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Resumo

Apresentamos o estimador de máxima verossimilhança (MLE) para o parâmetro de drift de uma Equação

de Langevin Generalizada (GLE) governada por um processo de Lévy observado continuamente no tempo.

Em geral, o MLE não tem forma explícita e apresentamos condições suficientes para que o estimador seja

consistente, assintoticamente normal e eficiente. Em particular, mostramos que o experimento estatístico

associado à GLE satisfaz a propriedade de LAN (locally asymptotic normal). Propomos uma discretização

do MLE utilizando filtro de grandes saltos (FMLE). Um segundo estimador discretizado é proposto

usando as mesmas ideias do FMLE, mas introduzindo uma dependência do processo de Lévy simulado.

Foram analisadas estimações de simulações do processo de Ornstein-Uhlenbeck generalizado do tipo

exponencial flutuante com três parâmetros. Por fim, um caso particular do drift da GLE foi abordado, para

o qual o MLE tem uma forma explícita e o FMLE herda as propriedades do estimador a tempo contínuo.

Palavras-Chave: Equação de Langevin Generalizada; Processo de Ornstein-Uhlenbeck Generalizado;

Estimação do Drift; Propriedade de LAN; MLE Filtrado.
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Abstract

We present the maximum likelihood estimator (MLE) for the drift parameter of the generalized Langevin

equation (GLE) driven by a Lévy process observed continuously in time. Generally, the MLE has a

non-explicit form and we present sufficient conditions for its consistency, asymptotic normality and

efficiency. In particular, we show that the statistical experiment associated with the GLE satisfies the

locally asymptotic normal (LAN) property. We propose a discretization of the MLE by filtering “big”

jumps (FMLE). A second discretized estimator is proposed using the same ideas of the former, but

introducing a path dependence of the simulated Lévy processes. Estimations from simulated paths were

done for the 3-parameter generalized Ornstein-Uhlenbeck process of the fluctuating exponential type.

Finally, a particular case of the GLE drift was considered, for which the MLE has an explicit form and the

FMLE inherits the properties of the continuous time estimator.

Keywords: Generalized Langevin equation; Generalized Ornstein-Uhlenbeck processes; Drift estimation;

LAN property; Filtered MLE.
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Introduction

Applications of Stochastic Differential Equations (SDEs) have been developed in many fields such as

physics, economics and chemistry since early 20th century. More recently, great interest has been arisen

in models with some memory effects, where Stochastic Integro-Differential Equations (SIDEs) can play

an important role. An example of SIDE is the Generalized Langevin Equation (GLE), proposed in the

1960s by Kubo [29] and Mori [51]. In such SIDE, the drift component takes into account the evolution of

the process up to a considered time t. Formally, the GLE can be written as dX(t) = −
∫ t

0
X(s)γ(t− s)ds dt+ dL(t), t > 0

X(0) = X0,

(1)

where L = {L(t); t ≥ 0} is a stochastic noise, X0 is a random variable independent of L, γ(·) is a

deterministic function called Memory Function and the drift is −
∫ t

0 X(s)γ(t− s)ds. It is worthwhile to

mention that if the memory function is a Dirac delta concentrated at the constant θ > 0 and the noise is

the Wiener process W = {W (t); t ≥ 0}, then the GLE becomes the widely known Classical Langevin

Equation {
dX(t) = −θX(t)dt+ dW (t), t > 0,

X(0) = X0,
(2)

whose solution is the so called Classical Ornstein-Uhlenbeck (OU) process and is given by

X(t) = X0e
−θt +

∫ t

0
e−θ(t−s)dW (s), t ≥ 0.

Results on existence and uniqueness of solution for certain classes of the GLE were obtained by

Kannan [24], Kannman and Bharucha-Reid [25], Medino et al. [49] and Santos [59]. Along the last two

decades, further theoretical matters and applications of the GLE have been performed by many authors

such as Di Terlizzi et al. [9], McKinley and Nguyen [48], Ottobre and Pavliotis [52], Pravliotis et al. [53],

Zhu and Venturi [66] and Zwanzing [67].

Concerning statistical inference issues, Küchler and Sφrensen [33] investigate the maximum likelihood

estimation problem for the drift parameter of the classical Langevin equation only. On the other hand,

substituting the Wiener process in the noise term by a more general Lévy one in the classical Langevin

equation, non-Gaussian Ornstein-Uhlenbeck processes can be obtained as solution. This is the case in

the famous work of Barndorff-Nielsen and Shephard [3], who has been considered as building block for

important applications in finance. In such setting, Mai [42, 43] deals with maximum likelihood estimation

matters for classical OU processes driven by Lévy noises.
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Issues concerining statistical estimation for the drift term of the GLE are important to better fit the

mathematical model to the potential real time series aimed to be modeled. They enable us to infer

predictions on future matters of the modeled time series based on accumulated information.

Statistical inference issues concerning the GLE also deserve attention since the relevance that such

equation can play in modelling phenomena with memory effects. Stein, Lopes and Medino [62] present

an alternative approach to the GLE which generalizes the previously used one. They consider a family

of finite signed measures {µt; t ≥ 0} instead of a memory function γ(·). With this procedure, the GLE

becomes  dX(t) = −
∫ t

0
X(s)µt(ds)dt+ dL(t), t > 0

X(0) = X0·

Then, theoretical properties such as recurrence and autocorrelation structure of the solution processes

from classes of GLE were investigated, as well as simulation results were presented. For instance, a case

introduced by the authors, named Cosine Process, present non-stationary behaviour, with fluctuating paths

and oscillating decay for the autocorrelation function.

Inspired by ideas in Stein, Lopes and Medino [62], Alcântara [1] introduced a GLE based model for

domestic dollar interest rates time series, known as Cupom Cambial. A drawback in modelling Cupom

Cambial by classic OU processes is that their embedded time series exhibit characteristics of order 1

autoregressive models (AR(1)) and this does not fits to real data evidences. Thus, the author propose a

class of GLE based model which better adapts to Cupom Cambial time series. Briefly, such class of model

corresponds to a mixture of classical OU process and cosine process.

In this thesis we investigate properties from the Maximum Likelihood Estimator (MLE) for the drift

parameter of classes of GLE. That is, we consider a pre-specified vector parameter θ on which the memory

function γ(·) depends and a Lévy process L as the driving noise. We present sufficient conditions for the

consistency of the MLE (Law of Larger Numbers-LLN) as well as the asymptotic normality (Central

Limit Theorem-CLT).

Having established results on consistency and on asymptotic normality for the MLE, a natural

improvement is to search for information on the efficiency property of the estimator. In this direction, we

prove that the MLE is efficient in the sense of the Hájek-Le Cam Convolution Theorem, extending results

obtained by Mai [42, 43] for Lévy-driven OU processes. Precisely, we show that the statistical experiment

associated with the GLE satisfies the Locally Asymptotic Normal (LAN) property (see Theorem 2.3.4).

Such notion of efficiency is directly related to statistical experiments satisfying the LAN property and

avoids super-efficiency issues (cf. Ibragimov and Has’minskii [22]).

The LAN property is a useful instrument to study efficiency of statistical estimators. It was introduced

by Le Cam [35] and has been widely studied ever since. We refer the reader to Ibragimov and Has’minskii

[22], Le Cam and Yang [36] and Vaart [65] for further details on this subject. Recent studies on the

efficiency of estimators considering the LAN property have been performed in the specific case of SDEs,

see for example Benke and Pap [5, 6], Gloter, Loukianova and Mai [13], Gushchin and Küchler [14, 16],

Kohatsu-Higa, Nualart and Tran [28], Liu, Nualart and Tindel [39], Mai [42, 43] and Tran [63, 64].

As we have mentioned, Kannan [24], Kannman and Bharucha-Reid [25], Medino et al. [49] and

Santos [59] explored issues on existence and uniqueness of solutions for certain classes of GLE. Under

mild conditions, a representation form for such solutions was first presented by Kannan [24] as a stochastic

2



process {X(t); t ≥ 0} given by

X(t) = X0ρ(t) +

∫ t

0
ρ(t− s)dL(s),

where ρ(·) is a deterministic function satisfying the following Volterra integro-differential equation ρ′(t) = −
∫ t

0
ρ(s)γ(t− s)ds,

ρ(0) = 1·
(3)

Such representation form is called Generalized Ornstein-Uhlenbeck process (GOU) and we recall that the

classical OU process is the particular case corresponding to the exponential ρ(t) = e−θt.

In this work, we present a detailed study for the Generalized Ornstein-Uhlenbeck of Fluctuating

Exponential type (GOU-FE) process. This class of solution was proposed by Alcântara [1] to model

Cupom Cambial time series. In the Alcântara’s work, a representation form is considered with function ρ

given by

ρ(t) = θ2e
−θ1t + (1− θ2) cos(θ1t),

where (θ1, θ2) ∈ R2 is a two dimensional parameter to determine. As we also have pointed out, Alcântara’s

model is a mixture of the classical OU process and the cosine process studied in Stein, Lopes and Medino

[62].

Our strategy is to allow the behavior of the exponential and cosine components depends on different

parameters. That is, we consider a GOU-FE process with

ρ(t) = θ3e
−θ1t + (1− θ3) cos(θ2t) (4)

for (θ1, θ2, θ3) ∈ Θ ⊂ R2 × [0, 1]. Similarly to Alcântara, we prove that the proposed process is a GLE

solution, that is, we found explicitly γ(·) satisfying (3). We also show that the discretized process behaves

as an order 3 autoregressive process. Through simulation studies, we evaluate the MLE’s performance in

estimating the parameters in GOU-FE process as well as in our modification.

To carry out a simulation study of the MLE performance, a discretized form of the likelihood is

required. The main problem in the discretization of the MLE is getting a good approximation for the

increments of the continuous martingale partXc which is not observable. We discretized the MLE through

filtering "big" jumps of the process and we will call it FMLE (filtered MLE). The motivation for this

approach was Mancini [44, 45] –who studied the order of the Xc increments and developed a technique

for identifying the times when jumps larger than a defined threshold occur– and Mai [43] and Gloter,

Loukianova and Mai [13] –who used a thresholding technique to approximate the continuous part. A

second discretized estimator was proposed using the same ideas of the former, but introducing a path

dependence of the simulated Lévy processes. The discretized estimators were compared using GOU-FE

process simulations with ρ(·) defined by (4).

To study the asymptotic behavior of the FMLE, we restrict our investigation to the GLE given by
dX(t) = −

N∑
j=1

θj

∫ t

0
X(s)γj(t− s)dsdt+ dL(t), t > 0

X(0) = X0,

(5)
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where θ> = (θ1, · · · , θN ) ∈ Θ ⊂ RN . With this restriction, under suitable regularity conditions, we find

an explicit form from the MLE for θ and we prove that the MLE inherits the same asymptotic behavior

of the MLE in the general case. We also show that the FMLE has the same asymptotic behaviour of the

theoretical estimator MLE.

This work is organized in four Chapters and one Appendix. In Chapter 1, we present basic notations,

concepts and properties that will be used in the development of the subsequent chapters. In particular,

we present the formalization of LAN property and a summary of recent statistical inference studies on

stochastic processes, especially those that are of our particular interest.

In Chapter 2, we explore the connection between the probability measures {Pθ; θ ∈ Θ} (induced by

X) and the Radon-Nikodym derivative of Pθ with respect to P0 which allows us to write the log-likelihood

function as

l(θ,Xt) := log
dP tθ
dP t0

(Xt) =
1

σ2

∫ t

0
b(θ,Xs)dX

c(s)− 1

2σ2

∫ t

0
b2(θ,Xs)ds, (6)

where Xt = {X(s); 0 ≤ s ≤ t}, b(θ,Xt) = −
∫ t

0 X(s)µθ,t(ds) and Xc denotes the continuous

martingale part of X . Though, in general, we do not have an explicit form for the MLE {θ̂(t); t ≥ 0},
we can bypass this difficulty by using versions of CLT for continuous-time multivariate martingales.

Our Theorem 2.3.4 shows that, under ergodicity assumptions and regularity conditions, {θ̂(t); t ≥ 0} is

strongly consistent and asymptotically normal. Furthermore, we show that {Pθ; θ ∈ Θ} satisfies the LAN

property, which in turns assures that {θ̂(t); t ≥ 0} is asymptotically efficient in the sense of Hájek-Le

Cam convolution theorem, that is

Law
(
ϕ(t)−1

(
θ̂(t)− θ

)∣∣∣Pθ)→ I(θ)−1/2N (0, IN ) as t→∞,

where ϕ(t) is an appropriate normalizing function, N denotes the normal random vector with covariation

matrix IN , I(θ) is the asymptotic Fisher information matrix, and Law (V (t) | Pθ) → V denotes the

convergence in distribution under Pθ. To overcome difficulties that arise from the discretization Xc we

make use of FMLE that filters the "big" jumps of the process X, that is

θ̂FMLE
T = arg max

θ∈Θ0

{
1

σ2

n∑
i=1

b(θ,Xti)∆iX1[|∆iX|≤vin] −
1

2σ2

n∑
i=1

b2(θ,Xti)∆i

}
·

Simulation results of FMLE for some GOU-FE models are exhibited.

Chapter 3 is dedicated to study the GOU process of Fluctuating Exponential type with function ρθ(·)
given by (4). This process will allow us to model phenomena that present oscillations or seasonality or

autoregressive behavior. Our simulation results for the process

X(t) = X0(0)
(

(1− θ2)e−θ1t + θ2 cos(θ2t)
)

+

∫ t

0

(
(1− θ2)e−θ1(t−s) + θ2 cos(θ2(t− s))

)
dL(s)

shows that despite the good results obtained when the perturbation of the OU process is small, i.e.,

θ2 ↓ 0, issues such as computational time and improved estimation in some regions of parametric

space require a little more care when θ2 is not small. This led us to propose a more general "memory"

function by introducing the parameter θ3 as in (4). Worth pointing out that this process will allow us

to model phenomena that present oscillations or seasonality or higher autoregressive behavior. In fact,

our Proposition 3.2.2 shows that a discretization of this new process has an order 3 autoregressive form,
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which is a consequence of the OU and cosine recurrences. Moreover, based on the recurrent structure of

the model and making use of the simulated noise and the real expected drift, a new modified FMLE is

proposed (Section 3.3),

θ̂mFMLE
T = arg min

θ∈Θ0

|l(θ,Xtn)− l(θ0, Xtn)| ,

where θ0 is the true value of the unknown parameter and {t1, · · · , tn} is a convenient partition of the time

interval. Simulation results for mFMLE and its performance is compared to that of FMLE in Section

3.3. Our Theorem 3.2.1 shows that the corresponding process is indeed a solution of the GLE with the

associated family of signed measures {µθ,t; θ ∈ Θ, t ≥ 0} satisfying the Volterra integro-differential

equations (3). Also, the Theorem 3.2.6 shows that if the "memory" function ρθ(·) satisfies a recurrence

relation, then the corresponding GOU process will have autoregressive representation of general order m.

Thus the same discretization technique could be applied. Extension for the case when L is a symmetric

α−stable Lévy process with 1 < α ≤ 2 is considered in Proposition 3.2.7.

In Chapter 4, we will consider a particular class of GLE for which the drift function satisfies

b(θ,Xt) = −
∫ t

0
X(s)µθ,t(ds) and µθ,t =

N∑
j=1

θjµ
(j)
t ,

where the signed measures µ(j)
t are finite at intervals [0, t]. These restrictions appear naturally when we

analyze the OU, cosine and stochastic delay (SDDE) processes. For this type of processes the parameter

θ can be linearly separated and depends exclusively on the process history Xt. Moreover, for this class

of GLE the Radon-Nikodym density of Pθ with respect to P0 takes up a much simpler form and we can

derive an explicit expression for the MLE,

θ̂(t) := arg max
θ∈Θ0

dP tθ
dP t0

(Xt) = S(t)−1A(t),

where the matrices S(t) and A(t) are properly defined functions of the drift function b(θ,Xt) and the

continuous martingale part Xc. Based on this and under much milder assumptions than those of Theorem

2.3.4, our Theorem 4.2.4 establishes for θ̂(t) the strong consistency, asymptotic normality and asymptotic

efficiency in the sense of Hájek-Le Cam Convolution Theorem. Its proof is less technical and basically

requires a version of the CLT for continuous time martingales. In Section 4.3, we study the asymptotic

behavior of the corresponding discretized and filtered approximation θ̂FMLE
n := S−1

n An where Sn
and An, are approximations of S(t) and A(t) respectively. As shown in Theorem 4.3.2, with a good

convergence rate for some stochastic integrals approximations by Riemann sums, the FMLE will have the

same asymptotic behavior as that of MLE.

For the convenience of the reader and aiming a work as self-contained as possible, in Appendix A

we recall some concepts from the theory of stochastic processes and statistical inference we have used

through the Thesis. We also present a survey of results from related publications which are fundamental

for the development of this work.
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Chapter 1

Preliminaries

1.1 Introduction

In this chapter, we present preliminary concepts that are used throughout this thesis. We start with Section

1.2 setting the basic notations, defining the Locally Asymptotically Normal (LAN) property for a statistical

experiment associated with a continuous time stochastic process. We also present examples and establish

the connection between LAN property and the notion of efficiency for estimators, in the sense of Hájek-Le

Cam convolution theorem.

Section 1.3 is dedicated to present some classes of Lévy-driven stochastic differential equations and

its recent statistical inference results. These processes are particular cases of the generalized Langevin

equation (GLE) which is presented in Definition 1.3.7 using the approach of Stein, Lopes and Medino

[62], that is, changing the memory kernel of the Mori [51] and Kubo [29] definition by a family of signed

measures. The sense of Kannan’s solution for the GLE named generalized Ornstein-Uhlenbeck process

(see [1, 24, 49, 59, 62]) is also presented. Although it is not a particular case of GLE, the last class

of processes presented (which was studied by Gloter, Loukianova and Mai [13]) gives us an idea of

techniques to be used to obtain the behavior of the drift estimator in Chapter 2. In Section 1.4 we state the

problems that will be studied in Chapters 2, 3 and 4.

Finally, we emphasize that the reader who is familiar with statistical inference for Stochastic Dif-

ferential Equations can skip this chapter and go straight to Chapter 2, referring to this chapter only for

occasional citations.

1.2 Notations and Basic Definitions

We start this section by setting some notations. Let us denote the distribution of the random vector V (t)

under the measure P by Law (V (t) | P) and

Law (V (t) | P)→ V, as t→∞,

denotes the convergence in distribution.

Let A = (ajk)N×N ∈ RN×N be a positive semi-definite N ×N -matrix. Denote A1/2 and det(A) its

positive semi-definite square root and its determinant, respectively. Let v> = (v1, · · · , vn) ∈ RN be a

vector. We denote

(diag A)> = (a11, a22, · · · , aNN )
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the diagonal vector of A and diag v the diagonal N ×N -matrix with v as diagonal.

For f : Θ→ R twice continuous differentiable, we denote its gradient column vector and the Hessian

matrix, respectively, by∇f : Θ→ RN and ∂2f =
(
∂2
θiθj

f
)
N×N

·
Consider Pθ and Pθ0 two probability measures on the filtered measure space (Ω,F , {Ft; t ≥ 0}). We

say that Pθ is locally absolutely continuous with respect to Pθ0 and write Pθ
loc
� Pθ0 if P tθ << P tθ0 for

all t ∈ R+, where P tθ := Pθ|Ft denotes the restriction of Pθ to Ft.

1.2.1 Locally Asymptotically Normal Property

An important condition to study the asymptotic efficiency of estimators is the Locally Asymptotically

Normal (LAN) property. This theory was introduced by Le Cam [35] and has been widely studied

ever since. Several authors have shown that, under the ergodicity condition, the statistical experiment

{Pθ; θ ∈ Θ} associated with a stochastic process X = {X(t); t ≥ 0} satisfies the LAN property (see for

example [13, 32, 42, 63, 64]).

In this section we summarise the importance of the LAN property and the notion of asymptotic

efficiency used in the main results of Chapters 2 and 4. For a more detailed study on this subject we

suggest [22, 36, 65]. We start with a basic motivation.

Let X1, · · · , Xn be a sequence of independent and identically distributed random variables on a

probability space (Ω,F ,P) and let Θ ⊂ R be a parameter space.

Consider a parametric statistical experiment (X n,B (X n) , {Pnθ ∈ Θ}) such that

X = (X1, · · · , Xn) : Ω×Θ→ X n.

Here Pnθ is the probability measure on (X n,B (X n)) induced by X under θ.

We are interested in finding an estimator Tn : X n → Θ with a “good” asymptotic behavior. Denote

the Maximum Likelihood Estimator (MLE) by

θ̂n = θ̂n(X1, · · · , Xn) := arg max
θ∈Θ

dPnθ
dνn

(X1, · · · , Xn)·

Here the likelihood is the Radon-Nikodym derivative of the measure Pnθ with respect to the Lebesgue

measure νn (or the counting measure in discrete experiments). In general, under suitable regularity

conditions, it follows from the LLN (law of large numbers) and CLT (central limit theorem) that the MLE

is consistent and asymptotically normal.

