our equa-

tion with the classical problem

−∆u = λu+ |u|2∗−2u, u ∈ H1
0 (Ω),

where Ω ⊂ RN is a bounded domain, N ≥ 3 and λ > 0 is a parameter. This equa-

tion comes from the Yamabe’s problem, which deals with the existence of Riemannian

metrics with constant scalar curvature. In a seminal paper, Brezis and Nirenberg [19]

proved that the existence of positive solution is related to the interaction of the pa-

rameter with the first eigenvalue λ1,Ω > 0 of the spectrum σ(−∆, H1
0 (Ω)). Among

other things, they showed that the above equation has a positive solution whenever

N ≥ 4 and λ ∈ (0, λ1,Ω). This was the starting point of an effusive literature concern-

ing this critical equation. We especially quote here the paper of Capozzi, Fortunato

and Palmieri [23], which obtained solution for λ ≥ λ1,Ω and Cerami, Solimini and

Struwe [25], which proved the existence of a sign-changing solution if 0 < λ < λ1,Ω

and N ≥ 6.

Besides the natural connection with the Brezis and Nirenberg problem, (P1) is

closely related to the nonlinear heat equation

wt −∆w = 0, in RN
+ × (0,+∞),

∂w

∂η
= |w|p−2w, on RN−1 × (0,+∞).

A solution with the special form w(x, t) = t−λu(t−1/2x) is called self-similar solution.

It is known (see e.g. [57, 58, 69]) that it provides qualitative properties like global
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existence, blow-up and asymptotic behavior. Moreover, they preserve the PDE scal-

ing and so carry simultaneously information about small and large scale behaviors.

The connection with (P1) is that, if we put w into the heat equation, we see that

the profile u needs to verify the same equation in (P1) with λ = 1/(2(p− 2)) and 2∗

replaced by p ∈ (2, 2∗].

Setting K(x) = exp(|x|2/4) and noticing that 2∇K = xK, the first equation in

(P1) can be rewritten as

−div(K(x)∇u) = λK(x)u, in RN
+ .

Hence, it is natural to look for finite energy solutions belonging to the Sobolev space

D1,2
K (RN

+ ) defined as the closure of C∞c (RN
+ ) with respect to the norm

‖u‖ =

(∫
RN+
K(x)|∇u|2dx

)1/2

.

This kind of space was first introduced by Escobedo and Kavian [44] who considered

a problem in the whole space RN . The upper half-space case was presented in [47],

where it is proved that D1,2
K (RN

+ ) is compactly embedded into the weighted Lebesgue

space

L2
K(RN

+ ) =

u ∈ L2(RN
+ ) : ‖u‖2 =

(∫
RN+
K(x)u2dx

)1/2

< +∞

 .

So, we can solve the linear problem associated with (P1), namely

(LP )


−∆u− 1

2
(x · ∇u) = λu, in RN

+ ,

∂u

∂η
= 0, on RN−1,

and use spectral theory to obtain a sequence of eigenvalues (λj)j∈N such that

0 < λ1 < λ2 ≤ · · · ≤ λj ≤ · · ·

with lim
j→∞

λj = +∞. Moreover, as we will see later, the first eigenvalue is exactly

λ1 = N/2.

The authors in [47] considered the subcritical version of (P1), that is, the same

problem with 2∗ replaced by p ∈ (2, 2∗). Among other results, they obtained the

existence of a positive solution if λ < λ1. As a consequence, self-similar solutions to

the associated heat equation exist whenever 2 + (1/N) < p < 2∗. The critical version

was recently considered in [48] and the situation turns to be more delicate. After

proving the trace embedding D1,2
K (RN

+ ) ↪→ L2∗
K (RN

+ ), where

L2∗
K (RN−1) =

{
u ∈ L2∗(RN−1) : u 2∗ =

(∫
RN−1

K(x′, 0)|u|2∗dx′
)1/2∗

< +∞

}
,
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the authors showed that, in the critical case, there is no self-similar solution to the

equation. Besides this, they obtained a positive solution whenever N ≥ 7 and the

parameter λ verifies

λ∗N =
N

4
+
N − 4

8
< λ < λ1.

We notice that, since λ1 = N/2, the above range is nonempty.

In the first part of this chapter we complete the above study by considering the

case λ > λ1. Standard arguments show that positive solutions are not expected

and therefore we look for sign-changing solutions. More specifically, we prove the

following:

Theorem A. If N ≥ 7 and λ > λ1 is not an eigenvalue of (LP ), then problem (P1)

has a sign-changing solution.

In the proof, we apply the Linking Theorem [83] to the energy functional

Iλ(u) =
1

2
‖u‖2 − λ

2
‖u‖2

2 −
1

2∗
u 2∗

2∗ , u ∈ D1,2
K (RN

+ ).

Since standard arguments can not be used to verify the linking geometry, we need

to perform a detailed study of the structure of solutions of the eigenvalue problem

(LP ) and prove a trick projection result (see Lemma 1.1.4 and Proposition 1.1.5).

The assumption that λ is not an eigenvalue of (LP ) is a non-resonant type condition

of technical nature and assures that Palais-Smale sequences are bounded. Actually,

the arguments used in [23, 83] do not work in unbounded domains and therefore we

need to perform a different approach here (see Proposition 1.1.6).

In the second part of the chapter, we come back to the range where positive

solution exists and ask if it is possible to obtain another solution. In this new setting,

we prove the following:

Theorem B. If N ≥ 7 and λ ∈ (λ∗N , λ1), then problem (P1) has a sign-changing

solution.

In order to explain the main steps for the proof, we first define u+(x) = max{u(x), 0}
and u− = u+ − u. After that, inspired by the paper of Cerami, Solimini and

Struwe [25], we introduce the Nehari nodal set Mλ = {u ∈ D1,2
K (RN

+ ) : u± 6=
0, I ′λ(u

±)u± = 0} and prove that

dλ = inf
u∈Mλ

Iλ(u)

is attained by a solution u ∈ Mλ. Since we are dealing with the critical case, the

functional Iλ satisfies only a local Palais-Smale condition. So, we need to prove some

fine estimates (see Lemmas 1.4.2 and 1.4.3) involving the positive solution obtained

in [48] and a slight modification of the instanton functions founded independently by
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Escobar [41] and Beckner [13]. This is essential to guarantee that dλ belongs to the

range where we have compactness. Since Mλ is not a differentiable manifold, it is

not easy to construct Palais-Smale sequences on the level dλ. In order to do this, we

adapt some ideas introduced by Tarantello in [90].

The chapter is organized as follows: in the next section, we present the variational

framework and some technical results for Theorem A, which is proved after in Section

1.2. In Section 1.3, we establish the minimization scheme for the second case and in

the last section, we obtain the solution when λ ∈ (λ∗N , λ1).

1.1 Variational setting and preliminary results

We start this section setting K(x) := exp(|x|2/4) and noticing that

div(K(x)∇u) = K(x)

(
∆u+

1

2
(x · ∇u)

)
,

for any regular function u. Hence, it is natural to define the Banach space D1,2
K (Ω)

as being the closure of C∞c (Ω) with respect to the norm

‖u‖D1,2
K (Ω) :=

(∫
Ω

K(x)|∇u|2 dx
) 1

2

,

for any open set Ω ⊂ RN . For simplicity, we denote D1,2
K (RN

+ ) by X and ‖ · ‖D1,2
K (RN+ )

by ‖ · ‖. We also define, for any 2 ≤ r ≤ 2∗ := 2N/(N − 2), the weighted Lebesgue

space

LrK(RN
+ ) :=

 u ∈ Lr(RN
+ ) : ‖u‖r :=

(∫
RN+
K(x)|u|rdx

)1/r

<∞

 .

According to [47, Lemma 2.2], the embedding X ↪→ LrK(RN
+ ) is continuous for 2 ≤

r ≤ 2∗ and compact for 2 ≤ r < 2∗ . Moreover, denoting by

LrK(RN−1) :=

{
u ∈ Lr(RN−1) : u r :=

(∫
RN−1

K(x′, 0)|u|rdx′
)1/r

<∞

}
,

it was proved in [47, Lemma 2.4] the compact trace embedding X ↪→ LrK(RN−1),

for 2 < r < 2∗. Subsequently, the authors in [48, Theorem 1.1] extended this former

result by proving that the embedding is really continuous for 2 ≤ r ≤ 2∗ and compact

for 2 ≤ r < 2∗. So, the natural range of the trace embedding is covered and we can

define the best constant

S(K) := inf
ϕ∈X\{0}

‖ϕ‖2

ϕ 2
2∗

> 0. (1.2)

Actually, it is proved in [48] that the above infimum is achieved and it is equal to the

best constant S of the Sobolev trace embedding D1,2(RN
+ ) ↪→ L2∗(RN−1).
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The energy functional associated with our problem Iλ : X → R is given by

Iλ(u) :=
1

2
‖u‖2 − λ

2
‖u‖2

2 −
1

2∗
u 2∗

2∗ , ∀u ∈ X.

Standard calculations show that Iλ ∈ C1(X,R) and the weak solutions of (P1) are

precisely the critical points of Iλ.

For proving Theorem A, we shall use the following variant of the Mountain Pass

Theorem [83] (see also [93, Theorem 2.12]).

Theorem 1.1.1. Let E = V ⊕W be a real Banach space with dimV <∞. Suppose

I ∈ C1(E,R) satisfies

(I1) there exist ρ, α > 0 such that I|W∩∂Bρ(0)≥ α;

(I2) there exists e ∈ W ∩ ∂B1(0) and R > ρ such that

I|∂Q≤ 0,

with

Q :=
(
BR(0) ∩ V

)
⊕ {te : 0 < t < R}.

If

c := inf
γ∈Γ

max
u∈Q

I(γ(u)), (1.3)

where Γ :=
{
γ ∈ C(Q,E) : γ ≡ Id on ∂Q

}
, then there exists a sequence (un) ⊂ E

such that I(un)→ c and I ′(un)→ 0, as n→ +∞.

We are intending to apply this abstract result with E = X and I = Iλ. In order

to present the decomposition of the space X we consider the linearized problem

(LP )


−div(K(x)∇u) = λK(x)u, in RN

+ ,

∂u
∂η

= 0, on RN−1,

u ∈ D1,2
K (RN

+ ).

Thanks to the compact embedding X ↪→ L2
K(RN

+ ), we can use standard spectral

theory to obtain sequence of eigenvalues (λj)j∈N such that

0 < λ1 < λ2 ≤ · · · ≤ λj ≤ · · ·

with lim
j→∞

λj = +∞. A straightforward computation shows that

ϕ1(x) := exp
(
−|x|2/4

)
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satisfies (LP ). Since this function is positive, its associated eigenvalue is the first one.

Noticing that ∇ϕ1 = −(x/2)K(x)−1, we can explicitly compute this first eigenvalue

in the following way:

λ1 = −div(K(x)∇ϕ1)

K(x)ϕ1

=
1

2
div(x) =

N

2
.

Along all this section we shall assume that λ ∈ (λk, λk+1), for some k ∈ N. In

order to apply Theorem 1.1.1, we set

V := span{ϕ1, . . . , ϕk}, W := V ⊥, (1.4)

in such way that X = V ⊕W . As it is well known from the variational characterization

of the eigenvalue of (LP ), we have that

1

λk
‖v‖2 ≤ ‖v‖2

2, ‖w‖2
2 ≤

1

λk+1

‖w‖2, ∀ v ∈ V, w ∈ W. (1.5)

The condition (I1) easily follows from the above inequalities.

Lemma 1.1.2. The functional Iλ satisfies assumption (I1) of Theorem 1.1.1 .

Proof. Using (1.5) and (1.2) we obtain, for any w ∈ W ,

Iλ(w) ≥ 1

2

(
λk+1 − λ
λk+1

)
‖w‖2 − 1

2∗
w 2∗

2∗ ≥ ‖w‖
2

(
C1

2
− 1

2∗
S−2∗/2‖w‖2∗−2

)
,

where C1 := (λk+1 − λ)/λk+1 > 0. Hence,

Iλ(w) ≥ ρ2C1

4
, ∀w ∈ W ∩ ∂Bρ(0),

for ρ :=
[
(2∗C1S

2∗/2)/4
]1/(2∗−2)

. The lemma is proved.

The proof of (I2) is more involved and we need to perform a detailed study of

the solutions of (LP ). We start with an interesting result proved by Escobedo and

Kavian [44, Proposition 2.3] via a Fourier Transform approach:

Proposition 1.1.3. The eigenvalues of the problem −div(K(x)∇u) = µK(x)u, in RN ,

u ∈ D1,2
K (RN),

(1.6)

are µk = (N + k − 1)/2, with k ∈ N. The associated eigenspaces are given by

Vk := span
{
Dβϕ1 : |β| = k − 1

}
where ϕ1(x) = exp(−|x|2/4), β ∈ (N ∪ {0})N , |β| := β1 + · · · + βN and Dβ :=

∂β1 · · · ∂βN . In particular, any eigenfunction can be written as P (x)ϕ1(x), for some

polynomial function P .
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As an application of the above result, we can describe the shape of the solutions

of the problem (LP ). More specifically, we have the following:

Lemma 1.1.4. If ϕ ∈ X is an eigenfunction of (LP ), then there exists a polynomial

p(x) such that ϕ(x) = p(x)ϕ1(x), for any x ∈ RN
+ .

Proof. Suppose that ϕ ∈ X is an eigenfunction of (LP ) and define

v(x′, xN) :=

ϕ(x′, xN), if xN ≥ 0,

ϕ(x′,−xN), if xN < 0.

Since ϕxN (x′, 0) = 0 in RN−1, we can check that v ∈ D1,2
K (RN). Moreover, v|RN−

∈

D1,2
K (RN

− ) is a solution of a linear problem analogous to (LP ) but with RN
+ replaced

by RN
− := {(x′, xN) : x′ ∈ RN−1, xN < 0}.

Let φ ∈ C∞c (RN) and denote by φ+ ∈ C∞c (RN
+ ) the restriction of φ to RN

+ . We

define φ− in an analogous way and compute∫
RN
K(x)(∇v · ∇φ) dx =

∫
RN+
K(x)(∇ϕ · ∇φ+) dx

+

∫
RN−
K(x)(∇ϕ(x′,−xN) · ∇φ−) dx

= λ

∫
RN+
K(x)vφ+ dx+ λ

∫
RN−
K(x)vφ− dx

= λ

∫
RN
K(x)vφ dx,

that is, v is an eigenfunction of (1.6). The result follows from Proposition 1.1.3.

We are ready to prove a technical result which will be useful for verifying the

geometric condition (I2).

Proposition 1.1.5. Suppose that φ ∈ C∞c (RN
+ ) \ {0} is such that φ|RN−1

6= 0 and

its orthogonal projection φ⊥ over W is nonzero. Then the functional Iλ satisfies

assumption (I2) of Theorem 1.1.1 for e := φ⊥/‖φ⊥‖.

Proof. Since λ > λk, we can use the variational inequality (1.5) to check that

Iλ ≤ 0 in V . Thus, since the set Q defined in Theorem 1.1.1 is such that ∂Q =

{v + te : v ∈ V, ‖v‖ = R, 0 ≤ t ≤ R}∪{v ∈ V : ‖v‖ ≤ R}∪{v+Re : v ∈ V, ‖v‖ ≤
R}, condition (I2) holds if we can prove that

lim
‖z‖→+∞, z∈V⊕Re

I(z) = −∞. (1.7)

In order to prove the above claim, we first notice that there exists a maximal set

of indices L = {j1, . . . , jl} ⊂ {1, . . . , k} such that O := {ϕj1(x′, 0), . . . , ϕjl(x
′, 0)} is

linearly independent and

spanO = span{ϕ1(x′, 0), . . . , ϕk(x
′, 0)} (1.8)
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After a rearrangement, we may assume that L = {1, 2, . . . ,m}, with m ≤ k.

We first show that the function

|(b1, · · · , bm, bm+1)|1 := b1ϕ1 + · · ·+ bmϕm + bm+1φ
⊥

2∗

defines a norm in Rm+1. Indeed, suppose that |(b1, · · · , bm, bm+1)|1 = 0, in such way

that

b1ϕ1(x′, 0) + · · ·+ bmϕm(x′, 0) + bm+1φ
⊥(x′, 0) = 0, ∀x′ ∈ RN−1.

If bm+1 6= 0, then φ⊥(·, 0) is a linear combination of the elements of O. By Lemma

1.1.4, there exists a polynomial q such that φ⊥(x′, 0) = q(x′)ϕ1(x′, 0), for any x′ ∈
RN−1. Since φ − φ⊥ ∈ span{ϕ1, · · · , ϕk}, it follows again from Lemma 1.1.4 that

there exists a polynomial r such that

φ(x′, 0) = [(φ− φ⊥) + φ⊥](x′, 0) = r(x′)ϕ1(x′, 0), ∀x′ ∈ RN−1.

But φ|RN−1
6= 0, ϕ1 > 0 and φ has compact support, and therefore we could construct

polynomials of type t 7→ p(x1, . . . , t, . . . , xN−1) with infinitely many roots, which is

absurd. Thus, we have that bm+1 = 0 and, since O is linearly independent, all the

others coefficients are also null. The other properties of a norm can be easily verified.

Now we prove that there exist m polynomials Qi : Rk → R of degree 1, 1 ≤ i ≤ m,

and C1 > 0 such that

a1ϕ1 + · · ·+ akϕk + ak+1φ
⊥

2∗ ≥ C1

[(
m∑
i=1

Q2
i (a1, . . . , ak)

)
+ a2

k+1

]1/2

, (1.9)

for any a1, . . . , ak+1 ∈ R. Indeed, since | · |1 is a norm in Rm+1, there exists C1 > 0

such that

|(b1, . . . , bm, bm+1)|1 ≥ C1

(
m+1∑
i=1

b2
i

)1/2

, (1.10)

for any (b1, . . . , bm+1) ∈ Rm+1. For each l = 1, . . . , k, we infer from (1.8) that ϕl =∑m
i=1 c

l
iϕi in RN−1, and consequently(

k∑
l=1

alϕl

)
+ ak+1φ

⊥ =

(
m∑
i=1

Qi(a)ϕi

)
+ ak+1φ

⊥, in RN−1,

where Qi(a) :=
∑k

l=1 alc
l
i and a = (a1, . . . , ak) ∈ Rk. Setting bi := Qi(a), 1 ≤ i ≤ m,

and bm+1 = ak+1, (1.9) is a direct consequence of the above expression, (1.10) and

the definition of | · |1.

We are ready to prove (1.7). Let z =
(∑k

i=1 aiϕi

)
+ ak+1φ

⊥ ∈ V ⊕Re and notice

that, by (LP ) and the orthogonality of the eigenfunctions, we have that

Iλ(z) = −1

2

k∑
i=1

a2
i (λ− λi)‖ϕi‖2

2 +
a2
k+1

2
(‖φ⊥‖2 − λ‖φ⊥‖2

2)− 1

2∗
z 2∗

2∗ .
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Hence, if we set

C2 := min
1≤i≤k

(λ− λi)‖ϕi‖2
2 > 0, C3 := (‖φ⊥‖2 − λ‖φ⊥‖2

2) > 0,

it follows from (1.5) and (1.9) that

Iλ(z) ≤ −C2

2

(
k∑
i=1

a2
i

)
+
C3

2
a2
k+1 −

C2∗
1

2∗
|ak+1|2∗ . (1.11)

Since V ⊕ Re is finite-dimensional, there exists C4 > 0 such that

C4‖z‖2 ≤

(
k∑
i=1

a2
i

)
+ a2

k+1.

So, if ‖z‖ → +∞, at least one of the terms on the right-hand side above goes to

infinity and therefore (1.7) is a consequence of (1.11). The proposition is proved.

In the final result of this section, we follow ideas of the celebrated paper of Brezis

and Nirenberg [19] to get a local compactness result.

Proposition 1.1.6. Suppose that (un) ∈ X satisfies

0 6= lim
n→∞

Iλ(un) = d <
1

2(N − 1)
SN−1, lim

n→∞
I ′λ(un) = 0. (1.12)

Then (un) is bounded and, along a subsequence, (un) weakly converges to a nonzero

weak solution to (Pλ).

Proof. From (1.12), we obtain(
1

2
− 1

2∗

)
un

2∗
2∗ = Iλ(un)− 1

2
I ′λ(un)un ≤ C1 + C1‖un‖. (1.13)

Using the decomposition X = V ⊕W , one can write un = vn +wn, with vn ∈ V and

wn ∈ W . Setting

J(u) :=
1

2∗

∫
RN−1

K(x′, 0)|u|2∗dx′, ∀u ∈ X,

we can use (1.12) and (1.5) to get

C2 + on(1)‖vn‖ ≥ Iλ(un)− 1

2
I ′λ(un)vn

≥ 1

2
‖wn‖2 − λ

2
‖wn‖2

2 +
1

2
J ′(un)vn −

1

2∗
un

2∗
2∗

≥ 1

2

(
1− λ

λk+1

)
‖wn‖2 +

1

2
J ′(un)vn −

1

2∗
un

2∗
2∗ ,
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where on(1) stands for a quantity approaching zero as n → +∞. If A1 := (λk+1 −
λ)/(2λk+1) > 0, the above expression, (1.13), Holder’s inequality and the trace em-

bedding imply that

A1‖wn‖2 ≤ C3 + on(1)‖vn‖+ C3‖un‖ −
1

2

∫
RN−1

K(x′, 0)|un|2∗−2unvn dx
′

≤ C3 + C4‖un‖+ C5 un
2∗−1
2∗ vn 2∗ .

≤ C3 + C4‖un‖+ C6(C1 + C1‖un‖)(2∗−1)/2∗‖un‖

and therefore

A1‖wn‖2 ≤ C3 + C7‖un‖+ C8‖un‖2−(1/2∗). (1.14)

On the other hand, from (1.5) we obtain

on(1)‖vn‖ = I ′λ(un)vn ≤
(

1− λ

λk

)
‖vn‖2 −

∫
RN−1

K(x′, 0)|un|2∗−2unvn dx
′.

and we can argue as above to get

A2‖vn‖2 ≤ C9‖un‖+ C10‖un‖2−(1/2∗),

where A2 := (λ− λk) /λk > 0. Since ‖un‖2 = ‖vn‖2 + ‖wn‖2, the above expression

and (1.14) imply that

‖un‖2 ≤ C11 + C12‖un‖+ C13‖un‖2−(1/2∗).

and therefore it follows from 2− (1/2∗) < 2 that (un) is bounded in X.

Up to a subsequence, we may assume that
un ⇀ u, weakly in X,

un → u, strongly in L2
K(RN

+ ),

un → u, strongly in LsK(RN−1),

for any 2 ≤ s < 2∗ and for some u ∈ X. Given φ ∈ C∞c (RN
+ ), we can use the above

convergences, Young’s inequality and standard computations to show that

0 = lim
n→+∞

I ′λ(un)φ = I ′λ(u)φ,

and therefore u is a critical point of Iλ.

We prove now that u 6= 0. Suppose, by contradiction, that this is not the case.

Then, un → 0 in L2
K(RN

+ ) and we can use Iλ(un)→ d and I ′λ(un)un → 0 to obtain

1

2
‖un‖2 − 1

2∗
un

2∗
2∗ = d+ on(1) (1.15)

and

‖un‖2 − un
2∗
2∗ = on(1).
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Since we may assume that ‖un‖2 → l ≥ 0, the above expression shows that un
2∗
2∗ → l.

Thus, it follows from (1.15) that

d =

(
1

2
− 1

2∗

)
l =

1

2(N − 1)
l. (1.16)

Recall that the constant S(K) defined in (1.2) is equal to the best constant S of the

trace embedding D1,2(RN
+ ) ↪→ L2∗(RN−1). So, passing the inequality S un

2
2∗ ≤ ‖un‖

2

to the limit we obtain Sl2/2∗ ≤ l. If l > 0, we conclude that l ≥ SN−1. Combining

this with (1.16), we obtain d ≥ SN−1/[2(N − 1)], which is a contradiction. Hence,

l = 0 and therefore un → 0 in X, which implies that Iλ(un)→ d = 0, contrary to the

hypothesis. Thus, u 6= 0 and we have done.

1.2 Proof of Theorem A

We devote this section to the proof of Theorem A. For any ε > 0, consider the

function

Uε(x
′, xN) :=

ε(N−2)/2

[|x′|2 + (xN + ε)2](N−2)/2
, (x′, xN) ∈ RN

+ .

They are the so-called instantons which achieves the best constant of the Sobolev

trace embedding D1,2(RN
+ ) ↪→ L2∗(RN−1) (see [41]).

We now fix R > 0, pick φ ∈ C∞(RN
+ , [0, 1]) such that φ ≡ 1 in RN

+ ∩BR(0), φ ≡ 0

in RN
+\B2R(0) and set, for each ε > 0,

ψε(x) := K(x)−1/2φ(x)Uε(x), x ∈ RN
+ .

This function ψε was extensively exploited in [48], where it was proved that, if N ≥ 7,

then

‖ψε‖2 = AN +O(ε4) + ε2γN , ‖ψε‖2
2 = O(εN−2) + ε2αN

and

ψε
2∗
2∗ = B

2∗/2
N − ε2DN + o(ε2), (1.17)

where the constants AN , BN , DN , αN , γN > 0 depend only on the dimension N .

