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Resumo

O Teorema da Alternativa Global de Bifurcação de Rabinowitz foi explorado por muitos
autores com o objetivo de estabelecer resultados de existência de bifurcação. Nesse tra-
balho, nos engajamos nesse sentido propondo um teorema que garante a existência de
alternativa global de bifurcação numa faixa, isto é, uma generalização do resultado orig-
inal de Rabinowitz cuja formulação envolve problemas do tipo u = K(λ, u) em que
K : I × E → E é um operador compacto e I um intervalo fechado (possivelmente
ilimitado) com interior não vazio. Então, como uma aplicação deste, nós provamos um
resultado de bifurcação no infinito semelhante ao obtido por Arcoya, Carmona e Pellaci
em 2001 [4].
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Abstract

The Global Bifurcation Alternative of Rabinowitz Theorem was explored by many authors
in order to establish bifurcation existence results. In this work we engage in this sense
on proposing a theorem that guarantee global bifurcation alternative in a strip that is a
generalization of the original one which is formulated for problems in the form u = K(λ, u),
whereK : I×E → E is a compact operator and I is a closed interval (possibly unbounded)
with nonempty interior. Then we apply it in order to obtain a bifurcation at infinity
existence result similar to that given by Arcoya, Carmona and Pellaci in 2001 [4].
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Chapter 1

Introduction

Consider the problem of solving an equation

Φ(λ, u) = 0 (1.0.0.1)

for (λ, u) ∈ R×E where E is a real Banach space, Φ : R×E → E and assume that u = 0
trivially satisfies (1.0.0.1) for every λ, that is, the set of solutions of (1.0.0.1) contains the
curve

{(λ, 0); λ ∈ R}.

This happens, for example in a Dirichlet problem of the form{
−∆u = λup in Ω,

u = 0 on ∂Ω,

where Ω is a bounded open subset of the euclidean space RN . Indeed, from the literature
we know that, under some conditions, this problem can be formulated as

Φ(λ, u) = 0,

where Φ(λ, u) : R× E → E is a compact perturbation of the identity defined as
Φ(λ, u) = u− S(λup), S : E → E is the solution operator of the problem{

−∆u = h in Ω,

u = 0 on ∂Ω

and E is some appropriated Banach space.
Commonly, the solutions of interest are the nontrivial ones, that is, the solutions (λ, u)

with u 6= 0. The bifurcation theory is concerned to the problem of finding nontrivial
solutions for (1.0.0.1) by taking advantage, somehow, of the well known curve of trivial
solutions of (1.0.0.1). We say that (λ0, 0) is a bifurcation point of the equation (1.0.0.1)
from the curve of trivial solutions {(λ, 0);λ ∈ R} if any neighbourhood of (λ0, 0) contains
at least one nontrivial solution of (1.0.0.1).

Let us investigate the possibility of existence of nontrivial solutions near some point
(λ0, 0). Consider (a, b) be an interval (possibly unbounded) containing λ0, U be a bounded
open subset of E containing u = 0 and just for a moment suppose that Φ : (a, b)×U → E
satisfies the hypotheses of Implicit Function Theorem, that is,

i) Φ is continuous;

9
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ii) Φu exists and is continuous in V ;

iii) Φu(λ0, 0) is invertible with continuous inverse.

In this context the Implicit Function Theorem states that in a neighbourhood U of (λ0, 0),
the solutions of Φ(λ, u) = 0 are constituted by a unique curve (λ, ϕ(λ)). But we already
know that λ 7→ (λ, 0) is a curve of solutions of Φ(λ, u) = 0 and so we conclude that
there is no nontrivial solutions in U. This analysis leads us to a necessary condition for
a point (λ0, 0) to be a bifurcation point of Φ(λ, u) = 0 from the curve of trivial solutions
{(λ, 0); λ ∈ R} when Φ satisfies i) and ii), which is the following. If Φ : U → E satisfies
i), ii) and (λ0, 0) is a bifurcation point from the curve of trivial solutions of Φ(λ, u) = 0,
then item iii) is not verified. If we require less in ii), then we deduce a similar necessary
condition given by Lemma B.

Now, let us discard the hypothesis ii) over Φ and compensate it by assuming that
(1.0.0.1) is actually a fixed point problem, that is, Φ : R × U → E is a continuous
operator of the form

Φ(λ, u) = u−K(λ, u),

where U is a bounded open subset of some real Banach space E. By imposing that K is a
compact operator, the Degree Theory gives us a range of tools that allow us to study the
existence of bifurcation points for the problem (1.0.0.1). So in Chapter 2, we introduce
two objects of the Degree Theory: the Brouwer degree and the Leray-Schauder degree.
The first one is a function which associates an integer to each ordered triple

(f, U, v) 7→ deg(f, U, v) ∈ Z, (1.0.0.2)

where f : U → RN is a continuous function, U is a bounded open subset of RN and
v 6∈ f(∂U). The number deg(f, U, v) gives information about the existence of solutions of
f(u) = v. The Leray-Schauder degree is an extension of the Brouwer degree for abstract
Banach spaces E and was introduced by Leray and Schauder in [28] (1934). Such degree
is a map as (1.0.0.2), where now f is substituted by a compact perturbation of the
identity Φ = I −K : U → E, U is a bounded open subset of a real Banach space E and
v 6∈ Φ(∂U). As well as the Brouwer degree, the number deg(Φ, U, v) gives information
about the existence of solutions of Φ(u) = v.

The power of this theory lies in the fact that the degree is a topological invariant, that
is, it obeys some properties of invariance with respect to the topology considered in E.
The most useful among them is the homotopy invariance of the Leray-Schauder degree,
which can be stated as follows.

Theorem 1.0.1. If H : [0, 1]× U → E is a function of the form

H(t, u) = u− T (t, u),

where T : [0, 1]× U → E is a compact operator, then

deg(H(t, · ), U, v) = constant for all t ∈ [0, 1], (1.0.0.3)

for each v 6∈ Φ(∂U).

This property is powerful because it allows us to determine the degree of a function Φ,
whose the degree is difficult to calculate, by finding an homotopy between Φ and another
compact perturbation of the identity Ψ for each the degree is known.

Moreover, there is a variation of this property that states that (1.0.0.3) holds not only
for t varying, but also for U varying. This is the content of the next result.
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Theorem 1.0.2. Assume that K : U→ E is a compact operator, where U is a bounded
open subset of [a, b]× E, and that the equation

Φ(λ, u) := u−K(λ, u) = 0

does not admit solutions on ∂U. Then

deg(Φλ, Uλ, 0) is constant in λ ∈ [a, b],

where Uλ := {u ∈ E; (λ, u) ∈ U} and Φλ := Φ(λ, ·).

For the case where u is an isolated solution of Φ(u) = v, there is a limit version of the
Leray-Schauder degree, which is called "index of an isolated solution" and is defined as

i(Φ, u) = lim
ε→0

deg(Φ, Bε(u), v). (1.0.0.4)

The index of an isolated solution u = 0 of Φ(u) = 0 satisfies the following identity

i(Φ, 0) = (−1)β, (1.0.0.5)

where β is the sum of the algebraic multiplicities of the characteristic values of K ′(0)
contained in (0, 1). The identity (1.0.0.5) is usually called in the literature as "Leray-
Schauder Formula" and it holds for operators Φ = I − K satisfying some apropriated
conditions (see Chapter 2).

Once presented the Leray-Schauder degree and its properties in Chapter 2, we arrive
at Chapter 3, where a brief Bifurcation Theory overview is presented. Throughout this
Chapter, except for the two last sections 3.3 and 3.4, we will assume the following hy-
potheses and definitions.
H1) I ⊂ R is a closed interval with non-empty interior.
H2)

K : I × E → E
(λ, u) 7→ K(λ, u)

is a compact operator.
H3) K has the form

K(λ, u) = L(λ)u+H(λ, u), (1.0.0.6)

where
L : I → Hc(E)

λ 7→ L(λ)

is a continuous operator,

Hc(E) := {T : E → E; T is a homogeneous compact operator of degree 1}

and
H : I × E → E

(λ, u) 7→ H(λ, u)

is a compact operator such that

H(λ, u) = o(‖u‖) near u = 0, uniformly on each compact interval of λ contained in I.
(1.0.0.7)
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Definition 1.0.1. Let L : R→ Hc(E) be a continuous operator. Then we define
L0 := L(1) and the set r(L0) of all characteristic values of L0 as

r(L0) := {λ ∈ R; there exists some 0 6= u ∈ E, such that u = L(λ)u}.

N) We will denote
Φ(λ, u) := u−K(λ, u).

P) It will be studied the problem Φ(λ, u) = 0.
HI) In the case of Krasnosel’skii and Rabinowitz theorems, we assume that I = R. In the
results involving the set r(L0), we assume that the interior of I contains the value λ = 1.

These general assumptions are inspired by the hypotheses of Theorem 1 of [12], which
is a generalization of the Unilateral Bifurcation Theorem of Rabinowitz (Theorem 1.25
of [33], which corresponds to Theorem 3.3.2) and our motivations to adopt them are the
following.
M1) These assumptions generalizes the hypotheses of two results that are studied in
this work: the Global Bifurcation Alternative of Rabinowitz (Theorem 1.3 of [33], which
corresponds to Theorem 3.2.2) and consequently also generalizes the hypotheses of the
first well known bifurcation existence result of Krasnosel’skii (Theorem 2.1 of [24] which
corresponds to Theorem 3.2.1).
M2) The hypothesis about the continuity of the operator λ 7→ L(λ) in Dai and Feng [12]
(2019) is not clear because it requires the assumption that the image of L lives in some
topological space and such space is not evidenced by the authors. Motivated by this issue,
we construct a norm in the space Hc(E) with which the space is Banach, as we prove by
combining the two below lemmas.

Lemma A0. The space

Hf (E) :=

{
H ∈ H(E); sup

E\{0}

∥∥∥∥H(u)

‖u‖

∥∥∥∥ <∞
}

is a Banach subspace of H(E).

Lemma A. Hc(E) is a closed subspace of Hf (E).

M3) As a corollary of Theorem A, which is our main result, we prove

Theorem B (A type of Dai’s Theorem on a strip). Assume that λ0 ∈ r(L0) is isolated
and satisfies

i(Φ(λ0 − η, · ), 0) 6= i(Φ(λ0 + ξ, · ), 0) (1.0.0.8)

for sufficiently small positive numbers ξ and η. Then there exists a continuum (connected
and closed subset of S) Cλ0 of

S := {(λ, u) ∈ I × (E \ {0}); Φ(λ, u) = 0}

containing (µ, 0) such that Cλ0 satisfies, at least, one of the following (non-excluding)
alternatives:

i) Cλ0 is unbounded;
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ii) Cλ0 intercepts some (d, u) ∈ I × E, where d is an extremity of the interval I (if I
possesses some extremity) or (not exclusive) intercepts some (λ1, 0) with λ0 6= λ1 ∈
I.

Theorem B is a Dai’s correspondent type of the Global Bifurcation Alternative of Ra-
binowitz (Theorem 1.3 of [33], which corresponds to Theorem 3.2.2) and, as a consequence
of the Leray-Schauder formula (1.0.0.5), we also prove

Corollary C. The Global Bifurcation Alternative of Rabinowitz (Theorem 3.2.2) is a
corollary of Theorem B.

M4) The indexes in the hypothesis (1.0.0.8) are well defined as a consequence of

Lemma D. If (λ0, 0) is a bifurcation point from the curve of trivial solutions of

Φ(λ, u) = 0,

then λ0 ∈ r(L0).

Lemma D is motivated by the statement "[...] the Leray-Schauder degree, deg(I −
L(λ), Br, 0), is well defined for arbitrary r−ball Br and λ 6∈ r(L0)[...]" made in the in-
troduction of [12] which leads us to infer that the necessary condition of Krasnosel’skii
for a value λ0 to be a bifurcation point (Theorem 3.2.3) holds not only for the case when
L(λ) = λL, with L linear, as the necessary condition of Krasnosel’skii (Theorem 3.2.3)
does, but also when λ 7→ L(λ) is a continuous function and L(λ) ∈ Hc(E). However, we
do not find such a result in the literature and so we prove it.

Once motivated our choice for general assumptions of Chapter 3, let us present some
of the principal results of this chapter.

After the construction of the real Banach space Hc(E) and an exposition of the evo-
lution of the bifurcation point definition from Krasnosel’skii’s to the modern one, we
enunciate the first well known bifurcation existence result of Krasnosel’skii [24] (1964).

Theorem 1.0.3 (Krasnosel’skii’s Theorem). Let A : E → E be a compact operator with
Fréchet derivative A′(0) such that A(0) = 0. Then, each characteristic value λ0 of odd
algebraic multiplicity of the linear operator A′(0) is a bifurcation point of Φ(λ, u) = 0,
where we are identifying the operators L and H from hypothesis H3) as L(λ) = λA′(0),
H(λ, u) = λH(u) and H(u) = A(u)− A′(0)u with H(u) = o(‖u‖).

Moveover, associated with λ0 there exists a continuous branch of eigenvectors of the
operator A.

For a continuous branch of eigenvectors we mean that every neighbourhood U ⊂ E of
0 contained in a small ball B with 0 ∈ B is such that ∂U contains at least one eigenvector
of A associated to some characteristic value λ near λ0. Krasnosel’skii’s Theorem was
improved, seven years later, by P.H. Rabinowitz in [33] and his remarkable result became
known in the literature as "The Rabinowitz Global Bifurcation Alternative" and whose
statement is the following.

Theorem 1.0.4 (Global Bifurcation Alternative of Rabinowitz). Suppose that the oper-
ators L and H of hypothesis H3) are such that L(λ) = λL, where L is a compact linear
operator and H : R × E → E is a compact operator. If λ0 is a characteristic value of L
of odd algebraic multiplicity, then there exists a maximal continuum Cλ0 of S containing
(λ0, 0) such that Cλ0 satisfies at least one of the following (non-excluding) alternatives:
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i) Cλ0 is unbounded,

ii) Cλ0 ∩ {(λ1, 0)} 6= ∅ for some λ1 6= λ0,

where
S := {(λ, u); Φ(λ, u) = 0, u 6= 0}

With Lemma 2.1 of [24], Krasnosel’skii proves a result that is, in particular1, a nec-
essary condition for some (λ0, 0) being a bifurcation point of Φ(λ, u) = 0, by assuming
the hypotheses of Theorem 1.0.3. In the proof of Theorem 1.0.4 (which corresponds to
Theorem 1.3 of [33]), Rabinowitz uses this result, although the hypotheses of Theorem
1.0.4 are slightly more general than the bifurcation problem studied by Krasnosel’skii
in [24] (see Theorem 3.2.2). However, the author does not justify why the same result
holds with more general assumptions. Motivated by this lack, we propose the following
lemma, which proves not only that the necessary condition given by Lemma 2.1 of [24]
also holds with the assumptions of Theorem 1.0.4 of Rabinowitz, but also a more general
result that applies to more general operators.

Lemma B (Generalization of Krasnosel’skii’s necessary condition for homogeneous L(λ)).
Suppose that the operator I − L(λ0) : E → E admits an inverse operator

(I − L(λ0))−1 ∈ Hf (E).

Then there exists a ball B ⊂ E centered at 0, such that

Φ(λ, u) = 0

does not admit any nontrivial solution in B for λ lying in a interval (λ0 − ξ, λ0 + ξ)
where ξ is a positive number depending only on L and λ0. In particular, (λ0, 0) is not a
bifurcation point from the curve of trivial solutions of Φ(λ, u) = 0.

Lemma B is a generalization of the necessary condition given by Krasnosel’skii in [24].
We point out the following similarity between Lemma B and the necessary condition given
in the context of Implicit Function Theorem which was mentioned above. Note that by
(1.0.0.7), it follows that I−L(λ0) behaves like a differential Φu(λ0, 0) despite not being nec-
essarily a linear operator. Thus, Lemma B states that if (λ0, 0) is a bifurcation point from
the curve of trivial solutions of Φ(λ, u) = 0, then the operator I − L(λ0), which behaves
like a differential Φu(λ0, 0), does not admits an inverse operator (I − L(λ0))−1 ∈ Hf (E).
While the necessary condition given in the context of Implicit Function Theorem states
that Φu(λ0, 0) does not admits a continuous inverse.

Besides being a well known fact, we did not find in the literature such a result that
proves that Krasnosel’skii’s Theorem (Theorem 1.0.3) is a corollary of Rabinowitz Theo-
rem (Theorem 1.0.4) and so we prove this fact.

Corollary B. Krasnosel’skii’s Theorem is a corollary of Rabinowitz Global Bifurcation
Alternative.

The argument of the proof of Corollary B is based on supposing that λ0 does not
satisfies the conclusion of Krasnosel’skii’s Theorem and then obtain a contradiction with
the connectedness of Cλ0 .

1the result is actually stronger then just a necessary condition.
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The idea of the proof of Rabinowitz Theorem (Theorem 1.0.4) is based on the fact
that the oddness of the multiplicity implies, by using the Leray-Schauder formula, that
the index changes its sign when λ crosses λ0. This argument of the "index sign change"
in the proof of Rabinowitz Global Bifurcation Alternative was explored by Ambrosetti
and Hess [1] (1980) and in order to obtain a global bifurcation result for the asymptotic
linear elliptic eigenvalue problem{

Lu = λf(u) in Ω,
u = 0 on ∂Ω,

(P ∗λ )

where
Lu = −aij

∂2u

∂xi∂xj
+ ai

∂u

∂xi
+ au

is a uniformly elliptic operator with symmetric coefficients aij = aji and a ≥ 0, f : R+ → R
is a C1 function satisfying f(0) ≥ 0 and asymptotically linear in the sense that there exists
a positive number m∞, a function g and a constant C such that

f(s) = m∞s+ g(s), |g(s)|≤ C, ∀ s ∈ R+.

By using the compactness of the operator L−1, they handled the equation in (P ∗λ ) to
formulate the problem as

u = K(λ, u),

where K is a compact operator. However, to guarantee the index sign change it was not
required K to be as in Rabinowitz Theorem (Theorem 1.0.4), instead they used homotopy
invariance of the Leray Schauder degree to calculate the index and show that it changes
its value (not necessarily the sign) when the parameter crosses the first positive eigenvalue
λ∞ of the problem {

Lu = λu in Ω,
u = 0 on ∂Ω.

From this, it was deduced the existence of an unbounded continuum of

cl

({
(λ, z) ∈ [0,+∞)× C0(Ω);

z

‖z‖2
0

is a positive solution of (Pλ∗)

})
.

emanating from (λ∞, 0), where C0(Ω) stands for the space of all continuous functions
u : Ω → R that vanishes at ∂Ω (see Proposition 3.5 of [1]). In the proof, the authors
just mentioned that they were using an adaptation of the proof of Rabinowitz Global
Bifurcation Alternative.

Later, David Arcoya, José Carmona and Benedetta Pellacci [4] (2001), by following
the ideas from [1], studied bifurcation for the quasilinear elliptic problem{

−div(A(x, u)∇u) = f(λ, x, u) in Ω,
u = 0 on ∂Ω,

(Pλ)

where Ω is a bounded open subset of RN with smooth boundary and f is a Carathéodory
function satisfying, besides some hypotheses about its signal and integrability, the prop-
erty that f is asymptotically linear at s = +∞, more precisely,

lim
s→+∞

f(λ, x, s)

s
= λf ′∞(x), (f2)
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where f ′∞ is a nonzero Lr(Ω) function with r ≥ N/2. Also, the matrix A satisfies uniformly
elliptic conditions and

∃ lim
s→+∞

A(x, s) = A(x,+∞), a.e. in Ω.

By De Figueiredo’s result [16] (1982), the problem{
−div(A(x,+∞)∇u) = λf ′∞(x)u in Ω,

u = 0 in ∂Ω

admits a first positive eigenvalue λ∞. Under these conditions, the two first statements of
Theorem 3.4 of [4] are the following.

Theorem 1.0.5 (First two statements of Theorem 3.4 of [4]). It emanates from (λ∞, 0)
a continuum Cλ∞ of

S∞ := cl
({

(λ, z) ∈ R× C0(Ω);
z

‖z‖2
is a positive solution of (Pλ)

})
2

where cl(·) denotes the C0(Ω)-closure, ‖ · ‖:= ‖∇( · )‖ and by positive we mean non trivial
and non negative. Moreover, under the additional hypothesis

f(0, x, s) 6= 0 ∀ x ∈ Ω, s ≥ 0,

the continuum Cλ∞ is unbounded.

Our goal in Chapter 4 is to study Theorem 1.0.5 from the point of view of application
of Theorem A.

Based on the ideas of [4], we propose the following two alternative results. To state
them, let A be a matrix and f a function satisfying, besides the hypotheses required in [4],
the following two additional hypotheses.

i) There exists s0 > 0 and a function C0 ∈ Lr(Ω) such that

f(0, x, s) ≥ C0(x) a.e. in Ω for every s ≥ s0. (f ∗0 )

ii) The function f ′∞ ∈ Lr(Ω) is bounded away from zero a.e. in Ω.

Then it holds the following two theorems.

Theorem C. It emanates from (λ∞, 0) a continuum Cλ∞ of

cl

({
(λ, z) ∈ [0,+∞)×H1

0 (Ω);
z

‖z‖2
is a positive solution of (Pλ)

})
.

Moreover, if
f(0, x, s) = 0 ∀ x ∈ Ω, ∀s ≥ 0, (1.0.0.9)

then Cλ∞ is unbounded.
2the authors did not specified whether the continuum lies in R× C0(Ω) or in [0,+∞)× C0(Ω), so in

order to not make adulterated reference, we choose the neutral option R × C0(Ω). However, in all the
graphs presented by them, the continuum lies in the [0,+∞)× C0(Ω).
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Theorem D. It emanates from (λ∞, 0) a continuum Cλ∞ of

cl

({
(λ, z) ∈ [0,+∞)× C0(Ω);

z

‖z‖2
0

is a positive solution of (Pλ)

})
.

Moreover, if
f(0, x, s) = 0 ∀ x ∈ Ω, ∀s ≥ 0, (1.0.0.10)

then Cλ∞ is unbounded.

Let us point out the main ideas used to prove these results. By applying the existence
result by Leray and Lions [27] (1965) and the uniqueness result by Artola [6], we construct
a solution operator S = Q−1 of the problem

Q(u) = div(A(x, u)∇u) = h,

for each h ∈ H−1(Ω), whence the problem (Pλ) can be formulated as

u = S(f(λ, x, u)).

In order to study bifurcation at infinity, the change of variable u = z/‖z‖2
E (where

E = H1
0 (Ω) in the case of Theorem C and E = C0(Ω) in the case of Theorem D) is applied

in the above equation, in ways that the object of study are the solutions of

Φ(λ, u) = 0,

where Φ : R× E → E is the operator defined by

Φ(λ, z) =

z − ‖z‖2
ES

(
τf

(
λ, x,

z

‖z‖2
E

))
, if z 6= 0,

0 , if z = 0,

The argument to deduce the existence of Cλ∞ , is to prove that the index of Φλ changes
when λ crosses λ∞. In order to prove that the index is 1 for λ < λ∞, we adopt the
homotopy H1 that maps [0, 1]×BR−1(0) into E, R is a certain positive number and

H1(τ, z) =

z − ‖z‖2
ES

(
τf

(
λ, x,

z

‖z‖2
E

))
if z 6= 0,

0 if z = 0.

While to prove that the index is 0 for λ > λ∞, we adopt the homotopy H2 that maps
[0, 1]×BR−1

0
(0) into E, R0 is a certain positive number and

H2(t, z) =

z − ‖z‖2
ES

(
f

(
λ, x,

z

‖z‖2
E

)
+

tφ

‖z‖2
E

)
if z 6= 0,

−Ψt if z = 0,

where Ψt : Ω→ R is the unique weak solution of{
−div(A(x,∞)∇u) = tφ in Ω

u = 0 on ∂Ω.
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Observe that the operator Φ : R × E → E defined in (1) is a perturbation of the
identity z −K(λ, z), where K : R× E → E is the operator defined by

K(λ, z) =

‖z‖2
ES

(
τf

(
λ, x,

z

‖z‖2
E

))
, if z 6= 0,

0 , if z = 0.

(1.0.0.11)

As in [1], the proof of Theorem 1.0.5 of [4] does not needed the operator K to have the
structure required in the hypotheses of Rabinowitz Theorem (Theorem 1.0.4) to ensure
the index sign change, instead the authors used the invariance under homotopy property
and showed that the index changes value when λ crosses λ∞. So they mentioned that
the conclusion follows from the argument used in Proposition 3.5 of [1]. As we mentioned
before, this argument is that the result follows from a combination of the index sign change
with an adaptation of the proof of Rabinowitz theorem. From this arises a demand for
a new formulation of the bifurcation point theorem involving a more general compact
perturbation of the identity than that considered in Theorem 1.0.4 and which can be
applied to deduce bifurcation existence results for problems like those studied in [1] and [4].
Motivated by this, we began to study how could we do this. In this sense, consider the
following considerations. Since the operator K : R×E → E of Theorem 1.0.4 is compact,
then it arise the following questions:

Q1) is the operator K, defined in (1.0.0.11), compact in R×E? If the answer is no, one
can ask: there exists some subset of R× E in which this operator is compact?

Q2) once answered Q1, how did we can adapt the Rabinowitz Global Bifurcation Al-
ternative (Theorem 1.0.4) for problems like u = K(λ, u), where K is an arbitrary
compact operator?

The answer to Q1 is no. The operator K, defined in (1.0.0.11), is not necessarily compact
in R×E, since to prove the compactness of K at points (λ, z) with λ < 0, it is necessary
to have information about the behaviour of f(λ, x, s) for λ < 0 and s → +∞, what we
do not have in [4]. Although, the hypotheses given in [4], allow us to deduce that this
operator is compact in [0,+∞) × E. This fact motivated us to propose some version of
the Rabinowitz theorem that applies to compact operators K : I × E → E where I is a
closed interval, with non empty interior and E is a real Banach space. While the answer
to Q2 is given by our main result:

Theorem A (A type of Rabinowitz Theorem on a strip). Let E be a Banach space, I
a closed interval (not necessarily bounded) with non empty interior, K : I × E → E an
abstract operator and λ0 ∈ int(I) satisfying the following hypothesis:

1) K is a compact operator;

2) there exists an interval (a, b) ⊂ I such that

[((a, b)× {0}) \ {(λ0, 0)}] ∩S = ∅; (1.0.0.12)

3) one holds

i(I −K(λ0 − η, · ), 0) 6= i(I −K(λ0 + ξ, · ), 0) (1.0.0.13)

for η and ξ positive numbers small enough.
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Then there exists a continuum Cλ0 of

S := {(λ, u) ∈ I × (E \ {0});u = K(λ, u)}

containing (λ0, 0) such that Cλ0 satisfies at least one of the following (non-excluding)
alternatives:

i) Cλ0 is unbounded,

ii) Cλ0 intercepts some (d, u) ∈ I × E where d is an extremity of the interval I (if I
possesses some extremity) for some u ∈ E or (not exclusive) intercepts some (λ1, 0)
with λ0 6= λ1 ∈ I.

The proof of Theorem A is an adaptation of the one of Theorem 1.0.4 and a gener-
alization of Theorem 11 of [3], since the first is formulated for operators K defined in a
closed interval I (possibly unbounded), instead of in R as done in Theorem 11 of [3].

As proposed, we deduce from Theorem A the existence of the continuum Cλ∞ satis-
fying the statements of Theorem C and D.

Now, we will comment some parallel exposition and results. In Section 3.3, we expose
some results on bifurcation theory that behave like variations from the idea of the "in-
dex sign change" argument in the proof of Rabinowitz theorem and so we made a pun
by saying that these results "bifurcates" from Rabinowitz theorem. These are developed
by Dancer, Lopez Gomez, Fleckinger, Dai and Feng, et al. We attribute the rank of
parallel exposition for this section motivated by the fact that all these authors, except
of Fleckinger, established some bifurcation existence results for problems involving an
operator G : R× E → E (not necessarily compact) of the form

G(λ, u) = L(λ)u+H(λ, u), (1.0.0.14)

where

H(λ, u) = o(‖u‖) near u = 0, uniformly on each compact interval of λ, (1.0.0.15)

and the operator L is well behaved in some sense. And so, it runs away from the main
objective of our work which is to obtain (as we did on presenting Theorem A) a gen-
eralization of the Global Bifurcation Alternative of Rabinowitz that applies to general
compact perturbations of the identity u−K(λ, u) defined in a strip.

In order to case the reader’s consultation of some conventions and notations that we
adopt in the text, we will compile them in this section.
Results nomenclature.

We adopt the following naming pattern for the results (Lemmas, Theorems, Corollaries
and Propositions). Results with numeric naming (for example Theorem 1.0.5) are already
existent in the literature, with possible changes in their formulations in relation to the
original ones. Results with alphabetical naming (for example, Theorem A) fit in the
following cases.

i) An apparently unpublished variation of some result of the literature (this is the case
of Theorem A, B, C and D).

ii) Well known fact of the literature, although, whose demonstration was not found in
widely known textbooks that compile results in bifurcation theorem (this is the case
of Corollary B, for example).
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iii) A fact that was mentioned, without proof, in some paper (for example, Corollary
A is mentioned by Rabinowitz in [33] and Lemma D is mentioned by Dai and Feng
in [12]).

iv) Technical result that was not found in widely known textbooks and which is nec-
essary for application in some result of the text (Lemma A0 and Lemma A, for
example).

General notations

i) For each measurable set A ⊂ RN , the notation m(A) stands for the Lebesgue’s
measure of A.

ii) Unless otherwise specified (as in the case of Section 4.3 and 4.4), E is an arbitrary
real Banach space.

iii) Given p ≥ 1, we denote by ‖ · ‖p the usual norm of the space Lp(Ω).

Chapter 2.
Section 2.1.

i) U is a bounded open subset of RN .

ii) For each v ∈ RN and A ⊂ RN , we denote ρ(v, A) := dist(v,A).

Section 2.2.

i) U is a bounded open subset of E.

ii) For each v ∈ E and A ⊂ E, we denote ρ(v, A) := dist(v,A).

iii) C(Ω;E) is the space of all continuous operators T : Ω→ E.

iv) Q(Ω;E) is the family of all compact operators K : Ω → E. That is, K ∈ C(U ;E)
and maps subsets of U to relatively compact sets of E.

v) For each K ∈ Q(U ;E) we will consider the norm

‖K‖∞:= sup
u∈U
‖K(u)‖.

Chapter 3.
Except for Section 3.3 and 3.4.

i) We assume the hypotheses H1), H2), H3) and HI).

ii) We consider the notation given in N).

iii) We study the problem defined in P).

Chapter 4.

i) Ω is a bounded open subset of RN with sufficiently smooth boundary ∂Ω.

ii) Since Ω is bounded, Poincaré’s inequality ensures that we can adopt, in H1
0 (Ω) the

norm ‖u‖:= ‖∇u‖2, u ∈ H1
0 (Ω).
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iii) C0(Ω) is the space of the continuous functions u : Ω → R that vanishes at ∂Ω. In
this space, we will adopt the usual norm ‖u‖0:= supΩ|u|.

iv)) H−1(Ω) denotes the dual space of H1
0 (Ω).

Section 4.3

i) E = H1
0 (Ω).

Section 4.4

i) E = C0(Ω).



Chapter 2

Degree Theory

Let us consider the problem of solving

f(u) = v, (2.0.0.1)

where f : Ω→ E is a continuous function, Ω is an open bounded subset of a Banach space
E and v ∈ E is given. When E = RN , by using some results of Complex Analysis about
the index of a plane curve1, it is possible to construct a topological invariant associated
to the function f : Ω → RN , the point v and the domain Ω, which is an integer number
called the Brouwer Topological Degree of f in the point v, relative to Ω and denoted by
deg(f,Ω, v). This invariant can give some information about existence and uniqueness of
solutions of (2.0.0.1).

For a more general Banach space E, that is, when E is not necessarily a finite di-
mensional space, we have an extension of the Brouwer degree which is called the Leray-
Schauder degree.

Our approach is based mainly on the book of Kesavan [23], but with more thorough
proofs. Morever, based on the proof of Theorem 4.1 of [2], we prove a certain homotopic
invariance at the section of properties of the Leray-Schauder degree.

Both Brouwer and Leray-Schauder degree satisfy a common list of properties that
carry the power of the degree theory. We highlight the homotopy invariance property,
that is a powerful tool to solve equations. Also, in Leray-Schauder Degree section, we
enunciate a very important theorem, sometimes called the Leray-Schauder Formula, which
is a key result in applying degree theory to obtain bifurcation results.

In each of the two sections of the chapter, we illustrate the respective concept through
an example of application in its conclusion.

2.1 The Brouwer degree
The Brower topological degree will be defined, at first, for C1(U)-functions f : U → RN

and regular values v ∈ RN \ f(∂U) of f . This concept is extended for v not necessarily
regular values and for continuous functions by using the Sard’s Lemma and the density
of the space C2(U) in C(U), respectively.

After a list of properties satisfied by the degree is presented and proved. We define
the limit version of the Brouwer degree, called "index of an isolated solution" and finally,
by using this concept and the homotopy invariance property we present an application

1see Cho, Qing and Chen 2006 [10].

22
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where we show an existence result for a non linear system of equations.
Before presenting the mathematical definition of this object, let us recall some basic

notions about the Jacobian of a differentiable function.
Let f : U ⊂ RN → RN and v ∈ RN . If f ∈ C1(U,RN), then we define the Jacobian of

f at u ∈ U by Jf (u) = det(f ′(u)), where

f ′(u) =


∂f1
∂u1

. . . ∂f1
∂uN... . . . ...

∂fN
∂u1

. . . ∂fN
∂uN

 .
We say that v ∈ f(U) is a regular value of f , if Jf (u) 6= 0 for all u ∈ f−1(v) ∩ U . If
Jf (u) = 0, we call u a critical point of f . We denote the set of critical points of f in U
by Sf (or S).

Lemma 2.1.1. Let f ∈ C1(U,RN) and v 6∈ f(S) ∪ f(∂U). Then, f−1(v) is a finite set.

Proof. For each u ∈ f−1(v) we have Jf (u) 6= 0 and so f ′(u) : RN → RN is a isomorphism.
By Inverse Function Theorem, f is invertible in a neighborhood Vu of u. Now, since
f−1(v) is a closed subset of the compact U (since it is the inverse image of the closed set
{v}), it follows that f−1(v) is compact.

Suppose by contradiction that f−1(v) contains an amount of infinite points

{p1, p2, . . . , pn, . . .} ⊂ f−1(v).

By Bolzano Weierstrass’s Theorem we have pn → p0 up to a subsequence for some p0 ∈ U .
Now, the continuity of f implies f(p0) = v. Since v 6∈ f(∂U), it follows that p0 ∈ U and
since v is a regular value of f , we get Jf (p0) 6= 0. Then, the Inverse Function Theorem
guarantees the existence of a neighborhood Vp0 of p0 where f is invertible, but since
pm → p0, it follows that there exists pk ∈ Vp0 \{p0}. But pk ∈ f−1(v) and this contradicts
the injectivity of f in Vp0 . Then, f−1(v) is a finite set.

Definition 2.1.1. Let f ∈ C1(U,RN) and v 6∈ f(S) ∪ f(∂U). We define de Brouwer
degree of f , in U , relative to point v by

deg(f, U, v) =


0, if f−1(v) = ∅,∑

u∈f−1(v)

sgn(Jf (u)), if f−1(v) 6= ∅.

Note that the degree is well defined, since f−1(v) is finite, f ∈ C1(U ;RN) and Jf (u) 6= 0
for all u ∈ f−1(v).

Lemma 2.1.2. Under the the conditions of the Definition 2.1.1, we have

deg(f, U, v) = deg(f − v, U, 0).

Proof. It is sufficient to note that Jf = Jf−v and f−1(v) = (f − v)−1(0).

Observe that the above definition requires regularity C1(U) of the function and also
that v 6∈ f(S). We want to extend this definition to a broader sense. Consider the
following lemma.
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Lemma 2.1.3. Let v be as in Definition 2.1.1. Then, there exists ε0 > 0 such that

deg(f, U, v) =

∫
U

ϕε(f(u)− v)Jf (u)du, for all 0 < ε < ε0, (2.1.0.1)

where ϕε : RN → R is such that ϕε ∈ C∞0 (RN), suppϕε ⊂ Bε(0) and∫
RN
ϕε(u)du = 1.

Proof. Let us suppose initially that f−1(v) = ∅. In this case, take ε0 = ρ(v, f(U))/2.
By our assumption, it follows that ε0 > 0. Now, by the definition of ε0, we have that
‖f(u) − v‖≥ ε0 for all u ∈ U and combining this fact with suppϕε ⊂ Bε(0), we have
ϕε(f(u)− v) = 0 in U for each 0 < ε < ε0 and so the right hand side of (2.1.0.1) is zero.
Then, (2.1.0.1) holds.

Now, assume f−1(v) 6= ∅. Then, it follows from Lemma 2.1.1 that f−1(v) = {p1, . . . , pm}.
Moreover, for each 1 ≤ i ≤ m, we have Jf (pi) 6= 0, thereby the Inverse Function Theorem
ensures the existence of a neighborhood Vi of pi and Ui of v such that Vi ∩ Vj = ∅ for
all i 6= j and f |Vi : Vi → Ui is an homeomorphism. Moreover, since f ∈ C1 we obtain
sgnJf (u) = sgnJf (pi), for all u ∈ Vi. Let ε0 > 0 be such that Bε0(v) ⊂ ∩mi=1Ui and define
Wi = f−1(Bε0(v)) ∩ Vi. We claim that for each 0 < ε < ε0, it holds

‖f(u)− v‖≥ ε, in U \Wi, ∀ i = 1, 2, . . . ,m.

In fact, on the contrary, there would exist 0 < ε < ε0, k ∈ {1, 2, . . . ,m} and u ∈ U \Wk

such that
‖f(u)− v‖< ε.

So f(u) ∈ Bε0(v) ⊂ ∩mi=1Ui. Since f |Vi is a bijective function, it follows that u ∈ Vi for all
i ∈ {1, 2, . . .}, which contradicts Vi∩Vj = ∅ for all i 6= j. Thus, the claim is proved and by
the fact that suppϕε ⊂ Bε(0), it follows that for each 0 < ε < ε0 one has ϕε(f(u)−v) = 0
in U \Wi, for all i ∈ {1, 2, . . . ,m}. Consequently∫

U

ϕε(f(u)− v)Jf (u)du =
m∑
i=1

∫
Wi

ϕε(f(u)− v)|Jf (u)|sgn(Jf (u))du

=
m∑
i=1

sgn(Jf (pi))

∫
Wi

ϕε(f(u)− v)|Jf (u)|du

(∗)
=

∑
u∈f−1(v)

sgn(Jf (u))

∫
Bε(0)

ϕε(w)dw

= deg(f, U, v).

To obtain (∗), we use the change of variable f(u)− v = w and the following facts

• Jf = Jf−v and

• f(Wi)− v = Bε(0)

Based on this result, we get the next result.
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Lemma 2.1.4. Let f ∈ C2(U,RN), v 6∈ f(∂U), ρ0 = ρ(v, f(∂U)) > 0 and v1, v2 ∈
Bρ0(v). Assume vi 6∈ f(S) ∪ f(∂U), i = 1, 2, then

d(f, U, v1) = d(f, U, v2).

Proof. Let us suppose v 6= vi, i ∈ {1, 2}, and take 0 < δ < ρ0 − max{|v − v1|, |v − v2|}
(note that ρ0 −max{|v − v1|, |v − v2|} > 0, because v1, v2 ∈ Bρ0(v)). Like this, we have

δ < ρ0 − |v − vi|, ∀ i ∈ {1, 2}.

Since vi 6∈ f(S) ∪ f(∂U), it follows from Lemma (2.1.3) that there exists ε < δ such that

d(f, U, vi) =

∫
U

ϕε(f(u)− vi)Jf (u)du, i = 1, 2.

Let

w(u) = (v1 − v2)

∫ 1

0

ϕε((u− v1) + t(v1 − v2))dt

and note that

∂wi
∂ui

=

∫ 1

0

〈(v1 − v2), ei〉
∂

∂ui
ϕε((u− v1) + t(v1 − v2))dt

=

∫ 1

0

〈∇(ϕε((u− v1) + t(v1 − v2))), ei〉〈v1 − v2, ei〉dt

whence

div(w(u)) =
N∑
i=1

∫ 1

0

〈∇(ϕε((u− v1) + t(v1 − v2))), ei〉〈v1 − v2, ei〉dt

=

∫ 1

0

〈∇(ϕε((u− v1) + t(v1 − v2)), (v1 − v2)〉dt

=

∫ 1

0

d

dt
(ϕε(u− v1) + t(v1 − v2))dt

= ϕε(u− v2)− ϕε(u− v1)

Now, if u ∈ f(∂U), then

|u− (1− t)v1 − tv2| = |(u− v) + (1− t)(v − v1) + t(v − v2)|
> |u− v|−(1− t)|v − v1|−t|v − v2|
> ρ0 − (1− t)(ρ0 − δ)− t(ρ0 − δ)
= δ > ε,

that is, ϕε(u − v1 + t(v1 − v2)) = 0 for all t ∈ [0, 1]. Thus, suppw ∩ f(∂U) = ∅. Let us
define

vi(u) =


N∑
j=1

wj(f(u))Aij(u) u ∈ U,

0 RN \ U,

where
Aij(u) := ij − cofactor of Jf (u).



26 CHAPTER 2. DEGREE THEORY

So vj(u) = 0, for all u ∈ ∂U , and by the product rule we obtain

∂vi
∂ui

(u) =
N∑
j=1

N∑
k=1

∂wj
∂uk

(f(u))
∂fk
∂ui

Aij(u) +
N∑
j=1

wj(f(u))
∂

∂ui
Aij(u), ∀ u ∈ U,

which implies

div(v(u)) =
N∑
j=1

N∑
k=1

∂wj
∂uk

(f(u))
N∑
i=1

∂fk
∂ui

Aij(u) +
N∑
j=1

wj(f(u))
N∑
i=1

∂

∂ui
Aij(u), ∀ u ∈ U.

Now, we need the following auxiliar claim, whose proof can be found in Kesavan [23],
page 39.

Claim 2.1.1. Let f ∈ C2(U,RN) and Aij(u) as defined above. Then,

N∑
i=1

∂

∂ui
Aij(u) = 0, for 1 ≤ j ≤ N.

It follows from this claim, the cofactor definition and the Laplace formula for the
calculation of the determinant that

N∑
i=1

∂

∂ui
Aij(u) = 0 and

N∑
i=1

∂fk
∂ui

(u)Aij(u) = δjkJf (u).

So,

div(v(u)) =
N∑
k=1

∂wj
∂uk

(f(u))Jf (u) = div(w(f(u)))Jf (u).

Therefore, by using that v = 0 on ∂U and Divergence Theorem, we get

d(f, U, v1)− d(f, U, v2) =

∫
U

(ϕε(f(u)− v1)− ϕε(f(u)− v2))Jf (u)du

=

∫
U

div(w(f(u)))Jf (u)du

=

∫
U

div(v(u))du =

∫
∂U

v(u)η(u)dSu

= 0,

where η stands for the outward unit normal vector around ∂U . So the lemma is proved.

Finally, the last needed result to guarantee that we can define the degree at points
that are not necessarily regular is the following.

Lemma 2.1.5 (Sard’s Lemma). If f ∈ C1(U), then f(S) has null Lebesgue measure.

Proof. See Theorem 1.3.4 of [23].

Definition 2.1.2. Let f ∈ C2(U,RN), v 6∈ f(∂U) and ρ0 = ρ(v, f(∂U)). The degree of
f in U relative to point v is defined by

d(f, U, v) = d(f, U, v′),

where v′ is a regular point of f in Bρ0(v).
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Observe that, by Sard’s Lemma, there exists such v′ 6∈ f(S). Moreover, Lemma 2.1.4
ensures that the definition above does not depend on the choice of v′. Note that Definition
2.1.2 gives us a concept of degree where the condition v 6∈ f(S) is no longer needed.

Another important feature of the degree is its invariance in small neighbourhoods of
regular functions. Before showing it, consider the following lemma.

Lemma 2.1.6. Let f ∈ C2(U,RN) and v 6∈ f(∂U). Then, for g ∈ C2(U,RN), there
exists ε = ε(f, g, v) > 0 such that,

deg(f + tg, U, v) = deg(f, U, v), for any 0 < |t|< ε.