A natural question that we would like to answer is: If Tn : X n → Θ is another sequence of estimators

for θ with similar asymptotic behavior, which one should we use?

A famous result in statistical inference that helps us to answer this question is the following. Its proof

can be found, for example, in Ibragimov and Has’minskii [22, Theorem I.7.3].

Theorem 1.2.1 (The Cramér-Rao Inequality). Let {Pθ; θ ∈ Θ} be a regular parametric statistic model

and the statistic T : X → Rk is such that Eθ
(
|T − θ|2

)
is bounded in a neighborhood of the point

θ ∈ Θ. Assume that the Fisher Information matrix I(θ) is invertible for all θ ∈ Θ. Then the bias

b(θ) = EθT − θ

is continuously differentiable in this neighborhood of θ and the following inequality is satisfied

Eθ (T − θ) (T − θ)> ≥
(
J +

∂b(θ)

∂θ

)
I(θ)−1

(
J +

∂b(θ)

∂θ

)>
+ b(θ)b(θ)>,
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where J denotes the unit matrix.

In particular, if T is an unbiased estimator of θ, then

Eθ (T − θ) (T − θ)> ≥ I(θ)−1. (1.1)

This result gives us an idea to study estimators with minimal variance. The following definition makes

this motion more precise.

Definition 1.2.2. 1. We say that an estimator T : X → Θ is efficient if the equality in (1.1) is

satisfied.

2. An estimator θ̂n : X n → Θ is called asymptotically efficient in the Cramér-Rao sense if it is

asymptotically normal, and its covariance matrix achieves asymptotically the Cramér-Rao lower

bound.

Remark 1.2.3. As described by Ibragimov and Has’minski [22], the term asymptotically efficient
estimator was introduced by R. Fisher to describe asymptotically normal estimators with minimal

asymptotic variance.

The Fisher’s idea was to show that the MLE θ̂n, under natural regularity conditions, satisfies that
√
n
(
θ̂n − θ

)
is asymptotically normal with parameters (0, I(θ)−1) and if Tn is another sequence of

asymptotically normal estimators, then

lim
n→∞

Eθ

[
n (Tn − θ)2

]
≥ I(θ)−1, θ ∈ Θ.

Example 1.2.4 (The well known Hodges’ counterexample). Let X1, · · · , Xn be a random sample of

N(θ, 1). Consider θ̂n = X̄n the MLE of θ and set

Tn =

{
X̄n,

∣∣X̄n

∣∣ > n−1/4,

0,
∣∣X̄n

∣∣ ≤ n−1/4.

Then Tn is a super-efficient estimator for θ = 0 (in the sense of Ibragimov and Has’minskii [22, Equation

(I.9.1)]).

Le Cam [35] in the 60s introduced a concept that combined with Hájek [18, 19] in the 70s allows us

to redefine the class of efficient estimators. Consider the Radon-Nikodym derivative of the measure Pθ
with respect to the Lebesgue measure ν (or the counting measure in discrete experiments)

f(x; θ) =
dPθ
dν

(x), x ∈ X ·

Let

Zn,θ(h) =
n∏
j=1

f(Xj ; θ + h/
√
n)

f(Xj ; θ)

denotes the normalized likelihood ratio.

Theorem 1.2.5 (L. Le Cam). Under suitable regularity conditions, for all h ∈ RN ,

Zn,θ(h) = exp

 1√
n

n∑
j=1

(
∂

∂θ
log f (Xj ; θ) , h

)
− 1

2
(I(θ)h, h) + oPnθ (1)


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where

Law

 1√
n

n∑
j=1

∂

∂θ
log f (Xj ; θ)

∣∣∣∣∣∣Pnθ
 = N(0, I(θ)).

Here (·, ·) denotes the Euclidean inner product.

Proof. See Ibragimov and Has’minskii [22, Theorem II.1.1, p.114-117].

After this result, it becomes natural to study statistical experiments in which the likelihood ratio

satisfies (locally) a quadratic expression like in Theorem 1.2.5, but with less restrictive dependence

between the random variables associated.

Below, we present the notion of asymptotic efficiency in the sense of Hájek-Le Cam Convolution

Theorem in the context of continuous times stochastic processes (see Ibragimov and Has’minskii [22,

Theorem II.9.1], Le Cam and Yang [36, Theorem 6.3] or Vaart [65, Theorem 8.8]). For this, we first

present the definition of LAN statistical experiment and some examples of stochastic process satisfying

this property and then we state the asymptotic efficiency.

Definition 1.2.6. We say that a parametric statistical experiment {Pθ; θ ∈ Θ} on
(
Ω,F , {Ft; t ≥ 0}

)
satisfies the Locally Asymptotic Normal (LAN) property at θ ∈ int Θ if there exists an invertible

N ×N -matrix ϕ(t) and a positive definite N ×N -matrix I(θ) such that, for any h ∈ RN , the following

limit holds true

Law

(
log

dP tθ+ϕ(t)h

dP tθ

∣∣∣∣∣Pθ
)
→ h>N (0, I(θ))− 1

2
h>I(θ)h, as t→∞, (1.2)

where N (0, I(θ)) is a N -dimensional Gaussian random vector with covariance matrix I(θ).

At the reader convenience the remaining of this subsection may be skipped for latter reading. Es-

sentially, we present a list of examples of processes satisfying Definition 1.2.6 and define the notion of

efficiency based on the LAN property.

Remark 1.2.7. Note that, in Definition 1.2.6, the vector θ + ϕ(t)h does not have to belong to Θ for all

t > 0. However, since θ ∈ int Θ, it will belong to Θ when t is large enough, for each h ∈ RN .

An equivalent form to define the LAN property is stating when the statistical experiment {Pθ; θ ∈ Θ}
is locally quadratic and mixed normal. This definition is particularly interesting because when {Pθ; θ ∈ Θ}
does not satisfies the LAN property, we can still study the local properties of the Radon-Nikodym

derivatives (see, for example, Gushchin and Küchler [16, Tables 1 and 2]).

Consider a statistical experiment {Pθ; θ ∈ Θ} on the filtered space
(
Ω,F , {Ft; t ≥ 0}

)
.

Definition 1.2.8. We say that {Pθ; θ ∈ Θ} is

1. Locally Asymptotic Quadratic (LAQ) at θ ∈ int Θ if there exists a N -dimensional random

process {Zθ(t); t ≥ 0} and a family {Iθ(t); t ≥ 0} of symmetric positive semi-definite random

N ×N -matrices such that

log
dP tθ+ϕ(t)h

dP tθ
− h>Iθ(t)1/2Zθ(t) +

1

2
h>Iθ(t)h = oPθ(1),

for every h ∈ RN , where {ϕ(t); t ≥ 0} is a family of positive definite matrices satisfying ϕ(t)→ 0

as t→∞;
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2. Locally Asymptotically Mixed Normal (LAMN) at θ ∈ int Θ if it is LAQ and

Law
(
Zθ(t), Iθ(t) | Pθ

)
→
(
Zθ, Iθ

)
as t→∞.

Here Iθ is a Pθ-almost sure positive definite N ×N -matrix such that, conditionally on Iθ, Zθ is a

N -dimensional random vector standard normal distributed;

3. Locally Asymptotic Normal (LAN) at θ ∈ int Θ if it is LAMN and Iθ is deterministic.

Examples of continuous time stochastic processes satisfying the LAN property can be found in Benke

and Pap [5, Proposition 4.1], Benke and Pap [6, Theorem 3.1], Gloter, Loukianova and Mai [13, Theorem

5.3], Gushchin and Küchler [16, Proposition 2.1], Ibragimov and Has’minskii [22, Theorem II.7.1], Liu,

Nualart and Tindel [39, Theorem 1.7], Mai [42, Theorem 4.2.7] and Mai [63, Theorem 2.4.2]. We present

some of them bellow.

Example 1.2.9 (Theorem II.7.1 in Ibragimov and Has’minskii [22]). Consider a process of observations

defined by the stochastic equation

dX(t) = S(t, θ)dt+ dW (t), 0 ≤ t ≤ T,

whereW (t) is a standard Wiener process,
∫ T

0 S2(t, θ)dt <∞, θ ∈ Θ ⊂ RN . The measures {P Tθ ; θ ∈ Θ}
are absolutely continuous for different θ and satisfies

dP Tθ
dP Tθ0

= exp

{∫ T

0
(S(t, θ)− S(t, θ0)) dX(t)− 1

2

∫ T

0
(S(t, θ)− S(t, θ0))2 dt

}
.

Then {Pθ; θ ∈ Θ} satisfies the LAN condition at all θ ∈ int Θ.

Example 1.2.10 (Mai [42, 43]). Consider a Ornstein-Uhlenbeck process

X(t) = e−θtX(0) +

∫ t

0
e−θ(t−s)dL(s), t ∈ R+,

where L(t) is a Lévy process with Lévy-Khintchine triplet (b, σ2, µ) (cf. Appendix A.3) and θ ∈ Θ = R+.

The Ornstein-Uhlenbeck process exhibits a modification with càdlàg paths and hence it induces a

measure Pθ on the space D[0,∞) of càdlàg functions.

The likelihood function is given by (cf. [42, Proposition 3.2.4])

dP tθ
dP t0

(Xt) = exp

{
− θ

σ2

∫ t

0
X(s)dXc(s)− θ2

2σ2

∫ t

0
X2(s)ds

}
Then, under the existence of solution and ergodicity conditions, {Pθ; θ ∈ Θ} satisfies the LAN condition

at all θ ∈ int Θ.

Example 1.2.11 (Gloter, Loukianova and Mai [13]). Consider the process given by

X(t) = X(0) +

∫ t

0
b(θ,X(s))ds+

∫ t

0
σ(X(s))dW (s)

+

∫ t

0

∫
R
γ(X(s−))zN(ds, dz), t ∈ R+,

where W (t) is a one-dimensional Brownian motion and N(., .) is the Poisson random measure (cf.

Applebaum [2, Section 2.3]) on R+ × R associated with the jumps of the Lévy process.
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The log-likelihood function is defined as

l(θ,Xt) = exp

{∫ t

0

b(θ,X(s))

σ2(X(s))
dXc(s)− 1

2

∫ t

0

b2(θ,X(s))

σ2(X(s))
ds

}
.

Then, under the existence of solution and ergodicity conditions, {Pθ; θ ∈ Θ} satisfies the LAN condition

at all θ ∈ int Θ ⊂ Rd.

Example 1.2.12 (Tran [63]). As the previous examples, similar results are obtained for the processes

X = {X(t); t ≥ 0} that are solution (via Malliavin Calculus) for the following stochastic integral

equation

Xθ(t) =

∫ t

0
b(θ,X(t))dt+

∫ t

0
σ(X(t))dW (t) +

∫
R0

γ(X(t−), z)
(
N(dt, dz)− ν(dz)dt

)
.

To redefine the notion of efficiency, as mentioned above, studies on Hájek [18, 19] are very important.

We started presenting a version of the Hájek-Le Cam Convolution Theorem which was stated in Küchler

and Sφrensen [33, Theorem 8.5.2]. First, recall an experiment to satisfy the LAMN property in Definition

1.2.8.

Theorem 1.2.13 (The Hájek-Le Cam Convolution Theorem). Suppose that the filtered statistical space(
Ω,F , {Ft; t ≥ 0}, {Pθ; θ ∈ Θ}

)
satisfies the LAMN property at θ ∈ int Θ and let

{
θ̂(t); t ≥ 0

}
be a

family of estimators for θ that are Ft-measurable and for each h ∈ RN

Law
(
ϕ−1(t)

(
θ̂(t)− θ − ϕ(t)h

)∣∣∣Pθ+ϕ(t)h

)
→ V (θ)

as t → ∞, for some N -dimensional random vector V (θ). Then, there exists a stochastic kernel KI(θ)

such that

Law (V (θ) | I(θ)) = KIθ ∗N
(
0, I(θ)−1

)
,

where ∗ denotes the convolution function.

Proof. See Ibragimov and Has’minskii [22, Theorem II.9.1], Le Cam and Yang [36, Theorem 6.3], Vaart

[65, Theorem 8.8].

As summarized in Tran [63], the Theorem 1.2.13 guarantees that the random vector V (θ) can be

decomposed as a sum of two independent random vectors, i.e.,

V (θ)
d
= I(θ)−1/2N (0, IN ) +R,

where R is a random vector independent of N (0, IN ). For h = 0, the Convolution Theorem implies that

Law
(
ϕ−1(t)

(
θ̂(t)− θ

)∣∣∣Pθ)→ I(θ)−1/2N (0, IN ) +R,

as t → ∞. This suggests the notion of asymptotic efficiency of estimators in terms of the minimal

asymptotic variation, when R = 0. This justifies the following definition.

Definition 1.2.14. Assume that the family {Pθ; θ ∈ Θ} satisfies the LAN property at θ ∈ int Θ. We say

that a family of estimators
{
θ̂(t); t ≥ 0

}
is asymptotically efficient at θ in the sense of Hájek-Le

Cam convolution theorem if

Law
(
ϕ(t)−1

(
θ̂(t)− θ

)∣∣∣Pθ)→ I(θ)−1/2N (0, IN ) as t→∞, (1.3)

where IN denotes the N ×N−identity matrix.
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We conclude this section by recalling Hajek’s minimax theorem Hájek [19] in the context of continuous

time stochastic processes.

Theorem 1.2.15 (Minimax Theorem). Let {Pθ; θ ∈ Θ} be LAMN at any θ ∈ int Θ and suppose that θ̃(t)

is any estimator for θ. Consider w : RN → [0,∞) a bowl-shaped loss function, that means,

1. w(x) ≥ 0;

2. w(x) = w(−x);

3. the set {x;w(x) ≤ c} is convex in RN for any c > 0.

Then

lim
δ→0

lim inf
t→∞

sup
|θ−θ0|<δ

Eθ0

[
w
(
ϕ−1(t)

(
θ̃(t)− θ0

))]
≥ E

[
w
(
I(θ)−1/2Z

)]
,

where Z ∼ N(0, IN ) is independent of I(θ).

Proof. See Ibragimov and Has’minskii [22, Theorem II.11.2 pp.160-161].

Remark 1.2.16. 1. The Theorem 1.2.15 yields an asymptotic minimax bound from below for an

arbitrary loss function;

2. If {Pθ; θ ∈ Θ} satisfies the LAN property at θ, defining the class of asymptotically efficient as

the estimators which attain the asymptotic minimax bound, then Ibragimov and Has’minskii [22,

Theorem II.13.3.] states that this estimators cannot be superefficient at this point for any loss

function w.

1.3 Related Literature

This section is dedicated to present some classes of Lévy-driven stochastic differential equations and

its recent statistical inference results. For the reader’s convenience, the definition of Lévy process is

presented below.

Definition 1.3.1 (Lévy process). Let L= {L(t); t ≥ 0} be a stochastic process defined on a probability

space (Ω,F ,P). We say that L is a Lévy process if

L1. L(0) = 0 (a.s.);

L2. L has independent increments, i.e., L(t0), L(t1) − L(t0), · · ·L(tn) − L(tn−1) are independent

random variables for every 0 < t0 < t1 < · · · < tn−1 < tn and for all positive integer n;

L3. L has stationary increments, i.e., for all t ≥ 0, L(t+ h)− L(t) has the same distribution as L(h)

for all h > 0;

L4. L is stochastically continuous, i.e., for all δ > 0 and s ≥ 0

lim
t→s

P (|L(t)− L(s)| > δ) = 0;

L5. L has càdlàg paths.
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1.3.1 Langevin Equation

Consider a Lévy process L = {L(t); t ≥ 0} on the filtered probability space (Ω,F , {Ft; t ≥ 0},P). Let

Θ = R be a parameter space. The Langevin Equation is given by{
dX(t) = −θX(t)dt+ dL(t), t > 0,

X(0) = X0,
(1.4)

where the initial solution X0 is independent of L. The solution of (1.4) is the well-known Ornstein-

Uhlenbeck process X = {X(t); t ≥ 0} which is written as

X(t) = X0e
−θt +

∫ t

0
e−θ(t−s)dL(s), t ≥ 0. (1.5)

Küchler and Sφrensen [33] presented the study of maximum likelihood estimation of the drift

parameter when a Wiener process is the noise of (1.4). Using a Lévy process as noise in the Langevin

Equation, a non-Gaussian OU-process is obtained as a solution and its important application in finance is

well known as a building block of Barndorff-Nielsen and Shephard [3]. For a Lévy α−stable noise, Hu

and Long [20] proposed an asymptotically consistent least squares estimator which converges to a stable

distribution, when it is properly normalized. Mai [42, 43] presented a maximum likelihood estimation

study for (1.5).

The parametric statistical experiment associated with (1.5) is (X = D[0,∞),B (X ) , {Pθ ∈ Θ}).

Here Pθ is the probability measure induced by X on D[0,∞), the space of càdlàg functions on [0,∞).

Under certain conditions (see Mai [42, 43]) the measures {Pθ; θ ∈ Θ} are locally equivalent and the

Radon-Nikodym derivative (likelihood function) is given by

dP tθ
dP t0

(Xt) = exp

{
− θ

σ2

∫ t

0
X(s)dXc(s)− θ2

σ2

∫ t

0
X2(s)ds

}
, (1.6)

where Xc denotes the continuous martingale part of X , Xt = {X(s); 0 ≤ s ≤ t} and P tθ denotes the

restriction P tθ = Pθ|Ft .
The maximum likelihood estimator (MLE) of θ is given explicitly by

θ̂(t) = −
∫ t

0 X(s)dXc(s)∫ t
0 X

2(s)ds
· (1.7)

The asymptotic behavior of the MLE θ̂(t) was studied by Mai [42, 43] who proved (under conditions that

ensure ergodicity), for θ ∈ R+, the consistency

θ̂(t)→ θ Pθ − a.s.

and the asymptotic normality

Law
(√

t
(
θ̂(t)− θ

)∣∣∣Pθ)→ N,

for a zero mean normal distributionN . Furthermore, he showed that the statistical experiment {Pθ; θ ∈ Θ}
is locally asymptotically normal, as in Definition 1.2.6. Then, the MLE is asymptotically efficient in the

sense of Hajék-Le Cam convolution theorem.

Another problem studied by Mai [42, 43] is how to obtain a discretization of (1.7) since the continuous

martingale part Xc is not observed. Inspired by the previous work of Mancini [44], Mai [42, 43] used
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a thresholding technique to approximate the continuous part of the process. This technique consists of

deleting increments that are larger than a threshold vn > 0 and filtering increments that most likely contain

jumps. Thus, for a discrete time process Xt1 , · · · , Xtn , observed from a path of (1.5), the discretized

filtered MLE is

θ̄n := −
∑n

i=1Xti∆iX1[|∆iX|≤vn]∑n
i=1X

2
ti

(ti+1 − ti)
,

where ∆iX = Xti+1 −Xti . Furthermore, under suitable conditions, he proved asymptotic normality and

efficiency.

1.3.2 Stochastic Delay Differential Equation

Consider a Lévy process L = {L(t); t ≥ 0} on the filtered probability space (Ω,F , {Ft; t ≥ 0},P).

Gushchin and Küchler [17] studied necessary and sufficient conditions for the existence of a stationary

solution to the stochastic delay differential equation (SDDE){
dX(t) =

∫
[−r,0]X(t+ u)a(du)dt+ dL(t),

X(t) = X0(t), t ∈ [−r, 0],
(1.8)

where a is a finite signed measure and r > 0 is a fixed number. The solution of (1.8) is uniquely pathwise

given by

X(t) = x0(t)X0(0) +

∫
[−r,0]

∫ 0

u
X0(s)x0(t+ u− s)ds a(du) +

∫ t

0
x0(t− s)dL(s),

where x0 : [−r,∞)→ R is the fundamental solution, i.e., x0(t) = 0 for t ∈ [−r, 0), x0(0) = 1 and

x′0(t) =

∫
[−r,0]

x0(t+ u)a(du)· (1.9)

The explicit form of x0(t) is given in Gushchin and Küchler [17, Lemma 2.1].

The following particular case of (1.8){
dX(t) = (θ1X(t) + θ2X(t− 1))dt+ dL(t), t > 0

X(t) = X0(t), t ∈ [−1, 0],
(1.10)

is obtained by taking r = 1 and a(du) = θ1δ0(du) + θ2δ−1(du), where δA(du) is the Dirac measure and

θ> = (θ1, θ2) ∈ Θ ⊂ R2. In this case, (1.9) becomes

x′0(t) = θ1x0(t) + θ2x0(t− 1)·

If θ2 = 0, then (1.10) is the Langevin equation.

