A SYSTEM OF LOCAL/NONLOCAL p-LAPLACIANS: THE EIGENVALUE PROBLEM AND ITS ASYMPTOTIC LIMIT AS $p\to\infty$

S. BUCCHERI

ABSTRACT. In this talk I am going to present some result obtained in collaboration with J.V. da Silva and L.H de Miranda. Given $p \in (1, \infty)$, we prove the existence and simplicity of the first eigenvalue λ_p and its corresponding eigenvector (u_p, v_p) , for the following local/nonlocal PDE system

(0.1)	$\int -\Delta_p u + (-\Delta)_p^r u$	=	$\frac{2\alpha}{\alpha+\beta}\lambda u ^{\alpha-2} v ^{\beta}u$	in	Ω
	$\int -\Delta_p v + (-\Delta)_p^s v$	=	$\frac{2\beta}{\alpha+\beta}\lambda u ^{\alpha} v ^{\beta-2}v$	in	Ω
		=	0	on	$\mathbb{R}^N \setminus \Omega$
	v v	=	0	on	$\mathbb{R}^N \setminus \Omega$,

where $\Omega \subset \mathbb{R}^N$ is a bounded open domain, 0 < r, s < 1 and $\alpha(p) + \beta(p) = p$. Moreover, we address the asymptotic limit as $p \to \infty$, proving the explicit geometric characterization of the corresponding first ∞ -eigenvalue, namely λ_{∞} , and the uniformly convergence of the pair (u_p, v_p) to the ∞ -eigenvector (u_{∞}, v_{∞}) . Finally, the triple $(u_{\infty}, v_{\infty}, \lambda_{\infty})$ verifies, in the viscosity sense, a limiting PDE system.