Proof. Let us divide the proof in three cases:

First Case: f−1(v) = ∅. By definition, we have deg(f, U, v) = 0 and
ρ0 = ρ(v, f(U)) > 0. Then,

|v − (f(u) + tg(u))|≥ |f(u)− v|−|t||g(u)|≥ ρ0 − |t|M, ∀ u ∈ U,

where M =max
U
|g(u)|. Taking ε = ρ0/(2M), we have that v 6∈ (f + tg)(U) for |t|< ε and

so
deg(f + tg, U, v) = 0 = deg(f, U, v).

Second Case: v 6∈ f(S) and f−1(v) 6= ∅. By Lemma 2.1.1, we have

f−1(v) = {p1, . . . , pm}, where Jf (pi) 6= 0, 1 ≤ i ≤ m.

Let ft = f + tg and h(t, u) = ft(u)− v, hence

• h(0, pi) = 0, 1 ≤ i ≤ m,

• Jh(0, · )(pi) = Jf (pi) 6= 0.

Thus, the Implicit Function Theorem ensures the existence of a neighborhood (−δi, δi) of
0 and Ui of pi in U such that the graph of the functions ϕi : (−δi, δi)→ Ui are formed just
by the solutions of h(t, u) = 0 in (−δi, δi)×Ui, with ϕi(0) = pi. Combining this fact with
the C2 regularity of ϕ, guaranteed by the implicit function theorem, we can find δ > 0
small enough such that ϕi : (−δ, δ) → Ui satisfies ∩mi=1Ui = ∅ and sgnJf (u) = sgnJf (pi)
in Ui, by reducing δ if it is necessary.

Denoting U = ∪mi=1Ui, we have f−1
t (v) ∩ U = {ϕ1(t), . . . , ϕm(t)}, for t ∈ (−δ, δ). By

the uniqueness of (t, ϕi(t)) as solution of h(t, u) = 0 in (−δ, δ)× Ui and the compactness
of U \ U , we conclude that ρ0 := ρ(v, f(U \ U)) > 0. Now, if |t|≤ ρ0/(2M), we have

|v − ft(u)| = |v − (f(u) + tg(u))|
≥ |f(u)− v|−|t||g(u)|
≥ ρ0 − |t|M
≥ ρ0

2
, ∀ u ∈ U \ U.

Moreover, if |t|< δ, then ϕi(t) ∈ U and so

f−1
t (v) = {ϕ1(t), . . . , ϕm(t)}, |t|< min

{
δ,

ρ0

2M

}
.
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Let i ∈ {1, 2, . . . ,m}. By the continuity of the functions u 7→ Jf (u) and t 7→ ϕi(t), we
have

sgnJf (pi) = sgnJf (ϕi(t)) for small t. (2.1.0.2)

Furthermore, since g ∈ C2(U) and U is a compact set, we have for each k ∈ {1, 2, . . . , N},∣∣∣∣ ∂ft∂uk
(ϕi(t))−

∂f

∂uk
(ϕi(t))

∣∣∣∣ =

∣∣∣∣∂(f + tg)

∂uk
(ϕi(t))−

∂f

∂uk
(u)

∣∣∣∣
= |t|

∣∣∣∣ ∂g∂uk (ϕi(t))

∣∣∣∣→ 0 as |t|→ 0.

This implies
sgnJf (ϕi(t)) = sgnJft(ϕi(t)), for small t. (2.1.0.3)

Finally, by combining (2.1.0.2) and (2.1.0.3), we get

sgnJf (ui) = sgnJft(ϕi(t)), for small t

and consequently deg(f + tg, U, v) =deg(f, U, v), for small t.

Third Case: v ∈ f(S).

Let ρ0 = ρ(v, f(∂U)). By Sard’s lemma, we can find v0 ∈ B ρ0
3

(v) \ f(S), so proced-
ing as in Second Case we obtain

deg(f + tg, U, v0) = deg(f, U, v0) = deg(f, U, v), ∀ |t|< ε0,

where the last equality comes from Definition 2.1.2. For u ∈ ∂U , we have

|f(u)− v0|≥ |f(u)− v|−|v − v0|≥ ρ0 −
ρ0

3
=

2ρ0

3
.

So, if u ∈ ∂U and |t|< ρ0/(3M), then

|f(u) + tg(u)− v0|≥ |f(u)− v0|−|t||g(u)|> 2ρ0

3
− ρ0

3
>
ρ0

3
,

that is, v0 6∈ (f + tg)(∂U). Thus, by Definition 2.1.2,

deg(f + tg, U, v) = deg(f + tg, U, v0), |t|< ρ0

3M

By taking ε = min
{
ρ0

3M
, ε0

}
, we conclude that

deg(f + tg, U, v) = deg(f, U, v), for |t|< ε.

This ends the proof.

Corollary 2.1.1. Let f ∈ C(U,RN), v 6∈ f(∂U), ρ0 = ρ(v, f(U)) and g ∈ C2(U,RN)
such that ‖g − f‖∞< ρ0

2
. Then, the function ϕ : [0, 1]→ Z defined by

ϕ(t) = deg(f + tg, U, v)

is locally constant.
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Proof. It is sufficient to prove that for each fixed t0 ∈ [0, 1], we have

deg(f + (t0 − t)g, U, v) = deg(f + t0g, U, v),

for |t|< ε, with ε > 0 small enough.
Observe that f + (t0 − t)g = [f + t0g]− tg and if v 6∈ f(∂U), then

|f(u) + t0g(u)− v| = |f(u) + t0f(u)− t0f(u) + t0g(u)− v|
= |(1 + t0)f(u)− v + t0(g(u)− f(u))|
≥ (1 + t0)|f(u)− v|−t0|g(u)− f(u)|
≥ (1 + t0)ρ0 − t0|g(u)− f(u)|
≥ (1 + t0)ρ0 − t0

ρ0

2

≥ ρ0 −
(
t0 −

t0
2

)
ρ0

= ρ0 −
1

2
t0ρ0 > 0,

whence v 6∈ (f + t0g)(∂U) and so we can apply Lemma 2.1.6 to f̃ − tg, where
f̃ := f + t0g.

Corollary 2.1.2. The Brouwer degree is constant for functions C2 sufficiently close to a
continuous function with respect to the norm of the supremum ‖ · ‖∞.

Proof. Let f ∈ C(U,RN), v 6∈ f(∂U) and ρ0 = ρ(v, f(U)) and g ∈ C2(U,RN) such that
‖g − f‖∞< ρ0

2
2 So, v 6∈ g(∂U), i = 1, 2. Furthermore, by defining g̃ = g − f , we have for

u ∈ ∂U and t ∈ [0, 1]

|v − (f(u) + tg̃(u))| = |(v − f(u))− t(g(u)− f(u))|
≥ |v − f(u)|−|t||g(u)− f(u)|
≥ |v − f(u)|−|g(u)− f(u)|
≥ ρ0 − ρ0/2 > 0,

that is, the function h(t, u) = f(u)+tg̃(u) is such that v 6∈ h(t, ∂U), for any t ∈ [0, 1] and so
ϕ(t) = deg(h(t, ·), U, v) is well defined. Thus, by Lemma 2.1.1 we know that ϕ(t) is locally
constant and so continuous. Hence, since [0, 1] is a connected set, and ϕ is continuous, we
conclude that ϕ([0, 1]) is a connected set. As ϕ([0, 1]) ⊂ Z, the connectedness of ϕ([0, 1])
implies that it is a singleton, that is, ϕ(t) is constant in [0, 1]. Therefore,

deg(f, U, v) = ϕ(0) = ϕ(1) = deg(g, U, v).

Motivated by Corollary 2.1.2, we can extend the concept of degree to continuous
functions as follows:

Definition 2.1.3. Let f ∈ C(U,RN), v 6∈ f(∂U) and ρ0 = ρ(v, f(∂U). We define the
Brouwer degree of f in U with respect to v by

deg(f, U, v) = deg(g, U, v),

for any g ∈ C2() satisfying ‖f − g‖∞< ρ0
2
.

2see Deimling [17], page 6 for a proof of existence of this function.
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2.1.1 Properties of the Brouwer degree

The Brouwer degree satisfies some properties that makes it very useful, specially in the
bifurcation theory. One of them deserves to be highlighted: the invariance under homo-
topy. This property acts as the principal argument in many proofs of the existence of
bifurcation points. In the following proposition, we list and prove the main properties of
the degree.

Proposition 2.1.1 (Properties of the Brouwer degree). Let f ∈ C(U ;RN), v 6∈ f(∂U),
H ∈ C(U × [0, 1],RN) be such that v 6∈ H(∂U × [0, 1]) and Z ⊂ U a compact set such that
v 6∈ f(Z) ∪ f(∂U). Then the following properties of the Brouwer degree hold.

P1) (Normalization): deg(I, U, v) =

{
1 if v ∈ U,
0 if v 6∈ U.

P2) (Continuity in f): There exists a neighborhood U of f in the topology (C(U,RN), ‖ · ‖∞),
such that

deg(f, U, v) = deg(g, U, v), ∀ g ∈ U.

P3) (Invariance under Homotopy): The number deg(H( · , t), U, v)) is independent of
t ∈ [0, 1].

P4) (Constant over connected components of RN \ f(∂U)): deg(f, U, ·) is constant in
each connected component of RN \ f(∂U).

P5) (Additivity): If U1 and U2 are bounded open subsets of U such that U1 ∩ U2 = ∅,
U = U12 and v 6∈ f(∂U1) ∪ f(∂U2), then

deg(f, U, v) = deg(f, U1, v) + deg(f, U2, v).

P6) (Existence of Solution): Assume deg(f, U, v) 6= 0. Then, there exists u ∈ U such
that f(u) = v.

P7) (Excision): The following equality holds.

deg(f, U, v) = deg(g, U \ Z, v).

P8) (Boundary Dependence): deg(g, U, v) = deg(f, U, v), whenever g|∂U= f |∂U with
g ∈ C(U,RN).

Proof. P1): It follows from the facts that I−1(v) = {v} and sgn(JI(v)) = sgn(1) = 1.

P2): Define U = {g ∈ C(U,RN); ‖f − g‖∞< ρ0/4}, where ρ0 = ρ(v, f(∂U)). Thus,
v 6∈ g(∂U) and the degree deg(g, U, v) is well defined. Let h ∈ C2(U,RN) be such that
‖f − h‖∞< ρ0

8
. So,

‖g − h‖∞≤ ‖g − f‖∞+‖f − h‖∞<
ρ0

4
+
ρ0

8
=

3ρ0

8
=

3ρ0

4

1

2
<

1

2
ρ(v, f(∂U))

Finally, by Definition 2.1.3,

deg(g, U, v) = def(h, U, v) = deg(f, U, v).
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P3): Let t0 ∈ [0, 1] and U be the (C(U,RN), ‖ · ‖∞)-neighborhood of H( · , t0) given
in the proof of P2). Since H ∈ C(U × [0, 1],RN), we obtain that H( · , t) ∈ U for t
sufficiently close to t0, so deg(H( · , t), U, v) is constant for t sufficiently close to t0. In
other words, deg(H( · , t), U, v) is locally constant and so continuous in [0, 1]. By arguing
as done in Corollary 2.1.2, we get the result.

P4): Since RN is locally connected3, it follows from Theorem 5.1.2, in Topology Sec-
tion in Appendix, that any connected component of the open set RN \ f(∂U) is an open
subset of RN , so by Theorem 5.1.1 it is path-connected. Thus, given a connected compo-
nent C of RN \ f(∂U) and v1, v2 ∈ C, there exists a curve γ : [0, 1] → C with γ(0) = v1

and γ(1) = v2. Now, by defining the homotopy H(u, t) = f(u)− γ(t) and using the fact
deg(f, U, v) = deg (f − v, U, 0), the result follows from P3).

P5): Let ρ0 = ρ(v, f(∂U)) and g ∈ C2(U,RN) such that ‖f − g‖∞< ρ0/2, so it fol-
lows from P2) that

deg(f, U, v) = deg(g, U, v) and deg(f, Ui, v) = deg(g, Ui, v).

By the definition of ρ0 and the fact Ui ⊂ U , for i = 1, 2, we have that
B = Bρ0/2(v) ⊂ (RN \ g(∂U)) ∩ (RN \ g(∂Ui)), for i = 1, 2. Moreover, B is a connected
set, consequently it is contained in one of each connected component of the sets
RN \ g(∂U),RN \ g(∂U1) and RN \ g(∂U2). By using Sard’s Lemma, we can take w ∈ B
a regular point near v and use P4) to conclude that

deg(g, U, v) = deg(g, U, w) and deg(g, Ui, v) = deg(g, Ui, w), i = 1, 2.

Therefore,

deg(f, U, v) = deg(g, U, v)

= deg(g, U, w)

=
∑

pi∈f−1(w)1

sgn(Jf (pi)) +
∑

zi∈f−1(w)∩U2

sgn(Jf (zi))

= deg(g, U1, w) + deg(g, U2, w)

= deg(f, U1, v) + deg(f, U2, v).

This ends the proof.

P6): We will prove the contrapositive by contradiction. Suppose that there is no u ∈ U
such that f(u) = v. Let ρ0 = ρ(v, f(U) and take g ∈ C2(U,RN), with ‖f − g‖∞< ρ0/2,
such that

deg(f, U, v) = deg(g, U, v).

By the definition of ρ0, it follows that v 6∈ g(U) and, in particular, v is a regular value
of g. Suppose by contradiction that deg(f, U, v) 6= 0, then deg(g, U, v) 6= 0. By Lemma
2.1.3, there exists ε0 > 0 such that

0 6= deg(g, U, v) =

∫
{u∈U ; v∈Bε(g(u))}

ϕε(g(u)− v)Jf (u)du, ∀ε < ε0.

3see Definition 5.1.1 and Example 5.1.1.
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So,
{u ∈ U ; v ∈ Bε(g(u))} 6= ∅,

in particular, there exists a sequence (pn) in U such that |f(pn)− v|< 1/n. The compact-
ness of U and the continuity of f provides the existence of p0 ∈ U that pn → p0, for some
p0 ∈ U , and g(p0) = limn→∞ g(pn) = v. Since v 6∈ g(∂U), it follows that p0 ∈ U and
g(p0) = v, which is a contradiction.

P7): Let ρ0 = ρ(v, f(U)), ρ1 = ρ(v, f(∂(U \ Z))) g ∈ C2(U,RN), with
‖f−g‖∞< δ < min{ρ0/2, ρ1/2}, for δ > 0 sufficiently small such that ρ′0 := ρ(g(Z), v) > 0,
C be a connected component of RN \ g(∂(U \Z)) ⊂ RN \ g(∂U) and v′ a regular value of
g near v such that v′ ∈ C and

deg(f, U, v) = deg(g, U, v′).

By Lemma 2.1.3, there exists ε0 > 0 such that

deg(g, U, v′) =

∫
U

ϕε(g(u)− v)Jf (u)du,

for each ε < ε0. In particular, if ε < ρ′0, then∫
U

ϕε(g(u)− v)Jf (u)du =

∫
U\Z

ϕε(g(u)− v)Jf (u)du

= deg(g, U \ Z, v′)

and so
deg(f, U, v) = deg(g, U, v′) = deg(g, U \ Z, v′).

Moreover, since v′ ∈ C, it follows by property P4) that

deg(g, U \ Z, v′) = deg(g, U \ Z, v)

whence

deg(f, U, v) = deg(g, U \ Z, v)

= deg(f, U \ Z, v),

as we wish.

P8): Let us define H(t, u) = tf(u) + (1− t)g(u), t ∈ [0, 1]. Observe that if u ∈ ∂U , then
H(t, u) = tf(u) + (1− t)g(u) = tf(u) + (1− t)f(u) = f(u) 6= v. Then, the result follows
from P3).

There are many interesting applications of the Brouwer degree, as Theorems of Borsuk
Ulam, Hedgehog, Open Mapping, Fixed Point and Surjective Mapping. But exploring
them is not the goal of this text. See Deimling [17] or Kesavan [23] for more details.
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2.1.2 The index of isolated solutions

For isolated solutions, there is the concept of index of an isolated solution, which is the
limit of the degree in a certain sense that will become clear soon.

Let f : U → RN be a continuous function and assume that u is an isolated solution
of f(u) = v, that is, there exists r > 0 such that u is the unique solution of f(u) = v in
Br(u) ⊂ U . Then by applying the excision property for the compact set (Br(u) \Bε(u)),
one gets

deg(f,Br(u), v) = deg(f,Br(u) \ (Br(u) \Bε(u)), v)

= deg(f,Bε(u), v), ∀ 0 < ε < r. (2.1.2.1)

Thus, we define the index of an isolated solution of f in u relative to the point v, by

i(f, u, v) =lim
ε→0

deg(f,Bε(u), v).

Remark 2.1.1. The equality (2.1.2.1) implies that

lim
ε→0

deg(f,Bε(u), v) = deg(f,Br(u), v),

and so, by the excision property we have

deg(f,Br(u), v) = deg(f,Br(u) \ (Br(u) \Bε(u)), v)

= deg(f,Bε(u), v), ∀ 0 < ε < r.

Moreover, by the excision property we have

deg(f, U, v) = deg(f, U \ ∂Br(u), v),

for each r < ε. On the other hand, by the additivity property we have

deg(f, U \ ∂Br(u), v) = deg(f, U \Bε(u), v) +

+ deg
(
f, U \ U \Bε(u), v

)
= deg(f, U \Bε(u), v) +

+ deg(f,Bε(u), v)

= deg(f, U \Bε(u), v) +

+ i(f, u, v)

and so
deg(f, U, v) = deg(f, U \Bε(u), v) + i(f, u, v), (2.1.2.2)

for each 0 < ε < r.

2.1.3 Application

In this section, we present a application of the construction of Brouwer degree to solve
equations of the type f(u) = v, where f : U → RN is a continuous function and U is a
bounded open subset of RN , for the case N = 2.
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Example 3.5.1 of [23]. Let ϕ : R → R be a C1-function such that |ϕ(x)|≤ 1 and
ϕ′(x) > 0 for all x ∈ R. Assume ϕ(1) = 0. Then, the system

x3 − 3xy2 + ϕ(x) = 1
−y3 + 3x2y = 0

}
(2.1.3.1)

has, at least, three solutions in B2(0) = {(x, y) ∈ R2; x2 + y2 < 4}. We will use the
invariance under homotopy property to prove it. Define

H : B2(0)× [0, 1] → R2

(x, y, t) 7→ (x3 − 3xy2 + tϕ(x),−y3 + 3x2y).

First let us verify that H is an admissible homotopy, that is, H(x, y, t) 6= (1, 0) for all
(x, y, t) ∈ ∂B2(0) × [0, 1]. Indeed, let (x, y, t) ∈ B2(0) × [0, 1] be such that H(x, y, t) =
(1, 0). The second equation in (2.1.3.1) gives

y(−y2 + 3x2) = 0⇒ y = 0 or y2 = 3x2.

Note that ∂B2(0) = {(x, y) ∈ R2;x2 + y2 = 4}, so if

(x, y) ∈ ∂B2(0) and y = 0 ⇒ x2 + 02 = 4

⇒ x ∈ {−2, 2}
⇒ (x, y) ∈ {(−2, 0), (2, 0)}.

If

(x, y) ∈ ∂B2(0) and y2 = 3x2 ⇒ x2 + 3x2 = 4

⇒ x ∈ {−1, 1}
⇒ 1 + y2 = 4

⇒ y ∈ {−
√

3,
√

3}

⇒ (x, y) ∈
{(

1,
√

3
)
,
(

1,−
√

3
)
,
(
−1,
√

3
)
,
(
−1,−

√
3
)}

.

Moreover, the fact H(x, y, t) = (1, 0) implies in

tϕ(x) = 1− x3 + 3xy2,

whence
1 ≥ |tϕ(x)|= |1− x3 + 3xy2|. (2.1.3.2)

On the other hand,

|1− x3 + 3xy2|
∣∣∣∣
(1,−

√
3)

= |1− x3 + 3xy2|
∣∣∣∣
(1,
√

3)
= |1− 1 + 3.3|= 9 > 1

|1− x3 + 3xy2|
∣∣∣∣
(−1,−

√
3)

= |1− x3 + 3xy2|
∣∣∣∣
(−1,

√
3)

= |1 + 1 + 3.3|= 11 > 1

and also

|1− x3 + 3xy2|
∣∣∣∣
(−2,0)

= |1 + 8 + 0|= 9 > 1

|1− x3 + 3xy2|
∣∣∣∣
(2,0)

= |1− 8 + 0|= 7 > 1.
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Hence, by combining the above calculations with (2.1.3.2), we conclude that there are no
solutions of H(x, y, t) = (1, 0) in ∂B2(0) × [0, 1]. So by the invariance under homotopy
property, we obtain that deg(H(·, t), B2(0), (1, 0)) is constant in [0, 1].

Consider the system H(x, y, 0) = (1, 0), that is{
x3 − 3xy2 = 1,

−y3 + 3x2y = 0.

(2.1.3.3)
(2.1.3.4)

Let us find the solutions of it. From (2.1.3.4) we can note that there are only possibilities:

y = 0,

or y2 = 3x2.

In the first case, the equation (2.1.3.3) implies that x = 1. Thus, the unique solution in
this case is

(x, y) = (1, 0).

In the second case, the equation (2.1.3.3) implies in

x3 − 3x(3x2) = 1⇒ x3 − 9x3 = 1⇒ x = −1

2
,

So, in the second case the solutions of (2.1.3.3) and (2.1.3.4) are the pairs (x, y) ∈ B2(0)
satisfying

y2 = 3x2 and x = −1

2
, (2.1.3.5)

that is (
−1

2
,

√
3

2

)
and

(
−1

2
,−
√

3

2

)
The jacobian of the function f0 := H( · , 0) is

Jf0(x, y) =

∣∣∣∣ 3x2 − 3y2 −6xy
6xy 3x2 − 3y2

∣∣∣∣ (2.1.3.6)

Jf0(x, y) = (3x2 − 3y2)(3x2 − 3y2) + (6xy)(6xy)

= (3x2 − 3y2)(3x2 − 3y2) + 36(xy)2

= [(3x2)2 − 18(xy)2 + (3y2)2] + 36(xy)2

= [(3x2)2 + 18(xy)2 + (3y2)2]

= [(3x2)2 + 2(3x2)(3y2) + (3y2)2]

= (3x2 + 3y2)2.

Since (0, 0) 6∈ f−1
0 ((1, 0)), whence it follows that (1, 0) is a regular value of f0. Moreover

Jf0(x, y) > 0 for all solution (x, y), whence deg((H( · , 0), B2(0), (1, 0)) = 3. Consequently,
by defining f1 := H( · , 1) we have

deg(f1, B2(0), (1, 0)) = 3. (2.1.3.7)

Now, being ϕ(1) = 0 it follows that

f1(1, 0) = (x3 − 3xy2 + 1ϕ(x),−y3 + 3x2y)

∣∣∣∣
(1,0)

= (13 − 3.1.02 + ϕ(1),−03 + 3.12.0) = (1, 0).
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Moreover,

Jf1(x, y) =

∣∣∣∣ 3x2 − 3y2 + ϕ′(x) −6xy
6xy 3x2 − 3y2

∣∣∣∣ ,
and

Jf1(1, 0) = (3.12 − 3.02 + ϕ′(1))(3.12 − 3.02) + (6.1.0)(6.1.0)

= (3 + ϕ′(1))3 > 0. (2.1.3.8)

By the Inverse Function Theorem, it follows that (1, 0) is an isolated solution of f1(x, y) =
(1, 0). Then (2.1.3.8) gives

i(f1, (1, 0), (1, 0)) = 1. (2.1.3.9)

In light of (2.1.2.2), the relations (2.1.3.7) and (2.1.3.9) implies that there must be another
solution (x, y) 6= (1, 0) of f1(x, y) = (1, 0) in B2(0). We assert that y 6= 0. Indeed, suppose
that y = 0. Then f1(x, 0) = (1, 0) gives

(x3 − 3xy2 + 1ϕ(x))

∣∣∣∣
(x,0)

= 1 ⇒ x3 − 3x.02 + 1ϕ(x) = 1

⇒ x3 + ϕ(x) = 1,

but the function x 7→ x3 + ϕ(x) is increasing and x = 1 is a solution of x3 + ϕ(x) = 1.
Consequently, x = 1 and so (x, y) = (1, 0), which is a contradiction. Then, we conclude
that y 6= 0. Observe that (x,−y) is also a solution of f1(x, y) = (1, 0). Indeed, the fact
f1(x, y) = (1, 0) implies in

(−y3 + 3x2y)

∣∣∣∣
(x,y)

= 0 ⇒ −y3 + 3x2y = 0

y 6=0⇒ −y2 + 3x2 = 0

⇒ −(−y)2 + 3x2 = 0

⇒ −y(−(−y)2 + 3x2) = 0

⇒ −(−y)3 + 3x2(−y) = 0 (2.1.3.10)

and

(x3 − 3xy2 + 1ϕ(x))

∣∣∣∣
(x,y)

= 0 ⇒ x3 − 3xy2 + 1ϕ(x) = 0

⇒ x3 − 3x(−y)2 + 1ϕ(x) = 0. (2.1.3.11)

So, (2.1.3.10) and (2.1.3.11) means that (x,−y) is a solution of f1(x, y) = (1, 0) as well.
Therefore, there exist at least three solutions of (2.1.3.1).

Observe that the Brouwer degree is defined for functions f : U → RN where U is a
domain that lives in a finite dimensional euclidean space RN . Although, as we mentioned
in the previous section, we want to work with degree to operators F : F → E that acts
in a certain subspace F (a space of a infinite dimensional space). First, we state that if
E is an infinite dimensional real Banach space and U a bounded open subset of E, then
it is not possible to define a topological degree, that is, a function (f, U, v) 7→ d(f, U, v)
P1) (Normalization), P3) (Invariance under homotopy) and P5) (Additivity) for the class
C(U ;E) of all continuous maps f : U → E where U is a bounded open subset of E. The
argument is based on the following two results.
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Theorem 2.1.1. There is a unique function d that associates for each (f, U, v), where
f : U → RN is a continuous function and v ∈ RN \ f(∂U), an integer number d(f, U, v),
such that d satisfies P1) (Normalization), P3) (Invariance under homotopy) and P5)
(Additivity).

Proof. See §1 of Chapter 1 of Deimling [17].

And also

Theorem 2.1.2 (Brouwer’s Fixed Point Theorem). Let D ⊂ RN be a nonempty compact
convex set and f : D → D a continuous function. Then f has a fixed point.

Proof. See Theorem 3.2 of Deimling [17].

Remark 2.1.2. The proof of Theorem 2.1.2, as we can see in [17], follows just by using the
properties P1) (Normalization), P3) (Invariance under homotopy) and P5) (Additivity).

As a consequence of the above remark, it follows that if it was possible to define
a topological degree for the class C(U ;E), then Theorem 2.1.2 would holds for every
f ∈ C(U ;E), but in the introduction of Chapter 2 of [17], the following counter example
is given. Let E = c0 be the Banach space of real sequences u = (un) that converges to
zero, with norm ‖u‖= supn|un| and f : E → E be a function defined by{

(f(u))1 = (1 + ‖u‖)/2
(f(u))n+1 = un n ≥ 1.

Observe that

‖f(u)− f(v)‖ = sup
n

(|(1 + ‖u‖)/2− (1 + ‖v‖)/2|, u1 − v1, u2 − v2, . . .)

≤ sup
n

(|‖u− v‖/2, |u1 − v1|, |u2 − v2|, . . .)

= ‖u− v‖

and so f is a continuous function. Moreover, f maps the compact convex set B1(0) into
itself. Although f has no fixed point since u = f(u) implies

u1 = (f(u))1 = (1 + ‖u‖)/2⇒
⇒ u2 = (f(u))2 = u1 ⇒
⇒ · · · ⇒

⇒ un = u1 = (1 + ‖u‖)/2 ∀ n

and so u 6∈ c0, which is a contradiction. We conclude then there it is not possible to define
such a function for the class C(U ;E). Although it is possible to extend the concept of
Brouwer degree for a certain subclass of C(U ;E), as we will see in the next chapter.

2.2 The Leray-Schauder degree
In 1934, Leray and Schauder [28] extended the concept of Brouwer degree to operators
acting in bounded open subsets of Banach spaces with infinite dimension. The theory
has been widely studied over the centuries by several authors, among which we quote
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Deimling [17] (1985), Kesavan [23] (2004), et al.
The idea is to take advantage of Brouwer degree definition to construct one that covers

a type of operator called compact perturbation of identity, that is, an operator Φ : U → E
defined by Φ := I−K, where I is the identity, K is a compact operator and U is an open
bounded subset of a real Banach space E.

The first step is to consider operators of the type I − T , where T : U → E is an
operator such that Im(T ) ⊂ F , with F being a finite dimensional subspace, that is, T has
finite rank, and define the Leray-Schauder degree of I − T as the Brower degree of I − T
restricted to U ∩ F . After this, we show that any compact perturbation Φ = I −K can
be approximated by an operator I − T , where T is an operator with finite rank, then we
define the Leray-Schauder degree of Φ as the degree of I − T .

Moreover, we show that compact perturbations of the identity are proper functions
and this feature allows us to establish the same properties of the Brouwer degree for
the Leray-Schauder degree. We emphasize Theorem 2.2.1, that is an invariance under
homotopy property that differs from the P3) when it consider a variation of the domain
U , besides the variation of the homotopy parameter.

As well as the Brouwer degree, the Leray-Schauder degree, being an extension of it,
also admits a limit version called "index of an isolated solution" which satisfies the Leray-
Schauder Formula. This is a very useful tool in applying degree theory for obtain existence
of bifurcation points.

Finally, we exemplify the use of the Leray-Schauder degree by showing existence of
solutions for a sublinear problem of the type{

−∆u = f(x, u) in Ω,

u = 0 on ∂Ω.

2.2.1 The Leray-Schauder Degree

In order to make reading more fluid, let us define some objects that appears frequently
in this section.

Definition 2.2.1. Consider T : U → E an operator in C(U ;E) and denote by ϕ : U → E
the operator ϕ := I − T . We say that ϕ is a bounded T -perturbation of the identity
when T has a finite rank (i.e., there exists a finite dimensional subspace F of E such that
T (U) ⊂ F ).

Remark 2.2.1. For each finite dimensional subspace F of E considered, in this section,
we are assuming that U ∩ F 6= ∅.
Definition 2.2.2. Let K ∈ Q(U ;E). Then the operator Φ : U → E defined as
Φ(u) = u−K(u) is called a compact K-perturbation of the identity.

Let ϕ : U → E be a bounded T -perturbation of the identity and β = {v1, . . . , vN} be
a basis of F . For each u ∈ U ∩ F , we will denote by uβ, the coordinates of u relative to
the basis β. Let us denote Uβ := {uβ; u ∈ U ∩ F}.

From Linear Algebra, we know that the application R : F → RN defined by u 7→ uβ
is a linear transformation between finite dimensional spaces (and so continuous) as well
as its inverse R−1 : RN → F . Consequently, Uβ is a bounded open subset of RN . Observe
that Uβ is a subset of RN and for each uβ ∈ Uβ the vector

R−1(uβ) =
N∑
i=1

〈uβ, ei〉vi
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belongs to F ∩ U and (ϕ (R−1(uβ)))β lies in RN . Thus, it makes sense to consider the
operator ϕβ : Uβ → RN defined by ϕβ(uβ) = (ϕ(R−1(uβ)))β.

Let us formalize the definition of the operator ϕβ.

Definition 2.2.3. Let F be a subspace of E with dimF = N and β be a basis of F . For
each continuous function ϕ : U → E such that ϕ(U ∩ F ) ⊂ F , we define the β version
of ϕ, denoted by ϕβ, as the function

ϕβ : Uβ → RN

uβ 7→ (ϕ(R−1(uβ)))β .

Since Uβ is a bounded open subset of RN , then the Brouwer degree deg(ϕβ, Uβ, vβ) is
well defined for each vβ 6∈ ϕβ(∂(Uβ)). Our aim is to use this number to define the degree
of ϕ restricted to F . Therefore, we need to relate the points v ∈ F satisfying v 6∈ ϕ(∂U)
to those vβ ∈ Uβ satisfying vβ 6∈ ϕβ(∂(Uβ)). For this, consider the following lemma:

Lemma 2.2.1. Let F be a subspace of E with dimF = N and β a basis of F . Assume
that ϕ : U → E is a continuous function such that ϕ(U ∩ F ) ⊂ F . Then, the β version
ϕβ : Uβ → RN of ϕ is a continuous function. Moreover, for each v ∈ F , it holds

v 6∈ ϕ(∂U) if, and only if, vβ 6∈ ϕβ(∂(Uβ)).

Proof. First, suppose by contradiction that v 6∈ ϕ(∂U), but vβ ∈ ϕβ(∂(Uβ)). Thus, there
exists uβ ∈ ∂(Uβ) such that ϕβ(uβ) = vβ, that is,

(ϕ(u))β = (ϕ(R−1(uβ)))β = ϕβ (uβ) = vβ,

which implies in
ϕ(u) = v, (2.2.1.1)

after applying R−1 in the equality. Moreover, since uβ ∈ ∂(Uβ), then there exist sequences(
unβ
)
n
in Uβ and (wn)n in (Uβ)c converging to uβ. Observing that{

unβ ∈ Uβ ⇒ R−1(unβ) ∈ U and
wn 6∈ (Uβ)c ⇒ R−1(wn) ∈ U c,

we have that (R−1(unβ))n and (R−1(wn))n are sequences in U and U c, respectively. Now,
since R−1 is a continuous function, we get that both sequences converge to R−1uβ = u,
whence

u ∈ ∂U. (2.2.1.2)

Combining (2.2.1.1) and (2.2.1.2) we conclude that v ∈ ϕ(∂U), which is a contradiction.
Therefore, if v 6∈ ϕ(∂U), then v 6∈ ϕβ(∂(Uβ)).

Conversely, suppose by contradiction that vβ 6∈ ϕβ(∂(Uβ)), but v ∈ ϕ(∂U). So, there
exists u ∈ ∂U such that ϕ(u) = v. Since u ∈ ∂U we can find sequences (un)n and (wn)n
in U and U c, respectively, converging to u. Note that{

un ∈ U ⇒ R(un) ∈ Uβ and
wn ∈ U c ⇒ R(wn) ∈ (Uβ)c.
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By continuity of R, we deduce that{
R(un)→ R(u) = uβ and
R(wn)→ R(u) = uβ,

that is uβ ∈ ∂Uβ. But,

ϕ(u) = v ⇒ ϕβ(uβ) = R(ϕ(R−1(uβ))) = R(v) = vβ

which contradicts vβ 6∈ ϕβ(∂(Uβ)) and the lemma is proved.

Now, we are able to propose the following definition:

Definition 2.2.4. Let T ∈ C(U ;E) be an operator with finite rank and let F be a finite
dimensional subspace of E with dimF = N such that T (U) ⊂ F . Let ϕ : U → E be the
bounded T -perturbation of the identity, β a basis for F and the β version ϕβ : Uβ → RN

of ϕ. For each v ∈ ϕ(∂U)c ∩F , we define the Leray-Schauder degree of ϕ in U ∩F at the
point v ∈ F , relative to the basis β, as

deg(ϕ|U∩F , U ∩ F, v) := deg(ϕβ, Uβ, vβ). (2.2.1.3)

We state that the number deg(ϕβ, Uβ, vβ) does not depends on the choice of the basis
β.

Proposition 2.2.1. Let T ∈ C(U ;E) be an operator with finite rank, F a finite dimen-
sional subspace of E with dimF = N satisfying T (U) ⊂ F and ϕ : U → E be the bounded
T -perturbation of the identity. If v ∈ (ϕ(∂U))c ∩ F and β1, β2 are two different basis of
F , then vβi 6∈ ϕβi(∂(Uβi)) for each i ∈ {1, 2} and

deg (ϕβ1 , Uβ1 , vβ1) = deg (ϕβ2 , Uβ2 , vβ2) , (2.2.1.4)

where v 6∈ f(∂U) and for each i ∈ {1, 2}, ϕβi : Uβi → RN is the βi version of ϕ.

Proof. The statement about vβi follows directly from Lemma 2.2.1. Let M be the change
of basis matrix from basis β1 to β2. Observe that

ϕβ2(uβ2) = M(ϕβ1(M
−1uβ2)) (2.2.1.5)

and so by Chain rule,

ϕ′β2(uβ2) = Mϕ′β1(M
−1uβ2)M

−1 = ϕ′β1(uβ1)

by whence
Jϕβ2 (uβ2) = Jϕβ1 (uβ1)

and consequently
deg (ϕβ1 , Uβ1 , vβ1) = deg (ϕβ2 , Uβ2 , vβ2) .

As a consequence of this result we can improve Definition 2.2.4 as follows:
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Definition 2.2.5. Let T ∈ C(U ;E) be an operator such that there exists a finite dimen-
sional subspace F of E, with dimF = N , satisfying T (U) ⊂ F . Let ϕ : U → E be the
bounded T -perturbation of the identity. For each v ∈ ϕ(∂U)c ∩ F , we define the Brouwer
topological degree of ϕ in U ∩ F , at the point v ∈ F , as

deg(ϕ|U∩F , U ∩ F, v) := deg(ϕβ, Uβ, vβ),

where β is any basis of F and ϕβ : Uβ → RN is the β version of ϕ.

Furthermore, the definition needs to be independent on the choice of the subspace F .
This is what we will proof after the following lemma:

Lemma 2.2.2. Let T ∈ C(U,E) be an operator such that there exists subspaces Fi of E
with dimension dimFi = Ni such that T (U) ⊂ F1 ⊂ F2, for each i ∈ {1, 2}. Let ϕ : U → E
be the bounded T -perturbation of the identity. If N1 < N2 and v ∈ (ϕ(∂U))c ∩ (F1 ∩ F2),
then

deg(ϕU∩F1
, U ∩ F1, v) = deg(ϕU∩F2

, U ∩ F2, v). (2.2.1.6)

Proof. Let{
β1 = {v1, v2, . . . , vN1} be a basis for F1 and
β2 = {v1, v2, . . . , vN1 , vN1+1, . . . , vN1+N2} a basis for F2.

(2.2.1.7)

So we have
uβ2 = (uβ1 , w), w ∈ RN2−N1 , (2.2.1.8)

for all u ∈ F2.
For each i ∈ {1, 2}, consider the βi version ϕβi : Uβi → RNi of ϕ and uβ2 ∈ Uβ2 . Since,

T (U) ⊂ F1, we have T (u) ∈ F1 for each u ∈ U and hence the description (2.2.1.8) implies
that

(T (u))β2 = ((T (u))β1 ,0) (2.2.1.9)

where 0 := (0, 0, . . . , 0) ∈ RN2−N1 .
Then,

ϕβ2(uβ2) = (ϕ(R−1
2 (uβ2)))β2

= (ϕ(u))β2
= (u− T (u))β2
= uβ2 − (T (u))β2

(2.2.1.9)
= uβ2 − ((T (u))β1 ,0)

(2.2.1.8)
= (uβ1 , w)− ((T (u))β1 ,0)

= (uβ1 − (T (u))β1 , w − 0)

= ((u− T (u))β1 , w)

= (ϕβ1(uβ1), w).

It follows from the first and the last expressions that

ϕβ2(uβ2) = (ϕβ1(uβ1), w) (2.2.1.10)
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and by derivating (2.2.1.10) with respect to uβ2 , we have

ϕ′β2(uβ2) = ϕ′β2((uβ1 , w)) =

[
ϕ′β1(uβ1) 0

0 IN2−N1 ,

]
so that

Jϕβ2 (uβ2) = Jϕβ2 ((uβ1 , w)) = Jϕβ1 (uβ1)JIN2−N1
(w) = Jϕβ1 (uβ1),

that is,
Jϕβ2 (uβ2) = Jϕβ1 (uβ1). (2.2.1.11)

Consequently, by Definition 2.2.5, we conclude that (2.2.1.6) holds.

Naturally, Lemma (2.2.2) induces the following proposition.

Proposition 2.2.2. Let F and G be two finite dimensional subspaces of a real Banach
space E, T ∈ C(U ;E) an operator such that T (U) is contained in both F and G. Let ϕ :
U → E be the bounded T -perturbation of the identity. Then, for each v ∈ ϕ(∂U)c∩F ∩G,

deg(ϕ|U∩F , U ∩ F, v) = deg(ϕ|U∩G, U ∩G, v). (2.2.1.12)

Proof. We know that F ∩ G is a subspace of F . Now, using the last result for F2 := F
and F1 := F ∩G, we get for each v 6∈ ϕ(∂U) that

deg(ϕ|U∩F , U ∩ F, v) = deg(ϕ|U∩F∩G, U ∩ F ∩G, v). (2.2.1.13)

Again, by using the last result with F2 := G and F1 := F ∩G, we obtain

deg(ϕ|U∩F∩G, U ∩ F ∩G, v) = deg(ϕ|U∩G, U ∩G, v). (2.2.1.14)

So (2.2.1.13) and (2.2.1.14) imply (2.2.1.12).

In other words, Definition 2.2.5 does not depend on the choice of subspace F containing
T (U) and v. This leads us to the following definition of degree for bounded perturbations
of identity.

Definition 2.2.6. Let T ∈ C(U ;E) be an operator and v ∈ E such that the family

F := {F is a finite dimensional subspace of E containing T (U) and v}

is not empty and the bounded T -perturbation of the identity ϕ : U → E is such that
v 6∈ ϕ(∂U). We define the Leray-Schauder degree of ϕ, in U , at the point v by

deg(ϕ,U, v) = deg(ϕU∩F , U ∩ F, v)

where F is any element of F containing v.

Now, our aim is to show that compact perturbations of identity can be approximated
by this bounded perturbations of identity. In this sense, the following proposition will be
useful.

Proposition 2.2.3 (Approximation by continuous functions). Let Z be a compact subset
of E. Given ε > 0, there exists a subspace Fε ⊂ E, with dimFε < ∞, and a map
gε ∈ C(Z, Fε) such that

||u− gε(u)||< ε, ∀ u ∈ Z.
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Proof. Given ε > 0, it follows from the compactness of Z that there exists {u1, u2, . . . , un} ⊂
K such that

Z ⊂
n⋃
i=1

Bε(ui).

Let Fε := 〈u1, . . . , un〉 and functions fi : Z → R, i = 1, . . . , n, defined by

fi(u) =

{
ε− ||u− ui||, u ∈ Bε(ui)

0, otherwise.

Then fi(u) ≥ 0, for all u ∈ E, and
∑n

i=1 fi(u) > 0, for all u ∈ Z.
By defining gε : Z → Fε as

gε(u) =

∑n
i=1 fi(u)ui∑n
i=1 fi(u)

,

we have that gε is a continuous function such that

‖u− gε(u)‖ =

∥∥∥∥∑n
i=1 fi(u)u−

∑n
i=1 fi(u)ui∑n

i=1 fi(u)

∥∥∥∥
≤ 1∑n

i=1 fi(u)

n∑
i=1

fi(u)‖u− ui‖

<
1∑n

i=1 fi(u)

n∑
i=1

fi(u)ε = ε, ∀u ∈ Z.

This ends the proof.

Compact perturbations of the identity satisfy a certain property that classify them as
proper functions. This property is useful in proving the same properties of the Brouwer
degree, for the Leray-Schauder degree.

Definition 2.2.7 (Proper Functions). Let U and V be normed vector spaces and let
f : U → V be a function. We say that f is a proper function when f−1(Z) is a compact
subset of U whenever Z is a compact subset of V .

See Chapter 10 of Bourbaki [9] for a more general definition that holds for topological
spaces. For our interests, Definition 2.2.7 is sufficient.

Proposition 2.2.4. Assume K : U ⊂ E → E is a compact operator. Then, the compact
K-perturbation Φ : U → E is a closed (that is, maps each closed subset of U to a closed
subset of E) and proper function.