As in the previous subsection, it is known that X = {X(t); t ≥ −1}, the solution of (1.10), induces a

parametric family of measures {Pθ; θ ∈ R2} on the space of the càdlàg functions D[−1,∞) and that the

likelihood function is

dP tθ
dP t0

= exp

{
θ>

( ∫ t
0 X(s)dXc(s)∫ t

0 X(s− 1)dXc(s)

)
− 1

2
θ>

( ∫ t
0 X

2(s)ds
∫ t

0 X(s)X(s− 1)ds∫ t
0 X(s)X(s− 1)ds

∫ t
0 X

2(s− 1)ds

)
θ

}
(1.11)

where Xc denotes the continuous Pθ−martingale part (cf. Mai [42]).
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Mai [42] showed that for an ergodic version of X satisfying suitable conditions, the MLE θ̂(t) of the

parameter θ is strongly consistent and asymptotically normal, that is, as t→∞

θ̂(t)→ θ Pθ − a.s.

and

Law
(√

t
(
θ̂(t)− θ

)∣∣∣Pθ)→ N,

in which N is a 2−dimensional zero mean normal distribution. Furthermore, observing the solution X of

(1.10) at discrete times t1 < · · · < tn, Mai [42] showed that the discretized MLE, using jump filtering as

in the Langevin case, is asymptotically normal with the same limit distribution as the continuous time

MLE.

Gushchin and Küchler [16] studied (1.10) when it is driven by a Wiener process W = {W (t); t ≥ 0}.
They showed local asymptotic properties of the likelihood function and its strong dependency on the true

value of the parameter θ> = (θ1, θ2). As a consequence, the asymptotic efficiency of the MLE is obtained

for the true parameter belonging to some Θ0 ⊂ R2 (cf. Küchler and Sφrensen [33, Section 9.4]).

We finalize this subsection highlighting that statistical inference problems for SDDE have been

extensively studied in several theoretical aspects (cf. [5, 6, 4, 14, 16, 15, 30, 55, 56]).

1.3.3 Generalized Langevin Equation

The generalized Langevin equation (GLE) was proposed by Kubo [29] and Mori [51]. In this stochastic

differential equation (SDE) the drift is a stochastic process which can depend on the whole process up to

the present time t. This SDE is given by dX(t) = −
∫ t

0
X(s)γ(t− s)ds+ dL(t), t > 0

X(0) = X0,

where L = {L(t); t ≥ 0} is a noise, X0 is a random variable independent of L and γ(·) is the memory

function. The Langevin equation becomes a particular case when we take γ(t) = −θδ0(t).

Assuming that all processes have finite quadratic mean, Kannan [24] studied the solution of GLE. The

author showed that any mean square solution process X = {X(t); t ≥ 0} of GLE has the form

X(t) = X0(0)ρ(t) +

∫ t

0
ρ(t− s)dL(s), t > 0, (1.12)

where ρ(·) satisfies the Volterra integro-differential equation ρ′(t) = −
∫ t

0
ρ(s)γ(t− s)ds,

ρ(0) = 1·

This process is called Generalized Ornstein-Uhlenbeck (GOU) process.

Santos [59] proved that (1.12) is also a solution for the GLE when L is an α-stable Lévy process

with 1 < α < 2. Furthermore, Medino et al. [49] showed that (1.12) remains a solution using stochastic

integration in the sense of convergence in probability. As mentioned above, the Lévy-driving OU-process

can be seen as a particular case of (1.12), then it is natural to be interested in extend estimation results for

the GLE.
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Stein, Lopes and Medino [62] presented a new approach to the GLE, which generalizes the one

previously used. They considered a family of finite signed measures {µt; t ≥ 0} instead of the memory

function γ(·). Thus, the GLE becomes dX(t) = −
∫ t

0
X(s)µt(ds)dt+ dL(t), t > 0

X(0) = X0,

and the function ρ(·) in the Kannan’s solution (1.12) satisfies ρ′(t) = −
∫ t

0
ρ(s)µt(ds),

ρ(0) = 1·
(1.13)

Changing the function ρ(·) in (1.12) changes the self-dependence structure of the process. Furthermore,

Stein, Lopes and Medino [62] study the maximum likelihood estimation procedure to estimate the

parameters of the discretized process arising from some classes of continuous-time processes that are

solution of the GLE. They present results for ρ(t) = e−θt (the Ornstein-Uhlenbeck process), ρ(t) =

cos(θt) (the Cosine process) and for ρ(t) = e−θt
2
. Below, we summarized some of their results.

Example 1.3.2. If, for all θ > 0 and each t ≥ 0, µt(ds) = θδ0(t − s)ds is a Dirac measure, then

ρ(t) = e−θt satisfies (1.13). Thus, the obtained process

Xθ(t) = X0e
−θt +

∫ t

0
e−θ(t−s)dL(s)

is the well-known OU-process.

Consider discrete times 0, h, 2h, · · · , kh (k ∈ N and h > 0 fixed) and the process X observed at this

times. It is well known that the OU-process is a stationary autoregressive process satisfying

X((k + 1)h) = e−θhX(kh) + ξk,h,

where ξk,h =
∫ (k+1)h
kh e−θ((k+1)h−sdL(s).

Example 1.3.3 (see Proposition 4.1 in Stein, Lopes and Medino [62]). If, for all θ > 0 and each t ≥ 0,

µθ,t(ds) = θ2ds, then the solution of the GLE is a process of the form (1.12) with ρθ(t) = cos(θt). This

process is called Cosine Process and it is written as

X(t) = X0 cos(θt) +

∫ t

0
cos (θ(t− s)) dL(s).

If L is an α−stable Lévy process, then one discretization form of this process is given by

X((k + 1)h) = 2 cos(θh)X(kh)−X((k − 1)h) + ξk,h,

where ξk,h is an α−stable Sα
(

(2
∫ h

0 | cos(θs)|αds)1/α, 0, 0
)

random variable.

Example 1.3.4 (see Proposition 4.2 in Stein, Lopes and Medino [62]). Consider µt(ds) = 2θ(1− 2θ(t−
s)2)ds, for θ > 0. By solving the differential equation (1.13) we obtain ρ(t) = e−θt

2
. Then, for an

α−stable Lévy process L, the resulting process is

X(t) = X0e
−θt2 +

∫ t

0
e−θ(t−s)

2
dL(s)·
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This process has a discretization form given by

X((k + 1)h) = e−θ(2k+1)h2X(kh) + ξk,h,

where ξk,h is Sα
(
σαξ , 0, 0

)
with

σαξ =

∫ kh

0
e−αθ((kh−s)2+(2k+1)h2)

(
e2θsh − 1

)α
ds+

∫ (k+1)h

kh
e−αθ((kh−s)2−2sh+(2k+1)h2)ds·

Remark 1.3.5. Note from Langevin equation (1.4) and Examples 1.3.3 and 1.3.4 that all the unknown

parameter information θ ∈ Θ in the GLE is contained in the signed measure µt(ds) (or, in the memory

function γ). By this reason, we will index by θ all the measures µθ,t(ds) to make clear this parameter

dependence. Similarly, we will index the function ρθ(t) in the Kannan’s solution (1.12).

Alcântara [1] was interested in modeling the cupom cambial time series. However, the difficulty in

modeling the cupom cambial via classic OU-process is that this time series presents characteristics of

an order grater than 1 autoregressive model. Based on this, the author proposed a new class of models

satisfying (1.12), when

ρθ(t) = (1− θ2)e−θ1t + θ2 cos(θ1t), (1.14)

θ = (θ1, θ2) ∈ R+ × [0, 1], and named generalized Ornstein-Uhlenbeck of the fluctuating exponential

type process (GOU-FE). He also showed that the proposed process, besides being a solution for the GLE,

can be used in the statistical modeling of the cupom cambial.

Example 1.3.6 (see Alcântara [1]). Consider θ> = (θ1, θ2) ∈ Θ = R+ × [0, 1] and t ≥ 0. Let µθ,t be a

signed measures on [0, t] satisfying (1.13) which has the following decomposition

µθ,t(ds) = θ1(1− θ2)µ
(1)
θ,t (ds) + gθ(t− s)ds, (1.15)

where µ(1)
θ,t (ds) = δ0(t− s) is a Dirac measure and gθ(t) is given by

gθ(t) =


e−θ1θ2t/2 (α1 cos (θ1ν1t) + α2,1 sin (θ1ν1t)) , ν0 > 0,

e−θ1θ2t/2 (α1 cosh (θ1ν1t) + α2,−1 sinh (θ1ν1t)) , ν0 < 0,

e−θ1θ2t/2 (α1 + α2,0t) , ν0 = 0,

(1.16)

for constants (functions of θ) given explicitly by ν0 = 1− θ2 − θ2
2/4, ν1 =

√
|ν0|, α1 = θ2

1θ
2
2,

α2,1 = −θ2
1

[
− 1

ν1
− θ2

2

2ν1
+ (1− θ2)

(
ν1 −

θ2
2

4ν1

)]
,

α2,−1 = −θ2
1

[
− 1

ν1
+

θ2
2

2ν1
+ (1− θ2)

(
−ν1 −

θ2
2

4ν1

)]
,

α2,0 = θ3
1

(
(1− θ2)θ2

2

4
+
θ2

2

2
+ 1

)
.

Alcântara [1] also showed that the process X satisfying (1.12) has ρθ(t) given by (1.14). Furthermore,

the process has a discretization form

X((k + 1)h) = κ1(θ)X(kh) + κ2(θ)X((k − 1)h) + ξk,h

for an α−stable random variable ξk,h.

18



Another well-studied class of SDE (see [5, 6, 16, 17, 42]) is the class of processes that are the solution

of a SDDE. We summarize some inferential results for this process in the Subsection 1.3.2. Now, observe

that the drift in (1.10) can be rewritten as

θ1X(t) + θ2X(t− 1) = −
∫ t

0
X(s)(−θ1δ0(t− s))ds−

∫ t

0
X(s)(−θ2δ0(t− 1− s))ds

= −
∫ t

0
X(s)µθ,t(ds), (1.17)

where θ ∈ Θ ⊂ R2 and µθ,t(ds) = −θ1δt(ds) − θ2δt−1(ds) is a linear combination of two Dirac

measures. Motivated by these arguments, we finish this subsection presenting formally the notion of GLE.

Definition 1.3.7. Let L = {L(t); t ≥ 0} be a Lévy process. Consider X0 = {X0(t); t0 ≤ t ≤ 0}
an initial solution process with càdlàg trajectories and independent of L. We write the Generalized
Langevin Equation as {

dX(t) = b(θ,Xt)dt+ dL(t), t > 0

X(t) = X0(t), t ∈ [t0, 0]
(1.18)

where Xt = {X(s); 0 ≤ s ≤ t} and b(θ,Xt) is defined as

b(θ,Xt) = −
∫ t

0
X(s)µθ,t(ds), (1.19)

where µθ,t is a signed measure on [0, t], for each t > 0 fixed and each parameter θ ∈ Θ ⊂ RN .

Note that, if the family {µθ,t; t ≥ 0} is such that b(θ,Xt) = b(θ,X(t)) (in other words, process b

depends on X only at time t), then we can use Applebaum [2, Theorem 6.2.9] to ensure that there exists a

unique càdlàg adapted solution to (1.18). But, this Theorem cannot be applied if b(θ, ·) depends on all

information from X until time t. Based on the GLE solution existence studies presented in [24, 49, 59],

we present the following definition.

Definition 1.3.8. Let X = {X(t); t ≥ t0} be a stochastic process and ρθ(·) be a deterministic function,

for each θ ∈ Θ. We say that the pair (X, ρθ) represents a class of solutions to the Generalized
Langevin Equation (1.18) if X is given by

X(t) = X0(0)ρθ(t) +

∫ t

0
ρθ(t− s)dL(s), t > 0, (1.20)

and ρθ(·) satisfies the integral equation (1.13), where {µθ,t; t ≥ 0 and θ ∈ Θ} is a family of signed

measures, L = {L(t); t ≥ 0} is a Lévy process and X0(t), t ∈ [t0, 0], is the initial process assumed to be

independent of L. The stochastic process X is called Generalized Ornstein-Uhlenbeck Process.

The problem of finding an explicit solution for some variations of the GLE has been extensively

studied. We have already mentioned [1, 49, 59, 61, 62] who studied the Kannan’s solution (1.20) (cf.

Kannan [24]) for some cases of GLEs. Fox [12] obtained, via Laplace transform, for a GLE with a

Gaussian noise, an explicit solution very similar to Kannan’s solution (1.20). Moreover, he discussed

about Fokker-Planck-like equations and how they can lead one to the erroneous conclusion that the process

is non-stationary, Gaussian and Markovian. McKinley and Nguyen [48], observing that the relationship

between the mean-squared displacement (MSD) and the memory structure of the GLE have never been
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fully characterized (in particular, the special cases where explicit solutions exist), they established a class

of memory kernels for which the GLE is well-defined, investigated the associated regularity properties of

solutions and proved that large-time asymptotic behavior of the particle MSD is entirely determined by

the tail behavior of the GLE’s memory kernel. Slezak [60] studied the stationary solutions of the Langevin

equation and the GLE. He showed in Slezak [60, Proposition 3.4.1] that if there exists a stationary solution

for a GLE, then it has a spectral representation in terms of Fourier transform of the kernel and the spectral

representation of the noise. Di Terlizzi, Ritort and Baiesi [9] also studied explicit solutions for a class of

GLEs. They introduced a generalisation of the Laplace transform as a useful tool for solving this problem.

Other topics of GLE studies also arise from several types of phenomena (physical, biological, eco-

nomic, among others). Zhu and Venturi [66] presented a new method to approximate the Mori–Zwanzig

memory integral in a class of GLEs for systems with local interactions. They showed that the proposed

method is effective in computing autocorrelation functions. Pavliotis, Stoltz and Vaes [53] worked with a

simple quasi-Markovian GLE, that is, the GLE is equivalent to a finite-dimensional system of Markovian

SDEs. They studied the longtime behavior of solutions and scaling limits of the effective diffusion

coefficient associated with the dynamics. Lim, Wehr and Lewenstein [37] studied homogenization for a

class of GLEs with state-dependent coefficients and exhibiting multiple time scales.

1.3.4 Other Class of Continuous Time Stochastic Process

Consider a compact subset Θ ⊂ RN . Gloter, Loukianova and Mai [13] studied statistical inference for the

parameter θ ∈ Θ based on an observed path Xθ = X = {X(t); t ≥ 0} which is solution of the integral

equation

X(t) = X(0) +

∫ t

0
b(θ,X(s))ds+

∫ t

0
σ(X(s))dW (s) +

∫ t

0

∫
R
γ(X(s−))zN(ds, dz), (1.21)

where W (t) is a one-dimensional Brownian motion and N(., .) is the Poisson random measure on R+×R
associated with the jumps of the Lévy process.

The parametric statistical experiment associated with (1.21) is (X = D[0,∞),B (X ) , {Pθ ∈ Θ}) in

which Pθ is the probability measure induced by Xθ on D[0,∞). Gloter, Loukianova and Mai [13] defined

the log-likelihood function as

l(θ,Xt) =

∫ t

0

b(θ,X(s))

σ2(X(s))
dXc(s)− 1

2

∫ t

0

b2(θ,X(s))

σ2(X(s))
ds. (1.22)

The choice for the log-likelihood differs from the logarithm of Radon–Nicodym derivative by the multi-

plicative factor not depending on θ.

Under conditions on existence of ergodic solution and Hölder continuity of the drift b(θ,X(t)), the

gradient ∇θb(θ,X(s)) and the Hessian ∂2
θb(θ,X(s)), the authors showed that the MLE θ̂(t) of θ also

maximizes l(θ,Xt), that is

θ̂(t) := θ̂(Xt) ∈ arg max
θ∈Θ

l(θ,Xt)·

Observe that, unlike the Langevin equation or the SDDE, this MLE is not given explicitly. Then, in

order to study the asymptotic behaviour of this estimator, a uniform version of the law of large numbers

for martingales is needed. Thus, Gloter, Loukianova and Mai [13] proved the consistency of the MLE

Pθ−a.s

θ̂(t)→ θ as t→∞
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and the asymptotic normality

Law
(√

t
(
θ̂(t)− θ

)∣∣∣Pθ)→ N(0, I−1(θ)), as t→∞, (1.23)

where I(θ) is the asymptotic Fisher information. Furthermore, they proved that the statistical experiment

{Pθ; θ ∈ Θ} satisfies the LAN property at all θ ∈ int Θ. Consequently, the MLE is asymptotically

efficient in the sense of Hájek-Le Cam convolution theorem.

Based on discrete high-frequency observations X(t0), · · · , X(tn) of the process (1.21), Gloter,

Loukianova and Mai [13] constructed an efficient and asymptotically normal estimator for the drift

parameter with minimal conditions on the jumps behaviour and in the way how ∆n = max{ti− ti−1; 1 ≤
i ≤ n} converges to zero. An important problem to be considered is how to obtain a discretization of∫ t

0 b(θ,X(s))σ−2(X(s))dXc(s) in (1.22). For this, they used a jump filtering technique to propose the

following filtered MLE (FMLE)

θ̂n ∈ arg max
θ∈Θ

[
n∑
i=1

σ(X(ti))
−2b(θ,X(ti−1))∆iX1|∆iX|≤vin

− 1

2

n∑
i=1

σ(X(ti))
−2b(θ,X(ti−1))2(ti − ti−1)

]
,

where vin is the cut-off sequence depending on ∆n and the past information X(t1), · · · , X(ti−1).

The Theorem 3.2 in Gloter, Loukianova and Mai [13] proves that, under suitable conditions, the

FMLE θ̂n has the same limit distribution as the continuous time MLE in (1.23), that is

Law
(√

tn

(
θ̂n − θ

)∣∣∣Pθ)→ N(0, I−1(θ)), as tn →∞·

1.4 Addressed Issues

Below, we present the main addressed issues in the remaining chapters of this thesis.

1. We extend the studies on estimators for the Langevin equation and SDDE. More precisely, we

study MLE for the drift parameter of the GLE observed continuously in time. We show that with

appropriated convergence assumptions we have a consistent and asymptotically normal MLE which

is also efficient in the sense of Hájek-Le Cam convolution theorem.

2. A filtered MLE is proposed for cases where the GLE is observed on discrete times. We evaluate the

results of this discretization via studies of simulations of the GOU-FE process.

3. A new version of discrete time estimator for GLE is proposed.

4. In order to analyze the behavior of the new version of the estimator via simulations, a new class of

solution for the GLE is proposed. The process solution of this new class extend the GOU-FE.

5. The two versions of proposed discrete time estimators have so far been studied only through

simulations. A more rigorous study of theoretical properties is done for a particular case of GLE.

Firstly, the continuous time properties are derived for this particular case of GLE, but with less

restriction convergence assumptions than topic 1.

Issues 1 and 2 are studied in Chapter 2. Issues 3 and 4 are covered in Chapter 3. Finally, Chapter 4

address issue 5.
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Chapter 2

MLE for the Drift Parameter of the GLE

2.1 Introduction

In this chapter we study MLE for the drift process b(θ,Xt) associated with the solution process of a

Lévy-driven GLE observed continuously in time{
dX(t) = b(θ,Xt)dt+ dL(t), t > 0

X(t) = X0(t), t ∈ [t0, 0]
(2.1)

where {L(t); t ≥ 0} is a Lévy noise, Xt = {X(s); 0 ≤ s ≤ t} and b(θ,Xt) is defined by

b(θ,Xt) = −
∫ t

0
X(s)µθ,t(ds), (2.2)

in which µθ,t a signed measure on [0, t], for each t > 0 fixed and each parameter θ ∈ Θ ⊂ RN .

In general, the MLE of θ does not possess a closed and explicit form, yet our Theorem 2.3.4 provides

sufficient conditions for its consistency, asymptotic normality and efficiency. In particular, we show

that the statistical experiment associated with the GLE satisfies the locally asymptotic normal property

(LAN as in Definition 1.2.6). A discretization of the MLE is proposed by filtering the "big" jumps

and simulation results for FMLE (Filtered MLE) of the generalized Ornstein-Uhlenbeck process of the

fluctuating exponential type (GOU-FE) are presented.

Estimation for GOU-FE type processes have been studied by other authors. Alcântara [1] derived a

recurrence formula to express a two parameter GOU-FE and obtained estimations via methods used in

autoregressive moving average (ARMA) models. Also, for particular cases of the solution process

X(t) = X0(0)ρθ(t) +

∫ t

0
ρθ(t− s)dL(s), t > 0, (2.3)

estimation results can be found in Alcântara [1], Stein [61] and Stein, Lopes and Medino [62]. More

specifically, the processes given by Examples 1.3.3 and 1.3.6. We study the estimation issues under a

more general setting by considering the GLE.

In Section 2.2 we describe the statistical experiment associated with the GLE. For the probability

measures {Pθ; θ ∈ Θ} associated with the class of solutions X = {Xθ; θ ∈ Θ} of (2.1) we explore the

likelihood functions (Radon-Nikodym density process of Pθ with respect to Pθ′) to obtain some needed

proprieties. Propositions 2.2.2 and 2.2.4 give locally absolutely continuous (
loc
�) results for {Pθ; θ ∈ Θ}
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and can be viewed as a variant of Girsanov’s Theorem for the family of measures induced by the solution

process X (see Appendix Theorem A.4.3).