Moreover, if we set

Qλ(u) :=
‖u‖2 − λ‖u‖2

2

u 2
2∗

, ∀u ∈ X \ {0},

there exists EN > 0, depending only on N , such that

Qλ(ψε) = S + ε2 (−EN + o(1)) , (1.18)

whenever λ > λ∗N . It is worth mention that, along this section, the notations O and

o refers to ε→ 0+.
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Remark 1. We would like to emphasize that all the constants above can be explicitly

computed in terms of the Beta function

B(a, b) :=

∫ ∞
0

sa−1

(s+ 1)a+b
ds, ∀ a, b > 0,

the dimension N and the volume σN−2 of the (N − 2)-dimensional sphere. Actually,

AN :=

∫
RN+
|∇Uε|2dx, BN :=

(∫
RN−1

|Uε|2∗dx′
)2/2∗

,

DN :=
σN−2

8(N − 2)
B

(
N + 1

2
,
N − 3

2

)
, αN :=

σN−2

2(N − 4)
B

(
N − 1

2
,
N − 3

2

)
γN :=

σN−2(N − 2)

4(N − 4)

[
B

(
N + 1

2
,
N − 3

2

)
+

1

(N − 3)
B

(
N − 1

2
,
N − 1

2

)]
and

EN :=
λαN − γN − (2/2∗)ANB

−2/2∗
N DN

BN

.

Before stating our next result, we need to introduce some useful notation. For

any u1, u2 ∈ X, we denote

(u1, u2) :=

∫
RN+
K(x) (∇u1 · ∇u2) dx, (u1, u2)2 :=

∫
RN+
K(x)u1u2 dx. (1.19)

Since ψε has compact support, for any τ ≥ 1 it is well defined

ψε τ :=

(∫
RN−1

K(x′, 0)|ψε|τdx′
)1/τ

.

Moreover, the following holds:

Lemma 1.2.1. We have that

ψε
τ
τ = O(ε(N−1)−τ(N−2)/2), ψε 1 = O(ε(N−2)/2), (1.20)

(v, ψε) = ‖v‖2O(ε(N−2)/2), (v, ψε)2 = ‖v‖2O(ε(N−2)/2), (1.21)

for any v ∈ V and τ ∈ R such that (N − 1)/(N − 2) < τ < 2∗.

Proof. For saving notation, we write only K and φ to denote K(x′, 0) and φ(x′, 0),

respectively. Using the definition of ψε and the change of variable y′ = (x′/ε), we get∫
RN−1

K|ψε|τdx′ = ετ(N−2)/2

∫
RN−1

K(2−τ)/2φτ

[|x′|2 + ε2]τ(N−2)/2
dx′

≤ C1ε
−τ(N−2)/2

∫
B2R(0)∩RN−1

1

[|x′/ε|2 + 1]τ(N−2)/2
dx′

≤ C1ε
(N−1)−τ(N−2)/2

∫
RN−1

1

[|y′|2 + 1]τ(N−2)/2
dy′.
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Using τ > (N − 1)/(N − 2), we obtain∫
RN−1

1

[|y′|2 + 1]τ(N−2)/2
dy′ ≤ C2 +

∫
{|y′|≥1}

1

|y′|τ(N−2)
dy′

≤ C2 + C3

∫ +∞

1

r−τ(N−2)rN−2dr < +∞,

and therefore the first equality in (1.20) holds. For the second one, notice that∫
RN−1

K|ψε| dx′ = ε(N−2)/2

∫
RN−1

K1/2φ

[|x′|2 + ε2](N−2)/2
dx′

≤ C4ε
(N−2)/2

∫
B2R(0)∩RN−1

1

[|x′|2 + ε2](N−2)/2
dx′

≤ C4ε
(N−2)/2

∫
B2R(0)∩RN−1

1

|x′|N−2
dx′.

Again, the last integral above is finite.

For proving (1.21) we pick v =
∑k

i=1 aiϕi ∈ V and notice that, since each ϕi ∈ X
is a solution to the linear problem (LP ) with λ = λi, then

|(v, ψε)| =

∣∣∣∣∣
k∑
i=1

λiai(ϕi, ψε)2

∣∣∣∣∣ ≤ λk

k∑
i=1

|ai||(ϕi, ψε)2|

≤ λk

k∑
i=1

|ai|‖ϕi‖L∞(RN+ )

∫
RN+
K(x)|ψε| dx.

Since all the norms in V are equivalent, there exists C5 > 0, independent of v, such

that
∑k

i=1 |ai| ≤ C5‖v‖2. Hence, if we set C6 := λk max
1≤i≤n

‖ϕi‖L∞(RN+ ), we obtain

|(v, ψε)| ≤ C5C6‖v‖2ε
(N−2)/2C7

∫
B2R(0)∩RN+

1

|x|(N−2)
dx

≤ C8‖v‖2ε
(N−2)/2,

from which the first equality in (1.21) follows. The second one can be proved along

the same lines.

The following result is the keystone for proving Theorem A.

Proposition 1.2.2. For any ε > 0 small, there holds

max
u∈V⊕Rψε

Iλ(u) <
1

2(N − 1)
SN−1.
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Proof. Given u 6= 0, a straightforward computation yields

max
t≥0

Iλ(tu) =
1

2(N − 1)

(
‖u‖2 − λ‖u‖2

2

u 2
2∗

)N−1

.

Therefore, by homogeneity, we see that it is sufficient to prove that

max
u∈Σε

(
‖u‖2 − λ‖u‖2

2

)
< S, (1.22)

where

Σε := {u = v + tψε : v ∈ V, t ∈ R, u 2∗ = 1}.

We first check that, for any u = v + tψε ∈ Σε, there holds t = O(1) as ε → 0+.

Indeed, setting

A(u) := u 2∗
2∗ − v 2∗

2∗ − tψε
2∗
2∗ ,

integrating the equality

d

ds

(
|sv + tψε|2∗ − |sv|2∗

)
= 2∗

[
|sv + tψε|2∗−2(sv + tψε)− |sv|2∗−2(sv)

]
v

and using the Mean Value Theorem we obtain

A(u) =

∫
RN−1

K(x′, 0)
(
|v + tψε|2∗ − |v|2∗ − |tψε|2∗

)
dx′

= 2∗

∫
RN−1

∫ 1

0

K(x′, 0)
(
|sv + tψε|2∗−2(sv + tψε)− |sv|2∗−2(sv)

)
v ds dx′

= 2∗(2∗ − 1)

∫
RN−1

∫ 1

0

K(x′, 0)(|sv + tψεθ|2∗−2tψεv) ds dx′,

with θ(x) ∈ [0, 1]. Since s ∈ [0, 1], we get∣∣|sv + tψεθ|2∗−2tψεv
∣∣ ≤ C1(|t||v|2∗−1|ψε|+ |t|2∗−1|v||ψε|2∗−1)

and therefore it follows from (1.20) with τ = 2∗ − 1 = N/(N − 2) that

|A(u)| ≤ C1|t|
∫

RN−1

K(x′, 0)|v|2∗−1|ψε|dx′ + C1|t|2∗−1

∫
RN−1

K(x′, 0)|v||ψε|2∗−1dx′

≤ C1|t|‖v‖2∗−1
L∞(RN−1)

O(ε(N−2)/2) + C1|t|2∗−1‖v‖L∞(RN−1)O(ε(N−2)/2).

Since V is finite-dimensional and the eigenfunctions ϕi of (LP ) are regular up to

the boundary (see Lemma 1.1.4), there exists C2 > 0, independent of v, such that

‖v‖L∞(RN−1) ≤ C2 v 2∗ . So, we infer from the above expression that

|A(u)| ≤ |t| v 2∗−1
2∗ O(ε(N−2)/2) + |t|2∗−1 v 2∗O(ε(N−2)/2). (1.23)
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From Young’s inequality with exponents s = 2∗/(2∗ − 1) and s′ = 2∗, we get

v 2∗−1
2∗ |t|O(ε(N−2)/2) ≤ 1

4
v 2∗

2∗ + C3|t|2∗O(ε(N−2)/2)2∗

=
1

4
v 2∗

2∗ + C3|t|2∗O(εN−1)

and

v 2∗|t|2∗−1O(ε(N−2)/2) ≤ 1

4
v 2∗

2∗ + C4|t|2∗O(ε(N−1)(N−2)/N).

Replacing the above expressions in (1.23) and using (N − 1)(N − 2)/N < (N − 1),

we obtain

|A(u)| ≤ 1

2
v 2∗

2∗ + |t|2∗O(ε(N−1)(N−2)/N).

Hence, using (1.17) we get

1 = u 2∗
2∗ = A(u) + v 2∗

2∗ + tψε
2∗
2∗

≥ −1

2
v 2∗

2∗ − |t|
2∗O(ε(N−1)(N−2)/N) + v 2∗

2∗ + |t|2∗ ψε 2∗
2∗

=
1

2
v 2∗

2∗ + |t|2∗
(
B

2∗/2
N +O(1)

)
,

and therefore t = O(1) as ε→ 0+.

For any given u = v + tψε ∈ Σε, it follows from (1.5), (1.21) and t = O(1) that

‖u‖2 − λ‖u‖2
2 ≤ (λk − λ)‖v‖2

2 + ‖v‖2O(ε(N−2)/2) + ‖tψε‖2 − λ‖tψε‖2
2

≤ 1

4(λ− λk)
O(εN−2) +Qλ(tψε) tψε

2
2∗ ,

(1.24)

where we have used, in the last inequality, that as2 + bs ≤ −b2/(4a) for a < 0 and

s ∈ R. Since Qλ(tψε) = Qλ(ψε), by (1.18) we obtain that

Qλ(tψε) = S + ε2 (−EN + o(1)) . (1.25)

In order to estimate tψε
2
2∗ we notice that, since the function s 7→ |s|2∗ is convex, we

have that

1 =

∫
RN−1

K|v + tψε|2∗dx′

≥ tψε
2∗
2∗ + 2∗

∫
RN−1

K|tψε|2
∗−2tψεv

≥ tψε
2∗
2∗ − 2∗‖v‖L∞(RN−1)|t|2∗−1 ψε

2∗−1
2∗−1

and therefore we infer from (1.20) that

tψε
2
2∗ ≤

(
1 + v 2∗O(ε(N−2)/2)

)2/2∗
= 1 +O(ε(N−2)/2).

Thus, it follows from (1.25) that

Qλ(tψε) tψε
2
2∗ ≤ S + ε2

[
−EN +O(ε(N−6)/2) + o(1)

]
.
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Using this inequality, N ≥ 7 and (1.24) we obtain

‖u‖2 − λ‖u‖2
2 ≤ S + ε2

[
−EN +O(ε(N−6)/2) +O(εN−4) + o(1)

]
< S,

for any ε > 0 sufficiently small. This establishes (1.22) and concludes the proof.

We are ready to present the first part of the proof of our main result.

Proof of Theorem A. Consider the decomposition X = V ⊕ W , with V and W as

in (1.4). Let ε > 0 and notice that the function φ = ψε verifies all the conditions

of Proposition 1.1.5. Hence, we can use Lemma 1.1.2 and Theorem 1.1.1 to obtain

(un) ⊂ X such that

Iλ(un)→ c, I ′λ(un)→ 0,

with the minimax level c > 0 defined in (1.3). We can pick ε > 0 so small in such

way that Proposition 1.2.2 holds. Since V ⊕Re = V ⊕Rψε, this last proposition and

(1.3) imply that c < SN−1/(2(N − 1)). It follows from Proposition 1.1.6 that Iλ has

a nonzero critical point u ∈ X. In order to prove that u changes its sign we consider

ϕ1 > 0 a first eigenfunction of (LP ) and notice that, since I ′λ(u)ϕ1 = 0, there holds

(λ1 − λ)

∫
RN+
K(x)uϕ1dx =

∫
RN−1

K(x′, 0)|u|2∗−2uϕ1dx
′.

If u ≥ 0 in RN
+ , it follows from the above expression and

∫
RN+
K(x)uϕ1dx > 0 that

λ ≤ λ1, which is not true. A similar argument discard u ≤ 0 and therefore the proof

is complete.

1.3 A Nehary type approach for λ∗N < λ < λ1

We present in this section some preliminary results for the proof of Theorem B. From

now on, we suppose that λ∗N < λ < λ1. Hence, we can use [48, Theorem 1.5] to

obtain a positive solution u0 ∈ X of the problem (Pλ). Since u0 2∗ 6= 0, the number

R > 0 appearing in the definition of the function ψε in the Section 2 can be chosen

in such way that ∫
RN−1\B2R(0)

K(x′, 0)u2∗
0 dx

′ > 0. (1.26)

For any given u ∈ X, we define u+(x) := max{u(x), 0}, u− := u+−u and the sets

Nλ := {u ∈ X \ {0} : I ′λ(u)u = 0} , Mλ :=
{
u ∈ X : u± ∈ Nλ

}
.

Notice that the Nehari manifold Nλ contains all the nonzero critical points of Iλ and

Mλ ⊂ Nλ. The idea is to look for a critical point of Iλ which belongs to Mλ and

therefore changes sign.
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If u ∈ Nλ, we have that

‖u‖2 = λ‖u‖2
2 + u 2∗

2∗ ≤
λ

λ1

‖u‖2 + S−2∗/2‖u‖2∗ ,

and therefore there exists γ > 0 such that

‖u‖ ≥ γ, ∀u ∈ Nλ. (1.27)

Moreover, on Nλ we have that

Iλ(u) =

(
1

2
− 1

2∗

)
‖u‖2 − λ

(
1

2
− 1

2∗

)
‖u‖2

2 ≥
1

2(N − 1)

(
1− λ

λ1

)
‖u‖2,

in such way that we can define the positive numbers

cλ := inf
u∈Nλ

Iλ(u), dλ := inf
u∈Mλ

Iλ(u).

Although Mλ is not a differentiable manifold, we can adapt an argument of [90]

for proving the following:

Lemma 1.3.1. There exists a sequence (un) ⊂ Mλ such that Iλ(un) → dλ and

I ′λ(un)→ 0, as n→ +∞.

Proof. Using Ekeland’s Variational Principle, we obtain a sequence (un) ⊂Mλ such

that

Iλ(un) ≤ dλ +
1

n
, Iλ(z) ≥ Iλ(un)− 1

n
‖z − un‖, for all z ∈Mλ. (1.28)

Using (1.27) and recalling that Iλ is coercive overMλ we obtain µ > γ > 0 such that

γ ≤ ‖u±n ‖ ≤ µ, for all n ∈ N.

We claim that there exists K = K(λ, γ, µ) > 0 such that ‖I ′λ(un)‖ ≤ K/n, for all

n ∈ N. If this is true we obtain I ′λ(un)→ 0 and the result follows from (1.28).

In order to prove the claim, we fix n ∈ N and v ∈ X such that ‖v‖ ≤ 1 and notice

that, since (un − δv)± → u±n as δ → 0, then

φ±δ,n := (un − δv)± 6= 0,

for any δ small. For simplicity, we drop the subscript n in what follows. The above

expression and a direct computation shows that,

zδ := t+δ φ
+
δ − t

−
δ φ
−
δ ∈Mλ

where t±δ are given by

t±δ =

(
‖(u− δv)±‖2 − λ‖(u− δv)±‖2

2

(u− δv)± 2
2∗

)1/(2∗−2)

.
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Setting g±(δ) := t±δ , we obtain from the above expression that g±(0) = 1 and

(2∗ − 2)g′±(0) =
−2(u±, v) + 2λ(u±, v)2 + 2∗

∫
RN−1 K(x′, 0)(u±)2∗−1v dx′

u± 2∗
2∗

,

where the inner products (·, ·) and (·, ·)2 were defined in (1.19). Since ‖u±‖ ≥ γ, we

have that

u± 2∗
2∗ = ‖u±‖2 − λ‖u±‖2

2 ≥ γ2

(
1− λ

λ1

)
and therefore, using ‖u±‖ ≤ µ and Hölder’s inequality we obtain

|g′±(0)| ≤
2‖u±‖‖v‖+ 2λ‖u±‖2‖v‖2 + 2∗ u

± 2∗−1
2∗ v 2∗

(2∗ − 2)γ2(λ1 − λ)/λ1

≤ C1 (1.29)

for

C1 :=
2µ+ 2(λ/λ1)µ+ 2∗S

−2∗/2µ2∗−1

(2∗ − 2)γ2(λ1 − λ)/λ1

.

We now notice that

zδ − u =
(
t+δ − 1

)
φ+
δ −

(
t−δ − 1

)
φ−δ − δv, (1.30)

and therefore
‖zδ − u‖

δ
= ‖g′+(0)u+ − g′−(0)u− − v‖+ oδ(1), (1.31)

as δ → 0+. Thus, we can use (1.28) to get

I ′λ(u)(zδ − u) + oδ(‖zδ − u‖) = Iλ(zδ)− Iλ(u) ≥ − 1

n
‖zδ − u‖.

It follows from (1.30) and g±(0) = 1 that

I ′λ(u)v ≤
(
g+(δ)− g+(0)

δ

)
I ′λ(u)φ+

δ −
(
g−(δ)− g−(0)

δ

)
I ′λ(u)φ−δ

+
1

n

‖zδ − u‖
δ

+
oδ(‖zδ − u‖)

δ
.

Passing to the limit, recalling that I ′λ(u)φ±δ = I ′λ(u)(u±+oδ(1)) = oδ(1), using (1.31),

(1.29) and ‖u±‖ ≤ µ we conclude that

I ′λ(u)v ≤ 1

n
‖g′+(0)u+ − g′−(0)u− − v‖ ≤ 1

n
(2C1µ+ 1) , ∀ v ∈ X, ‖v‖ ≤ 1.

and therefore ‖I ′λ(un)‖ ≤ K/n, for K = 2C1µ+ 1. The lemma is proved.

As in the first case, the energy functional satisfies a local compactness condition.

Proposition 1.3.2. Suppose that (un) ⊂Mλ satisfies

lim
n→+∞

Iλ(un) = d < cλ +
1

2(N − 1)
SN−1, lim

n→∞
I ′λ(un) = 0.

Then (un) has a convergent subsequence.
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Proof. Since Iλ restricted to Nλ is coercive the sequence (un) is bounded in X. So,

up to a subsequence, we may assume that un ⇀ u weakly X, u±n ⇀ u± weakly in

X and u±n → u± strongly in L2
K(RN

+ ), for some u ∈ X. Arguing as in the proof of

Proposition 1.1.6 we obtain I ′λ(u) = 0. Moreover, since (un) ⊂ Mλ, we have that

on(1) = I ′λ(u
+
n )u+

n − I ′λ(u)u+ and therefore the above convergences imply that

lim
n→+∞

‖u+
n − u+‖2 = l, lim

n→+∞
u+
n − u+ 2∗

2∗ = l, (1.32)

for some l ≥ 0.

We shall prove that l = 0 and therefore u+
n → u+ in X. Suppose, by contradiction,

that l > 0. Passing the inequality ‖u+
n − u+‖2 ≤ S−1 u+

n − u+ 2
2∗ to the limit we

get l ≥ SN−1. On the other hand, the convergences of (u+
n ) just mentioned and

Brezis-Lieb’s lemma [18] implies that

Iλ(u
+
n ) = Iλ(u

+
n − u+) + Iλ(u

+) + on(1). (1.33)

However, by (1.32) and the strong convergence we get

Iλ(u
+
n − u+) =

1

2
‖u+

n − u+‖2 − 1

2∗
u+
n − u+ 2∗

2∗ + on(1) =
1

2(N − 1)
l + on(1),

and therefore (1.33) implies that

Iλ(u
+
n ) =

1

2(N − 1)
l + Iλ(u

+) + on(1).

Recalling that u−n ∈ Nλ, we conclude that cλ ≤ Iλ(u
−
n ). Also, since I ′λ(u)u+ = 0, we

have that Iλ(u
+) ≥ 0. So, we can use the above inequality and l ≥ SN−1 to get

d+ on(1) = Iλ(un) = Iλ(u
−
n ) + Iλ(u

+
n ) ≥ cλ +

1

2(N − 1)
SN−1 + on(1).

Passing to the limit we obtain a contradiction. Hence l = 0 and u+
n → u+ strongly

in X. The same argument shows that u−n → u− strongly in X and the proposition is

proved.

1.4 Proof of Theorem B

Since we already have a Palais-Smale sequence at level dλ, we need only to show that

dλ belongs to the compactness range of the functional Iλ. We shall use the following

intersection property.

Lemma 1.4.1. There exists α∗, β∗ ∈ R such that (α∗u0 + β∗ψε) ∈Mλ.

39



Proof. Define

J(u) :=
u 2∗

2∗

‖u‖2 − λ‖u‖2
2

, ∀u ∈ X \ {0},

and J(0) = 0. From λ < λ1 and the continuous embedding X ↪→ L2∗
K (RN−1) we

obtain 0 ≤ J(u) ≤ Cc‖u‖2∗−2, and therefore J is continuous.

We now set

σ(r, s, t) := rt [(1− s)u0 − sψε] , ∀ r ≥ 0, s, t ∈ [0, 1].

and

Γ(r) := inf
s∈[0,1]

J(σ(r, s, 1)), ∀ r > 0.

If Γ(1) = 0, then there exists s0 ∈ [0, 1] such that J(σ(1, s0, 1)) = 0, that is, (1 −
s0)u0 − s0ψε

2∗
2∗ = 0. Since ψε is positive in BR(0) ∩ RN−1 and (1.26) holds, we have

that s0 ∈ (0, 1). Thus, recalling that ψε ≡ 0 outside B2R(0) ∩ RN−1, we obtain

0 = (1− s0)u0 − s0ψε
2∗
2∗ ≥ (1− s0)2∗

∫
RN−1\B2R(0)

K(x′, 0)u2∗
0 dx

′,

which contradicts (1.26). Hence, Γ(1) > 0 and we infer from J(σ(r, s, 1)) = r2∗−2J(σ(1, s, 1)) ≥
r2∗−2Γ(1) that

lim
r→+∞

Γ(r) = +∞.

Let r0 > 0 be such that

J(σ(r0, s, 1)) ≥ Γ(r0) > 2, ∀ s ∈ [0, 1], (1.34)

and define the functions f, g : [0, 1]× [0, 1]→ R as

f(s, t) := J(σ−(r0, s, t))− J(σ+(r0, s, t))

and

g(s, t) := J(σ+(r0, s, t)) + J(σ−(r0, s, t))− 2.

Since σ(r0, 0, t) = r0tu0 ≥ 0 and σ(r0, 1, t) = −r0tψε ≤ 0, it follows that

f(0, t) = −J(σ−(r0, 1, t)) ≤ 0, f(1, t) = J(σ+(r0, 0, t)) ≥ 0,

for any t ∈ [0, 1]. Moreover, for any s ∈ [0, 1],

g(s, 0) = −2 ≤ 0, g(s, 1) = J(σ+(r0, s, 1)) + J(σ−(r0, s, 1))− 2 ≥ 0,

where we have used J(u+) + J(u−) ≥ J(u) and (1.34) in the last inequality.

Using the above inequalities and Miranda’s Theorem [70] we obtain s0, t0 ∈ [0, 1]

such that f(s0, t0) = 0 = g(s0, t0) and so

J(σ+(r0, s0, t0)) = 1 = J(σ−(r0, s0, t0)).

Consequently, I ′λ(σ
±(r0, s0, t0))σ±(r0, s0, t0) = 0. Since J(0) = 0, we also have that

σ±(r0, s0, t0) 6= 0, and therefore the lemma holds for α∗ := r0t0(1 − s0) and β∗ :=

r0t0s0.
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The two next results are of technical nature and it will be useful to estimate dλ.

Lemma 1.4.2. If τ1, τ2 > 1, then there exists A1 = A1(u0, R, τ1, τ2) > 0 such that∣∣∣ αu0 + βψε
2∗
2∗ − αu0

2∗
2∗ − βψε

2∗
2∗

∣∣∣ ≤ A1

(
|α|2∗−1 βψε τ1 + |α| βψε 2∗−1

(2∗−1)τ2

)
,

for any α, β ∈ R.

Proof. For simplicity, we write only K to denote K(x′, 0). If we call Ψ(α, β) the term

into modulus in the inequality above, we have that

Ψ(α, β) =

∫
RN−1

K

(∫ 1

0

d

ds

[
|sαu0 + βψε|2∗ − |sαu0|2∗

]
ds

)
dx′

= 2∗

∫
RN−1

K

(∫ 1

0

[g(1)− g(0)]αu0 ds

)
dx′

for g(t) := |sαu0 + tβψε|2∗−2(sαu0 + tβψε). From the Mean Value Theorem we obtain

θ(x, s) ∈ (0, 1) such that

Ψ(α, β) = 2∗(2∗ − 1)

∫
RN−1

K

(∫ 1

0

[
|sαu0 + θβψε|2∗−2αu0βψε

]
ds

)
dx′.

Since s, θ ∈ [0, 1], we obtain

|Ψ(α, β)| ≤ C1

∫
RN−1

K|αu0|2∗−1|βψε| dx′ + C1

∫
RN−1

K|αu0||βψε|2∗−1 dx′. (1.35)

We now notice that the positive solution u0 ∈ X of problem (Pλ) given in [48,

Theorem 1.5] belongs to C2(RN
+ ). Although regularity up to the boundary is a more

complicated issue, we can adapt the proof of Brezis-Kato’s theorem [17] presented by

Struwe [88, Lemma B.3] (see also [1, Lemma 4.1] for the normal derivative version)

to conclude that u0 ∈ Lτloc(RN−1), for any τ ≥ 1. So, if we set Ω := {x′ ∈ RN−1 :

|x′| < 2R} and recall that ψε vanishes outside B2R(0), we can use Hölder’s inequality

to get ∫
RN−1

K|αu0|2∗−1|βψε| dx′ ≤ |α|2∗−1|β| u0
2∗−1

L
(2∗−1)τ ′1
K (Ω)

ψε τ1

and ∫
RN−1

K|αu0||βψε|2∗−1 dx′ ≤ |α||β|2∗−1 u0
τ ′2

L
τ ′2
K (Ω)

ψε
2∗−1
(2∗−1)τ2

,

where u0 LrK(Ω) :=
(∫

Ω
K(x′, 0)|u0|rdx′

)1/r
, for r > 1. So, it is sufficient to define

A1 := C1

(
u0

2∗−1

L
(2∗−1)τ ′1
K (Ω)

+ u0
τ ′2

L
τ ′2
K (Ω)

)
and use the two above inequalities together with (1.35).
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Lemma 1.4.3. If τ1, τ2 > 1, then there exists Ai = Ai(u0, R, τ1, τ2, N) > 0, i = 2, 3,

such that

αu0 + βψε
2∗
2∗ ≥

1

3
|α|2∗ u0

2∗
2∗ + |β|2∗

(
ψε

2∗
2∗ − A2 ψε

2∗
τ1
− A3 ψε

2∗
(2∗−1)τ2

)
,

for any α, β ∈ R.