Proof. Let F be a closed subset of U and (un) a sequence in F such that Φ(un)→ v ∈ E.
It follows from the compactness of the operator K that there exists a subsequence (unk)
of (un) such that K(unk) → w ∈ E and so unk → v + w ∈ F , because F is a closed set.
By the continuity of Φ,

Φ(unk)→ Φ(v + w) in E

and so the uniqueness of the limit implies Φ(v + w) = v. Thus, v ∈ Φ(F ) as we wanted.
For the second part, let (un) ⊂ Φ−1(Z) where Z is a compact subset of E. Khen,

there exists a sequence (vn) in Z satisfying vn = un − Kun. By the compactness of Z,
vn → v ∈ Z up to a subsequence. Since U is a bounded set, it follows that Kun → w ∈ Z,
up to a subsequence. Hence, un → v + w ∈ Z (up to a subsequence), as we wanted.
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Lemma 2.2.3. Let K ∈ Q(U,E) be an operator. Given ε > 0, there exists a finite rank
continuous operator Kε : U → E such that ‖K(u)−Kε(u)‖< ε, for all u ∈ U .

Proof. By taking Z = K(U) in Proposition 2.2.3, we have that there exist a finite dimen-
sional Fε ⊂ E and a continuous function gε : Z → Fε satisfying
‖u− gε(u)‖< ε, for all u ∈ Z. Defining Kε(u) = gε(K(u)) for all u ∈ U , we observe that
Kε(U) = gε(K(U)) ⊂ gε(Z) ⊂ Fε and

‖K(u)−Kε(u)‖= ‖K(u)− gε(K(u))‖< ε ∀ u ∈ U,

as we wanted.

In order to establish a definition of degree for compact perturbations of identity, we
will use Lemma 2.2.3 for a convenient ε > 0.

Remark 2.2.2. Let Φ be the compact K-perturbation of the identity and ϕε the bounded
Kε-perturbation of the identity. By Proposition 2.2.4, Φ(∂U) is a closed subset of E,
therefore r := ρ(v,Φ(∂U)) > 0. Take ε := r/2 in Lemma 2.2.3. We assert that v 6∈
ϕε(∂U). Indeed, if u ∈ ∂U , then

‖v − ϕε(u)‖ = ‖(v − Φ(u))− (ϕε(u)− Φ(u))‖
≥ ‖v − Φ(u)‖−‖Φ(u)− ϕε(u)‖
≥ r − ‖(u−Ku)− (u−Kε(u))‖
= r − ‖Kε(u)−K(u)‖
≥ r − r

2
=
r

2
.

By taking the infimum in u ∈ ∂U , in both sides of the previous inequality, we get
ρ(v, ϕε(∂U)) > 0. Thus, it is well defined the degree

deg(ϕε, U, v) = deg
(
ϕε|U∩Fε , U ∩ Fε, v

)
,

for v 6∈ Φ(∂U) and ε := r/2.

Before setting the definition of Leray-Schauder degree for compact perturbations of
the identity, we must show the independence on the choice of the approximation ϕε above.

Lemma 2.2.4. Let K be as is Lemma 2.2.3 and Φ : U → E the compact K-perturbation
of the identity. Consider v 6∈ Φ(∂U) and Kεi : U → E continuous operators such that
Kεi(U) ⊂ Fi, dimFi <∞, v ∈ F1 ∩ F2 and

‖K −Kεi(u)‖≤ r

2
, for each i ∈ {1, 2} (2.2.1.15)

where r = ρ(v,Φ(∂U)), whose the existence is guaranteed by Lemma 2.2.3. Then

deg(ϕε1|U∩F1
, U ∩ F1, v) = deg(ψε2|U∩F2

, U ∩ F2, v), (2.2.1.16)

where ϕε1 : U → E and ψε2 : U → E are the bounded Kε1 and Kε2-perturbation of the
identity, respectively.
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Proof. Let F be a finite dimensional subspace of E containing F1 and F2. Let us denote
by N :=dimF . By Proposition 2.2.2,{

deg(ϕε1|U∩F1
, U ∩ F2, v) = deg(ϕε1|U∩F , U ∩ F, v) and

deg(ψε2|U∩F2
, U ∩ F1, v) = deg(ψε2|U∩F , U ∩ F, v).

(2.2.1.17)

Now, let β be a basis for F and consider ϕβ : Uβ → RN and ψβ : Uβ → RN the β versions
of ϕε1 and ψε2 , respectively. Then, by Definition 2.2.5 we have{

deg(ϕε1|U∩F , U ∩ F, v) = deg(ϕβ, Uβ, vβ), and
deg(ψε2|U∩F , U ∩ F, v) = deg(ψβ, Uβ, vβ).

(2.2.1.18)

Let us define the homotopies

H : U × [0, 1] → E
(u, t) 7→ tϕε1(u) + (1− t)ψε2(u)

and
Hβ : Uβ × [0, 1] → RN

(u, t) 7→ tϕβ(u) + (1− t)ψβ(u),

and note that the function Hβ( · , t) : Uβ → RN is the β version of the function H( · , t) :
U → E for each fixed t ∈ [0, 1]. Consequently, by Lemma 2.2.1 we deduce that vβ 6∈
H(∂Uβ, t) for each v 6∈ H(∂U, t). Let us show that v 6∈ H(∂U, t), for each t ∈ [0, 1].

In fact, let t ∈ [0, 1]. Since r = ρ(v, ϕ(∂U)), we have

‖(I −K)u− v‖≥ r. (2.2.1.19)

Moreover, (2.2.1.15) implies that

‖(I −Kεi)u− (I −K)u‖≤ r/2, i = 1, 2. (2.2.1.20)

Then, by adding

−t(I −K)u− (1− t)(I −K)u+ (I −K)u = 0

in ‖H(u, t)− v‖, rearranging the terms and using the triangular inequality, we get

(LHS) := ‖H(u, t)− v‖
= ‖t(I −Kε1)u+ (1− t)(I −Kε2)u− v‖
= ‖t(I −Kε1)u+ [−t(I −K)u− (1− t)(I −K)u+ (I −K)u] +

+ (1− t)(I −Kε2)u− v‖
= ‖[(I −K)u− v] + t[(I −Kε1)u− (I −K)u] + (1− t)[(I −Kε2)u− (I −K)u]‖
≥ ‖(I −K)u− v‖−t‖(I −Kε1)u− (I −K)u‖−(1− t)‖(I −Kε2)u− (I −K)u‖
≥ r − tr

2
− (1− t)r

2
= r/2 > 0.

Since u was taking arbitrarily, we conclude from the previous inequality that
v 6∈ H(∂U, [0, 1]). Thus, v 6∈ H(∂U, t) for each t ∈ [0, 1] and hence vβ 6∈ H(∂Uβ, t). This
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allows us to use the invariance under homotopy property of Brouwer degree for Hβ, to
obtain:

deg(ϕβ, Uβ, vβ) = deg(Hβ( · , 1), Uβ, vβ)

= deg(Hβ( · , 0), Uβ, vβ)

= deg(ψβ, Uβ, vβ).

Therefore, (2.2.1.16) follows by combining (2.2.1.18) and (2.2.1.17).

Now we are able to establish the following definition.

Definition 2.2.8 (Leray-Schauder Degree). Let K ∈ Q(U ;E) be an operator, Φ : I −K
and v 6∈ Φ(∂U). We define the Leray-Schauder degree of Φ in U at the point v, by

deg(Φ, U, v) = deg(ϕr/2|U∩F , U, v), (2.2.1.21)

where ϕr/2 := I −Kr/2, Kr/2 : U → E is any finite rank operator satisfying Kr/2(U) ⊂ F
and ‖K(u)−Kr/2(u)‖≤ r

2
, for all u ∈ U .

Remark 2.2.3. Observe that existence of Kr/2 is guaranteed by Lemma 2.2.3 and the
object in the right hand side of (2.2.1.21) is well defined by Remark 2.2.2. Moreover, the
independence on the choice of the approximation Kr/2 is guaranteed by above lemma.

2.2.2 Properties of Leray-Schauder Degree

As an extension of the Brouwer degree, Leray-Schauder degree satisfies the same properties
of the Brouwer degree. We will see in this section that this is due to the fact that compact
perturbations of the identity are proper functions.

Proposition 2.2.5. Let K ∈ Q(U ;E), ϕ : U → E defined by Φ := I −K, v 6∈ Φ(∂U),
H ∈ C(U×[0, 1];E) a function defined by H(u, t) = u−S(u, t), where S ∈ Q(U×[0, 1];E),
v 6∈ H(∂U × [0, 1]) and X ⊂ U a closed subset such that v 6∈ Φ(X) ∪ Φ(∂U). Then, the
following properties for the Leray-Schauder degree holds.

P1) (Normalization). deg(I, U, v) =

{
1, v ∈ U
0, v 6∈ U.

P2) (Continuity relative to K). There exists a neighborhood U of K in the topology
(Q(U ;E), ‖ · ‖∞) such that for all G ∈ U we have v 6∈ (I −G)(∂U) and

deg(I −K,U, v) = deg(I −G,U, v). (2.2.2.1)

P3) (Invariance under homotopy). If H ∈ C(U × [0, 1];E) is the function defined by
H(u, t) = u − S(u, t), where S ∈ Q(U × [0, 1], E) and v 6∈ H(∂U × [0, 1]), then
deg(H( · , t), U, v) is constant in [0, 1].

P4) (Invariance under translations)

deg(Φ, U, v) = deg(Φ− v, U, 0). (2.2.2.2)

P5) (Constant in connected components of E \ Φ(∂U)). The function deg(Φ, U, · ) is
constant in each connected component of E \ Φ(∂U).
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P6) (Additivity). If U = U12, U1 ∩ U2 = ∅ where Ui is a bounded open subset of E, for
i = 1, 2 and v 6∈ Φ(∂U1) ∪ Φ(∂U2), then

deg(Φ, U, v) = deg(Φ, U1, v) + deg(Φ, U2, v).

P7) (Existence of Solution). If v 6∈ Φ(U), then deg(Φ, U, v) = 0.

P8) (Excision). Let X ⊂ U be a closed subset and v 6∈ Φ(X) ∪ Φ(∂U). Then,

deg(Φ, U, v) = deg(Φ, U \X, v).

P9) (Boundary Dependence). If Ψ is a S-compact perturbation of the identity such that
Φ|∂U= Ψ|∂U , then

deg(Φ, U, v) = deg(Ψ, U, v). (2.2.2.3)

Proof. P1): Take F = 〈v〉 and K ≡ 0. Then, ϕ = I and

deg(I, U, v) = deg(I|U∩F , U ∩ F, v) =

{
1, if v ∈ U ∩ F,
0, if v 6∈ U ∩ F,

where the last equality follows from P1) property of Brouwer Degree

P2): Let us set r = ρ(v,Φ(∂U)) > 0 and U = {G ∈ Q(U,E); ‖K − G‖∞< r
2
}. Let

G ∈ U and consider the operators K1, G1 ∈ C(U ;E) with finite rank such that

‖K −K1‖∞, ‖G−G1‖∞<
r

4
, (2.2.2.4)

whose the existence are guaranteed by Lemma 2.2.3. Let ϕ r
4

: U → E be the bounded
K1-perturbation of the identity and ψ r

4
: U → E the bounded G1-perturbation of the

identity. Take a subspace F of E containing K1(U), G1(U) and v and let us denote by
N := dimF . Consider β a basis for F and ϕβ : Uβ → RN , ψβ : Uβ → RN the β versions
of ϕ r

4
and ψ r

4
, respectively.

By Definition 2.2.8,

deg(I −K,U, v) = deg(ϕ r
4
|U∩F , U ∩ F, v) = deg(ϕβ, Uβ, vβ)

deg(I −G,U, v) = deg(ψ r
4
|U∩F , U ∩ F, v) = deg(ψβ, Uβ, vβ)

}
. (2.2.2.5)

Let us define the homotopies

H : U × [0, 1] → E
(u, t) 7→ tϕ r

4
(u) + (1− t)ψ r

4
(u)

and
Hβ : Uβ × [0, 1] → RN

(u, t) 7→ tϕβ(u) + (1− t)ψβ(u).

Observe that for each fixed t ∈ [0, 1], the function Hβ( · , t) : Uβ → RN is the β version
of the function H( · , t) : U → E, so by Lemma 2.2.1 we have vβ 6∈ H(∂(Uβ), t), for each
v 6∈ H(∂U, t). Let us show that v 6∈ H(∂U, [0, 1]). Take u ∈ ∂U and t ∈ [0, 1]. Since
r = ρ(v,Φ(∂U)), we have

‖(I −K)u− v‖≥ r.
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Moreover, (2.2.2.4) implies

‖(I −G1)u− (I −G)u‖ ≤ r/4 and
‖(I −K1)u− (I −K)u‖ ≤ r/4.

By adding
−t(I −K)u− (1− t)(I −K)u+ (I −K)u = 0

in ‖H(u, t)− v‖ and rearranging the terms, we get

(LHS) := ‖H(u, t)− v‖
= ‖t(I −K1)u+ (1− t)(I −G1)u− v‖
= ‖t(I −K1)u+ [−t(I −K)u− (1− t)(I −K)u+ (I −K)u] +

+ (1− t)(I −G1)u− v‖
= ‖[(I −K)u− v] + t[(I −K1)u− (I −K)u] + (1− t)[(I −G1)u− (I −K)u]‖.

Similarly, by adding
(1− t)(I −G)u− (1− t)(I −G)u = 0

in the last expression and rearranging the therms, we obtain

(LHS) = ‖[(I −K)u− v] + t[(I −K1)u− (I −K)u] + (1− t)[(I −G1)u− (I −K)u] +

+ [(1− t)(I −G)u− (1− t)(I −G)u]‖
= ‖[(I −K)u− v] + t[(I −K1)u− (I −K)u] + (1− t)[(I −G1)u− (I −G)u] +

+ [(1− t)[(I −G)u− (I −K)u]‖

which combined with the triangular inequality gives us the following inequality

(LHS) ≥ ‖(I −K)u− v‖−t‖(I −K1)u− (I −K)u‖−
− (1− t)‖(I −G1)u− (I −G)u‖−(1− t)‖(I −G)u− (I −K)u‖
≥ r − tr

4
− (1− t)r

4
− (1− t)r

2
= 3

r

4
− (1− t)r

2
≥ 3

r

4
− r

2
=
r

4
> 0.

Since u was taken arbitrarily in ∂U , we can conclude that v 6∈ H( · , t)(∂U). Consequently,
vβ 6∈ H(∂(Uβ), [0, 1]), whence we infer by invariance under homotopy property for Brouwer
degree that

deg(ϕβ, Uβ, vβ) = deg(H( · , 1), Uβ, vβ)

= deg(H( · , 0), Uβ, vβ)

= deg(ψβ, Uβ, vβ).

which implies (2.2.2.1) after using (2.2.2.5).

P3): By P2), f(t) := deg(H( · , t), U, v) is locally constant in [0, 1] and so continu-
ous. Since f([0, 1]) ⊂ Z and f([0, 1]) is connected, it follows that f is constant;
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P4): Let ϕ r
2

: U → E be the bounded K r
2
-perturbation of the identity and

ϕβ : Uβ → RN the β version of ϕ r
2
. Then,

deg(Φ, U, v) = deg(ϕ r
2
|U∩F , U ∩ F, v)

= deg(ϕβ, Uβ, vβ)

= deg(ϕβ − vβ, Uβ, 0)

= deg((Φ− v)β, Uβ, 0)

= deg((ϕ r
2
− v)|U∩F , U ∩ F, 0)

= deg(Φ− v, U, 0).

which proves (2.2.2.2).

P5): Let C be a connected component of the set Φ(∂U) \E and f : C → Z the function
defined by f(v) = deg(Φ, U, v). Given p ∈ C, consider g : U → E defined by
g(u) = Φ(u)− (v − p).

So it follows from P4) that

deg(Φ, U, v) = deg(Φ− v, U, 0) = deg(Φ− (v − p), U, p)
= deg(g, U, p) (2.2.2.6)

holds for any v ∈ C.
Now, if v ∈ E is such that ‖p − v‖≤ r/2, then ‖Φ − g‖∞≤ r/2 and consequently by

P2)
deg(g, U, p) = deg(Φ, U, p). (2.2.2.7)

Thus, by combining (2.2.2.6) and (2.2.2.7), we conclude that f is locally constant and so
continuous. Since C is a connected set, we get that f(C) is a connected set in Z, so f is
constant.

P6): Let Kr/2 : U → E be the continuous operator as in Definition 2.2.8, that is,
Kr/2(U) ⊂ F with dimF <∞ such that ‖K−Kr/2‖∞< r/2. So U∩F = (U1∩F )∪(U2∩F )
and by the definition of Leray-Schauder degree,

deg(Φ, U, v) = deg(ϕ r
2
|U∩F , U ∩ F, v)

= deg(ϕ r
2
|U∩F , U1 ∩ F, v) + deg(ϕ r

2
|U∩F , U2 ∩ F, v)

= deg(Φ, U1, v) + deg(Φ, U2, v),

this ends the proof.

P7): The definition of Leray-Schauder degree says

deg(Φ, U, v) = deg(ϕr/2|U∩F , U ∩ F, v), (2.2.2.8)

where ϕr/2 is defined as in Definition 2.2.8.
On the other hand, v 6∈ ϕr/2(U) because

‖v − ϕr/2(u)‖≥ ‖Φ(u)− v‖−‖ϕr/2(u)− Φ(u)‖≥ r − r

2

and so the existence of solution property of the Brouwer degree implies

deg(ϕ r
2
|U∩F , U ∩ F, v) = 0.



50 CHAPTER 2. DEGREE THEORY

Thus, (2.2.2.8) results in
deg(Φ, U, v) = 0,

as we wanted.

P8): Observe that (U \ X) ∩ F = (U ∩ F ) \ X and since F is a closed subset of E,
U \X ∩ F = (U ∩ F ) \X and so

deg(Φ, U, v) = deg(ϕ r
2
|U∩F , (U ∩ F ), v)

= deg(ϕ r
2
|U∩F , (U ∩ F ) \X, v)

= deg(ϕ r
2
|U∩F , (U \X) ∩ F, v)

= deg(ϕ r
2
|U\X∩F , (U \X) ∩ F, v)

= deg(Φ, U \X, v),

which ends the proof.

P9): The homotopy H(u, t) : U × [0, 1] → E defined by H(u, t) = tΦ(u) + (1 − t)Ψ(u)
is such that H(u, t) = tΦ(u) + (1 − t)Φ(u) = Φ(u) 6= v for all u ∈ ∂U . So by invariance
under homotopy property of Leray-Schauder degree, (2.2.2.3) holds.

Let E be a Banach space, [a, b] ⊂ R, an operator K : [a, b]×E → E and U a bounded
open subset of [a, b] × E. Consider in [a, b] × E the norm ‖(λ, u)‖= (|λ|2+‖u‖2)1/2 and
denote by

Uλ := {u ∈ E; (λ, u) ∈ U},
Φλ(u) := u−K(λ, u).

Under these assumptions, we have the following invariance under homotopy.

Theorem 2.2.1. Assume K is a compact operator and that the equation

Φ(λ, u) := u−K(λ, u) = 0 (2.2.2.9)

does not admit zeros in ∂U. Then

deg(Φλ, Uλ, 0) is constant in λ ∈ [a, b]. (2.2.2.10)

By the compactness of [a, b], in order to prove Theorem 2.2.1, it is sufficient to prove
the following lemma.

Lemma 2.2.5. Let λ0 ∈ [a, b]. Then, there exists ε > 0 such that

deg(Φλ, Uλ, 0) ≡ constant for all λ such that |λ− λ0|< ε.

Indeed, by using this lemma for each λ ∈ [a, b], we deduce that there exist ε(λ) > 0
such that

deg(Φλ, Uλ, 0) ≡ constant for all λ such that |λ− λ0|< ε(λ).

In fact, the claim of Lemma 2.2.5 means that the function λ 7→ deg(Φλ, Uλ, 0) is locally
constant, and since the degree is an integer, it follows that the claim of Theorem 2.2.1
holds.

Our proof of Lemma 2.2.5 is based on the proof of Theorem 4.1 of [2]. Before doing
it, consider the following remark.
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Remark 2.2.4 (Relating ∂Uλ and ∂U). Let u ∈ ∂Uλ, then, there exist sequences (un)
in Uλ and (vn) ⊂ (Uλ)

c converging to u. Thus ((λ, un)) and ((λ, vn)) are sequences in U
and (U)c, respectively, converging to (λ, u), i.e., (λ, u) ∈ ∂U.

Remark 2.2.5. Observe that by assuming the hypotheses of Theorem 2.2.1, it follows by
the above remark that the degree deg(Φλ, Uλ, 0) is well defined.

Proof. Fix λ0 ∈ (a, b) and let Sλ0 denote the set {u ∈ Uλ; Φ(λ0, u) = 0}. By the compact-
ness of K, it follows that Sλ0 is compact and since ∂U does not contain any solution of
Φ(λ, u) = 0, we imply in light of Remark 2.2.4 that Sλ0 ∩ ∂(Uλ0) = ∅. Thus, there exists
an open neighbourhood Oλ0 of Sλ0 and ε > 0 such that

[λ0 − ε, λ0 + ε]×Oλ0 ⊂ U.

Moreover, we claim that if ε is sufficiently small, one holds

{(λ, u); Φ(λ, u) = 0, λ0 − ε ≤ λ ≤ λ0 + ε} ⊂ [λ0 − ε, λ0 + ε]×Oλ0 . (2.2.2.11)

Indeed, suppose the contrary. Then there exist sequences εn → 0 and (λn, un) such that

|λn − λ0|≤ εn, Φ(λn, un) = 0, (λn, un) 6∈ [λ0 − εn, λ0 + εn]×Oλ0 .

By the compactness of K we can assume that, up to a subsequence, (λn, un) → (λ0, u0).
By continuity, Φ(λ0, u0) = lim Φ(λn, un) = 0 and so u0 ∈ Sλ0 . On the other hand, since
(λn, un) 6∈ [λ0 − εn, λ0 + εn] × Oλ0 and λ0 ∈ [λ0 − εn, λ0 + εn] for all n, we must have
u0 6∈ Oλ0 . But (λ0, u0) ∈ Sλ0 ⊂ Oλ0 and so we get a contradiction.

Observe that (2.2.2.11) shows that Φ is an admissible homotopy in [λ0−ε, λ0 +ε]×Oλ0
and so, by the standard homotopy invariance P3), we deduce that

deg(Φλ,Oλ0 , 0) ≡ constant, ∀ λ ∈ [λ0 − ε, λ0 + ε]. (2.2.2.12)

Furthermore, (2.2.2.11) implies that Sλ ⊂ Oλ0 for all λ ∈ [λ0 − ε, λ0 + ε]. Now, observe
that

Uλ \ (∂(Sλ) ∪ ∂(Oλ0)) =
[
Uλ \

(
Oλ0 \ Sλ

)]
∪ [Oλ0 \ Sλ] .

By applying the properties of additivity and excision, we deduce that

deg(Φλ, Uλ, 0) = deg(Φλ,Oλ0 , 0), ∀ λ ∈ [λ0 − ε, λ0 + ε]. (2.2.2.13)

Finally, by combining (2.2.2.12) and (2.2.2.13), we conclude that the claim of Lemma
2.2.5 holds. The case where λ0 ∈ {a, b} is analogous.

2.2.3 The Index of Isolated Solutions

For isolated solutions, there is the concept of index of an isolated solution, which is a limit
of the degree in certain sense that will be clear soon. The index of an isolated solution
satisfies an identity that is sometimes called Leray-Schauder formula. As we will see in
the next chapter, this formula is useful in proving the existence of bifurcation points.

Let K ∈ Q(U ;E), Φ the K-perturbation of identity and v 6∈ Φ(∂U). Suppose u ∈ U
is an isolated solution of Φ(u) = v, that is, there exists r > 0 such that u is the only
solution of Φ(u) = v in Br(u) ⊂ U . Then, by applying the excision property with the
closed set (Br(u) \Bε(u)), we have

deg(Φ, Br(u), v) = deg(Φ, Br(u) \ (Br(u) \Bε(u)), v)

= deg(Φ, Bε(u), v), ∀ 0 < ε < r. (2.2.3.1)
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Remark 2.2.6. The equality (2.2.3.1) implies that

lim
ε→0

deg(Φ, Bε(u), v) = deg(Φ, Br(u), v).

Thus, we define the Leray Schauder Index of an isolated solution of ϕ in u relative to
the point v, by

i(Φ, u, v) = lim
ε→0

deg(Φ, Bε(u), v). (2.2.3.2)

Before enunciate the Leray-Schauder formula, we need the following lemma.

Proposition 2.2.6. Let E be a Banach space and K ∈ Q(U ;E), where U ⊂ E is a
neighbourhood of the origin. Assume that K is differentiable at 0. Then
K ′(0) : E → E is a compact linear operator.

Proof. See Proposition 3.5.2 in Kesavan [23].

Lemma 2.2.6. Let U be an open neighbourhood of the origin and K ∈ Q(U ;E) differen-
tiable at the origin such that K(0) = 0. If 1 is not a characteristic value of K ′(0), then 0
is an isolated solution of (I −K)u = 0.

Proof. It follows from Proposition 2.2.6 that K ′(0) is a compact linear operator. Suppose
by contradiction that 0 is not an isolated solution of I−K, that is, there exists a sequence
(vn) in E \ {0} converging to 0 and satisfying vn = Kvn. Then,

vn
‖vn‖

−K ′(0)
vn
‖vn‖

=
K(0 + vn)−K(0)−K ′(0)vn

‖vn‖
→ 0

on the other hand, by the compactness of K ′(0) and the fact that vn‖vn‖−1 is a bounded
sequence, it follows that there exists w ∈ E such that

K ′(0)
vn
‖vn‖

→ w, up to a subsequence,

and so vn‖vn‖−1→ w 6= 0. Thus by the continuity of K ′(0), we obtain w = K ′(0)w. This
contradicts the hypothesis that 1 is not a characteristic value of K ′(0).

Theorem 2.2.2 (Leray-Schauder Formula). Let E be a Banach space, U a bounded open
subset of E and K ∈ Q(U ;E) differentiable at the origin such that K(0) = 0. If 1 is not
a characteristic value of K ′(0), then

i(Φ, 0, 0) = (−1)β,

where Φ := I − K and β is the sum of the algebraic multiplicities of the characteristic
values of K ′(0) contained in the interval (0, 1).

Proof. See Proposition 3.5.3 in Kesavan [23]. The original one appears in [28].

Remark 2.2.7. The Leray-Schauder Formula is also known as the calculation of the index
via linearization, because it depends only on the "linear part" K ′(0) of K.
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2.2.4 Application

As we mentioned before, one of the motivations for constructing the Leray-Schauder de-
gree is to obtain a tool that allows us to get information about the existence of solutions
for equations of the type Φ(u) = 0, where Φ(u) = u−K(u), K : U → E is a compact op-
erator and U is an open bounded subset of an arbitrary Banach space E. So, the following
example illustrate an application of the Leray-Schauder degree in studying existence of
solutions for a Dirichlet problem, whose formulation involves an operator acting in the
infinite dimensional Banach space E = L2(Ω), where Ω is a bounded open subset of RN .

Theorem 2.2.3 (Theorem 3.23 of [2]). Let Ω be a bounded open subset of RN and consider
the following boundary value problem{

−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,
(2.2.4.1)

where f : Ω× R 7→ R is a locally Hölder continuous functions satisfying

lim
|s|→∞

f(x, s)

s
= 0, uniformly with respect to x ∈ Ω. (2.2.4.2)

Then, (2.2.4.1) has a classical solution.

Proof. Given ε > 0, it follows from (2.2.4.2) that exists s0 > 0 such that∣∣∣∣f(x, s)

s

∣∣∣∣ < ε, ∀ s ≥ s0 and ∀ x ∈ Ω,

so

|f(x, s)|≤ sε ∀ s ≥ s0, and ∀ x ∈ Ω.

Noting that
s ≤ |s|+s0 ∀ s ∈ R⇒ sε ≤ |s|ε+ s0ε ∀s ∈ R,

we obtain
|f(x, s)|≤ Cε + |s|ε, ∀ s ∈ R and ∀ x ∈ Ω, (2.2.4.3)

where Cε = s0ε.
Then, for each fixed ε ≤ 1, we have

|f(x, s)|≤ C1 + |s|, ∀ s ∈ R and ∀ x ∈ Ω,

that is, for each fixed ε ≤ 1, the function f satisfies the hypothesis (5.3.1.4) of Theorem
5.3.9 for g ≡ C1 and p = 2 and the hypothesis (5.4.0.6) of Theorem (5.4.5) for a1 ≡ C1 > 0,
a2 ≡ 1 and p = 2. So the Nemytskii operator F of the function f is a continuous and
bounded function from L2(Ω) to L2(Ω).

Let S : L2(Ω)→ L2(Ω) be the solution operator of the problem{
−∆u = h in Ω,

u = 0 on ∂Ω,
(2.2.4.4)
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whose the existence is guaranteed by Theorem 5.4.4, in Appendix. Moreover, Theorem
5.4.4 says that S is a compact linear operator. Since F is bounded and continuous, it
follows that S ◦ F : L2(Ω) → L2(Ω) is a compact operator. Note that given v ∈ L2(Ω),
we have that S(F(v)) is the solution operator of the problem{

−∆u = f(x, v) in Ω,

u = 0 on ∂Ω.

Let us define the homotopy

H : [0, 1]× L2(Ω) → L2(Ω)
(t, u) 7→ u− tS(F(u)).

Observe that u is a weak solution of (2.2.4.1) if, and only if, H(1, u) = 0, because S is
the solution operator of (2.2.4.4) and

F(u)(x) = f(x, u(x)).

We claim that H is admissible, that is, there exists R > 0 such that H(t, ∂BR(0)) 6= 0 for
all t ∈ [0, 1]. Indeed, suppose there is no such R > 0. Hence, there would exist a sequence
(un) ∈ L2(Ω) and (tn) ∈ [0, 1] satisfying ‖un‖2> n and un = tnS(F(u)). By the linearity
of S, we can say that un = S(tnF(u)), that is,∫

Ω

∇un∇ϕ =

∫
Ω

tnf(x, un)ϕ, ∀ ϕ ∈ H1
0 (Ω).

By taking ϕ = un as a test function and using (2.2.4.3), we get∫
Ω

|∇un|2= tn

∫
Ω

f(x, un)un ≤
∫

Ω

|f(x, un)un|≤ Cε

∫
Ω

|un|+ε
∫

Ω

|un|2,

that is, ∫
Ω

|∇un|2≤ Cε‖un‖1+ε‖un‖2
2.

But, since L2(Ω) ↪→ L1(Ω), we have ‖un‖1≤ D‖un‖2, for some constant D. Then, by
calling C̃ε := DCε, we get ∫

Ω

|∇un|2≤ C̃ε‖un‖2+ε‖un‖2
2.

On the other hand, by using Theorem 5.5.1,

λ1‖un‖2
2≤
∫

Ω

|∇un|2

and consequently
λ1‖un‖2

2≤ C̃ε‖un‖2+ε‖un‖2
2,

that is

‖un‖2≤
C̃ε

λ1 − ε
for ε < min{1, λ1}, which contradicts ‖un‖2→∞.

Thus, for some R > 0 we have H(t, ∂BR(0)) 6= 0, for all t ∈ [0, 1], whence degree
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deg(I − t(S ◦ F), BR(0), 0) is well defined for all t ∈ [0, 1]. By homotopy invariance
property, we obtain

deg(I − S ◦ F , BR(0), 0) = deg(H(1, · ), BR(0), 0)

= deg(H(0, · ), BR(0), 0)

= deg(I, BR(0), 0)

= 1,

which implies, after using the solution existence property of the Leray-Schauder degree,
that there exists u ∈ L2(Ω) such that u = S(F(u)), that is, u is a weak solution of
(2.2.4.1). By Theorem 5.4.5, in Appendix, u is a classical solution.

2.3 Final comments
In this chapter, we raised the background in Degree Theory which is necessary to the study
of the bifurcation results of the next chapter. The above application, already illustrate
the power of the Leray-Schauder degree in solving problems that can be formulated by
therms of an operator that is a compact perturbation of the identity. This is an existence
result for a sublinear problem. In the next chapter, we will use the Leray-Schauder degree
theory to prove Theorem A, which is our main result. By applying Theorem A, we will
prove in Chapter 4 a global bifurcation existence result for a quasilinear problem.



Chapter 3

Global Bifurcation for General
Compact Perturbations of the Identity

3.1 Introduction

In 1964, it was published the english version [24] of the russian book [25] of Mark Kras-
nosel’skii. This book contains a result that gives a sufficient condition for the existence
of a bifurcation point from an eigenvalue problem. The literature attributes to this result
the rank of the first bifurcation existence theorem. Seven years later, Paul H. Rabi-
nowitz proved Theorem 1.3 of [33], sometimes called the "Global Bifurcation Alternative
of Rabinowitz" that establishes a global feature of the bifurcation result introduced by
Krasnosel’skii. Both results dealt with a problem of the type Φ(λ, u) = 0. The fact that
Φ is a compact perturbation of the identity allows the use of the Leray-Schauder degree
theory in the proofs, as done by the two authors. We emphasize that the authors assumed
that K is not a general compact operator, but of the type (1.0.0.6) with L(λ) = λL, where
L is a linear compact operator. So they proved that if λ0 ∈ R is a characteristic value
of L with odd algebraic multiplicity, then (λ0, 0) is a bifurcation point. The argument is
based on the fact that the oddness of the multiplicity implies, by using the Leray-Schauder
Formula, implies that the index changes its sign when λ crosses λ0.

The argument of the "index sign change" in the proof of Theorem 1.3 was explored
by many authors later in order to establish more general existence bifurcation results.
Julián López-Gómez (the most notable among them) besides having contributed in this
sense by developing a generalization of the Leray-Schauder Formula based in a generalized
algebraic multiplicity, also developed a great historical overview of the bifurcation theory
in his book [30].

All bifurcation results developed by these authors (see Section 3.3) maintain the hy-
pothesis on Φ of having a linear (or homogeneous) part and are general bifurcation results,
in the sense that its formulations involves more general operators than those that are as-
sociated to some specific differential problem. Although, Antonio Ambrosetti and Peter
Hess [1] (1980) took advantage of this "index sign change" argument and applied it in
order to obtain a global bifurcation result for an asymptotic linear elliptic eigenvalue
problem. By constructing a solution operator, they managed to formulate the problem as
Φ(λ, u) = 0 where Φ(λ, u) = u−K(λ, u) and K is a compact operator. However, they not
needed K to be as the operator G in [33], to guarantee the index sign change, but used
the homotopy invariance of the degree to calculate the index and show that it changes
its value (not necessarily the sign) when the parameter crosses a certain characteristic

56
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value λ∞ of the assymptotic associated problem, then deduced the existence of a global
bifurcation from infinity in the problem. In the proof, the authors just mentioned that
they were using an adaptation of the Theorem 1.3 of [33].

Later, David Arcoya, José Carmona and Benedetta Pellacci [4] (2001) established a
global bifurcation result for a quasilinear elliptic problem by following the ideas of [1].
The authors used the existence result by Leray and Lions [27] (1965) and the uniqueness
result by Artola [6] in order to obtain a solution operator that allows to formulate the
problem as Φ(λ, u) = 0, where Φ(λ, u) = u−K(λ, u), K : [0,+∞)×E → E is a compact
operator and E is some appropriated real Banach space (see the discussion about the
choice of the space E in Chapter 1). As in [1], the proof did not required K to be as the
operator G in [33] to ensure the index sign change, but the authors used the invariance
under homotopy property and showed that the index changes its value when λ crosses
a certain characteristic value λ∞ of the assymptotic associated problem, then they men-
tioned that the conclusion follows from the argument in [1].

So it aroused a demand for a new formulation of global bifurcation theorem involving
a more general compact perturbation of the identity than that one in Rabinowitz [33] and
that makes it possible of being applied to deduce global bifurcation existence for problems
like those studied in [4] and [1]. Motivated by this lack, we propose the main theorem of
this work: Theorem A. Our goal in this chapter is to demonstrate it and to deduce the
Global Bifurcation Alternative of Rabinowitz as a corollary of it. Before it, let us present
the bifurcation existence results by Krasnosel’skii and Rabinowitz and also Theorem B,
which is inspired by Theorem 1 of [12].

3.2 The first bifurcation theorems

In the preface of [35], David H. Sattinger says "In analyzing the dynamics of a physical
system governed by nonlinear equations the following questions present themselves: Are
there equilibrium states of the system? How many are there? Are they stable or unstable?
What happens as external parameters are varied? As parameters are varied, a given
equilibrium may lose its stability (although it may continue to exist as a mathematical
solution of the problem) and other equilibria or time periodic oscillations may branch
off. Thus, bifurcation is a phenomenon closely related to the loss of stability in non
linear physical systems". Also in the introduction of [24], Krasnosel’skii mentioned that
the bifurcation theory concept arises from the stability theory, and the origin dates back
to A.M. Lyapunov and Poincaré. Although, we begin here from the first well known
definition of bifurcation point of Mark Krasnosel’skii [24] (1964). We point out that his
definition differs from the modern one when it is formulated for eigenvalue problems in
the form u = λAu, while the modern definition is more general and it is formulated for
abstract problems like F (λ, u) = 0.

For chronological reasons, we will present in the subsection 3.2.1 the Krasnosel’skii’s
concept of bifurcation and the modern bifurcation concept. In the subsection 3.2.2 we
construct a real Banach space of the compact homogeneous operators which is the counter
domain of the operator L, presented at Chapter 1. In the subsection 3.2.3 we enunciate
Krasnosel’skii Theorem, which is the first well known bifurcation result in the literature,
prove Lemma B, which is a generalization of Lema 2.1 of [24] and also Lemma C, which
is a formalization of the statement made by Dai in the introduction of [12]1. Finally,

1we refer to Dai’s citation made in Chapter 1 of this present work.
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in the subsection 3.2.4, we enunciate the Rabinowitz Global Bifurcation Alternative and
then we prove Corollary B that states that Krasnosel’skii’s Theorem (Theorem 3.2.1) is
a consequence of Rabinowitz Theorem (Theorem 3.2.2).

3.2.1 The definition of bifurcation point of Krasnosel’skii and the
modern one

Let A : E → E be an abstract operator such that A(0) = 0 and consider the problem of
solving

λA(u) = u. (3.2.1.1)

Observe that u = 0 is a solution for all λ ∈ R which is called the trivial solution. One may
ask if there exists any non trivial solution to (3.2.1.1). One way to answer this question is
considering a neighbourhood U of a trivial solution (λ, 0) and try to show that there exists
a non trivial solution in U . In this sense, in [24] was proposed the following definition.

Definition 3.2.1 (Krasnosel’skii’s bifurcation point definition). The number λ0 ∈ R is
called a bifurcation point of the problem (3.2.1.1) if, for any ε, δ > 0, there exists a char-
acteristic value λ of the operator A such that |λ−λ0|< ε and such that this characteristic
value has at least one eigenfunction u, that is, a nontrivial solution of (3.2.1.1) with norm
less then δ.

After Krasnosel’skii, the mathematicians began to study the bifurcation phenomenon
in a context of more general problems than the eigenvalue problem. In this sense we
present the following exposition.

A lot of PDE problems with Dirichlet boundary condition as{
−∆u = up Ω,

u = 0 ∂Ω,

admits the trivial solution, that is, admits u = 0 as a solution. More generally, problems
like {

Lu = f(u) Ω,

u = 0 ∂Ω,

where L is a differential operator satisfying L0 = 0 and f is a function satisfying f(0) = 0,
admits the trivial solution. If we go beyond by adding a real parameter λ and considering
problems like {

Lu = f(λ, u) Ω,

u = 0 ∂Ω,

such that (λ, 0) is a solution for all λ ∈ R, then we can ask if, by taking advantage of the
easy (or trivial) existent curve of solutions {(λ, 0);λ ∈ R}, it is possible to find nontrivial
solutions (λ, u) with u 6= 0 as Krasnosel’skii done for eigenvalue problems. A natural
way to do it, consists in investigating the behaviour of L and f near the curve of trivial
solutions and this is what about the modern bifurcation theory is concerned.

A physical problem that motivates the study is, for example, the Euler Buckling,
which deals with how an external force applied in a column induces different profiles of
its deformation. A simple search with the words "Euler Buckling" in any science research
platform gives several results about it.
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Let us formalize the modern bifurcation concept.
Assume that X and Y are Banach spaces and consider the problem of finding (λ, u)

in R×X such that
F (λ, u) = 0, (3.2.1.2)

where F : R×X → Y is an operator satisfying

F (λ, 0) = 0 ∀ λ ∈ R.

We call {(λ, 0); λ ∈ R} the curve of the trivial solutions to (3.2.1.2) and naturally the set

ΣF = {(λ, u) ∈ R×X; u 6= 0, F (λ, u) = 0}

is called the set of nontrivial solutions of (3.2.1.2).
So we have the following definition of bifurcation point for the problem (3.2.1.2).

Definition 3.2.2. Let λ0 ∈ R. We say that (λ0, 0) is a bifurcation point from the curve of
trivial solutions of the problem (3.2.1.2) when there exists a sequence ((λn, un)) in R×ΣF

that converges to (λ0, 0).

Observe that when (λ0, 0) is a bifurcation point, then (λ0, 0) ∈ ΣF . So it is convenient
to establish the following notation:

SF := ΣF .

So (λ0, 0) is a bifurcation point of Φ = 0 if and only if (λ0, 0) ∈ SF .
Now, let E be a real Banach space, F : R×X → Y an operator as above an assume

that X = Y = E and define the operator F̃ : R× E → E by

F̃ (λ, u) =

Φ

(
λ,

u

‖u‖2

)
if u 6= 0

0 otherwise.

If (λ0, 0) is a bifurcation point from the curve of trivial solutions of F̃ , then there exists a
sequence of solutions (λn, un) of F̃ = 0 that converges to (λ0, 0). Observe that the sequence
zn := un/‖un‖2 is such that ‖zn‖→ +∞. So we get a sequence (λn, zn) satisfying

F (λn, zn) = 0,

such that λn → λ0 and ‖zn‖→ +∞. This means that, by using results about the existence
of bifurcation points from the curve of trivial solutions and the above change of variable,
we can deduce the existence of points that satisfies a type of bifurcation that we call
bifurcation from infinity, which leads us to the following definition.

Definition 3.2.3. Let (E, ‖ · ‖) be a real Banach space and F : R × E → E be an
abstract operator. We say that λ∞ ∈ R is a bifurcation point from infinity, of solutions
of F = 0, when there exists a sequence (λn, zn) of solutions of F = 0 such that λn → λ∞
and ‖zn‖→ ∞.

Remark 3.2.1. Observe that the change of variable z = u/‖u‖2 was introduced above as
a motivation for the definition of bifurcation from infinity, although it is also play a role
of work around with the restrictive feature of the Leray-Degree to impose boundedness on
the domain Ω where the degree is calculated.

In the next chapter we will prove the existence of a global bifurcation from infinity for
a quasilinear problem by applying Theorem 3.4 and the above change of variable. Before
presenting the results, the next subsection is dedicated to construct a Banach space of
compact homogeneous operators which is the space where the family L(λ) belongs.
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3.2.2 The Banach Space of Homogeneous Compact Operators

Let H(E) be the family of all homogeneous operators
H : E → E of degree 1 equipped with the usual function operations of sum and product
by scalar. Observe that H(E) is a vector space.

Along this subsection, we will consider the following subspaces of H(E).

Hf (E) :=

{
H ∈ H(E); sup

E\{0}

∥∥∥∥H(u)

‖u‖

∥∥∥∥ <∞
}

and
Hc(E) := {H ∈ H(E); H is a compact operator}

Lemma 3.2.1. The function

‖ · ‖: H → R
H 7→ ‖H‖= supE\{0}

∥∥∥H(u)
‖u‖

∥∥∥
defines a norm in the subspace Hf (E) of H(E).

Proof. Observe that if H = 0, then ‖H‖= 0. Conversely, if ‖H‖= 0, then∥∥∥∥H(u)

‖u‖

∥∥∥∥ ≤ ‖H‖= 0⇒ H(u) = 0 ∀ u ∈ E,

that is H = 0.
As a consequence of the properties of the supremmum, the norm ‖ · ‖ inHf (E) inherits

the multiplicative property and triangular inequality from the norm ‖ · ‖ in E and so we
conclude that (Hf (E), ‖ · ‖) is a normed space.

Remark 3.2.2. As a consequence of the definition of the space Hf (E), we have that

‖H(u)‖≤ ‖H‖‖u‖ ∀ u ∈ E

for each H ∈ Hf (E).