In Section 2.3 we state the asymptotic proprieties for the MLE of θ0 (the true value),

θ̂(t) := arg max
θ∈Θ0

l(θ,Xt),

where Θ0 is a convenient subset of Θ and (see Proposition 2.2.2)

l(θ,Xt) := log
dP tθ
dP t0

(Xt) =
1

σ2

∫ t

0
b(θ,Xs)dX

c(s)− 1

2σ2

∫ t

0
b2(θ,Xs)ds,

in which Xc denotes the continuous martingale part of X . Theorem 2.3.4 provides sufficient conditions

for θ̂(t) to be consistent, asymptotically normal and efficient in the sense of Hájek-Le Cam Convolution

Theorem (recall the Definition 1.2.14).

In Section 2.4 we make use of the fact that, under regularity conditions, we have {Pθ; θ ∈ Θ} locally

equivalent and the Radon-Nikodym derivative is (2.1). To overcome difficulties that arise from the

discretization Xc we make use of FMLE that filters the "big" jumps of the process X as in [13, 42, 43, 44,

45]. Simulation results of FMLE for some GOU-FE models are exhibited.

The last section is dedicated to the proofs of the results. The main tools used are a version of Girsanov

Theorem for semimartingales and properties of Hellinger processes (Jacod and Shiryaev [23, Chapters III

and IV]) to obtain the likelihood function and the sufficient condition for absolute continuity.

For the asymptotic behaviour of the MLE, Arzelà-Ascoli Theorem, Multivariate Taylor Expansion,

Uniform Law of Large Numbers (Loukianova and Loukianov [40]), Central Limit Theorem for continuous

time martingales (Küchler and Sφrensen [34] and Crimaldi and Pratelli [8]) and Wald’s method (Vaart

[65, Section 5.2]) are used.

2.2 The Statistical Experiment

Consider that the GLE (2.1) is driven by a Lévy process L = {L(t); t ≥ 0} on the filtered probability

space (Ω,F , {Ft; t ≥ 0},P) with characteristic triplet (b, σ2, ν).

The class of solutions {Xθ; θ ∈ Θ} of (2.1) induces a family of probability measures {Pθ; θ ∈ Θ}
on the space D[t0,∞) of càdlàg functions on the interval [t0,∞) for some fixed t0. The parametric

statistical experiment associated with the GLE (2.1) is the triplet (X = D[t0,∞),B (X ) , {Pθ ∈ Θ}).

Here X is the sample space (the set of observations) and B(X ) is the Borel σ-algebra generated by the

Skorohod topology (see Billingsley [7, Chapter 3] or Jacod and Shiryaev [23, Chapter 6] for details).

Consider θ0 ∈ Θ being the true value of the parameter corresponding to the observed path of X and

let P tθ be the restriction P tθ = Pθ|Ft . As pointed out in (2.1) there is a close connection between the

probability measures {Pθ; θ ∈ Θ} and the log-likelihood functions (Radon-Nikodym derivatives).

Understanding the behavior of the Radon-Nikodym derivative of Pθ0 with respect to some Pθ will

be important to formulate estimates for the parameter θ0 and study its asymptotic properties. In order

to establish the likelihood function for the process X, solution of the GLE (2.1), it is necessary to make

some technical hypotheses for the drift process.

Assumption 2.2.1. We assume that

1. for each θ ∈ Θ, b(θ,Xt) is a predictable process (Appendix Definition A.1.6);
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2.
∫ t

0 b(θ,Xs)ds is a finite variation process.

Now, we establish a version of Girsanov’s Theorem for the family of measures induced by X. This

result will be proved in Section 2.5 and its proof essentially uses the same arguments as in Proposition

3.2.4 from Mai [42].

Proposition 2.2.2. Under Assumption 2.2.1, if Pθ
loc
� Pθ′ and the initial measures satisfies P 0

θ � P 0
θ′ ,

then the Radon-Nikodym density processes of Pθ with respect to Pθ′ is Pθ′-a.s. given by

dP tθ
dP tθ′

=
dP 0

θ

dP 0
θ′

exp

{
1

σ2

∫ t

0

(
b(θ,Xs)− b(θ′, Xs)

)
dXc(s)− 1

2σ2

∫ t

0

(
b(θ,Xs)− b(θ′, Xs)

)2
ds

}
·

(2.4)

Here Xc denotes the continuous martingale part of X under Pθ.

Observe that the likelihood function of the OU process (1.6) and of the SDDE (1.11) become particular

cases of (2.4).

The next assumption will gives us sufficient conditions for Pθ
loc
� Pθ′ . Thus, the Proposition 2.2.4 is a

generalization of the absolute continuity of the measures induced by the Ornstein-Uhlenbeck processes

and can be seen as a variant of Theorem 3.2.1 from Mai [42].

Assumption 2.2.3. Let {µθ,t; t ≥ 0} from (2.2) be a family of signed measures associated with the

function ρθ(·) by the Volterra relationship (1.13), for each θ ∈ Θ. For all t ≥ 0 we assume that

1. ρθ(·) is a continuous function on [0, t];

2. s
∫ s

0 µθ,s(du) ∈ L1 ([0, t], ds);

3. s
∫ s

0 uµθ,s(du) ∈ L1 ([0, t], ds).

Note that Assumption 2.2.3 is not particularly restrictive, it holds for Examples 1.3.2, 1.3.3, 1.3.6.

Indeed,

(i) If ρθ(t) = e−θt, θ > 0, t ≥ 0, then µθ,t(A) = θδA(t), where A ∈ B(R+) and δA(t) is a Dirac

measure. Then,

s

∫ s

0
µθ,s(du) ∈ L1 ([0, t], ds) . (2.5)

Moreover,

s

∫ s

0
uµθ,s(du) ≤ s2

∫ s

0
µθ,s(du) ∈ L1 ([0, t], ds) ; (2.6)

(ii) If ρθ(t) = cos(θt), θ > 0, t ≥ 0, then µθ,t(ds) = θ2ds. We obtain that

s

∫ s

0
µθ,s(du) = θ2s2 ∈ L1 ([0, t], ds)

and

s

∫ s

0
uµθ,s(du) = θ2s

∫ s

0
udu ∈ L1 ([0, t], ds) ;
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(iii) If ρθ(t) = (1 − θ2)e−θ1t + θ2 cos(θ1t), t ≥ 0, θ> = (θ1, θ2) ∈ R+ × [0, 1], then we have a

decomposition of µθ,t as (1.15). By continuity of gθ(·) on [0, t] and from the (2.5) and (2.6), we

have

s

∫ s

0
µθ,s(du) = s

∫ s

0
µ

(1)
θ,s(du) + s

∫ s

0
gθ(s− u)du ∈ L1 ([0, t], ds)

and

s

∫ s

0
uµθ,s(du) = (1− θ2)θ1s

∫ s

0
uµ

(1)
θ,s(du) + s

∫ s

0
ugθ(s− u)du ∈ L1 ([0, t], ds) .

We finish this section ensuring that Assumption 2.2.3 is a sufficient condition for the absolute

continuity of P tθ with respect to P tθ′ . We also emphasize that this is the only result of this chapter in

which the Kannan’s solution (2.3) is used explicitly. For all other results, we require only the differential

equation form of the process X as in (2.1).

Proposition 2.2.4. Let Pθ and Pθ′ be two solution measures for the GOU process (2.3), that is,

X(t) = X0(0)ρ(t) +

∫ t

0
ρ(t− s)dL(s), t > 0.

Assume that the initial distributions satisfy P 0
θ � P 0

θ′ and that Eθ
(
X2

0

)
< ∞, for each θ ∈ Θ. Then

Assumption 2.2.3 is sufficient for Pθ
loc
� Pθ′ .

For the proof in Section 2.5 we make use of the Hellinger process associated with the process X. We

briefly review this topic in Section A.5 of the Appendix and refer the reader to Jacod and Shiryaev [23,

Chapter IV] for a more detailed reading on the subject.

2.3 The MLE and its Asymptotic Behaviour

Having established the Radon-Nikodym derivatives (2.4) by assuming sufficient conditions on the process

X and on the statistical experiment associated, we are now ready to start the study of statistical inferences

for the drift process of the GLE.

Aiming at the addressed issues of statistical inference covered in this chapter, let us assume the general

version of the drift process b(θ,Xt) as defined in (2.2), that is,

b(θ,Xt) = −
∫ t

0
X(s)µθ,t(ds).

In Chapter 4 we will consider b(θ,Xt) having a particular decomposition form,

b(θ,Xt) =

N∑
j=1

θjbj(Xt), (2.7)

where bj(Xt) ∈ L2 (dPθ × dt) and θ> = (θ1, · · · , θN ) ∈ Θ ⊂ RN . It means that all parameter

information can be isolated from the process information. In this case, we will see that the MLE has

an explicit form and its asymptotic behavior results from the law of large numbers (LLN) and from the

central limit theorem (CLT) for martingales. Such approach cannot be used directly when we consider

(2.2), since the MLE does not have an explicit form. In this case uniform versions of these results need to
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be used. For this, further assumptions are required. One must consider a compact subspace of parameter

set Θ, Hölder continuity for the drift b(θ,Xt) and conditions on its gradient ∇θb(θ,Xt) and Hessian

matrix ∂2
θb(θ,Xt).

Now, let Θ0 3 θ0 be a compact subset of Θ such that intΘ0 is non-empty. The Equation (2.4) from

Proposition 2.2.2 gives us the log-likelihood function of a solution process for the GLE and it is given by,

l(θ,Xt) := log
dP tθ
dP t0

(Xt) =
1

σ2

∫ t

0
b(θ,Xs)dX

c(s)− 1

2σ2

∫ t

0
b2(θ,Xs)ds· (2.8)

The MLE of θ0 is given by

θ̂(t) := arg max
θ∈Θ0

l(θ,Xt). (2.9)

Expected properties from θ̂(t) are consistency (satisfies a Law of Larger Numbers), the distribution of

its error (a version of Central Limit Theorem) and some choice criteria to compare it with other estimators.

We adopt the criterion of asymptotically efficient in the sense of Hájek-Le Cam (see Definition 1.2.14),

Law
(
ϕ(t)−1

(
θ̂(t)− θ

)∣∣∣Pθ)→ I(θ)−1/2N (0, IN ) as t→∞, (2.10)

where I(θ) is the information matrix and IN the identity matrix. To establish (2.10) one needs to show

that the statistical experiment satisfies the LAN property (Definition 1.2.6). Conditions to assure the

LAN property are, in general, very complex. Typically one needs ergodicity of the process and a version

of Central Limit Theorem for continuous-time multivariate martingale. We will make use of CLT for

martingales given by Küchler and Sφrensen [33, 34] (for extension of this result see Crimaldi and Pratelli

[8]). As for the ergodicity, Masuda [46, 47] gave a set of conditions under which a multidimensional

diffusion with jumps fulfills the ergodic theorem and Kulik [31] gave sufficient conditions for exponential

ergodicity of a Markov process defined as the solution to a SDE with jump noise. Other references in this

matter include Gloter, Loukianova and Mai [13], Kohatsu-Higa, Nualart and Tran [28], Mai [42, 43], Liu,

Nualart and Tindel [39] and Tran [63, 64].

We consider that there exists a positive increasing function ϕ(t) ↑ ∞. In order to get asymptotic

results, it is necessary to assume some technical restrictions on b(θ,Xt), Θ0 and ϕ(t).

Assumption 2.3.1. Let Θ0 3 θ0 be a compact subset of Θ such that intΘ0 is non-empty and assume that

there exists a positive increasing function ϕ(t) ↑ ∞ satisfying,

1. for all θ ∈ Θ0, we have

1

σ2ϕ(t)

∫ t

0
(b(θ,Xs)− b(θ0, Xs))

2 ds→ Σ̃2(θ), (2.11)

Pθ0−a.s. as t→∞;

2. the drift process (2.2) is Hölder continuous on θ, i.e. for all x ∈ D[0,∞) there exists K(xt) such

that for all θ, θ′ ∈ Θ0 we have∣∣b(θ, xt)− b(θ′, xt)∣∣ ≤ K(xt)
∣∣θ − θ′∣∣κ ,

where 0 < κ ≤ 1 and 1
ϕ(t)

∫ t
0 K

2(xs)ds→ Σ2
K <∞;

Assumption 2.3.2. Assume that:
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1. for all x ∈ D[0,∞), b(·, xt) is twice continuous differentiable with respect to θ and ∇b(·, xt) and

∂2b(·, xt) are Hölder continuous with respect to θ. That means, for all θ, θ′ ∈ int Θ0,∣∣∇b(θ, xt)−∇b(θ′, xt)∣∣ ≤ K1(xt)
∣∣θ − θ′∣∣κ1

and ∣∣∂2b(θ, xt)− ∂2b(θ′, xt)
∣∣ ≤ K2(xt)

∣∣θ − θ′∣∣κ2 ,
where 0 < κ1, κ2 ≤ 1 and 1

ϕ(t)

∫ t
0 K

2
j (xs)ds→ Σ2

Kj
<∞, for j = 1, 2;

2. for all j ∈ {1, · · · , N} and each θ ∈ Θ0 we can interchange the following orders of differentiation

and stochastic integration

∂θj

∫ t

0

(
b(θ,Xs)− b(θ0, Xs)

)2
ds = 2

∫ t

0
(b(θ,Xs)− b(θ0, Xs)) ∂θjb(θ,Xs)ds

and

∂θj

∫ t

0
b(θ,Xs)− b(θ0, Xs)dW (s) =

∫ t

0
∂θjb(θ,Xs)dW (s),

where W = {W (t); t ≥ 0} is the Wiener process in the Lévy-Itô decomposition of L;

3. the asymptotic Fisher Information I(θ) = (Iij(θ)) and the technical matrix ξ(θ) = (ξij(θ))

(which appear in proof of Theorem 2.3.4) satisfy the limits

1

ϕ(t)

(
1

σ2

∫ t

0
∂θib(θ,Xs)∂θjb(θ,Xs)ds

)
1≤i,j≤N

−→ I(θ) (2.12)

and
1

ϕ(t)

(
1

σ2

∫ t

0
(b(θ,Xs)− b(θ0, Xs)) ∂

2
θiθj

b(θ,Xs)ds

)
1≤i,j≤N

−→ ξ(θ) (2.13)

Pθ0 − a.s. as t→∞·

See Hutton and Nelson [21] and the references therein for sufficient conditions for the item 2 in

Assumption 2.3.2 holds true. The item 3 in the Assumption 2.3.2 has a technical importance for the

general case of b(θ,Xt) because the covariation matrix of the MLE’s limit distribution will be I(θ0)−1.

Magdziarz and Weron [41, Theorem 1] presented an ergodic theorem that can be applied for the GOU

process, that is, taking a appropriated Lévy process for which the correlation function of X decays to zero

as t→∞ and for a suitable f , the temporal and ensemble averages coincide, i.e.,

1

T

∫ T

0
f(X(t))dt→ E[f ],

provided that E[f ] <∞· It becomes a sufficient conditions for the convergences assumptions in (2.11),

(2.12) and (2.13).

Assumption 2.3.3. 1. Assume that

Eθ0

[
1

ϕ(t)

∫ t

0
K2

1 (Xs)ds

]
→ Σ2

K ;
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2. for all h ∈ RN and u, u′ ∈ [0, 1],

1

ϕ(t)

∫ t

0

∣∣∣∇θb(θ0, Xs)∇θb(θ0, Xs)
> −∇θb(θ0 + hϕ(t)−1/2u,Xs)∇θb(θ0 + hϕ(t)−1/2u′, Xs)

>
∣∣∣ ds

converges to zero Pθ0−a.s. as t→∞.

Finally, we can state the main result of this chapter.

Theorem 2.3.4. Under the hypotheses of Proposition 2.2.2 and assuming that the Assumptions 2.3.1,

2.3.2 and 2.3.3 are satisfied we have,

1. the MLE (2.9) is strongly consistent and asymptotically normal, that is,

θ̂(t)→ θ0 Pθ0 − a.s. as t→∞

and

Law
(
ϕ(t)1/2

(
θ̂(t)− θ0

)∣∣∣Pθ0)→ N(0, I−1(θ0)) as t→∞;

2. the statistical experiment {Pθ; θ ∈ Θ0} is LAN for each θ ∈ int Θ0 with the Fisher information

matrix I(θ) defined in (2.12) and rate of convergence ϕ(t)−1/2. That means, for all h ∈ RN ,

Law

(
log

dP t
θ+hϕ(t)−1/2

dP tθ

∣∣∣∣∣Pθ
)
→ h>N (0, I(θ))− 1

2
h>I(θ)h, as t→∞·

Furthermore, the MLE
{
θ̂(t); t ≥ 0

}
is asymptotically efficient in the sense of Hájek-Le Cam

Convolution Theorem.

We point out that the Theorem 2.3.4 generalizes results from Mai [42, 43] for the Langevin equation

and a class of SDDE. Our proof borrows the ideas from Gloter, Loukianova and Mai [13] and Loukianova

and Loukianov [40]. In Chapter 4, we will prove a similar result but for the case when the drift process

satisfies (2.7). In this case, less restrictive assumptions will be required.

Using autoregressive decomposition and spectral density for an observed path of the GOU process

(2.3) at discrete times, it is possible to use time series modeling for this type of processes (see, for example,

[1, 62]). However, as far as we know, there is no studies in the literature on statistical estimation for the

drift of a GLE solution process observed continuously in the time interval [0, t]. Furthermore, we do not

need the explicit form of the Kannan’s solution (2.3) to derive Theorem 2.3.4. This is important because,

since (2.3) is not necessarily a solution for the GLE, it depends on the sense of integration used and on the

conditions over the noise L (see (1.10), for example).

Also, Theorem 2.3.4 allows us to model processes with presence of oscillations or seasonality, as

occurs in several physical and climatic phenomena, among others. Just make the proper choice of µθ,t or

ρθ(t) and modification of the autocorrelation structure of the process arises. In several cases it is possible

to obtain processes with oscillatory decay of the autocorrelation function. Oscillations can also occur in the

paths of the process itself as in the GOU-FE process when we take ρθ(t) = (1− θ2)e−θ1t + θ2 cos(θ1t).
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2.4 The FMLE and Simulation Results

The aim of the this section is to evaluate the applicability of the MLE (2.9) via estimation in simulated

processes. We propose a discretization form of θ̂(t) based on Gloter, Loukianova and Mai [13], Mai

[42, 43] and Mancini [44, 45] by filtering big jumps to approximate some stochastic integrals. Then,

Monte Carlo simulations are done for the GOU-FE process

X(t) = X0

(
(1− θ2)e−θ1t + θ2 cos(θ1t)

)
+

∫ t

0

(
(1− θ2)e−θ1(t−s) + θ2 cos(θ1(t− s))

)
dL(s)

(2.14)

in order to answer the following questions: how good the joint estimation of θ> = (θ1, θ2) is? Does the

estimator have the same behaviour in different regions of the plan, contained in R+ × [0, 1]?

We start this section by setting some notations that were used here and in the figures and table of the

simulation results.

Let f : [0, T ]→ R be a real function, with final time T > 0. Consider a discretization in n+ 1 steps

of the interval [0, T ] as (tk = (k − 1)T/n)k=1,··· ,n+1. The increment of f on [ti, ti+1] is denoted by

∆if = f(ti+1)− f(ti) and the interval increment is ∆i = T/n.

We consider a Lévy process L = {L(t); t ≥ 0} given by

L(t) = σW (t) +

N(t)∑
i=0

Yi, (2.15)

where σ > 0 is fixed, {W (t); t ≥ 0} is a Wiener process and {N(t); t ≥ 0} a Poisson process with rate

λ > 0 and {Yi}i=0,··· ,∞ is a sequence of i.i.d. random variables with common distribution N(0, 2).

Let X = {X(t); t ≥ 0} be a solution process of the GLE (2.1). Denote all the past history of the

discretization until the time ti by Xti = {X(tj); j ≤ i}.
The main problem in the discretization of θ̂(t) defined in (2.9) is getting a good approximation of the

increments of the continuous martingale part Xc, because it is not observable. Under Pθ0 , (cf. Jacod and

Shiryaev [23, Theorem I.4.18 and Proposition I.4.27]) Xc is given by

Xc(t) = σW (t) +

∫ t

0
b(θ0, Xs)ds,

where W = {W (t); t ≥ 0} is the Wiener process in the Lévy-Itô decomposition of L.

In general, the increments ∆iX
c are of the order ∆

1/2
n (cf. Mancini [44, 45]). Thus, based on Gloter,

Loukianova and Mai [13] and Mai [42, 43], we approximate the discretization of the stochastic integral∫ t
0 b(θ,Xs)dX

c(s) by increments of X filtering “big” jumps, i.e.

n∑
i=1

b(θ,Xti)∆iX1[|∆iX|≤vin],

where the cutoff sequence is given by vin = ai∆
β
n, for β ∈ (0, 1/2) and ai being a measurable function of

the past information of the process. Thus, the filtered maximum likelihood estimator (FMLE) is defined as

θ̂FMLE
T := arg max

θ∈Θ0

{
1

σ2

n∑
i=1

b(θ,Xti)∆iX1[|∆iX|≤vin] −
1

2σ2

n∑
i=1

b2(θ,Xti)∆i

}
· (2.16)
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For the applications in this section, we consider the GOU-FE process which is defined in (2.14).