Proof. According to last result, we have that

αu0 + βψε
2∗
2∗ ≥

1

3
|α|2∗ u0

2∗
2∗ + |β|2∗ ψε 2∗

2∗ + f(|α|) + g(|α|), (1.36)

for f, g : [0,+∞)→ R given by

f(s) :=
1

3
u0

2∗
2∗s

2∗ − A1 βψε τ1s
2∗−1,

and

g(s) :=
1

3
u0

2∗
2∗s

2∗ − A1 βψε
2∗−1
(2∗−1)τ2

s.

The function f attains its minimum at the point

s0 :=
3(2∗ − 1)

2∗

A1

u0
2∗
2∗

βψε τ1 ,

and therefore

f(|α|) ≥ f(s0) = −A2|β|2∗ ψε 2∗
τ1
, ∀α ∈ R,

with A2 := A2(u0, R, τ1, τ2, N) > 0. Analogously, there exists A3 > 0 such that

g(|α|) ≥ −A3|β|2∗ ψε 2∗
(2∗−1)τ2

, ∀α ∈ R.

The lemma follows from the two above inequalities and (1.36).

We are ready to prove our second main theorem.

Proof of Theorem B. Let λ∗N < λ < λ1. Invoking Lemma 1.3.1 we obtain (un) ⊂Mλ

such that Iλ(un)→ dλ and I ′λ(un)→ 0, as n→ +∞. We claim that

dλ < cλ +
1

2(N − 1)
SN−1. (1.37)

If this is true, it follows from Proposition 1.3.2 that, along a subsequence, un → u

strongly in X. Since Mλ is closed, we have that u ∈ Mλ, from which we conclude

that u± 6= 0. Moreover, recalling that Mλ ⊂ Nλ, we conclude that I ′λ(u) = 0 and

therefore u ∈ X is a sign-changing solution for (Pλ).

For proving (1.37) we first notice that, according to Lemma 1.4.1, there exists

α∗, β∗ ∈ R such that (α∗u0 + β∗ψε) ∈ Mλ. So, it is sufficient to show that, for some

ε > 0,

sup
α,β∈R

Iλ(αu0 + βψε) < cλ +
1

2(N − 1)
SN−1.
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Arguing as in the proof of Lemma 1.4.1, we can check that W := span{u0, ψε} is a

2-dimensional subspace. Moreover, using (1.26) and the compact support of ψε, we

conclude that αu0 + βψε 2∗ = 0 if, and only if, (α, β) = (0, 0). So, the function

(α, β) 7→ αu0 + βψε 2∗ defines a norm in W . From the equivalence between norms

in finite-dimensional subspaces, we get

lim
(|α|+|β|)→+∞

Iλ(αu0 + βψε) = −∞,

and therefore we can restrict our attention to points (α, β) ∈ R2 such that

αu0 + βψε
2∗
2∗ ≤ C1,

for some C1 > 0 large enough.

Using Lemma 1.4.3, we get

C1 ≥
1

3
|α|2∗ u0

2∗
2∗ + |β|2∗

(
ψε

2∗
2∗ − A2 ψε

2∗
τ1
− A3 ψε

2∗
(2∗−1)τ2

)
, (1.38)

If we pick (N − 1)/(N − 2) < 1 < τ1 < 2(N − 1)/(N + 2), it follows from (1.20) that

ψε τ1 = O(ε2+ν1), ν1 :=
2(N − 1)− τ1(N + 2)

2τ1

> 0, (1.39)

as ε→ 0+. Moreover, for

N − 1

N
< 1 < τ2 <

2(N − 1)

N + 4
<

2(N − 1)

N
< 2∗,

we can apply (1.20) with τ = (2∗ − 1)τ2 to get

ψε
2∗−1
(2∗−1)τ2

= O(ε2+ν2), ν2 :=
2(N − 1)− τ2(N + 4)

2τ2

> 0. (1.40)

From the above inequalities we conclude that ψε
2∗
τ1

= o(1) and ψε
2∗
(2∗−1)τ2

= o(1),

and therefore it follows from (1.38) and (1.17) that

C1 ≥
1

3
|α|2∗ u0

2∗
2∗ + |β|2∗

(
B

2∗/2
N + o(1)

)
.

Since BN > 0, we conclude that α = O(1) and β = O(1). It is worth mentioning

that the above choices for τ1 and τ2 are possible because N ≥ 7.

Notice that, since I ′λ(u0)ψε = 0, then∫
RN+
K(x) (∇u0 · ∇ψε) dx− λ

∫
RN+
K(x)u0ψεdx =

∫
RN−1

K(x′, 0)u2∗−1
0 ψεdx

′.

Thus,

Iλ(αu0 + βψε) ≤ Iλ(αu0) +
β2

2

(
‖ψε‖2 − λ‖ψε‖2

2

)
− |β|

2∗

2∗
ψε

2∗
2∗ + Φ(ε, α, β) (1.41)
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with

Φ(ε, α, β) := A1O(1)
(
ψε τ1 + ψε

2∗−1
(2∗−1)τ2

)
+ αβ

∫
RN−1

K(x′, 0)u2∗−1
0 ψε dx

′,

with the number A1 > 0 given by Lemma 1.4.2 and we have used that α and β

remain bounded as ε → 0+. Arguing as in the proof of Lemma 1.4.2 and recalling

that α = O(1) and β = O(1) as ε→ 0+, we get

αβ

∫
RN−1

K(x′, 0)u2∗−1
0 ψε dx

′ ≤ C2 u0
2∗−1

L
(2∗−1)τ ′1
K (Ω)

ψε τ1 = O(ε2+ν1),

and therefore we can use (1.39), (1.40) and ν1, ν2 > 0 to conclude that

Φ(ε, α, β) = O(ε2+ν1) +O(ε2+ν2) = o(ε2). (1.42)

Since λ > λ1, a straightforward computation shows that the function

f(β) :=
β2

2

(
‖ψε‖2 − λ‖ψε‖2

2

)
− |β|

2∗

2∗
ψε

2∗
2∗ , ∀ β ∈ R,

is such that

f(β) ≤ 1

2(N − 1)

[
‖ψε‖2 − λ‖ψε‖2

2

ψε 2
2∗

]N−1

=
1

2(N − 1)
Qλ(ψε)

N−1,

for any β ∈ R. Moreover, using (1.18) and the Mean Value Theorem, we obtain

θ ∈ (0, 1) such that

Qλ(ψε)
N−1 ≤

[
S + ε2(−EN + o(1))

]N−1

= SN−1 + (N − 1)ε2 [−EN + o(1)]
[
S + θε2(−EN + o(1))

]N−2

and therefore

f(β) ≤ 1

2(N − 1)
SN−1 + ε2

[
−ENS

2
+ o(1)

]
,

as ε→ 0+. Since Iλ(αu0) ≤ Iλ(u0) = cλ, for any α ∈ R, and EN > 0, we can replace

the above inequality and (1.42) in (1.41) to get

sup
α, β∈R

Iλ(αu0 + βψε) ≤ cλ +
1

2(N − 1)
SN−1 + ε2

[
−ENS

2
+ o(1)

]
< cλ +

1

2(N − 1)
SN−1,

for any ε > 0 small. This finishes the proof of the second case of Theorem B.
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CHAPTER 2

Multiplicity of solutions for a concave-convex type problem

Let RN
+ :=

{
(x′, xN) : x′ ∈ RN−1, xN > 0

}
be the upper half-space and consider the

following heat equation with nonlinear boundary condition

vt −∆v = 0, in RN
+ × (0,+∞),

∂v

∂η
= |v|p−2v, on ∂RN

+ × (0,+∞),

where 2 < p ≤ 2∗ := 2(N−1)/(N−2) and ∂u/∂η denotes the partial outward normal

derivative. Solutions of type

v(x, t) = t−λu(t−1/2x),

with λ = 1/(2(p−2)) > 0, are called self-similar solutions. Besides preserve the PDE

scaling, they carry simultaneously information about small and large scale behaviors,

providing also qualitative properties like global existence, blow-up and asymptotic

behavior (see e.g. [57,58,69]).

An easy computation shows that the profile u above needs to satisfy

−∆u− 1

2
(x · ∇u) = λu, in RN

+ ,
∂u

∂η
= |u|p−2u, on ∂RN

+ .

Such problem was recently considered in [47, 48], where existence results were pre-

sented according to the range of λ. Actually, these papers were strongly motivated

by the vast literature concerning the version of the problem for the whole space RN

with different types of nonlinearities. We could quote [9,20,24,51,52,72,76] and their

references for results about existence, nonexistence, multiplicity, decay rate, among

other properties of solutions.

Here, we are going to study the effect of replacing the linear term λu in the above

equation by a sublinear indefinite function. Our main motivation comes from the
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problem

−∆u = λa(x)|u|q−2u+ b(x)|u|r−2u, in Ω, u = 0, on ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, 1 < q < 2 < r ≤ 2N/(N − 2) and

the potentials a, b satisfy natural regularity conditions. In the celebrated paper [4],

Ambrosetti, Brezis and Cerami considered the constant case a ≡ 1, b ≡ 1 and

obtained Λ > 0 such that the problem admits at least two positive solutions whenever

λ ∈ (0,Λ), at least one if λ = Λ and no solution if λ > Λ. Variable and indefinite

potentials were considered in [35] (see also [37]). In [55], the authors obtained for

−∆u+ u = |u|r−2u, in Ω,
∂u

∂η
= λ|u|q−2u, on ∂Ω,

results which are analogous to that of [4]. Some of their results were extended in [94]

for the indefinite potential case (see also [82]). All the aforementioned works belong

to a huge class of problems which are now called of concave-convex type.

In this chapter, we deal with the concave-convex boundary value problem

(P2)


−∆u− 1

2
(x · ∇u) = λa(x)|u|q−2u, x ∈ RN

+ ,

∂u

∂η
= b(x′)|u|p−2u, x′ ∈ RN−1,

where N ≥ 3, λ > 0 is a parameter, 1 < q < 2 < p ≤ 2∗ and we have identified

∂RN
+ ' RN−1. For describing the assumptions on the potentials we need first to

present the functional space to deal with (P2). This is done in what follows.

As we shall see, the function K(x) = exp(|x|2/4) is closely related with the appro-

priated space to look for solutions of our problem. In order to present the assumptions

on the coefficients, we denote for any 2 ≤ r ≤ 2∗ the weighted Lebesgue space

LrK(RN
+ ) =

u ∈ Lr(RN
+ ) : ‖u‖r =

(∫
RN+
K(x)|u|rdx

)1/r

<∞

 . (2.1)

If we denote by r′ = r/(r − 1) the conjugated exponent of r > 1, we can present the

basic hypothesis on a, b in the following way:

(a0) a ∈ LσqK (RN
+ ) ∩ LN/2loc (RN

+ ) for some(
p

q

)′
< σq ≤

(
2

q

)′
;

(b0) b ∈ L∞(RN−1).
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Since they can change it sign, we may define the sets

Ω+
a := {x ∈ RN

+ : a(x) > 0}, Ω+
b := {x′ ∈ RN−1 : b(x′) > 0}.

In our first results we obtain existence of two nonnegative solutions when roughly

speaking the closure of the set Ω+
a intersects Ω+

b and the parameter λ > 0 approaches

zero. More specifically, denoting by Bδ(0) the open ball centered at origin with radii

δ > 0, we prove the following:

Theorem C. Suppose that a, b satisfy (a0) and (b0). If 1 < q < 2 < p < 2∗, then

there exists λ∗ > 0 such that, for any λ ∈ (0, λ∗), problem (P2) has at least two

nonnegative nonzero solutions provided

(ab) there exists δ > 0 such that

(Bδ(0) ∩ RN
+ ) ⊂ Ω+

a , (Bδ(0) ∩ ∂RN
+ ) ⊂ Ω+

b .

In our second result, we consider the critical case by adding a flatness condition

on the potential b:

Theorem D. Suppose that N ≥ 7, p = 2∗ and the other conditions of Theorem C

are verified. Then there exists λ∗ > 0 such that, for any λ ∈ (0, λ∗), problem (P2)

has at least two nonnegative nonzero solutions provided

(b1) there exist M > 0 and σ > N − 1 such that

b ∞ − b(x′) ≤M |x′|σ, for a.e. x′ ∈ Bδ(0) ∩ ∂RN
+ .

The first solution will be obtained with a standard minimization argument while

the second one requires finer arguments. This is specially true when p = 2∗, since the

trace embedding we are going to use fails to be compact. Two points are important

to overcome this difficulty: a trick regularization study of the first solution on the

boundary and the application of an idea of Brezis and Nirenberg [19], together with

fine estimates of a modification of the instanton functions founded by Escobar [41]

and Beckner [13].

In the second part of the chapter, we take advantage of the symmetry to get more

and more solutions (with no prescribed sign). Unfortunately, in this case we do not

assume that both the potentials are indefinite.

We prove the following:

Theorem E. Suppose that 1 < q < 2, a ≥ 0 and b 6≡ 0 satisfiy (a0) and (b0),

respectively. Then problem (P2) has infinitely many solutions in each of the following

cases:
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1. 2 < p < 2∗ and λ > 0;

2. p = 2∗, b ≤ 0 and λ > 0;

3. p = 2∗ and λ > 0 is small.

Theorem F. Suppose that 1 < q < 2 < p < 2∗, a 6≡ 0 and b ≥ 0 satisfy (a0) and

(b0), respectively. Then, for any λ > 0, problem (P2) has infinitely many solutions.

The above theorems will be proved as application of suitable versions of the Sym-

metric Mountain Pass Theorem [3]. They were proved by Tonkes in the paper [92]

which strongly motivated the second part of our work (see also [11,12] for some ear-

lier results). In the critical case, when b ≤ 0, the boundary term is related with a

semi-norm and therefore we can argue as in the subcritical case. When p = 2∗ and b

is indefinite in sign, we borrow an argument from [10]. It can be proved that, when

b ≤ 0, the energy of the solutions given by Theorem E are negative and goes to zero.

On the other hand, in Theorem F, this energy goes to infinity, the same occurring

with the norm of the solutions.

The chapter is organized as follows: in Section 2.1 we present the variational

framework to deal with our problem and obtained the first solution; in Section 2.2

we finish the proof of the first two theorems; Section 2.3 is devoted to the proof of

Theorems E and F.

2.1 Variational setting

Throughout the chapter we assume that 1 < q < 2 < p ≤ 2∗ and conditions (a0), (b0)

hold. Following Escobedo and Kavian [44], we first set

K(x) := exp(|x|2/4), x ∈ RN
+ ,

and notice that the first equation in (P2) is equivalent to

−div(K(x)∇u) = λK(x)a(x)|u|q−2u, x ∈ RN
+ .

Hence, it is natural looking for solutions in the space X defined as the closure of

C∞c (RN
+ ) with respect to the norm

‖u‖ :=

(∫
RN+
K(x)|∇u|2dx

)1/2

.

Recall the definition of LrK(RN
+ ) in (2.1) and define, for each 2 ≤ s ≤ 2∗, the space

LsK(RN−1) :=

{
u ∈ Ls(RN−1) : u s :=

(∫
RN−1

K(x′, 0)|u|sdx′
)1/s

<∞

}
.

We collect in the next proposition the abstract results proved in [47,48].
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Proposition 2.1.1. For any r ∈ [2, 2∗) and s ∈ [2, 2∗), the embeddings X ↪→ LrK(RN
+ )

and X ↪→ LsK(RN−1) are compact. In the critical cases r = 2∗ and s = 2∗, we have

only continuous embeddings.

Given 2 ≤ r ≤ 2∗ and 2 ≤ s ≤ 2∗, we can use the above result to define the

following embedding constants:

Sr := inf
u∈X/{0}

∫
RN+
K(x)|∇u|2dx(∫

RN+
K(x)|u|rdx

)2/r
,

Ss,∂ := inf
u∈X/{0}

∫
RN+
K(x)|∇u|2dx(∫

RN−1 K(x′, 0)|u|sdx′
)2/s

.

By condition (a0), we have that 2 ≤ qσ′q < 2∗, and therefore we can use Hölder’s

inequality to get∣∣∣∣∣
∫
RN+
K(x)a(x)(u+)qdx

∣∣∣∣∣ ≤ ‖a‖σq
(∫

RN+
K(x)|u|qσ′qdx

)1/σ′q

< +∞, (2.2)

for any u ∈ X. Hence, condition (b0) and standard arguments show that the func-

tional

Iλ(u) :=
1

2
‖u‖2 − λ

q

∫
RN+
K(x)a(x)(u+)q dx− 1

p

∫
RN−1

K(x′, 0)b(x′)(u+)p dx′

belongs to C1(X,R). Here and in what follows we will denote u+ := max{u, 0} and

u− := u+ − u. If I ′λ(u) = 0, then we can compute 0 = I ′λ(u)u− to conclude that

‖u−‖ = 0, and therefore the critical points of Iλ are nonnegative solutions of problem

(P2).

The first step in the proof of Theorem C is the study of Iλ near origin.

Lemma 2.1.2. There exist ρ = ρ(q, p, b ∞) > 0, α = α(ρ) > 0 and λ∗ = λ∗(q, ρ) > 0

such that Iλ(u) ≥ α > 0, for any u ∈ X verifying ‖u‖ = ρ, and λ ∈ (0, λ∗).

Proof. By using (2.2) and Proposition 2.1.1, we get

Iλ(u) ≥ 1

2
‖u‖2 − λ

q
‖a‖σq‖u‖

q
qσ′q
− 1

p
b ∞ u p

p

=
‖u‖q

2

[
‖u‖2−q − 2

p
S
−p/2
p,∂ b ∞‖u‖p−q − λ

2

q
S
−q/2
qσ′q
‖a‖σq

]
.

The function g : (0,∞)→ R given by g(t) := t2−q−C1t
p−q, with C1 := 2S

−p/2
p,∂ b ∞/p,

achieves its maximum value at

ρ :=

[
(2− q)
C1(p− q)

]1/(p−2)

.
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Thus, for any u ∈ X satisfying ‖u‖ = ρ, there holds

Iλ(u) ≥ ρq

2

(
g(ρ)− λ2

q
S
−q/2
qσ′q
‖a‖σq

)
≥ ρq

2

g(ρ)

2
= α > 0,

whenever

λ < λ∗ :=
qS

q/2
qσ′q

4‖a‖σq
g(ρ),

and the result follows.

We obtain in the next proposition our first solution.

Proposition 2.1.3. Let λ∗, ρ > 0 be as in the above lemma. For any λ ∈ (0, λ∗), we

have that

−∞ < c0 := inf
u∈Bρ(0)

Iλ(u) < 0

and the infimum is attained at u0 ∈ Bρ(0) such that u0 ∈ Lνloc(RN
+ ) ∩ Lνloc(RN−1) for

any ν ≥ 1.

Proof. The inequality c0 > −∞ is obvious, since Iλ maps bounded sets in bounded

sets. Let δ > 0 given by (ab) and consider ϕ ∈ C∞0 (Bδ(0)) such that
∫
RN
+
K(x)a(x)ϕqdx >

0. Then,
Iλ(tϕ)

tq
≤ t2−q

2
‖ϕ‖2 − λ

q

∫
RN+
K(x)a(x)ϕqdx,

and therefore

lim sup
t→0+

Iλ(tϕ)

tq
≤ −λ

q

∫
RN+
K(x)a(x)ϕqdx < 0,

which proves that Iλ(tϕ) < 0, for any t > 0 small. This implies that c0 < 0.

Let (un) ⊂ Bρ(0) be a minimizing sequence for c0. We may assume that, for some

u0 ∈ X, 
un ⇀ u0 weakly in X,

un → u0 strongly in LrK(RN
+ ),

u+
n (x)→ u+

0 (x), |un(x)| ≤ hr(x) for a.e. x ∈ RN
+ ,

(2.3)

for any 2 ≤ r < 2∗ and hr ∈ LrK(RN
+ ). Moreover, since Iλ ≥ α > 0 on ∂Bρ(0), we can

use 2 ≤ qσ′q < 2∗ and the Ekeland Variational Principle to also assume that

lim
n→+∞

Iλ(un) = c0, lim
n→+∞

I ′λ(un) = 0.

We claim that I ′λ(u0) = 0. Indeed, pick φ ∈ C∞0 (RN
+ ) and call Ω its support. Since

σq > (p/q)′ = p/(p− q), its possible to choose p0 ∈ (2, p) close to p and such that

σq >
p0

p0 − q
>

p0

p0 + 1− q
.
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Thus, there exists t > 1 satisfying

1

σq
+

1

p0/(q − 1)
+

1

t
= 1.

Using Young’s inequality we get

|K(x)a(x)(u+
n )q−1φ(x)| ≤ C1

(
|a(x)|σq + |hp0|p0 + |φ(x)|t

)
for a.e. x ∈ Ω. It follows from the pointwise convergence in (2.3) and the Lebesgue’s

Theorem that

lim
n→+∞

∫
RN+
K(x)a(x)(u+

n )q−1φ dx =

∫
RN+
K(x)a(x)(u+

0 )q−1φ dx.

A simpler argument shows that

lim
n→+∞

∫
RN−1

K(x′)b(x′)(u+
n )p−1φ dx′ =

∫
RN−1

K(x′)b(x′)(u+
0 )p−1φ dx′.

So, the claim follows from the weak convergence of (un) and the density of C∞0 (RN
+ )

in X.

From Young’s inequality, we obtain

|K(x)a(x)(u+
n )q| ≤ |K(x)|

(
|a|σq
σq

+
|u+
n |qσ

′
q

σ′q

)
≤ K(x)

(
|a|σq + h

qσ′q
qσ′q

(x)
)
,

for a.e. x ∈ RN
+ . Since 2 ≤ qσ′q < p ≤ 2∗, we can use Hölder’s inequality to conclude

that this last function is integrable and we infer from Lebesgue’s Theorem again that

lim
n→+∞

∫
RN+
K(x)a(x)(u+

n )q dx =

∫
RN+
K(x)a(x)(u+

0 )q dx.

Thus,

c0 = lim inf
n→+∞

[
Iλ(un)− 1

p
I ′λ(un)un

]
= lim inf

n→+∞

[(
1

2
− 1

p

)
‖un‖2 − λ

(
1

q
− 1

p

)∫
RN+
K(x)a(x)(u+

n )q dx

]

≥

[(
1

2
− 1

p

)
‖u0‖2 − λ

(
1

q
− 1

p

)∫
RN+
K(x)a(x)(u+

0 )q dx

]
= Iλ(u0)− 1

p
I ′λ(u0)u0 = Iλ(u0).

Hence I(u0) = c0 < 0 and it follows from Lemma 2.1.2 that u0 ∈ Bρ(0).

In order to obtain regularity for the solution, we set w := exp(|x|2/8)u0 ∈
W 1,2
loc (RN

+ ) and notice that w weakly solves
−∆w = f(x,w), in RN

+ ,

∂w

∂η
= g(x′, w), on ∂RN

+ ,
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where

f(x, t) := a(x) exp((2− q)|x|2/8)|t|q−2t−
[
(|x|2 + 4N)/16

]
t

and

g(x′, t) := b(x′) exp((2− p)|x′|2/8)|t|p−2t,

for x ∈ RN
+ , x′ ∈ RN−1 and t ∈ R. It is easy to check that

|f(x, t)| ≤ Γ1(x)(1 + |t|), |g(x′, t)| ≤ Γ2(x′)(1 + |t|)

for the functions

Γ1(x) := |a(x)| exp((2− q)|x|2/8) +
[
(|x|2 + 4N)/16

]
, Γ2(x′) := b(x′).

Using (a0) and (b0) we conclude that Γ1 ∈ LN/2loc (RN
+ ) and Γ2 ∈ LN−1

loc (RN−1). Hence,

we can use a version of Brezis-Kato’s Theorem [17] (see also [1, Appendix 4]) to

conclude that u0 ∈ Lνloc(RN
+ ) ∩ Lνloc(RN−1) for any ν ≥ 1. The proposition is proved.

2.2 Proofs of Theorems C and D

Recall that, if E is a Banach space, Φ ∈ C1(E,R) and c ∈ R, the functional Φ satifies

the (PS)c condition if any sequence (un) ⊂ E such that

lim
n→+∞

Φ(un) = c, lim
n→+∞

Φ′(un) = 0,

has a convergent subsequence. From now on, any such sequence will be called (PS)c-

sequence.

Lemma 2.2.1. If 2 < p < 2∗, then the functional Iλ satisfies the (PS)c condition for

any c ∈ R.