Lemma A0. Hf (E) is a Banach subspace of H(E).

Proof. The fact that Hf (E) is a subspace of H(E) is clear. In order to prove that Hf (E)
is a Banach space, consider a Cauchy sequence (Hn)n in Hf (E). Observe that

‖Hn(u)−Hm(u)‖≤ ‖(Hn −Hm)(u)‖≤ ‖Hn −Hm‖‖u‖, for each u ∈ E (3.2.2.1)

and so (Hn(u)) is a Cauchy sequence in the Banach space E, thus there exists some
H(u) ∈ E such that

Hn(u)→ H(u) in E.

Observe that the operator H defined by u 7→ H(u) is homogeneous as a consequence of
the limit properties.

Let ε > 0. It follows from the fact that (Hn) is a Cauchy sequence that there exists
n0 ∈ N such that

‖Hn −Hm‖‖u‖< ε‖u‖ n,m ≥ n0 (3.2.2.2)
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whence follows that

‖Hn(u)−H(u)‖≤ ‖(Hn −H)(u)‖≤ ε‖u‖ n ≥ n0,∀u ∈ E, (3.2.2.3)

by taking the limit in (3.2.2.1) asm→ +∞. This inequality implies thatH−Hn0 ∈ Hf (E)
and so H = (H −Hn0) +Hn0 ∈ Hf (E). Also the inequality implies implies that Hn → H
in Hf (E), as we wanted.

Lemma A. Hc(E) is a closed subspace of Hf (E).

Proof. First, let us show that Hc(E) is a subspace of Hf (E). Since the family of compact
operators is a vector space, so is the family Hc(E). Moreover, Hc(E) ⊂ Hf (E). Indeed,
suppose the contrary, that is, there existsH ∈ Hc(E)\H(E). Then there exists a sequence
(un)n in E \ {0} such that ∥∥∥∥H(un)

‖un‖

∥∥∥∥ > n.

Since H is homogeneous, it follows that∥∥∥∥H ( un
‖un‖

)∥∥∥∥ > n,

on the other hand, the sequence (un/‖un‖) is bounded and by the compactness of H the
sequence (

H

(
un
‖un‖

))
n

converges in E up to a subsequence, which is a contradiction and that leads us to conclude
that Hc(E) is a subspace of Hf (E).

Consider a sequence (Hn)n inHc(E) such thatHn → H inHf (E) for someH ∈ Hf (E).
Let (un)n be a bounded sequence in E and C > 0 be a number such that ‖un‖≤ C for all
n. Since H1 ∈ Hc(E), then there exists a subsequence (u1,n)n of (un) such that (H1(u1,n))n
converges in E up to a subsequence and so (H1(u1,n))n is a Cauchy sequence. Since (u1,n)n
is a bounded subsequence and H2 ∈ Hc(E), it follows that (u1,n)n admits a subsequence
(u2,n)n such that (H2(u2,n))n converges in E up to a subsequence and hence (H2(u2,n))n is
a Cauchy sequence. By proceeding recursively and choosing the diagonal sequence (vn),
defined by vn := (un,n)n we obtain that

(Hm(vn))n

is a Cauchy sequence for each m ∈ N and ‖vn‖≤ C. Let ε > 0 and take n0, n1 such that

‖H −Hn0‖≤
ε

3C
and

‖Hn0(vi)−Hn0(vj)‖≤
ε

3
∀ i, j ≥ n1.

Observe that

‖H(vi)−H(vj)‖ ≤ ‖H(vi)−Hn0(vi)‖+‖Hn0(vi)−Hn0(vj)‖+‖Hn0(vj)−H(vj)‖

≤ ‖H −Hn0‖‖vi‖+
ε

3
+ ‖Hn0 −H‖‖vj‖<

ε

3C
C +

ε

3
+

ε

3C
C = ε,

that is, (H(vn)) is a Cauchy sequence in the Banach space E and so it converges up to
a subsequence. Since (vn)n is a subsequence of (un)n, we deduce that H ∈ Hc(E) as we
wanted.

Remark 3.2.3. In particular, by combining the Lemma A0 and Lemma A we deduce that
(Hc(E), ‖ · ‖) is a Banach space.
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3.2.3 Theorem of Krasnosel’skii and necessary conditions

In [24], Krasnosel’skii proved a necessary condition for a number λ0 being a bifurcation
point of the problem (3.2.1.1) (see Lemma 2.1 of [31]). This result was used by Rabinowitz
in [33]. Although the problem treated by Rabinowitz is slightly more general than the
problem studied by Krasnosel’skii (the difference is in the structure of the operator H,
compare the operator H in Theorem 3.2.1 with the operator H in Theorem 3.2.2) so that
the necessary condition, as formulated in [24], does not apply to it. In [33], the author just
referenced the Krasnosel’skii’s necessary condition, without justifying that it is possible
to obtain the same result for his problem. Motivated by this lack, we’re going to open a
parenthesis in the exposition of the Krasnosel’skii’s bifurcation approach by proving the
following generalized version of the Krasnosel’skii’s necessary condition that applies not
only to (3.2.1.1), but also to the problem in [33].

Lemma B (Generalization of Krasnosel’skii’s necessary condition). Suppose that the op-
erator I −L(λ0) : E → E admits an inverse operator (I −L(λ0))−1 ∈ Hf (E). Then there
exists a ball B ⊂ E centered at 0, such that

Φ(λ, u) = 0

does not admit any nontrivial solution in B for λ lying in a interval (λ0 − ξ, λ0 + ξ)
where ξ is a positive number depending only on L and λ0. In particular, (λ0, 0) is not a
bifurcation point from the curve of trivial solutions of Φ(λ, u) = 0.

Proof. Since there exists (I − L(λ0))−1 ∈ Hf (E), it follows by Remark 3.2.2 that

‖(I − L(λ0))−1u‖≤ ‖(I − L(λ0))−1‖‖u‖ for all u ∈ E. (3.2.3.1)

Moreover, it follows from the continuity of λ 7→ L(λ) that it is possible to take a ξ > 0
sufficiently small such that

‖L(λ)− L(λ0)‖< 1

3‖(I − L(λ0))−1‖
for all λ ∈ (λ0 − ξ, λ0 + ξ) (3.2.3.2)

The fact thatH(λ, u) = o(‖u‖) uniformly in each bounded interval of parameters λ implies
that there exists a ball B ⊂ E centered at zero such that

‖H(λ, u)‖≤ ‖u‖
3‖(I − L(λ0))−1‖

, ∀ λ ∈ [λ0 − ξ, λ0 + ξ], ∀ u ∈ B.

Now, suppose that there exists λ ∈ [λ0 − δ, λ0 + δ] and u ∈ E such that

Φ(λ, u) = 0.

Then,

‖u‖ = ‖(I − L(λ0))−1(I − L(λ0))u‖
≤ ‖(I − L(λ0))−1‖‖(I − L(λ0))u‖
≤ ‖(I − L(λ0))−1‖‖[I − (L(λ0)− L(λ))u]− L(λ)u‖
≤ ‖(I − L(λ0))−1‖‖[I − (L(λ0)− L(λ))u]− (Φ(λ, u)−H(λ, u))‖
≤ ‖(I − L(λ0))−1‖‖(u− Φ(λ, u)) + (L(λ)− L(λ0))u+H(λ, u)‖
≤ ‖(I − L(λ0))−1‖‖(L(λ)− L(λ0))u+H(λ, u)‖
≤ ‖(I − L(λ0))−1‖‖L(λ)− L(λ0)‖‖u‖+‖(I − L(λ0))−1‖‖H(λ, u)‖

≤ 2

3
‖u‖
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which implies that u = 0 and the lemma is proved.

Corollary A. If L(λ) is a family of linear operators and λ0 6∈ r(L0), then the same
conclusion of Lemma B holds.

Proof. Indeed, if λ0 6∈ r(L0), then I − L(λ0) is injective and since L(λ) ∈ Hc(E), it
follows (in particular) that L(λ) is a compact linear operator and so I − L(λ0) admits a
continuous inverse due to Theorem 5.3.3. Consequently (I − L(λ0))−1 ∈ Hf (E).

Lemma C. If λ0 ∈ R is such that L(λ0) is a contraction, then the same conclusion of
Lemma B holds.

Proof. Lemma C is a corollary of the proof of Lemma B. Indeed, by Theorem 5.3.8, if
L(λ0) is a contraction, then it holds the inequality (3.2.3.1).

Remark 3.2.4. By Theorem 5.3.3, r(L0) is a subset of the spectre, and by Theorem
5.3.1, the spectre minus {0} is a discrete set. Hence, the set of all bifurcation points of
Φ(λ, u) = 0 is a discrete set as a consequence of Corollary A.

Observe that Corollary A gives us the necessary condition: if (λ0, 0) is bifurcation point
from the curve of trivial solutions of Φ(λ, u) = 0, then λ0 ∈ r(L0). This result assumes,
additionally to the general hypotheses under the operator L (presented in Chapter 1),
the hypothesis that L(λ) is a family of linear operators. Although, the following lemma
proves that this necessary condition also holds when the operator L satisfies only the
general hypothesis.

Lemma D. If (λ0, 0) is a bifurcation point from the curve of trivial solutions of Φ(λ, u) =
0, then λ0 ∈ r(L0).

Proof. Let (λ0, 0) be a bifurcation point from the curve of trivial solutions of Φ(λ, u) = 0.
Then there exists a sequence of solutions (λn, un) of Φ(λ, u) in R× (E \ {0}) such that

(λn, un)→ (λ0, 0).

Thus,
un = L(λn)un +H(λn, un) ∀ n

and by diviving by ‖un‖ we obtain

un
‖un‖

= L(λn)
un
‖un‖

+
H(λn, un)

‖un‖
. (3.2.3.3)

Observe that ∥∥∥∥L(λn)
un
‖un‖

− L(λ0)
un
‖un‖

∥∥∥∥ ≤ ‖L(λn)− L(λ0)‖→ 0, (3.2.3.4)

on the other hand, it follows from the compactness of the operator L(λ0) that there exists
some v ∈ E such that

L(λ0)
un
‖un‖

→ v up to a subsequence. (3.2.3.5)

By combining (3.2.3.4) and (3.2.3.5), we deduce that

L(λn)
un
‖un‖

→ v up to a subsequence.
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Now, since λn → λ0, it follows that (λn) is a bounded sequence and soH(λn, un)/‖un‖→ 0,
which implies that

un
‖un‖

→ v 6= 0

up to a subsequence, by (3.2.3.3). Consequently we obtain that v satisfies

v = L(λ0)v,

by passing to the limit when n→∞ in (3.2.3.3), as we wanted.

Definition 3.2.4 (Continuous branch of eigenvectors). Let A : E → E be a compact
operator such that A(0) = 0 with Fréchet derivative at zero A′(0). Assume that λ0 ∈ R be
a bifurcation point of Φ(λ, u) = 0, where we are identifying the operators L and H from
hypothesis H3) as L(λ) = λA′(0), H(λ, u) = λH(u) and H(u) = A(u)− A′(0)u with
H(u) = o(‖u‖). Consider ε > 0 small enough such that

(λ0 − ε, λ0 + ε) ∩ (r(L0) \ {λ0}) = ∅

and V be the subset of E constituted by the eigenvectors of the operator A that corresponds
to a characteristic value in (λ0 − ε, λ0 + ε). Assume that there exists a ball 0 ∈ B ⊂ E
such that each open neighbourhood U of u = 0 contained in B satisfies ∂U ∩ V 6= ∅. In
this situation we say that V form a continuous branch of eigenvectors corresponding to
the bifurcation point λ0.

Finally, we enunciate the bifurcation theorem of Krasnosel’skii.

Theorem 3.2.1 (Krasnosel’skii’s Theorem). If A : E → E is a compact operator with
Fréchet derivative A′(0) such that A(0) = 0, if λ0 ∈ r(L0) is of odd algebraic multiplicity,
then (λ0, 0) is a bifurcation point of Φ(λ, u) = 0, where we are identifying the operators
L and H from hypothesis H3) as L(λ) = λA′(0), H(λ, u) = λH(u) and
H(u) = A(u)− A′(0)u with H(u) = o(‖u‖).

Moreover, associated with λ0 there exists a continuous branch of eigenvectors of the
operator A.

Remark 3.2.5. Observe that

Φ(λ, u) = 0 ⇔ u− [L(λ)u+H(λ, u)] = 0

⇔ u− [λA′(0)u+ λH(u)] = 0

⇔ u− λ[A′(0)u+H(u)] = 0

⇔ u− λA(u) = 0

⇔ u = λA(u).

We will prove later that this theorem follows as a corollary of Theorem 3.2.2 (Global
Bifurcation Alternative of Rabinowitz).

3.2.4 Global bifurcation alternative of Rabinowitz

Since we established the modern concept of bifurcation, we are able to state the Global
bifurcation alternative of Rabinowitz. This name is attributed to Theorem 1.3 in [33]
(1971), that we will enunciated and proved and after this the proof of Krasnosel’skii’s
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bifurcation theorem (Theorem 3.2.1) will be obtained as a corollary of Rabinowitz result.
In the next section we prove that the Global Bifurcation Alternative of Rabinowitz follows
as a corollary of Theorem 3.4 of the Theorem 1.3 of [33].

In [33], Rabinowitz established the following remarkable result.

Theorem 3.2.2 (Global bifurcation alternative of Rabinowitz). Suppose that the opera-
tors L : R → Hc(E) and H : R × E → E of (1.0.0.6) are given by L(λ) = λL, where L
is a compact linear operator and H : R× E → E is a compact operator. If λ0 ∈ r(L0) is
of odd algebraic multiplicity, then there exists a maximal continuum Cλ0 of S (connected
and closed subset of S) containing (λ0, 0) such that Cλ0 satisfies, at least, one of the
following (non-excluding) alternatives:

i) Cλ0 is unbounded,

ii) Cλ0 ∩ {(λ1, 0)} 6= ∅ for some λ1 6= λ0,

where
S := {(λ, u); Φ(λ, u) = 0, u 6= 0}

Remark 3.2.6. By "maximal" we mean that Cλ0 is not a proper continuum of any
continuum of S.

Remark 3.2.7. By "non-excluding" we mean that it is possible to occur simultaneously
the alternatives i) and ii).

Remark 3.2.8. In particular, Theorem 3.2.2 implies that λ0 is a bifurcation point because
Cλ0 is a continuum of S containing (λ0, 0).

Consider the following claim.

Corollary B. Theorem 3.2.1 of Krasnosel’skii is a corollary of Theorem 3.2.2 of Rabi-
nowitz.

Proof. Let L : E → E, H : R × E → E and λ0 as in Theorem 3.2.1 and let us denote
by Bε the open ball in E of radius ε and centered at (λ0, 0). Since H(λ, u) = λH(u)
and H(u) = 0(‖u‖) near u = 0, then Theorem 3.2.2 applies to the operator Φ(λ, u) =
u− [L(λ)u+H(λ, u)] and so there exists a maximal subcontinumm Cλ0 of SΦ containing
(λ0, 0) satisfying, at least, one of the alternatives i) and ii) of Theorem 3.2.2. Suppose
that the conclusion of Theorem 3.2.1 does not hold. Since λ0 is a bifurcation point, the
only possibility is that there is no continuous branch of eigenvectors of A associated to
the characteristic value λ0. The idea is to obtain a contradiction with the connectedness
of a certain subcontinumm of Cλ0 . Let δ > 0 such that

(λ0 − δ, λ0 + δ) ∩ (r(L0) \ {λ0}) = ∅.

Let Dλ0 6= {(λ0, 0)} be a proper continuum of Cλ0 , containing (λ0, 0), such that

projλDλ0 ⊂ (λ0 − δ, λ0 + δ). (3.2.4.1)

By the fact that there is no continuous branch of eigenvectors corresponding to λ0, it
follows that, independently on which of the two alternatives i) and ii) occurs, there exists
an open neighbourhood U of u = 0 such that

[(λ0 − δ, λ0 + δ)× U c] ∩ Dλ0 6= ∅ (3.2.4.2)
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and
∂U ∩ V = ∅, (3.2.4.3)

where V is the set of the eigenvalues of A that corresponds to some characteristic value
lying in the interval (λ0 − δ, λ0 + δ).

Observe that
[(λ0 − δ, λ0 + δ)× ∂U ] ∩ Dλ0 = ∅, (3.2.4.4)

on the contrary, if there would exist (λ, u) ∈ [(λ0 − δ, λ0 + δ)× ∂U ], then u 6= 0 because
U is a neighbourhood of u = 0 and

u = λA(u),

for some λ ∈ (λ0− δ, λ0 + δ), but since η < δ, it follows that u ∈ ∂U is an eigenvalue of A
corresponding to the characteristic value λ ∈ (λ0 − δ, λ0 + δ). By (3.2.4.3), this can not
happen and so we conclude that (3.2.4.4) is true. Thus,

(λ0, 0) ∈ Dλ0 ∩ [(λ0 − δ, λ0 + δ)× U ] 6= ∅

and
Dλ0 ∩ [(λ0 − δ, λ0 + δ)× U ]c 6= ∅,

because

∅
(3.2.4.2)

6= ([(λ0 − δ, λ0 + δ)× U c] ∩ Dλ0) ⊂ ([(λ0 − δ, λ0 + δ)× U ]c ∩ Dλ0)

and so by the connectedness of Dλ0 , it follows that

∅ 6= Dλ0 ∩ ∂ ([(λ0 − δ, λ0 + δ)× U ])

= Dλ0 ∩ {[∂(λ0 − δ, λ0 + δ)× U ] ∪ [(λ0 − δ, λ0 + δ)× ∂U ]}
= (Dλ0 ∩ [∂(λ0 − δ, λ0 + δ)× U ]) ∪ (Dλ0 ∩ [(λ0 − δ, λ0 + δ)× ∂U ])

but
Dλ0 ∩ [∂(λ0 − δ, λ0 + δ)× U ] = ∅,

by (3.2.4.1) and
Dλ0 ∩ [(λ0 − δ, λ0 + δ)× ∂U ] = ∅,

by (3.2.4.4). Thus we get the contradiction ∅ 6= ∅ and the Corollary A is proved.

Now, we will present a generalization of Theorem 3.2.2 whose the hypotheses are
inspired by the unilateral bifurcation result given by Theorem 1 of Dai and Feng [12]
(2019).

Theorem B (A type of Dai’s Theorem on a strip). Assume that λ0 ∈ r(L0) is isolated
such that

i(Φ(λ0 − η, · ), 0) 6= i(Φ(λ0 + ξ, · ), 0) (3.2.4.5)

for sufficiently small positive numbers ξ and η. Then there exists a continuum Cλ0 of

S := {(λ, u) ∈ I × (E \ {0}); Φ(λ, u) = 0}

containing (λ0, 0) such that Cλ0 satisfies, at least, one of the following (non-excluding)
alternatives:
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i) Cλ0 is unbounded;

ii) Cλ0 intercepts some (d, u) ∈ I × E where d is an extremity of the interval I (if I
possesses some extremity) for some u ∈ E or (not exclusive) intercepts some (λ̂, 0)
with λ̂ ∈ I.

In order to prove that Theorem 3.2.2 is a corollary of Theorem B, consider the following
lemma.

Lemma 3.2.2. Let L : R×E → E and H : R×E → E as in Theorem 3.2.2. If λ0 ∈ r(L0)
is off odd algebraic multiplicity, then there exists a neighbourhood (λ0−δ, λ0 +δ) such that

i(Φλ, 0) = −i(Φλ, 0)

for all λ0 − δ < λ < λ0 < λ < λ0 + δ.

Proof. The idea is to use the Leray-Schauder Formula. Let δ < dist(r(L0) \ {λ0}, {λ0})
and λ0− δ < λ < λ0. Then λ 6∈ r(L0), in other words, the operator T : E → E defined by

T (u) = Φ(λ, u) = Φλ(u)

is such that the operator
T ′(0) = λL

does not admits 1 as a characteristic value. By Theorem 2.2.2, it follows that

i(Φλ, 0) = (−1)β

where β is the sum the algebraic multiplicities of the characteristics values of λL lying in
the interval (0, 1), clearly, this corresponds to the sum of the characteristic values of the
operator L lying in the interval (0, λ).

On the other hand, since the only characteristic value of L lying in (λ, λ) is λ0, we
deduce that

i(Φλ, 0) = (−1)β+m(λ0) where m(λ0) := algebraic multiplicity of λ0,

by applying Theorem 2.2.2 to the operator S : E → E defined by

S(u) = Φ(λ, u) = Φλ(u).

Since m(λ0) is odd, it follows that

i(Φλ, 0) = −i(Φλ, 0) 6= 0

and the lemma is proved.

Let L : R × E → E and H : R × E → E as in Theorem 3.2.2. By taking I = R
in Theorem B, we see that λ0 ∈ r(L0) is isolated and, by Lemma 3.2.2 the hypothesis
(3.2.4.5) is also satisfied and so we just proved the following corollary.

Corollary C. The Global Bifurcation Alternative of Rabinowitz (Theorem 3.2.2) is a
corollary of Theorem B.

In the next section we will prove Theorem A, which is our main result and it is a
generalization of Theorem (3.2.4) which requires just compactness of the operator K :
I × E → E, instead of requiring K to have some homogeneous part.



68CHAPTER 3. GLOBAL BIFURCATION FOR GENERAL COMPACT PERTURBATIONS OF THE IDENTITY

3.3 Further results and approaches that "bifurcate" from
Rabinowitz theorem

There are a lot of results that "bifurcates" from Theorem 1.3 of [33] in the sense that their
approaches are based on the main argument of the proof of Theorem 1.3, that is, by using
the "index sign change" and taking a convenient open neighbourhood of the bifurcation
point candidate, it is deduced the global alternatives of bifurcation. All of these results
deals with an operator G : R× E → E in the form

G(λ, u) = L(λ)u+H(λ, u) (3.3.0.1)

where

H(λ, u) = o(‖u‖) near u = 0, uniformly on each compact interval of λ. (3.3.0.2)

and the operator L is well behaved in some sense. For example, Lopez Gomez in [30]
(2001), studied the existence of bifurcation at a point (λ0, 0) for the problem

G(λ, u) = 0, (3.3.0.3)

by assuming the hypotheses

HL1) λ 7→ L(λ) is a Fredholm operator with index 0 for each λ near λ0,

HL2) λ 7→ L(λ) is a Cr function,

HL3) (λ, u) 7→ H(λ, u) is a Ck function,

where r ≥ n and k ≥ m and the numbers m and n can assume any value in the set
{0, 1, 2}, depending on the result. Dai and Zhaosheng Feng [12] (2019), established some
bifurcation results for the problem of solving

G(λ, u) = u,

by assuming

HD1) L(λ) ∈ Hc(E) for all λ.

HD2) λ 7→ L(λ) is a continuous function.

So these results do not play a crucial role in the development of the main idea of this
text, which is to obtain (as we will do in the next section by presenting Theorem A) a
generalization of the Global Bifurcation Alternative of Rabinowitz that applies to general
compact perturbations of the identity Φ : I × E → E defined by Φ(λ, u) = u −K(λ, u),
where K : I × E → E is a compact operator and I is a closed interval with non-empty
interior, in order to deduce the existence of global bifurcation for a class of quasilinear
problems. However, we will comment these results to show how broad can be the bifur-
cation theory.

Dancer proved that the statement of Theorem 3.2.2 of Rabinowitz is actually stronger,
in Theorem 1 of [15] (1974). Later in [30] (2001), Lopez Gomez formulated a more general
version of Dancer’s theorem in therms of the index sign change. So we will enunciate the
refinement of Lopez Gomez. In this case, the hypotheses HL1) and HL2) are substituted
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by the following.
Let J be an interval (possibly unbounded) and assume that L(λ) : E → E is an

operator in the form
L(λ) := I −K(λ),

where K(λ) is a continuous family of compact operators for each λ lying in J . Also
we assume that H : J × E → E is a compact operator on bounded sets satisfying the
hypotheses HL3) with k = 0, and (3.3.0.2) uniformly in any compact interval of J . Let
us denote

r(L) = {λ ∈ (a, b); dimN [L(λ)] ≥ 1}.

Under these conditions, Theorem 6.3.1 of [30] states that the following result holds for
the problem of solving (3.3.0.3).

Theorem 3.3.1. Assume that r(L) is discrete in J and let C be a bounded component of
S := {(λ, u) ∈ J × (E \ {0});G(λ, u) = 0}. Then, the set

D := C ∩ {(λ, 0) : λ ∈ r(L)}

is finite, possibly empty. Moreover, if for some natural number N ≥ 1, there exist
λ1, . . . , λN ∈ r(L) for which

D = {(λ1, 0), . . . , (λN , 0)}

then
N∑
j=1

P (λj) = 0. (3.3.0.4)

The object P in equation (3.3.0.4) is a function called parity map, assumes the values
1 and −1 and another properties that leads Lopez Gomez to prove the following corollary
of Theorem 3.3.1.

Corollary 3.3.1. Assume J = R and r(L) discrete. Let λ0 ∈ r(L) such that i(K(λ), 0)
changes sign as λ crosses λ0. Let C denote the component of S emanating from (λ, 0) at
(λ0, 0), whose existence is guaranteed by Theorem 6.2.1 of [30]. Then, one of the following
non-excluding options occurs. Either

i) C is unbounded in R× E.

ii) There exists λ1 ∈ r(L) \ {λ0} such that (λ1, 0) ∈ C.

We quote another Rabinowitz’s result that is widely studied in the literature, which is
called the unilateral global bifurcation. So consider (3.3.0.1) in the context of [33], that
is, L(λ) := λL, where L is a linear operator, H is an operator satisfying (3.3.0.2) and
consider the problem of solving G(λ, u) = u. Additionally to the hypothesis of Theorem
3.2.2, by assuming that λ0 is a simple eigenvalue, that is, has geometric multiplicity equals
1, Theorem 1.25 of [33] states that

Theorem 3.3.2 (Theorem 1.25 of [33]). Cλ0 posseses a subcontinumm in K+
ξ,η ∪{(λ0, 0)}

and in K−ξ,η ∪ {(λ0, 0)} each of which intercept (λ0, 0) and ∂Bζ for all ζ > 0 sufficiently
small.
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where Cλ0 is the maximal continuum which the existence is guaranteed by Theorem
1.3 of [33] and

K+
ξ,η = {(λ, u) ∈ E; |λ− λ0|< ξ, |〈`, u〉|> η‖u‖},

K−ξ,η = {(λ, u) ∈ E; |λ− λ0|< ξ, |〈`, u〉|< −η‖u‖}

where ` ∈ E ′ is the corresponding eigenvector of the adjoint operator LT of L.
Moreover, it derives from these two subcontinua, two correspondent subcontinua C+

λ0

and C−λ0 , which satisfies the following result.

Theorem 3.3.3 (theorem 1.27 of [33]). Each of C+
λ0

and C−λ0 either satisfies the alterna-
tives of Theorem 3.2.2 or (iii) contains a pair of points (λ, u), (λ,−u), u 6= 0.

Also

Theorem 3.3.4. Each of C+
λ0

and C−λ0 intercepts (µ, 0) and either

i) is unbounded, or

ii) intercepts (λ1, 0), where λ0 6= λ1 ∈ r(L).

Although, [14] (2002) as well as López-Gómez in [30] (2001), pointed out that the
theorems 3.3.3 and 3.3.4 contain gaps. López-Gómez solved the gap by presenting a more
precise (and weaker) conclusion of Theorem 1.27 that actually holds. So let us enunciate
it.

Let Y be a closed subspace of U such that

U = N [L(λ0)]⊕ Y.

Under the same assumptions of Theorem 3.3.1, Theorem 6.4.3 of [30] states that

Theorem 3.3.5. Assume that r(L) is discrete, λ0 ∈ r(L) satisfies

N [L(λ0)] = span[ϕ0]

‖ϕ0‖ = 1

and the index i(K(λ), 0, 0) changes sign as λ crosses λ0. Then, each of the components,
C+ and C−, either satisfies the alternatives of Corollary 6.3.2 or contains a point

(λ, y) ∈ R× (Y \ {0})

where Y is the complement of N [L(λ0)] in U .

Moreover, Dancer exhibited a counterexample of Theorem 3.3.4, in [15].
The idea of working only with the hypothesis of the index sign change, in order to work

around with the requirement of Theorem 1.3 of [33] for G to have a linear part, carries its
power in allowing the deduction of the existence of global bifurcation for general compact
perturbations of the identity, although, even by keeping the assumption about the operator
G to have a linear part, López-Gómez [30] contributed with some results by adopting an
approach based on a "generalized algebraic multiplicity". Among them we will enunciate
Theorem 5.6.2 of [30]. Before it, let us introduce the following concept which was adopted
by Lopez Gomez, in [30], besides the usual concept of bifurcation point.
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Definition 3.3.1 (Nonlinear eigenvalue). We say that λ0 is a nonlinear eigenvalue of
L(λ) if (λ0, 0) is a bifurcation point of (3.3.0.3) from the curve of trivial solutions for any
Ck function (for some k ≥ 2) (λ, u) 7→ H(λ, u).

Theorem 3.3.6. Assume that the function λ 7→ L(λ) satisfies HL1), HL2) with r ≥ 1,
the operator L(λ) has the form

L(λ) := I −K(λ)

where K(λ) is a family of compact linear operators and that 1 ≤ ν < r, where ν is the
order of λ0 as an element of r(L). Under these conditions, there exists

η ∈ {−1, 1}

such that
i(K(λ), 0) = ηsgn(λ− λ0)χ[L(λ);λ0] (3.3.0.5)

for each 0 < |λ− λ0|< δ. In particular,

P [L(λ);λ0] = 1

if and only if
χ[L(λ);λ0] ∈ 2N + 1.

Therefore, λ0 is a nonlinear eigenvalue of L(λ) if, and only if, the parity of the crossing
number of L(λ) at λ0 is 1. In other words, λ0 is a nonlinear eigenvalue of L(λ) only if an
odd number of eigenvalues of L(λ) cross the imaginary axis in C as λ passes through λ0.

The number χ[L(λ);λ0] is a generalization of the concept of algebraic multiplicity and
P [L(λ);λ0] is a function called "parity of the crossing number", these are two concepts of
the main objects studied by Lopez Gomez in [30].

By weakening the linearity hypothesis under the operator L(λ) by assuming the gen-
eral assumptions of Chapter 3, Guowei Dai in [11] (2015) and in [12] (2019), together
with Zhaosheng Feng, established a unilateral bifurcation existence result analogous to
Theorem 3.3.2.

We point out that the Theorem A is not the only one in the literature that proves
the existence of global bifurcation by requiring just compactness of the operator K and
some information about the index (or degree), in fact, Fleckinger [19] (2005) proved the
following theorem.

Theorem 3.3.7. Let E be a real Banach space, K : R×E → E a compact operator and
(λ0, u0) a solution of (3.3.0.3). Suppose U ⊂ E is an open bounded set such that u0 ∈ U
and

i) for fixed λ0 there is no other solution in U,

ii) deg(I −K(λ0, ·), U, 0) 6= 0.

Then there exists a continuum C+ ⊂ [λ0,∞)× E of solutions of K(λ, u) = 0 with

(λ0, u0) ∈ C+

satisfying one of the following two alternatives holds:
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a) C+ is unbounded;
or

b) C+ ∩ ({λ0} × E \ U) 6= ∅.

Out of the general context, that is, when K is the solution operator of some problem
involving a specific differential operator as the p-laplacian for example, there are lot of
authors among which we cite Lee and Sim [26] (2006), Girg and Takáč, Dai and Ma [13]
and Yang et al. [37].

3.4 Global bifurcation for general compact perturba-
tions of the identity

Let us recall that the purpose of this chapter is to obtain a more general version of
Theorem 3.2.2 that applies for general compact perturbations of the identity Φ(λ, u) =
u − K(λ, u), without requiring K to have some linear part (as Theorem 3.2.2 does) or
some homogeneous part (as Theorem 3.2.4 does). For We will denote by Bε and Bε the
open balls in E := I × E and E of radius ε and centered at (λ0, 0) and 0, respectively,
where I ⊂ R is a closed (not necessarily bounded) interval.

So we will prove a type of Rabinowitz Theorem (Theorem 3.2.2) for problems like

Φ(λ, u) = 0,

where Φ : I × E → E is an operator defined by

Φ(λ, u) := u−K(λ, u),

K : I×E → E is an abstract compact operator and I is a closed interval (not necessarily
bounded) of R.

Let us define
Φλ(u) = Φ(λ, u)

for each (λ, u) ∈ I × E. We will denote by S the closure of the set

{(λ, u); Φ(λ, u) = 0, u 6= 0}.

By int(I) (int(I × E)) we denote the interior of I (I × E) in the topology of R (R× E).
Consider the following result.

Theorem A (A type of Rabinowitz Theorem in a strip). Let E be a Banach space, I
a closed interval (not necessarily bounded) with non empty interior, K : I × E → E an
abstract operator and λ0 ∈ int(I) satisfying the following hypothesis:

1) K is a compact operator;

2) there exists an interval (a, b) ⊂ I such that

[((a, b)× {0}) \ {(λ0, 0)}] ∩S = ∅; (3.4.0.1)

3)
i(I −K(λ0 − η, · ), 0) 6= i(I −K(λ0 + ξ, · ), 0) (3.4.0.2)

for η and ξ positive numbers small enough.



3.4. GLOBAL BIFURCATION FOR GENERAL COMPACT PERTURBATIONS OF THE IDENTITY73

Then there exists a continuum Cλ0 of S containing (λ0, 0) such that Cλ0 satisfies, at least,
one of the following (non-excluding) alternatives:

i) Cλ0 is unbounded,

ii) Cλ0 intercepts some (d, u) ∈ I × E where d is an extremity of the interval I (if I
possesses some extremity) for some u ∈ E or (not exclusive) intercepts some (λ1, 0)
with λ1 ∈ I.

Remark 3.4.1. By using the argument that was used to prove Corollary B, it follows that
Theorem A generalizes Theorem 3.2.2 when we take I = R in the hypothesis Theorem A.

Idea of the proof: The argument is proving by absurd. First, the hypothesis (3.4.0.1)
combined with the compactness of K guarantees that if (λ0, 0) is not a bifurcation point,
then Φ(λ, u) : [λ0 − δ, λ0 + δ]×Bρ0 → E is a admissible homotopy for t near λ0 and that
for each λ ∈ [λ0,−δ, λ0 + δ], u = 0 is an isolated solution of Φλ(u) = 0. By the invariance
under homotopy,

i(Φ(λ− η, · ), 0) = deg(Φ(λ− η, · ), Bρ0 , 0)

= deg(Φ(λ+ ξ, · ), Bρ0 , 0)

= i(Φ(λ+ ξ, · ), Bρ0 , 0)

but this contradicts (3.4.0.2). So (λ0, 0) is a bifurcation point.
This fact ensures the existence of a maximal continuum Cλ0 of S containing (λ0, 0).

Then we suppose by absurd that this continuum does not satisfies none of the alternatives
i) or ii). Since i) is not satisfied, we can take a bounded neighbourhood O of Cλ0 . On
the other hand, it follows from the assumption that Cλ0 does not satisfies ii) that O can
be taken such that O ⊂ int(I × E). Moreover, by using a result about "separation of
compact sets" O can be taken such that ∂O ∩S = ∅.

Finally, by the fact that Cλ0 does not intercepts the curve {(λ, 0);λ ∈ I \ {λ0}}, we
can deduce that

deg(Φθ,Oθ, 0)

is constant for all θ ∈ [λ0− δ, λ0 + δ], due to Theorem 2.2.1 for a certain small δ > 0, but
by using some properties of the degree and the hypothesis (3.4.0.2), one can deduce that

deg(Φλ,Oλ, 0) 6= deg(Φλ,Oλ, 0)

for certain λ, λ ∈ [λ0 − δ, λ0 + δ], which is a contradiction.
Before actually proving Theorem A, we need the following lemmas.

Lemma 3.4.1. Let Z be a compact metric space and A and B be disjoint closed subsets
of Z. Then either there exists a continuum of Z intersecting both A and B or

Z = ZA ∪ ZB,

where ZA and ZB are two disjoint compact subsets of Z containing A and B, respectively.

Proof. See [36].

Lemma 3.4.2. Under the conditions of Theorem 3.4, (λ0, 0) ∈ S.

Proof. Suppose that (λ0, 0) 6∈ S.
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Claim. Let 0 < δ < min{λ0 − a, b − λ0} such that (λ0 − δ, λ0 + δ) ∈ int(I). Then there
exists ρ0 > 0 such that

u ∈ Bρ0 , Φν(u) = 0⇒ u = 0 ∀ ν ∈ [λ0 − δ/2, λ0 + δ/2].

In particular, for each ν ∈ [λ0 − δ/2, λ0 + δ/2], u = 0 is an isolated solution of Φν = 0,
consequently

i(Φ(ν, ·), 0) = deg(Φ(ν, ·), Bρ0 , 0) for all ν ∈ [λ0 − δ/2, λ0 + δ/2].

Proof. In fact, suppose by absurd that the claim is false. Then there exist a sequence (νn)
in [λ0− ε0/2, λ0 + ε0/2], a decreasing sequence (ρn) of positive numbers that converges to
zero and a sequence (un) in Bρn \ {0} satisfying

un −K(νn, un) = Φνn(un) = 0 ∀ n.

Since (νn) is bounded, there exists

ν ∈ [λ0 − δ/2, λ0 + δ/2]

such that
νn → ν up to a subsequence

and so (un, νn) → (0, ν) up to a subsequence. Moreover, un 6= 0, hence (ν, 0) ∈ S, but
this is impossible because

ν ∈ [λ0 − δ/2, λ0 + δ/2] ⊂ (a, b),

so the claim is proved.

By the claim, it follows that the homotopy

Φ|J : [λ0 − δ/2, λ0 + δ/2]×Bρ0 → E

(J := [λ0 − δ/2, λ0 + δ/2] × Bρ0) is admissible and by the invariance under homotopy
property of Leray Schauder degree (P3), we deduce that

deg(Φ(λ, ·), Bρ0 , 0) ≡ constant for λ ∈ [λ0 − δ/2, λ0 + δ/2]. (3.4.0.3)

Let ξ and η be small positive numbers such that λ0 + ξ, λ0 − η ∈ [λ0 − δ/2, λ0 + δ/2] and
satisfies (3.4.0.2). Then

i(Φ(λ0 − η, ·), 0) = deg(Φ(λ0 − η, ·), Bρ0 , 0) = deg(Φ(λ0 + ξ, ·), Bρ0 , 0) = i(Φ(λ0 + ξ, ·), 0),

which contradicts (3.4.0.2) and so the lemma is proved.

Lemma 3.4.3. Assume that the hypotheses of Theorem 3.4 hold. If does not exist a
continuum Cλ0 of S containing (λ0, 0) and satisfying, at least, one of the following (non-
excluding) alternatives

i) Cλ0 is unbounded,

ii) Cλ0 intercepts some (d, u) ∈ I × E where d is an extremity of the interval I (if I
possesses some extremity) for some u ∈ E or (not exclusive) intercepts some (λ1, 0)
with λ1 ∈ I,



3.4. GLOBAL BIFURCATION FOR GENERAL COMPACT PERTURBATIONS OF THE IDENTITY75

then, for each 0 < δ < min{λ0− a, b− λ0} such that (λ0− δ, λ0 + δ) ∈ int(I), there exists
a bounded open neighbourhood O ⊂ int(I × E) of (λ0, 0) such that

1) ∂O ∩S = ∅ and

2) |λ− λ0|< δ for any (λ, 0) ∈ O.

Proof. Suppose that none of the alternatives i) and ii) occurs. Let Cλ0 be the maximal
connected component subset of S that contains (λ0, 0) and note that Cλ0 is closed. Indeed,
Cλ0 is connected and since S is a closed set, it follows that Cλ0 ⊂ S and so the maximality
of Cλ0 implies that

Cλ0 ⊂ Cλ0 .

Thus, Cλ0 is a continuum of S which meets (λ0, 0). By hypothesis, this set does not verify
i), that is, Cλ0 is a bounded subset of E. We state that Cλ0 is a compact set. Indeed,
since K is continuous and Cλ0 ⊂ S, then

u = K(λ, u) ∀ (λ, u) ∈ Cλ0 . (3.4.0.4)

Let (λn, un) be a sequence in Cλ0 . Then

un = K(λn, un)

and by the compactness of K, the sequence un = K(λn, un) converges to some u ∈ E, up
to a subsequence, and by the boundedness of (λn), we have that λn converges for some
λ ∈ I, thus

(λn, un)→ (λ, u) up to a subsequence

and so (λ, u) ∈ Cλ0 ⊂ Cλ0 , which proves the compactness of Cλ0 .
Let δ < min{λ0 − a, b − λ0} such that (λ0 − δ, λ0 + δ) ⊂ int(I). Since Cλ0 does

not satisfies ii) as well and (3.4.0.1) holds, it follows that there exists a bounded open
neighbourhood Uδ ⊂ int(I×E) of Cλ0 (that is, a bounded open subset Uδ of E such that
Cλ0 ⊂ Uδ ⊂ int(I × E)) such that

Uδ contains no solutions (λ, 0) of Φ(λ, u) = 0 for |λ− λ0|≥ δ. (3.4.0.5)

Define
Z := Uδ ∩S

and observe that this set is not empty because it contains the point (λ0, 0). Also, Z is a
bounded closed subset of the set S, which implies by the compactness of Φ that Z is a
compact set. Moreover, the sets {

A := Cλ0 ,

B := ∂Uδ ∩S

are compact. Indeed, we just showed the compactness of A and since B is a bounded
closed subset of the set S, it follows by the compactness of Φ that B is compact. Indeed,
let (λn, un) be a bounded subsequence in B ⊂ S. Since Φ is continuous, it follows that

un = K(λn, un) for all n.

By the compactness of K, the sequence un = K(λn, un) converges up to a subsequence
and so (λn, un) converges up to a subsequence, in other words B is sequentially compact,
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but since E is a metric space, it follows that B is a compact set.
Observe also that there is no continuum of S linking A and B. In fact, suppose that

there exists a continuum D of S linking A and B. Then there exists p ∈ D ∩ B and so
p ∈ ∂Uδ. Since Uδ is a neighborhood of the compact set A, it follows that p 6∈ A = Cλ0 ,
and so Cλ0 is a proper subset of the continuum D ∪ Cλ0 of S, but this contradicts the
maximality of Cλ0 . So, Lemma 3.4.1 implies that there exists two compact sets ZA and
ZB containing A and B, respectively, satisfying

Z = ZA ∪ ZB

and
ZA ∩ ZB = ∅. (3.4.0.6)

Observe that ZA ⊂ Z = Uδ ∩S and so

ZA ⊂ Uδ (3.4.0.7)

and
ZA ⊂ S. (3.4.0.8)

By (3.4.0.8) and (3.4.0.6), it follows that

ZA ∩ ∂Uδ = ∅ (3.4.0.9)

and so (3.4.0.7) and (3.4.0.9) implies that

ZA ⊂ Uδ. (3.4.0.10)

Now, by combining (3.4.0.10) with (3.4.0.6) and the compactness of ZA, it is possible to
take a neighbourhood O of ZA such that

a) O ∩ ZB = ∅,

b) O ⊂ Uδ.

Observe that b) implies that

|λ− λ0|< δ ∀ (λ, 0) ∈ O. (3.4.0.11)

Moreover, it also satisfies
∂O ∩S = ∅. (3.4.0.12)

Indeed, suppose that there exists
q ∈ ∂O ∩S, (3.4.0.13)

then
q ∈ ∂O ⊂ O ⊂ Uδ ⊂ Uδ

(3.4.0.13)⇒ q ∈ Uδ ∩S = Z.

By a) and q ∈ ∂O, it follows that q 6∈ ZB. On the other hand q 6∈ ZA because ZA ⊂ O
and q ∈ ∂O, so this lead a contradiction because q ∈ Z = ZA ∪ ZB.

Finally, observe that

(λ0, 0) ∈ Cλ0 = A ⊂ ZA ⊂ O ⊂ Uδ

and so
O ⊂ int(I × E) is an open neighbourhood of (λ0, 0). (3.4.0.14)

So (3.4.0.11), (3.4.0.12) and (3.4.0.14) proves the statement of the theorem.
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Now we are able to prove Theorem 3.4.