Alcântara [1, Theorem 5.1] stated that, for θ> = (θ1, θ2) ∈ Θ = R+ × [0, 1] and t ≥ 0, the signed

measures µθ,t on [0, t] satisfying  ρ′θ(t) = −
∫ t

0
ρθ(s)µθ,t(ds),

ρθ(0) = 1

have the following decomposition

µθ,t(ds) = θ1(1− θ2)µ
(1)
θ,t (ds) + gθ(t− s)ds,

where µ(1)
θ,t (ds) = δ0(t− s) is a Dirac measure and gθ(t) is given by

gθ(t) =


e−θ1θ2t/2 (α1 cos (θ1ν1t) + α2,1 sin (θ1ν1t)) , ν0 > 0,

e−θ1θ2t/2 (α1 cosh (θ1ν1t) + α2,−1 sinh (θ1ν1t)) , ν0 < 0,

e−θ1θ2t/2 (α1 + α2,0t) , ν0 = 0,

for constants (functions of θ) given explicitly by ν0 = 1− θ2 − θ2
2/4, ν1 =

√
|ν0|, α1 = θ2

1θ
2
2,

α2,1 = −θ2
1

[
− 1

ν1
− θ2

2

2ν1
+ (1− θ2)

(
ν1 −

θ2
2

4ν1

)]
,

α2,−1 = −θ2
1

[
− 1

ν1
+

θ2
2

2ν1
+ (1− θ2)

(
−ν1 −

θ2
2

4ν1

)]
,

α2,0 = θ3
1

(
(1− θ2)θ2

2

4
+
θ2

2

2
+ 1

)
.

Thus, the parameter space has tree regions in which the process changes its self-dependence that is

either R+ × [0, 2
√

2− 2), R+ × {2
√

2− 2} or R+ × (2
√

2− 2, 1]. Furthermore, the Euler-Maruyama

discretization of the GOU-FE were given in Alcântara [1, Equation (5.65)].

Figure 2.1 shows the oscillatory paths of the simulations from GOU-FE processes for T ∈ {10, 50}
and for different values of θ> = (θ1, θ2). As expected, for small θ2 values, the process has less oscillation.

But keeping θ2 fixed and increasing θ1, we have more frequency of oscillations.

Figure 2.2 shows some simulations paths of the GOU-FE as the corresponding Lévy process and its

decomposition (2.15). That means, the left graphics have plotted:

1. the simulated Lévy process (with the legend lp) L(t) and its decomposition (2.15);

2. the corresponding Brownian motion (wp) W (t) ;

3. the jump process (jp) J(t) =
∑N(t)

i=0 Yi;

4. the corresponding GOU-FE X(t) for the Lévy path L(t) with the fixed parameter θ.

The autocorrelation functions of those GOU-FE are also plotted and have oscillating decays with

frequency depending on the θ value. The decay of the autocorrelation function shown in the Figure 2.2 is

expected for classes of solution of the GLE, even when considering other GLE variants (see, for example,

Alcântara [1, Figures 5.2, 5.4, 5.6, 5.8 and 5.10], Morgado et al. [50, Figure 1], Slezak [60, Figure 6.6] and

Zhu and Venturi [66, Figures 3 and 4]). That kind of decay of the autocorrelation function indicates that

these processes are autoregressive with order greater than 1. In Chapter 3 we explore the behaviour of the

autocorrelation function proving that a 3-parameter GOU-FE has an order 3 autoregressive decomposition.
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(a) θ1 = 1, T = 10, n = 1000

(b) θ1 = 5, T = 10, n = 1000

(c) θ1 = 1, T = 50, n = 5000

(d) θ1 = 5, T = 50, n = 5000

Figure 2.1: Simulation of the GOU-FE process with fixed values σ = 1, λ = 1, n = 1000 and
T ∈ {10, 50} for different values of θ> = (θ1, θ2).
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(a) θ> = (1, 0.1) (b) θ> = (1, 0.1)

(c) θ> = (1, 0.9) (d) θ> = (1, 0.9)

(e) θ> = (5, 0.1) (f) θ> = (5, 0.1)

(g) θ> = (5, 0.9) (h) θ> = (5, 0.9)

Figure 2.2: Simulations (left) and autocorrelation function (right) of the GOU-FE processes with cor-
responding Lévy process (lp) and its Wiener (wp) and jump (jp) parts as in (2.15), for fixed values
σ = 1,λ = 1, T = 100, n = 2000 and θ ∈ {1, 5} × {0.1, 0.9}.
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Table 2.1: Mean, standard deviation and absolute error of the FMLE θ̂FMLE
100 for 500 Monte Carlo

simulations of the GOU-FE with n = 1000 and σ = 1.

λ θ1 θ2 mean(θ̂1,T ) std dv(θ̂1,T ) |θ̂1,T − θ1| mean(θ̂2,T ) std dv(θ̂2,T ) |θ̂2,T − θ2|
1 1 0,1000 1,0062 0,0284 0,0062 0,1012 0,0347 0,0012
5 1 0,1000 1,0077 0,0236 0,0077 0,1047 0,0346 0,0047
1 5 0,1000 4,7340 0,0690 0,2660 0,1299 0,0109 0,0299
5 5 0,1000 4,6853 0,0632 0,3147 0,1293 0,0101 0,0293
1 1 0,3000 1,0007 0,0048 0,0007 0,2195 0,0344 0,0805
5 1 0,3000 1,0010 0,0069 0,0010 0,2233 0,0399 0,0767
1 5 0,3000 3,0000 0,0000 2,0000 0,3186 0,0055 0,0186
5 5 0,3000 3,0000 0,0000 2,0000 0,3187 0,0049 0,0187
1 1 0,8284 1,0000 0,0000 0,0000 0,2794 0,0768 0,5490
5 1 0,8284 1,0000 0,0000 0,0000 0,2454 0,0695 0,5830
1 5 0,8284 3,0000 0,0000 2,0000 0,3208 0,0038 0,5077
5 5 0,8284 3,0000 0,0000 2,0000 0,3202 0,0018 0,5083
1 1 0,9000 1,0004 0,0037 0,0004 0,2990 0,0885 0,6010
5 1 0,9000 1,0000 0,0000 0,0000 0,2588 0,0743 0,6412
1 5 0,9000 3,0000 0,0000 2,0000 0,3408 0,0052 0,5592
5 5 0,9000 3,0000 0,0000 2,0000 0,3390 0,0059 0,5610

Table 2.1 is obtained following the step-by-step bellow: For each line in the table

1. columns 1-3 present the fixed parameters of the simulations, in which λ is the rate of the Poisson

process N(t) in the decomposition of the Lévy (2.15) and θ1 and θ2 are the drift parameters of the

GLE;

2. fix a search region Θ0 for the FMLE;

3. it is simulated 500 Lévy processes;

4. it is obtained the 500 corresponding GOU-FE processes;

5. for each simulation, the parameter θ> = (θ1, θ2) is estimated, according to the FMLE (2.16);

6. the remaining columns (4-9) present the mean, standard deviation (std dv) and absolute deviation of

the estimated parameters.

The results obtained in Table 2.1 were programmed in the language and environment for statistical

computing R and compiled on a server with 32 cores, in addition to using parallel computing to generate

the 500 samples of the parameter settings described in each row of the table. The average computing time

was 17 hours per line.

Table 2.1 shows that the rate of jumps λ has no influence on the θ0 estimation. Also, θ̂FMLE
100

estimates well for small θ2, i.e., good estimates occurred only in the a subset of the first region Θ0 =

R+ × [0, 2
√

2− 2). To make the estimator applicable to R+ × {2
√

2− 2} and R+ × [2
√

2− 2, 1], more

sophisticated methods of optimization are required, such as introducing the dependence on a simulated

Lévy path or techniques such as VNS (Variable Neighborhood Search).

For θ2 values greater than 0.1, Table 2.1 shows some standard deviations equal to zero, in some

estimations of θ1. That means, the local search algorithm used has reached the minimum of the searched
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region. If we took a larger search region, the algorithm would stabilize the estimation around some value

from the initially estimated. Even so, the estimates when θ1 = 5 would not be good, even increasing

the search region. This indicates that for large values of θ1, we may not be able to verify some of the

convergences assumed in the previous section, when de perturbation parameter θ2 is greater than 0.1.

In Chapter 3, we propose a new discrete time estimator for θ0 in order to improve the estimation for

"large" values of θ1. For this, we introduce the Lévy path’s information in the estimator, since in (2.16)

we used only σ2 which is associated with the the Gaussian part of the Lévy process.

2.5 Proofs

Our proofs essentially join and repeat the arguments from [13, 40, 42, 43], adapted to our needs. We refer

to Sections A.1, A.2, A.3, A.4 and A.5 for the technical terms that have not been defined so far in this

chapter and are used in proofs of Propositions 2.2.2 and 2.2.4.

Proof of the Proposition 2.2.2

Proof of the Proposition 2.2.2. Let L = {L(t); t ≥ 0} be a Lévy process with characteristic triplet

(b, σ2, ν). It is well known that the semimartingale characteristic of L is given by (bt, σ2t, ν(dx)dt),

where dt denotes the Lebesgue measure. When X = {X(t); t ≥ 0} is solution of the GLE, by the

Lévy-Itô decomposition we have

X(t) =

∫ t

0
b(θ,Xs)ds+ L(t)

=

∫ t

0
b(θ,Xs)ds+ bt+ σW (t) +

∫
|x|≥1

xN(t, dx) +

∫
|x|<1

xÑ(t, dx),

where N(t, dx) is a Poisson random measure associated with the jumps of the Lévy process and Ñ(t, dx)

its compensated Poisson random measures.

Under the Assumption 2.2.1,
∫ t

0 b(θ,Xs)ds is of finite variation. Thus, it follows from Applebaum [2,

Section 2.7] that the semimartingale characteristic of X is given by(
bt+

∫ t

0
b(θ,Xs)ds, σ

2t, ν(dx)dt

)
. (2.17)

Let (B,C, ν) and (B′, C ′, ν ′) be the semimartingale characteristics of X under Pθ and Pθ′ , respec-

tively. We have that

B = bt+

∫ t

0
b(θ,Xs)ds and B′ = bt+

∫ t

0
b(θ′, Xs)ds.

It follows that

B = B′ +

∫ t

0

(
b(θ,Xs)− b(θ′, Xs)

)
ds.

We define the processes

β(t) = β(θ, θ′, Xt) := b(θ,Xt)− b(θ′, Xt)

and

K(t) = K(θ, θ′, Xt) :=

∫ t

0

(
β(s)

σ

)2

ds.
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Since b(θ,Xt) is a predictable process for each θ ∈ Θ and β2(t) is a non-decreasing process, we conclude

that K(t) is a predictable process and has non-decreasing paths. Moreover, {K(t); t ≥ 0} does not jumps

to infinity.

Define a sequence of stopping times {Tn;n ∈ N} by

Tn = inf{t ∈ R;K(t) ≥ n}

and let A =
⋃
n

[0, Tn] be a predictable set. Note that K(t)→∞ a.s. under Pθ and Pθ′ as t→∞, which

implies that

A = R+ (2.18)

Pθ- and Pθ′-almost surely.

Let ν̃ denotes the compensator of ν on Ω̃ = Ω× R+ × R. As in (A.2), by Jacod and Shiryaev [23,

Proposition II.1.17], there exists a version of ν̃ such that ν̃(ω; {t} × R) ≤ 1. We define a predictable

process a = {a(t); t ≥ 0} by

a(ω, t) := ν̃(ω; {t} × R).

For each measurable function Y on Ω̃ we define

Ŷ (ω, t) :=


∫
R
Y (ω, t, x)ν̃(ω; {t} × dx) if this integral converges,

+∞ otherwise.

According to Girsanov’s Theorem A.2.5 (cf. Jacod and Shiryaev [23, Theorem III.3.24]), we have

ν̃ ′(ω; {t} × R) =
∫
R Y (ω, t, x)ν̃(ω; {t} × dx). It follows from semimartingale characteristics of X that

Y ≡ 1 and Ŷ (t) = ν̃(ω; dt× R)
def
= a(ω, t). Thus, given a stopping time S, we obtain(

Y − 1− Ŷ − a
1− a

1[a<1]

)
1[0,S] ∗ (ν − ν̃) ≡ 0.

We concluded from Proposition A.2.7 (cf. Jacod and Shiryaev [23, Proposition III.5.10]) that there exists

a process U = {U(t); t ≥ 0} such that for all stopping time S the stopped process U(S) is given by

U(S) =

∫ S

0
β(s)dXc(s).

Thus, U is a continuous process and∏
s<t

(1 + ∆U(s)) e−∆U(s) ≡ 1,

for all t ≥ 0.

By applying Theorem A.4.3 (cf. Jacod and Shiryaev [23, Theorem III.5.32]), for all t ≥ 0, it allows

us to write the density process of Pθ with respect to Pθ′ as

dP tθ
dP tθ′

=
dP 0

θ

dP 0
θ′

exp

{
U(t)− σ2

2

∫ t

0
β2(s)ds

}∏
s<t

(1 + ∆U(s)) e−∆U(s),

which proves the proposition.

�
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Proof of the Proposition 2.2.4

In order to apply the Proposition A.5.4 to determine a version of the Hellinger process associated with the

measures Pθ and Pθ′ , the following notation will be needed,

1. ϕα : R2
+ → R+ (α ∈ (0, 1))

ϕα(u, v) = αu+ (1− α)v − uαv1−α;

2. C = c ·A and C ′ = c′ ·A, for A = {A(t); t ≥ 0};

3. λ is a predictable random measure on R+ × Rd such that(
|x|2 ∧ 1

)
∗ λt <∞, ∀t <∞,

ν � λ and ν ′ � λ;

4. U = {U(t); t ≥ 0} is a non-negative predictable function such that

ν = U · λ;

5. Σ is a predictable random set such that

Σ = {(ω, t); |h(x)(U − U ′)| ∗ λt(ω) <∞},

where h is the truncation function;

6. at(ω) = ν
(
ω; {t} × Rd

)
=
∫
U(t, x)λ({t} × dx) ≤ 1.

Under this notations, taking ν = ν ′ = λ, we have c = c′ = σ2, U ≡ 1, U ′ ≡ 1, Σ = Ω × R+,

ϕα(U,U ′) = α+ (1− α)− 1 ≡ 0 and ϕα(1− a(s), 1− a′(s)) = 0.

Lemma 2.5.1. Suppose that local uniqueness holds for the martingale problems s
(
X|P 0

θ ;B,C, ν
)

and

s
(
X|P 0

θ′ ;B
′, C, ν

)
. Then, under Assumptions 2.2.1, a version of the Hellinger process H(α; θ, θ′) =

{H(α; θ, θ′, t); t ≥ 0}, α ∈ (0, 1), corresponding to the solution measures Pθ and Pθ′ of the GLE (1.18)

is given by

H(α; θ, θ′, t) =
α(1− α)

2

1

σ2

∫ t

0

(
b(θ,Xs)− b(θ′, Xs)

)2
ds,

provided that H(1/2; θ, θ′) does not jump to infinity.

Proof. Denote by (B,C, ν) and (B′, C ′, ν ′) the semimartingale characteristics of X under Pθ and Pθ′

and let P 0
θ and P 0

θ′ be the initial distributions, respectively. By Proposition A.5.4 the problem of finding a

measure to the GLE (1.18) is equivalent to solve the martingale problem s (X|π;B,C, ν).

For each pair θ, θ′ ∈ Θ, define the predictable processes

B̃(t) = B(t)−B′(t) =

∫ t

0

(
b(θ,Xs)− b(θ′, Xs)

)
ds

and

β(t) = β(θ, θ′, Xt) =
b(θ,Xt)− b(θ′, Xt)

σ2
·
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Assuming that local uniqueness holds (see Definition A.4.2) for the martingale problems s
(
X|P 0

θ ;B,C, ν
)

and s
(
X|P 0

θ′ ;B
′, C, ν

)
and H(1/2; θ, θ′) does not jump to infinity, since ν = ν ′ = λ, by Equation (A.7)

in Proposition A.5.4, we have that a version of the Hellinger process is given by

H(α; θ, θ′, t) =
α(1− α)

2

1

σ2

∫ t

0

(
b(θ,Xs)− b(θ′, Xs)

)2
1Σds,

where Σ = Ω× R+.

�

Lemma 2.5.2. Consider a family of measures {Pθ; θ ∈ Θ} induced by (1.18). Let L = {L(t); t ≥ 0} be

a Lévy process with characteristic triplet (b, σ2, µ). Under Assumption 2.2.3, for all pair (θ, θ′) ∈ Θ2, we

have that

s

∫ s

0

(∫ u

0
ρθ′(u− v)dL(v)

)2

µθ′,s(du) ∈ L1 ([0, t]× Ω, ds× dPθ) .

Proof. We recall that by Lévy-Itô’s decomposition, the Lévy process L can be written as a sum of a

martingale {M(t); t ≥ 0} and an adapted process of finite variation V = {V (t); t ≥ 0} such that

L(t) =

(
σW (t) +

∫
|x|<1

xÑ(t, dx)

)
+

(
bt+

∫
|x|≥1

xN(t, dx)

)
= M(t) + V (t),

where {W (t); t ≥ 0} is a Wiener process, M(t) = σW (t) +
∫
|x|<1 xÑ(t, dx) and V (t) = bt +∫

|x|≥1 xN(t, dx).

Since ρθ′(·) is predictable, for each u ≥ 0, by [2, Section 4.3],
∫ u

0 ρθ′(u− v)dL(v) can be defined as∫ u

0
ρθ′(u− v)dL(v) =

∫ u

0
ρθ′(u− v)dM(v) +

∫ u

0
ρθ′(u− v)dV (v).

It follows from (A.12) in Burkholder-Davis-Gundy’s inequalities that

Eθ

[(∫ u

0
ρθ′(u− v)dM(v)

)2
]
≤ C2Eθ

[∫ u

0
ρ2
θ′(u− v)d[M ](v)

]
≤ C2 sup

y∈[0,t]
ρ2
θ′(y)Eθ

[∫ u

0
d[M ](v)

]
= C̄2Eθ [[M ](u)]

= C̄2

(
Eθ

[
[σW ](u) +

[∫
|x|<1

xÑ(·, dx)

]
(u)

])

= C̄2

σ2u+ Eθ

∑
v≤u

(∆L(v))2 1[|∆L(v)|≤1]


= C̄2

(
σ2u+ u

∫ 1

0
x2µ(dx)

)
≤ Cu, (2.19)

where in the second inequality we have used ρθ′(·) is a continuous function in [0, t] and u ≤ t. Thus

C̄2 = C2 sup
y∈[0,t]

ρ2
θ0

(y) is a positive (finite) constant. And in the last inequality we have used the fact that

µ is a Lévy measure, so the integral of x2 ∧ 1 with respect to this measure is finite. Here C is a positive

constant.
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Under Assumption 2.2.3, for all t ≥ 0, the inequality (2.19) implies that

s

∫ s

0
Eθ

[(∫ u

0
ρθ′(u− v)dM(v)

)2
]
µθ′,s(du) ≤ Cs

∫ s

0
uµθ′,s(du) ∈ L1 ([0, t], ds) .

It follows from Fubini’s Theorem that

s

∫ s

0

(∫ u

0
ρθ′(u− v)dM(v)

)2

µθ′,s(du) ∈ L1 ([0, t]× Ω, ds× dPθ) .

Finally, since V is of finite variation, we have that V (t) is locally bounded. Thus, V (u) ≤ Cs ≤ Ct for

positive constants Cs ≤ Ct, where u ∈ [0, s] ⊂ [0, t]. Again by the continuity of ρθ0(·) and Assumption

2.2.3, we obtain that

Eθ

[∫ t

0
s

∫ s

0

(∫ u

0
ρθ′(u− v)dV (v)

)2

µθ′,s(du)ds

]
≤ sup

[0,t]
ρ2
θ′Eθ

[∫ t

0
s

∫ s

0

(∫ u

0
dV (v)

)2

µθ′,s(du)ds

]

= sup
[0,t]

ρ2
θ′Eθ

[∫ t

0
s

∫ s

0
V 2(u)dµθ′,s(u)ds

]
≤ sup

[0,t]
ρ2
θ′C

2
t Eθ

[∫ t

0
sµθ′,s([0, s])ds

]
≤ sup

[0,t]
ρ2
θ′C

2
t

∫ t

0
sµθ′,s([0, s])ds <∞,

for all fixed t ≥ 0, which concludes the proof of the lemma.

�

Remark 2.5.3. 1. If L = W = {W (t); t ≥ 0} is a Wiener process, by [2, Lemma 4.3.11], we have

that ∫ t

0
f(s)dL(s) ∼ N

(
0,

∫ t

0
|f(s)|2ds

)
, t > 0.

Thus, for all u ≥ 0,

Eθ

[(∫ u

0
ρθ′(u− v)dL(v)

)2
]

=

∫ u

0
|ρθ′(u− v)|2 dv <∞

and we can show the statement of the Lemma 2.5.2 more easily.

2. In general,
∫ t

0 f(s)dL(s) cannot be defined as a Stieltjes integral. Actually only the continuous

martingales that are of finite variation are constants (cf. Applebaum [2, p.138]).