Proof. Let (un) ⊂ X be a (PS)c-sequence. Computing Iλ(un)− (1/p)I ′λ(un)un, using

(a0) and Hölders’s inequality, we can check that (un) is bounded. Then, up to a

subsequence, we have that un ⇀ u weakly in X and un → u strongly in LrK(RN
+ ) and

LsK(RN−1), for any r ∈ [2, 2∗) and s ∈ [2, 2∗), respectively. Setting q0 := qσ′q ∈ [2, p)

and applying Hölder’s inequality with exponents σq, q0/(q − 1) and q0, we get∣∣∣∣∣
∫
RN+
K(x)a(x)(u+

n )q−1(un − u) dx

∣∣∣∣∣ ≤ ‖a‖σq‖un‖q−1
q0
‖un − u‖q0 → 0,

as n→ +∞. Analogously,∣∣∣∣∫
RN−1

K(x′, 0)b(x′)(u+
n )p−1(un − u) dx′

∣∣∣∣ ≤ b ∞ un
p−1
p un − u p → 0.
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From the two above expressions and the weak convergence we obtain

o(1) = I ′λ(un)(un − u) = ‖un‖2 − ‖u‖2 + o(1),

as n→ +∞. The result is now a consequence of the weak convergence.

When dealing with the critical case, we need the following local compactness

result:

Lemma 2.2.2. If p = 2∗ and the function u0 given by Proposition 2.1.3 is the only

nonzero critical point of Iλ, then Iλ satisfies the Palais-Smale condition at any level

c < c := Iλ(u0) +
1

2(N − 1)

1

b N−2
∞

SN−1
2∗,∂

.

Proof. Let (un) ⊂ X be a (PS)c-sequence. As in Lemma 2.2.1, we may assume that

un ⇀ u weakly in X and un → u strongly in L
qσ′q
K (RN

+ ). Hence, we infer from the

Lebesgue Theorem that, as n→ +∞,∫
RN+
K(x)a(x)(u+

n )q dx =

∫
RN+
K(x)a(x)(u+)q dx+ o(1).

If zn := (un− u), we can use I ′λ(un)un = o(1) and Brezis-Lieb’s lemma [18] to obtain

o(1) = ‖un‖2 − λ
∫
RN+
K(x)a(x)(u+

n )q dx−
∫
RN−1

K(x′, 0)b(x′)(u+
n )2∗dx′

= I ′λ(u)u+ ‖zn‖2 −
∫
RN−1

K(x′, 0)b(x′)(z+
n )2∗dx′ + o(1).

As in the proof of Proposition 2.1.3, we have that I ′λ(u) = 0. So, passing the above

expression to the limit, we obtain γ ≥ 0 such that

lim
n→+∞

‖zn‖2 = γ = lim
n→+∞

∫
RN−1

K(x′, 0)b(x′)(z+
n )2∗dx′.

We need to prove that γ = 0. In order to do this, we first take the limit in the

inequality∫
RN−1

K(x′, 0)b(x′)(z+
n )2∗dx′ ≤ b ∞S

−2∗/2
2∗,∂

(∫
RN+
K(x)|∇zn|2dx

)2∗/2

,

to obtain γ ≤ b ∞S
−2∗/2
2∗,∂

γ2∗/2. Suppose, by contradiction, that γ > 0. Then

γ ≥ 1

b N−2
∞

SN−1
2∗,∂

. (2.4)

On the other hand, using Brezis-Lieb again, we obtain

c+ o(1) = Iλ(un) = Iλ(u) +
1

2
‖zn‖2 − 1

2∗

∫
RN−1

K(x′, 0)b(x′)(z+
n )2∗ dx′ + o(1).
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Passing to the limit and using (2.4), we conclude that

c = Iλ(u) +
1

2(N − 1)
γ ≥ Iλ(u) +

1

2(N − 1)

1

b N−2
∞

SN−1
2∗,∂

.

Recalling that u is a critical point of Iλ, we conclude from the hypotheses that u = 0

or u = u0. Since max{Iλ(0), Iλ(u0)} ≤ 0, the above expression contradicts c < c. So,

γ = 0 and we have done.

Let δ > 0 be as in assumption (ab) and take φ ∈ C∞(RN
+ , [0, 1]) such that φ ≡ 1

in RN
+ ∩Bδ/2(0) and φ ≡ 0 in RN

+\Bδ(0). Set, for each ε > 0,

uε(x) := K(x)−1/2φ(x)Uε(x), x ∈ RN
+ ,

where

Uε(x
′, xN) :=

ε(N−2)/2

[|x′|2 + (xN + ε)2](N−2)/2
.

If N ≥ 7, it is proved in [48] that,

‖uε‖2 = AN +O(ε2), uε
2∗
2∗ = B

2∗/2
N +O(ε2), (2.5)

as ε → 0+. Moreover, the constants AN , BN are such that AN/BN = S2∗,∂ and the

following holds:

Lemma 2.2.3. If ψε := uε/ uε 2∗ and (N − 1)/(N − 2) < τ < 2∗, then

‖ψε‖2(N−1) = SN−1
2∗,∂

+O(ε2), ψε
τ
τ = O(ε(N−1)−τ(N−2)/2), (2.6)

as ε→ 0+.

Proof. Using the Mean Value theorem for g(r) = rs and a simple computation, we

can check that [
A+O(εt)

]s
= As +O(εt),

for any A, s, t > 0. Hence, we infer from (2.5) and the defintion of 2∗ that

‖ψε‖2(N−1) =
[AN +O(ε2)]

N−1[
B

2∗/2
N +O(ε2)

]N−2
=

AN−1
N +O(ε2)

B
2∗(N−2)/2
N +O(ε2)

=

(
AN
BN

)N−1

+O(ε2).

Since AN/BN = S, we conclude that the first statement in (2.6) holds.

For the second one, we first notice that

uε
τ
τ = ε−τ(N−2)/2

∫
RN−1

K(x′, 0)−τ/2φ(x′, 0)τ

[|x′/ε|2 + 1]τ(N−2)/2
dx′

≤ C1ε
−τ(N−2)/2

∫
Bδ(0)∩∂RN+

1

(|x′/ε|2 + 1)τ(N−2)/2
dx′

≤ C1ε
(N−1)−τ(N−2)/2

∫
RN−1

1

(|y′|2 + 1)τ(N−2)/2
dy′,
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where we have used the definition of uε, 0 ≤ φ ≤ 1 and the change of variable

y′ = x′/ε. But∫
RN−1

1

(|y′|2 + 1)τ(N−2)/2
dy′ ≤ C2 +

∫
∂RN+ \B1(0)

1

|y′|τ(N−2)
dy′

= C2 + C3

∫ +∞

1

s−τ(N−2)+(N−2)ds < +∞,

whenever τ > (N − 1)/(N − 2). Since uε
τ
2∗ = B

τ/2
N + o(1), as ε → 0+, the result

follows from the above inequalities.

We are ready to prove our first main results of the chapter.

Proofs of Theorems C and D. According to Lemma 2.1.2 and Proposition 2.1.3, there

exists λ∗ > 0 such that, for any λ ∈ (0, λ∗), the problem (P2) has a nonnegative

solution u0 ∈ X \ {0} such that Iλ(u0) < 0. The second solution will be obtained as

an application of the Mountain Pass Theorem.

Recall that ψε := uε/ uε 2∗ and notice that∫
RN−1

K(x′, 0)b(x′)(u0 + tψε)
p dx′ = O(1) +

∫
Ω

K(x′, 0)b(x′)(u0 + tψε)
pdx′

≥ O(1) + tp
∫

Ω

K(x′, 0)b(x′)ψpε dx
′,

as t→ +∞, where Ω := Bδ(0)∩RN−1. Since a similar argument holds for the integral

inside the domain, we get

Iλ(u0 + tψε) ≤ O(t2) +O(tq)− tp

p

∫
Ω

K(x′, 0)b(x′)ψpεdx
′,

as t→ +∞. The function in the last integral above is positive, and therefore we can

use 1 < q < 2 < p to obtain

lim
t→+∞

Iλ(u0 + tψε) = −∞. (2.7)

Hence, there exists t∗ > 0 large such that e := u0 + t∗ψε satisfies ‖e‖ > ρ given by

Lemma 2.1.2 and Iλ(e) ≤ 0. So, it is well defined

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ := {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = e}. From the Mountain Pass

Theorem [3] (see also [93, Theorem 1.15]), we obtain (un) ⊂ X such that

lim
n→+∞

Iλ(un) = c, lim
n→+∞

I ′λ(un) = 0.

If 2 < p < 2∗, we can use Lemma 2.2.1 to conclude that, along a subsequence, (un)

converges to a critical point u1 ∈ X such that Iλ(u1) > 0. Hence, u1 6= u0 is the

second solution. And we conclude the proof of Theorem C.
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The final step in the above argument is more delicate in the critical case p = 2∗.

Actually, we need to prove that, for ε > 0 small, there holds

max
t≥0

Iλ(u0 + tψε) < c := Iλ(u0) +
1

2(N − 1)

1

b N−2
∞

SN−1
2∗,∂

. (2.8)

If this is true, we can use Lemma 2.2.2, the Mountain Pass Theorem and a contra-

diction argument to obtain a nonzero solution u1 6= u0.

In order to prove (2.8), we first notice that, since u0 ∈ Bρ(0) is a local minimum

of Iλ, we can use (2.7) to obtain tε > 0 such that

mε := Iλ(u0 + tεψε) = max
t≥0

Iλ(u0 + tψε).

We claim that tε = O(1), as ε → 0+. Indeed, suppose by contradiction that tεn →
+∞, for some sequence εn → 0+. Recalling that a, b > 0 in the support of ψε, we

can use I ′λ(u0 + tεψε)ψε = 0 and I ′λ(u0)ψε = 0 to get

t2∗−1
ε

∫
RN−1

K(x′, 0)b(x′)ψ2∗
ε dx

′ ≤ tε‖ψε‖2 +

∫
RN−1

K(x′, 0)b(x′)u2∗−1
0 ψε dx

′.

Thus, from (2.6), Hölder’s inequality and ψε 2∗ = 1, we obtain∫
RN−1

K(x′, 0)b(x′)ψ2∗
ε dx

′ ≤ t2−2∗
ε [S2∗,∂ +O(1)] + t1−2∗

ε b ∞ u0
2∗−1
2∗ ,

for all ε > 0. In particular, we can take ε = εn in the above inequality to conclude

that

lim
n→+∞

∫
RN−1

K(x′, 0)b(x′)ψ2∗
εndx

′ = 0.

On the other hand, using (b1) and ψεn 2∗ = 1 we obtain

o(1) =

∫
RN−1

K(x′, 0)b(x′)ψ2∗
εndx

′ ≥ b ∞ −M
∫
RN−1

K(x′, 0)|x′|σψ2∗
εn dx

′. (2.9)

Moreover, since uεn 2∗ = B
1/2
N + o(1),∫

RN−1

K(x′, 0)|x′|σψ2∗
εn dx

′ ≤ C1
εN−1
n

uε
2∗
2∗

∫
Bδ(0)∩RN−1

+

|x′|σ

[|x′|2 + ε2]N−1
dx′

= O(εN−1
n )

∫
Bδ(0)∩RN−1

+

|x′|σ−2(N−1) dx′,

as n→ +∞. Since σ > N − 1, the last integral above is finite and therefore∫
RN−1

K(x′, 0)|x′|σψ2∗
εndx

′ = O(εN−1
n ), as n→ +∞. (2.10)

Thus, it follows from (2.9) that b ∞ = 0, which does not make sense. This proves

that (tε) is bounded.
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We also claim that (tε) is far from zero, that is, there exists M > 0 such that

tε ≥ M , for all ε > 0. In order to prove the claim let us suppose, by contradiction,

the existence of a sequence (εn) ⊂ (0,+∞) with εn → 0+ and tεn → 0+. As we

know, for each ε > 0 we can choose t∗ε > 0 in such a way that ‖u0 + t∗εψε‖ > ρ and

I(u0 + t∗εψε) ≤ 0, with ρ > 0 as in Lemma 2.1.2. Hence, it is well defined, for each

ε > 0,

cε := inf
γ∈Γε

max
t∈[0,1]

Iλ(γ(t)) ≥ α > 0,

where Γε := {γ ∈ C([0, 1], X), γ(0) = u0 and γ(1) = u0 + t∗εψε}. Consequently,

mε ≥ cε > 0,

for any ε > 0. On the other hand, since

‖u0 − (tεψε + u0)‖ = ‖u0 − tεψε − u0‖ = |tε|‖ψε‖,

it follows from (2.6) and tεn → 0, that

mεn = Iλ(u0 + tεnψεn)→ Iλ(u0) < 0,

as n→ +∞. This leads to a contradiction and the claim is proved.

Using I ′λ(u0)ψε = 0, we obtain

mε = I(u0) +
t2ε
2
‖ψε‖2 − λ

q
Γ1,ε −

1

2∗
Γ2,ε, (2.11)

where

Γ1,ε :=

∫
RN+
K(x)a(x)[(u0 + tεψε)

q − uq0 − qtεu
q−1
0 ψε] dx

and

Γ2,ε :=

∫
RN−1

K(x′, 0)b(x′)[(u0 + tεψε)
2∗ − u2∗

0 − 2∗tεu
2∗−1
0 ψε] dx

′

It follows from the Mean Value Theorem that there exists θ(x) ∈ [0, 1] such that

(u0(x) + tεψε(x))q − u0(x)q = q(u0(x) + θ(x)tεψε(x))q−1tεψε(x)

≥ qtεu0(x)q−1ψε(x),

for a.e. x ∈ RN
+ . Since a ≥ 0 in the support of ψε we conclude that Γ1,ε ≥ 0. For

estimating Γ2,ε we notice that, given r, s ≥ 0 and 1 < µ < 2∗−1, there holds (see [28])

(r + s)2∗ ≥ r2∗ + s2∗ + 2∗r
2∗−1s+ 2∗rs

2∗−1 − Aµr2∗−µsµ,

for some constant Aµ > 0. Picking r = u0(x) and s = tεψε(x), we get

Γ2,ε ≥
∫
RN−1

K(x′, 0)b(x′)
[
t2∗ε ψ

2∗
ε + 2∗t

2∗−1
ε u0ψ

2∗−1
ε − Aµtµεu

2∗−µ
0 ψµε

]
dx′.
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Since Γ1,ε ≥ 0 and ψε 2∗ = 1, we can use the above inequality and (2.11) to obtain

mε ≤ I(u0) +

[
t2ε
2
‖ψε‖2 − t2∗ε

2∗
b ∞

]
+ Γ2,ε,1 − Γ2,ε,2 + Γ2,ε,3,

with

Γ2,ε,1 :=
t2∗ε
2∗

∫
RN−1

K(x′, 0)[ b ∞ − b(x′)]ψ2∗
ε dx

′,

Γ2,ε,2 := t2∗−1
ε

∫
RN−1

K(x′, 0)b(x′)u0ψ
2∗−1
ε dx′

and

Γ2,ε,3 := Cµ
tµε
2∗

∫
RN−1

K(x′, 0)b(x′)u2∗−µ
0 ψµε dx

′.

As in (2.10), the integral in Γ2,ε,1 has order εN−1, as ε → 0+. So, we infer from

the boundedness of (tε) that Γ2,ε,1 = O(εN−1). Moreover,

max
t≥0

{
t2

2
‖ψε‖2 − t2∗

2∗
b ∞

}
=

1

2(N − 1)

‖ψε‖2(N−1)

b N−2
∞

and therefore we infer from (2.6) and the above estimate for mε that

mε ≤ c+O(ε2)− Γ2,ε,2 + Γ2,ε,3. (2.12)

In order to estimate the last two terms, we recall that u0 ∈ Lνloc(RN
+ )∩Lνloc(RN−1)

for any ν ≥ 1. So, if we denote Ω∂ := Bδ(0) ∩ RN−1, we can choose τ1 > 1 such that

2(N − 1)

(N + 4)
< τ1 <

2(N − 1)

N

and use Hölder’s inequality to get∫
RN−1

K(x′, 0)b(x′)u0ψ
2∗−1
ε dx′ ≤ b ∞

(∫
Ω∂

K(x′, 0)u
τ ′1
0 dx

′
)1/τ ′1

ψε
2∗−1
(2∗−1)τ1

.

Since (N − 1)/(N − 2) < (2∗ − 1)τ1 < 2∗ and tε ≥ M > 0 , we infer from (2.6) and

the choice of τ1 that

Γ2,ε,2 ≥ O(ε(N−1)/τ1−(N/2)). (2.13)

We now set µ := (N − 1)/(N − 2), pick 1 < τ2 < 2 and apply Hölder’s inequality

again to obtain∫
RN−1

K(x′, 0)b(x′)u2∗−µ
0 ψµε dx

′ ≤ b ∞

(∫
Ω∂

K(x′, 0)u
(2∗−µ)τ ′2
0 dx′

)1/τ ′2

ψε
µ
µτ2
,

from which we conclude that

Γ2,ε,3 = O(ε(N−1)/τ2−(N−1)/2). (2.14)
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Since

lim
τ→2(N−1)/N

(
N − 1

τ
− N

2

)
= 0 <

N − 1

2
= lim

τ→1

(
N − 1

τ
− N − 1

2

)
,

we can choose the numbers τ1, τ2 above in such way that

ν1 :=
N − 1

τ1

− N

2
< 2, ν2 :=

N − 1

τ2

− N − 1

2
> ν1.

Replacing (2.13) and (2.14) in (2.12) and using the above inequalities, we obtain

mε ≤ c+O(ε2)−O(εν1) +O(εν2) = c+ εν1
[
O(ε2−ν1)−O(1) +O(εν2−ν1)

]
,

as ε → 0+. We conclude that (2.8) holds, for any ε > 0 small. The theorem D is

proved.

2.3 Proofs of Theorems E and F

We start this section presenting some definitions and abstract results which will be

used to obtain infinitely many solutions for (P2). Let E = V ⊕ W be an infinite

dimensional Hilbert space, with V = span{ϕV1 , ϕV2 , . . . }, W = span{ϕW1 , ϕW2 , . . . }
and the basis being orthonormal. For each n ∈ N, define the subspaces

V n := span{ϕV1 , ϕV2 , . . . ϕVn }, Vn := span{ϕVn , ϕVn+1, . . . }.

Using the set
{
ϕWi
}
i∈N we define W n and Wn in a similar way.

Given Φ ∈ C1(E,R) and c ∈ R, we say that Φ satisfies the (PS)∗c-condition (with

respect to V n ⊕W n) if any sequence (un) ⊂ V n ⊕W n such that

lim
n→+∞

Φ(un) = c, lim
n→+∞

Φ′|V n⊕Wn (un) = 0,

has a subsequence converging to a critical point of Φ. Any such sequence will be

called (PS)∗c-sequence.

We are going to obtain infinitely many solutions for (P2) as applications of the

following abstract theorems due to Tonkes [92] (see also [3, 12]):

Theorem 2.3.1. Let Φ ∈ C1(E,R) be an even functional. Suppose that, for every

n ≥ n0, there exist Rn > rn > 0 such that

(A1) inf {Φ(u) : u ∈ Vn ⊕W, ‖u‖E = Rn} ≥ 0;

(A2) bn := inf {Φ(u) : u ∈ Vn ⊕W, ‖u‖E ≤ Rn} → 0, as n→ +∞;

(A3) dn := sup {Φ(u) : u ∈ V n, ‖u‖E = rn} < 0;

(A4) Φ satisfies (PS)∗c-condition for all c ∈ [bn0 , 0).
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Then Φ has a sequence of critical values cn ∈ [bn, dn] such that cn → 0, as n→ +∞.

Theorem 2.3.2. Let Φ ∈ C1(E,R) be a even functional. Suppose that, for every

n ∈ N, there exist Rn > rn > 0 such that

(Ã2) bn := inf{Φ(u) : u ∈ Vn ⊕W, ‖u‖ = rn} → ∞, as n→∞;

(Ã3) an := max{Φ(u) : u ∈ V n, ‖u‖ = Rn} ≤ 0;

(Ã4) Φ satisfies (PS)c-condition for all c > 0.

Then Φ has a sequence of critical values cn ∈ (0,+∞) such that cn → +∞, as

n→ +∞.

Since we are not interested in the sign of the solutions, we redefine the energy

function setting

Iλ(u) :=
1

2
‖u‖2 − λ

q

∫
RN+
K(x)a(x)|u|q dx− 1

p

∫
RN−1

K(x′, 0)b(x′)|u|p dx′.

We are intending to apply Theorem 2.3.1 with Φ = Iλ and E = X. In order to

define the space decomposition, we recall that Ω+
a =

{
x ∈ RN

+ : a(x) > 0
}

and define

W :=
{
u ∈ X : u(x) = 0 for a.e. x ∈ int(Ω+

a )
}
.

We call V the orthogonal complement of the closed subspace W , in such way that

X = V ⊕W .

We start with the required compactness properties.

Proposition 2.3.3. If 2 < p < 2∗, then Iλ satisfies the (PS)∗c condition at any level

c ∈ R. The same holds if p = 2∗ and b ≤ 0.

Proof. Let (un) ⊂ V n⊕W n be a (PS)∗c-sequence. Computing Iλ(un)−(1/p)I ′λ(un)un,

using (a0) and Hölder’s inequality, we can check that (un) is bounded. Then, up to

a subsequence, we have that un ⇀ u weakly in X. Pick φ ∈ C∞0 (RN
+ ) and denote by

φn its projection over the subspace V n ⊕W n. Since (I ′λ(un)) ⊂ X∗ is bounded, we

have that

|I ′λ(un)(φ− φn)| ≤ ‖I ′λ(un)‖X∗‖φ− φn‖ = o(1),

as n→ +∞. Thus, recalling that I ′λ(un)φn = o(1), we obtain

I ′λ(un)φ = I ′λ(un)(φ− φn) + I ′λ(un)φn = o(1).

Arguing as in the proof of Proposition 2.1.3, we conclude that I ′λ(u)φ = 0, for any

φ ∈ C∞0 (RN
+ ). It follows from a density argument that I ′λ(u) = 0.
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Using Lebesgue Theorem as in the proof of Proposition 2.1.3, we get

lim
n→∞

∫
RN+
K(x)a(x)|un|qdx =

∫
RN+
K(x)a(x)|u|qdx. (2.15)

Moreover, in the subcritical case 2 < p < 2∗, the same kind of convergence holds for

the term
∫
RN−1 K(x′, 0)b(x′)|un|pdx′, since the trace embedding is compact. These

two convergences and I ′λ(u)u = 0 provide

o(1) = I ′λ(un)un − I ′λ(u)u = ‖u2
n‖ − ‖u‖2 + o(1),

and we infer from the weak convergence that un → u strongly in X.

For the critical case p = 2∗, we first use assumption b ≤ 0 to guarantee that

ϕ 7→ −
∫
RN−1 K(x′, 0)b(x′)|ϕ|p dx′ is a seminorm in X. Hence, from the weak lower

semicontinuity of a seminorm, we get

lim sup
n→+∞

∫
RN−1

K(x′, 0)b(x′)|un|2∗dx′ ≤
∫
RN−1

K(x′, 0)b(x′)|u|2∗dx′.

This, (2.15) and I ′λ(un)un = o(1) imply that

lim sup
n→+∞

‖un‖2 ≤ ‖u‖2.

On the other hand, the weak convergence provides ‖u‖2 ≤ lim inf
n→+∞

‖un‖2, and therefore

the result follows as in the former case.

If p = 2∗ and b changes it sign, we need the following local compactness result.

Proposition 2.3.4. If p = 2∗, then there exists Cc = Cc(q,N, ‖a‖σq) > 0 such that

the functional Iλ satisfies the (PS)∗c condition at any level

c <
1

2(N − 1)

1

b N−2
∞

SN−1
2∗,∂
− Ccλ2/(2−q).

Proof. Let (un) ⊂ V n ⊕W n be a (PS)∗c sequence. As in the proof of Proposition

2.3.3, we may assume that un ⇀ u weakly in X, with I ′λ(u) = 0. Since Iλ(u) =

Iλ(u)− (1/2∗)I
′
λ(u)u, we obtain

Iλ(u) =
1

2(N − 1)
‖u‖2 − λ

(
2∗ − q

2∗q

)∫
RN+
K(x)a(x)|u|qdx. (2.16)

We now set zn := (un − u) and argue as in Proposition 2.2.2 to get

lim
n→∞

‖zn‖2 = γ = lim
n→∞

∫
RN−1

K(x′, 0)b(x′)|zn|2∗dx′.

for some γ ≥ 0. If γ > 0, then

γ ≥ 1

b N−2
∞

SN−1
2∗,∂

. (2.17)

61



On the other, we infer from Brezis-Lieb’s lemma that

c+ o(1) = Iλ(un) =
1

2
‖zn‖2 − 1

2∗

∫
RN−1

K(x′, 0)b(x′)|zn|2∗dx′ + Iλ(u) + o(1).

Passing to the limit, using (2.16), Hölder’s inequality and (2.17), we conclude that

c ≥ 1

2(N − 1)

1

b N−2
∞

SN−1
2∗,∂

+ g(‖u‖), (2.18)

where

g(t) :=
t2

2(N − 1)
− λγqtq, t > 0,

and γq := ‖a‖σqS
−q/2
qσ′q

(2∗ − q)/(2∗q). Setting

Cc :=

(
2− q

2q

)
1

(N − 1)
[(N − 1)qγq]

2/(2−q) ,

a straightforward computation shows that g(t) ≥ −Ccλ2/(2−q), for any t > 0. Hence,

we infer from (2.18) that

c ≥
SN−1

2∗,∂

2(N − 1) b N−2
∞
− Ccλ2/(2−q),

which does not make sense. This contradiction proves that γ = 0 or, equivalently,

un → u strongly in X.

We finish this section with an important tool for the proof of Theorem E.

Lemma 2.3.5. Suppose that a ≥ 0 and set

µn := sup
{u∈Vn⊕W : ‖u‖≤1}

∫
RN+
K(x)a(x)|u|q dx.

Then µn → 0, as n→∞.

Proof. Since (µn) ⊂ [0,+∞) is nonincreasing, we have that µn → µ0 ≥ 0, as n→∞.