Proof of Theorem 3.4. Suppose that does not exist Cλ0 as in Theorem 3.4 and let

0 < δ < min{λ0 − a, b− λ0}

such that (λ0 − δ, λ0 + δ) ∈ int(I) and O as given in Lemma 3.4.3.
Let us define

Oλ := {u ∈ E; (λ, u) ∈ O.}
In order to ensure the well definition of the Leray-Schauder degree of Φν for certain

parameters ν we will need the following claims.

Claim 3.4.1. For each λ0 < λ < λ0 + δ, there exists ρ1 > 0 such that it holds

u ∈ Bρ1 , Φν(u) = 0⇒ u = 0 ∀ ν ∈ [λ, λ0 + δ].

In particular, Φν(u) 6= 0 for all u ∈ ∂(Oν \Bρ0).

Proof. Suppose by absurd that the statement is false. Then there exists a sequence (νn)
in [λ, λ+ δ], a decreasing sequence (ρn) of positive numbers that converges to zero and a
sequence (un) in Bρn \ {0} such that

un −K(νn, un) = Φνn(un) = 0 ∀ n.

Since un → 0 and
νn → ν ∈ [λ, λ0 + δ] up to a subsequence,

we have that (ν, 0) is a bifurcation point, which contradicts hypothesis (3.4.0.1) because
ν ∈ [λ, λ0 + δ] and δ < min{b−λ0, λ0−a}, so the first statement of Claim 3.4.1 is proved.

Now, suppose that there exists ν ∈ [λ, λ0 +δ] and u ∈ ∂(Oν \Bρ0) such that Φν(u) = 0.
Observe that

u ∈ ∂(Oν \Bρ0)⇒ u 6= 0 (3.4.0.15)

and consequently
(ν, u) ∈ S.

The idea is to prove that
(ν, u) ∈ ∂O,

what would imply in a contradiction with the fact that ∂O ∩S = ∅.
Since u ∈ ∂(Oν \Bρ0), there exist sequences{

un ∈
[
Oν \

(
Bρ0

)]c
=
[
Oν ∩

(
Bρ0

)c]c
= Ocν ∪

(
Bρ0

)
,

vn ∈Oν \
(
Bρ0

)
= Oν ∩

(
Bρ0

)c (3.4.0.16)

that converges to u. We state that there exists, at most, a finite amount of indices n such
that un ∈ Bρ0 . Indeed, suppose that there exists a subsequence of (un) (which we will
denote in the same way) lying in Bρ0 and such that un → u. Then u ∈ Bρ0 , because this
is a closed set, so (ν, u) ∈ {ν} ×Bρ0 is a solution of Φν(u) = 0 and hence

u = 0

by the first statement of Claim 3.4.1, which contradicts (3.4.0.15) and we conclude that,
at most, a finite amount of indices n satisfies un ∈ Bρ0 . This fact together with (3.4.0.16)
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implies that there exists an infinite amount of indices n such that un ∈ Ocν , then u ∈ Ocν .
Now the convergence vn → u implies that u ∈ Oν , so we conclude that u ∈ ∂(Oν) and
consequently

(ν, u) ∈ ∂O

(see Remark 2.2.4), as we wanted. So the claim is proved.

Remark 3.4.2. Claim 3.4.1 also holds for each 0 < ρ′1 < ρ1.

Since O ⊂ int(I ×E) is a bounded set, then there exists λ∗ < λ0 − δ and λ∗ > λ0 + δ
such that [λ∗, λ

∗] ⊂ I and
(ξ, w) ∈ O ⇒ λ∗ < ξ < λ∗. (3.4.0.17)

Claim 3.4.2. There exists ρ0 > 0 such that it holds

Oν ∩Bρ0 = ∅,

for any ν ∈ [λ0 + δ, λ∗] given. In particular, Φν(u) 6= 0 for all u ∈ ∂(Oν \Bρ0).

Proof. Suppose that the statement is not true. Then there exists a sequence

(νn) in [λ0 + δ, λ∗],

a decreasing sequence (ρn) of positive numbers that converges to zero and a sequence (un)
in Oνn ∩Bρn . Since un → 0,

νn → ν ∈ [λ0 + δ, λ∗] up to a subsequence,

and un ∈ Oνn , it follows that there exists a sequence vn ∈ Oνn such that vn → 0. Hence
(νn, vn) is a sequence in O such that (νn, vn) → (ν, 0), which means that (ν, 0) ∈ O, but
this is impossible since the set O does not contain any pair (θ, 0) with |θ − λ0|≥ δ, by
item 2) of the statement of Lemma 3.4.3. So the first statement of Claim 3.4.2 is proved.

Now, suppose that there exists ν ∈ [λ0+δ, λ∗] and u ∈ ∂(Oν\Bρ0) such that Φν(u) = 0.
By i), Oν ∩Bρ0 = ∅ and so Oν \Bρ0 = Oν , thus

u ∈ ∂(Oν \Bρ0) = ∂Oν ⊂ Oν ,

implies
u 6∈ Bρ0 . (3.4.0.18)

Now, the fact that u ∈ ∂Oν implies that (ν, u) ∈ ∂O, together with (3.4.0.18) imply
(ν, u) ∈ S. So (ν, u) ∈ ∂O ∩ S = ∅, which is a contradiction and so the claim is
proved.

Remark 3.4.3. Claim 3.4.2 also holds for each 0 < ρ′0 < ρ0.

Let λ0 < λ < λ0 + δ and ρ1(λ), ρ0(λ) be the positive numbers given by Claim 3.4.1
and Claim 3.4.2. For each

0 < ρ′1(λ) < ρ1(λ) and 0 < ρ′0(λ) < ρ0(λ),

define
ρe(λ) := min{ρ′0(λ), ρ′1(λ)}.
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Claim 3.4.3. Let λ0 < λ < λ0 + δ, Ê := [λ, λ∗]× E and ρe := ρe(λ). The boundary

∂U (in Ê)

of the open set U := O \ ([λ, λ∗]×Bρe) does not have zeros of Φ.

Proof. Suppose, by contradiction that there exists a solution of Φ = 0 on ∂U. Then there
exists a sequence (αn, vn) ∈ U ∩ Ê that converges to (ν, u). Since

vn 6∈ Bρe , (3.4.0.19)

we deduce that
(ν, u) ∈ S.

The idea is to prove that
(ν, u) ∈ ∂O

that would imply the contradiction

(ν, v) ∈ S ∩ ∂O = ∅.

Since (αn, vn) ∈ O for all n, then
(ν, u) ∈ O

and ν ∈ [λ, λ∗] because (αn) is a sequence in the closed set [λ, λ∗].
We claim that (ν, u) 6∈ O. Indeed, suppose that (ν, u) ∈ O. Hence

u ∈ Oν (3.4.0.20)

and by the fact that (ν, u) ∈ ∂U, we deduce that there exists a sequence (ηn, wn) in Ê∩Uc

that converges to (ν, u). Observe that

Ê ∩ Uc = Ê ∩
[
O ∩ ([λ, λ∗]×Bρe)

c
]c

= Ê ∩
[
Oc ∪ ([λ, λ∗]×Bρe)

]
= [Ê ∩ Oc] ∪ [Ê ∩ ([λ, λ∗]×Bρe)] (3.4.0.21)

whence together with (3.4.0.21), (ηn, wn)→ (ν, u) ∈ O and that O is an open subset, we
obtain that there exists an n0 such that (ηn, wn) lies in Ê ∩ ([λ, λ∗]× Bρe) for all n ≥ n0,
consequently

u ∈ Bρe (3.4.0.22)

and combining it with (3.4.0.20) we deduce that

u ∈ Oν ∩Bρe ,

which by Claim (3.4.2) implies that

ν < λ0 + δ. (3.4.0.23)

So by (3.4.0.23) and (3.4.0.22), we deduce that u = 0, which is impossible due to vn → u,
and according to (3.4.0.19), vn 6∈ Bρe . That is (ν, u) 6∈ O and then (ν, u) ∈ ∂O as we
wanted and the claim is proved.
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Remark 3.4.4. For each λ0 − δ < λ < λ0, there holds three analogous claims to those
ones in 3.4.1, 3.4.2 and 3.4.3 above.

Since O is a neighbourhood of (λ0, 0), we can take a ball Bε ⊂ O. Let ξ < δ and
η < δ be the positive numbers such that

i(I −K(λ0 − η, · ), 0) 6= i(I −K(λ0 + ξ, · ), 0), (3.4.0.24)

whose the existence is guaranteed by the hypothesis. The hypothesis states that ξ and η
can be taken small enough, so we can assume that

(λ, 0), (λ, 0) ∈ Bε,

where λ := λ0 + ξ and λ := λ0 − η, then we can write

i(Φλ, 0) 6= i(Φλ, 0). (3.4.0.25)

Moreover, since the numbers ρe(λ) and ρe(λ) can be taken small enough (by remarks 3.4.2
and 3.4.3), we can assume that

{λ} ×Bρe(λ) ⊂ Bε and
{λ} ×Bρe(λ) ⊂ Bε

and consequently {
Bρe(λ) ⊂ Oλ,
Bρe(λ) ⊂ Oλ.

(3.4.0.26)

Furthermore, by the fact that ρe(λ) ≤ ρ1(λ) and ρe(λ) ≤ ρ1(λ), it follows that{
deg(Φλ, Bρe(λ), 0) = i(Φλ, 0),

deg(Φλ, Bρe(λ), 0) = i(Φλ, 0).
(3.4.0.27)

Since (3.4.0.26), then

Oλ \ ∂Bρe(λ) = Bρe(λ) ∪ (Oλ \Bρe(λ)),

Oλ \ ∂Bρe(λ) = Bρe(λ) ∪ (Oλ \Bρe(λ))

and by the excision property

deg(Φλ,Oλ, 0) = deg(Φλ,Oλ \ ∂Bρe(λ), 0),

deg(Φλ,Oλ, 0) = deg(Φλ,Oλ \ ∂Bρe(λ), 0)

and so by the additivity of deg

deg(Φλ,Oλ, 0) = deg(Φλ, Bρe(λ), 0) + deg(Φλ,Oλ \Bρe(λ), 0),

deg(Φλ,Oλ, 0) = deg(Φλ, Bρe(λ), 0) + deg(Φλ,Oλ \Bρe(λ), 0),

which by (3.4.0.27) can be rewritten as{
deg(Φλ,Oλ, 0) = i(Φλ, 0) + deg(Φλ,Oλ \Bρe(λ), 0),

deg(Φλ,Oλ, 0) = i(Φλ, 0) + deg(Φλ,Oλ \Bρe(λ), 0).
(3.4.0.28)
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Applying Claim 3.4.3 to

U = O \
(
[λ∗, λ]×Bρe(λ)

) (
U = O \ ([λ, λ∗]×Bρe(λ))

)
and Theorem 2.2.1 with the open set Ω = U and the interval

[
λ, λ∗

]
([ λ∗, λ ]), we obtain

deg(Φθ, Uθ, 0) ≡ constant in θ ∈
[
λ, λ∗

]
([ λ∗, λ ]).

Note that
Uθ = Oθ \Bρe(λ)

(
Oθ \Bρe(λ)

)
and so we can write{

deg(Φθ,Oθ \Bρe(λ), 0) ≡ constant in θ ∈
[
λ, λ∗

]
,

deg(Φθ,Oθ \Bρe(λ), 0) ≡ constant in θ ∈ [ λ∗, λ ] .
(3.4.0.29)

By the definition of λ∗ (λ∗) (see (3.4.0.17)), we have{
Oλ∗ = ∅,
Oλ∗ = ∅,

and so

deg(Φλ∗ ,Oλ∗ \Bρe(λ)) = 0,

deg(Φλ∗ ,Oλ∗ \Bρe(λ)) = 0

and by (3.4.0.29), we deduce that

deg(Φλ,Oλ \Bρe(λ)) = 0,

deg(Φλ,Oλ \Bρe(λ)) = 0.

So by using these two equalities in (3.4.0.28), we obtain

deg(Φλ,Oλ, 0) = i(Φλ, 0),

deg(Φλ,Oλ, 0) = i(Φλ, 0).

Since (3.4.0.24) holds, then

deg(Φλ,Oλ, 0) 6= deg(Φλ,Oλ, 0),

moreover, the fact ∂O ∩S = ∅ allows us to use Theorem 2.2.1 with the open set Ω = O,
in order to deduce that

deg(Φθ,Oθ, 0) ≡ constant in [λ0 − δ, λ0 + δ]. (3.4.0.30)

In particular,
deg(Φλ,Oλ, 0) = deg(Φλ,Oλ, 0)

which is a contradiction and the proof is complete.
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Remark 3.4.5. Observe that the condition that there exists some ζ > 0 such that

i(Φλ, 0) 6= i(Φλ, 0)

for every λ ∈ (λ0−ζ, λ0) and every λ ∈ (λ0, λ0+ζ), is equivalent to the condition (3.4.0.2).
Indeed, it is sufficient to prove that, under the hypotheses of Theorem A, there exists some
ζ > 0 such that

i(Φλ, 0) = constant ∀ λ ∈ (λ0, λ0 + ζ), (3.4.0.31)
i(Φλ, 0) = constant ∀ λ ∈ (λ0 − ζ, λ0), (3.4.0.32)

so this is what we will prove now.
Since O is a neighbourhood of (λ0, 0), it follows that there exists 0 < ε < δ such that

the ball Bε is contained in O. Take ζ < ε/2, consider θ and ν in (λ0, λ0 + ζ) with θ < ν
and let ρe(θ) be small enough such that ρe(θ) < ε/2. Thus,

deg(Φθ, Bρe(θ), 0) = i(Φθ, 0)

and since ν ∈ [θ, λ∗], we deduce that

deg(Φν , Bρe(θ), 0) = i(Φν , 0).

Note that since ρe(θ) < ε/2 and ν, θ ∈ (λ0, λ0 + ζ), then

‖(ν, u)− (λ0, 0)‖= (|ν − λ0|2+‖u‖2)1/2 = (ε2/2)1/2 ≤ ε ∀ u ∈ Bρe(θ),

‖(θ, u)− (λ0, 0)‖= (|θ − λ0|2+‖u‖2)1/2 = (ε2/2)1/2 ≤ ε ≤ ε ∀ u ∈ Bρe(θ),

which implies that
Bρe(θ) ⊂ Oν ∩ Oθ

and so, similarly as we done in the proof of Theorem A, we can deduce that

deg(Φθ,Oθ, 0) = deg(Φθ, Bρe(θ), 0)

and
deg(Φν ,Oν , 0) = deg(Φν , Bρe(θ), 0),

hence
i(Φν , 0) = i(Φθ, 0)

and we just proved (3.4.0.31). For analogy, it also holds (3.4.0.32).

3.5 Final comments of Chapter 3
In this final section, we will comment on the relevance of the most import results with
alphabetical naming.

The propose of the combination of Lemma A0 and Lemma A, helps understand the
meaning of the hypothesis about the continuity of the function λ 7→ L(λ), given in [12],
since in the paper it is not clear which topology is considered in the space where the
family of homogeneous operators (with homogeneity degree 1) {L(λ)} lies.

Lemma B generalizes the necessary condition given in Lemma 2.1 of [24] and makes
room for the study of the candidates of bifurcation point for problems Φ(λ, u) = 0 where Φ
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is an operator satisfying H1), H2) and H3). Lemma C provides an alternative necessary
condition for λ0 being a bifurcation point that is formulated for the case when L(λ0)
is a contraction and this is promising when we take into account that there exists a
wide study about contractions in the nonlinear functional analysis literature. The result
given by Lemma D, is a formalization of the statement "[...] the Leray-Schauder degree,
deg(I−L(λ), Br, 0), is well defined for arbitrary r−ball Br and λ 6∈ r(L0)[...]" done in the
introduction of [12] when it explains why the necessary condition "λ0 bifurcation point
implies λ0 ∈ r(L0)" also holds in the case where L(λ) is just a compact homogeneous
operator with homogeneity degree 1, instead of the strong condition of being L(λ) = λL,
where L is a linear compact operator, as the Rabinowitz and Kranosel’skii’s classic results
require.

Corollary B is a pure theoretical result, but it gives an interesting point of view of
the implication "Rabinowitz⇒ Krasnosel’skii" when we pay attention to the fact that its
proof is based just on topological arguments without the need of degree theory tools.

Finally, we must point out that our contribution in Theorem A lies in the fact that
its formulation includes closed intervals I ⊂ R different from R, since Theorem 11 of [3],
given by Arcoya, already states our claim for the case where I = R. This generalization
is interesting because it can happen in some problems that just some strip of values of
the bifurcation parameter λ is interesting. For example in the problem (Pλ), where the
strip of interest is I = [0,+∞).



Chapter 4

Global bifurcation from infinity for a
quasilinear Leray-Lions problem

Consider the following quasilinear elliptic problem{
−div(A(x, u)∇u) = f(λ, x, u) x ∈ Ω,

u = 0 x ∈ ∂Ω,
(Pλ)

where Ω ⊂ RN is a bounded open set with smooth boundary ∂Ω and

f : R× Ω× R+ → R
(λ, x, s) 7→ f(λ, x, s)

is a Carathéodory function, i.e.:

i) the function x 7→ f(λ, x, s) is measurable for all fixed (λ, s) ∈ R× R+;

ii) the function (λ, s) 7→ f(λ, x, s) is continuous for almost every x ∈ Ω.

Assume the following hypothesis about the signal of f .
Since we are interested in positive solutions, we will assume that

f(λ, x, 0) ≥ 0, ∀ λ ∈ [0,+∞). (f0)

We will also need the following additional hypothesis. There exists s0 > 0 and a function
C0 ∈ Lr(Ω) such that

f(0, x, s) ≥ C0(x) a.e. in Ω for every s ≥ s0. (f ∗0 )

Remark 4.0.1. The hypothesis (f ∗0 ) is not required in [4], but we will need it in order to
prove Claim 4.2.4.

Moreover, for some r > N/2, the function f satisfies the following condition: for every
bounded subset Λ in R and every s0 > 0, there exists a positive function C(x) ∈ Lr(Ω)
such that

|f(λ, x, s)|≤ C(x) for a.e. x ∈ Ω, ∀ λ ∈ Λ and ∀s ∈ [0, s0]. (f1)

For each (x, s) ∈ Ω×R+, A(x, s) is a symmetric matrix of order N whose coefficients

aij : Ω× R+ → R
(x, s) 7→ aij(x, s)

84



85

are Carathéodory functions. Moreover, we assume that there exist positive constants γ
and β satisfying

|A(x, s)| ≤ β, (A1)
A(x, s)ξ · ξ ≥ γ|ξ|2 (A2)

for each (s, ξ) ∈ R+ × RN and almost every x ∈ Ω.
In order to construct a solution operator to the problem (Pλ) we will also need the

following hypothesis about the matrix A.

|A(x, s)− A(x, t)|≤ ω(|s− t|) ∀ s, t ∈ R (A3)

where ω : R+ → R is an Osgood function.
As a space of solutions, we will adopt the space H1

0 (Ω). According to Section 5.4 of
Appendix, a weak solution for (Pλ) is a function u ∈ H1

0 (Ω) that satisfies∫
Ω

A(x, u)∇u∇vdx =

∫
Ω

f(λ, x, u)vdx, ∀v ∈ H1
0 (Ω),

where ∇ stands for the weak gradient. For a positive weak solution of (Pλ), we mean a
non-negative and non-zero function u ∈ H1

0 (Ω) that satisfies the above equation.
Now, one can ask what are the bifurcation point candidates of the problem (Pλ). To

answer it, consider the following explanation. Our approach will be to construct a solution
operator S of a certain auxiliar problem (see Section 4.1) that will allow us to formulate
a problem in the form

F (λ, u) = 0,

where F : [0,+∞)×E → E (see Remark 4.2.8) is a perturbation of the identity F (λ, u) =
u−S(λ, u), and E is one of the Banach spaces H1

0 (Ω) or C0(Ω). As in [1], we do not have
a priori that the operator S has a structure of the type S(λ, z) = L(λ)u+H(λ, u) with L
and H satisfying the general hypotheses H1), H2), H3) and HI) of Chapter 3, and so
we can not apply Lemma B to find the candidates. However, we can proceed analogously
with the formal argument given in the proof of Lemma D and this is what we will do
now. Suppose that (λ∞, 0) is a bifurcation point from infinity of F (λ, u) = 0. Then there
exists a sequence (λn, un) ∈ [0,+∞) × E such that un is a solution of (Pλ) for λ = λn,
with ‖un‖E→ +∞ and λn → λ∞. Hence∫

Ω

A(x, un)∇un∇vdx =

∫
Ω

f(λn, x, un)vdx ∀v ∈ H1
0 (Ω).

Analogously as done in the proof of Lemma D, we now divide the above equation by
‖un‖E ∫

Ω

A(x, un)∇
(

un
‖un‖E

)
∇vdx =

∫
Ω

f(λn, x, un)

‖un‖E
vdx ∀v ∈ H1

0 (Ω). (4.0.0.1)

The idea is passing to the limit the above equation so that we can relate λ and λ∞. We
warn that what we will do now is just a sketch and for details see Lemma 4.3.5 (Lemma
4.4.5) and Remark 4.4.2 (Remark 4.3.2) for the case where E = H1

0 (Ω) (E = C0(Ω)).
Since ‖un‖E→ +∞, one can infer that if un is a positive solution, then the sequence (un)
converges to +∞ a.e. in some subset Ω+ of Ω, with m(Ω+) > 0. These facts lead us
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naturally to the following additional hypotheses about the asymptotic behaviour of f and
A at s = +∞.

∃ lim
s→+∞

A(x, s) = A(x,+∞) a.e. in Ω. (A4)

There exists a positive function f ′∞ ∈ Lr(Ω) bounded away from zero a.e. such that

lim
s→+∞

f(λ, x, s)

s
= λf ′∞(x) (f2)

uniformly with respect to x ∈ Ω and for each fixed λ ∈ [0,+∞).

Remark 4.0.2. The hypotheses about f ′∞ being bounded away from zero is not required
in [4], but we will need it in order to prove Claim 4.2.4.

As a consequence of (f2), we have that the function s 7→ f(λ, x, s) is asymptotically
linear at infinity and uniformly in x ∈ Ω for each fixed λ ∈ R+.

In order to guarantee the existence of

lim
n→+∞

∫
Ω

f(λ, x, un)

‖un‖E
dx

when 0 ≤ ‖un‖E→ +∞ we will assume the following hypothesis.
There exist positive functions K1, K2 ∈ Lr(Ω) such that

|f(λ, x, s)− f(λ, x, s)|≤ |λ− λ|[K1(x)s+K2(x)] (f3)

for each λ, λ, s ∈ R+ and a.e. x ∈ Ω.
Note that the conditions (f1)-(f3) implies that for each bounded subset Λ ⊂ R given,

there exists positive functions C1, C2 in Lr(Ω) such that

|f(λ, x, s)|≤ C1(x)s+ C2(x) (4.0.0.2)

for all s ∈ R+, λ ∈ Λ and a.e. x ∈ Ω. Indeed, by (f3) and the triangular inequality

|f(λ, x, s)|≤ |f(0, x, s)|+|λ|[K1(x)s+K2(x)] (4.0.0.3)

for all λ, s ∈ R+ and a.e. x ∈ Ω. Since Λ is bounded set, we deduce that there exists a
constant D > 0 such that

|f(λ, x, s)|≤ |f(0, x, s)|+D(K1(x)s+K2(x)) (4.0.0.4)

for all λ ∈ Λ, s ∈ R+ and a.e. x ∈ Ω.
On the other hand, it follows from (f2) that there exists s0 > 0 such that∣∣∣∣f(0, x, s)

s

∣∣∣∣ ≤ ∣∣∣∣f(0, x, s)

s
− 0f ′∞(x)

∣∣∣∣ < 1, ∀s > s0 and ∀ x ∈ Ω. (4.0.0.5)

Hence
|f(0, x, s)|≤ s, ∀ s > s0 and x ∈ Ω (4.0.0.6)

which combined with (4.0.0.4) implies in (4.0.0.2).
Since f ′∞(x) 6≡ 0, Theorem 5.5.2 states that the eigenvalue problem with weight{

−div(A(x,+∞)∇u) = λf ′∞(x)u in Ω,
u = 0 in ∂Ω

(4.0.0.7)
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admits a first positive eigenvalue λ1(f ′∞), which we will denote by

λ∞ = λ1(f ′∞). (4.0.0.8)

The first positive eigenfunction associated with λ∞ will be denoted by ψ and considered
normalized from now on, that is, ‖ψ‖= 1, where ‖ψ‖:= ‖∇ψ‖2.

Now, going back to the problem of passing to the limit the equation (4.0.0.1), we state
that the normalized sequence (un/‖un‖E)n converges weakly to some positive z ∈ E and
so, by passing to the limit in equation (4.0.0.1), we deduce that z is a non trivial and non
negative solution of

− div(A(x,∞)∇z) = λf ′∞(x)z. (4.0.0.9)

By testing against ψ and using that λ∞ is an eigenvalue of (4.0.0.7), we obtain∫
Ω

λ∞f
′
∞zψ =

∫
Ω

A(x,∞)∇z∇ψ

=

∫
Ω

λf ′∞zψ,

hence λ = λ∞. So we conclude that the only λ ≥ 0 that is possibly a bifurcation point
from infinity of problem (Pλ) is λ = λ∞.

Finally, in order to construct the solution operator of the problem (Pλ), we will need
to extend the function f and the matrix A for negative values of s by

aij(x, s) = aij(x, 0) for every x ∈ Ω and every s < 0 (A−)

(note that the hypotheses (A1) and (A2) remains valid) and

f(λ, x, s) = f(λ, x, 0) for all x ∈ Ω, λ ∈ R, s < 0 (f−)

(note that f is still a Carathéodory function satisfying the hypothesis (f1)).
Therefore, it holds the two main theorems of this chapter which are the following.

Theorem C. Let A be a matrix satisfying (A−), (A1)-(A4) and f be a function satisfying
(f−), (f ∗0 ), (f0)-(f3). Then, it emanates from (λ∞, 0) a continuum Cλ∞ of

cl

({
(λ, z) ∈ [0,+∞)×H1

0 (Ω);
z

‖z‖2
is a positive solution of (Pλ)

})
.

Moreover, if
f(0, x, s) = 0 ∀ x ∈ Ω, ∀s ≥ 0, (4.0.0.10)

then Cλ∞ is unbounded.

Theorem D. Let A be a matrix satisfying (A−), (A1)-(A4) and f be a function satisfying
(f−), (f ∗0 ), (f0)-(f3). Then, it emanates from (λ∞, 0) a continuum Cλ∞ of

cl

({
(λ, z) ∈ [0,+∞)× C0(Ω);

z

‖z‖2
0

is a positive solution of (Pλ)

})
.

Moreover, if
f(0, x, s) = 0 ∀ x ∈ Ω, ∀s ≥ 0, (4.0.0.11)

then Cλ∞ is unbounded.
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Remark 4.0.3. These two theorems are based on the first two statements of Theorem 3.4
of [4], but it differs from the original in the following points.

i) Theorem C (repectively, Theorem D) provides the information that the continuum
Cλ∞ lies in [0,+∞) × H1

0 (Ω) (respectively, [0,+∞) × C0(Ω)). This additional in-
formation is motivated by question Q1) proposed in Chapter 1.

ii) The solutions of the continuum Cλ∞ of Theorem C are not necessarily continuous.

The next two subsections will be dedicated to enunciate and apply, to our problem,
Leray and Lion’s existence result given by Théorème 2 of [27] and Artola and Boccardo’s
comparison result given by Theorem 1 of [7].

4.1 The solution operator of the auxiliar problem
Q(u) = h

This section is dedicated to construct a solution operator S, which associates for each
(λ, u) ∈ [0,+∞)×H1

0 (Ω), solution v ∈ H1
0 (Ω) of the problem{

−div(A(x, v)∇v) = f(λ, x, u) x ∈ Ω,
u = 0 x ∈ ∂Ω.

4.1.1 Leray and Lions existence Result and Artola and Boccardo’s
comparisson result

Below, to convenience of the readers, we will enunciate the existence result given by
Théoreme 2 of [27]. Let Ω be a bounded open set in RN and V a closed subset of
Wm,p(Ω) satisfying the following conditions:

Wm,p
0 (Ω) ⊂ V ⊂ Wm,p(Ω), (HV1)

V ↪→ Wm−1,p(Ω) is a compact embedding, (HV2)

for 1 < p <∞.
We will say that V satisfies the hypothesis (HV) when (HV1) and (HV2) hold. Con-

sider a family of functions indexed by multi indexes α (of order N)

Aα : Ω× RN1 × RN2 → R
(x, η, ξ) 7→ Aα(x, η, ξ),

where N1 (respectively, N2) is the number of derivations Dβ in RN of order less than or
equal m− 1 (respectively of order equal m), and fix an order of multi indices

β1, β2, . . . , βN2 , |βi|= m.

Thus, each multi index α with |α|= m corresponds to a j ∈ {1, 2, . . . , N2} such that
α = βj. So for each ξ ∈ RN2 , we denote ξα = ξj := 〈ξ, ej〉.

Suppose that each Aα is Carathéodory function, i.e.:

i) the function (η, ξ) 7→ Aα(x, η, ξ) is continuous over RN1 × RN2 for a.e. x ∈ Ω;



4.1. THE SOLUTION OPERATOR OF THE AUXILIAR PROBLEM Q(U) = H 89

ii) the function x 7→ Aα(x, η, ξ) is measurable for all fixed (η, ξ) ∈ RN1 × RN2 .

We will use the following notation for the derivatives:

Dku := (Dβ1u,Dβ2u, . . . , DβJku),

where {Dβju; j = 1, 2, . . . , Jk} denotes the set of all u derivatives of order |βj|= k,

δu := (u,Du, . . . , Dm−1u),

Aα(x, δu,Dmv) : x 7→ Aα(x, δu(x), Dmv(x))

and
vα := Dαv

for each v ∈ V and each multi index α with |α|= m.
Moreover, we will need the following integrability hypothesis over Aα:

Aα(x, δu,Dmv) ∈ Lq(Ω) for all u, v ∈ Wm,p(Ω), where
1

p
+

1

q
= 1. (HIA)

In this case, it makes sense to define the operator

a(u,w) =
∑
|α|≤m

∫
Ω

Aα(x, δu,Dmu)Dαwdx (4.1.1.1)

for u,w ∈ V . Observe that by the linearity of the integral and derivation operator and
Hölder’s inequality, we obtain that the function w 7→ a(u,w) is linear and continuous for
each fixed u ∈ V . In other words,

a(u,w) = 〈A(u), w〉, A(u) ∈ V ′, (4.1.1.2)

where V ′ represents the topological dual space of V .
Given f ∈ V ′, we want to prove the existence of u ∈ V satisfying

A(u) = f (4.1.1.3)

or equivalently
a(u,w) = (f, w), ∀ w ∈ V. (4.1.1.4)

Theorem 4.1.1 (Théorème 2 [27]). Let V be a closed subset of Wm,p(Ω) (1 < p < +∞)
and Aα : Ω × RN1 × RN2 a family of functions such that (HV) and (HIA) are satisfied.
Assume also that the following hypotheses hold:

|a(v, v)|
‖v‖

→ ∞, as ‖v‖→ ∞, v ∈ V ; (4.1.1.5)

for η ∈ RN1 and ξ ∈ RN2, ∑
|α|=m

Aα(x, η, ξ)ξα
|ξ|+|ξ|p−1

→∞ if |ξ|→ ∞, (4.1.1.6)

for a.e. fixed x ∈ Ω and uniformly in each bounded subset of η in RN1, and∑
|α|=m

[Aα(x, η, ξ∗)− Aα(x, η, ξ)][ξ∗α − ξα] > 0 (4.1.1.7)

for a.e. x in Ω and ξ 6= ξ∗. Then, there exists a solution u ∈ V of (4.1.1.3).
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In order to construct the solution operator for the problem (Pλ), we will also need the
following comparison result by Artola and Boccardo [7] (1996).

Let Ω be a bounded open subset of RN , N ≥ 1 and consider a N×N matrix B(x, s) =
(bij(x, s)), 1 ≤ i, j ≤ N , where the coefficients bij(x, s) are Carathéodory functions such
that

bij(x, s) ∈ L∞(Ω× R) (4.1.1.8)

∃ γ, β > 0 : γ|ξ|2≤ B(x, s)ξξ ≤ β|ξ|2 ∀ ξ ∈ RN (4.1.1.9)

and
|B(x, s)−B(x, t)|≤ ω(|s− t|) ∀ s, t ∈ R (4.1.1.10)

where ω : R+ → R is an Osgood function, that is,

ω is non decreasing, ω(0) = 0 and
∫

0+

ds

ω(s)
= +∞.

Theorem 4.1.2. Let B be a matrix satisfying the above conditions and hi ∈ H−1(Ω),
i = 1, 2 functionals satisfying h1(x) ≤ h2(x) for a.e. x ∈ Ω. If ui ∈ H1

0 (Ω) is a solution
of

Q(ui) = hi for i = 1, 2, (4.1.1.11)

then u1(x) ≤ u2(x) for a.e. x ∈ Ω, where

Q : H1
0 (Ω) → H−1(Ω)
u 7→ Q(u) : H1

0 (Ω) → R
v 7→

∫
Ω
B(x, u)∇u∇v.

4.1.2 Applying Leray and Lions and Artola and Boccardo’s re-
sults for (Pλ)

The hypotheses (A1) and (A2) make the problem of finding a u ∈ H1
0 (Ω) satisfying

Q(u) = h, for each h ∈ H−1(Ω), (4.1.2.1)

a Leray-Lions type problem, where

Q : H1
0 (Ω) → H−1(Ω)
u 7→ Q(u) : H1

0 (Ω) → R
v 7→

∫
Ω
A(x, u)∇u∇v.

(4.1.2.2)

In other words, (4.1.2.1) satisfies the hypotheses of Théorème 2 of [27], so for each h ∈
H−1(Ω) given, the problem (4.1.2.1) admits a solution.

Moreover, by assuming the hypothesis

|A(x, s)− A(x, t)|≤ ω(|s− t|) ∀ s, t ∈ R (A3)

where ω : R+ → R is an Osgood function, we can deduce that such u is unique, after
applying Artola and Boccardo’s comparison result given in Theorem 4.1.2.

By combining existence and the uniqueness of solution for (4.1.2.1), we conclude that
there exists a well defined operator S := Q−1 : H−1(Ω) → H1

0 (Ω), which associates for
each h ∈ H−1(Ω) the only solution u ∈ H1

0 (Ω) of (4.1.2.1).
In what follows, we will prove our claim that the problem (4.1.2.1) satisfies the hy-

potheses of the existence result by Leray and Lions given by Theorem 4.1.1 and the
hypotheses of the comparison result by Artola and Boccardo given by Theorem 4.1.2 so
that we can prove the following lemma.
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Lemma 4.1.1 (Existence and uniqueness of weak solution). Let A be a matrix as defined
above satisfying (A1) and (A2). For each h ∈ H−1(Ω), there exists a unique u ∈ H1

0 (Ω)
satisfying

Q(u) = h. (4.1.2.3)

Proof. First, we have to show that (4.1.2.2) is well defined, that is, Q(u) ∈ H−1(Ω) for
each u ∈ H1

0 (Ω). Let u ∈ H1
0 (Ω). The linearity of the operator v 7→ Q(u)v follows directly

from the linearity of the integral and of the weak gradient operator. As a consequence of
the linearity, it is sufficient to prove the continuity of v 7→ Q(u)v at v = 0 ∈ H1

0 (Ω), but
this is a consequence of Hölder inequality, as we show below.

|Q(u)v|=
∣∣∣∣∫

Ω

A(x, u)∇u∇vdx
∣∣∣∣ ≤

∫
Ω

|A(x, u)∇u∇v|dx

(A1)

≤
∫

Ω

β|∇u||∇v|dx

≤ β

(∫
Ω

|∇u|2dx
)1/2(∫

Ω

|∇v|2dx
)1/2

= β

(∫
Ω

|∇u|2dx
)1/2

‖v‖.

Therefore, Q(u) ∈ H−1(Ω), thus (4.1.2.1) is well defined.
Now, let us set an appropriated V and Aα such that the problem (4.1.1.3) can be

formulated as (4.1.2.3). By taking m = 1, p = 2 and V = H1
0 (Ω), we obtain that (HV1)

is clearly satisfied and by Rellich Kondrachov’s Theorem, (HV2) also holds.
Observe that the choice m = 1 obliges N1 to be equal 1 and N2 to be equal N . So

define

Aα : Ω× R× R+ → R

(x, η, ξ) 7→


N∑
i=1

aij(x, η)〈ξ, ei〉 if α = ej, 1 ≤ j ≤ N,

0 otherwise.

Since aij is Carathéodory, it follows that Aα is Carathéodory. Moreover, since N1 = 1
we have δu = {u} and consequently

Aα(x, δu,Dmv) = Aα(x, u,Dv) =


N∑
i=1

aij(x, u)〈Dv, ei〉 if α = ej, 1 ≤ j ≤ N,

0 otherwise,

for each u, v ∈ V = H1
0 (Ω).

Thus the hypothesis (HIA) (for q = 2) is satisfied as a direct consequence of (A1) and
the fact that v ∈ H1

0 (Ω).
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The definition (4.1.1.1) says that

a(u, v) =
∑
|α|≤m

∫
Ω

Aα(x, δu,Dmu)Dαvdx

=
∑
|α|≤1

∫
Ω

Aα(x, δu,Du)Dαvdx

=

∫
Ω

A(x, u)∇u∇v, (4.1.2.1)

which means that our definition of Aα is exactly what it needed to be.
It remains to verify the hypotheses (4.1.1.5) and (4.1.1.6). The hypothesis (4.1.1.5) is

a consequence of (A2) as follows:

|a(u, u)|
‖u‖

=
1

‖u‖

∫
Ω

A(x, u)∇u · ∇u ≥ 1

‖u‖

∫
Ω

γ|∇u|2

≥ γ

‖u‖

∫
Ω

|∇u|2

≥ γ
‖u‖2

‖u‖
→ +∞ as ‖u‖→ ∞.

To verify the hypothesis (4.1.1.6) observe that by (A2),∑
|α|=m

Aα(x, η, ξ)ξα
|ξ|+|ξ|p−1

=
A(x, η)ξ · ξ

2|ξ|

≥ γ|ξ|2

2|ξ|
→ ∞ as |ξ|→ ∞.

Finally, the hypothesis (4.1.1.7) is verified as follows:

∑
|α|=m

[Aα(x, η∗, ξ)− Aα(x, η, ξ)][ξ∗α − ξα] =
N∑
j=1

N∑
i=1

[aij(x, η)ξ∗i − aij(x, η)ξi][ξ
∗
j − ξj]

=
N∑
j=1

N∑
i=1

[aij(x, η)(ξ∗i − ξi)][ξ∗j − ξj]

= A(x, η)(ξ∗ − ξ) · (ξ∗ − ξ)
≥ γ|ξ∗ − ξ|2> 0 if ξ∗ 6= ξ.

So we conclude that the hypotheses of Theorem 4.1.1 are satisfied and consequently
for each h ∈ H−1(Ω), there exists u ∈ H1

0 (Ω) such that Q(u) = h. So Lemma 4.1.1 is
proved.

In order to complete the construction of the solution operator of the problem (Pλ), it
remains to prove the uniqueness of the solution, which is obtained by applying Theorem
4.1.2 for the matrix B = A.

By (A1), it follows that (4.1.1.8) is satisfied, on the other hand the hypothesis (4.1.1.9)
is a consequence of (A1) and (A2). So, by assuming the hypothesis (4.1.1.10) over A, we
conclude that if u1, u2 ∈ H1

0 (Ω) are solutions of

Q(u) = h,
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then u1 ≤ u2 and u1 ≥ u2, due to Theorem 4.1.2 and the uniqueness of the solution of
the problem Q(u) = h is proved.

Once proved the existence and the uniqueness of solution for Q(u) = h, we can define
the solution operator S := Q−1 : H−1(Ω)→ H1

0 (Ω), which associates for each h ∈ H−1(Ω)
the only solution u ∈ H1

0 (Ω) of Q(u) = h.

4.2 Proof of Theorems C and D

4.2.1 The Homotopies

Let E be the one of the spaces H1
0 (Ω) or C0(Ω). To handle the problem of calculating the

index i(Φλ, 0, 0) for λ < λ∞, we will prove that the function

H1(τ, z) =

z − ‖z‖2
ES

(
τf

(
λ, x,

z

‖z‖2
E

))
if z 6= 0,

0 if z = 0

maps [0, 1]× E into E, the operator

(τ, z) 7→ ‖z‖2
ES

(
τf

(
λ, x,

z

‖z‖2
E

))
(4.2.1.1)

is compact in [0, 1]× E and

H1(τ, z) 6= 0 in [0, 1]× ∂BR(0),

for some R > 0 such that z = 0 is the only solution of Φλ = 0 in BR(0). So

H1 : [0, 1]×BR(0)→ E (4.2.1.2)

is an admissible homotopy and we can deduce that

i(Φλ, 0) = deg(H1(1, · ), BR(0), 0)

= deg(H1(0, · ), BR(0), 0)

= deg(I, BR(0), 0)

= 1.

On the other hand, for λ > λ∞ we will prove that the function

H2(t, z) =

z − ‖z‖2
ES

(
f

(
λ, x,

z

‖z‖2
E

)
+

tφ

‖z‖2
E

)
if z 6= 0,

−Ψt if z = 0

maps [0, 1]× E into E, where φ ∈ C∞0 (Ω) is a positive function bounded away from zero
and Ψt : Ω→ R is the unique weak solution of{

−div(A(x,∞)∇u) = tφ in Ω,

u = 0 on ∂Ω,
(4.2.1.3)
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the operator

(t, z) 7→ ‖z‖2
ES

(
f

(
λ, x,

z

‖z‖2
E

)
+

tφ

‖z‖2
E

)
(4.2.1.4)

is compact in [0, 1]× E and

H2(τ, z) 6= 0 in [0, 1]× ∂BR(0)

for some R > 0 such that z = 0 is the unique solution of Φλ = 0 in BR(0). So

H2 : [0, 1]×BR(0)→ E

is an admissible homotopy and we can deduce that

i(Φλ, 0) = deg(H2(0, · ), BR(0), 0)

= deg(H2(1, · ), BR(0), 0)

= 0,

where the last equality follows from the fact that ‖Ψ1‖E> 0. In fact, in this case it is
possible to assume R small enough such that

‖H2(1, z)−H2(1, 0)‖E> 0,

for all z ∈ BR(0), due to the continuity of H2, and so

H2(1, z) 6= 0, ∀ z ∈ BR(0). (4.2.1.5)

The compactness of the operators in (4.2.1.1) and (4.2.1.4) will be verified simultane-
ously by proving that, for each fixed λ ∈ [0,+∞), the operator

(τ, t, z) 7→ T (τ, t, z) =

‖z‖2
ES

(
τf

(
λ, x,

z

‖z‖2
E

)
+

tφ

‖z‖2
E

)
if z 6= 0,

Ψt if z = 0

is compact in [0, 1]× [0, 1]× E and maps [0, 1]× [0, 1]× E into E.
In order to prove the compactness of the operators T and K some estimates will be

useful and so we will compile them in the following subsection.

4.2.2 Estimates

From now on, we will adopt the following notations and conventions.

i) 1′ =∞ and ∞′ = 1.

ii) 2∗ = 2N/(N − 2), if N > 2 and 2∗ =∞, if N ≤ 2.

iii) If q is a positive number, then q∞ =∞.

Claim 4.2.1. H1
0 (Ω) ↪→ L2r′(Ω) is a compact embedding.
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Proof. Case N=1. In this case N = 1 < 2 and so item, by b) of Theorem 5.6.2 (Rellich
Kondrachov), we deduce that

H1
0 (Ω) ↪→ C0(Ω)

is a compact embedding. If r = 1, then 2r′ = 2∞ =∞, L2r′(Ω) = L∞(Ω) and

C0(Ω) ↪→ L∞(Ω)

is a compact embedding by Arzelà-Ascoli Theorem. On the other hand, if r > 1, then
2r′ < ∞ and, by Arzelà-Ascoli Theorem and the Lebesgue’s Dominated Convergence
Theorem, we deduce that

C0(Ω) ↪→ L2r′(Ω)

is a compact embedding. Thus, the case N = 1 is concluded.
Case N>1. Since r > N/2, it follows that r > 1 and so r′ > 1 is a positive number.
If N = 2, then 2∗ = ∞ and so 2r′ < 2∗, whence by item a) of Theorem 5.6.2 (Rellich
Kondrachov), we deduce that H1

0 (Ω) ↪→ L2r′(Ω) is a compact embedding. On the other
hand, if N > 2 then,

2r′ = 2

(
r

r − 1

)
= 2

(r − 1) + 1

r − 1

= 2

(
1 +

1

r − 1

)
< 2

(
1 +

1
N
2
− 1

)

= 2

(
1 +

2

N − 2

)
=

2N

N − 2
= 2∗,

whence by item a) of Theorem 5.6.2, H1
0 (Ω) ↪→ L2r′(Ω) is a compact embedding.