For all θ ∈ Θ and t > 0, we have that µθ,t is a finite measure. This property assures us that we can

apply Jensen’s Inequality to obtain the Proposition 2.2.4.

Proof of the Proposition 2.2.4. By Theorem A.5.2, taking T = t, we have to show that Pθ−almost

sure H(1/2; θ, θ′, t) <∞ and H(0; θ, θ′, t) <∞. Lemma 2.5.1 gives us that H(0; θ, θ′, t) = 0 and

H(1/2; θ, θ′, t) =
α(1− α)

2

1

σ2

∫ t

0
β2(s)ds,

where β(s) = β(θ, θ′, Xs) = b(θ,Xs)−b(θ′, Xs). It is enough to show that β ∈ L2 ([0, t]× Ω, ds× dPθ).

By the definition of the function β(·, ·), it suffices to prove that for every fixed pair θ, θ′ ∈ Θ, we have

b(s) = b(θ′, Xs) ∈ L2 ([0, t]× Ω, ds× dPθ).
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By (2.3), for each u ≥ 0 and each θ′ ∈ Θ,

X(u) = Xθ′(u) = X0ρθ′(u) +

∫ u

0
ρθ′(u− v)dL(v).

it follows that we can rewrite the function b(θ′, Xs) as

b(θ′, Xs) = −
∫ s

0
X(u)µθ′,s(du)

= −X0

∫ s

0
ρθ′(u)µθ′,s(du)−

∫ s

0

∫ u

0
ρθ′(u− v)dL(v)µθ′,s(du)

= X0ρ
′
θ′(s)−

∫ s

0

∫ u

0
ρθ′(u− v)dL(v)µθ′,s(du),

where in the last equality we used (1.13). Thus,

b2(θ′, Xs) =

(
X0ρ

′
θ′(s)−

∫ s

0

∫ u

0
ρθ′(u− v)dL(v)µθ′,s(du)

)2

≤ 2X2
0

(
ρ′θ′(s)

)2
+ 2

(∫ s

0

∫ u

0
ρθ′(u− v)dL(v)µθ′,s(du)

)2

= 2X2
0

(
ρ′θ′(s)

)2
+ 2s2

(
1

s

∫ s

0

∫ u

0
ρθ′(u− v)dL(v)µθ′,s(du)

)2

≤ 2X2
0

(
ρ′θ′(s)

)2
+ 2s2 1

s

∫ s

0

(∫ u

0
ρθ′(u− v)dL(v)

)2

µθ′,s(du)

= 2X2
0

(
ρ′θ′(s)

)2
+ 2s

∫ s

0

(∫ u

0
ρθ′(u− v)dL(v)

)2

µθ′,s(du), (2.20)

where the second inequality is obtained applying Jensen’s Inequality for finite measures.

Both terms in the right side of (2.20) are functions in L1 ([0, t]× Ω, ds× dPθ). Indeed, the second

term in (2.20) is guaranteed by the Lemma 2.5.2. For the first term, note that

Eθ

[
X2

0

(
ρ′θ′(s)

)2]
=
(
ρ′θ′(s)

)2
Eθ
[
X2

0

]
.

Thus, ∫ t

0
Eθ

[
X2

0

(
ρ′θ′(s)

)2]
ds = Eθ

[
X2

0

] ∫ t

0

(
ρ′θ′(s)

)2
ds <∞

and applying Fubini’s Theorem, we conclude that

Eθ

[∫ t

0
X2

0

(
ρ′θ′(s)

)2
ds

]
<∞,

which proves that X2
0

(
ρ′θ′
)2 ∈ L1 ([0, t]× Ω, ds× dPθ) and concludes the proof of the proposition.

�

Proof of the Theorem 2.3.4

We have divided the proof of the Theorem 2.3.4 in a sequence of lemmas. This prove is based on Gloter,

Loukianova and Mai [13].
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Lemma 2.5.4. Let M = {M(t); t ≥ 0} be the continuous local Pθ0−martingale defined by

M(θ, t) :=
1

σ

∫ t

0
b(θ,Xs)− b(θ0, Xs)dW (s),

where W = {W (t); t ≥ 0} is a Pθ0-Wiener process. Define the function

L(θ;Xt) := M(θ, t)− 1

2
[M(θ)](t), (2.21)

in which [M(θ)](t) denotes the quadratic variation of M. Then

θ̂(t) ∈ arg max
θ∈Θ0

L(θ,Xt)·

Proof. Under Pθ0 , the continuous martingale part of X is given by

Xc(t) = σW (t) +

∫ t

0
b(θ0, Xs)ds· (2.22)

The quadratic variation of M is

[M(θ)](t) =
1

σ2

∫ t

0
(b(θ,Xs)− b(θ0, Xs))

2 ds·

Being θ0 the true value of the parameter corresponding to the observed path of X, by (2.8) and (2.22), we

have

l(θ,Xt) =
1

σ

∫ t

0
b(θ,Xs)dW (s) +

1

σ2

∫ t

0
b(θ,Xs)b(θ0, Xs)ds−

1

2σ2

∫ t

0
b2(θ,Xs)ds

=
1

σ

∫ t

0
b(θ,Xs)− b(θ0, Xs)dW (s)− 1

2σ2

∫ t

0
(b(θ,Xs)− b(θ0, Xs))

2 ds

+
1

σ

∫ t

0
b(θ0, Xs)dW (s) +

1

2σ2

∫ t

0
b2(θ0, Xs)ds

= L(θ;Xt) +
1

σ

∫ t

0
b(θ0, Xs)dW (s) +

1

σ2

∫ t

0
b2(θ0, Xs)ds·

Thus, the difference l(θ,Xt)− L(θ,Xt) does not depend on θ, which implies θ̂(t) ∈ arg max
θ∈Θ0

L(θ,Xt).

�

Lemma 2.5.5. Suppose that Assumption 2.3.1 holds. Then, Pθ0−a.s. on any compact K ⊂ Θ0 not

containing θ0,

lim
t→∞

sup
θ∈K

∣∣∣∣ 1

ϕ(t)
L(θ,Xt)− L(θ)

∣∣∣∣ = 0 (2.23)

where, by the limit in (2.11), we define L(θ) := −1
2 Σ̃2(θ)·

Proof. Let us first prove that the family{
1

ϕ(t)
[M(θ)](t); (θ, t) ∈ Θ0 × R+

}
is bounded and equicontinuous on θ, Pθ0−a.s. Indeed, by Assumption 2.3.1, Pθ0−a.s.

lim
t→∞
− 1

2ϕ(t)
[M(θ)](t) = −1

2
Σ̃2(θ) =: L(θ)· (2.24)
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Furthermore, since Θ0 is compact, there exists a constant C > 0 for which all θ, θ′ ∈ Θ0 belong to a ball

of radius C and center θ0. Under Assumption 2.3.1, for every ε > 0 take δ = δ(ε) = εσ2

2CκΣ2
K
> 0 such

that, for all θ, θ′ ∈ Θ0, if |θ − θ′|κ < δ, then

∣∣[M(θ)](t)− [M(θ′)](t)
∣∣ =

∣∣∣∣∫ t

0

[
(b(θ,Xs)− b(θ0, Xs))

2 −
(
b(θ′, Xs)− b(θ0, Xs)

)2]
ds

∣∣∣∣ ,
which implies

1

ϕ(t)

∣∣[M(θ)](t)− [M(θ′)](t)
∣∣ ≤ 1

σ2ϕ(t)

∫ t

0

∣∣b(θ,Xs)− b(θ′, Xs)
∣∣ |b(θ,Xs)− b(θ0, Xs)| ds

+
1

σ2ϕ(t)

∫ t

0

∣∣b(θ,Xs)− b(θ′, Xs)
∣∣ ∣∣b(θ′, Xs)− b(θ0, Xs)

∣∣ ds
≤

∣∣θ − θ′∣∣κ (|θ − θ0|κ +
∣∣θ′ − θ0

∣∣κ) 1

σ2ϕ(t)

∫ t

0
K2(Xs)ds

≤
∣∣θ − θ′∣∣κ 2Cκ

σ2ϕ(t)

∫ t

0
K2(Xs)ds

≤ |θ − θ′|κ 2Cκ

σ2
Σ2
K < ε, for all t > 0, Pθ0 − a.s.

where Σ2
K is given in Assumption 2.3.1, and this proves our claim. It follows from Arzelá-Ascoli Theorem

that Pθ0−a.s.

lim
t→∞

sup
θ∈Θ0

∣∣∣∣− 1

2ϕ(t)
[M(θ)](t)− L(θ)

∣∣∣∣ = 0· (2.25)

Moreover,

[M(θ)−M(θ′)](t) =
1

σ2

∫ t

0

(
b(θ,Xs)− b(θ′, Xs)

)2
ds ≤ V (t)|θ − θ′|2κ,

where V (t) = 1
σ2

∫ t
0 K

2(Xs)ds ↑ ∞ Pθ0−a.s. Thus, the conditions of Theorem A.7.6 are satisfied. Then,

the family
{

M(θ,t)
[M(θ)](t) ; (θ, t) ∈ Θ0 × R+

}
satisfies the uniform law of large numbers on any compact

K ⊂ Θ0 not containing θ0, that is

lim
t→∞

sup
θ∈K

∣∣∣∣ M(θ, t)

[M(θ)](t)

∣∣∣∣ = 0 Pθ0 − a.s. (2.26)

Observe that by (2.25) and (2.26) we obtain

lim
t→∞

sup
θ∈K

∣∣∣∣M(θ, t)

ϕ(t)

∣∣∣∣ = 0 Pθ0 − a.s. (2.27)

Therefore, by (2.21), (2.25) and (2.27), the limit (2.23) holds true.

�

Before we establish the next lemma, we will recall a version of the Taylor’s theorem for multivariate

functions.

Let f : RN → R be a (k + 1)−times continuously differentiable at a point a ∈ RN . Then

f(x) = f(a)+
∑

α∈NN ;1≤|α|≤k

1

α!
Dαf(a)(x−a)α+

∑
α∈NN ;|α|=k+1

(x−a)α
∫ 1

0
(1−s)kDαf (a+ s(x− a)) ds,
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where for x ∈ RN and α> = (α1, · · · , αN ) ∈ NN , we denote α! =
∏N
j=1 αj !, x

α =
∏N
j=1 x

αj
j ,

|α| =
∑N

j=1 αj and

Dαf(x) =
∂|α|f

∂xα1
1 · · · ∂x

αN
N

(x)·

Lemma 2.5.6. Under Assumption 2.3.2 we have the decomposition

1

ϕ(t)

∫ 1

0
∂2
θL
(
θ0 + s

(
θ̂(t)− θ0

)
, Xt

)
ds×

√
ϕ(t)

(
θ̂(t)− θ0

)
= − 1√

ϕ(t)
∇θL (θ0, Xt) · (2.28)

Furthermore,

Law

(
1√
ϕ(t)
∇θL (θ0, Xt)

∣∣∣∣∣Pθ0
)
→ N(0, I(θ0)), as t→∞, (2.29)

where I(θ0) is defined in (2.12).

Proof. It follows from Assumption 2.3.2, interchanging the derivation with respect θ and the integrals in

(2.21), that

∇θL (θ,Xt) = (∂θ1L (θ,Xt) , · · · , ∂θNL (θ,Xt))
> ,

where, for each j = 1, · · · , N ,

∂θjL(θ,Xt) = − 1

σ2

∫ t

0
(b(θ,Xs)− b(θ0, Xs)) ∂θjb(θ,Xs)ds+

1

σ

∫ t

0
∂θjb(θ,Xs)dW (s)· (2.30)

By doing a Taylor expansion of ∇θL(·, Xt) around θ0 and applying it in θ̂(t) we obtain (2.28). Actually,

for each j = 1, · · · , N and each θ ∈ int Θ0,

∂θjL(θ,Xt) = ∂θjL(θ0, Xt) +
N∑
i=1

(θi − θ0,i)

∫ 1

0

∂2

∂θj∂θi
L (θ0 + s(θ − θ0)) ds,

which implies

∇θL(θ,Xt) = ∇θL(θ0, Xt) +

∫ 1

0
∂2L(θ0 + s(θ − θ0), Xt)ds× (θ − θ0)· (2.31)

Since θ̂(t) ∈ arg maxθ∈Θ0 L(θ,Xt), we have ∇θL
(
θ̂(t), Xt

)
= 0 and, therefore, applying (2.31) in

θ̂(t), (2.28) follows.

Furthermore, for each j = 1, · · · , N ,

∂θjL(θ0, Xt) =
1

σ

∫ t

0
∂θjb(θ0, Xs)dW (s),

that yields
1√
ϕ(t)
∇θL (θ0, Xt) =

1

σ
√
ϕ(t)

∫ t

0
∇θb(θ0, Xs)dW (s), (2.32)

therefore, (2.29) follows from Assumption 2.3.2 and the CLT for N -dimensional martingales A.7.4 taking

K(t) = ϕ(t)−1/2IN and M(t) = ∇θL (θ0, Xt) ·

�
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Proof of Theorem 2.3.4. We divided the proof in tree steps.

Step 1. Strong consistency of θ̂(t).

By Lemma 2.5.4 we know that the MLE θ̂(t) of θ0 also maximizes the function L(θ,Xt). Furthermore,

Lemma 2.5.5 proves the almost sure uniform convergence of ϕ(t)−1L(θ,Xt) to L(θ). By the Wald’s

Method for proving consistence of estimators (cf. Vaart [65, Theorem 5.7] for a simple version of this

method), it suffices to show that for all ε > 0

lim
t→∞

sup
θ;|θ−θ0|≥ε

ϕ(t)−1L(θ,Xt) < L(θ0)· (2.33)

Indeed, by (2.24) we have that L(θ) ≤ 0 and L(θ) = 0 if and only if θ = θ0. Thus,

sup
θ;|θ−θ0|≥ε

L(θ) < L(θ0)· (2.34)

Then, (2.33) follows from (2.23) and (2.34). Hence, for Pθ0 almost all ω ∈ Ω fixed and for all t > t(ω)

large enough we have supθ;|θ−θ0|≥ε ϕ(t)−1L(θ,Xt) < L(θ0, Xt), which implies
∣∣∣θ̂(t)− θ0

∣∣∣ < ε for

t > t(ω).

Step 2. Asymptotic normality.

By (2.30), for all (i, j) ∈ {1, · · · , N}2

∂2
θiθj
L(θ,Xt) = − 1

σ2

∫ t

0
(b(θ,Xs)− b(θ0, Xs)) ∂

2
θiθj

b(θ,Xs)ds

− 1

σ2

∫ t

0
∂θib(θ,Xs)∂θjb(θ,Xs)ds+

1

σ

∫ t

0
∂2
θiθj

b(θ,Xs)dW (s)· (2.35)

By the same arguments as in the Lemma 2.5.5’s proof, we can show that under Assumption 2.3.2 the

families {
1

ϕ(t)

∫ t

0
(b(θ,Xs)− b(θ0, Xs)) ∂

2
θiθj

b(θ,Xs)ds; (t, θ) ∈ R+ ×Θ0

}

and
{

1
ϕ(t)

∫ t
0 ∂θib(θ,Xs)∂θjb(θ,Xs)ds; (t, θ) ∈ R+ ×Θ0

}
are pointwise bounded and equicontinuous

on θ Pθ0−a.s. Then they converge uniformly. Moreover, the uniform law of large numbers Loukianova

and Loukianov [40, Theorem 2] yields

sup
θ∈Θ0

∣∣∣∣ 1

ϕ(t)
∂2
θiθj
L(θ,Xt)− (ξij(θ)− Iij(θ))

∣∣∣∣→ 0 Pθ0 − a.s.,

which, together with ξ(θ0) = 0 from (2.13) and the consistence of θ̂(t), implies

sup
s∈[0,1]

∣∣∣∣ 1

ϕ(t)
∂2
θL
(
θ0 + s

(
θ̂(t)− θ0

)
, Xt

)
+ I(θ0)

∣∣∣∣→ 0

and
1

ϕ(t)

∫ 1

0
∂2
θL
(
θ0 + s

(
θ̂(t)− θ0

)
, Xt

)
ds→ −I(θ0), (2.36)

Pθ0−a.s. as t→∞· Therefore, the asymptotic normality of the estimator follows from (2.36), Lemma

2.5.6 and Slutsky’s lemma.

Step 3. LAN property.
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Due to (2.29), for all θ0 ∈ Θ0 and h ∈ RN it is sufficient to show that, under Pθ0 ,

log
dP t

θ+hϕ(t)−1/2

dP tθ
=

h>√
ϕ(t)
∇θL (θ0, Xt)−

h>

2σ2ϕ(t)

∫ t

0
∇θb(θ0, Xs)∇θb(θ0, Xs)

>dsh+ oPθ0 (1),

where∇θL(θ0, Xt) is given in (2.32). Actually, (2.4), (2.22) and (2.32) gives us

log
dP t

θ+hϕ(t)−1/2

dP tθ
=

h>√
ϕ(t)
∇θL (θ0, Xt)−

1

2σ2ϕ(t)

∫ t

0
h>∇θb(θ0, Xs)∇θb(θ0, Xs)

>hds

+ R1(t) +R2(t),

where

R1(t) =
1

σ

∫ t

0
b
(
θ0 + hϕ(t)−1/2, Xs

)
− b(θ0, Xs)dW (s)− 1

σ
√
ϕ(t)

∫ t

0
h>∇θb(θ0, Xs)dW (s)

and

R2(t) =
1

2σ2ϕ(t)

∫ t

0
h>∇θb(θ0, Xs)∇θb(θ0, Xs)

>hds

+
1

σ

∫ t

0

(
b(θ0 + hϕ(t)−1/2, Xs)− b(θ0, Xs)

)
b(θ0, Xs)ds

− 1

2σ2

∫ t

0

(
b(θ0 + hϕ(t)−1/2, Xs)− b(θ0, Xs)

)2
ds·

Observe that, for θ0, θ ∈ Θ and s ≥ 0,

b
(
θ0 + hϕ(t)−1/2, Xs

)
− b(θ,Xs) =

h>√
ϕ(t)

∫ 1

0
∇θb

(
θ0 + hϕ(t)−1/2u,Xs

)
du (2.37)

implies, for a constant C > 0,

Eθ0
[
|R1(t)|2

]
≤ |h|

2+2κ1C

ϕ(t)κ1
Eθ0

[
1

ϕ(t)

∫ t

0
K2

1 (Xs)ds

]
which converges to zero. Then, the Markov inequality implies that R1(t) = oPθ0 (1).

|R2(t)| =

∣∣∣∣ 1

2σ2ϕ(t)

∫ t

0
h>∇θb(θ0, Xs)∇θb(θ0, Xs)

>hds

− 1

2σ2ϕ(t)

∫ t

0

∫ 1

0

∫ 1

0
h>∇θb(θ0 + hϕ(t)−1/2u,Xs)∇θb(θ0 + hϕ(t)−1/2u′, Xs)

>hdudu′ds

∣∣∣∣
≤ |h|2

2σ2

∫ 1

0

∫ 1

0

1

ϕ(t)

∫ t

0

∣∣∣∇θb(θ0, Xs)∇θb(θ0, Xs)
>

− ∇θb(θ0 + hϕ(t)−1/2u,Xs)∇θb(θ0 + hϕ(t)−1/2u′, Xs)
>
∣∣∣ dsdudu′·

Therefore, R2(t) = oPθ0 (1) and the LAN property holds true.

�

45





Chapter 3

A Three-Parameter GOU-FE Process
and a Modified FMLE

3.1 Introduction

In Chapter 2, we studied the FMLE

θ̂FMLE
T := arg max

θ∈Θ0

{
1

σ2

n∑
i=1

b(θ,Xti)∆iX1[|∆iX|≤vin] −
1

2σ2

n∑
i=1

b2(θ,Xti)∆i

}
(3.1)

for the drift parameter of a GLE for which the solution is the GOU-FE process. Our simulation results for

the process

X(t) = X0(0)
(

(1− θ2)e−θ1t + θ2 cos(θ2t)
)

+

∫ t

0

(
(1− θ2)e−θ1(t−s) + θ2 cos(θ2(t− s))

)
dL(s)

showed that despite the good results obtained when the perturbation of the OU process is small, i.e.,

θ2 ↓ 0, issues such as computational time and improved estimation in some regions of parametric space

Θ0 require a little more care, so that this estimator can be applied to model real data via GLE.

In this chapter, we propose a new form of discretization for the MLE θ̂(t) := arg maxθ∈Θ0 l(θ,Xt).

