ABOUT *R*- PRIMITIVE AND *K*-NORMAL ELEMENTS IN FINITE FIELDS

VICTOR G.L. NEUMANN VICTOR.NEUMANN@UFU.BR

FACULDADE DE MATEMÁTICA UNIVERSIDADE FEDERAL DE UBERLÂNDIA UBERLÂNDIA, MINAS GERAIS, BRASIL

JOINT WORK WITH CÍCERO CARVALHO AND JOSIMAR AGUIRRE

ABSTRACT. In 2013, it was introduced the concept of k-normal elements: an element $\alpha \in \mathbb{F}_{q^n}$ is k-normal over \mathbb{F}_q if the greatest common divisor of the polynomials $g_{\alpha}(x) = \sum_{i=0}^{n-1} \alpha^{q^i} x^{n-1-i}$ and $x^n - 1$ in $\mathbb{F}_{q^n}[x]$ has degree k, generalizing the concept of normal elements (normal in the usual sense is 0-normal). In that same paper, a problem proposed by Huczynska et al. (2013) is: Determine the existence of high-order k-normal elements $\alpha \in \mathbb{F}_{q^n}$ over \mathbb{F}_q , where "high order" means that α has multiplicative order N, where N is a large positive divisor of $q^n - 1$. An element of \mathbb{F}_{q^n} of multiplicative order $(q^n - 1)/r$ is called r-primitive. With that in mind, in this talk we prove some results on the existence of r-primitive, k-normal elements of \mathbb{F}_{q^n} over \mathbb{F}_q .

Keywords: *r*-primitive elements, *k*-normal elements, finite fields. *Fomento*: FAPEMIG.