Claim 4.2.2. If r = 1, then (2r′)′ = r = 1. On the other hand, if r > 1 then (2r′)′ < r.

Proof. If r = 1 then 2r′ = ∞ and so (2r′)′ = 1 = r. Now, assume r > 1. Then
r′ = r/(r − 1) and

(2r′)′ =
2r′

2r′ − 1
=

2r
r−1

2r
r−1
− 1

=
2r

2r − (r − 1)
=

2r

r + 1
,

that is,

(2r′)′ =
2r

r + 1
. (4.2.2.1)

So
r > 1⇒ r + 1 > 2⇒ 2

r + 1
< 1⇒ (2r′)′ =

2r

r + 1
< r.
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Remark 4.2.1. Assume that N ≥ 2 and define

p :=
r + 1

2
> 1. (4.2.2.2)

Observe that
(2r′)′p

(4.2.2.2)
= (2r′)′

r + 1

2

(4.2.2.1)
=

2r

r + 1

r + 1

2
= r,

that is,
(2r′)′p = r. (4.2.2.3)

Moreover,

p′ =
p

p− 1
=

r+1
2

r+1
2
− 1

=
r + 1

r − 1

and so
(2r′)′p′

(4.2.2.1)
=

(
2r

r + 1

)
p′ =

2r

r + 1

r + 1

r − 1
= 2r′,

that is
(2r′)′p′ = 2r′. (4.2.2.4)

Lemma 4.2.1 (Estimate I). Let D ∈ Lr(Ω) be a positive function. If (un) is a bounded
sequence in H1

0 (Ω), then there exists h ∈ L2r′(Ω) such that

|D(x)un(x)|≤ D(x)h(x) a.e. in Ω. (4.2.2.5)

Moreover, Dh ∈ L(2r′)′(Ω).

Proof. Case N=1: Observe that N = 1 < 2 and so by item b) of Theorem 5.6.2 and the
boundedness of (un) in H1

0 (Ω), it follows that

‖un‖C0(Ω)≤M,

for some constant M < 0. Take then h ≡ M . So h ∈ L(2r′)′(Ω) and Dh = DM ∈ Lr(Ω).
By Claim 4.2.2, it follows that (2r′)′ ≤ r and since D ∈ Lr(Ω), we conclude that
Dh ∈ L(2r′)′(Ω).

Case N>1. Since r > N/2, then r > 1. As we saw in the proof of Claim 4.2.1, the
fact r > 1 implies that 2r′ < 2∗. By item a) of Theorem 5.6.2, it follows that un → u for
some u ∈ L2r′(Ω). As a consequence of Proposition 5.3.2, we deduce that

|un(x)|≤ h(x) a.e. in Ω

for some h ∈ L2r′(Ω). By multiplying by D(x) we obtain (4.2.2.5).
Now let us prove that Dh ∈ L(2r′)′(Ω). Observe that by (4.2.2.3) and (4.2.2.4), we

have {(
D(2r′)′

)p
= Cr

1(
h(2r′)′

)p′
= h2r′

and so, by using Hölder’s inequality for

D(2r′)′ and h(2r′)′
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with p and p′, we obtain∫
Ω

|Dh|(2r′)′ ≤
(∫

Ω

|D|r
)1/p(∫

Ω

|h|2r′
)1/p′

≤

[(∫
Ω

|D|r
) 1

r

] r
p
[(∫

Ω

|h|2r′
)1/(2r′)

] 2r′
p′

≤ ‖D‖r/pr ‖h‖
2r′/p′

2r′ <∞,

thus, Dh ∈ L(2r′)′(Ω) as we wanted.

Lemma 4.2.2 (Estimate II). Let D ∈ Lr(Ω) and z ∈ H1
0 (Ω). Then the following esti-

mates hold. ∫
Ω

|Dz|≤M‖D‖(2r′)′‖z‖2r′ , ∀ z ∈ H1
0 (Ω). (4.2.2.6)

In particular, as a consequence of Claim 4.2.1, we have∫
Ω

|Dz|≤M‖D‖(2r′)′‖z‖, ∀ z ∈ H1
0 (Ω). (4.2.2.7)

Proof. Case r=1: In this case 2r′ = ∞, which implies by Claim 4.2.1, that z ∈ L∞(Ω)
and so ∫

Ω

|Dz| ≤ ‖z‖∞
∫

Ω

|D|

= ‖z‖2r′

∫
Ω

|D|.

Moreover, by Claim 4.2.2, (2r′)′ ≤ r, whence∫
Ω

|D|≤M‖D‖(2r′)′ ,

for some constant M and the estimate (4.2.2.6) holds.
Case r>1: By Hölder’s inequality, we have∫

Ω

|Dz|≤ ‖D‖(2r′)′‖z‖2r′ .

Lemma 4.2.3 (Estimate III). Let D ∈ Lr(Ω). Then the following estimates holds∫
Ω

|Dzy|≤ ‖D‖r/(p(2r′)′)r ‖z‖2r′/(p′(2r′)′)
2r′ ‖y‖2r′ , ∀ z, y ∈ H1

0 (Ω). (4.2.2.8)

In particular, by Claim 4.2.1,∫
Ω

|Dzy|≤M‖D‖r/(p(2r′)′)r ‖z‖2r′/(p′(2r′)′)
2r′ ‖y‖, ∀ z, y ∈ H1

0 (Ω).
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Proof. Case N>1: Since r > N/2, it follows that r > 1 and so r′ > 1 is a positive
number and as we saw in the proof of Claim 4.2.1, the fact r > 1 this implies 2r′ < 2∗.
Since z ∈ H1

0 (Ω), it follows by Rellich Kondrachov’s Theorem that z ∈ L2r′(Ω). Now,
observe that {∣∣D(2r′)′

∣∣p = Dr,(
|z|(2r′)′

)p′
= |z|2r′ ,

due to (4.2.2.3) and (4.2.2.4), where p is the number defined in Remark 4.2.1. Thus, by
applying Hölder inequality to

D(2r′)′ and (z)(2r′)′

with p and p′, we deduce that∫
Ω

|Dz|(2r′)′ ≤
(∫

Ω

|D|r
)1/p(∫

Ω

|z|2r′
)1/p′

≤

[(∫
Ω

|D|r
) 1

r

] r
p
[(∫

Ω

|z|2r′
)1/(2r′)

] 2r′
p′

≤ ‖D‖r/pr ‖z‖
2r′/p′

2r′ .

Thus, (∫
Ω

|Dz|(2r′)′
) 1

(2r′)′

≤ ‖D‖r/(p(2r′)′)r ‖z‖2r′/(p′(2r′)′)
2r′ . (4.2.2.9)

On the other hand, by applying Hölder’s inequality for

|Dz| and |y|

with (2r′)′ and 2r′, we deduce that∫
Ω

|Dzy| ≤
(∫

Ω

|Dz|(2r′)′
) 1

(2r′)′

‖y‖2r′

(4.2.2.9)

≤ ‖D‖r/(p(2r′)′)r ‖z‖2r′/(p′(2r′)′)
2r′ ‖y‖2r′ ,

that is, the estimate (4.2.2.8) holds.
Case N=1: Observe that N = 1 < 2, so by item b) of Theorem 5.6.2, it follows that
z ∈ L∞(Ω), in particular z ∈ L2r′(Ω) and so we can proceed with the same arguments
used in the previous case in order to conclude that the estimate (4.2.2.8) holds.

4.2.3 Lr(Ω) and L(2r′)′(Ω)-boundedness of the function f

In order to prove the compactness of the operators T andK we will also need the following
claims.

Claim 4.2.3. Let Λ be a bounded subset of R and (un) a sequence in H1
0 (Ω). Then, there

exist positive functions C,C1 ∈ Lr(Ω) such that

|f(λ, x, un(x))|≤ C(x) + C1(x)u+
n ∀ x ∈ Ω, n ∈ N. (4.2.3.1)
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Proof. we deduce by (f1) that there exists some positive function C ∈ Lr(Ω) such that
for each x ∈ Ω such that un(x) ≤ 0,

|f(λ, x, un(x))|= f(λ, x, 0) ≤ C(x) (4.2.3.2)

for all λ ∈ Λ. On the other hand, if un(x) > 0 then, by (f1), there exists positive functions
C1, C2 ∈ Lr(Ω) such that

|f(λ, x, un(x))|= |f(λ, x, u+
n (x))|≤ C1(x)u+

n + C2(x).

So we conclude that (4.2.3.1) holds.

Claim 4.2.4. Let λ ≥ 0. Then there exists a function D ∈ Lr(Ω) such that

f(λ, x, s) ≥ D(x) a.e. in Ω,∀ s ≥ 0.

Proof. Case λ=0: By (f ∗0 ), we have that there exists some s0 > 0 such that

f(0, x, s) ≥ C0(x) a.e. in Ω ∀ s ≥ s0.

On the other hand by (f1), we deduce that there exist a positive function C ∈ Lr(Ω) such
that

f(0, x, s) ≥ −C(x) a.e. in Ω ∀ s ∈ [0, s0].

So the case λ = 0 is concluded.
Case λ > 0 : Since f ′∞ is bounded away from zero a.e., it follows that there exists υ > 0
such that

f ′∞(x) > υ a.e. in Ω.

Moreover, by (f2), there exists s1 > 0 such that

f(λ, x, s)

s
> λf ′∞(x)− λυ > 0, ∀ s ≥ s1, a.e. in Ω.

In particular,
f(λ, x, s) > 0, a.e. in Ω, ∀ s ≥ s1.

On the other hand, by (f1), there exist a positive function C ∈ Lr(Ω) such that

f(λ, x, s) > −C(x), a.e. in Ω, ∀ s ∈ [0, s1].

Thus, Case 2 is concluded.

4.2.4 Constructing the operator Φ

As we will see in this section, the choice of the space E as being H1
0 (Ω) or C0(Ω) depend

on the integrability of the function

f

(
λ, x,

z

‖z‖E

)
,

for a given z ∈ E.
Let q ∈ {r, (2r′)′} and define the space E by{

E(q) = H1
0 (Ω) if q = (2r′)′,

E(q) = C0(Ω) if q = r.
(4.2.4.1)
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Remark 4.2.2. Observe that if g ∈ Lq(Ω), then the function ϕ : H1
0 (Ω)→ R defined by

ϕ(g) : H1
0 (Ω) → R
v 7→

∫
Ω
gvdx,

is an operator in H−1(Ω), due to Claim 4.2.1. Moreover, ff q = r, one follows by Theorem
5.4.3 that

S(ϕ(g)) ∈ C0(Ω) = E(r).

Remark 4.2.3. In order to make the reading more comfortable, we will adopt the following
notation abuse

S(g(x)) := S(ϕ(g)),

for each g ∈ Lq(Ω).

Remark 4.2.4. By Hölder inequality, the linear application g 7→ ϕ(g) is a compact
operator.

Remark 4.2.5. Let u ∈ H1
0 (Ω), then u ∈ L2r′(Ω), by Claim 4.2.1. Combining Claim

4.2.3 and the second statement of Estimate I, we deduce that f(λ, x, u(x)) ∈ L(2r′)′(Ω).
Thus, by Remark 4.2.2, we have that ϕ(g) ∈ H−1(Ω).

Remark 4.2.6. Note that for each fixed (λ, u) ∈ R× C0(Ω) the function

x 7→ f(λ, x, u(x))

belongs to Lr(Ω), due to (f1) and so by Remark 4.2.2,

S(f(λ, x, u)) ∈ E(r) = C0(Ω).

By Remarks 4.2.6 and 4.2.5, we deduce that it makes sense to consider the perturbation
of the identity

F : [0,+∞)× E(q) → E(q)
(λ, u) 7→ u− S(f(λ, x, u).

Observe that u ∈ E(q) is a weak solution of (Pλ) if, and only if,

F (λ, u) = 0. (4.2.4.2)

By applying the change of variable introduced in Chapter 3 (see Remark 3.2.1) to the
operator F , we obtain the operator F̃ : [0,+∞)× E(q)→ E(q) defined by

F̃ (λ, z) =


z

‖z‖2
E(q)

− S

(
f

(
λ, x,

z

‖z‖2
E(q)

))
, if z 6= 0,

0 , if z = 0.

(4.2.4.3)

Remark 4.2.7. Fix λ ∈ [0,+∞), (τ, t, z) ∈ [0, 1] × [0, 1] × C0(Ω). Let φ ∈ C∞0 (Ω) be a
positive function bounded away from zero and Ψt as defined in (4.2.1.3). For z = 0, we
already know that T (τ, t, 0) = Ψt ∈ C0(Ω). If z 6= 0, it follows from (4.0.0.2) that∣∣∣∣τf (λ, x, z

‖z‖2
0

)
+

tφ

‖z‖2
0

∣∣∣∣ ≤ τ

(
C1(x)

z

‖z‖2
0

+ C(x)

)
+
t‖φ‖∞
‖z‖2

0

≤ τ

(
C1(x)

‖z‖0

‖z‖2
0

+ C(x)

)
+
t‖φ‖∞
‖z‖2

0

∈ Lr(Ω),

and so by Remark 4.2.2 we obtain that T (τ, t, z) ∈ C0(Ω), whence T is an operator that
maps [0, 1]× [0, 1]× C0(Ω) = E(r) into C0(Ω).
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As discussed in the motivation of Definition 3.2.3, for each bifurcation point from the
curve of trivial solutions of F̃ = 0, one corresponds a bifurcation point from the infinity
of the problem F = 0.

Since our approach is based on Leray-Schauder degree theory and Theorem 3.4, it is
appropriated to rewrite the equation F̃ (λ, z) = 0 in the form

z −K(λ, z) = 0

where K : [0,+∞)× E(q)→ E(q) is a compact operator.

Remark 4.2.8. Observe that (λ, z) ∈ [0,+∞)×E(q) is a solution of F̃ (λ, z) = 0 if, and
only if, (λ, z) is a solution of

Φ(λ, z) := z −K(λ, z) = 0,

where K : [0,+∞)× E(q)→ E(q) defined by

K(λ, z) =

‖z‖
2
E(q)S

(
f

(
λ, x,

z

‖z‖2
E(q)

))
if z 6= 0,

0 if z = 0,

is a compact operator (as we will see in the following two sections).
Let us define Φλ(z) := Φ(λ, z), for each (λ, z) ∈ [0,+∞)×E(q). In the next two sections,
we will prove the following statements

S1) i(Φλ, 0) = 1, for each 0 < λ < λ∞,

S2) i(Φλ, 0) = 0, for each λ > λ∞,

for each case E = E((2r′)′) = H1
0 (Ω) and E = E(r) = C0(Ω).

4.3 Compactness of the operators K and T for the case
E = H1

0(Ω)

Consider the Banach space E := H1
0 (Ω). In this section, we will prove the compactness of

the operators K and T , in order to deduce Theorem C. So let us start from the following
lemma.

Lemma 4.3.1. If (τn, zn) is a bounded sequence in [0, 1]× (E \ {0}) such that zn → 0 in
E, then

‖zn‖2τnf

(
λ, x,

zn
‖zn‖2

)
→ 0 in L(2r′)′(Ω), up to a subsequence. (4.3.0.1)

Proof. The idea is to use the Dominated Lebesgue’s Convergence Theorem. First, by
using (4.2.3.1) for un = zn/‖zn‖2, we get∣∣∣∣‖zn‖2τnf

(
λ, x,

zn
‖zn‖2

)∣∣∣∣ ≤ τn(C1(x)z+
n + ‖zn‖2C(x)). (4.3.0.2)
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So for n large enough we have∣∣∣∣‖zn‖2τnf

(
λ, x,

zn
‖zn‖2

)∣∣∣∣ ≤ τn(C1(x)z+
n + C(x))

≤ C1(x)z+
n + C(x)

because ‖zn‖→ 0. Since (zn) is bounded in E, it follows by Remark (5.4.1) that the
sequence (z+

n ) is bounded in E. By Estimate I (Lemma 4.2.1) it follows that

C1(x)z+
n (x) ≤ C1(x)h(x) a.e. in Ω,

for some h ∈ L2r′(Ω) and C1h ∈ L(2r′)′(Ω). Thus,∣∣∣∣‖zn‖2τnf

(
λ, x,

zn
‖zn‖2

)∣∣∣∣ ≤ C1(x)h+ C(x). (4.3.0.3)

By Claim 4.2.2, it follows that (2r′)′ ≤ r and so C1h+C ∈ L(2r′)′(Ω) and the domination
hypothesis is verified.

Now, let us prove the hypothesis about the convergence a.e. in Ω. Let us denote

un :=
zn
‖zn‖2

.

Since zn → 0 in H1
0 (Ω), it follows that zn ⇀ 0 in H1

0 (Ω) and so

zn → 0 in Lq(Ω), for some q ≥ 1,

due to Rellich Kondrachov Theorem and hence

zn → 0 a.e. in Ω, up to a subsequence, (4.3.0.4)

due to Proposition (5.3.2).
Let x ∈ Ω. There are two possibilities for the sequence (un(x))n: it is bounded in R or

not. In the first case, there exists some υ(x) such that un(x)→ υ(x), up to a subsequence,
and so

‖zn‖2τnf

(
λ, x,

zn(x)

‖zn‖2

)
→ 0.τf(λ, x, υ(x)) = 0,

where τ is the limit (up to a subsequence) of τn. On the other hand, if the sequence
(un(x))n is unbounded, then at least one of the following alternatives must occur:

i) un(x)→ +∞ up to a subsequence;

ii) un(x)→ −∞ up to a subsequence.

In the case i), we deduce that

‖zn‖2τnf

(
λ, x,

zn(x)

‖zn‖2

)
=
τnf (λ, x, un(x))

zn
‖zn‖2

zn(x) =
τnf (λ, x, un(x))

un(x)
zn(x)

and so by (f2) we have

‖zn‖2τnf

(
λ, x,

zn(x)

‖zn‖2

)
=
τnf (λ, x, un(x))

un(x)
zn(x)→ λτf ′∞(x).0.
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In the case ii), we deduce that

τnf (λ, x, un(x))

un(x)
zn(x)→ τλf(λ, x, 0).0

by using the hypothesis (f−) and the fact (4.3.0.4).
By Lebesgue Dominated Convergence Theorem, we conclude that holds (4.4.0.1) and

the lemma is proved.

Lemma 4.3.2 (Compactness of the operator T ). Let φ ∈ C∞0 (Ω) be a function such that
φ > 0 in Ω. Then, the operator

T (τ, t, z) =

‖z‖2S

(
τf

(
λ, x,

z

‖z‖2

)
+ t

φ

‖z‖2

)
if z 6= 0,

Ψt if z = 0,

(4.3.0.5)

with Ψt as defined in (4.2.1.3), is compact in [0, 1]× [0, 1]× E.

Proof. Let ((τn, tn, zn))n be a bounded sequence in [0, 1] × [0, 1] × E. Without loss of
generality, we can assume that zn 6= 0 for all n and (τn, tn)→ (τ, t) ∈ [0, 1]2. Define

wn := S

(
τnf

(
λ, x,

zn
‖zn‖2

)
+

tnφ

‖zn‖2

)
(4.3.0.6)

that is,∫
Ω

A(x,wn)∇wn∇v =

∫
Ω

(
τnf

(
λ, x,

zn
‖zn‖2

)
+

tnφ

‖zn‖2

)
v, ∀ v ∈ H1

0 (Ω). (4.3.0.7)

By multiplying (4.4.0.7) by ‖zn‖2 we get∫
Ω

A(x,wn)∇(‖zn‖2wn)∇vdx =

∫
Ω

(
‖zn‖2τnf

(
λ, x,

zn
‖zn‖2

)
+ tnφ

)
v

=

∫
Ω

[
‖zn‖2τnf

(
λ, x,

zn
‖zn‖2

)
v + tnφv

]
(4.3.0.8)

for all v ∈ H1
0 (Ω). Let us define yn := zn‖wn‖.

Take v = yn as a test function in (4.4.0.8). So we obtain from (A2) that

γ‖yn‖2 ≤
∫

Ω

A(x,wn)∇yn∇yn

=

∫
Ω

‖zn‖2τnf

(
λ, x,

zn
‖zn‖2

)
yn +

∫
Ω

tnφyn

(4.2.3.1)

≤
∫

Ω

τn(‖zn‖2C(x) + C1(x)z+
n )yn +

∫
Ω

tnφyn

≤ ‖zn‖2

∫
Ω

|C(x)yn|+
∫

Ω

|C1(x)z+
n yn|

+

∫
Ω

|tnφyn|. (4.3.0.9)

So
γ‖yn‖2≤ ‖zn‖2

∫
Ω

|C(x)yn|+
∫

Ω

|C1(x)z+
n yn|+

∫
Ω

|tnφyn|. (4.3.0.10)
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Now, it remains to estimate ∫
Ω

|C1(x)z+
n yn|.

By Estimates II and III, we obtain
∫

Ω

|C(x)yn| ≤M‖C‖(2r′)′‖yn‖, (Estimate II)∫
Ω

|C1z
+
n yn| ≤M‖C1‖r/[p(2r

′)′]
r ‖z+

n ‖2r′/[p′(2r′)′]‖yn‖ (Estimate III).

(4.3.0.11)

(4.3.0.12)

Moreover, since φ ∈ C∞0 (Ω), we deduce that∫
Ω

|tnφyn|≤ tn‖φ‖2‖yn‖2≤ tnM‖yn‖, (4.3.0.13)

for some constant M > 0.
By applying the estimates (4.3.0.11), (4.3.0.12) and (4.3.0.13) in (4.3.0.9), we obtain

γ‖yn‖2≤M(‖zn‖2‖yn‖+‖z+
n ‖2r′/[p′(2r′)′]‖yn‖+tn‖yn‖),

so by diving both sides of the inequality by ‖yn‖6= 0 and using Remark 5.4.1, we have

γ‖yn‖≤M(‖zn‖2+‖zn‖2r′/[p′(2r′)′]+tn). (4.3.0.14)

Since (zn) is a bounded sequence in E and tn ≤ 1, it follows that

(yn) is a bounded sequence in E, (4.3.0.15)

due to the estimate (4.4.0.10). Since H1
0 (Ω) is a reflexive space it follows that there exists

some y ∈ H1
0 (Ω) such that

yn ⇀ y in E.

By Claim 4.2.1, it follows that

yn → y in L2r′(Ω). (4.3.0.16)

By taking v = yn − y as a test function in (4.4.0.8), we obtain∫
Ω

A(x,wn)∇yn∇(yn − y) =

∫
Ω

‖zn‖2τnf

(
λ, x,

zn
‖zn‖2

)
(yn − y) +

+

∫
Ω

tnφ(yn − y).

Subtracting ∫
Ω

A(x,wn)∇y∇(yn − y),
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in both sides, using (A2) and Estimates II and III, we obtain that

γ‖yn − y‖2 ≤
∫

Ω

A(x,wn)∇(yn − y)∇(yn − y)

=

∫
Ω

‖zn‖2τnf

(
λ, x,

zn
‖zn‖2

)
(yn − y) +

+

∫
Ω

tnφ(yn − y)−
∫

Ω

A(x,wn)∇y∇(yn − y)

≤
∫

Ω

|‖zn‖2C(x) + C1(x)z+
n ||yn − y|+

+

∫
Ω

tnφ(yn − y)−
∫

Ω

A(x,wn)∇y∇(yn − y),

≤ M(‖zn‖2‖C‖(2r′)′‖yn − y‖2r′+

+ ‖C1‖r/(p(2r
′)′)

r ‖zn‖2r′/(p′(2r′)′)
2r′ ‖y − yn‖2r′) + tn‖φ‖∞‖yn − y‖1+

+

∣∣∣∣∫
Ω

A(x,wn)∇y∇(yn − y)

∣∣∣∣ .
So

γ‖yn − y‖2 ≤ M(‖zn‖2‖C‖(2r′)′‖yn − y‖2r′+

+ ‖C1‖r/(p(2r
′)′)

r ‖zn‖2r′/(p′(2r′)′)
2r′ ‖y − yn‖2r′) + tn‖φ‖∞‖yn − y‖1+

+

∣∣∣∣∫
Ω

A(x,wn)∇y∇(yn − y)

∣∣∣∣ . (4.3.0.17)

By the convergence yn → y in L2r′(Ω) (see (4.3.0.16) we imply that the therms
‖zn‖2‖C‖(2r′)′‖yn − y‖2r′ ,

‖C1‖r/(p(2r
′)′)

r ‖zn‖2r′/(p′(2r′)′)
2r′ ‖y − yn‖2r′ ,

tn‖φ‖∞‖yn − y‖1

converges to 0 up to a subsequence. Now, in order to prove the convergence of the last
therm to zero, that is, ∣∣∣∣∫

Ω

A(x,wn)∇y∇(yn − y)

∣∣∣∣→ 0,

we will study the following two cases separately:

1) ‖zn‖ is not bounded away from 0;

2) ‖zn‖ is bounded away from 0.

Case 1): In this case, we can assume that zn → 0 in H1
0 (Ω).

Case 1a) t=0: Since tn → t = 0, the estimate (4.4.0.10) implies that yn → 0 in E. In
particular, if (τn, tn, zn)→ (τ, 0, 0), then

T (τn, tn, zn) = yn → 0 = Ψ0 = T (τ, 0, 0),

that is, for every τ ∈ [0, 1] the operator T is continuous in (τ, 0, 0). So we just proved that
if (τn, tn, zn) is a bounded sequence converging to (τ, 0, 0), then the sequence T (τn, tn, zn)
converges to T (τ, 0, 0) in E, up to a subsequence. Therefore, Case 1a) is concluded.
Case 1b) t>0: To prove the case t ∈ (0, 1], consider the following claim.
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Claim 4.3.1. If t ∈ (0, 1], then the following statements are true:

i) there exists an infinite subset J of N such that ‖wn‖→ +∞ for n ∈ J ,

ii) there exists an n0 such that wn is non negative for all n ≥ n0 such that n ∈ J .

Proof. Let us prove i). We state that ‖wn‖→ +∞, up to a subsequence. In fact, suppose,
by contradiction that ‖wn‖ is bounded. By testing (4.4.0.7) against a positive function
v ∈ C∞0 (Ω) such that ‖v‖> 0, we obtain∫

Ω

(
τnf

(
λ, x,

zn
‖zn‖2

)
+

tnφ

‖zn‖2

)
v ≤

∫
Ω

|A(x,wn)∇wn∇v|

≤ β‖wn‖‖v‖≤M,

for some constant M > 0, so∫
Ω

(
τnf

(
λ, x,

zn
‖zn‖2

)
+

tnφ

‖zn‖2

)
v ≤M, ∀ n. (4.3.0.18)

On the other hand, since(
τnf

(
λ, x,

zn
‖zn‖2

)
+

tnφ

‖zn‖2

)
=

1

‖zn‖2

(
‖zn‖2τnf

(
λ, x,

zn
‖zn‖2

)
+ tnφ

)
,

we can rewrite the (4.4.0.15) as

1

‖zn‖2

[∫
Ω

‖zn‖2τnf

(
λ, x,

zn
‖zn‖2

)
v +

∫
Ω

tnφv

]
≤M, ∀n. (4.3.0.19)

Now, observe that∣∣∣∣∫
Ω

‖zn‖2τnf

(
λ, x,

zn
‖zn‖2

)
v

∣∣∣∣ ≤ ‖v‖∞
∫

Ω

∣∣∣∣‖zn‖2τnf

(
λ, x,

zn
‖zn‖2

)∣∣∣∣
≤ M‖v‖∞

∥∥∥∥‖zn‖2τnf

(
λ, x,

zn
‖zn‖2

)∥∥∥∥
(2r′)′

→ 0,

due to Lemma 4.4.1. But ∫
Ω

tnφv →
∫

Ω

tφv > 0

and so
1

‖zn‖2

∫
Ω

(
‖zn‖2τnf

(
λ, x,

zn
‖zn‖2

)
v + tnφv

)
n→∞−→ +∞,

which contradicts (4.4.0.16) and so we conclude that ‖wn‖ is unbounded and hence there
exists a set of indexes J such that ‖wn‖→ +∞ (n ∈ J ), which proves i).

Let us prove ii) by using the weak formulation of Maximum Principle in (4.4.0.6). By
Claim 4.2.4, it follows that

τnf

(
λ, x,

zn
‖zn‖2

)
+ tn

φ

‖zn‖2
≥ 0, up to a subsequence. (4.3.0.20)

So we deduce, by Theorem 5.4.1, that the function wn is non negative for all n ≥ n0 in
J .
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Moreover, there exists a number ξ ≥ 0 such that

‖yn‖→ ξ n ∈ J up to a subsequence. (4.3.0.21)

We claim that ξ > 0. Indeed, let v ∈ H1
0 (Ω) be a positive function. By (A1) and the

Hölder inequality, ∣∣∣∣∫
Ω

A(wn)∇(‖zn‖2wn)∇v
∣∣∣∣ ≤ β‖yn‖‖v‖

and combining it with (4.4.0.8) we obtain∣∣∣∣∫
Ω

(
‖zn‖2τf

(
λn, x,

zn
‖zn‖2

)
+ tφ

)
v

∣∣∣∣ ≤ β‖yn‖‖v‖,

so we conclude by (4.4.0.17) that ‖yn‖9 0 and consequently ξ > 0.
Now, observe that since y ≥ 0, it follows that∣∣∣∣∫

Ω

A(x,wn)∇y∇(yn − y)

∣∣∣∣ =

∣∣∣∣∫
Ω+

A(x,wn)∇y∇(yn − y)

∣∣∣∣ ,
where

Ω+ : {x ∈ Ω; y(x) > 0}.

We claim that m(Ω+) > 0, on the contrary∣∣∣∣∫
Ω+

A(x,wn)∇y∇(yn − y)

∣∣∣∣ = 0

and by the convergence yn → y, in L2r′(Ω) (see (4.3.0.16)), we imply that (RHS) of
(4.3.0.17) converges to 0 and so we would obtain ‖yn − y‖→ 0, by whence ‖yn‖→ ‖y‖,
but since ξ > 0, it would imply that ‖y‖> 0, but y is non negative and so it would imply
m(Ω+) > 0, which is a contradiction. Thus, m(Ω+) > 0.

In order to prove the convergence∣∣∣∣∫
Ω+

A(x,wn)∇y∇(yn − y)

∣∣∣∣→ 0,

consider the following claim.

Claim 4.3.2. Let v ∈ H1
0 (Ω). Then the following convergence holds (up to a subsequence

and for n ∈ J ): ∫
Ω+

A(x,wn)∇yn∇vdx→
∫

Ω+

A(x,+∞)∇y∇vdx. (4.3.0.22)

Proof. Consider the sequence of functionals ϕn : H1
0 (Ω+)→ R defined by

ϕn(v) =

∫
Ω+

A(x,wn)∇y∇v.

By (A1) and the fact wn = ‖wn‖w̃n → +∞ a.e. in Ω+, we deduce that

A(x,wn)∇y → A(x,+∞)∇y in (L2(Ω+))N ,
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by Lesbesgue Dominated Convergence Theorem, which implies that

ϕn → ϕ in H−1(Ω+)

where ϕ : H1
0 (Ω+)→ R is the functional defined by

ϕ(v) =

∫
Ω+

A(x,+∞)∇y∇v

and since yn ⇀ y, the Proposition (5.3.1) implies the convergence of the claim.

By Claim 4.4.2, we conclude that yn → y in H1
0 (Ω). Then, we just proved that the

sequence T (τn, tn, zn) converges to some y ∈ E, in E, up to a subsequence, whenever
(τn, tn, zn) is a bounded subsequence, tn → t > 0 and ‖zn‖ is not bounded away from
zero. Now, let us prove the continuity of T . Since y ≥ 0, it follows that

lim
n→+∞

∫
Ω

A(x,wn)∇yn∇vdx = lim
n→+∞

∫
Ω+

A(x,wn)∇yn∇vdx

=

∫
Ω+

A(x,+∞)∇y∇vdx

=

∫
Ω

A(x,+∞)∇y∇vdx, ∀ v ∈ E. (4.3.0.23)

On the other hand,

lim
n→+∞

∫
Ω

(
τn‖zn‖2f

(
λ, x,

zn
‖zn‖2

)
+ tnφ

)
v =

∫
Ω

tφ, ∀ v ∈ E. (4.3.0.24)

Indeed, Lemmas 4.2.1, 4.4.1 and Estimate II, we deduce that∫
Ω

∣∣∣∣τn‖zn‖2f

(
λ, x,

zn
‖zn‖2

)
v

∣∣∣∣ ≤ ∥∥∥∥τn‖zn‖2f

(
λ, x,

zn
‖zn‖2

)∥∥∥∥
(2r′)′
‖v‖2r′→ 0,

so (4.4.0.21) holds. By combing (4.4.0.20) and (4.4.0.21), we deduce by passing to the
limit the equation (4.4.0.8) that∫

Ω

A(x,+∞)∇y∇vdx =

∫
Ω

tφv ∀ v ∈ E,

which means that y = T (τ, t, 0). We just proved that T (τn, tn, zn) → T (τ, t, 0) whenever
(τn, tn, zn) is a bounded sequence such that (τn, tn, zn) → (τ, t, 0), up to a subsequence,
with t > 0. This proves the Case 1b) and so Case 1 is concluded.
Case 2: In this case, since (zn) is a bounded sequence, then the sequence zn/‖zn‖2 is
bounded in H1

0 (Ω). So by using Lemma 4.2.3 and Estimate I, we deduce that∣∣∣∣τnf (λ, x, zn
‖zn‖2

)
+

tnφ

‖zn‖2

∣∣∣∣ ≤ C(x) + C1(x)
z+
n

‖zn‖2
+

tnφ

‖zn‖2

≤ C(x) + C1(x)h(x) +
tnφ

‖zn‖2
, (4.3.0.25)

for some h ∈ L2r′(Ω) and C1h ∈ L(2r′)′(Ω). Consequently,(∥∥∥∥τnf (λ, x, zn
‖zn‖2

)
+

tnφ

‖zn‖2

∥∥∥∥
(2r′)′

)
n
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is a bounded sequence. By taking v = wn as a test function in (4.4.0.7), using (A2),
Estimate II and Claim 4.2.1, we obtain

γ‖wn‖2 ≤
∫

Ω

A(x,wn)∇wn∇wn

=

∫
Ω

(
τnf

(
λ, x,

zn
‖zn‖2

)
+

tnφ

‖zn‖2

)
wn

≤
∥∥∥∥τnf (λ, x, zn

‖zn‖2

)
+

tnφ

‖zn‖2

∥∥∥∥
(2r′)′

M‖wn‖, (4.3.0.26)

which means that (wn) is a bounded sequence in H1
0 (Ω) and so

wn ⇀ w in H1
0 (Ω),

for some w ∈ H1
0 (Ω). Moreover, by Claim 4.2.1, it follows that

wn → w in L2r′(Ω) up to a subsequence, (4.3.0.27)

in particular wn → w a.e. in Ω up to a subsequence and so, by Lebesgue Dominated
Convergence, we deduce that

A(x,wn)∇y → A(x,w)∇y in L2(Ω)

and similarly as we argued in Claim 4.4.2, we deduce that∫
Ω

A(x,wn)∇y∇yn →
∫

Ω

A(x,w)∇y∇y

and so ∣∣∣∣∫
Ω

A(x,wn)∇y∇(yn − y)

∣∣∣∣→ 0, (4.3.0.28)

whence we conclude that

T (τn, tn, zn) = yn → y in H1
0 (Ω). (4.3.0.29)

Thus, we just proved that (T (τn, tn, zn)) converges to some y ∈ E, up to a subsequence,
whenever (τn, tn, zn) is a bounded sequence and ‖zn‖ is bounded away from zero. Now,
let us prove the continuity of T . By taking v = wn − w as a test function in (4.4.0.7) we
have ∫

Ω

A(x,wn)∇wn∇(wn − w) =

∫
Ω

(
τnf

(
λ, x,

zn
‖zn‖2

)
+

tnφ

‖zn‖2

)
(wn − w)

and by subtracting ∫
Ω

A(x,wn)∇w∇(wn − w),
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using (A2) and Estimates II and III, we obtain that

γ‖wn − w‖2 ≤
∫

Ω

A(x,wn)∇(wn − w)∇(wn − w)

=

∫
Ω

‖zn‖2τnf

(
λ, x,

zn
‖zn‖2

)
(wn − w) +

+

∫
Ω

tn
φ

‖zn‖2
(wn − w)−

∫
Ω

A(x,wn)∇w∇(wn − w)

=

∫
Ω

∣∣∣∣C(x) + C1(x)
z+
n

‖zn‖2

∣∣∣∣ |wn − w|+
+

∫
Ω

tn
φ

‖zn‖2
(wn − w)−

∫
Ω

A(x,wn)∇w∇(wn − w),

≤ M(‖C‖(2r′)′‖wn − w‖2r′+

+ ‖C1‖r/(p(2r
′)′)

r ‖zn‖2r′/(p′(2r′)′)
2r′ ‖w − wn‖2r′) + tn‖φ‖‖wn − w‖1+

+

∣∣∣∣∫
Ω

A(x,wn)∇w∇(wn − w)

∣∣∣∣ .
By the convergences (4.4.0.27) and (4.4.0.28), it follows that the (RHS) converges to zero
up to a subsequence, thus,

wn → w in E. (4.3.0.30)

By the same argument used to prove (4.4.0.28), we can deduce that

lim
n→+∞

∫
Ω

A(x,wn)∇wn∇v =

∫
Ω

A(x,w)∇w∇v ∀v ∈ E. (4.3.0.31)

Moreover, as we argueed in (4.4.0.22), we deduce that there exists some D ∈ L(2r′)′(Ω)
such that ∣∣∣∣τnf (λ, x, zn

‖zn‖2

)∣∣∣∣ ≤ D(x) a.e. in Ω.

So by Lebesgue’s Dominated Convergence Theorem, we deduce that

τnf

(
λ, x,

zn
‖zn‖2

)
→ τf

(
λ, x,

z

‖z‖2

)
in L(2r′)′(Ω).

But, by Estimate II, the expression∣∣∣∣∫
Ω

(
τnf

(
λ, x,

zn
‖zn‖2

)
− τf

(
λ, x,

z

‖z‖2

))
v

∣∣∣∣
is estimated from above by∥∥∥∥(τn(λ, x, zn

‖zn‖2

)
− τf

(
λ, x,

zn
‖zn‖2

))∥∥∥∥
(2r′)′
‖v‖2r′ ,

consequently,

lim
n→+∞

∫
Ω

(
τnf

(
λ, x,

zn
‖zn‖2

)
+ tn

φ

‖zn‖

)
v =

∫
Ω

(
τf

(
λ, x,

z

‖z‖2

)
+ t

φ

‖z‖

)
v.

(4.3.0.32)
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Now, by combining (4.4.0.30) and (4.4.0.31), we deduce that by passing to the limit the
equation (4.4.0.7), we obtain∫

Ω

A(x,w)∇w∇v =

∫
Ω

(
τf

(
λ, x,

z

‖z‖2

)
+ t

φ

‖z‖

)
v, ∀ v ∈ E,

in other words,
w = S(τ, t, z). (4.3.0.33)

But wn = S(τn, tn, zn) and so, the convergence (4.3.0.30) proves the continuity of S in
(τ, t, z) for z 6= 0. Since z 7→ ‖z‖2 is a continuous function, it follows that T is continuous
in (τ, t, z).

In order to prove the compactness of the operator

K : [0,+∞)× E → E

consider the following lemma.

Lemma 4.3.3. If (λn, zn) is a bounded sequence in [0,+∞)× E such that zn → 0, then

‖zn‖2f

(
λn, x,

zn
‖zn‖2

)
→ 0 in L(2r′)′(Ω), up to a subsequence. (4.3.0.34)

Proof. Let (λn, zn) be a bounded sequence in [0,+∞)×E. Then there exists λ ∈ [0,+∞)
such that λn → λ, up to a subsequence. The idea to use the Dominated Lebesgue’s
Convergence Theorem. So let us show that the domination hypothesis is verified. By
using Claim 4.2.3, we deduce that∣∣∣∣‖zn‖2f

(
λn, x,

zn
‖zn‖2

)∣∣∣∣ ≤ ‖zn‖2C(x) + C1(x)z+
n , (4.3.0.35)

since ‖zn‖→ 0, we assume n large enough so that∣∣∣∣‖zn‖2 f

(
λn, x,

zn
‖zn‖2

)∣∣∣∣ ≤ C(x) + C1(x)z+
n (4.3.0.36)

By Estimate I, we can deduce that there exists some D ∈ L(2r′)′(Ω) such that∣∣∣∣‖zn‖2f

(
λn, x,

zn
‖zn‖2

)∣∣∣∣ ≤ D(x) up to a subsequence

and so the domination hypothesis is verified.
Let us denote

un :=
zn
‖zn‖2

.

Since zn → 0 in H1
0 (Ω), it follows that

zn → 0 a.e. in Ω up to a subsequence, (4.3.0.37)

due to Claim 4.2.1 and Proposition 5.3.2.
Let x ∈ Ω. There are two possibilities for the sequence (un(x))n, it is bounded or not.

In the first case, there exists some υ(x) such that un(x)→ υ(x) up to a subsequence and
so

‖zn‖2f

(
λn, x,

zn(x)

‖zn‖2

)
→ 0.f(λ, x, υ(x)) = 0 up to a subsequence,

In the second case, at least one of the following alternatives must occur:
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i) un(x)→ +∞ up to a subsequence;

ii) un(x)→ −∞ up to a subsequence.

In the case i), we deduce that

‖zn‖2f

(
λn, x,

zn(x)

‖zn‖2

)
=
f (λn, x, un(x))

zn
‖zn‖2

zn(x) =
f (λn, x, un(x))

un(x)
zn(x)

and so
‖zn‖2f

(
λn, x,

zn(x)

‖zn‖2

)
=
f (λn, x, un(x))

un(x)
zn(x)→ λf+(x).0

by (f3).
In the case ii), we deduce that

f (λn, x, un(x))

un(x)
zn(x)→ λf(λ, x, 0).0

by using the hypothesis (f−) and the fact (4.4.0.36).
By Lebesgue Dominated Convergence Theorem, we conclude that holds (4.4.0.33) and

the lemma is proved.

Lemma 4.3.4 (Compactness of the operator K). The operator

K : [0,+∞)× E → E

defined in Remark 4.2.8 is compact.

Proof. Let (λn, zn) be a bounded sequence in [0,+∞)×E. Without loss, we can assume
that zn 6= 0 for all n and λn → λ ∈ [0,+∞). Define

wn := S

(
f

(
λn, x,

zn
‖zn‖2

))
that is, ∫

Ω

A(x,wn)∇wn∇vdx =

∫
Ω

f

(
λn, x,

zn
‖zn‖2

)
vdx, ∀ v ∈ H1

0 (Ω). (4.3.0.38)

and yn := ‖zn‖2wn, thus
K(λn, zn) = ‖zn‖2wn = yn.

We will study the following two cases separately:

1) ‖zn‖ is not bounded away from 0;

2) ‖zn‖ is bounded away from 0.

Case 1): In this case we can assume that zn → 0.
By multiplying (4.4.0.37) by ‖zn‖2 we get

∫
Ω

A(x,wn)∇(‖zn‖2wn)∇vdx =

∫
Ω

‖zn‖2f

(
λn, x,

zn
‖zn‖2

)
vdx for all v ∈ H1

0 (Ω).