By considering all the past information of the process X until the time tk, that is,

Xtk = {X(t1), · · · , X(tk)},

one can consider a discretization of the likelihood function using the jump filtering technique to approx-

imate the increments of the continuous martingale part Xc. This will lead us to introduce a modified

FMLE (mFMLE). In Section 3.3, we propose the new estimator mFMLE that make use of the information

of the past simulated noise and the real expected noise,

θ̂mFMLE
T = arg min

θ∈Θ0

|l(θ,Xtn)− l(θ0, Xtn)| ,

where θ0 is the true unknown parameter value and {t1, · · · , tn} is a convenient partition of the time

interval. Simulation results for mFMLE and its performance is compared to that of FMLE

In Section 3.2, we generalize the GOU-FE process, in the sense that we give more freedom for the

exponential and cosine functions in ρθ(t) = (1−θ2)e−θ1t+θ2 cos(θ1t). Then, we study the corresponding

Kannan’s solution

X(t) = X0(0)ρθ(t) +

∫ t

0
ρθ(t− s)dL(s), t > 0, (3.2)
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with

ρθ(t) = (1− θ3)e−θ1t + θ3 cos(θ2t),

where θ> = (θ1, θ2, θ3) ∈ Θ ⊂ R2×[0, 1]. As in Alcântara [1], our Theorem 3.2.1 shows that this process

is indeed a solution of the GLE with the associated family of signed measures {µθ,t; θ ∈ Θ, t ≥ 0}
satisfying the Volterra integro-diferential ρ′θ(t) = −

∫ t

0
ρθ(s)µθ,t(ds),

ρθ(0) = 1.

(3.3)

Our Proposition 3.2.2 shows that a discretization of this new process has an order 3 autoregressive form,

which is a consequence of the OU and cosine recurrences (see Stein, Lopes and Medino [62, Example

4.1 and Proposition 4.1]). Also, the Theorem 3.2.6 shows that if the "memory" function ρ satisfies the

Assumption 3.2.4 then the corresponding OU process will have autoregressive representation of general

order m. Thus the same discretization technique could be applied. Extension for the case when L is a

symmetric α−stable Lévy process with 1 < α ≤ 2 is considered in Proposition 3.2.7.

The last section is dedicated to the proof of the results of this chapter. The main tool used to prove the

Theorem 3.2.1 is the Laplace transform and its properties. The autoregressive properties are obtained,

as mentioned above, by direct applications or by a careful review of some proofs from Stein, Lopes and

Medino [62].

3.2 A New Class of Solution for the GLE

In this section, we extend the parameter space of the GOU-FE process from a subset of R2 to a subset of

R3. The new process takes the form of the Kannan’s solution (3.2) where

ρθ(t) = (1− θ3)e−θ1t + θ3 cos(θ2t), (3.4)

θ> = (θ1, θ2, θ3) ∈ Θ ⊂ R+ × R× [0, 1].

Taking θ3 = 0, θ3 = 1 or θ2 = θ1, we obtain, respectively, the processes Ornstein-Uhlenbeck, cosine

(1.3.3) or the GOU-FE. As for these examples , the proposed GOU process with ρθ(·) defined in (3.4) is a

solution of a GLE’s.

Theorem 3.2.1. Let L = {L(t); t ≥ 0} be a Lévy process with finite second moment or α−stable with

1 < α ≤ 2. Then, the process X = {X(t); t ≥ 0} given by (3.2) with ρθ(·) defined in (3.4) is a solution

for the GLE

dX(t) =

(
−θ1(1− θ3)X(t)−

∫ t

0
X(s)Γθ(t− s)ds

)
dt+ dL(t), t > 0, and X(0) = X0, (3.5)

where

Γθ(t) =


e−tθ1θ3/2 (κ1 cos (νt) + κ2,1 sin (νt)) , ν > 0,

e−tθ1θ3/2 (κ1 cosh (νt) + κ2,−1 sinh (νt)) , ν < 0,

e−tθ1θ3/2 (κ1 + κ2,0t) , ν = 0,
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for the constants

ν0 = θ1θ3/2,

ν = −ν2
0 + θ2

2(1− θ3),

κ1 = θ2
2θ3 − 2θ1(1− θ3)ν0,

κ2,1 =
1

ν

(
θ1θ

2
2 − ν0

(
θ2

2θ3 − θ1(1− θ3)2ν0

)
− θ1(1− θ3)

(
ν2

0 + ν
))
,

κ2,−1 =
1

ν

(
θ1θ

2
2 − ν0

(
θ2

2θ3 − θ1(1− θ3)2ν0

)
− θ1(1− θ3)

(
ν2

0 − ν
))
,

κ2,0 = θ1θ
2
2 − ν0

(
θ2

2θ3 − θ1(1− θ3)2ν0

)
− θ1(1− θ3)ν2

0 ·

We point out that the proof of the Theorem 3.2.1 uses basically Laplace transform and finding the

relations (3.3) between the memory function and ρθ(·). The same result could be obtained via power series

and Picard iterative method, as were done in Stein [61, Examples 2.2 and 2.3] for the cases ρθ(t) = cos(θt)

and ρθ(t) = e−θt
2
.

Few notation will be needed. Denote the processes OU and cosine by {A(t); t ≥ 0} and {B(t); t ≥ 0},
respectively. As mentioned in Examples 1.3.2 and 1.3.3, from Stein, Lopes and Medino [62, Example 4.1

and Proposition 4.1] the following recurrence properties hold,

A((k + 1)h) = e−θ1hA(kh) + εA,k+1, (3.6)

and

B((k + 1)h) = 2 cos(θ2h)B(kh)−B((k − 1)h) + εB,k+1, (3.7)

where

εA,k+1 =

∫ (k+1)h

kh
e−θ1((k+1)h−s)dL(s) (3.8)

and

εB,k+1 = −
∫ kh

(k−1)h
cos (θ2((k − 1)h− s)) dL(s)

+

∫ (k+1)h

kh

[
2 cos(θ2h) cos(θ2(kh− s))− cos

(
θ2((k − 1)h− s)

)]
dL(s)· (3.9)

Similarly, we will show that a discrete time path of the solution process of (3.5) satisfies a recurrence

form as given in the next Proposition. This result can provide us with a third simulation method: the GLE

can be simulated by Euler-Maruyama and the integral process (3.2) can be simulated by Riemann sums.

Proposition 3.2.2. Let X = {X(t); t ≥ 0} be a process satisfying (3.2) with ρθ(t) defined in (3.4). For a

fixed increment size h > 0 the process X satisfies the recurrence relations

X((k + 1)h) = φ1X(kh) + φ2X((k − 1)h) + φ3X((k − 2)h) + εk,h (3.10)

where

φ1 = e−θ1h + 2 cos(θ2h),

φ2 = −1− 2 cos(θ2h)e−θ1h,

φ3 = e−θ1h,
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and, for εA,k+1 and εB,k+1 given respectively by (3.8) and (3.9),

εk,h = (1− θ3)εA,k+1 − (1− θ3)2 cos(θ2h)εA,k + (1− θ3)εA,k−1

+ θ3εB,k+1 − θ3e
−θ1hεB,k·

Note that the errors εk,h are not i.i.d., much less a white noise, hampering the use of classical

estimation techniques for autoregressive processes. Alcântara [1] worked around this by decomposing the

error εk,h and noting that the process would have characteristics of an ARMA (autoregressive moving

average) model.

We now want to obtain a general form of recurrence for a GOU process satisfying (3.2). Note that

the recurrence of the processes OU and cosine were obtained by Stein, Lopes and Medino [62] using

the recurrence of the function ρθ((k + 1)h) in the exponential and cosine cases. However, Alcântara [1]

obtained the recurrence of the GOU-FE through the previously established recurrences of OU and cosine

processes. This approach, despite being natural for the construction of the GOU-FE, is more difficult to

be generalized for a GOU process. Thus, we would like to obtain a recurrence form for the GOU (3.2)

requiring conditions only in the discrete form of ρθ(·).

The following example was implicitly used by Stein [61] and Stein, Lopes and Medino [62] in the

proofs of the recurrence forms for the studied processes. It gives us an important idea of what type of

property to require in order to get recurrence relations for the GOU process (3.2).

Example 3.2.3. 1. If ρθ(t) = e−θt, then

ρθ ((k + 1)h− s) = e−θhρθ (kh− s) ;

2. if ρθ(t) = cos(θt), then

ρθ ((k + 1)h− s) = 2 cos(θh)ρθ (kh− s)− ρθ ((k − 1)h− s) ;

3. if ρθ(t) = e−θt
2
, then

ρθ ((k + 1)h− s) = e−θ((2k+1)h2−2hs)ρθ (kh− s) .

Note that 3 in Example 3.2.3 gives us the idea of how to use a similar form of a recurrent function,

that is, to accept that the recurrence constants can depend on k and h. Consider that ρθ(·) satisfies the

following condition.

Assumption 3.2.4. For fixed values of m, k ∈ N, h, s ∈ R+ and θ ∈ Θ, there exists a non-null constant

αj(s) = αj(θ, (k + 1)h− s) such that

ρθ ((k + 1)h− s) =

m∑
j=1

αj(s)ρθ ((k + 1− j)h− s) ·

Remark 3.2.5. Observe that if ρθ(·) is a function which the respective discretization has a recursive form,

then αj(s) ≡ αj .

Example 3.2.3 satisfies the condition imposed in Assumption 3.2.4.

The next result establishes that the decomposition in Assumption 3.2.4 allows us to write the process

as an autoregressive process of order m in which the error also depends on the functions αj(s). This

theorem, along with the previous example, generalizes Stein, Lopes and Medino [62, Example 4.1 and

Propositions 4.1 and 4.2].
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Theorem 3.2.6. Let X = {X(t); t ≥ 0} be defined by (3.2) with ρθ(·) satisfying the Assumption 3.2.4.

One discretization form for this process is given by

X ((k + 1)h) =
m∑
j=1

αj(0)X ((k + 1− j)h) + ξk,h,

where h is the discretization step size and

ξk,h =
m∑
j=1

[∫ (k+1)h

0
αj(s)ρθ ((k + 1− j)h− s) dL(s)

− αj(0)

∫ (k+1−j)h

0
ρθ ((k + 1− j)h− s) dL(s)

]
· (3.11)

Note that, up to now, we have used the explicit form of Kannan’s solution (3.2) only in Proposition

2.2.4, Theorems 3.2.1 and 3.2.6. The estimations and the asymptotic study of the estimator (Chapter 2)

depend only on the GLE {
dX(t) = b(θ,Xt)dt+ dL(t), t > 0

X(t) = X0(t), t ∈ [t0, 0]
(3.12)

where b(θ,Xt) is defined as

b(θ,Xt) = −
∫ t

0
X(s)µθ,t(ds)·

We conclude this section highlighting that, as in Alcântara [1] and Stein, Lopes and Medino [62],

adding an α−stable hypothesis to the Lévy process L will help us determine the distribution of error ξk.

A very practical result from the point of view of numerical simulations, since instead of working with the

exact form of the error, we can just simulate its distribution.

Proposition 3.2.7. In addition to the hypothesis of Theorem 3.2.6, if L is a symmetric α−stable Lévy

process with 1 < α ≤ 2, we have

ξk,h ∼ Sα

( m∑
u=0

∫
Ek,u

|gk,u(s)|αds

)1/α

, 0, 0

 , (3.13)

where

gk,u(s) =
m∑
j=1

α̃j,u(s)ρθ((k + 1− j)h− s),

α̃j,u(s) =

{
αj(s)− αj(0), j ∈ {0, · · · ,m− u} and u ∈ {1, · · · ,m− 1},

αj(0), j ∈ {m− u+ 1, · · · ,m} and u ∈ {1, · · · ,m},

and Ek,u =
[
(k + 1− u)h, (k − u))h

)
, for u = 0, · · · ,m− 1, and Ek,m =

[
0, (k + 1−m)h

)
.

Remark 3.2.8. The restriction 1 < α ≤ 2 in the Proposition 3.2.7 is to guarantee that (3.2) is a solution

of (3.12) in the sense of Santos [59, Theorem 2.3.1].

51



3.3 A Modified FMLE (mFMLE) and Simulation Results

Consider discrete times tk = (k − 1)h, for k = 1, 2, · · · and a fixed positive size of discretization h > 0.

Let X(t1), · · · , X(tn) be a discrete time observed path of a process X which is solution of a GLE (3.12).

Denote all the past information of the process X until the time tk by Xtk , that is

Xtk = {X(t1), · · · , X(tk)}·

Consider a discretization of the likelihood function

l(θ,Xt) =
1

σ2

∫ t

0
b(θ,Xs)dX

c(s)− 1

2σ2

∫ t

0
b2(θ,Xs)ds

using the jump filtering technique to approximate the increments of the continuous martingale part Xc,

which was described in the Section 2.4, that is

l(θ,Xtn) =

{
1

σ2

n∑
i=1

b(θ,Xti)∆iX1[|∆iX|≤vin] −
1

2σ2

n∑
i=1

b2(θ,Xti)∆i

}
· (3.14)

Observe that a discretization of the GLE (3.12) satisfies

∆kX = b(θ0, Xtk)h+ ∆kL

which implies that b(θ0, Xtk) = 1
h (∆kL−∆kX). Applying this expression to the filtered likelihood

function (3.14), we approximate l(θ0, Xtn). Then, we can define a modified FMLE (mFMLE) by

θ̂mFMLE
T = arg min

θ∈Θ0

|l(θ,Xtn)− l(θ0, Xtn)| , (3.15)

where {t1, · · · , tn} is a discretization of [0, T ].

Note that the FMLE θ̂FMLE
T defined in (3.1) can be written in function of (3.14) as

θ̂FMLE
T = arg max

θ∈Θ0

l(θ,Xtn)·

Tables 3.1 and 3.2 present mean and standard deviation of the FMLE θ̂FMLE
100 and mFMLE θ̂mFMLE

100

for 100 Monte Carlo simulations of the GOU-FE with n = 1000 and σ = 1. The difference between them

is that in the first table we use the same Lévy process generating XT and getting the estimates θ̂mFMLE
T ,

while in the second we use two independent paths but with the same distribution law.

To generate Table 3.1, in each line, we follow the steps:

1. fix the parameter θ> = (θ1, θ2, θ3) in the first column;

2. fix the search region Θ0 for the heuristics FMLE and mFMLE;

3. simulated 100 Lévy process L;

4. obtain the corresponding 3-parameter GOU-FE X;

5. estimate the parameter θ in each simulation by FMLE and mFMLE;

6. compute the mean and standard deviation (std dv) of the estimations from both estimators.

52



Table 3.1: Mean and Standard Deviation of FMLE θ̂FMLE
100 and FMLEm θ̂mFMLE

100 for 100 Monte Carlo
simulations of the 3-parameter GOU-FE with n = 1000 and σ = 1, for the same Lévy process generating
XT and obtaining θ̂mFMLE

T .

θ> mean(θ̂FMLE
100 ) mean(θ̂mFMLE

100 )

(0.5, 0.2, 0.1) (0.5330, 0.2930, 0.0895) (0.5020, 0.1990, 0.1070)
(0.5, 0.2, 0.2) (0.4920, 0.2700, 0.1170) (0.5020, 0.1990, 0.2060)
(0,7, 0.2, 0.1) (0.6840, 0.2935, 0.0835) (0.7000, 0.1990, 0.1070)
(0.7, 0.2, 0.2) (0.6350, 0.2780, 0.1140) (0.7000, 0.1990, 0.2060)
(0.5, 0.3, 0.1) (0.5365, 0.3155, 0.1110) (0.5020, 0.2980, 0.1070)
(0.5, 0.3, 0.2) (0.5335, 0.3245, 0.1690) (0.5020, 0.2980, 0.2060)
(0,7, 0.3, 0.1) (0.6920, 0.3100, 0.0955) (0.7000, 0.2980, 0.1070)

θ> std dv(θ̂FMLE
100 ) std dv(θ̂mFMLE

100 )

(0.5, 0.2, 0.1) (0.1266, 0.1971, 0.1095) (0.0200, 0.0100, 0.0700)
(0.5, 0.2, 0.2) (0.1584, 0.1002, 0.1168) (0.0200, 0.0100, 0.0600)
(0,7, 0.2, 0.1) (0.1257, 0.2277, 0.1018) (0.0000, 0.0100, 0.0700)
(0.7, 0.2, 0.2) (0.1582, 0.0954, 0.1204) (0.0000, 0.0100, 0.0600)
(0.5, 0.3, 0.1) (0.1489, 0.1226, 0.1169) (0.0200, 0.0200, 0.0700)
(0.5, 0.3, 0.2) (0.1498, 0.0463, 0.0600) (0.1081, 0.0200, 0.0200)
(0,7, 0.3, 0.1) (0.1306, 0.0959, 0.1018) (0.0000, 0.0200, 0.0700)

Table 3.2: Mean and Standard Deviation of FMLE θ̂FMLE
100 and mFMLE θ̂mFMLE

100 for 100 Monte Carlo
simulations of the 3-parameter GOU-FE with n = 1000 and σ = 1, for the equal in law Lévy process
generating XT and obtaining θ̂mFMLE

T .

θ> mean(θ̂FMLE
100 ) mean(θ̂mFMLE

100 )

(0.5, 0.2, 0.1) (0.4905, 0.2635, 0.0985) (0.5135, 0.7785, 0.6965)
(0.5, 0.2, 0.2) (0.5005, 0.2395, 0.1355) (0.4930, 0.5850, 0.4340)
(0,7, 0.2, 0.1) (0.7500, 0.1445, 0.1540) (0.5750, 0.6765, 0.6325)
(0.7, 0.2, 0.2) (0.6255, 0.2355, 0.1510) (0.5400, 0.6865, 0.5175)
(0.5, 0.3, 0.1) (0.4650, 0.3245, 0.1175) (0.5565, 0.7310, 0.6015)
(0.5, 0.3, 0.2) (0.4425, 0.3010, 0.2340) (0.5665, 0.5490, 0.3845)

θ> std dv(θ̂FMLE
100 ) std dv(θ̂mFMLE

100 )

(0.5, 0.2, 0.1) (0.1205, 0.1977, 0.1149) (0.289, 0.1811, 0.1862)
(0.5, 0.2, 0.2) (0.1413, 0.0509, 0.1138) (0.2648, 0.2351, 0.2590)
(0,7, 0.2, 0.1) (0.1393, 0.0550, 0.1084) (0.2681, 0.1852, 0.2229)
(0.7, 0.2, 0.2) (0.1250, 0.0416, 0.0992) (0.2729, 0.2106, 0.2396)
(0.5, 0.3, 0.1) (0.1658, 0.1069, 0.1406) ( 0.2973, 0.1609, 0.2287)
(0.5, 0.3, 0.2) (0.1928, 0.0882, 0.1660) (0.2730, 0.3007, 0.2748)
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The generation of Table 3.2 is a little different from Table 3.1. The following steps are followed:

1. fix the parameter θ> = (θ1, θ2, θ3) in the first column;

2. fix the search region Θ0 for the heuristics FMLE and mFMLE;

3. simulated 100 Lévy process L;

4. obtain the corresponding 3-parameter GOU-FE X;

5. simulated other 100 Lévy process L with same distribution of that in 3;

6. estimate the parameter θ in each simulation by FMLE and mFMLE (using the simulated Lévy

processes from 5);

7. compute the mean and standard deviation (std dv) of the estimations from both estimators.

Just like Table 2.1 in Chapter 2, Tables 3.1 and 3.2 were generated through the language and

environment for statistical computing R and compiled on a server with 32 threads, in addition to using

parallel computing. Each line required an average of 18 computing hours. Therefore, we reduced the

number of simulations per line, from 500 in Table 2.1 to 100 in Tables 3.1 and 3.2.

For the fixed parameters, Table 3.1 shows that the second estimator θ̂mFMLE
100 obtains a better per-

formance with a more precise estimation (|θj − θ̂FMLE
100,j | < |θj − θ̂mFMLE

100,j |) and with less variability

(std dv θ̂FMLE
100,j < std dv θ̂mFMLE

100,j ). This was expected since removing the dependence of the SDE by

the noise would facilitate obtaining the best parameter to model the time series.

For Table 3.2, the choice of parameters was kept and the difference was to take independent Lévy

paths to simulate the process and to obtain the estimator θ̂mFMLE
T . Despite taking the same law to

generate the two Levy’s processes, we observe that θ̂FMLE
T has better results than θ̂mFMLE

T , for the

choices of parameters taken. This indicates that θ̂mFMLE
T can perform better only if we have a very close

approximation of the noise and also a good idea of the law of the noise. It can not be so useful when

our time series is generated by a 3-parameter GOU-FE process. Actually, only the estimation of the first

parameter θ1 is good.

The results presented in Tables 2.1, 3.1 and 3.2 were obtained through local searches. We emphasize

that for global searches, optimization methodologies can be used. We can use Variable Neighborhood

Search (VNS) or even global optimization methodologies (as in Dorea [10]).

3.4 Proofs

Proof of the Theorem 3.2.1

Denote by T (f) the Laplace transform of a given function f .

Proof of the Theorem 3.2.1. Set µθ,t(ds) = γ(t− s)ds. As in Alcântara [1] and Santos [59], applying

the Laplace transform in (3.3) we obtain the memory function of a GLE from

T (γ) = −T (ρ′)

T (ρ)
· (3.16)
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Note that, for s which the following Laplace transforms are well defined,

T (ρ) = T
(

(1− θ3)e−θ1t + θ3 cos(θ2t)
)

= (1− θ3)
1

s+ θ1
+ θ3

s

s2 + θ2
2

=
(1− θ3)(s2 + θ2

2) + θ3(s+ θ1)s

(s+ θ1)(s2 + θ2
2)

=

(
s+ θ1θ3

2

)2
−
(
θ1θ3

2

)2
+ θ2

2(1− θ3)

(s+ θ1)(s2 + θ2
2)

=
(s+ ν0)2 + ν2

1sign(ν)

(s+ θ1)(s2 + θ2
2)

(3.17)

where ν0 = θ1θ3/2, ν = −(θ1θ3/2)2 + θ2
2(1 − θ3) and ν2

1sign(ν) = ν. Observe that ν > 0, ν < 0 or

ν = 0, gives us ν2
1 = ν, ν2

1 = −ν or ν2
1 = 0, respectively.