Let (un) ⊂ Vn ⊕W be such that ‖un‖ = 1 and

µ0

2
≤ µn

2
≤
∫
RN+
K(x)a(x)|un|q dx. (2.19)

We may assume that un ⇀ u = v + w weakly in X, with v ∈ V and w ∈ W . The

orthogonal decomposition and the definition of Vn imply that 〈un, ϕVk 〉 = 0, for any

fixed k ∈ N and n > k. So,

0 = lim
n→+∞

〈un, ϕVk 〉 = 〈u, ϕVk 〉 = 〈v, ϕVk 〉,

and therefore v = 0 or, equivalently, u = w. Using Lebesgue Theorem as in the proof

of Proposition 2.1.3, we conclude that

lim
n→∞

∫
RN+
K(x)a(x)|un|qdx =

∫
RN+
K(x)a(x)|w|qdx = 0,

since w ∈ W . The above expression and (2.19) imply that µ0 = 0.
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We are ready to prove Theorem E.

Proof of Theorem E. It follows from Lemma 2.3.5 and Proposition 2.1.1 that, for any

u ∈ Vn ⊕W , there holds

Iλ(u) ≥ 1

2
‖u‖2 − λ

q
µn‖u‖q −

1

p
b ∞S

−p/2
p,∂ ‖u‖

p.

Hence,

Iλ(u) ≥ 1

4
‖u‖2 − λ

q
µn‖u‖q, ∀u ∈ Bρ1(0) ∩ (Vn ⊕W ), (2.20)

where ρ1 :=
[
pS

p/2
p,∂ /(4 b ∞)

]1/(p−2)

. Since µn → 0, there exists n1 ∈ N such that

Rn :=

(
4λµn
q

)1/(2−q)

< ρ1, ∀n ≥ n1.

Using (2.20) we can check that Iλ(u) ≥ 0, for any u ∈ Vn ⊕W such that ‖u‖ = Rn.

This proves that (A1) holds.

In order to verify (A2) we notice that, for n ≥ n1,

Iλ(u) ≥ −λ
q
µnR

q
n ∀u ∈ BRn(0) ∩ (Vn ⊕W ).

Thus,

0 ≥ bn = inf
{
Iλ(u) : u ∈ BRn(0) ∩ (Vn ⊕W )

}
≥ −λ

q
µnR

q
n.

Since the right-hand side above goes to 0, as n→ +∞, we conclude that (A2) holds.

Given u ∈ V n, we have that
∫
RN+
K(x)a(x)|u|qdx = 0 if, and only if, u = 0. Hence,

this integral defines a norm in the finite dimensional subspace V n. The equivalence

of norms provides 0 < βn < (8µn)/q, such that

βn‖u‖q ≤
∫
RN+
K(x)a(x)|u|q dx, ∀u ∈ V n.

Hence, we can argue as above to get

Iλ(u) ≤ ‖u‖2 − λ

q
βn‖u‖q, ∀u ∈ Bρ2(0) ∩ V n, (2.21)

where ρ2 :=
[
pS

p/2
p,∂ /(2 b ∞)

]1/(p−2)

. Since βn → 0, there exists n2 ∈ N such that

rn :=

(
λβn

2

)1/(2−q)

< ρ2, ∀n ≥ n2.

A straightforward computation shows that the function g(t) := t2 − (λ/q)βnt
q, for

t > 0, attains its minimum value at t = rn and

dn := g(rn) = −(2− q)
2q

λβn

(
λβm

2

)q/(2−q)
< 0.
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Hence, we infer from (2.21) that Iλ(u) ≤ dn, for any u ∈ ∂Brn(0) ∩ V n and n ≥ n2.

We now define n0 := max{n1, n2}. According to the above considerations, Iλ

verifies (A1) and (A2). Moreover, since βn < (8µn)/q, we have that rn < Rn and

therefore (A3) also holds. It remains to check (A4). If 2 < p < 2∗ or p = 2∗ and

b ≤ 0, condition (A4) is a direct consequence of Proposition 2.3.3. If p = 2∗ but we

have no information about the sign of b, we have compactness at any negative level

provided λ > 0 is small in such way that

Ccλ
2/(2−q) <

1

2(N − 1)

1

b N−2
∞

SN−1
2∗,∂

,

where Cc > 0 comes from Proposition 2.3.4. In any case, we may invoke Theorem

2.3.1 to obtain infinitely many critical points for Iλ.

Remark 2. Suppose that b ≤ 0 and let (un) ⊂ X be a sequence of solutions given by

Theorem E. If we denote by cn = Iλ(un) ∈ [bn, 0] the energy of the solutions, we can

use I ′λ(un)un = 0 and an easy computation to get

cn = λ

(
1

2
− 1

q

)∫
RN+
K(x)a(x)|un|q dx+

(
1

2
− 1

p

)∫
RN−1

K(x′, 0)b(x′)|un|p dx′.

Hence,

0 ≤ λ

∫
RN+
K(x)a(x)|un|qdx ≤ −

2q

(2− q)
cn

and
2p

(p− 2)
cn ≤

∫
RN−1

K(x′, 0)b(x′)|un|pdx′ ≤ 0.

Recalling that bn → 0, the above inequalities and I ′λ(un)un = 0 imply that ‖un‖ → 0.

In order to prove Theorem F we recall that Ω+
b =

{
x′ ∈ RN−1 : b(x′) > 0

}
and

redefine the subspace W in the following way:

W := {u ∈ X : u(x′) = 0 for a.e. x′ ∈ int(Ω+
b )}.

As before, V is the orthogonal complement of W in X, in such way that X = V ⊕W .

Proof of Theorem F. Setting

µn := sup
{u∈Vn⊕W : ‖u‖≤1}

∫
RN−1

K(x′, 0)b(x′)|u|pdx′,

we can use 2 < p < 2∗ and the same argument of Lemma 2.3.5 to conclude that

µn → 0, as n→ +∞.

If u ∈ Vn ⊕W , then

Iλ(u) ≥ 1

2
‖u‖2 − λ

q
S
−q/2
qσ′q
‖a‖σq‖u‖q −

µn
p
‖u‖p,
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and therefore

Iλ(u) ≥ 1

4
‖u‖2 − µn

p
‖u‖p, ∀u ∈ Vn ⊕W, ‖u‖ ≥ ρ1, (2.22)

where ρ1 :=
[
4λ‖a‖σqS

−q/2
qσ′q

/q
]1/(2−q)

. Since µn → 0, there exists n1 ∈ N such that

rn :=

(
p

8µn

)1/(p−2)

> ρ1, ∀ n ≥ n1.

So, using (2.22) we conclude that

bn = inf {Iλ(u) : u ∈ Vn ⊕W ; ‖u‖ = rn} ≥
1

8
r2
n.

It follows from µn → 0 and the definition of rn that (Ã2) holds.

Arguing as in Theorem E, we have that
∫
RN−1 K(x′, 0)b(x′)|u|pdx′ defines a norm

in the finite dimensional subspace V n. Then, there exists 0 < βn < 8µn such that

βn‖u‖p ≤
∫
RN−1

K(x′, 0)b(x′)|u|pdx′, ∀u ∈ Vn.

Hence,

Iλ(u) ≤ ‖u‖2 − βn
p
‖u‖p u ∈ V n, ‖u‖ ≥ ρ2,

where ρ2 :=
(

2λS
−q/2
qσ′q
‖a‖σq/q

)1/(2−q)
. Setting

Rn := max

{
2ρ2,

(
p

βn

)1/(p−2)
}
,

a straightforward computation shows that Iλ(u) ≤ 0, whenever u ∈ V n satisfies

‖u‖ = Rn. Since Rn > rn, we conclude that requirement (Ã3) if fulfilled.

Since (PS)∗c implies (PS)c condition, the proof of (Ã4) is analogous to that of

Proposition 2.3.3. So, we may invoke Theorem 2.3.2 to obtain a sequence of solutions

(un) ⊂ X such that Iλ(un) = cn → +∞, as n→ +∞. Since

cn = Iλ(un) ≤ 1

2
‖un‖2 +

λ

q
‖a‖σqS

−q/2
qσ′q
‖un‖q +

1

p
b ∞S

−p/2
p,∂ ‖un‖

p,

we conclude that ‖un‖ → +∞. The theorem is proved.
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CHAPTER 3

Multiplicity of solutions for a superlinear problem

This chapter concerns with existence and multiplicity of solutions for the problem

(P3)


−∆u− 1

2
(x · ∇u) = f(u), in RN

+ ,

∂u

∂η
= β|u|2∗−2u, on ∂RN

+ ,

where RN
+ := {(x′, xN) ∈ RN

+ : x′ ∈ RN−1, xN > 0} is the upper half-space, ∂
∂η

is the

partial outward normal derivative, β > 0 is a parameter, f is a superlinear function

with subcritical growth and 2∗ := 2(N − 1)/(N − 2), for N ≥ 3.

A physical motivation comes from the nonlinear heat equation

vt −∆v = 0, in RN
+ × (0,+∞),

∂v

∂η
= |v|p−2v, on ∂RN

+ × (0,+∞), (3.1)

where x ∈ RN
+ is the spatial variable and t > 0 is time. A solution with the special

form v(x, t) = tµu(t−1/2x) is called self-similar solution. It preserves the PDE scaling,

providing qualitative properties and giving information about large and small scale

behaviors. A direct computation shows that the profile u : RN
+ → R verifies

−∆u− 1

2
(x · ∇u) = µu, x ∈ RN

+ ,
∂u

∂η
= |u|p−2u, x′ ∈ ∂RN

+ ,

with µ = 1/(2(p− 2)).

Problem (3.1) and their variations have been studied in bounded domain, the half-

space RN
+ and even in the whole space in the last decades; see, e.g., [7,8,44,52,57,58,

61, 69, 81, 84] and references therein. Different types of results can be found in these

works, such as existence, uniqueness of solutions, blow-up or asymptotic behavior

results. To the best of our knowledge, Escobedo and Kavian [44] were the first authors
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to propose a variational approach to nonlinear heat problems. In their paper, they

consider the whole space case and settled the abstract Sobolev spaces appropriated to

find solution with rapid decay at infinity. This abstract setting was recently extended

to the half-space in [47], including the necessary trace embeddings. In these paper,

it was considered existence and nonexistence results for some subcritical versions of

(P3). Some extensions for the critical case were recently proved in [48].

In our first result, we study the effect of the parameter β > 0 on the number of

solutions. So, differently from the aforementioned works, we are concerned with the

existence of multiple solutions. Our main assumptions on the superlinear nonlinearity

f read as:

(f0) f : R→ R is continuous;

(f1) there exist a1, a2 > 0 and 2 < p < 2∗ := 2N/(N − 2) such that

|f(s)| ≤ a1 + a2|s|p−1, ∀ s ∈ R;

(f2) there holds

lim
s→0

f(s)

s
= 0;

(f3) there exists 2 < θ < 2∗ such that

0 < θF (s) ≤ f(s)s, ∀ s ∈ R \ {0},

where F (s) :=
∫ s

0
f(τ) dτ.

By taking advantage of the symmetry properties of the problem, we prove the

following:

Theorem G. Suppose that f is odd and satisfies (f0) − (f3). Then, for any given

k ∈ N, there exists β∗ = β∗(k) > 0 such that problem (P3) has at least k pairs of

solutions, provided β ∈ (0, β∗).

For the proof we apply a version of the Symmetric Mountain Pass Theorem.

The main task here is the management of Palais-Smale sequences and we follow ideas

presented in Silva and Xavier [87]. Since we are dealing with unbounded domains, the

former argument does not directly apply and we need to perform a trick adaptation of

Bianchi, Chabrowski and Szulkin’s ideas [15, 27] and the concentration compactness

principle due to Lions [67].

In our second result, we do not require symmetry for f and obtained the existence

of nonnegative solution. In this case, the parameter β does not play any role and we

prove the following:
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Theorem H. Suppose that N ≥ 7 and f satisfies (f0)− (f3). Then problem (P3) has

a nonnegative nonzero solution provided

lim
ε→0+

εN−2

∫ 1/ε

0

F

(
ε−(N−2)/2

[s2 + 1](N−2)/2

)
sN−1 ds = +∞. (3.2)

In the proof we follow the paper of Brezis and Nirenberg [19]. After obtaining

a local compactness condition for the associated functional, we need to prove that

it Mountain Pass level belongs to the correct range. At this point we perform some

fine estimates and use the technical condition (3.2). It was inspired by a similar

one which appeared in [19, Lemma 2.1] and it holds if, for instance, F (s) ≥ γ|s|p,
for some γ > 0 and 2 < p < 2∗. In order to check that, it is enough to notice

that g(s) = sN−1/(1 + s2)p(N−2)/2 is increasing in the interval [0, s0], where s0 =

[−(N − 1)/(N − 1− pN + 2p)]1/2. Hence, for ε > 0 enough small,∫ 1/ε

0

sN−1

(1 + s2)p(N−2)/2
ds ≥

∫ s0

0

sN−1

(1 + s2)p(N−2)/2
ds > 0

and therefore

lim
ε→0+

εN−2−p(N−2)/2

∫ 1/ε

0

sN−1

(s2 + 1)p(N−2)/2
ds = +∞.

It is worth noticing that, in some sense, our work was inspired by the equation

−∆u = g(u) + |u|2∗−2u, x ∈ Ω, u = 0, x ∈ ∂Ω,

where Ω ⊂ RN is a bounded domain, g is a subcritical perturbation of order greater

or equal than one. Brezis and Nirenberg [19], after their pioneer work, promoved an

intensive study of critical growth problems (see [10, 23, 26, 40, 86, 87] and references

therein). We present here a contribution for this huge class of problems. In a more

specific way, the main results of this chapter complement that of [48], since we deal

here with a superlinear nonlinearity in RN
+ and, beyond the nonnegative solution, we

also obtain multiplicity results.

The chapter is organized as follows. In the next section, we present the variational

framework to deal with (P3) and prove a compactness result. In Section 3.2 we prove

Theorem G and, in the final section, we prove Theorem H.

3.1 Variational framework and the Palais-Smale

condition

If we define K(x) := exp(|x|2/4), a straightforward computation shows that the first

equation in (P3) becomes

−div(K(x)∇u) = K(x)f(u), x ∈ RN
+ .
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Hence, it is natural looking for solutions in the space X defined as the closure of

C∞c (RN
+ ) with respect to the norm

‖u‖ :=

(∫
RN+
K(x)|∇u|2 dx

)1/2

,

which is induced by the inner product

(u, v) :=

∫
RN+
K(x)(∇u · ∇v) dx

From now on we identify ∂RN
+ ∼ RN−1. Given 2 ≤ r ≤ 2∗ and 2 ≤ s ≤ 2∗ we

consider the weighted Lebesgue spaces

LrK(RN
+ ) :=

u ∈ Lr(RN
+ ) : ‖u‖r :=

(∫
RN+
K(x)|u|rdx

)1/r

<∞

 ,

LsK(RN−1) :=

{
u ∈ Ls(RN−1) : u s :=

(∫
RN−1

K(x′, 0)|u|sdx′
)1/s

<∞

}
.

and collect in the next proposition the abstract results proved in [47,48].

Proposition 3.1.1. For any r ∈ [2, 2∗) and s ∈ [2, 2∗), the embeddings X ↪→ LrK(RN
+ )

and X ↪→ LsK(RN−1) are compact. Moreover, continuous embeddings hold in the

critical cases r = 2∗ and s = 2∗.

In view of this result we can define, for r ∈ [2, 2∗] and s ∈ [2, 2∗], the following

constants:

Sr := inf
u∈X/{0}

∫
RN+
K(x)|∇u|2dx(∫

RN+
K(x)|u|rdx

)2/r
,

and

Ss,∂ := inf
u∈X/{0}

∫
RN+
K(x)|∇u|2dx(∫

RN−1 K(x′, 0)|u|sdx′
)2/s

.

Setting F (s) :=
∫ s

0
f(τ) dτ , it follows from (f0) − (f2), Proposition 3.1.1 and

standard arguments that the functional Iβ : X → R defined as

Iβ(u) :=
1

2
‖u‖2 −

∫
RN+
K(x)F (u) dx− β

2∗
u 2∗

2∗ ,

is well defined. Actually, Iβ ∈ C1(X,R) and its critical points are precisely the weak

solutions of (P3).
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Recall that, if E is a Banach space, I ∈ C1(E,R) and c ∈ R, the functional I is

said to satify the (PS)c condition if any sequence (un) ⊂ E such that

lim
n→+∞

I(un) = c, lim
n→+∞

I ′(un) = 0,

has a convergent subsequence. From now on, any such sequence will be called (PS)c-

sequence.

The main result of this section can be stated as follows:

Proposition 3.1.2. Suppose that f satisfies (f0)-(f3). For any given M > 0, the

functional Iβ satisfies the (PS)c-condition for any 0 < c ≤ M , provided β > 0

satisfies

β < β∗ :=

(
SN−1

2∗,∂

2(N − 1)M

)1/(N−2)

. (3.3)

Proof. Let M > 0 and (un) ⊂ X be a (PS)c-sequence for Iβ, with 0 < c ≤M . Using

(f3) and a standard argument we can prove that (un) is bounded. Hence, we may

assume that 
un ⇀ u, weakly in X,

un → u, strongly in LrK(RN
+ ) and LsK(RN−1),

un(x)→ u(x), for a.e. x ∈ RN
+ ,

(3.4)

for any r ∈ [2, 2∗) and s ∈ [2, 2∗). Moreover, we can easily check that I ′β(u) = 0.

We claim that, if β < β∗, then

lim
n→+∞

∫
RN−1

K(x′, 0)|un|2∗ dx′ =
∫
RN−1

K(x′, 0)|u|2∗ dx′. (3.5)

Since the proof of this convergence is rather long, we postpone it for the end of the

section. So, assuming the claim, we can use (3.4) and Lebesgue’s theorem to get

o(1) = I ′β(un)un = ‖un‖2 −
∫
RN+
K(x)f(un)un dx− β un

2∗
2∗

= ‖un‖2 −
∫
RN+
K(x)f(u)u dx− β u 2∗

2∗ + o(1)

= ‖un‖2 − ‖u‖2 + I ′β(u)u+ o(1),

as n → +∞. The above expression, I ′β(u)u = 0 and the weak convergence in (3.4)

imply that un → u in X.

We devote the rest of this section to the proof of (3.5). The first step is to apply the

Lions’ concentration-compactness principle (see [67, Lema 1.2]). In order to do this

let us make some definitions. If Ω is a Hausdorff space, we denote byM(Ω) the space

of finite Radon measures defined on the Borel σ-algebra of Ω. For the convenience of

the reader we will prove the following Concentration and Compactness lemma:
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Lemma 3.1.3. If (un) ⊂ X is a bounded sequence, then there exist an at most

countable family J , positive numbers {µj}j∈J , {νj}j∈J , and points {xj}j∈J ⊂ ∂RN
+

such that 
K(x)|∇un|2dx ⇀ µ ≥ K(x)|∇u|2dx+

∑
j∈J µjδxj ,

K(x′, 0)|un|2∗dx′ ⇀ ν = K(x′, 0)|u|2∗dx′ +
∑

j∈J νjδxj ,

µj ≥ S2∗,∂(νj)
2/2∗ ,

(3.6)

where the convergences hold in the sense of the measures, µ ∈M(RN
+ ), ν ∈M(∂RN

+ )

e δx is the Dirac mass concentrated on x ∈ RN .

Proof. Since (un) is bounded in X, we have that (K|∇un|2) and (K(·, 0)|un|2∗) are

bounded sequences in L1(RN
+ ) and L1(RN−1), respectively. Hence, we can suppose

that

K(x)|∇un|2 dx ⇀ µ, K(x′, 0)|un|2∗ dx′ ⇀ ν,

weakly in the sense of measures (see [45, Definition 1.1.2]), where µ ∈ M(RN
+ ),

ν ∈M(∂RN
+ ) and we have identified ∂RN

+ ' RN−1.

Given φ ∈ C∞0 (RN
+ ), we have that (φun) ⊂ X and hence

S
1/2
2∗,∂

φun 2∗ ≤ ‖φun‖ = ‖∇(φun)‖2. (3.7)

Notice that

φun
2∗
2∗ =

∫
∂RN+

K(x′, 0)|φ|2∗|un|2∗ dx′ →
∫
∂RN+
|φ|2∗ dν. (3.8)

Moreover,

‖∇(φun)‖2
2 =

∫
RN+
K(x)|∇(φun)|2 dx

=

∫
RN+
|φ|2K(x)|∇un|2 dx+

∫
RN+
K(x)|un|2|∇φ|2 dx. (3.9)

We may assume that un ⇀ u weakly in X and we first consider the case u = 0.

From the compact embedding X ↪→ L2
K(RN

+ ), we may also suppose that un → 0

strongly in L2
K(RN

+ ), and thus

lim
n→+∞

∫
RN+
K(x)|un|2|∇φ|2 dx = 0.

The above convergence and (3.9) imply that

lim
n→+∞

‖∇(φun)‖2
2 =

∫
RN+
|φ|2 dµ.
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This, (3.7) and (3.8) provide the following inequality(∫
∂RN+
|φ|2∗ dν

)1/2∗

≤ S
− 1

2
2∗,∂

(∫
RN+
|φ|2 dµ

)1/2

. (3.10)

Denoting by L(RN) the Lebesgue σ-algebra of RN , let us define the following

measures in L(RN):

µ̃(A) := µ(A ∩ RN
+ ), ν̃(A) := ν(A ∩ ∂RN

+ ).

Since ν and µ are finite Radon measures and elements of the form A∩∂RN
+ and A∩RN

+

, with A ∈ L(RN), belong to the Lebesgue σ-algebras of ∂RN
+ and RN

+ , respectively,

it follows that ν̃ are µ̃ are finite Radon measures . Moreover, from the definitions of

µ̃, ν̃ and (3.10) we obtain

(∫
RN
|φ|2∗ dν̃

) 1
2∗

=

(∫
∂RN+
|φ|2∗ dν

) 1
2∗

≤ S
− 1

2
2∗,∂

(∫
RN+
|φ|2 dµ

) 1
2

= S
− 1

2
2∗,∂

(∫
RN
|φ|2 dµ̃

) 1
2

,

(3.11)

for any φ ∈ C∞0 (RN). Hence, it follows from the Lions’ concentration-compactness

principle [67, Lemma 1.2] for the whole space the existence of a family at most

countable J , positive numbers {νj}j∈J and points {xj}j∈J ⊂ RN such that

ν̃ =
∑
j∈J

νjδxj , µ̃ ≥ S2∗,∂

∑
j∈J

ν
2
2∗
j δxj .

We claim that {xj}j∈J ⊂ ∂RN
+ . Indeed, if this is not the case, we can use the

above expression and the definition of ν̃ to get

0 < νj =
∑
j∈J

νjδxj({xj}) = ν̃({xj}) = ν({xj} ∩ ∂RN
+ ) = 0,

which does not make sense. Hence, the claim holds true.

Since ν̃ and µ̃ restricted to ∂RN
+ and RN

+ coincide with ν and µ, respectively, we

have that

ν =
∑
j∈J

νjδxj µ ≥ S2∗,∂

∑
j∈J

ν
2
2∗
j δxj .

In the general case u 6= 0, it is sufficient to set vn := un − u, notice that vn ⇀ 0

weakly in X, and argue as above with un replaced by vn

Lemma 3.1.4. If (3.3) holds, then J is empty.
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Proof. Suppose, by contradiction, that β < β∗ and there exists some j ∈ J . We first

claim that

νj ≥
(
S2∗,∂

β

)N−1

. (3.12)

Assuming the claim, we can prove the lemma in the following way. Pick ψ ∈
C∞0 (B2(xj)) such that 0 ≤ ψ ≤ 1 and ψ ≡ 1 in B1(xj). Computing Iβ(un) −
(1/2)I ′β(un)un and using (f3), we obtain

c+ o(1) ≥ β

2(N − 1)

∫
RN−1

K(x′, 0)|un|2∗ dx′

≥ β

2(N − 1)

∫
RN−1

K(x′, 0)|un|2∗ψ(x′, 0) dx′,

where o(1) denotes a quantity approaching zero as n → +∞. Passing to the limit,

using (3.6) and (3.12), we obtain

M ≥ c ≥ β

2(N − 1)

∫
B1(xj)∩RN−1

ψ(x′, 0) dν ≥ β

2(N − 1)
νj ≥

β

2(N − 1)

(
S2∗,∂

β

)N−1

,

which is equivalent to β ≥ β∗, contrary to (3.3). Hence, J is empty.

It remains to prove (3.12). For that, we consider φ ∈ C∞0 (B2(0)) such that

0 ≤ φ ≤ 1 and φ ≡ 1 in B1(0) and define

φεj(x) := φ

(
x− xj
ε

)
, x ∈ RN .

Since I ′β(un)(unφ
ε
j) = o(1), we obtain[∫

φεj dµ− β
∫
φεj dν

]
+ o(1) =

∫
RN+
K(x)f(un)unφ

ε
j dx

−
∫
RN+
K(x)(∇un · ∇φεj)un dx.

(3.13)

We shall estimate each term on the right side above. First notice that, by using

(f1)− (f2), (3.4) and Lebesgue’s theorem we obtain

lim
n→∞

∫
RN+
K(x)f(un)unφ

ε
j dx = lim

n→∞

∫
RN+
K(x)f(u)uφεj dx.

