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Abstract

A self-similar group is a group G acting on a one-rooted m-regular tree Tm
in such a way that the states of its elements are themselves elements of G.
The permutation group induced on the first level of the tree has s ≥ 1 orbits;
when s = 1 the group is said to be transitive. Famous examples of transitive
self-similar groups include the infinite torsion 2-group of Grigorchuk and the
Gupta-Sidki p-groups.

Nekrashevych and Sidki characterized all transitive self-similar free abelian
subgroups of finite rank of the group of automorphisms of the binary tree T2,
[3]. Later Brunner and Sidki [2] conducted the most complete study of tran-
sitive abelian self-similar groups showing for example that the closure of such
groups under the full diagonal operations, α 7→ (α, α, · · · , α), of the group of
automorphisms of Tm is again abelian. This lead to an important translation of
transitive self-similar abelian groups to modules of the m-adic algebra Zm[[x]].
The generalization to the intransitive case, where the group has s > 1 orbits,
requires a careful study of a free monoid ∆ of rank s, of partial diagonal opera-
tions acting on the group of automorphisms of Tm. We show that in this setting,
if A is a self-similar abelian group in Am then the centralizer of ∆(A) in Am is
additively a finitely generated Zn[[∆]] module and derive as consequence, the
torsion subgroup of A is also a self-similar group of finite exponent, a divisor
of n. Furthermore, we extend recent constructions of self-similar free abelian
groups of infinite enumerable rank to examples of such groups which are also
∆-invariant.

This is a work in progress.
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