(4.3.0.39)
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and by taking v = yn as a test function in (4.4.0.38), using Claim (4.2.1) and Estimate
II, we obtain

γ‖yn‖2 ≤
∫

Ω

A(x,wn)∇yn∇yn

=

∫
Ω

‖zn‖2f

(
λn, x,

zn
‖zn‖2

)
yn

≤
∥∥∥∥‖zn‖2f

(
λn, x,

zn
‖zn‖2

)∥∥∥∥
(2r′)′
‖yn‖2r′

≤ M

∥∥∥∥‖zn‖2f

(
λn, x,

zn
‖zn‖2

)∥∥∥∥
(2r′)′
‖yn‖

by whence

γ‖yn‖≤M

∥∥∥∥‖zn‖2f

(
λn, x,

zn
‖zn‖2

)∥∥∥∥
(2r′)′

,

but, by Lemma 4.4.0.33 the (RHS) converges to zero and so we conclude that
K(λn, zn) = yn → 0 = K(λ, 0) in E. Thus, Case 1 is concluded.
Case 2): By taking v = yn as a test function in (4.4.0.38) and using Claim 4.2.3, we
obtain

γ‖yn‖2 ≤
∫

Ω

A(x,wn)∇yn∇yn

=

∫
Ω

‖zn‖2f

(
λn, x,

zn
‖zn‖2

)
yn

≤
∫

Ω

‖zn‖2C(x)yn + C1(x)z+
n yn. (4.3.0.40)

By using Estimates II and III, we obtain

γ‖yn‖2≤M(‖zn‖2‖yn‖+‖z+
n ‖2r′/[p′(2r′)′]‖yn‖)

and since (zn) is bounded in E, it follows that

γ‖yn‖2≤M‖yn‖, (4.3.0.41)

which means that the sequence (yn) is bounded in E and consequently there exist some
y ∈ E such that

yn ⇀ y in E.

By Claim 4.2.1, it follows that

yn → y in L2r′(Ω), up to a subsequence. (4.3.0.42)

Moreover, since ‖zn‖ is bounded away from zero and (yn) is a bounded sequence, it
follows that the sequence wn = ‖zn‖−2yn is bounded E. As we argued in Case 2 of the
proof of Lemma 4.4.2, we have∫

Ω

A(x,wn)∇y∇(yn − y)→ 0, (4.3.0.43)
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due to item b) of Proposition 5.3.1.
By taking v = yn − y as a test function in (4.4.0.8), we obtain∫

Ω

A(x,wn)∇yn∇(yn − y) =

∫
Ω

‖zn‖2f

(
λn, x,

zn
‖zn‖2

)
(yn − y),

by subtracting ∫
Ω

A(x,wn)∇y∇(yn − y)

and using (A2), we get

γ‖yn − y‖2 ≤
∫

Ω

A(x,wn)∇(yn − yn)∇(yn − y)

=

∫
Ω

‖zn‖2f

(
λn, x,

zn
‖zn‖2

)
(yn − y)−

∫
Ω

A(x,wn)∇y∇(yn − y)

≤
∫

Ω

|‖zn‖2C(x) + C1(x)z+
n ||yn − y|−

−
∫

Ω

A(x,wn)∇y∇(yn − y)

≤ M(‖zn‖2‖C‖(2r′)′‖yn − y‖2r′+

+ ‖C1‖r/(p(2r
′)′)

r ‖zn‖2r′/(p′(2r′)′)
2r′ ‖yn − y‖2r′) +

+

∣∣∣∣∫
Ω

A(x,wn)∇y∇(yn − y)

∣∣∣∣ .
By the convergences yn → y in L2r′(Ω) (see (4.3.0.42)) and (4.3.0.43), it follows that the
(RHS) converges to zero, up to a subsequence and consequently yn → y in E, that is,
K(λn, zn) = yn → y in E. The proof of the continuity follows similarly as we done in the
proof of Case 2 of Lemma 4.4.2.

The following lemma proves that if 0 ≤ λ < λ∞, then (λ, 0) is not a bifurcation point
from the curve of trivial solutions of Φ(λ, z) = 0.

Lemma 4.3.5. Assume the hypotheses (f−), (A1)-(A4) and (f0)-(f3) and let Λ ⊂ [0, λ∞)
be a compact interval. Then there exists a number R > 0 such that

u 6= S(tf(λ, x, u)) (4.3.0.44)

for all u ∈ E with ‖u‖≥ R, all λ ∈ Λ and all t ∈ [0, 1].

Proof. Suppose that there exists sequences (λn) in Λ, (tn) in [0, 1] and (un) in E with
‖u‖→ ∞ such that

un = S(tnf(λn, x, un)). (4.3.0.45)

Since Λ and [0, 1] are compact sets, we deduce the existence of λ ∈ Λ and t ∈ [0, 1] such
that λn → λ and tn → t, up to a subsequence. Let us define the normalized sequence
zn := un‖un‖−1 and note that by dividing (4.4.0.43) by ‖un‖, we obtain that zn satisfies
the equation∫

Ω

A(x, un)∇zn · ∇v = tn

∫
Ω

f(λn, x, un)

‖un‖
v, ∀ v ∈ H1

0 (Ω). (4.3.0.46)
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By taking v = u−n as a test function and using (A2), (f−) and (f0), we deduce that

γ
‖u−n ‖2

‖un‖
≤
∫

Ω

tn
f(λn, x, u

−
n )

‖un‖
u−n ≤ 0 (4.3.0.47)

and so un ≥ 0 for all n.
Since the sequence (zn) is bounded in the reflexive space E, it follows that there exists

some z ∈ E such that
zn ⇀ z in E (4.3.0.48)

and so by Claim 4.2.1,

zn → z in L2r′(Ω), up to a subsequence. (4.3.0.49)

By taking v = zn − z as a test function in (4.3.0.46), (A2) and subtracting∫
Ω

A(x, un)∇z · ∇(zn − z),

in both sides of (4.3.0.46) we obtain

γ‖zn − z‖2 ≤
∫

Ω

A(x, un)∇(zn − z)∇(zn − z)

≤ tn

∫
Ω

f(λn, x, un)

‖un‖
(zn − z)−

∫
Ω

A(x, un)∇z · ∇(zn − z)

= tn

∫
Ω

f(λn, x, un)

‖un‖
(zn − z)−

∫
Ω+

A(x, un)∇z · ∇(zn − z),

where
Ω+ = {x ∈ Ω; z(x) > 0}.

By using Claim 4.2.3 and the facts that ‖un‖→ ∞ and tn ∈ [0, 1], we deduce that

γ‖zn − z‖2 ≤
∫

Ω

∣∣∣∣C(x) + C1(x)
u+
n

‖un‖

∣∣∣∣ |zn − z|+
+

∣∣∣∣∫
Ω+

A(x, un)∇z · ∇(zn − z)

∣∣∣∣ .
By using the Estimates II and III, we deduce that

γ‖zn − z‖2≤M‖zn − z‖2r′+

∣∣∣∣∫
Ω+

A(x, un)∇z · ∇(zn − z)

∣∣∣∣
Similarly as we done in Lemma 4.4.6, we deduce that m(Ω+) > 0 (observe that ‖zn‖= 1).
Note that
un = ‖un‖zn → +∞ a.e. in Ω+, then A(x, un)∇z → A(x,∞)∇z in L2(Ω+)N , due to (A1)
and the Dominated Convergence Lebesgue Theorem. Since zn ⇀ z (see (4.4.0.64)), it
follows by Proposition 5.3.1 that

lim
n→∞

∫
Ω+

A(x, un)∇zn · ∇v = lim
n→∞

∫
Ω+

A(x,+∞)∇z · ∇v, ∀ v ∈ E. (4.3.0.50)
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Moreover, by using Claim 4.2.3, Estimates I, II and III, we can deduce that there exist
some D ∈ L(2r′)′(Ω) such that∣∣∣∣tnf(λn, x, un)

‖un‖

∣∣∣∣ ≤ D(x), a.e. in Ω.

Moreover, for every x ∈ Ω such that un(x) > 0, we have

tnf(λn, x, un)

‖un‖
=
tnf(λn, x, un)

un
zn(x)

thus,
tnf(λn, x, un)

‖un‖
→ tλf ′∞z, a.e. in Ω.

Consequently, by Lebesgue’s Dominated Convergence Theorem and the hypothesis (f2),
we deduce that

tnf(λn, x, un)

‖un‖
→ tλf ′∞z in L(2r′)′(Ω).

By using the Estimate II, we deduce that∣∣∣∣∫
Ω

(
tnf(λn, x, un)

‖un‖
− tλf∞z

)
v

∣∣∣∣ ≤ ∥∥∥∥tnf(λn, x, un)

‖un‖
− tλf∞z

∥∥∥∥
(2r′)′
‖v‖2r′ , ∀ v ∈ E.

So
lim

n→+∞

tnf(λn, x, un)

‖un‖
v = tλf ′∞zv, ∀ v ∈ E. (4.3.0.51)

Combining (4.4.0.49) and (4.4.0.50) we deduce, by passing to the limit in equation (4.3.0.46),
that z is a non trivial and non negative solution of

− div(A(x,∞)∇z) = tλf ′∞(x)z. (4.3.0.52)

By testing against ψ and using that λ∞ is an eigenvalue of (4.0.0.7), we obtain∫
Ω

λ∞f
′
∞zψ =

∫
Ω

A(x,∞)∇z∇ψ

=

∫
Ω

tλf ′∞zψ.

Hence tλ = λ∞ and z = ψ, where ψ is the eigenfunction (associated to λ∞) of the Dirichlet
eigenvalue problem with weight (4.0.0.7), as we defined before, but this contradicts the
hypothesis λ < λ∞.

Remark 4.3.1. If we consider the sequence tn = 1 for all n, then the argument in
(4.3.0.47) shows that every solution u of Φλ(u) = 0 is non negative.

Remark 4.3.2 (Necessary condition for some λ∗ to be a bifurcation point from infinity
of (Pλ)). Let λ∗ ≥ 0 be such that λ∗ is a bifurcation point from infinity of the problem
(Pλ). If we take Λ = {λn}, where λn is a sequence in [0,+∞) such that λn → λ∗ and (tn)
be the sequence defined by tn = 1 for all n, then the same arguments leads us to (4.3.0.52)
with t = 1 and so we conclude that λ∗ = λ∞.
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Corollary 4.3.1. As a consequence of Remark (5.4.1), we can replace ‖u‖≥ R by ‖u‖0≥
R in the conclusion of Lemma 4.3.5.

Remark 4.3.3. Let 0 ≤ λ < λ∞ and R > 0 as in Lemma 4.3.5. Then,

z − ‖z‖2S

(
tf

(
λ, x,

z

‖z‖2

))
6= 0 in BR−1(0) \ {0} t ∈ [0, 1].

Thus the homotopy (4.2.1) is admissible in [0, 1]×BR−1(0) and

i(H1(t, · ), 0) = deg(H1(t, · ), BR−1(0), 0)

for all t ∈ [0, 1], hence by the invariance under homotopy

i(Φλ, 0) = i(H1(1, · ), 0)

= deg(H1(0, · ), 0, 0)

= deg(I, 0, 0)

= 1

for each 0 ≤ λ < λ∞.

The following lemma proves that H2 is admissible in some H1
0 (Ω)-ball. Moreover,

if λ > λ∞, then (λ, 0) is not a bifurcation point from the curve of trivial solutions of
z − Φ(λ, z) = 0.

Lemma 4.3.6. Suppose that conditions (f−), (A1)-(A4) and (f0)-(f3) are satisfied and
let φ be a positive function in C∞0 (Ω) bounded away from zero. If λ > λ∞, then there
exists R > 0 such that

u− S(f(λ, x, u) + τ‖u‖2φ) 6= 0, (4.3.0.53)

for all u ∈ E with ‖u‖≥ R, for all τ ≥ 0.

Proof. Suppose that there exists a sequence (un) in E such that ‖un‖→ ∞ and for a non
negative sequence of numbers (τn), we have

− div(A(x, un)∇un) = f(λ, x, un) + τn‖un‖2φ. (4.3.0.54)

By using u−n as test function, we obtain∫
Ω

A(x, un)∇u−n · ∇u−n =

∫
Ω

f(λ, x, un)u−n + τn

∫
Ω

u−n ‖un‖2φ (4.3.0.55)

and since τn ≥ 0 and φ is positive,

γ‖u−n ‖2≤
∫

Ω

(f(λ, x, 0) + τn‖un‖2φ)u−n ≤ 0,

where in the last inequality we use (f−) and (A2), thus un ≥ 0.
Defining the normalized function zn := un‖un‖−1, we can assume that

zn ⇀ z in E, (4.3.0.56)

for some z ∈ E. Then,
zn → z in L(2r′)(Ω) (4.3.0.57)
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due to Claim 4.2.1 and so zn → z a.e. in Ω, up to a subsequence, as a consequence of
Proposition 5.3.2. Consequently z ≥ 0.

By taking φ/‖un‖ as a test function in (4.4.0.53), we get∫
Ω

A(x, un)∇
(

un
‖un‖

)
· ∇φ =

∫
Ω

f(λ, x, un)

‖un‖
φ+ τn‖un‖

∫
Ω

φ2

and by using the conditions (A1), (4.2.3), Estimates II and Claim 4.2.1 we obtain

τn‖un‖
∫

Ω

φ2 =

∫
Ω

A(x, un)∇
(

un
‖un‖

)
· ∇φ−

−
∫

Ω

f(λ, x, un)

‖un‖
φ

≤ β‖φ‖2+

∫
Ω

(
C1(x)zn +

C2(x)

‖un‖

)
φ

≤ β‖φ‖2+M‖φ‖∞
(
‖C1‖(2r′)′‖zn‖+

‖C2‖(2r′)′

‖un‖

)
≤ β‖φ‖2+M‖φ‖∞(‖C1‖(2r′)′+‖C2‖(2r′)′)

hence τn‖un‖ is a bounded sequence and so there exists some τ ∗ ≥ 0 such that τn‖un‖
converges to τ ∗, up to a subsequence.

Taking (zn − z)/‖un‖ as a test function in (4.4.0.53), we obtain

∫
Ω

A(x, un)∇zn · ∇(zn − z) =

∫
Ω

f(λ, x, un)

‖un‖
(zn − z) + τn‖un‖

∫
Ω

φ(zn − z).

Subtracting ∫
Ω

A(x, un)∇z · ∇(zn − z),

in both sides of the above equation, we get from (A2) and (4.0.0.2) that

γ‖zn − z‖2 ≤
∫

Ω

A(x, un)∇(zn − z) · ∇(zn − z)

=

∫
Ω

f(λ, x, un)

‖un‖
(zn − z) +

+ τn‖un‖
∫

Ω

φ(zn − z)−
∫

Ω

A(x, un)∇z · ∇(zn − z)

≤
∫

Ω

(
C1(x)zn +

C2(x)

‖un‖

)
|zn − z|

+ τn‖un‖
∫

Ω

φ(zn − z)−
∫

Ω

A(x, un)∇z · ∇(zn − z)

=

∫
Ω

(
C1(x)zn +

C2(x)

‖un‖

)
|zn − z|

+ τn‖un‖
∫

Ω

φ(zn − z)−
∫

Ω+

A(x, un)∇z · ∇(zn − z), (4.3.0.58)

where
Ω+ = {x ∈ Ω : z(x) > 0}.
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By applying the Estimates II, III and using the convergence zn → z in L2r′(Ω) (see
(4.3.0.57)), we deduce that

(
C1(x)zn +

C2(x)

‖un‖

)
|zn − z|→ 0,

τn‖un‖
∫

Ω

φ(zn − z)→ 0.

(4.3.0.59)

(4.3.0.60)

We claim that m(Ω+) > 0. Indeed, on the contrary we would have∫
Ω+

A(x, un)∇z · ∇(zn − z) = 0

and so the inequality (4.4.0.59) and the convergences (4.3.0.59) and (4.3.0.60) imply that
zn → z in E, consequently 1 = ‖zn‖→ ‖z‖= 1, hence 0 ≤ z 6= 0, but since z ∈ E, it
follows that m(Ω+) > 0, which is a contradiction.

Note that the un = zn‖un‖→ +∞ a.e. in Ω+ and so the conditions (A1) and (A4) im-
plies, by Dominated Convergence Lebesgue Theorem, that A(x, un)∇z converges strongly
to A(x,∞)∇z in L2(Ω+). So dividing (4.4.0.53) by ‖un‖ and taking the limit when
n → +∞ (similarly as we done in the previous lemma), we deduce that z satisfies the
equation

− div (A(x,∞)∇z) = λf ′∞(x)z + τ ∗φ.

So, testing the above equations against ψ, we have

∫
Ω

A(x,∞)∇z∇ψ = λ

∫
Ω

f ′∞(x)zψ +

∫
Ω

τ ∗φψ

≥ λ

∫
Ω

f ′∞(x)zψ.

On the other hand,

λ∞

∫
Ω

f ′∞(x)zψ =

∫
Ω

A(x,∞)∇z∇ψ,

then

λ∞

∫
Ω

f ′∞(x)zψ ≥ λ

∫
Ω

f ′∞(x)zψ, (4.3.0.61)

but since z 6≡ 0, this inequality implies that λ∞ ≥ λ, which is a contradiction.

Corollary 4.3.2. As a consequence of Remark (5.4.1), we can replace ‖u‖≥ R by ‖u‖0≥
R in the conclusion of Lemma 4.4.6.

Remark 4.3.4. Let λ > λ∞ and φ be a positive function and R > 0 as in the Lemma
4.4.6. Then

z − ‖z‖2S

(
f

(
λ, x,

z

‖z‖2

)
+

τφ

‖z‖2

)
6= 0 in BR−1(0) \ {0}, τ ∈ [0, 1],

thus the homotopy (4.2.1) is admissible in [0, 1]×BR−1(0) and

i(H2(τ, · ), 0) = deg(H2(τ, · ), BR−1(0), 0)

for all τ ∈ [0, 1].
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Observe that by Lemma 4.4.6,

z

‖z‖2
− S

(
f

(
λ, x,

z

‖z‖2

)
+ τ

∥∥∥∥ z

‖z‖2

∥∥∥∥2

φ

)
6= 0

for each z 6= 0 with ∥∥∥∥ z

‖z‖2

∥∥∥∥ ≥ R⇔ ‖z‖≤ R−1,

moreover H2(1, 0) = Ψ1 6= 0, hence H2(1, · ) 6= 0 in BR−1(0) and so by the property of
existence of solution of the Leray-Schauder degree, we deduce that

deg(H2(1, · ), 0, 0) = 0.

By the invariance under homotopy,

i(Φλ, 0) = i(H2(0, · ), 0, 0)

= deg(H2(0, · ), 0, 0)

= deg(H2(1, · ), 0, 0)

= 0

for each λ > λ∞, where the last equation folllows from the argument in (4.2.1.5).
Finally, by applying Theorem A we deduce that it holds Theorem C as follows.

Proof. The existence of the continuum follows directly by applying Theorem A for I =
[0,+∞), µ = λ∞ and (a, b) being any interval containing λ∞ with a > 0. Now, by
combining the additional hypothesis (4.0.0.10) with Remark (4.4.1), we obtain that u = 0
is the only solution of (Pλ) for λ = 0. But by Lemma 4.4.6, (0, 0) is not a bifurcation
point and so Cλ∞ does not satisfies the alternative ii) of Theorem A. So we conclude that
it must satisfy i), that is, Cλ∞ is unbounded.

Remark 4.3.5. Observe that
ΣΦ = ΣF̃ ,

by Remark 4.2.8.

4.4 Compactness of the operators K and T for the case
E = C0(Ω)

Consider the Banach space E := C0(Ω) of the continuous functions u : Ω → R that
vanishes at ∂Ω. In this section, we will the prove the compactness of the operators K
(see Chapter 1) and T in order to deduce Theorem D.

Lemma 4.4.1. If (τn, zn) is a bounded sequence in [0, 1] × (E \ {0}) such that zn → 0,
then

‖zn‖2
0τnf

(
λ, x,

zn
‖zn‖2

0

)
→ 0 in Lr(Ω) up to a subsequence. (4.4.0.1)
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Proof. The idea is to use the Dominated Lebesgue’s Convergence Theorem. So let us
show that the domination hypothesis is verified. By using (4.2.3.1) for un = zn/‖zn‖2

0 we
get ∣∣∣∣‖zn‖2

0τnf

(
λ, x,

zn
‖zn‖2

0

)∣∣∣∣ ≤ τn(‖zn‖2
0C(x) + C1(x)z+

n ), (4.4.0.2)

which implies for n large enough∣∣∣∣‖zn‖2
0τnf

(
λ, x,

zn
‖zn‖2

0

)∣∣∣∣ ≤ τn(C(x) + C1(x)z+
n )

≤ C(x) + C1(x)z+
n ,

because ‖zn‖0→ 0. Since (zn) is bounded in E, it follows that∣∣∣∣‖zn‖2
0τnf

(
λ, x,

zn
‖zn‖2

0

)∣∣∣∣ ≤ C(x) + C1(x)M ∈ Lr(Ω), (4.4.0.3)

for some constant M > 0 and the domination hypothesis is verified.
Now, let us prove the hypothesis about the convergence a.e. in Ω. Let us denote

un :=
zn
‖zn‖2

0

.

Since zn → 0 in E, it follows that

zn → 0 a.e. in Ω up to a subsequence, (4.4.0.4)

due to Proposition (5.3.2).
Let x ∈ Ω. There are two possibilities for the sequence (un(x))n, it is bounded or not.

In the first case, there exists some υ(x) such that un(x)→ υ(x) up to a subsequence and
so

‖zn‖2
0τnf

(
λ, x,

zn(x)

‖zn‖2
0

)
→ 0.τf(λ, x, υ(x)) = 0, up to a subsequence,

where τ is the limit (up to a subsequence) of τn. On the other hand if the sequence
(un(x))n is unbounded, then at least one of the following alternatives must occur:

i) un(x)→ +∞ up to a subsequence;

ii) un(x)→ −∞ up to a subsequence.

In the case i), we deduce that

‖zn‖2
0τnf

(
λ, x,

zn(x)

‖zn‖2
0

)
=
τnf (λ, x, un(x))

zn
‖zn‖20

zn(x) =
τnf (λ, x, un(x))

un(x)
zn(x)

and so
‖zn‖2

0τnf

(
λ, x,

zn(x)

‖zn‖2
0

)
=
τnf (λ, x, un(x))

un(x)
zn(x)→ λτf+(x).0

by (f3).
In the case ii), we deduce that

τnf (λ, x, un(x))

un(x)
zn(x)→ τλf(λ, x, 0).0

by using the hypothesis (f−) and the fact (4.4.0.36).
By Lebesgue Dominated Convergence Theorem, we conclude that holds (4.4.0.1) and

the lemma is proved.
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Lemma 4.4.2 (Compactness of the operator T ). Let φ ∈ C∞0 (Ω) be a function such that
φ(x) > 0 for all x ∈ Ω. Then the operator

T (τ, t, z) =

‖z‖2
0S

(
τf

(
λ, x,

z

‖z‖2
0

)
+ t

φ

‖z‖2
0

)
if z 6= 0,

Ψt if z = 0,

(4.4.0.5)

with Ψt as defined in (4.2.1.3), is compact in [0, 1]× [0, 1]× E.
Proof. Let ((τn, tn, zn))n be a bounded sequence in [0, 1] × [0, 1] × E. Without loss of
generality, we can assume that zn 6= 0 for all n and (τn, tn)→ (τ, t) ∈ [0, 1]2. Define

wn := S

(
τnf

(
λ, x,

zn
‖zn‖2

0

)
+

tnφ

‖zn‖2
0

)
(4.4.0.6)

that is,∫
Ω

A(x,wn)∇wn∇v =

∫
Ω

(
τnf

(
λ, x,

zn
‖zn‖2

0

)
+

tnφ

‖zn‖2
0

)
v, ∀ v ∈ H1

0 (Ω). (4.4.0.7)

By multiplying (4.4.0.7) by ‖zn‖2
0 we get∫

Ω

A(x,wn)∇(‖zn‖2
0wn)∇vdx =

∫
Ω

(
‖zn‖2

0τnf

(
λ, x,

zn
‖zn‖2

0

)
+ tnφ

)
v

=

∫
Ω

[
‖zn‖2

0τnf

(
λ, x,

zn
‖zn‖2

0

)
v + tnφv

]
(4.4.0.8)

for all v ∈ H1
0 (Ω). Let us define yn := zn‖wn‖0.

Take v = yn as a test function in (4.4.0.8). So we obtain from (A2) that

γ‖yn‖2 ≤
∫

Ω

A(x,wn)∇yn∇yn

=

∫
Ω

‖zn‖2
0τnf

(
λ, x,

zn
‖zn‖2

0

)
yn +

∫
Ω

tnφyn

≤ M

∥∥∥∥‖zn‖2
0τnf

(
λ, x,

zn
‖zn‖2

0

)∥∥∥∥
r

‖yn‖r′+tn‖φ‖r‖yn‖r′ , (4.4.0.9)

where the last inequality follows from Hölder’s inequality. But r′ < 2r′ so by using Claim
4.2.1 we obtain ‖yn‖r′≤M‖yn‖ for some constant M > 0. Thus,

γ‖yn‖2≤M

∥∥∥∥‖zn‖2
0τnf

(
λ, x,

zn
‖zn‖2

0

)∥∥∥∥
r

‖yn‖+tn‖φ‖∞‖yn‖

so by diving both sides of the inequality by ‖yn‖6= 0 and using Remark 5.4.1, we have

γ‖yn‖≤M

∥∥∥∥‖zn‖2
0τnf

(
λ, x,

zn
‖zn‖2

0

)∥∥∥∥
r

+ tn‖φ‖∞. (4.4.0.10)

But by using (4.2.3.1) for un = zn/‖zn‖2
0 we get∣∣∣∣‖zn‖2

0τnf

(
λ, x,

zn
‖zn‖2

0

)∣∣∣∣ ≤ τn(‖zn‖2
0C(x) + C1(x)z+

n )

≤
∣∣∣∣‖zn‖2

0τnf

(
λ, x,

zn
‖zn‖2

0

)∣∣∣∣
≤ τn(C(x) + C1(x)z+

n )

≤ C(x) + C1(x)z+
n

≤ C(x) +MC1(x),
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for some constant M > 0, because (‖zn‖0) is a bounded sequence. Whence

(yn) is a bounded sequence in H1
0 (Ω)

and so by the reflexivity of the space H1
0 (Ω), it follows that there exists some y ∈ H1

0 (Ω)
such that

yn ⇀ y in H1
0 (Ω). (4.4.0.11)

Moreover, by Claim 4.2.1, we have that

yn → y in Lr
′
(Ω) (4.4.0.12)

and by Proposition 5.3.2, we deduce that

yn → y a.e. in Ω.

By Theorem 5.4.2, it follows that

(yn) is a bounded sequence in E, (4.4.0.13)

which implies by Arzelà-Ascoli, that there exist some y ∈ E such that

yn → y in E.

But by (4.4), we deduce that y = y.
By taking v = yn − y as a test function in (4.4.0.8), we obtain∫

Ω

A(x,wn)∇yn∇(yn − y) =

∫
Ω

‖zn‖2
0τnf

(
λ, x,

zn
‖zn‖2

0

)
(yn − y) +

+

∫
Ω

tnφ(yn − y),

whence, by subtracting ∫
Ω

A(x,wn)∇y∇(yn − y),

using (A2) and Hölder’s inequality we obtain that

γ‖yn − y‖2 ≤
∫

Ω

A(x,wn)∇(yn − yn)∇(yn − y)

=

∫
Ω

‖zn‖2
0τnf

(
λ, x,

zn
‖zn‖2

0

)
(yn − y) +

+

∫
Ω

tnφ(yn − y)−
∫

Ω

A(x,wn)∇y∇(yn − y)

≤ M

(∥∥∥∥‖zn‖2
0τnf

(
λ, x,

zn
‖zn‖2

0

)∥∥∥∥
r

‖yn − y‖r′+tn‖φ‖∞‖yn − y‖r′+

+

∣∣∣∣∫
Ω

A(x,wn)∇y∇.(yn − y)

∣∣∣∣) . (4.4.0.14)

By the convergence yn → y in Lr′(Ω) (see (4.4.0.12)) we imply that the first two therms on
the (RHS) converges to zero up to a subsequence. Now, in order to prove the convergence
of the last therm to zero, that is,∣∣∣∣∫

Ω

A(x,wn)∇y∇(yn − y)

∣∣∣∣→ 0,

we will study the following two cases separately:
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1) ‖zn‖0 is not bounded away from 0;

2) ‖zn‖0 is bounded away from 0.

Case 1): In this case we can assume that zn → 0.
Case 1a) t=0: Since tn → t = 0, the estimate (4.4.0.10) and Lemma 4.4.1 implies that
yn → 0 in E. In particular, if (τn, tn, zn)→ (τ, 0, 0), then

T (τn, tn, zn) = yn → 0 = Ψ0 = T (τ, 0, 0),

that is, for every τ ∈ [0, 1] the operator T is continuous in (τ, 0, 0). So we just proved that
if (τn, tn, zn) is a bounded sequence converging to (τ, 0, 0), then the sequence T (τn, tn, zn)
converges to T (τ, 0, 0) in E, up to a subsequence. Therefore, Case 1a) is concluded.
Case 1b) t>0: To prove the case t ∈ (0, 1], consider the following claim.

Claim 4.4.1. If t ∈ (0, 1], then the following statements are true:

i) there exists an infinite subset J of N such that ‖wn‖→ +∞ for n ∈ J ,

ii) there exists an n0 such that wn is non negative for all n ≥ n0 such that n ∈ J .

Proof. Let us prove i). We state that ‖wn‖→ +∞, up to a subsequence. In fact, suppose,
by contradiction that ‖wn‖ is bounded. By testing (4.4.0.7) against a positive function
v ∈ C∞0 (Ω) such that ‖v‖> 0, we obtain∫

Ω

(
τnf

(
λ, x,

zn
‖zn‖2

0

)
+

tnφ

‖zn‖2
0

)
v ≤

∫
Ω

|A(x,wn)∇wn∇v|

≤ β‖wn‖‖v‖≤M,

for some constant M > 0, so∫
Ω

(
τnf

(
λ, x,

zn
‖zn‖2

0

)
+

tnφ

‖zn‖2
0

)
v ≤M, ∀ n. (4.4.0.15)

On the other hand, since(
τnf

(
λ, x,

zn
‖zn‖2

0

)
+

tnφ

‖zn‖2
0

)
=

1

‖zn‖2
0

(
‖zn‖2

0τnf

(
λ, x,

zn
‖zn‖2

0

)
+ tnφ

)
,

we can rewrite the (4.4.0.15) as

1

‖zn‖2
0

[∫
Ω

‖zn‖2
0τnf

(
λ, x,

zn
‖zn‖2

0

)
v +

∫
Ω

tnφv

]
≤M, ∀n. (4.4.0.16)

Now, observe that∣∣∣∣∫
Ω

‖zn‖2
0τnf

(
λ, x,

zn
‖zn‖2

0

)
v

∣∣∣∣ ≤ ‖v‖∞
∫

Ω

∣∣∣∣‖zn‖2
0τnf

(
λ, x,

zn
‖zn‖2

0

)∣∣∣∣
≤ M‖v‖∞

∥∥∥∥‖zn‖2
0τnf

(
λ, x,

zn
‖zn‖2

0

)∥∥∥∥
r

→ 0,

due to Lemma 4.4.1. But ∫
Ω

tnφv →
∫

Ω

tφv > 0
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and so
1

‖zn‖2
0

∫
Ω

(
‖zn‖2

0τnf

(
λ, x,

zn
‖zn‖2

0

)
v + tnφv

)
n→∞−→ +∞

which contradicts (4.4.0.16) and so we conclude that ‖wn‖ is unbounded and hence there
exists a set of indexes J such that ‖wn‖→ +∞ (n ∈ J ), which proves i).

Let us prove ii) by using the weak formulation of Maximum Principle in (4.4.0.6). By
Claim 4.2.4, it follows that

τnf

(
λ, x,

zn
‖zn‖2

0

)
+ tn

φ

‖zn‖2
0

≥ 0, up to a subsequence. (4.4.0.17)

So we deduce, by Theorem 5.4.1, that the function wn is non negative for all n ≥ n0 in
J .

Moreover, there exists a number ξ ≥ 0 such that

‖yn‖→ ξ n ∈ J up to a subsequence. (4.4.0.18)

We claim that ξ > 0. Indeed, let v ∈ H1
0 (Ω) be a positive function. By (A1) and the

Hölder Inequality, ∣∣∣∣∫
Ω

A(wn)∇(‖zn‖2
0wn)∇v

∣∣∣∣ ≤ β‖yn‖‖v‖

and combining it with (4.4.0.8) we obtain∣∣∣∣∫
Ω

(
‖zn‖2

0τf

(
λn, x,

zn
‖zn‖2

0

)
+ tφ

)
v

∣∣∣∣ ≤ β‖yn‖‖v‖,

so we conclude by (4.4.0.17) that ‖yn‖9 0 and consequently ξ > 0.
Now, observe that since y ≥ 0, it follows that∣∣∣∣∫

Ω

A(x,wn)∇y∇(yn − y)

∣∣∣∣ =

∣∣∣∣∫
Ω+

A(x,wn)∇y∇(yn − y)

∣∣∣∣ ,
where

Ω+ : {x ∈ Ω; y(x) > 0}.

We claim that m(Ω+) > 0, on the contrary∣∣∣∣∫
Ω+

A(x,wn)∇y∇(yn − y)

∣∣∣∣ = 0

and by the convergence yn → y, in Lr
′
(Ω) (see (4.4.0.12)), we imply that (RHS) of

(4.4.0.14) converges to 0 and so we would obtain ‖yn − y‖→ 0, by whence ‖yn‖→ ‖y‖,
but since ξ > 0, it would imply that ‖y‖> 0, but y is non negative and so it would imply
m(Ω+) > 0, which is a contradiction. Thus, m(Ω+) > 0.

In order to prove the convergence∣∣∣∣∫
Ω+

A(x,wn)∇y∇(yn − y)

∣∣∣∣→ 0,

consider the following claim.
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Claim 4.4.2. Let v ∈ H1
0 (Ω) and t ∈ (0, 1]. Then the following convergence holds (up to

a subsequence and for n ∈ J ):∫
Ω+

A(x,wn)∇yn∇vdx→
∫

Ω+

A(x,+∞)∇y∇vdx. (4.4.0.19)

Proof. Consider the sequence of functionals ϕn : H1
0 (Ω+)→ R defined by

ϕn(v) =

∫
Ω+

A(x,wn)∇y∇v.

By (A1) and the fact wn = ‖wn‖w̃n → +∞ a.e. in Ω+, we deduce that

A(x,wn)∇y → A(x,+∞)∇y in (L2(Ω+))N ,

by Lesbesgue Dominated Convergence Theorem, which implies that

ϕn → ϕ strongly in H−1(Ω+)

where ϕ : H1
0 (Ω+)→ R is the functional defined by

ϕ(v) =

∫
Ω+

A(x,+∞)∇y∇v

and since yn ⇀ y (see (4.4.0.11)), the Proposition (5.3.1) implies the convergence of the
claim.

Thus, Claim 4.4.2 proves that the last therm of (RHS) (4.4.0.14) converges to zero
up to a subsequence. But, we already know that the others also converges to zero up
to a subsequence, due to the convergence yn → y (see (4.4.0.12)) and so we conclude
that yn → y in H1

0 (Ω). Then, we just proved that the sequence T (τn, tn, zn) converges to
some y ∈ E, in E, up to a subsequence, whenever (τn, tn, zn) is a bounded subsequence,
tn → t > 0 and ‖zn‖0 is not bounded away from zero. Now, let us prove the continuity of
T . Since y ≥ 0, it follows that

lim
n→+∞

∫
Ω

A(x,wn)∇yn∇vdx = lim
n→+∞

∫
Ω+

A(x,wn)∇yn∇vdx

=

∫
Ω+

A(x,+∞)∇y∇vdx

=

∫
Ω

A(x,+∞)∇y∇vdx, ∀ v ∈ H1
0 (Ω).(4.4.0.20)

On the other hand,

lim
n→+∞

∫
Ω

(
τn‖zn‖2

0f

(
λ, x,

zn
‖zn‖2

0

)
+ tnφ

)
v =

∫
Ω

tφ, ∀ v ∈ E. (4.4.0.21)

Indeed, by Hölder’s inequality, we have that∫
Ω

∣∣∣∣τn‖zn‖2
0f

(
λ, x,

zn
‖zn‖2

0

)
v

∣∣∣∣ ≤ ∥∥∥∥τn‖zn‖2
0f

(
λ, x,

zn
‖zn‖2

0

)∥∥∥∥
r

‖v‖r′ ,
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bu the (RHS) converges to zero up to a subsequence, due to Lemma 4.4.1, so (4.4.0.21)
holds. By combing (4.4.0.20) and (4.4.0.21), we deduce by passing to the limit the equation
(4.4.0.8) that ∫

Ω

A(x,+∞)∇y∇vdx =

∫
Ω

tφv ∀ v ∈ E,

which means that y = T (τ, t, 0). We just proved that T (τn, tn, zn) → T (τ, t, 0) whenever
(τn, tn, zn) is a bounded sequence such that (τn, tn, zn) → (τ, t, 0), up to a subsequence,
with t > 0. This proves the Case 1b) and so Case 1 is concluded.
Case 2: In this case, since the sequence (zn) is bounded in E we deduce that∣∣∣∣τnf (λ, x, zn

‖zn‖2
0

)∣∣∣∣ ≤ C(x) + C1(x)
z+
n

‖zn‖2
0

≤ M(C(x) + C1(x)), (4.4.0.22)

for some constant M > 0. Consequently,(∥∥∥∥τnf (λ, x, zn
‖zn‖2

0

)∥∥∥∥
r

)
n

is a bounded sequence. By taking v = wn as a test function in (4.4.0.7), using (A2),
Hölder’s inequality and Claim 4.2.1, we obtain

γ‖wn‖2 ≤
∫

Ω

A(x,wn)∇wn∇wn

=

∫
Ω

(
τnf

(
λ, x,

zn
‖zn‖2

0

)
+

tnφ

‖zn‖2
0

)
wn

≤
∥∥∥∥τnf (λ, x, zn

‖zn‖2
0

)∥∥∥∥
r

M‖wn‖r′+‖φ‖r‖wn‖r′ (4.4.0.23)

≤
∥∥∥∥τnf (λ, x, zn

‖zn‖2
0

)∥∥∥∥
r

M‖wn‖+‖φ‖r‖wn‖, (4.4.0.24)

which means that (wn) is a bounded sequence in H1
0 (Ω). The regularity given by Theorem

5.4.2 implies that the sequence (wn) is bounded in E, whence, by Arzelà-Ascoli Theorem,
we deduce that there exist some w ∈ E such that

wn → w in E, up to a subsequence. (4.4.0.25)

Also by the boundedness of (wn) in the reflexive space H1
0 (Ω), we imply that there exist

w ∈ H1
0 (Ω) such that

wn ⇀ w in H1
0 (Ω), (4.4.0.26)

for some w ∈ H1
0 (Ω), up to a subsequence. Moreover, by Claim 4.2.1, it follows that

wn → w in Lr
′
(Ω) up to a subsequence, (4.4.0.27)

in particular wn → w a.e. in Ω up to a subsequence and so w = w and, by Lebesgue
Dominated Convergence, we deduce that

A(x,wn)∇y → A(x,w)∇y in L2(Ω)
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and similarly as we argued in Claim 4.4.2, we deduce by (4.4.0.26), that∫
Ω

A(x,wn)∇y∇yn →
∫

Ω

A(x,w)∇y∇y

and so ∣∣∣∣∫
Ω

A(x,wn)∇y∇(yn − y)

∣∣∣∣→ 0, (4.4.0.28)

whence we conclude that

T (τn, tn, zn) = yn → y in H1
0 (Ω). (4.4.0.29)

Thus, we just proved that (T (τn, tn, zn)) converges to some y ∈ E, up to a subsequence,
whenever (τn, tn, zn) is a bounded sequence and ‖zn‖0 is bounded away from zero. Now, let
us prove the continuity of T . Let (τn, tn, zn) be a sequence in [0, 1]× [0, 1]×E converging
to some (τ, t, z) in [0, 1]× [0, 1]× (E \ {0}).

By using the same argument used to prove (4.4.0.28), we can deduce that

lim
n→+∞

∫
Ω

A(x,wn)∇wn∇v =

∫
Ω

A(x,w)∇w∇v ∀v ∈ H1
0 (Ω). (4.4.0.30)

Moreover, by Lebesgue’s Dominated Convergence Theorem, we deduce that

τnf

(
λ, x,

zn
‖zn‖2

0

)
→ τf

(
λ, x,

z

‖z‖2

)
in Lr(Ω).

But, the expression ∣∣∣∣∫
Ω

(
τnf

(
λ, x,

zn
‖zn‖2

0

)
− τf

(
λ, x,

z

‖z‖2

))
v

∣∣∣∣
is estimated from above by∥∥∥∥(τn(λ, x, zn

‖zn‖2
0

)
− τf

(
λ, x,

zn
‖zn‖2

0

))∥∥∥∥
r

‖v‖r′ ,

consequently,

lim
n→+∞

∫
Ω

(
τnf

(
λ, x,

zn
‖zn‖2

0

)
+ tn

φ

‖zn‖0

)
v =

∫
Ω

(
τf

(
λ, x,

z

‖z‖2

)
+ t

φ

‖z‖

)
v.

(4.4.0.31)
Now, by combining (4.4.0.30) and (4.4.0.31), we deduce that by passing to the limit the
equation (4.4.0.7), we obtain∫

Ω

A(x,w)∇w∇v =

∫
Ω

(
τf

(
λ, x,

z

‖z‖2

)
+ t

φ

‖z‖

)
v, ∀ v ∈ H1

0 (Ω),

in other words,
w = S(τ, t, z). (4.4.0.32)

But wn = S(τn, tn, zn) and so the convergence (4.4.0.25), combined with the fact that
w = w, proves the continuity of S in (τ, t, z) for z 6= 0. Since z 7→ ‖z‖2

0 is a continuous
function, it follows that T is continuous in (τ, t, z).
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In order to prove the compactness of the operator

K : [0,+∞)× E → E

consider the following lemma.

Lemma 4.4.3. If (λn, zn) is a bounded sequence in [0,+∞)× E such that zn → 0, then

‖zn‖2
0f

(
λn, x,

zn
‖zn‖2

0

)
→ 0 in Lr(Ω), up to a subsequence. (4.4.0.33)

Proof. Let (λn, zn) be a bounded sequence in [0,+∞)×E. Then there exists λ ∈ [0,+∞)
such that λn → λ, up to a subsequence. The idea to use the Dominated Lebesgue’s
Convergence Theorem. So let us show that the domination hypothesis is verified. By
using Claim 4.2.3, we deduce that∣∣∣∣‖zn‖2

0f

(
λn, x,

zn
‖zn‖2

0

)∣∣∣∣ ≤ ‖zn‖2
0C(x) + C1(x)z+

n , (4.4.0.34)

since ‖zn‖0→ 0, we assume n large enough so that∣∣∣∣‖zn‖2
0 f

(
λn, x,

zn
‖zn‖2

0

)∣∣∣∣ ≤ C(x) + C1(x)M, (4.4.0.35)

for some constant M > 0 and so the domination hypothesis is verified.
Let us denote

un :=
zn
‖zn‖2

0

.

Since zn → 0 in E, in particular, we have that

zn → 0 a.e. in Ω up to a subsequence. (4.4.0.36)

Let x ∈ Ω. There are two possibilities for the sequence (un(x))n, it is bounded or not. In
the first case, there exists some υ(x) such that un(x)→ υ(x) up to a subsequence and so
by the continuity of (λ, s) 7→ f(λ, x, s) (for a.e. fixed x in Ω), we deduce that

‖zn‖2
0f

(
λn, x,

zn(x)

‖zn‖2
0

)
→ 0.f(λ, x, υ(x)) = 0 up to a subsequence,

In the second case, at least one of the following alternatives must occur:

i) un(x)→ +∞ up to a subsequence;

ii) un(x)→ −∞ up to a subsequence.