Moreover, since supp(φεj) ⊂ B2ε(xj), we can use Lebesgue’s theorem again to get

lim
ε→0

lim
n→∞

∫
RN+
K(x)f(un)unφ

ε
j dx = 0. (3.14)

By using Holder’s inequality, that (un) is bounded and the definition of φεj we get

that∣∣∣∣∣
∫
RN+
K(x)(∇un · ∇φεj)un dx

∣∣∣∣∣ ≤ ‖un‖
(∫

Ωjε

K(x)(un)2|∇φεj|2 dx
)1/2

=
c1

ε

(∫
Ωjε

K(x)(un)2

∣∣∣∣∇φ(x− xjε

)∣∣∣∣2 dx
)1/2

,
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where Ωj
ε := B2ε(xj)∩RN

+ and c1 > 0 is independent of n. If we call Σn,ε the left-hand

side of the above expression, we can use the change of variable y = (x − xj)/ε and

the strong convergence un → u in L2
K(RN

+ ) to get

Σn,ε ≤ c2ε
(N−2)/2

 ∫
B2ε(0)∩RN+

K(εy + xj)u
2(εy + xj) dy + o(1)


1
2

,

where c2 = c1‖∇φ‖∞. It follows that

lim
ε→0

lim
n→+∞

∫
RN+
K(x)(∇un · ∇φεj)un dx = 0.

Passing (3.13) to the limit, using the above expression, (3.14) and (3.6), we obtain

βνj = β lim
ε→0+

∫
φεj dν = lim

ε→0+

∫
φεj dµ ≥ lim

ε→0+

[∫
RN+
K(x)|∇u|2φεj dx+

∑
i∈J

µiφ
ε
j(xi)

]
.

Now, we can use the Lebesgue’s Theorem, the definition of φεj and (3.6) to get that

βνj ≥ µjφ(0) = µj ≥ S2∗,∂ν
2/2∗
j

that is, ν
1−(2/2∗)
j ≥ S2∗,∂/β, which is equivalent to (3.12). The lemma is proved.

In the next result we follow an argument due to Bianchi et al. [15].

Lemma 3.1.5. If

ν∞ := lim
R→+∞

lim sup
n→+∞

∫
{x′∈RN−1:|x′|≥R}

K(x′, 0)|un|2∗ dx′,

then ν∞ = 0 or ν∞ ≥
(
S2∗,∂
β

)N−1

.

Proof. Set

µ∞ := lim
R→+∞

lim sup
n→+∞

∫
RN+ \BR(0)

K(x)|∇un|2 dx

and consider, for each R > 1, a function φR ∈ C∞(RN) such that φR ≡ 0 in BR(0) and

φR ≡ 1 outside BR+1(0). Since (unφR) ⊂ X, we have that S2∗,∂ unφR
2
2∗ ≤ ‖unφR‖

2

and we can use (3.4) to obtain

S2∗,∂ lim sup
n→+∞

(∫
RN−1

K(x′, 0)|φRun|2∗ dx′
) 2

2∗
≤ lim sup

n→+∞

∫
RN+
K(x)|∇un|2φ2

R dx

+

∫
RN+
K(x)|∇φR|2u2 dx.
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Passing to the limit as R → +∞, using the definition of φR and the Lebesgue’s

theorem, we conclude that

S2∗,∂ν
2/2∗
∞ ≤ µ∞. (3.15)

Using that I ′β(un)(unφR) = o(1), together with (3.4) and Lebesgue’s theorem, we

get

lim sup
n→+∞

Bn ≤
∫
RN+
K(x)f(u)uφR dx+ β lim sup

n→+∞
Cn + lim sup

n→+∞
−An, (3.16)

where

An :=

∫
RN+
K(x)(∇un · ∇φR)un dx, Bn :=

∫
RN+
K(x)|∇un|2φR dx,

and

Cn :=

∫
RN−1

K(x′, 0)|un|2∗φR dx′.

From Holder’s inequality, we obtain

−An ≤ ‖un‖2

(∫
BR+1(0)\BR(0)

K(x)|∇φR|2u2
n dx

)1/2

.

The above inequality, Proposition 3.1.1, the definition of φR and Lebesgue’s theorem

imply that

lim
R→+∞

lim sup
n→+∞

−An ≤ 0. (3.17)

Moreover, as before, it follows from the definition of φR that

lim
R→+∞

lim sup
n→+∞

Bn = µ∞, lim
R→+∞

lim sup
n→+∞

Cn = ν∞.

Passing (3.16) to the limit as R→ +∞, using (3.15), (3.17), the above equalities

and Lebesgue’s theorem, we get S2∗,∂ν
2/2∗
∞ ≤ µ∞ ≤ βν∞, from which the result

follows.

We are ready to prove that (3.5) holds. First notice that, in view of the pointwise

convergence in (3.4) and Fatou’s lemma, it is sufficient to check that

lim sup
n→+∞

∫
RN−1

K(x′, 0)|un|2∗ dx′ ≤
∫
RN−1

K(x′, 0)|u|2∗ dx′.

Since β < β∗, the set J is empty. Hence, the weak convergence in the sense of measure

(3.6) imply that (see [46, Theorem 1, Section 1.9]), for each R > 0, there holds

lim sup
n→+∞

∫
RN−1

K(x′, 0)|un|2∗ dx′ = lim sup
n→+∞

∫
{x′∈RN−1:|x′|>R}

K(x′, 0)|un|2∗ dx′

+

∫
{x′∈RN−1:|x′|≤R}

K(x′, 0)|u|2∗ dx′.
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Passing to the limit as R→ +∞, we obtain

lim sup
n→+∞

∫
RN−1

K(x′, 0)|un|2∗ dx′ = ν∞ +

∫
RN−1

K(x′, 0)|u|2∗ dx′,

where ν∞ was defined in Lemma 3.1.5.

It remains to check that ν∞ = 0. In order to do this, notice that the same

argument of the proof of Lemma 3.1.4 provides

c+ o(1) ≥ β

2(N − 1)

∫
{x′∈RN−1:|x′|≥R}

K(x′, 0)|un|2∗ dx′,

for any R > 0. Recalling that c ≤M , we obtain

M ≥ lim
R→+∞

lim sup
n→+∞

β

2(N − 1)

∫
{x′∈RN−1:|x′|≥R}

K(x′, 0)|un|2∗ dx′ =
β

2(N − 1)
ν∞.

If ν∞ 6= 0, we can use the above inequality and Lemma 3.1.5 to obtain β ≥ β∗, which

contradicts (3.3). Hence, ν∞ = 0 and we conclude that (3.5) is verified.

3.2 Proof of Theorem G

Our first main result will be proved as an application of the following version of the

Symmetric Moutain Pass Theorem (see [3]).

Theorem 3.2.1. Let E = V ⊕W , where E is a real Banach space and V is finite

dimensional. Suppose I ∈ C1(E,R) is an even functional satisfying I(0) = 0 and

(I1) there exist constants ρ, α > 0 such that I |Bρ(0)∩W≥ α;

(I2) there exists a subspace Ṽ of E such that dimV < dim Ṽ <∞ and max
u∈Ṽ

I(u) ≤
M , for some constant M > 0;

(I3) I satisfies (PS)c, for any 0 < c < M .

Then I has at least dim Ṽ − dimV pairs of nonzero critical points.

We are intending to apply this abstract result with E = X and I = Iβ. For the

required decomposition of the space X we consider the linearized problem

(LP )

 −div(K(x)∇u) = λK(x)u, in RN
+ ,

∂u
∂η

= 0, on RN−1.

Thanks to the compact embedding X ↪→ L2
K(RN

+ ), we can use standard spectral

theory to obtain a sequence of eigenvalues (λj)j∈N such that

0 < λ1 < λ2 ≤ · · · ≤ λj ≤ · · ·
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with lim
j→∞

λj = +∞. Moreover, the first eigenvalue is given by

λ1 =

{∫
RN+
K(x)|∇u|2 dx :

∫
RN+
K(x)u2 dx = 1

}
.

From this, we obtain the following Poincaré inequality

λ1

∫
RN+
K(x)u2 dx ≤

∫
RN+
K(x)|∇u|2 dx, ∀u ∈ X. (3.18)

We are ready to prove our multiplicity result.

Proof of Theorem G. In order to apply Theorem 3.2.1, we consider V = {0} and

W = X.

Given ε > 0, we can use (f1) and (f2) to obtain c1 = c1(ε) > 0 such that

|F (s)| ≤ ε

2
s2 + c1|s|p, ∀ s ∈ R.

Picking ε > 0 such that ε < λ1, we can use (3.18) and Proposition 3.1.1 to get

Iβ(w) ≥ 1

2
‖w‖2 − 1

2
ε‖w‖2

2 − c1‖w‖pp −
β

2∗
w 2∗

≥ 1

2

[
λ1 − ε
λ1

]
‖w‖2 − c1S

−p/2
p ‖w‖p − S−2∗/2

2∗,∂
‖w‖2∗ ,

for any w ∈ W . Since 2 < p < 2∗, we conclude that

Iβ(w) ≥ ‖w‖
2

2

[
c2 + o(‖w‖2)

]
, as ‖w‖ → 0, w ∈ W,

with c2 = (λ1 − ε)/(λ1) > 0. This proves that (I1) holds.

Given k ∈ N, we consider {ψi}ki=1 ⊂ C∞0 (RN
+ ) smooth functions with disjoint

supports and denote

Ṽ := span{ψ1, . . . , ψk}.

Then, dim Ṽ = k and there exists a large ball BR(0) ⊂ RN
+ containing the support of

all the functions ψ1, . . . , ψk.

Notice that (f3) provides c3, c4 > 0 such that

F (s) ≥ c3s
θ − c4, ∀s ∈ R, (3.19)

with θ > 2. Hence, for any v ∈ Ṽ , the equivalence of norms in Ṽ implies that

Iβ(v) ≤ 1

2
‖v‖ − c5‖v‖θ − c4meas(BR(0))→ −∞, as ‖v‖ → +∞.

Since Iβ maps bounded sets into bounded sets, it follows from the above expression

that maxv∈Ṽ Iβ(v) ≤M , for some constant M > 0. This proves (I2).

We now consider β∗ > 0 as in Proposition 3.1.2 and invoke Theorem 3.2.1 to

obtain k pairs of nonzero solution whenever β ∈ (0, β∗). The theorem is proved.
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3.3 Proof of Theorem H

We prove in this section Theorem H. Since we are looking for nonnegative solutions,

we shall assume that f(s) = 0, for any s ≤ 0. Moreover, since the parameter β > 0

does not play any rule in in this case, we assume from now on that β = 1 and consider

the functional

I(u) :=
1

2
‖u‖2 −

∫
RN+
K(x)F (u) dx− 1

2∗

∫
RN−1

K(x′, 0)(u+)2∗ dx′,

where u+(x) := max{u(x), 0}. It is clear that I ∈ C1(X,R). Moreover, if u is such

that I ′(u) = 0 and u− := u+ − u, then 0 = I ′(u)u− = −‖u−‖2. Hence, the critical

points of I are nonnegative solutions of our problem.

We start with a local compactness result.

Lemma 3.3.1. The functional I satisfies the (PS)c-condition for any

c < c∗ :=
SN−1

2∗,∂

2(N − 1)
.

Proof. Let (un) ⊂ X be such that I(un) → c and I ′(un) → 0. As before, (un) is

bounded and therefore there exists u ∈ X such that (3.4) holds. Moreover, from (f1),

(f2) and the Lebesgue’s Theorem, we conclude that I ′(u) = 0 and∫
RN+
K(x)F (un) dx =

∫
RN+
K(x)F (u) dx+ o(1)

and ∫
RN+
K(x)f(un)un dx =

∫
RN+
K(x)f(u)u dx+ o(1),

as n→ +∞.

If zn := (un − u), we can use the above expressions, I ′(un)un = o(1) and Brezis-

Lieb’s lemma [18] to get

o(1) = ‖un‖2 −
∫
RN+
K(x)f(un)un dx−

∫
RN−1

K(x′, 0)(u+
n )2∗ dx′

= I ′(u)u+ ‖zn‖2 −
∫
RN−1

K(x′, 0)(z+
n )2∗ dx′ + o(1).

Passing to the limit and using I ′(u) = 0, we obtain b ≥ 0 such that

lim
n→+∞

‖zn‖2 = b = lim
n→+∞

∫
RN−1

K(x′, 0)(z+
n )2∗ dx′.

We claim that b = 0. In order to prove this, we first pass to the limit the inequality∫
RN−1

K(x′, 0)(z+
n )2∗dx′ ≤ S

−2∗/2
2∗,∂

(∫
RN+
K(x)|∇zn|2dx

)2∗/2

,
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to obtain b ≤ S
−2∗/2
2∗,∂

b2∗/2. Hence, if b > 0, we get

b ≥ SN−1
2∗,∂

. (3.20)

On the other hand, using Brezis-Lieb again, we obtain

c+ o(1) = I(un) = I(u) +
1

2
‖zn‖2 − 1

2∗

∫
RN−1

K(x′, 0)(z+
n )2∗ dx′ + o(1).

Taking the limit and using (3.20), we get that

c = I(u) +
λ

2(N − 1)
≥ I(u) +

SN−1
2∗,∂

2(N − 1)
= I(u) + c∗.

Using (f3) we obtain I(u) = I(u)− (1/θ)I ′(u)u ≥ 0, and therefore the above expres-

sion implies that c ≥ c∗, which does not make sense.

Let us take φ ∈ C∞(RN
+ , [0, 1]) such that φ ≡ 1 in RN

+ ∩ B1(0) and φ ≡ 0 in

RN
+\B2(0). Set, for each ε > 0,

uε(x) := K(x)−1/2φ(x)Uε(x), x ∈ RN
+ ,

where

Uε(x
′, xN) :=

ε(N−2)/2

[|x′|2 + (xN + ε)2](N−2)/2
.

When N ≥ 7, it is proved in [48] that, as ε→ 0+,

‖uε‖2 = AN +O(ε2), uε
2∗
2∗ = B

2∗/2
N +O(ε2), (3.21)

with the constants above being such that AN/BN = S2∗,∂. We shall need the following

estimates:

Lemma 3.3.2. If ψε := uε/ uε 2∗ and N/(N − 2) < q < 2N/(N − 2), then

‖ψε‖2(N−1) = SN−1
2∗,∂

+O(ε2), ‖ψε‖qq = O(εN−q(N−2)/2), (3.22)

as ε→ 0+.

Proof. Using the Mean Value theorem for g(r) = rs and a simple computation, we

can check that [
A+O(εt)

]s
= As +O(εt),

for any A, s, t > 0. Hence, we infer from (3.21) and the defintion of 2∗ that

‖ψε‖2(N−1) =
[AN +O(ε2)]

N−1[
B

2∗/2
N +O(ε2)

]N−2
=

AN−1
N +O(ε2)

B
2∗(N−2)/2
N +O(ε2)

=

(
AN
BN

)N−1

+O(ε2).

The first statement in (3.22) follows from the above inequality and AN/BN = S2∗,∂.
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For the second one, we first notice that

‖uε‖qq = ε−q(N−2)/2

∫
RN+

K(x)−q/2φ(x)q

[|x′/ε|2 + (xN/ε+ 1)2]q(N−2)/2
dx

≤ C1ε
−q(N−2)/2

∫
B2(0)∩RN+

1

[|x/ε|2 + 1]q(N−2)/2
dx

≤ C1ε
−q(N−2)/2+N

∫
RN+

1

[|y|2 + 1]q(N−2)/2
dy,

where we have used the definition of uε, 0 ≤ φ ≤ 1 and the change of variable y = x/ε.

But ∫
RN+

1

[|y|2 + 1]q(N−2)/2
dy ≤ C2 +

∫
RN+ \B1(0)

1

|y|q(N−2)
dy

= C2 + C3

∫ +∞

1

s−q(N−2)+(N−1) ds < +∞,

whenever q > N/(N − 2). Since uε
q
2∗ = B

q/2
N + o(1), as ε → 0+, the result follows

from the above inequalities.

We are ready to prove our second main result.

Proof of Theorem H. Arguing as in the proof of Theorem A we obtain ρ, α > 0 such

that I(u) ≥ α, whenever ‖u‖ ≥ ρ. Moreover, it follows from (3.19) that

I(tψε)

t2∗
≤ 1

2t2∗−2
‖ψε‖2 − c3

t2∗−θ
‖ψε‖θθ +

c4

t2∗
meas(suppψε)−

1

2∗
ψε

2∗
2∗ ,

for t > 0. Thus, there exists t > 0 such that e = tψε satisfies I(e) < 0 and ‖e‖ > ρ.

If we set

cε := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) ≥ α,

where Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}, we obtain from the Mountain

Pass Theorem [3] a sequence (un) ⊂ X such that I(un) → cε and I ′(un) → 0.

If cε < c∗, it follows from Lemma 3.3.1 that, along a subsequence, (un) strongly

converges to a critical point u ∈ X such that I(u) = cε ≥ α > 0. Thus, u ≥ 0 is a

nonzero solution of the problem.

It remains to check that, for some ε > 0 small, there holds cε < c∗. In order to

do that, we set

mε := max
t≥0

I(tψε)

and notice that it is sufficient to prove that mε < c∗. Let tε > 0 be such that

mε = I(tεψε). Since I ′(tεψε)ψε = 0 and ψε 2∗ = 1, we get

t2∗−1
ε = tε‖ψε‖2 −

∫
RN+
K(x)f(tεψε)ψε dx, (3.23)
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The above identity and (f3) imply that

tε ≤ ‖ψε‖2/(2∗−2).

Since the function g : [0,+∞) → R defined by g(t) := (t2/2)‖ψε‖2 − t2∗/2∗ is in-

creasing in the interval [0, ‖ψε‖2/(2∗−2)], we can use the above inequality and (3.22)

to get

mε = g(tε)−
∫
Rn+
K(x)F (tεψε) dx

≤ ‖ψε‖2(N−1)

2(N − 1)
−
∫
Rn+
K(x)F (tεψε) dx

=
SN−1

2∗,∂

2(N − 1)
+O(ε2)−

∫
Rn+
K(x)F (tεψε) dx.

So, it is sufficient to prove that

lim
ε→0+

1

ε2

∫
Rn+
K(x)F (tεψε) dx = +∞. (3.24)

First notice that, by (f1), (f2), (3.22) and p < 2∗, it follows that∣∣∣∣∣
∫
RN+
K(x)f(tεψε)ψε dx

∣∣∣∣∣ ≤ O(ε2) +O(εN−p(N−2)/2) = o(1),

as ε→ 0+. This, together with (3.22) and (3.23), implies that tε → S
(N−2)/2
2∗,∂

> 0, as

ε→ 0+. Thus, since (f3) implies that F is increasing in [0,+∞), we can use (3.21),

K ≥ 1 and the definition of φ to obtain C1 > 0 such that∫
RN+
K(x)F (tεψε) dx ≥

∫
B1(0)∩RN+

F

(
C1

ε(N−2)/2

[|x′|2 + (xN + ε)2](N−2)/2

)
dx, (3.25)

for any ε > 0 small. If we call Γε the right-hand side above, the change of variables

y = x/ε gives

Γε = εN
∫ 1/ε

0

∫
∂Bs(0)∩RN+

F

(
C1

ε−(N−2)/2

[|y′|2 + (yN + 1)2](N−2)/2

)
dσy ds.

Now, using the change of variable y = sx, with x ∈ ∂B1(0), the monotonicity of F

and the inequality s2|x′|2 + (sxN + 1)2 ≤ 4(s2 + 1), for x ∈ ∂B1(0), we obtain

Γε ≥ εN
∫ 1/ε

0

∫
∂B1(0)∩RN+

F

(
C2

ε−(N−2)/2

[s2 + 1](N−2)/2

)
sN−1 dσx ds

= C3ε
N

∫ 1/ε

0

F

(
C2

ε−(N−2)/2

[s2 + 1](N−2)/2

)
sN−1 ds
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with C2 = 4−(N−2)/2C1 > 0 and C3 = C3(N). After rescaling, we obtain

1

ε2
Γε ≥ C4ε

N−2

∫ C
−2/(N−2)
2 /ε

0

F

(
ε−(N−2)/2

[s2 + 1](N−2)/2

)
sN−1 ds.

with C4 := C3C
2N/(N−2)
2 . It is easy to see that (3.24) is a consequence of the above

expression, (3.25) and hypothesis (3.2). The theorem is proved.
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CHAPTER 4

A singular problem in RN

Consider the equation

−∆u− 1

2
(x · ∇u) = g(x, u), in RN ,

with N ≥ 3. As observed by Escobedo and Kavian in [44], if g(x, s) = λs + |s|p−2s

and 2 < p ≤ 2∗ := 2N/(N − 2), this equation naturally appears when we deal with

the associated heat equation

ut −∆u = |u|p−2u, in (0,∞)× RN ,

and look for solutions with the special form uλ(t, x) := t−λu(t−1/2x), for λ = 1/(p−1).

We quote the works [9,20,24,52,57,75,76] and references therein for information about

existence, nonexistence, decay rate and many other aspects concerning this subject.

We emphasize that, in all of those works, the function g(x, s) remains bounded as

s → 0. So, it is natural to ask what we can do in the singular case, that is, when

g(x, s)→ +∞ as s→ 0+.

This chapter aims to give a first answer to the above question. More specifically,

we are concerned with positive solutions for the singular equation

−∆u− 1

2
(x · ∇u) = µh(x)uq−1 + λu+ u2∗−1, in RN ,

where N ≥ 3, λ > 0, µ > 0 is a parameter, 0 < q < 1 and h has some somability

properties. Before presenting the condition on h, we need to say a few words about

the variational structure of the problem. We first notice that, after multiplying the

equation by K(x) := exp(|x|2/4), it can be rewritten as

(Pµ)

−div(K(x)∇u) = µK(x)h(x)uq−1 + λK(x)u+K(x)u2∗−1, in RN ,

u > 0, in RN .
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It is natural to look for solutions in the space X defined as the closure of C∞c (RN)

with respect to the norm

‖u‖ :=

(∫
RN
K(x)|∇u|2 dx

)1/2

.

It was proved in [44] that X is a Hilbert space which is continuously embedded into

the weighted Lebesgue spaces

LpK(RN) :=

{
u ∈ Lp(RN) : ‖u‖p :=

(∫
RN
K(x)|u|pdx

)1/p

<∞

}
,

for any p ∈ [2, 2∗].

Due to the difficulties related to the operator and the singular nature of the

nonlinearity at the origin, we do not expect to find regular solutions. Hence, as usual

in the literature, we call u ∈ X a solution for problem (Pµ) if it satisfies u > 0 a.e.

in RN and, for any φ ∈ X, we have that h(x)uq−1φ ∈ L1
K(RN) and∫

RN
K(x)

[
(∇u · ∇φ)− µh(x)uq−1φ− λuφ− u2∗−1φ

]
dx = 0. (4.1)

In our first result we obtain a solution when the parameter µ > 0 is small. More

specifically, we shall prove the following:

Theorem I. Suppose that λ < N/2 and h > 0 satisfies

(h) h ∈ L1
K(RN) ∩ L2

K(RN).

Then there exists µ∗ > 0 such that problem (Pµ) has a solution, whenever µ ∈ (0, µ∗).

In the proof, we apply a minimization argument for a perturbed (nonsigular)

problem. We notice that condition λ < N/2 is necessary for the existence of a

solution. Indeed, it is proved in [44] that the linearized version of equation (Pµ) has

the pair (λ, u) = (N/2, ϕ1) as a solution, where ϕ1(x) = exp(−|x|2/4) > 0. So, if

u0 ∈ X is a solution, we may pick v = ϕ1 in the integral formulation to get(
N

2
− λ
)∫

RN
K(x)uϕ1 dx =

∫
RN
K(x)

[
µh(x)uq−1ϕ1 + u2∗−1ϕ1

]
dx > 0,

from which it follows that λ < N/2.

In our second result, we obtain another solution under an additional lower bound

on the value of λ. More specifically, we prove the following:

Theorem J. Suppose that max{1, N/4} < λ < N/2, h > 0 is continuous and satisfies

(h). Then there exists 0 < µ∗ < µ∗ such that problem (Pµ) has at least two solutions,

whenever µ ∈ (0, µ∗)
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To obtain the second solution, we apply the Mountain Pass Theorem to a per-

turbed functional, together with a limit process. The extra assumption on λ is related

with the range of existence of positive solution for the nonsingular problem (P0) ob-

tained in [44]. It is worth mentioning that the continuity of h may be replaced by

the weaker condition that the infimum of h is positive in any ball.

We end this introduction with some general comments about the singular problem

−∆u = g(x, u), in Ω, u > 0, in Ω, u ∈ H1
0 (Ω),

where N ≥ 3, Ω ⊂ RN is a domain and g(x, s) → +∞, as s → 0. There is a vast

literature concerning this kind of problem, mainly due to its applications in bound-

ary layer flow, fluid dynamics, non-Newtonian fluids, reaction–diffusion processes,

chemical heterogeneous catalysts, in the theory of heat conduction in electrically

conducting materials and in other geophysical and industrial contexts (see for in-

stance [22,33,68,80]).

Although it is impossible to give a complete reference, it seems important to

quote the pioneering works of Stuart [89] and Crandall, Rabinowitz and Tartar [34],

who considered a general second order operator instead of the laplacian and used

some topological arguments to get solutions. Later, Lazer and McKenna [65] proved

existence and regularity results for g(x, s) = h(x)sq−1, where h is Hölder continuous.

Their result was generalized in different ways by Lair and Shaker [63,64] and Zhang

and Cheng [95]. Also in the bounded domain case, we quote the paper of Boccardo

and Orsina [16], where the Laplacian is replaced by the operator u 7→ div(M(x)∇u),

with M being a bounded elliptic matrix, g(x, s) = h(x)sq−1, with h ≥ 0 belonging to

some Lebesgue space or even being a Radon measure. Some results for quasilinear

operators can be found in [5, 78, 79]. For the case of the whole space, we refer the

reader to [62, 64, 85], where it is supposed that g(x, s) = h(x)sq−1 + f(x, s), h is

continuous and f has some mild conditions.

The results presented in this chapter complement the aforementioned works since

we deal here with the whole space case and consider a different operator. The rest

of the chapter is organized as follows: in the next section we prove Theorem I while

the last one is devoted to the proof of Theorem J.

4.1 Proof of Theorem I

Along all this section we write only
∫
f to denote

∫
RN f(x)dx, where f ∈ L1(RN). For

any s ∈ R, we consider s+ := max{s, 0} and s− := s+− s. Before starting the proofs,

we need to say a few words about the linearization of the problem (Pµ), namely

−div(K(x)∇u) = λK(x)u, in RN .
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Its spectrum was completely characterized in [44], where it is proved by a Fourier

approach that the first eigenvalue is given by

λ1 = inf

{∫
K(x)|∇u|2 :

∫
K(x)|u|2 = 1

}
=
N

2
.

From this, we infer the following Poincare type inequality:

λ1

∫
RN
K(x)|u|2 dx ≤

∫
RN
K(x)|∇u|2 dx, ∀u ∈ X. (4.2)

Since we are going to obtain solutions for small values of the parameter µ > 0, it

is important to consider the limit problem

−div(K(x)∇u) = λK(x)u+K(x)|u|2∗−2u, in RN , (P0)

and its associated C1-functional given by

I0(u) :=
1

2
‖u‖2 − λ

2
‖u+‖2

2 −
1

2∗
‖u+‖2∗

2∗ , u ∈ X.

From now on, we assume that h ∈ L1
K(RN)∩L2

K(RN). Hence, we can use interpo-

lation to conclude that h ∈ LθK(RN), where θ := 2/(2− q). For any u ∈ X, it follows

from the Hölder’s inequality that

1

q

∫
K(x)h(x)(u+)q ≤ 1

q
‖h‖θ‖u+‖q2 ≤ C1‖u‖q, (4.3)

Thus, we may add the singular term to I0 and obtain the functional associated with

the problem (Pµ), namely

Iµ(u) := I0(u)− µ

q

∫
K(x)h(x)(u+)q, u ∈ X.

It is clear that Iµ is a well-defined continuous functional in X. In our first result

we study its behavior near the origin.

Lemma 4.1.1. There exists µ∗ > 0 such that, for any µ ∈ (0, µ∗), there holds

Iµ(u) ≥ ρ, ∀u ∈ X ∩ ∂BR(0),

with ρ, R > 0 independent of µ.

Proof. Given u ∈ X, we can use (4.2) and the embedding X ↪→ L2∗
K (RN) to get

I0(u) ≥ 1

2

(
1− λ

λ1

)
‖u‖2 − C2‖u‖2∗ ≥ C3‖u‖2, (4.4)

if C3 = (1− λ/λ1)/4 and

‖u‖ ≤ R :=

(
C3

C2

)1/(2∗−2)

.
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This and (4.3) imply that

Iµ(u) ≥ ‖u‖q
(
C3‖u‖2−q − µC1

)
≥ ρ :=

C3

2
Rq,

whenever ‖u‖ = R and

0 < µ < µ∗ :=
C3

2C1

R2−q.

The lemma is proved.

Let µ∗, R > 0 as in Lemma 4.1.1 and µ ∈ (0, µ∗). By picking a nonnegative

function ϕ ∈ C∞0 (RN) \ {0}, we get

lim
t→0+

Iµ(tϕ)

tq
= −µ

q

∫
K(x)h(x)ϕq < 0,

and therefore there exists t0 > 0 small in such a way that ‖t0ϕ‖ ≤ R and Iµ(t0ϕ) < 0.

This shows that

mµ := inf
‖u‖≤R

Iµ(u) < 0.

Since Iµ maps bounded sets onto bounded sets, we have that mµ > −∞.

Even if we prove that mµ is attained in BR(0), the singular term of the equation

gives rise to a difficulty. Actually, since 0 < q < 1, the term
∫
K(x)h(x)(u+)q is

continuous but not differentiable, and therefore it is not clear that minimizers are

solutions of our problem. However, using a direct calculation, we may prove that this

hold, as we can see from the next result.

Lemma 4.1.2. If u ∈ BR(0) is such that Iµ(u) = mµ, then u is a solution for problem

(Pµ).

Proof. Let ψ ∈ X be a nonnegative function. Since ‖u‖ < R, we have that ‖u+tψ‖ <
R, for any t > 0 small. If we divide the inequality Iµ(u) ≤ Iµ(u + tψ) by t > 0 and

take the limit as t→ 0+, we obtain

µ

q
lim inf
t→0+

∫
K(x)h(x)[((u+ tψ)+)q − (u+)q]

t
≤ I ′0(u)ψ.

Since ψ ≥ 0, we have that (u + tψ)+ ≥ u+. Then, we can use the Fatou’s lemma to

obtain

I ′0(u)ψ − µ
∫
K(x)h(x)(u+)q−1ψ ≥ 0, ∀ψ ∈ X, ψ ≥ 0. (4.5)

By setting t0 := (R/‖u‖) − 1 > 0, a straightforward computation shows that

‖(1 + t)u‖ < R, whenever t ∈ (−1, t0). Hence, the function

γ(t) := Iµ((1 + t)u), t ∈ (−1, t0),
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attains its minimum value at t = 0. Thus,

γ′(0) = I ′0(u)u− µ
∫
K(x)h(x)(u+)q = 0. (4.6)

Pick ε > 0, φ ∈ X and define Ω+
ε := [u+ + εφ < 0]. By using (4.5) with

ψ = (u+ + εφ)+ we get, after some computations,

0 ≤ −‖u−‖2 + I ′0(u)u− µ
∫
K(x)h(x)(u+)q

+ εI ′0(u)φ− εµ
∫
K(x)h(x)(u+)q−1φ−

∫
Ω+
ε

K(x)[∇u · ∇(u+ + εφ)] dx

+

∫
Ω+
ε

K(x)(u+ + εφ)
[
λu+ + µh(x)(u+)q−1 + (u+)2∗−1

]
dx.

Hence, it follows from (4.6) that

0 ≤ εI ′0(u)φ− εµ
∫
K(x)h(x)(u+)q−1φ−

∫
Ω+
ε

K(x)[∇u · ∇(u+ + εφ)] dx

≤ ε

[
I ′0(u)φ− µ

∫
K(x)h(x)(u+)q−1φ−

∫
Ω+
ε

K(x)[∇u · ∇φ] dx

]
If we divide the previous expression by ε > 0, take the limit as ε→ 0+ and notice

that

lim
ε→0+

1Ω+
ε

(x) = 0, a.e. in RN ,

where 1Ω+
ε

stands for the characteristic function of the set Ω+
ε , we can use Lebesgue

theorem to conclude that

I ′0(u)φ− µ
∫
K(x)h(x)(u+)q−1φ ≥ 0, ∀φ ∈ X.

Since this inequality also holds with write −φ instead of φ, we conclude that u ∈ X
satisfies the integral equation (4.1). Moreover, by picking φ = u in the above equality,

we obtain ‖u−‖ = 0, which shows that u ≥ 0 a.e. RN .

It remains to be proved that u > 0 a.e. RN . In order to do that, we consider

Ω ⊂ RN an open bounded set and φ ∈ C∞0 (RN) such that φ ≥ 0 in RN and φ ≡ 1 in

Ω. Since K(x)h(x)uq−1φ ≥ K(x)h(x)uq−1 ≥ 0 for a.e. x ∈ Ω and∫
Ω

K(x)h(x)(u+)q−1dx < +∞,

we conclude that K(x)h(x)uq−1 is finite a.e. in Ω, from which it follows that u > 0

a.e. in Ω. Since Ω is arbitrary, the lemma is proved.

We now notice that Iµ is not of class C1, and therefore we cannot perform standard

minimization arguments. So, instead of a direct approach, we are going to consider

the following perturbation process: for each k ∈ N, we define Xk : R→ R as

Xk(s) :=

∫ s

0

(
t+ +

1

k

)q−1

dt =
1

q

[(
s+ +

1

k

)q
−
(

1

k

)q]
+

(
1

k

)q−1

s−, (4.7)

88



and the functional

Iµ,k(u) := I0(u)− µ
∫
K(x)h(x)Xk(u), u ∈ X.

Since

X ′k(s) =

(
s+ +

1

k

)q−1

, s ∈ R, (4.8)

it is clear that Iµ,k ∈ C1(X,R).

We are going to show that Iµ,k attains its minimum at uk ∈ BR(0) and the desired

solution will be obtained passing to the limit as k → +∞. The details can be found

in the next proposition.

Proposition 4.1.3. Let µ∗, R > 0 be given by Lemma 4.1.1. For any µ ∈ (0, µ∗)

there exists u ∈ X such that ‖u‖ < R and Iµ(u) = mµ. In particular, the problem

(Pµ) has a solution with negative energy.

Proof. Since Xk(s) ≤
∫ s

0
(t+)q−1dt, we have that Iµ,k(u) ≥ Iµ(u), for any u ∈ X and

k ∈ N. It follows from Lemma 4.1.1 that Iµ,k ≥ ρ on ∂BR(0). Thus, since Iµ,k(0) = 0,

we can define

mµ,k := inf
‖u‖≤R

Iµ,k(u),

and use the Ekeland Variational Principle to obtain a sequence (un,k)n∈N ⊂ BR(0)

such that

lim
n→+∞

Iµ,k(un,k) = mµ,k, lim
n→+∞

I ′µ,k(un,k) = 0.

Up to a subsequence, we have that, as n→ +∞,

un,k ⇀ uk, wealy in X,

un,k → uk, stronlgy in LsK(RN),

u±n,k(x) → u±k (x), a.e. in RN ,

|un,k(x)| ≤ gs(x), a.e. in RN ,

(4.9)

for any s ∈ [2, 2∗) and some gs ∈ LsK(RN). By noticing that

|Xk(s)| ≤
∫ |s|

0

kq−1 dt = kq−1|s|, s ∈ R, (4.10)

we infer from (4.9) that

|K(x)h(x)Xk(un,k)| ≤
(

1

k

)1−q

K(x)h(x)g2(x),

a.e. in RN . Since the right-hand side above belongs to L1(RN), we can use the

Lebesgue Theorem to obtain

lim
n→+∞

∫
K(x)h(x)Xk(un,k) =

∫
K(x)h(x)Xk(uk). (4.11)
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Setting vn,k := un,k−uk, we can use the above inequality, (4.9) and the Brezis-Lieb

lemma [18] to get

mµ,k = In,k(un,k) + on(1)

=
1

2
‖vn,k‖2 +

1

2
‖uk‖2 − λ

2
‖u+

k ‖2
2 − µ

∫
K(x)h(x)Xk(uk)

− 1

2∗

∫
K(x)(v+

n,k)
2∗ − 1

2∗

∫
K(x)(u+

k )2∗ dx+ on(1),

(4.12)

where on(1) stands for a quantity approaching zero as n → +∞. Recalling that

‖un,k‖ < R and using the weak convergence, we obtain

lim sup
n→+∞

‖vn,k‖2 < R2 + ‖uk‖2 − 2 lim
n→+∞

∫
K(x)(∇un,k · ∇uk)

= R2 − ‖uk‖2 ≤ R2.

This shows that ‖vn,k‖ ≤ R, whenever n ≥ n0(k). Hence, it follows from (4.4) that

1

2
‖vn,k‖2 − 1

2∗

∫
K(x)(v+

n,k)
2∗ ≥ 0, ∀n ≥ n0(k),

which combined with (4.12) imply that

mµ,k ≥ Iµ,k(uk) + on(1).

Passing to the limit as n → +∞ we conclude that mµ,k = Iµ,k(uk). Moreover, since

mµ,k ≤ Iµ,k(0) = 0 and Iµ,k ≥ ρ > 0 on ∂BR(0), we have that ‖uk‖ < R.

For any ϕ ∈ C∞c (RN), we have that∣∣∣∣∣K(x)h(x)

(
u+
n,k(x) +

1

k

)q−1

ϕ(x)

∣∣∣∣∣ ≤ k1−qK(x)h(x)|ϕ(x)|, a.e. in RN .

By using the pointwise convergence and Lebesgue’s theorem, we obtain

lim
n→+∞

∫
K(x)h(x)

(
u+
n,k +

1

k

)q−1

ϕ =

∫
K(x)h(x)

(
u+
k +

1

k

)q−1

ϕ.

This inequality, (4.9) and a standard density argument imply that I ′µ,k(uk) = 0.

We are going to show that

lim
k→+∞

Iµ,k(uk) = mµ. (4.13)

Since Iµ,k(uk) ≥ Iµ(uk) ≥ mµ, it is sufficient to verify that

lim sup
k→+∞

Iµ,k(uk) ≤ mµ. (4.14)
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In order to do this, let (wn) ⊂ BR(0) be such that Iµ(wn)→ mµ, as n→ +∞. Then

Iµ(wn) = Iµ,k(wn) + µ

∫
K(x)h(x)Xk(wn)− µ

q

∫
K(x)h(x)(w+

n )q

≥ mµ,k + µ

∫
K(x)h(x)Xk(wn)− µ

q

∫
K(x)h(x)(w+

n )q.

(4.15)

Fixed n ∈ N, we can use that Xk(wn)(x) → w+
n (x)q/q for a.e. x ∈ RN , as k → +∞,

and (4.10), to obtain∫
K(x)h(x)Xk(wn) dx =

∫
K(x)h(x)

(
w+
n + 1

k

)q − ( 1
k

)q
q

+ k1−q
∫
RN
K(x)h(x)w−n dx

=
1

q

∫
K(x)h(x)(w+

n )q + ok(1).

By combining this expression with (4.15) and taking the limsup as k → +∞, we

obtain

Iµ(wn) ≥ lim sup
k→+∞

mµ,k = lim sup
k→+∞

Iµ,k(uk).

Once again, passing to the limit as n→ +∞, we immediately obtain (4.14).

We are now able to prove that mµ is attained. Since (uk) is bounded, along a

subsequence uk ⇀ u weakly in X. As before, we can prove that

lim
k→+∞

∫
K(x)h(x)Xk(uk) =

1

q

∫
K(x)h(x)(u+)q.

Hence, we can use (4.13) and the same argument used to prove that Iµ,k(uk) = mµ,k

(but now considering the limits in the index k) to conclude that Iµ(u) = mµ. We

omit the details.

4.2 Proof of Theorem J

Now we have obtained a first solution, we are going to apply the Mountain Pass

Theorem for the perturbed functional and obtain a second solution as a limit process.

First, we present some important facts about the problem (P0) stated in the beginning

of the previous section. In order to describe some results proved in [44], we redefine

the associated energy functional as

I0(u) :=
1

2
‖u‖2 − λ

2
‖u‖2

2 −
1

2∗
‖u+‖2∗

2∗ , u ∈ X.

The least energy level of (P0) is defined as

c0 := inf
u∈N0

I0(u),
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where N0 := {u ∈ X \ {0} : I ′0(u)u = 0} is the Nehari manifold. In [44], the authors

obtained ground state solution for (P0) using the minimization problem

Sλ(K) := inf
u∈X\{0}

‖u‖2 − λ‖u‖2
2

‖u+‖2
2∗

.

They proved that 0 < Sλ(K) < S2∗ , when max{1, N/4} < λ < N/2. As a con-

sequence, the above infimum is attained by a positive function u0 ∈ X ∩ C2(RN).

Since the problem is homogeneous, a scaling argument provides τ > 0 such that the

function ω0 := τ 2∗−2u0 is a solution for (P0) with I0(ω0) = c0. We finally mention

that, since u0 = τ 1/(2−2∗)ω0 and ω0 ∈ N0, we have that

S2∗ > Sλ(K) =
‖u0‖2 − λ‖u0‖2

2

‖u+
0 ‖2

2∗
=
‖ω0‖2 − λ‖ω0‖2

2

‖ω+
0 ‖2

2∗
=
(
‖ω0‖2 − λ‖ω0‖2

2

)2/N
,

which leads to the following useful inequality

1

N
S
N/2
2∗ >

1

N

(
‖ω0‖2 − λ‖ω0‖2

2

)
= I0(ω0) = c0. (4.16)

From now on, we are going to look for a second solution for problem (Pµ) as a

positive energy critical point of

Iµ,k(u) := I0(u)− µ
∫
RN
K(x)h(x)Xk(u) dx, u ∈ X,

with I0 redefined as before. It is clear that its critical points are weak solutions for

the (nonsingular) problem

−div(K(x)∇u) = K(x)
h(x)

(u+ 1/k)1−q + λK(x)u+K(x)|u|2∗−2u, in RN . (Pµ,k)

In our next result we prove that such solutions are, indeed, zero or positive in RN .

Lemma 4.2.1. If uk ∈ X is a nonzero critical point of Iµ,k, then it is a positive weak

solution for (Pµ,k).

Proof. It is clear that uk weakly solves the problem. Moreover, computing

0 = I ′µ,k(uk)u
−
k = ‖u−k ‖

2 − λ‖u−k ‖
2
2 − µk1−q

∫
K(x)h(x)u−k ,

we conclude that uk ≥ 0 a.e. in RN . In order to prove that uk > 0, we consider

Σ ⊂ BR(0) a compact subset of RN . Using that K,λ ≥ 1 and the relation

(s+ s2∗−1) +
a

(s+ 1)1−q ≥ min
{

1,
a

21−q

}
, ∀ a > 0, s ≥ 0,

we conclude that, for a.e. x ∈ BR(0), there holds

−div(K(x)∇u(x)) = λK(x)u(x) + µ
K(x)h(x)

(u(x) + 1/k)1−q +K(x)u(x)2∗−1

≥ (u(x) + u(x)2∗−1) + µ
h(x)

(u(x) + 1)1−q

≥ CR,
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where

CR := min

{
1, µ

minx∈BR(0) h(x)

21−q

}
> 0.

On the other hand, using the Lax-Milgram theorem, we obtain a nonnegative v ∈
H1

0 (BR(0)) such that

−div(K(x)∇v) = CR, in BR(0).

Following the ideas developed in [44, Theorem 3.12], we can prove that v ∈ C2(BR(0)∩
C(BR(0)) and therefore the Strong Maximum Principle ensures that v > 0 in BR(0).

Thus, there exists a constant CΣ > 0 such that v(x) ≥ CΣ, for any x ∈ Σ.

Since div(K(x)∇u) ≤ div(K(x)∇v) in BR(0), we have that∫
BR(0)

K(x)(∇u · ∇ϕ) dx ≥
∫
BR(0)

K(x)(∇v · ∇v) dx, ∀ϕ ∈ H1
0 (BR(0)).

If we ϕ := max{v − u, 0} and use K ≥ 1 again, we obtain

‖ϕ‖2
H1

0 (BR(0)) ≤
∫

[v≥u]

K(x)|∇ϕ|2dx ≤
∫
BR(0)

K(x)(∇(v − u) · ∇ϕ) dx ≤ 0,

from which we conclude that ϕ = 0 or, equivalently, u ≥ v a.e. in BR(0). Hence,

u ≥ v ≥ CΣ > 0 in the (arbitrary) set Σ and the lemma is proved.

Remark 3. In the above proof, we have used the continuity of h to guarantee that

CR > 0. So, it is clear that the same result is true if we just assume that, for any

R > 0, there holds

inf
x∈BR(0)

h(x) > 0.

If d ∈ R, we say that (un) ⊂ X is a (PS)d sequence for Iµ,k if

lim
n→+∞

Iµ,k(un) = d, lim
n→+∞

I ′µ,k(un) = 0.

The functional Iµ,k satisfies the Palais-Smale condition at level d if any such sequence

has a convergent subsequence. In what follows, we prove that our functional satisfies

this compactness condition in an appropriated subset of R.

Lemma 4.2.2. There exists M1 = M1(q, λ,N, ‖h‖θ) > 0 and M2 = M2(q, ‖h‖1) > 0

such that, for any µ > 0 and k ∈ N, the functional Iµ,k satisfies the Palais-Smale

condition at any level

d <
1

N
S
N/2
2∗ −M1µ

θ − M2

kq
µ.

Proof. Let (un) ⊂ X be a (PS)d sequence for Iµ,k. In order to verify that it is a

bounded sequence, we set

α0 :=
1

2

(
1

2
− 1

2∗

)(
λ1 − λ
λ1

)
(4.17)
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and use (4.2) to get

d+ on(1)(1 + ‖un‖) = Iµ,k(un)− 1

2∗
I ′µ,k(un)un

≥ 2α0‖un‖2 − µ
∫
K(x)h(x)Xk(un)

+
µ

2∗

∫
K(x)h(x)X ′k(un)un.

It follows from the above expression and (4.7)-(4.8) that

d+ on(1)(1 + ‖un‖) ≥ 2α0‖un‖2 − µ

q

∫
K(x)h(x)

(
u+
n +

1

k

)q
. (4.18)

Since (a + b)q ≤ Cq(a
q + bq), for some Cq > 0 and any a, b ≥ 0, we can use the

Young’s inequality to obtain, for each ε > 0, a constant Cε,q > 0 such that

µ

q
K(x)h(x)

(
u+
n (x) +

1

k

)q
≤ Cq

µ

q
K(x)h(x)

[
(u+

n )q(x) + k−q
]

≤ εK(x)un(x)2 + Cε,qK(x)h(x)θ + Cq
µ

q
K(x)h(x),

for a.e. x ∈ RN . Picking ε = α0λ1, we can use the above expression, (4.18) and (4.2),

to obtain

d+ on(1)(1 + ‖un‖) ≥ α0‖un‖2 −M1µ
θ −M2

µ

kq
,

where

M1 := Cε,q‖h‖θθ, M2 :=
Cq
q
‖h‖1.

Thus, (un) ⊂ X is bounded.

Up to a subsequence, we may assume that un ⇀ u weakly in X and an analogous

of (4.9) holds. Arguing as in the proof of Lemma 4.1.3, we can prove that I ′µ,k(u) = 0

and

lim
n→+∞

∫
K(x)h(x)X ′k(un)un =

∫
K(x)h(x)X ′k(u)u.

Moreover, the former computations provide

Iµ,k(u) = Iµ,k(u)− 1

2∗
I ′µ,k(u)u ≥ α0‖u‖2 −M1µ

θ −M2
µ

kq
. (4.19)

Hence, if we set vn := (un − u), we can use (4.9) and the Brezis-Lieb lemma to get

on(1) = I ′µ,k(un)un = ‖vn‖2 − ‖vn‖2∗

2∗ − I ′µ,k(u)u+ on(1),

from which it follows that

lim
n→+∞

‖vn‖2 = l = lim
n→+∞

‖vn‖2∗

2∗ ,

for some l ≥ 0.
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Suppose, by contradiction, that l > 0. Then we can use the definition of S2∗ to

conclude that l ≥ S
N/2
2∗ . On the other hand, using Brezis-Lieb lemma again, (4.11)

and (4.19) we obtain

d+ on(1) = Iµ,k(un) =
1

2
‖vn‖2 − 1

2∗
‖vn‖2∗

2∗ + Iµ,k(u) + on(1)

≥ 1

2
‖vn‖2 − 1

2∗
‖vn‖2∗

2∗ + α0‖u‖2 −M1µ
θ −M2

µ

kq
+ on(1).

Taking the limit as n→ +∞ and recalling that l ≥ S
N/2
2∗ , we obtain

d ≥ 1

N
S
N/2
2∗ −M1µ

θ −M2
µ

kq
,

which contradicts the hypotheses. Hence, l = 0 or, equivalently, un → u strongly in

X.

We solve in the sequel the modified problem.

Proposition 4.2.3. Let µ∗, ρ > 0 be given by Lemma 4.1.1. Then, there exists

k∗ = k∗(q, h) > 0 and µ∗ = µ∗(q,N, h) < µ∗ such that, for any k ≥ k∗ and µ ∈ (0, µ∗),

the functional Iµ,k has a positive critical point uk ∈ X verifying Iµ,k(uk) ≥ ρ > 0.

Proof. Let M1, M2 be given by Lemma 4.2.2. Recalling that the function ω0 obtained

in the beginning of the section is positive, we obtain Iµ,k(tω0) ≤ I0(tω0), for any t ≥ 0.

Since I0(tω0)→ 0, as t→ 0+, we can find t∗ > 0, independent of µ and k, such that

max
0≤t≤t∗

Iµ,k(tω0) <
c0

2
< c0 −M1µ

θ −M2
µ

kq
, (4.20)

whenever

µ < min

{
1,

c0

2(M1 +M2)

}
.

Moreover, since the function t 7→ tω0(x) [tω0(x) + 1]q−1 is increasing in [0,+∞),

a change of variables provides

Xk(tω0(x)) =

∫ tω0(x)+1/k

1/k

1

τ 1−q dτ ≥
tω0(x)

[sω0(x) + 1/k]1−q

≥ tω0(x)

[tω0(x) + 1]1−q

≥ t∗ω0(x)

[t∗ω0(x) + 1]1−q
,

(4.21)

for any x ∈ RN and t ≥ t∗. Hence, if we define

Ch,q := t∗

∫
K(x)h(x)

ω0

(t∗ω0 + 1)1−q ,
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we can use (4.21) and that I0(ω0) = maxt≥0 I0(tω0) to obtain

Iµ,k(tω0) = I0(tω0)− µ
∫
K(x)h(x)Xk(tω0) ≤ c0 − Ch,qµ, t ≥ t∗. (4.22)

We now notice that, if

k ≥ k∗ :=

(
2M2

Ch,q

)1/q

, µθ−1 <
Ch,q
2M1

,

then

M1µ
θ +M2

µ

kq
<
Ch,q

2
µ+

Ch,q
2
µ = µCh,q.

This inequality, together with (4.22) and (4.20), imply that

sup
t≥0

Iµ,k(tω0) < c0 −M1µ
θ −M2

µ

kq
, (4.23)

whenever k ≥ k∗ and

0 < µ < µ∗ := min

{
1,

c0

2(M1 +M2)
,

(
Ch,q
2M1

)1/(θ−1)
}
.