In the case i), we deduce that

‖zn‖2
0f

(
λn, x,

zn(x)

‖zn‖2
0

)
=
f (λn, x, un(x))

zn
‖zn‖20

zn(x) =
f (λn, x, un(x))

un(x)
zn(x)

and so
‖zn‖2

0f

(
λn, x,

zn(x)

‖zn‖2
0

)
=
f (λn, x, un(x))

un(x)
zn(x)→ λf+(x).0
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by (f3).
In the case ii), we deduce that

f (λn, x, un(x))

un(x)
zn(x)→ λf(λ, x, 0).0

by using the hypothesis (f−) and the fact (4.4.0.36).
By Lebesgue Dominated Convergence Theorem, we conclude that holds (4.4.0.33) and

the lemma is proved.

Lemma 4.4.4 (Compactness of the operator K). The operator

K : [0,+∞)× E → E

defined in Remark 4.2.8 is compact.

Proof. Let (λn, zn) be a bounded sequence in [0,+∞)×E. Without loss, we can assume
that zn 6= 0 for all n and λn → λ ∈ [0,+∞). Define

wn := S

(
f

(
λn, x,

zn
‖zn‖2

0

))
that is, ∫

Ω

A(x,wn)∇wn∇vdx =

∫
Ω

f

(
λn, x,

zn
‖zn‖2

0

)
vdx, ∀ v ∈ H1

0 (Ω). (4.4.0.37)

and yn := ‖zn‖2
0wn, thus

K(λn, zn) = ‖zn‖2
0wn = yn.

By multiplying (4.4.0.37) by ‖zn‖2
0 we get∫

Ω

A(x,wn)∇(‖zn‖2
0wn)∇vdx =

∫
Ω

‖zn‖2
0f

(
λn, x,

zn
‖zn‖2

0

)
vdx for all v ∈ H1

0 (Ω).

(4.4.0.38)
Taking v = yn as a test function in (4.4.0.38), using (A2), Claims 4.2.3 and 4.2.1, we
obtain

γ‖yn‖2 ≤
∫

Ω

A(x,wn)∇yn∇yn

=

∫
Ω

‖zn‖2
0f

(
λn, x,

zn
‖zn‖2

0

)
yn

≤
∥∥∥∥‖zn‖2

0f

(
λn, x,

zn
‖zn‖2

0

)∥∥∥∥
r

‖yn‖r′

≤ M

∥∥∥∥‖zn‖2
0f

(
λn, x,

zn
‖zn‖2

0

)∥∥∥∥
r

‖yn‖

by whence

γ‖yn‖≤M

∥∥∥∥‖zn‖2
0f

(
λn, x,

zn
‖zn‖2

0

)∥∥∥∥
r

. (4.4.0.39)

Thus, (yn) is bounded in H1
0 (Ω). The regularity given by Theorem 5.4.2, implies that

(yn) is bounded in E. (4.4.0.40)
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By Arzelà-Ascoli Theorem, we imply that there exists some y ∈ E such that

yn → y in E, up to a subsequence. (4.4.0.41)

Also by the boundedness of (yn) in H1
0 (Ω) we imply that there exists some y ∈ H1

0 (Ω)
such that

yn ⇀ y, up to a subsequence,

whence, by Claim 4.2.1, we imply that

yn → y in Lr
′
(Ω)

and so by Proposition 5.3.2,

yn → y a.e. in Ω, up to a subsequence.

Consequently y = y.
Now, we will study the continuity for the following two cases separately:

1) ‖zn‖0 is not bounded away from 0;

2) ‖zn‖0 is bounded away from 0.

Case 1): In this case we can assume that zn → 0. By Lemma 4.4.3 the (RHS) of
(4.4.0.39) converges to zero and, consequently, y = 0 and we conclude that

K(λn, zn) = yn → 0 = K(λ, 0) in E.

Thus, Case 1 is concluded.
Case 2): Moreover, since ‖zn‖0 is bounded away from zero and (yn) is a bounded sequence
(see (4.4.0.40)), it follows that the sequence wn = ‖zn‖−2

0 yn is bounded E. So the proof
of the continuity follows similarly as we done in the proof of Case 2 of Lemma 4.4.2.

The following lemma proves that if 0 ≤ λ < λ∞, then (λ, 0) is not a bifurcation point
from the curve of trivial solutions of Φ(λ, z) = 0.

Lemma 4.4.5. Assume the hypotheses (f−), (A1)-(A4) and (f0)-(f3) and let Λ ⊂ [0, λ∞)
be a compact interval. Then there exists a number R > 0 such that

u 6= S(tf(λ, x, u)) (4.4.0.42)

for all u ∈ E with ‖u‖0≥ R, all λ ∈ Λ and all t ∈ [0, 1].

Proof. Suppose that there exists sequences (λn) in Λ, (tn) in [0, 1] and (un) in E with
‖u‖→ ∞ such that

un = S(tnf(λn, x, un)). (4.4.0.43)

Since Λ and [0, 1] are compact sets, we deduce the existence of λ ∈ Λ and t ∈ [0, 1] such
that λn → λ and tn → t up to a subsequence. Let us define the normalized sequence
zn := un‖un‖−1

0 and note that by dividing (4.4.0.43) by ‖un‖0, we obtain that zn satisfies
the equation∫

Ω

A(x, un)∇zn · ∇v = tn

∫
Ω

f(λn, x, un)

‖un‖0

v ∀ v ∈ H1
0 (Ω). (4.4.0.44)
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By taking v = u−n as a test function and using (A2), (f−) and (f0), we deduce that

γ
‖u−n ‖2

‖un‖0

≤
∫

Ω

tn
f(λn, x, u

−
n )

‖un‖0

u−n ≤ 0 (4.4.0.45)

and so un ≥ 0 for all n.
By taking zn as a test function in (??), using (A2) and Claim 4.2.3, we deduce that

γ‖zn‖2 =

∫
Ω

A(x, un)∇zn · ∇zn

= tn

∫
Ω

f(λn, x, un)

‖un‖0

zn

≤
∫

Ω

Czn
‖un‖0

+ C1z
2
n

≤
∫

Ω

M(C + C1)

≤ M‖C + C1‖r.

Whence the sequence (zn) is bounded in H1
0 (Ω) and so it follows that there exists some

z ∈ E such that
zn ⇀ z in H1

0 (Ω) (4.4.0.46)

and so by Claim 4.2.1, we have that

zn → z in Lr
′
(Ω), up to a subsequence. (4.4.0.47)

So Proposition 5.3.2 implies that

zn → z a.e. in Ω, up to a subsequence. (4.4.0.48)

Since ‖zn‖0= 1, it follows by Arzelà-Ascoli Theorem, that there exists some z ∈ E such
that

zn → z in E, up to a subsequence.

Whence by (4.4.0.66), we deduce that z = z.

Note that un = ‖un‖0zn → +∞ a.e. in Ω+, where

Ω+ = {x ∈ Ω; z(x) > 0}

and so A(x, un)∇z → A(x,∞)∇z in L2(Ω+)N , due to (A1) and the Dominated Conver-
gence Lebesgue Theorem. Since zn ⇀ z (see (4.4.0.64)), it follows by Proposition 5.3.1
that

lim
n→∞

∫
Ω+

A(x, un)∇zn · ∇v = lim
n→∞

∫
Ω+

A(x,+∞)∇z · ∇v, ∀ v ∈ H1
0 (Ω). (4.4.0.49)

Moreover, by using Claim 4.2.3 we have that∣∣∣∣f(λn, x, un)

‖un‖0

∣∣∣∣ ≤ C

‖un‖0

+ C1zn

≤ M(C + C1).
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For every x ∈ Ω such that un(x) > 0, we have

f(λn, x, un)

‖un‖0

=
f(λn, x, un)

un
zn(x)

thus,
f(λn, x, un)

‖un‖0

→ λf ′∞z, a.e. in Ω.

Consequently, by Lebesgue’s Dominated Convergence Theorem and the hypothesis (f2),
we deduce that

f(λn, x, un)

‖un‖0

→ λf ′∞z in Lr(Ω).

By using Hölder’s inequality and Claim, we deduce that∣∣∣∣∫
Ω

(
f(λn, x, un)

‖un‖0

− λf∞z
)
v

∣∣∣∣ ≤ ∥∥∥∥f(λn, x, un)

‖un‖0

− λf∞z
∥∥∥∥
r

‖v‖r′ , ∀ v ∈ H1
0 (Ω).

So
lim

n→+∞

f(λn, x, un)

‖un‖0

v = λf ′∞zv, ∀ v ∈ H1
0 (Ω). (4.4.0.50)

Combining (4.4.0.49) and (4.4.0.50) we deduce, by passing to the limit in equation (4.4.0.44),
that z is a non trivial and non negative solution of

− div(A(x,∞)∇z) = tλf ′∞(x)z, (4.4.0.51)

hence tλ = λ∞ and z = ψ, where ψ is the eigenfunction (associated to λ∞) of the Dirichlet
eigenvalue problem with weight (4.0.0.7), as we defined before, but this contradicts the
hypothesis λ < λ∞.

Remark 4.4.1. If we consider the sequence tn = 1 for all n, then the argument in
(4.4.0.45) shows that every solution u of Φλ(u) = 0 is non negative.

Remark 4.4.2 (Necessary condition for some λ∗ to be a bifurcation point from infinity
of (Pλ)). Let λ∗ ≥ 0 be such that λ∗ is a bifurcation point from infinity of the problem
(Pλ). If we take Λ = {λn}, where λn is a sequence in [0,+∞) such that λn → λ∗ and (tn)
be the sequence defined by tn = 1 for all n, then the same arguments leads us to (4.4.0.51)
with t = 1 and so we conclude that λ∗ = λ∞.

Remark 4.4.3. Let 0 ≤ λ < λ∞ and R > 0 as in Lemma 4.4.5. Then,

z − ‖z‖2
0S

(
tf

(
λ, x,

z

‖z‖2
0

))
6= 0 in BR−1(0) \ {0} t ∈ [0, 1].

Thus, the homotopy (4.2.1) is admissible in [0, 1]×BR−1(0) and

i(H1(t, · ), 0) = deg(H1(t, · ), BR−1(0), 0)

for all t ∈ [0, 1], hence by the invariance under homotopy

i(Φλ, 0) = i(H1(1, · ), 0)

= deg(H1(0, · ), 0, 0)

= deg(I, 0, 0)

= 1

for each 0 ≤ λ < λ∞.
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The following lemma proves thatH2 is admissible in some E-ball. Moreover, if λ > λ∞,
then (λ, 0) is not a bifurcation point from the curve of trivial solutions of z−Φ(λ, z) = 0.

Lemma 4.4.6. Suppose that conditions (f−), (A1)-(A4) and (f0)-(f3) are satisfied and
let φ be a function in C∞0 (Ω) such that φ(x) > 0 for all x ∈ Ω. If λ > λ∞, then there
exists R > 0 such that

u− S(f(λ, x, u) + τ‖u‖2
0φ) 6= 0, (4.4.0.52)

for all u ∈ E with ‖u‖0≥ R, for all τ ≥ 0.

Proof. Suppose that there exists a sequence (un) in E such that ‖un‖0→∞ and for a non
negative sequence of numbers (τn), we have

− div(A(x, un)∇un) = f(λ, x, un) + τn‖un‖2
0φ. (4.4.0.53)

By using u−n as test function, we obtain∫
Ω

A(x, un)∇u−n · ∇u−n =

∫
Ω

f(λ, x, un)u−n + τn

∫
Ω

u−n ‖un‖2
0φ (4.4.0.54)

and since τn ≥ 0 and φ is positive,

γ‖u−n ‖2≤
∫

Ω

(f(λ, x, 0) + τn‖un‖2
0φ)u−n ≤ 0,

where in the last inequality we use (f−) and (A2), thus un ≥ 0.
Case 1 (‖un‖) unbounded:

Define the normalized sequence zn := un‖un‖−1. By taking φ/‖un‖ as a test function in
(4.4.0.53), we get∫

Ω

A(x, un)∇
(

un
‖un‖

)
· ∇φ =

∫
Ω

f(λ, x, un)

‖un‖
φ+ τn‖un‖2

0

∫
Ω

φ
φ

‖un‖

and by using the conditions (A1), (4.2.3), Hölder’s inequality and Claim 4.2.1 we obtain

τn
‖un‖2

0

‖un‖

∫
Ω

φ2 =

∫
Ω

A(x, un)∇
(

un
‖un‖

)
· ∇φ

−
∫

Ω

f(λ, x, un)

‖un‖
φ

≤ β‖φ‖2+

∫
Ω

(
C(x)

‖un‖
+ C1(x)zn

)
φ

≤ β‖φ‖2+M‖φ‖∞(‖C1‖r+‖C2‖r‖zn‖r′)
≤ β‖φ‖2+M‖φ‖∞(‖C1‖r+‖C2‖r‖zn‖)

and so (τn‖un‖2
0/‖un‖) is a bounded sequence. Thus, there exists some τ ∗ ≥ 0 such that

τn‖un‖2
0/‖un‖ converges to τ ∗, up to a subsequence.

Now, observe that by dividing (4.4.0.53) by ‖un‖, we deduce that zn satisfies the
equation ∫

Ω

A(x, un)∇zn∇v =

∫
Ω

f(λ, x, un)

‖un‖
v + τn

‖un‖2
0

‖un‖

∫
Ω

φv. (4.4.0.55)
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Since the sequence (zn) is bounded in H1
0 (Ω), it follows that there exists some z ∈ H1

0 (Ω)
such that

zn ⇀ z in H1
0 (Ω) (4.4.0.56)

and so by Claim 4.2.1,

zn → z in L2r′(Ω), up to a subsequence. (4.4.0.57)

So Proposition 5.3.2 implies that

zn → z a.e. in Ω, up to a subsequence. (4.4.0.58)

Since ‖zn‖0= 1, it follows, by Arzelà-Ascoli Theorem, that there exists some z ∈ E such
that

zn → z in E, up to a subsequence,

whence by (4.4.0.66), we deduce that z = z.
Taking v = zn − z as a test function in (4.4.0.55), we obtain

∫
Ω

A(x, un)∇zn · ∇(zn − z) =

∫
Ω

f(λ, x, un)

‖un‖
(zn − z) + τn

‖un‖2
0

‖un‖

∫
Ω

φ(zn − z).

Subtracting ∫
Ω

A(x, un)∇z · ∇(zn − z),

in both sides of the above equation, we get from (A2) and (4.0.0.2) that

γ‖zn − z‖2 ≤
∫

Ω

A(x, un)∇(zn − z) · ∇(zn − z)

=

∫
Ω

f(λ, x, un)

‖un‖
(zn − z) +

+ τn
‖un‖2

0

‖un‖

∫
Ω

φ(zn − z)−
∫

Ω

A(x, un)∇z · ∇(zn − z)

≤
∫

Ω

(
C(x)

‖un‖
+ C1(x)zn

)
|zn − z|

+ τn‖un‖
∫

Ω

φ(zn − z)−
∫

Ω

A(x, un)∇z · ∇(zn − z)

=

∫
Ω

(
C(x)

‖un‖
+ C1(x)zn

)
|zn − z|

+ τn
‖un‖2

0

‖un‖

∫
Ω

φ(zn − z)−
∫

Ω+

A(x, un)∇z · ∇(zn − z)

= M

(∫
Ω

(C(x) + C1(x)zn) |zn − z|

+

∫
Ω

φ(zn − z)−
∫

Ω+

A(x, un)∇z · ∇(zn − z)

)
(4.4.0.59)

where
Ω+ = {x ∈ Ω : z(x) > 0}.
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By applying the Estimates II, III and using the convergence zn → z in L2r′(Ω) (see
(4.4.0.65)), we deduce that

∫
Ω

C|zn − z|≤ ‖C‖(2r′)′‖zn − z‖2r′ (Estimate II)∫
Ω

C1zn|zn − z|≤M‖C1‖r/(p(2r
′)′)

r ‖zn‖2r′/(p′(2r′)′)
2r′ ‖zn − z‖2r′ (Estimate III).

(4.4.0.60)

(4.4.0.61)

But, by Claim 4.2.1, we have deduce that

‖zn‖2r′/(p′(2r′)′)
2r′ ≤M‖zn‖2r′/(p′(2r′)′)= M

and by the convergence (4.4.0.65), conclude that the first two therms in (RHS) of (4.4.0.59)
converges to zero, up to a subsequence.

We claim that m(Ω+) > 0. Indeed, on the contrary we would have∫
Ω+

A(x, un)∇z · ∇(zn − z) = 0

and so the inequality (4.4.0.59) would imply zn → z in H1
0 (Ω), consequently

1 = ‖zn‖0→ ‖z‖= 1, hence 0 ≤ z 6= 0, but since z ≥ 0, it would imply that m(Ω+) > 0,
which is a contradiction.

Note that the un = zn‖un‖→ +∞ a.e. in Ω+ := {x ∈ Ω; z(x) > 0} and so the
conditions (A1) and (A4) implies that A(x, un)∇z converges strongly to A(x,∞)∇z in
L2(Ω+), due to Dominated Convergence Lebesgue’s Theorem. By the convergence zn ⇀ z
in H1

0 (Ω) (see (4.4.0.56)), we deduce that∫
Ω+

A(x, un)∇z · ∇(zn − z)→ 0,

due to Proposition 5.3.2.
Finally, dividing (4.4.0.53) by ‖un‖ and taking the limit when n → +∞ , we deduce

that z satisfies the equation

− div(A(x,∞)∇z) = λf ′∞(x)z + τ ∗φ.

So, testing the above equations against ψ, we have

∫
Ω

A(x,∞)∇z∇ψ = λ

∫
Ω

f ′∞(x)zψ +

∫
Ω

τ ∗φψ

≥ λ

∫
Ω

f ′∞(x)zψ.

On the other hand,

λ∞

∫
Ω

f ′∞(x)zψ =

∫
Ω

A(x,∞)∇z∇ψ,

then

λ∞

∫
Ω

f ′∞(x)zψ ≥ λ

∫
Ω

f ′∞(x)zψ, (4.4.0.62)
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but since z 6≡ 0, this inequality implies that λ∞ ≥ λ, which is a contradiction.
Case 2 (‖un‖) is a bounded sequence. Define the normalized sequence zn := un‖un‖−1

0 .
By taking φ/‖un‖0 as a test function in (4.4.0.53), we get∫

Ω

A(x, un)∇
(

un
‖un‖0

)
· ∇φ =

∫
Ω

f(λ, x, un)

‖un‖0

φ+ τn‖un‖0

∫
Ω

φ2

and so, by using the hypotheses (A1), (4.2.3), Hölder’s inequality and Claim 4.2.1 we
obtain

τn‖un‖0

∫
Ω

φ2 =

∫
Ω

A(x, un)∇
(

un
‖un‖0

)
· ∇φ

−
∫

Ω

f(λ, x, un)

‖un‖
φ

≤ β‖φ‖2‖un‖2

‖un‖0

+

∫
Ω

(
C(x)

‖un‖
+ C1(x)zn

)
φ

≤ M
(
β‖φ‖2+M‖φ‖∞(‖C1‖r+‖C2‖r)

)
.

So τn‖un‖0 is a bounded sequence. Thus, there exists some τ ∗ ≥ 0 such that τn‖un‖0

converges to τ ∗ up to a subsequence.
Now, observe that by dividing (4.4.0.53) by ‖un‖0, we deduce that zn satisfies the

equation ∫
Ω

A(x, un)∇zn∇v =

∫
Ω

f(λ, x, un)

‖un‖0

v + τn‖un‖0

∫
Ω

φv. (4.4.0.63)

By taking v = zn as a test function and using (A2), we obtain

γ‖zn‖2 ≤
∫

Ω

A(x, un)∇zn∇zn

≤
∫

Ω

f(λ, x, un)

‖un‖0

zn + τn‖un‖0

∫
Ω

φzn

≤ M

(∫
Ω

f(λ, x, un)

‖un‖0

+

∫
Ω

φ

)
≤ M

(∫
Ω

(
C(x)

‖un‖0

+ C1(x)zn

)
+ M̃

)
≤ M̂.

That is, the sequence (zn) is bounded in the reflexive space H1
0 (Ω), then, there exists some

z ∈ H1
0 (Ω) such that

zn ⇀ z in H1
0 (Ω) (4.4.0.64)

and so by Claim 4.2.1,

zn → z in L2r′(Ω), up to a subsequence. (4.4.0.65)

So Proposition 5.3.2 implies that

zn → z a.e. in Ω, up to a subsequence. (4.4.0.66)
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Note that the un = zn‖un‖→ +∞ a.e. in Ω+ := {x ∈ Ω; z(x) > 0} and so the conditions
(A1) and (A4) implies that A(x, un)∇z converges strongly to A(x,∞)∇z in L2(Ω+), due
to Dominated Convergence Lebesgue’s Theorem. By the convergence zn ⇀ z in H1

0 (Ω)
(see 4.4.0.64), we deduce that∫

Ω+

A(x, un)∇z · ∇(zn − z)→ 0,

due to Proposition 5.3.2.
Finally, by dividing (4.4.0.53) by ‖un‖0 and taking the limit when n→ +∞, we deduce

that z satisfies the equation

− div(A(x,∞)∇z) = λf ′∞(x)z + τ ∗φ.

So, testing the above equation against ψ, we have

∫
Ω

A(x,∞)∇z∇ψ = λ

∫
Ω

f ′∞(x)zψ +

∫
Ω

τ ∗φψ (4.4.0.67)

≥ λ

∫
Ω

f ′∞(x)zψ. (4.4.0.68)

On the other hand,

λ∞

∫
Ω

f ′∞(x)zψ =

∫
Ω

A(x,∞)∇z∇ψ,

then

λ∞

∫
Ω

f ′∞(x)zψ ≥ λ

∫
Ω

f ′∞(x)zψ, (4.4.0.69)

but since z 6≡ 0, this inequality implies that λ∞ ≥ λ, which is a contradiction.

Remark 4.4.4. Let λ > λ∞ and φ be a positive function and R > 0 as in the Lemma
4.4.6. Then

z − ‖z‖2
0S

(
f

(
λ, x,

z

‖z‖2
0

)
+

τφ

‖z‖2
0

)
6= 0 in BR−1(0) \ {0}, τ ∈ [0, 1],

thus the homotopy (4.2.1) is admissible in [0, 1]×BR−1(0) and

i(H2(τ, · ), 0) = deg(H2(τ, · ), BR−1(0), 0)

for all τ ∈ [0, 1].

Observe that by Lemma 4.4.6,

z

‖z‖2
0

− S

(
f

(
λ, x,

z

‖z‖2
0

)
+ τ

∥∥∥∥ z

‖z‖2
0

∥∥∥∥2

0

φ

)
6= 0

for each z 6= 0 with ∥∥∥∥ z

‖z‖2
0

∥∥∥∥
0

≥ R⇔ ‖z‖0≤ R−1,
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moreover H2(1, 0) = Ψ1 6= 0, hence H2(1, · ) 6= 0 in BR−1(0) and so by the property of
existence of solution of the Leray-Schauder degree, we deduce that

deg(H2(1, · ), 0, 0) = 0.

By the invariance under homotopy,

i(Φλ, 0) = i(H2(0, · ), 0, 0)

= deg(H2(0, · ), 0, 0)

= deg(H2(1, · ), 0, 0)

= 0

for each λ > λ∞, where the last equation folllows from the argument in (4.2.1.5).
Finally, by applying Theorem A we deduce that it holds Theorem D as follows.

Proof. The existence of the continuum follows directly by applying Theorem A for I =
[0,+∞), µ = λ∞ and (a, b) being any interval containing λ∞ with a > 0. Now, by
combining the additional hypothesis (4.0.0.11) with Remark (4.4.1), we obtain that u = 0
is the only solution of (Pλ) for λ = 0. But by Lemma 4.4.6, (0, 0) is not a bifurcation
point and so Cλ∞ does not satisfies the alternative ii) of Theorem A. So we conclude that
it must satisfy i), that is, Cλ∞ is unbounded.

Remark 4.4.5. Observe that
ΣΦ = ΣF̃ ,

by Remark 4.2.8.

4.5 Final comments
About the paper [4], we must comment that many other results are presented. Among
them we quote the following. Based on the ideas from [5], the authors study the side of
bifurcation. The bifurcation from the curve of trivial solutions was studied and it was
proved the existence of a continuum Cλ0 emanating from

λ0 =

{
λ1(f ′+(x, 0)), if f ′+(x, 0) ∈ Lr(Ω),

0, otherwise,

for a certain f ′+(x, 0) ∈ Lr(Ω). The assumptions required in order to deduce this result
were that 1 for every Λ bounded set of R \ {0} and λ ∈ Λ,

lim
s→0+

f(λ, x, s)

s
= λf ′+(x, 0), uniformly in (λ, x) ∈ Λ× Ω,

with either 0 ≤ f ′+(x, 0) ∈ Lr(Ω), r > N/2, not identically zero or f ′+(x, 0) = +∞ a.e.
x ∈ Ω and

∃ lim
s→0+

A(x, s) = A(x, 0) a.e. x ∈ Ω.

Moreover, by combining the two phenomena (bifurcation at infinity and from the curve
of trivial solutions) many applications were presented. One of them is an existence result

1besides other technical hypotheses.
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which states that, under certain conditions (see Theorem 5.12 of [4]), there exists Λ∗, λ
with Λ∗ ≥ λ ≥ λ0 such that (Pλ) has at least one positive solution for every λ ≤ λ and no
positive solution if λ > Λ∗. Also in Theorem 5.12 of [4], one have the multiplicity result
that states that, under certain conditions, there exist at least two positive solutions for
each λ ∈ (λ0, λ). Moreover, the following open problem was proposed: does the continuum
Cλ0 gives the maximal interval for which there exists a positive solution of (Pλ)?



Chapter 5

Appendix

5.1 Topology
Proposition 5.1.1. Let M and N be metric spaces and f : M → N a function. Under
these conditions, the function f is continuous in a ∈M if for any given sequence xn → a,
it follows that f(xn) converges to f(a) up to a subsequence.

Proof. See [29].

Definition 5.1.1. A space Y is locally connected if it has a basis consisting of connected
(open) sets.

See Section 4 in Dugundji [18].

Example 5.1.1. The euclidean space RN is a locally connected space. Indeed, the balls
are connected sets which constitute a basis for RN .

See Section 4 in Dugungji [18].

Definition 5.1.2. A space Y is path-connected (or: pathwise connected) if each pair of
its points can be joined by a path.

See Definition 5.1 in Dugundji [18].

Theorem 5.1.1. An open set in RN is connected if and only if it is path-connected.

Proof. See [29].

Theorem 5.1.2. Y is locally connected if and only if the components of each open set are
open sets.

Proof. See Section 4 in Dugundji [18].

5.2 Measure Theory
Theorem 5.2.1 (Lebesgue’s Dominated Convergence Theorem). Assume f1, f2, . . . , fn, . . .
are µ-measurable functions on RN . Assume g ≥ 0, g ∈ L1. Assume

lim
k→

fk(x) exists for all x ∈ RN

141
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and
|fk(x)|≤ g(x) ∀ x ∈ RN .

Then limk→∞ fk ∈ L1 and ∫ (
lim
k→∞

fk

)
dµ = lim

k→∞

∫
fkdµ.

Proof. See Section B of Jones [22].

Theorem 5.2.2. Let ϕ1, ϕ2, . . . , ϕn, . . ., µ-measurable functions defined a.e. on RN , and
such that

lim
k→∞

ϕk(x) = ϕ(x) exists for a.e. x ∈ RN .

Also assume g1, g2, . . . , gn, . . . are nonnegative functions in L1(RN), that

|ϕk(x)|≤ gk(x) for a.e. x ∈ RN ,

that
lim
k→∞

gk(x) = g(x) exists for a.e. x ∈ RN ,

that g ∈ L1(RN), and that ∫
RN
gdµ = lim

k→∞

∫
RN
gkdµ.

Then, ∫
RN
ϕdλ = lim

k→∞

∫
RN
ϕkdλ.

Proof. See Problem 19 of [22].

5.3 Functional Analysis
Definition 5.3.1 (General compact operators). Let E and F be Banach spaces. A con-
tinuous operator T : E → F is said to be compact if T (A) ⊂ F is a compact subset
whenever A ⊂ E is bounded. Or equivalently, if the sequence (T (un))n converges up to a
subsequence whenever (un)n is a bounded sequence in E.

See Definition 9.5.1 in [8]. When E = F and X is a subset of E, we denote by Q(X;E)
the family of all compact operators T : X → E.

5.3.1 Spectral Theory

Here we present some concepts that can be found in Section 7.1 of [8].
Let E a K normed space and T ∈ L(E,E).

Definition 5.3.2 (Eigenvalue and Characteristic Value). Let λ ∈ K. We say that λ is
an eigenvalue of T when Ker(T − λI) 6= {0}. If λ 6= 0 is an eigenvalue of T , then its
reciprocal λ−1 is called characteristic value of T .

Suppose that λ ∈ K is not an eigenvalue of T . Thus, Ker(T −λI) = {0} and it makes
sense to consider the operator

(T − λI)−1 : (T − λI)(E) ⊂ E → E,

which is an injective and linear operator.



5.3. FUNCTIONAL ANALYSIS 143

Definition 5.3.3. An scalar λ is said to be a regular value of the operator T is (T − λI)
is bijective and

(T − λI)−1 : E → E

is continuous. The set of all regular values of T is called the resolvent of T and denoted
by ρ(T ). It complementar set (K \ ρ(T )) is called the spectrum of T and it is denoted by
σ(T ).

Remark 5.3.1. If E is a Banach space, the Open Function Theorem implies that

ρ(T ) = {λ ∈ K; (T − λI) is bijective }.

Remark 5.3.2. From the definition, it follows that every eigenvalue of T belongs to the
spectrum of T .

Theorem 5.3.1. Let E be a Banach space. The spectre of a compact linear operator
T : E → E is enumerable and its only accumulation point is zero.

Theorem 5.3.2. Let E be a Banach space, T : E → E a compact operator and λ ∈
K, λ 6= 0. Then, the operator (T − λI) is injective if and only if it is surjective.

Proof. See Lema 7.3.2 in [8].

Theorem 5.3.3. Let E be an infinite dimensional Banach space and T : E → E a
compact operator linear operator. Then,

σ(T ) = {0} ∪ {λ; λ is an eigenvalue of T}.

Proof. See Teorema 7.3.6 in [8].

Fredholm Operators

Definition 5.3.4. Let U and V be Banach spaces and T ∈ L(U, V ). We say that T is a
Fredholm Operator if

dimN [T ] <∞ and codimR[T ] <∞.

Under these conditions it is possible to show that R[T ] is a closed subspace of V .
Moreover we denote the index of T as

ind[T ] := dimN [T ]− codimR[T ].

By Fred0(U, V ) we denote the subfamily of L(U, V ) constituted by the Fredholm operadors
of index 0.

Proposition 5.3.1. Let E be a normed space.

(a) If xn
w→ x in E, then the sequence (‖xn‖)∞n=1 is bounded and ‖x‖≤ lim infn‖xn‖.

(b) If xn
w→ x in E and ϕn → ϕ in E ′, then ϕn(xn)→ ϕ(x) in K.

Proof. See Proposition 6.2.5 of [8].

Proposition 5.3.2. If fn → f in Lp(X), 1 ≤ p < ∞, then there exists a subsequence
(fnj)

∞
j=1 and a function g ∈ Lp(X) such that:
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i) fnj(x)→ f(x) µ−a.e. and

ii) |fnj(x)|≤ g(x) µ−a.e.

Proof. See Exercise 9.9.1 of [8].

Theorem 5.3.4 (Teorema 13.44 of [21]). Suppose that 1 < p <∞ and that (‖fn‖p)∞n=1 is
a bounded sequence. If fn → f µ−a.e., then fn → f weakly in Lp(Ω).

Proof. See Theorem 13.44 of [21].

Theorem 5.3.5 (Hölder inequality). Let p, q > 1 such that 1
p

+ 1
q

= 1 and let (X,Σ, µ)

be a measure space. If f ∈ Lp(X,Σ, µ) and g ∈ Lq(X,Σ, µ), then fg ∈ L1(X,Σ, µ) and

‖fg‖1≤ ‖f‖p·‖g‖q.

Proof. See Theorem 1.2.1 in [8].

Theorem 5.3.6 (Implicit Function Theorem). Let E1, E2 and F be normed linear spaces
and assume that E2 is complete. Let Ω ⊂ R× E1 × E2 be an open set and let f : Ω→ F
be a function such that

i) f is continuous;

ii) for every (u, v) ∈ Ω, ∂f
∂v

(u, v) exists and is continuous on Ω;

iii) f(a, b) = 0 and ∂f
∂v

(a, b) is invertible with continuous inverse.

Then, there exist neighbourhoods U of a and V of b and a continuous function ϕ : U → V
such that ϕ(a) = b,

f(u, ϕ(u)) = 0

and these are the only solutions of f(u, v) = 0 in U × V.

Proof. See Theorem 1.3.1 in Kesavan [23].

Theorem 5.3.7 (Inverse Function Theorem). Let E and F be Banach spaces and
f : Ω ⊂ E → F be a Cp-map, for some p ≥ 1. Let a ∈ Ω with f(a) = b and let
f ′(a) : E → F be an isomorphism. Then there exists a neighbourhood V of b in F and a
unique Cp function g : V → E such that{

a = g(b)

f(g(y)) = y

for every V.

Proof. See Theorem 1.3.2 in Kesavan [23].

Theorem 5.3.8. Let E be a Banach space. If T : E → E is a contraction, then the
operator T − I is a Lipschitz bijection with Lipschitz inverse.

Nemmytskii Operator.
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Definition 5.3.5 (Caratheódory Functions1). Let Ω ⊂ RN be a bounded open subset. We
say that the function

Ω× RM 3 (x, u) 7→ f(x, u) ∈ R (5.3.1.1)

satisfies the Carathéodory Conditions if

u 7→ f(x, u) is continuous for almost every x ∈ Ω. (5.3.1.2)

and
x 7→ f(x, u) is mensurable for all u ∈ Ω. (5.3.1.3)

Definition 5.3.6 (Nemytskii Operator2). Let Ω be a bounded open subset of RN and
f : Ω × RM satisfying the Carathéodory Conditions. Let E a certain family of functions
u : Ω→ RM , then, the function

F : E → F(E)
u 7→ F(u) : Ω −→ R

x 7 −→ F(u)(x) := f(x, u(x))

is called Nemytskii operator of function f .

Theorem 5.3.9. Let Ω ⊂ RN be a bounded open subset and let

f : Ω× RM → R
(x, ξ) 7→ f(x, ξ)

a function satisfying the Carathéodory Conditions. Additionally, let p ∈ (1,∞) and g ∈
Lq(Ω), where q is the conjugated of p, and suppose that f satisfies

|f(x, ξ)|≤ C|ξ|p−1+g(x). (5.3.1.4)

Then, the Nemytskii operator F of the function f is a function over LP (Ω) to Lq(Ω) which
is continuous and bounded.

5.4 Elliptic problems
In this section we present some concepts and results in elliptic problems as existence of
solutions and regularity. For more details see [20].

Let Ω a bounded domain in RN , a, bi, ci, d : Ω → R, be i = 1, 2, . . . , N measurable
functions and consider a differential operator L in the form

Lu = Di(aij(x)Dju+ bi(x)u) + ci(x)Diu+ d(x)u.

Assume that the function u is weakly differentiable and that the functions aijDju +
biu, ciDiu + du, i = 1, . . . , n are locally integrable, then, we say that u satisfies Lu =
0, (u ≥ 0, u ≤ 0) in weak (or generalized), respectively in Ω when

L(u, v) =

∫
Ω

[(aijDju+ biu)Div − (ciDiu+ du)v]dx = 0 (≤ 0, ≥ 0)

1see [34].
2see [34].
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for all non negative function v ∈ C1
0(Ω).

Let f i, g, i = 1, . . . , n be locally integrable (in Ω) functions. Then, a weakly dif-
ferentiable function u is called weak (or generalized) solution of the non homogeneous
equation

Lu = f (5.4.0.1)

in Ω, if

L(u, v) = F (v) =

∫
Ω

fvdx ∀ v ∈ C1
0(Ω).

where C1
0(Ω) denotes the space of test functions.

Consider the generalized Dirichlet problem for the equation (5.4.0.1). Let us assume
that L is strictly elliptic in em Ω, that is, there exist a positive number λ such that

aij(x)ξiξj ≥ γ|ξ|2, ∀ x ∈ Ω, ξ ∈ Rn. (5.4.0.2)

Suppose, also, that L satisfies the following limitation condition over its coefficient:
there exist constants Λ and ν ≥ 0 such that for all x ∈ Ω,∑

|aij(x)|2≤ Λ2, λ−2
∑

(|bi(x)|2+|ci(x)|2) + γ−1|d(x)|≤ ν2. (5.4.0.3)

In order to enunciate the Weak Maximum Principle, we require a notion of inequality
at the boundary for function in the Sobolev space W 1,2(Ω). We say that u ∈ W 1,2(Ω)
satisfies u ≤ 0 on ∂Ω if its positive part u+ = max{u, 0} ∈ W 1,2

0 (Ω). If u is continuous in
a neighborhood of ∂Ω, then, u satisfies u ≤ 0 on ∂Ω if the inequality holds in the classical
pointwise sense. We say that u ≥ 0 on ∂Ω if −u ≤ 0 on ∂Ω and for v ∈ W 1,2(Ω) we say
that u ≤ v on ∂Ω if u− v ≤ 0 on ∂. Moreover,

sup
∂Ω

u = inf{k; u ≤ k on ∂Ω, k ∈ R}; inf
∂Ω
u = − sup

∂Ω
(−u).

Theorem 5.4.1. Let u ∈ W 1,2(Ω) satisfy Lu ≥ 0 (≤ 0) in Ω. Then

sup
Ω
u ≤ sup

∂Ω
u+; inf

Ω
u ≥ inf

∂Ω
u−.

Proof. See Theorem 8.1 in [20].

Corollary 5.4.1. Let L be an elliptic operator defined as in the above definition of weak
solutions. Let u ∈ W 1,2

0 (Ω) satisfy Lu = 0 in the weak sense. Then Lu = 0 in Ω in the
weak sense.

Theorem 5.4.2. Suppose that the operator L satisfies conditions (5.4.0.2) and (5.4.0.3)
and that f i ∈ Lq(Ω), i = 1, . . . , n, g ∈ Lq/2(Ω) for some q > n. Then, if u is a subsolution
(supersolution) of equation (5.4.0.1) inW 1,2(Ω), satisfying u ≤ (≥ 0) in ∂Ω, then, it holds

sup
Ω
u(−u) ≤ C(‖u+(u−)‖2+k)

where k = γ−1(‖f‖q+‖g‖q/2) and C = C(n, ν, q, |Ω|).

Proof. See Theorem 8.15 in Gilbarg and Trudinger [20].
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Remark 5.4.1. Observe that if p ≥ 1 then

‖u+‖pp =

∫
Ω

|u+|p

=

∫
Ω+

|u|pdx

≤
∫

Ω

|u|pdx

= ‖u‖pp.

Theorem 5.4.3. Let L be an operator satisfying the conditions (5.4.0.2) and (5.4.0.3),
f ∈ Lr(Ω) with r > N/2 and suppose that Ω satisfies a uniform exterior cone condition
on a boundary portion T . Then if u ∈ H(Ω) satisfies the equation (5.4.0.1), then u ∈
Cα(Ω ∪ T ) for some α > 0.

See Theorem 8.29 of [20].

Theorem 5.4.4 (Solution Operator ∆−1). Let Ω be a bounded open subset of RN . Then
the Dirichlet boundary value problem{

−∆u = f in Ω,

u = 0 on ∂Ω,
(5.4.0.4)

where h ∈ L2(Ω), admits a solution operator S : L2(Ω) → H1
0 (Ω), defined by K(f) = u,

where u is the unique solution of (5.4.0.4). Moreover, S is a compact linear operator.

Proof. See Theorem 1.10 of [2].

Consider the following Dirichlet boundary Value Problem{
−∆u = f(x, u) in Ω,

u = 0 on ∂Ω.
(5.4.0.5)

Theorem 5.4.5. Let ∂Ω be smooth and let f : Ω × R → R a locally Hölder continuous,
satisfying

|f(x, s)|≤ a1(x) + a2|s|p, ∀ (x, u) ∈ Ω× R (5.4.0.6)

for some a1 ∈ L2n/(n+2)(Ω) and a2 > 0, with 1 < p ≤ (n + 2)/(n − 2). Then every
u ∈ H1

0 (Ω) which is a weak solution of (5.4.0.5) is a C2-solution of (5.4.0.5).

Proof. See Theorem 1.16 and Remark 1.17 in [2].

Remark 5.4.2. Observe that the hypothesis 1 < p ≤ (n + 2)/(n − 2) just makes sense
when n > 2. But for n ∈ {1, 2} the result remains valid. In fact, the idea of the proof in [2]
is to use bootstrap method to deduce that if u ∈ H1

0 (Ω) is a weak solution of (5.4.0.5),
then u ∈ W 2,γ(Ω) with γ ≥ n/2 and this fact is sufficient for the conclusion of the proof.
But, u ∈ H1

0 (Ω) implies that u ∈ W 2,1(Ω) and for n ∈ {1, 2} one have n/2 ≤ 1 and so
γ = 1 ≥ n/2 satisfies that u ∈ W 1,γ(Ω), then it follows the proof.



148 CHAPTER 5. APPENDIX

5.5 The eigenvalue problem and the eigenvalue prob-
lem with weight

Consider the linear eigenvalue problem{
−∆u = λu in Ω,

u = 0 on ∂Ω.
(5.5.0.1)

By Theorem 5.4.4 we know that (5.5.0.1) is equivalent to u = Ku, u ∈ L2(Ω).

Theorem 5.5.1. The problem (5.5.0.1) has a sequence of eigenvalues λk such that

0 < λ1 < λ2 ≤ λ3 ≤ . . . , λk → +∞

and
λ1

∫
Ω

u2dx ≤
∫

Ω

|∇u|2dx.

Proof. See Theorem 1.13 of [2].

Let us consider the eigenvalue problem{
Lu = µmu in Ω,

u = 0 on ∂Ω,
(5.5.0.2)

where

Lu = −
N∑

i,j=1

Dj(aij(x)Di) + a0(x)u

is a strictly elliptic operator defined in a bounded open subset Ω of RN . We assume
aij = aji and a0 ≥ 0. The weight function m : Ω → R lies in Lr(Ω) with r ≥ N/2. The
coefficients aij ∈ L∞(Ω) and a0 ∈ LN/2(Ω).

Theorem 5.5.2. The eigenvalue problem (5.5.0.2) has double sequence of eigenvalues

. . . ≤ µ−2 ≤ µ−1 < 0 < µ1 ≤ µ2 ≤ . . .

whose variational characterizations are
1

µn
= sup

Fn

inf

{∫
mu2; ‖u‖= 1, u ∈ Fn

}
,

1

µn
= inf

Fn
sup

{∫
mu2; ‖u‖= 1, u ∈ Fn

}
where Fn varies over all n-dimensional subspaces of H1

0 . The corresponding eigenfunctions
φn are such that

a(φn, v) = µn

∫
mφnv ∀v ∈ H1

0

and
a(φn, φn) = 1

1

µn
=

∫
mφ2

n.

Proof. See Proposition 1.10 of [16].

Theorem 5.5.3. Let m : Ω → R be an Lr-function, with r > N/2, (not necessarily
positive). Suppose that m > 0 on a subset of Ω with positive measure. Then the first
positive eigenvalue µ1 of (5.5.0.2) is simple and φ1 can be taken positive in Ω. A similar
statement holds if m < 0 on a subset of Ω with positive measure.

Proof. See Theorem 1.13 of [16].
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5.6 Sobolev Spaces
Theorem 5.6.1 (Poincaré Inequality). Let Ω be an open subset of Rn bounded in some
direction. Under these conditions the expression

‖u‖=

(
n∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣2 dx

)1/2

(5.6.0.1)

defines a norm in H1
0 (Ω) which is equivalent to the norm ‖u‖1= ‖u‖H1(Ω).

Proof. See Theorem 2.2.4 in Section 2.2 of [32].

Theorem 5.6.2 (Rellich-Kondrachov Theorem). Let Ω be a bounded open subset of Rn

of class C1 and 1 ≤ p ≤ ∞. Then the following embeddings are compact:

a) W 1,p(Ω) ↪→ Lq(Ω), 1 ≤ q < p∗, if p ≤ n;

b) W 1,p(Ω) ↪→ C0(Ω) if p > n,

where p
∗ =

np

n− p
if p < n,

p∗ =∞ if p = n.

Proof. See Theorem 2.5.4 of [32].
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