Since

lim
t→+∞

Iµ,k(tω0)

t2∗
≤ − 1

2∗
‖ω0‖2∗

2∗ < 0,

there exists T > 0, independent of µ and k, such that ‖Tω0‖ > ρ and Iµ,k(tω0) < 0,

for any t ≥ T . Thus, we can use Lemma 4.1.1 to define the Moutain Pass level

cµ,k := inf
γ∈Γ

sup
0≤t≤1

Iµ,k(γ(t)),

where Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = Tω0}.
The definition of Γ and (4.23) imply that

cµ,k < c0 −M1µ
θ −M2

µ

kq
, (4.24)

whenever k ≥ k∗ and µ ∈ (0, µ∗). Using Lemma 4.2.2 and the Mountain Pass

Theorem we obtain a critical point uk ∈ X such that Iµ,k(uk) ≥ ρ. By Lemma 4.2.1

this solution is positive and the proposition is proved.

We are ready to prove our final main result.

Proof of Theorem J.. Let µ∗ > 0 be given by Proposition 4.2.3 and 0 < µ < µ∗.

Using Proposition 4.1.3, we obtain a first positive solution with negative energy. In

order to obtain the second one, we denote by (uk)k≥k∗ ⊂ X the sequence of positive

solutions given by Proposition 4.2.3. As in Lemma 4.2.2, we can prove that

cµ,k = Iµ,k(uk)−
1

2∗
I ′µ,k(uk)uk ≥ α0‖uk‖2 −M1µ

θ −M2
µ

kq
,
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where α0 > 0 was defined in (4.17) and M1, M2 come from Lemma 4.2.2. The above

inequality and (4.24) imply that (uk) ⊂ X is bounded.

Up to a subsequence, we may assume that uk ⇀ u weakly in X, as k → +∞, and

an analogous of (4.9) holds. Arguing as in the proof of Lemma 4.1.3, we can prove

that I ′µ(u) = 0. Moreover, for each compact set Σ ⊂ RN , it follows from the proof

of Lemma 4.2.1 that uk(x) ≥ CΣ, for some CΣ > 0 independent of k. Thus, we infer

from the pointwise convergence of (uk) that u ≥ CΣ > 0 a.e. in the (arbitrary) set

Σ, and therefore u is a solution for (Pµ).

In order to guarantee that u is different from the first solution, we shall prove

that Iµ(u) > 0. We first notice that, arguing as in Lemma 4.2.2 and using u 6= 0, we

get

Iµ(u) ≥ α0‖u‖2 −M1µ
θ > −M1µ

θ. (4.25)

By setting vk := uk − u, using Brezis-Lieb lemma, Iµ(uk)uk = 0 and repeating the

calculations of Lemma 4.2.2, we obtain

ok(1) = ‖vk‖2 − ‖vk‖2∗

2∗ + I ′µ(u)u+ ok(1),

and therefore, for some l ≥ 0, there holds

lim
k→+∞

‖vk‖2 = l = lim
k→+∞

‖vk‖2∗

2∗ .

Thus, we can use (4.24) and the same argument employed in the proof of Lemma

4.2.2 to obtain

c0 −M1µ
θ −M2

µ

kq
> Iµ,k(uk) =

1

N
l + Iµ(u) + ok(1).

If l > 0, then l ≥ S
N/2
2∗ and we can pass to the limit as k → +∞, use (4.16) and

(4.25) to obtain

c0 −M1µ
θ ≥ 1

N
S

2/N
2∗ + Iµ(u) > c0 −M1µ

θ,

which does not make sense. Hence, l = 0 and therefore uk → u strongly in X. This

implies that

ρ ≤ Iµ,k(uk) = Iµ(u) + ok(1),

and therefore Iµ(u) ≥ ρ > 0. The theorem is proved.

97



CHAPTER 5

Indefinite problem with exponential critical growth in R2

We are concerned with the equation

(P5) −∆u+
1

2
(x · ∇u) = a(x)f(u), x ∈ R2,

where a is a sign-changing potential and the nonlinerity f has an exponential crit-

ical growth at infinity. The operator in (P5) naturally appears when we look for

self-similar solutions for homogeneous heat equations, namely solutions of the form

ω(t, x) = t−1/(p−2)u(t−1/2x) for the evolution equation

ωt −∆ω = |ω|p−2ω, in (0,+∞)× RN .

More specifically, ω is a solution for the above equation if, and only if, the profile u

is a solution for the elliptic equation

−∆u− 1

2
(x · ∇u) = λu+ |u|p−2u, x ∈ RN .

There is a vast literature concerning the above problem with several types of

nonlinearities for bounded domains, the whole space RN and even the upper half-

space RN
+ . Without intention to present a complete list of references, we could

cite [9, 20, 24, 44, 52, 57, 72, 75, 76] and references therein. In these works the authors

find results about existence, nonexistence, multiplicity, decay rate, among other prop-

erties of solutions via ODE techniques or variational methods. As far as we know,

Escobedo and Kavian [44] were the first to treat this operator in a variational way

and particularly inspired works as [49, 51], that considered problem (P5) with sign-

changing nonlinearity having a concave-convex prototype.

In this chapter, we deal with an indefinite potential a. More specifically, we

follow [2] and assume that
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(a1) a : R2 → R is a bounded sign-changing continuous function;

(a2) if

Ω+ := {x ∈ R2; a(x) > 0}, Ω− := {x ∈ R2; a(x) < 0},

then dist(Ω+,Ω−) > 0;

(a3) there exists R > 0 such that a(x) < 0 for |x| ≥ R.

We are interested in the case that f is superlinear both at the origin and at

infinity, namely

(f0) f ∈ C(R,R) and there exists α0 > 0 such that

lim
s→+∞

f(s)

eαs2
=

{
0 if α > α0,

+∞ if α < α0;

(f1) lim
s→0

f(s)/s = 0.

In order to present the other conditions on f we need to say some words about

our functional space. So, we set K(x) := exp(|x|2/4) and notice that div(K(x)∇u) =

K(x) [∆u+ (1/2)(x · ∇u)] , in such way that we can use a variational approach and

look for solutions in the space X defined as the closure of C∞c (R2) with respect to

the norm

‖u‖ :=

(∫
R2

K(x)|∇u|2 dx
)1/2

.

Given s ≥ 2, it is proved in [50] that X is compactly embedded into the weighted

Lebesgue space LsK := Ls(R2, K(x)). Hence, we can define the constant

S2 := inf

{∫
R2

K(x)|∇u|2dx :

∫
R2

K(x)|u|2 dx = 1

}
.

Since Ω+ is far from Ω−, we can find ζ ∈ C∞(R2, [0, 1]) such that

ζ ≡ 1, in Ω+, ζ ≡ 0, in Ω−, M := sup
R2

|∇ζ| <∞.

Our technical assumptions on f can be stated as follows:

(f2) there exist ν > 2 and 0 < θ < ν
[
2(1 +MS

−1/2
2 )

]−1

such that, for F (s) :=∫ s
0
f(τ) dτ , there holds

0 <
ν

θ
F (s) ≤ f(s)s, ∀ |s| > 0;

(f3) there exist K0, R0 > 0 such that

0 < F (s) ≤ K0|f(s)|, ∀ |s| ≥ R0;
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(f4) if x0 ∈ Ω+ and r > 0 are such that a(x0) = maxΩ+ a and a(x) ≥ (maxΩ+ a)/2

in Br(x0), then

lim
s→+∞

sf(s)e−α0s2 ≥ β0 >
8

α0r2 ·maxΩ+ a
exp

(
r2

8
+

r4

512

)
.

We prove the following existence result:

Theorem K. Suppose that (a1)−(a3) and (f0)−(f4) hold. Then problem (P5) admits

at least a weak nontrivial solution.

In the proof we apply the Mountain Pass Theorem. Since the potential a changes

it sign, it is not so easy to prove that Palais-Smale sequences are bounded. Conditions

(a2) and (f2) are important in this issue. Condition (f3) has first appeared in [36]

and provides a compactness property for the Palais-Smale sequence. With the aim of

overcome the difficulties imposed by the lack of compactness, since we are dealing with

the whole space R2, we invoke a version of the Trudinger-Moser inequality together

with assumption (f4) and the Moser’s functions to find the correct localization of the

mountain pass level. We notice that (f4) is weaker than lims→+∞ f(s)se−α0s2 = +∞,

which have been used in some former papers (see (g5) in [2] for instance). It is not

difficult to see that, if we pick q > ν/θ, then the function

f(s) = (q|s|q−2s+ 2α0|s|qs)eα0|s|q

satisfies all the conditions (f0)− (f4) above.

We finish this introduction quoting the paper [14], where the authors considered

−∆u+ u = a(x)f(u), in Ω Bu = 0, on ∂Ω,

in a bounded domain, Bu = ∂u/∂ν or Bu = u, a ∈ C(Ω,R) is a sign-changing

potential and f is a power type subcritical nonlinearity. The N -laplacian case is

considered in [2] for an exterior domain Ω, Dirichlet boundary conditions and f

having exponential critical growth. Theorem A is a complement of these papers since

we deal with the whole space case and a different operator.

The chapter contains two more sections. In the first one, we present the variational

framework to deal with (P5) and some auxiliary results. Theorem K is proved in

Section 5.2.

5.1 Variational framework and technical results

We start by quoting a Trudinger-Moser type inequality proved in [50].
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Theorem 5.1.1 (Trudinger-Moser). If u ∈ X, β > 0 and p ≥ 0 then K(x)|u|2+p(eβu
2−

1) ∈ L1(R2). Moreover, if ‖u‖ ≤ M , with βM2 < 4π, then there exists a constant

C = C(β,M, p) > 0 such that∫
R2

K(x)|u|2+p(eβu
2 − 1) dx ≤ C‖u‖2+p.

Let α > α0 and q ≥ 1. It follows from (f0) that

lim
|s|→+∞

f(s)

|s|1−q(eαs2 − 1)
= 0.

Hence, we can use (f1) to obtain, for any given ε > 0, a constant Cε > 0 such that

max{|f(s)s|, |F (s)|} ≤ εs2 + Cε|s|q(eαs
2 − 1), (5.1)

for any s ∈ R. Since a ∈ L∞(R2), we can use the above estimates and Theorem 5.1.1

to show that the functional I : X → R given by

I(u) :=
1

2
‖u‖2 −

∫
R2

K(x)a(x)F (u) dx

is well-defined, it belongs to C1(R2,R) and its critical points are weak solutions for

problem (P5).

Let x0 ∈ Ω+ and r > 0 be given by condition (f4). We define a slight adaptation

of the Green’s function considered by Moser in [71], namely

M̃n(x) :=
1√
2π
·


K(r/n)−1/2(log n)1/2, if |x− x0| ≤ r/n,

K(x)−1/2 log (r/|x− x0|)
(log n)1/2

, if r/n ≤ |x− x0| < r,

0, if |x− x0| ≥ r.

As we shall see, the location of x0 ∈ R2 does not play any role in our next calculations.

So, we assume with no loss of generality that x0 = 0. We have that M̃n ∈ H1(R2)

and supp(M̃n) = Br(0). Moreover, it is proved in [50, Lemma 4.6] that there exists

a sequence (dn) ⊂ R such that

‖M̃n‖2 = 1 +
1

log n

(
r2

8
+

r4

512

)
− dn, lim

n→+∞
dn log n = 0. (5.2)

In particular, ‖M̃n‖2 → 1, as n→ +∞.

Lemma 5.1.2. Suppose that (a1) − (a3), (f2) and (f4) hold. If Mn := M̃n/‖M̃n‖,
then there exists n ∈ N such that

max
s≥0

I(sMn) = max

{
s2

2
−
∫
R2

K(x)a(x)F (sMn) dx

}
<

2π

α0

.
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Proof. For each n ∈ N, consider the function gn(s) := I(sMn), for s ≥ 0. From (f2),

we obtain C1, C2 > 0 such that F (s) ≥ C1|s|ν/θ − C2, for any s ∈ R. Thus, since

supp(Mn) ⊂ Ω+, we have that

gn(s) ≤ s2

2
− C1s

ν/θ

∫
Ω+

K(x)a(x)Mν/θ
n dx+ C2

∫
Ω+

K(x)a(x) dx.

Recalling that ν/θ > 2, we obtain gn(s) → −∞, as s → +∞. Hence, gn attains its

global maximum at sn > 0 which satisfies 0 = g′n(sn) or, equivalently,

s2
n =

∫
Br(0)

K(x)a(x)f(snMn)snMn dx. (5.3)

Suppose, by contradiction, that the result of the lemma is false. Then gn(sn) ≥
(2π)/α0 and we can use the definition of gn, supp(Mn) ⊂ Ω+ and F ≥ 0, to get

s2
n ≥

4π

α0

. (5.4)

Let β0 > 0 be given by (f4). If 0 < ε < β0, there exists Rε > 0 such that

sf(s) ≥ (β0 − ε)eα0s2 , ∀ |s| ≥ Rε. (5.5)

Using the definition of Mn, (5.4) and ‖M̃n‖ → 1, as n→ +∞, we conclude that

snMn(x) = sn
M̃n

‖M̃n‖
≥ e−r

2/(8n2)

‖M̃n‖

√
4π log n

α0

≥ Rε,

for any |x| < r/n and n large. Hence, it follows from (5.3), (5.5), K ≥ 1, the choice

of r > 0 in (f4), the previous inequality and the definition of Mn that

s2
n ≥

∫
Br/n(0)

K(x)a(x)f(snMn)snMn dx

≥ c0(β0 − ε)
∫
Br/n(0)

exp(α0(snMn)2) dx

= c0(β0 − ε)
∫
Br/n(0)

exp

(
α0s

2
n

e−r
2/(4n2) log n

2π‖M̃n‖2

)
dx

= c0(β0 − ε)
πr2

n2
exp

(
α0s

2
n

e−r
2/(4n2) log n

2π‖M̃n‖2

)
,

where c0 := (maxΩ+ a)/2. Using that 1/n2 = exp(−2 log n), we obtain

s2
n ≥ c0(β0 − ε)πr2 exp

(
2

[
e−r

2/(4n2)

‖M̃n‖2

α0

4π
s2
n − 1

]
log n

)
, (5.6)

and hence, recalling that exp(s) ≥ s, we get that

s2
n ≥ 2c0(β0 − ε)πr2

[
e−r

2/(4n2)

‖M̃n‖2

α0

4π
s2
n − 1

]
log n. (5.7)
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Since e−r
2/(4n2)‖M̃n‖−2 → 1, we conclude from the above inequality that (sn)

is bounded. Hence, up to a subsequence, s2
n → γ ≥ 4π/α0. If γ > 4π/α0, we

obtain a contradiction after passing (5.7) to the limit. Thus, γ = 4π/α0. Combining

inequalities (5.4), (5.6) and Lemma 5.2, we obtain

s2
n ≥ c0(β0 − ε)πr2 exp

{
−2

‖M̃n‖2
(‖M̃n‖2 − e−r2/(4n2)) log n

}
.

Passing to the limit in n, using (5.2) and a straightforward computation, we obtain

4π

α0

≥ c0(β0 − ε)πr2 exp

(
−2

(
r2

8
+

r4

512

))
.

Letting ε→ 0 and recalling that c0 = (maxΩ+ a)/2, we finally conclude that

β0 ≤
8

α0r2 ·maxΩ+ a
exp

(
r2

4
+

r4

256

)
,

which contradicts assumption (f4). The result is proved.

We prove in the sequel that I has the Mountain Pass geometry.

Lemma 5.1.3. Suppose that (a1) − (a3) and (f0) − (f2) hold. If n ∈ N is given by

Lemma 5.1.2, we have that

(i) there exist ξ, ρ > 0 such that I(u) ≥ ξ, for any u ∈ X, ‖u‖ = ρ.

(ii) there exists s0 > 0 such that ‖s0Mn‖ > ρ and I(s0Mn) < 0.

Proof. Given α > α0 and ε > 0, it follows from (5.1) (with q = 3) that

∫
R2

K(x)a(x)F (u) dx ≤
∫

Ω+

K(x)a(x)F (u) dx ≤ ε‖a‖L∞(Ω+)‖u‖2
2

+ ‖a‖L∞(Ω+)Cε

∫
RN
K(x)|u|3(eαu

2 − 1) dx.

If 0 < M < 1 is such that αM2 < 4π, we can use Theorem 5.1.1 to obtain C1 =

C1(M,α) > 0 such that∫
R2

K(x)a(x)F (u) dx ≤ ε‖a‖L∞(Ω+)S
−1
2 ‖u‖2 + C1‖u‖3,

whenever ‖u‖ ≤M . Hence, picking ε > 0 in such a way that (1−2ε‖a‖L∞(Ω+)S
−1
2 ) =

C2 > 0, we get that

I(u) ≥ 1

2
(1− 2ε‖a‖L∞(Ω+)S

−1
2 )‖u‖2 − C1‖u‖3 = ‖u‖2

(
C2

2
− C1‖u‖

)
,

and item (i) clearly holds for ρ := C2/(4C1) and ξ := ρ2C2/4. The second statement

is a direct consequence of the proof of the last lemma, where we have that I(sMn)→
−∞, as s→ +∞.
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The above result ensures the existence of a Palais-Smale sequence at the mountain

pass level [3] (see also [93, Theorem 1.15]), that is, a sequence (un) ⊂ X such that

lim
n→+∞

I ′(un) = 0, lim
n→+∞

I(un) = cMP

where

cMP := inf
γ∈Γ

max
s∈[0,1]

I(γ(s)) ∈
(

0,
2π

α0

)
,

and Γ := {γ ∈ C([0, 1], X); γ(0) = 0, γ(1) = e}, with e := s0Mn ∈ X given by

Lemma 5.1.3. Notice that the path γ(s) := ss0Mn belongs to Γ and therefore we

really have that cM < 2π/α0.

Lemma 5.1.4. There exists u0 ∈ X such that, up to a subsequence, un ⇀ u0 weakly

in X.

Proof. It is sufficient to prove that (un) is bounded in X. Computing I(un) −
(θ/ν)I ′(un)(ζun) and using the properties of the function ζ we get that

c+ on(1) + on(1)‖un‖ =
1

2
‖un‖2 −

∫
R2

K(x)a(x)F (un) dx

− θ

ν

∫
R2

K(x) [∇un∇(ζun)− a(x)f(un)ζun] dx

≥
(

1

2
− θ

ν

)
‖un‖2 − θM

ν

∫
R2

K(x)|∇un||un| dx

+

∫
Ω+

K(x)a(x)

[
θ

ν
f(un)un − F (un)

]
dx

and therefore we can use (f2) to obtain

c+ on(1) + on(1)‖un‖ ≥
(

1

2
− θ

ν

)
‖un‖2 − θM

ν

∫
R2

K(x)|∇un||un| dx. (5.8)

It follows from Hölder’s inequality and the continuous embedding that

θM
ν

∫
R2

K(x)|∇un||un| dx ≤
θMS

−1/2
2

ν
‖un‖2,

which together with (5.8) lead to

c+ on(1) + on(1)‖un‖ ≥

(
1

2
− θ

ν
− θMS

−1/2
2

ν

)
‖un‖2.

By (f2), the term into parenthesis above is positive, which implies that (un) is

bounded in X.
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Since X is compactly embedded in LsK(R2), it follows from the above lemma that
un → u0 strongly in Ls(R2),

un(x) → u0(x) a.e. in R2,

|un(x)| ≤ hs(x) a.e. in R2,

(5.9)

for any s ≥ 2 and some hs ∈ LsK(R2).

Lemma 5.1.5. Suppose that (a1)−(a3) and (f0)−(f4) hold. If a±(x) := max{±a(x), 0}
and u0 ∈ X is given by Lemma 5.1.4, then K(x)a±(x)f(un) → K(x)a±(x)f(u0) in

L1
loc(R2).

Proof. Fixed σ > 0, we can compute I(un)−(σ/ν)I ′(un)(ζun) and argue as in Lemma

5.1.4 to obtain

c+ on(1) + on(1)‖un‖ ≥

(
1

2
− σ

ν
− σMS

−1/2
2

ν

)
‖un‖2

+

(
σ

ν
− θ

ν

)∫
Ω+

K(x)a(x)f(un)un dx.

Choosing σ > ν
[
2(1 +MS

−1/2
2 )

]−1

> θ and recalling that (un) is bounded, we

obtain ∫
Ω+

K(x)a(x)f(un)un dx ≤ C1.

Moreover, since I ′(un)un = 0, we have that∫
Ω−
K(x)a(x)f(un)un dx ≤

∫
RN
K(x)a(x)f(un)un dx = ‖un‖+ on(1) ≤ C2.

Let Ω ⊂ R2 be a bounded set. Given ε > 0, is is clear that

|f(s)| ≤ εf(s)s, ∀ |s| ≥ Rε := 1/ε.

Consequently,∫
[|un|≥Rε]∩Ω

K(x)a±(x)|f(un)| dx ≤ ε

∫
[|un|≥Rε]∩Ω

K(x)a±(x)f(un)un dx ≤ εC3,

(5.10)

with C3 := (C1 +C2). Thus, from the pointwise convergence and Fatou’s lemma, we

obtain ∫
[|u0|≥Rε]∩Ω

K(x)a±(x)|f(u0)| dx ≤ εC3. (5.11)

On the other hand,∫
Ω

K(x)a±(x)|f(un)− f(u0)| dx ≤
∫

[|un|≥Rε]∩Ω

K(x)a±(x)|f(u0)| dx

+

∫
[|un|≥Rε]∩Ω

K(x)a±(x)|f(un)| dx

+

∫
[|un|<Rε]∩Ω

K(x)a±(x)|f(un)− f(u0)| dx.
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Thus, we infer from (5.10) and (5.11) that∫
Ω

K(x)a±(x)|f(un)− f(u0)| dx ≤ 2εC3 +

∫
Σn,ε∩Ω

K(x)a±(x)|f(u0)| dx

+

∫
[|un|<Rε]∩Ω

K(x)a±(x)|f(un)− f(u0)| dx,

with Σn,ε := [|u0| < Rε] ∩ [|un| ≥ Rε]. Passing the above inequality to the limit

as n → +∞, using that Ω is bounded, Lebesgue’s theorem and the arbitrariness of

ε > 0, we obtain

lim
n→+∞

∫
Ω

K(x)a±(x)f(un) dx =

∫
Ω

K(x)a±(x)f(u0) dx,

and the lemma is proved.

5.2 Proof of Theorem K

We prove in this section the main theorem of the chapter. The idea is proving that

the weak limit u0 given by Lemma 5.1.4 is a nonzero solution of (P5). First notice

that, since I ′(un)→ 0, as n→ +∞, we can use Lemmas 5.1.4 and 5.1.5 to conclude

that I ′(u0)ϕ = 0, for all ϕ ∈ C∞0 (R2). A density argument shows that u0 is a critical

point of I.

Suppose, by contradiction, that u0 = 0. Using condition (f3), the continuity of f

and that Ω+ is bounded, we obtain C1 > 0 such that

K(x)a(x)F (un) ≤ C1 +K0K(x)a(x)|f(un)|, for a.e. x ∈ Ω+.

As a byproduct of the proof of Lemma 5.1.5, we see that the right hand side above

goes to zero. So, we can use the pointwise convergence and Lebesgue’s theorem to

conclude that
∫

Ω+ K(x)a(x)F (un) dx→ 0. Hence,

cMP + on(1) = I(un) =
1

2
‖un‖2 −

∫
R2

K(x)a(x)F (un) dx

≥ 1

2
‖un‖2 −

∫
Ω+

K(x)a(x)F (un) dx =
1

2
‖un‖2 + on(1),

from which we conclude that lim sup
n→+∞

‖un‖2 ≤ 2cMP < 4π/α0. This provides m, n0 >

0 be such that

‖un‖2 < m <
4π

α0

, ∀n ≥ n0.

We now claim that
∫
R2 K(x)a(x)f(un)un = on(1). If this is true, we can use I ′(un)un =

on(1) and (5.1) to get

‖un‖2 =

∫
R2

K(x)a(x)f(un)un dx+ on(1) = on(1),
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which implies that I(un) → 0. But this is impossible because I(un) → cMP > 0.

Then, u0 6= 0 is the desired solution.

In order to prove the claim, we pick α > α0, q > 2 and s > 1 to be chosen later,

and apply (5.1) together with Hölder’s inequality to write∫
R2

K(x)a(x)f(un)un dx ≤ C2‖un‖2
L2
K

+ C3

∫
R2

K(x)|un|2q(eαu
2
n − 1)dx

≤ C2‖un‖2
L2
K

+ C3‖un‖q
Lqs
′

K

[∫
R2

K(x)|un|qs
(
eαu

2
n − 1

)s]1/s

,

Using the inequality (1 + a)s ≥ 1 + as with a = et − 1, we get (et − 1)s ≤ ets − 1.

So, setting vn := un/‖un‖ and noticing that αsu2
n = αs‖un‖2|vn|2 ≤ αsm|vn|2, for

n ≥ n0, we obtain

∫
R2

K(x)a(x)f(un)un dx ≤ C2‖un‖2
L2
K

+ C4‖un‖q
Lqs
′

K

[∫
R2

K(x)|vn|qs
(
eαsm|vn|

2 − 1
)]1/s

.

Since αsm → α0m < 4π, as α → α0 and s → 1+, we can choose α, s, q close to

the numbers α0, 1, 2, respectively, and use Theorem 5.1.1 to guarantee that the term

into brackets above is uniformly bounded. It is sufficient now to recall that un → 0

strongly in the weighted Lebesgue spaces to obtain∫
R2

K(x)a(x)f(un)un ≤ C1‖un‖2
L2
K

+ C5‖un‖q
Lqs
′

K

= on(1),

and we have done.
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