Applying Laplace transform to ρθ(t), we obtain

T (ρ′) = T
(
−θ1(1− θ3)e−θ1t − θ2θ3 sin(θ2t)

)
= −θ1(1− θ3)(s2 + θ2

2) + θ2
2θ3(s+ θ1)

(s+ θ1)(s2 + θ2
2)

= −θ1(1− θ3)s2 + θ2
2θ3s+ θ1(1− θ3)θ2

2 + θ1θ
2
2θ3

(s+ θ1)(s2 + θ2
2)

· (3.18)

Replacing (3.17) and (3.18) in (3.16), we obtain

T (γ) =
θ1(1− θ3)s2 + θ2

2θ3s+ θ1(1− θ3)θ2
2 + θ1θ

2
2θ3

(s+ ν0)2 + ν2
1sign(ν)

= θ1(1− θ3)
s2

(s+ ν0)2 + ν2
1sign(ν)

+ θ2
2θ3

s

(s+ ν0)2 + ν2
1sign(ν)

+ θ1θ
2
2

1

(s+ ν0)2 + ν2
1sign(ν)

·

Using that

s2 = (s+ ν0)2 + ν2
1sign(ν)− 2ν0s− ν2

0 − ν2
1sign(ν),

we obtain

T (γ) = θ1(1− θ3)

[
1− 2ν0s+ ν2

0 + ν2
1sign(ν)

(s+ ν0)2 + ν2
1sign(ν)

]
+ θ2

2θ3
s

(s+ ν0)2 + ν2
1sign(ν)

+ θ1θ
2
2

1

(s+ ν0)2 + ν2
1sign(ν)

= θ1(1− θ3)T (δ0) + κ1(θ)
s+ ν0

(s+ ν0)2 + ν2
1sign(ν)

+ κ̃(θ)
1

(s+ ν0)2 + ν2
1sign(ν)

, (3.19)

where

κ̃(θ) = θ1θ
2
2 − ν0

(
θ2

2θ3 − θ1(1− θ3)2ν0

)
− θ1(1− θ3)

(
ν2

0 + ν2
1sign(ν)

)
,

κ1(θ) = θ2
2θ3 − θ1(1− θ3)2ν0·
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Now, we need to analyse the three possible values of the sign(ν).

Case ν > 0 (sign(ν) = 1). Then, ν2
1 = ν and (3.19) imply

T (γ) = θ1(1− θ3)T (δ0) + κ1(θ)
s+ ν0

(s+ ν0)2 + ν2
+
κ̃(θ)

ν

ν

(s+ ν0)2 + ν2

= θ1(1− θ3)T (δ0) + κ1(θ)T
(
e−ν0t cos (νt)

)
+ κ2,1(θ)T

(
e−ν0t sin (νt)

)
,

where κ2,1 = 1
ν

(
θ1θ

2
2 − ν0

(
θ2

2θ3 − θ1(1− θ3)2ν0

)
− θ1(1− θ3)

(
ν2

0 + ν
))

.

Case ν < 0 (sign(ν) = −1). Then, ν2
1 = −ν and (3.19) imply

T (γ) = θ1(1− θ3)T (δ0) + κ1(θ)
s+ ν0

(s+ ν0)2 − ν2
+
κ̃(θ)

ν

ν

(s+ ν0)2 − ν2

= θ1(1− θ3)T (δ0) + κ1(θ)T
(
e−ν0t cosh (νt)

)
+ κ2,−1(θ)T

(
e−ν0t sinh (νt)

)
,

in which κ2,−1 = 1
ν

(
θ1θ

2
2 − ν0

(
θ2

2θ3 − θ1(1− θ3)2ν0

)
− θ1(1− θ3)

(
ν2

0 − ν
))

.

Case ν = 0 (sign(ν) = 0). Then, ν2
1 = 0 and (3.19) imply

T (γ) = θ1(1− θ3)T (δ0) + κ1(θ)
s+ ν0

(s+ ν0)2
+ κ̃(θ)

1

(s+ ν0)2

= θ1(1− θ3)T (δ0) + κ1(θ)T
(
e−ν0t

)
+ κ2,−1(θ)T

(
te−ν0t

)
,

where κ2,0 = θ1θ
2
2 − ν0

(
θ2

2θ3 − θ1(1− θ3)2ν0

)
− θ1(1− θ3)ν2

0 .

The theorem follows from linearity of T and the inverse Laplace transform T −1.

�

Proof of the Proposition 3.2.2

Proof of the Proposition 3.2.2. It follows from (3.6) and (3.7) that

X((k + 1)h) = (1− θ3)A((k + 1)h) + θ3B((k + 1)h)

= (1− θ3)
(
e−θ1hA(kh) + εA,k+1

)
+ θ3

(
2 cos(θ2h)B(kh)−B((k − 1)h) + εB,k+1

)
.

By adding and subtracting appropriate multiples of A(kh) and B(kh), we obtain

X((k + 1)h) = (1− θ3)
(
e−θ1h + 2 cos(θ2h)

)
A(kh)− (1− θ3)2 cos(θ2h)A(kh)

+ θ3

(
e−θ1h + 2 cos(θ2h)

)
B(kh)− θ3e

−θ1hB(kh)

− θ3B((k − 1)h) + (1− θ3)εA,k+1 + θ3εB,k+1

=
(
e−θ1h + 2 cos(θ2h)

)
X(kh)− (1− θ3)2 cos(θ2h)A(kh)

− θ3e
−θ1hB(kh)− θ3B((k − 1)h) + (1− θ3)εA,k+1 + θ3εB,k+1·

Denoting φ1 = e−θ1h + 2 cos(θ2h). Applying (3.6) and (3.7) for A(kh) and B(kh), we have

X((k + 1)h) = φ1X(kh)− (1− θ3)2 cos(θ2h)
(
e−θ1hA((k − 1)h) + εA,k

)
− θ3e

−θ1h(2 cos(θ2h)B((k − 1)h)−B((k − 2)h) + εB,k
)

− θ3B((k − 1)h) + (1− θ3)εA,k+1 + θ3εB,k+1

= φ1X(kh)− 2 cos(θ2h)e−θ1h ((1− θ3)A((k − 1)h) + θ3B((k − 1)h))

− (1− θ3)2 cos(θ2h)εA,k − θ3e
−θ1hεB,k + (1− θ3)εA,k+1 + θ3εB,k+1

− θ3B((k − 1)h) + θ3e
−θ1hB((k − 2)h)· (3.20)
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Observe, from (3.6), that

(1− θ3)A((k − 1)h)− (1− θ3)e−θ1hA((k − 2)h) = (1− θ3)εA,k−1,

which implies

−θ3B((k − 1)h) + θ3e
−θ1hB((k − 2)h) = −X((k − 1)h) + (1− θ3)A((k − 1)h)

+ e−θ1hX((k − 2)h)− (1− θ3)e−θ1hA((k − 2)h)

= −X((k − 1)h) + e−θ1hX((k − 2)h)

+ (1− θ3)εA,k−1, (3.21)

Applying (3.21) in (3.20), we show that

X((k + 1)h) = φ1X(kh) + φ2X((k − 1)h) + φ3X((k − 2)h)

+ (1− θ3)εA,k+1 − (1− θ3)2 cos(θ2h)εA,k + (1− θ3)εA,k−1

+ θ3εB,k+1 − θ3e
−θ1hεB,k

where φ2 = −1− 2 cos(θ2h)e−θ1h and φ3 = e−θ1h, which concludes the proof.

�

Proof of the Theorem 3.2.6

Proof of the Theorem 3.2.6. By the Equation (3.2) and the Assumption 3.2.4 we have

X0

m∑
j=1

αj(0)ρθ ((k + 1− j)h) = X ((k + 1)h)−
m∑
j=1

∫ (k+1)h

0
αj(s)ρθ ((k + 1− j)h− s) dL(s)·

(3.22)

For k ∈ N and j ∈ {1, · · · , k + 1}, by (3.2) we obtain

X0ρθ ((k + 1− j)h) = X ((k + 1− j)h)−
∫ (k+1−j)h

0
ρθ((k + 1− j)h− s)dL(s),

which implies

X0

m∑
j=1

αj(0)ρθ ((k + 1− j)h) =

m∑
j=1

αj(0) [X ((k + 1− j)h)

−
∫ (k+1−j)h

0
ρθ((k + 1− j)h− s)dL(s)

]
· (3.23)

It follows from (3.22) and (3.23) that

X ((k + 1)h) =
m∑
j=1

αj(0)

[
X ((k + 1− j)h)−

∫ (k+1−j)h

0
ρθ((k + 1− j)h− s)dL(s)

]

+

m∑
j=1

∫ (k+1)h

0
αj(s)ρθ ((k + 1)h− s) dL(s),

which proves the theorem.

�
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Proof of the Proposition 3.2.7

Denote the stable distributions by Sα(σ, β, µ) which the characteristic function (cf. Samorodnitsky and

Taqqw [58]) is determined by

α ∈ (0, 2], σ ≥ 0, β ∈ [−1, 1], µ ∈ R.

We recall that a Lévy process L = {L(t); t ≥ 0} is α−stable, 0 < α ≤ 2 if

L(t)− L(s) ∼ Sα
(

(t− s)1/α, β, 0
)
.

In the case where β = 0, we say that L is symmetric.

From Samorodnitsky and Taqqw [58, Property 3.2.2], we know that if f ∈ Lα(E), then
∫
E f(s)dL(s) ∼

Sα(σf , βf , µf ), where

σf =

(∫
E
|f(x)|αdx

)1/α

,

βf =
β
∫
E |f(x)|αsign(f(x))dx∫

E |f(x)|αdx
,

µf =

{
0, α 6= 1,

− 2
πβ
∫
E f(x) ln |f(x)|dx, α = 1·

By a natural extension of the Samorodnitsky and Taqqw [58, Property 1.2.1], we can prove, using char-

acteristic functions, that if X1, · · · , Xm+1 are independent random variables with Xu ∼ Sα(σu, βu, µu),

u = 1, · · · ,m+ 1, then

m+1∑
u=1

Xu ∼ Sα

(m+1∑
u=1

σαu

)1/α

,

∑m+1
u=1 σ

α
uβu∑m+1

u=1 σ
α
u

,

m+1∑
u=1

µu

 · (3.24)

Proof of Proposition 3.2.7. By (3.11) we are able to write

ξk,h =
m∑
j=1

[∫ (k+1−j)h

0
(αj(s)− αj(0)) ρ((k + 1− j)h− s)dL(s)

+

∫ (k+1)h

(k+1−j)h
αj(s)ρ((k + 1− j)h− s)dL(s)

]

=

∫ (k+1−m)h

0

m∑
j=1

αj(0)ρ((k + 1− j)h− s)dL(s)

+
m−1∑
u=0

∫ (k+1−u)h

(k−u)h

m−u∑
j=1

(αj(s)− αj(0)) ρ((k + 1− j)h− s)

+

m∑
j=m+1−u

αj(s)ρ((k + 1− j)h− s)

 dL(s)

=

m∑
u=0

∫
Ek,u

gk,u(s)dL(s)·
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Observe that Ek,u are disjoint sets. The independent increments of the Lévy process imply that ξk,h is a

sum of m+ 1 independent random variables. Then, by Samorodnitsky and Taqqw [58, Property 3.2.2],

∫
Ek,u

gk,u(s)dL(s) ∼ Sα

(∫
Ek,u

|gk,u(s)|αds

)1/α

, 0, 0

 ·
Therefore, the extension of the Samorodnitsky and Taqqw [58, Property 1.2.1] given in (3.24) implies

(3.13).

�
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Chapter 4

Asymptotics for MLE and FMLE: a
Particular Class

4.1 Introduction

In previous chapters we have studied the problem of MLE for the GLE,{
dX(t) = b(θ,Xt)dt+ dL(t), t > 0

X(t) = X0(t), t ∈ [0, T ].
(4.1)

Asymptotics for the MLE θ̂(t) were obtained and discrete approximations θ̂FMLE
T and θ̂mFMLE

T were

proposed. Though a theoretical study of the discretized estimators were not carried out, its behavior was

evaluated by simulations.

In this chapter, we consider a particular class of GLE for which the drift satisfies

b(θ,Xt) = −
∫ t

0
X(s)µθ,t(ds) and µθ,t =

N∑
j=1

θjµ
(j)
t , (4.2)

where the signed measures µ(j)
t are finite at intervals [0, t]. This restriction appears naturally when we

analyze the OU, cosine and stochastic delay (SDDE) processes. For this type of processes the parameter θ

can be linearly separated and depends exclusively on the past history of the process X until say time tk,

that is, Xtk = {X(t1), · · · , X(tk)}. Moreover, for this class of GLE the Radon-Nikodym density of Pθ
with respect to P0 takes up a much simpler form and we can derive an explicit expression for the MLE,

θ̂(t) := arg max
θ∈Θ0

dP tθ
dP t0

(Xt) = S(t)−1A(t),

where the matrices S(t) and A(t) are properly defined functions of the drift function b(θ,Xt) and the

continuous martingale part Xc. Based on this and under much milder assumptions than those of Theorem

2.3.4, our Theorem 4.2.4 establishes for θ̂(t) the strong consistency, asymptotic normality and asymptotic

efficiency in the sense of Hájek-Le Cam Convolution Theorem. Its proof is less technical and basically

requires a version of the CLT for continuous time martingales.

In Section 4.3, we study the asymptotic behavior of the corresponding discretized and filtered

approximation θ̂FMLE
n := S−1

n An where Sn and An are approximations of S(t) and A(t) respectively.
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As shown in Theorem 4.3.2, with a good convergence rate for some stochastic integrals approximations

by Riemann sums, the FMLE will have the same asymptotic behavior as that of MLE.

In the last section we gather all the proofs. The main used tools are properties of Itô integrals, CLT and

LLN for continuous time martingales (see, respectively, Klebaner [27], Küchler Sφrensen [34], Crimaldi

and Pratelli [8] and Liptser [38]).

4.2 An Explicit MLE for a Particular Class of GLE

In this section, we present a class of GLEs for which an explicit form for the MLE can be obtained. We

start this section with few examples that induced us to consider the class of processes to be studied.

1. Langevin Equation:

dX(t) = −θX(t)dt+ dL(t), θ ∈ R+; (4.3)

2. Cosine Process:

dX(t) = −θ2

∫ t

0
X(s)dsdt+ dL(t), θ ∈ R;

3. Stochastic Delay Differential Equation:

dX(t) = (θ1X(t) + θ2X(t− 1)) dt+ dL(t), θ> = (θ1, θ2) ∈ Θ ⊂ R2· (4.4)

For these examples the parameter θ can be linearly separated and depends exclusively on the past history

of the process X until say time t, that is, Xt = {X(s); 0 ≤ s ≤ t} and the associated signed measures

satisfy the following decomposition

µθ,t =
N∑
j=1

θjµ
(j)
t , (4.5)

where θ> = (θ1, · · · , θN ) ∈ Θ ⊂ RN and µ(j)
t are signed measures that are finite at intervals [0, s],

0 ≤ s ≤ t. We will restrict the studies to a family of models that satisfies the following assumption which

will enable us obtain a explicit MLE for the drift parameter of the GLE.

Assumption 4.2.1. Let us assume that the the process b(θ,Xt) defined in (4.2) has the following decom-

position

b(θ,Xt) =
N∑
j=1

θjbj(Xt), (4.6)

where bj(Xt) ∈ L2 (dPθ × dt) and the functions bj(Xt) and bk(Xt) are different, for each pair j, k =

1, · · · , N , j 6= k.

It follows from Proposition 2.2.2 and Assumption 4.2.1 that the likelihood function is a curved

exponential family in the sense of Küchler and Sφrensen [33] (see Definition A.6.2) and it is obtained in

the following result.

Proposition 4.2.2. Under conditions of the Proposition 2.2.2 and Assumption 4.2.1, the likelihood process

(Radon-Nikodym density process of Pθ with respect to P0) is given by

dP tθ
dP t0

(Xt) = exp

{
θ>A(t)− 1

2
θ>S(t)θ

}
, (4.7)
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where

A(t) = (Aj(t))N×1 =

(
1

σ2

∫ t

0
bj(Xs)dX

c(s)

)
N×1

and

S(t) = (Sjk(t))N×N =

(
1

σ2

∫ t

0
bj(Xs)bk(Xs)ds

)
N×N

. (4.8)

Here Xc denotes the continuous martingale part of X under Pθ.

Proposition 4.2.2 states that, if S(t) is an invertible matrix, the maximum likelihood estimator (MLE)

θ̂(t) of θ0 ∈ Θ0 is given explicitly by

θ̂(t) := arg max
θ∈Θ0

dP tθ
dP t0

(Xt) = S(t)−1A(t)· (4.9)

The next condition ensures, in a sense, the ergodicity of the process. This condition assists us in

proving the main result for θ̂(t) defined by (4.9).

Assumption 4.2.3. Assume that, for each θ ∈ Θ0, there exists a deterministic positive definite N ×N -

matrix Σ(θ) = (Σjk(θ))N×N and a positive function ϕ(t) such that ϕ(t) ↑ ∞ as t → ∞ and S(t)

defined on (4.8) satisfies

ϕ(t)−1S(t)→ Σ(θ) Pθ − a.s. as t→∞·

Sufficient conditions for ergodicity of diffusion processes have been well studied (see, for example,

Masuda [46, 47]). In general, integrability conditions on the Lévy measure ν and a restriction on the

parameter space Θ0 ⊂ Θ are required. Tran [64] listed recent researches on studies of ergodicity for

diffusion processes. An example of the Assumption 4.2.3 being satisfied is the OU process in which the

convergence of t−1
∫ t

0 X
2(s)ds is guaranteed by ergodicity.

Magdziarz and Weron [41, Theorem 1] presented an ergodic theorem that can be applied for the GOU

process X, that is, taking a appropriated Lévy process for which the correlation function of X decays to

zero as t→∞ and for a suitable f , the temporal and ensemble averages coincide, i.e.,

1

T

∫ T

0
f(X(t))dt→ E[f ],

provided that E[f ] <∞· It becomes sufficient conditions for Assumption 4.2.3.

Now, we are able to establish that the statistical experiment {Pθ; θ ∈ Θ} satisfies the LAN property

and the asymptotic behavior of the estimator: its strong consistency and the asymptotic normal distribution.

The main tool to prove this result is the version of the CLT that we will prove in the Lemma 4.4.1.

The next result is a version of the Theorem 2.3.4, with less restrictive assumptions, but with the drift

satisfying (4.6).

Theorem 4.2.4. Under conditions of the Proposition 4.2.2, suppose that Assumption 4.2.3 holds.

1. The MLE (4.9) is strongly consistent, that means,

θ̂(t)→ θ0, Pθ0 − a.s. as t→∞.

Moreover,

Law
(
ϕ(t)1/2

(
θ̂(t)− θ0

)∣∣∣Pθ0)→ Σ(θ0)−1/2N(0, IN ), as t→∞, (4.10)

where IN denotes de N ×N−identity matrix.
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2. The statistical experiment {Pθ; θ ∈ Θ0} is LAN at each θ ∈ int Θ0 with the Fisher information

matrix Σ(θ) and rate of convergence ϕ(t)−1/2. That means, for all h ∈ RN ,

Law

(
log

dP t
θ+hϕ(t)−1/2

dP tθ

∣∣∣∣∣Pθ
)
→ h>N (0,Σ(θ))− 1

2
h>Σ(θ)h, as t→∞·

Furthermore, the MLE is asymptotically efficient in the sense of Hájek-Le Cam Convolution

Theorem.

The challenge now is to find a discretized form θ̂n of the estimator θ̂(t) defined in (4.9) preserving a

similar asymptotic behavior. This is important from the point of view of applications since, although the

generating process X has paths in continuous time, in general, time series are observed in discrete times

t1, · · · , tn, even though the size of the intervals may be extremely small. This issue is covered in the next

section.

4.3 Asymptotic Behavior of the FMLE

In this Section, we present the discrete time estimator for θ0 via a sample Xt1 , · · · , Xtn from a solution

process of the GLE (4.1) with the restriction (4.6). We start by setting some notations and conditions and

then present the main result of the estimation.

Let L = {L(t); t ≥ 0} be a Lévy process with characteristic triplet (0, σ2, ν). Suppose that the

process X = {X(t); t ≥ 0} solution of the GLE (4.1) was observed at discrete time points 0 = t1 <

· · · < tn. We denote the true value of the parameter corresponding to the observed process path by

θ>0 = (θ0
1, · · · , θ0

N ) ∈ Θ0.

Consider that the jump component J = {J(t); t ≥ 0} of the noise L is a compound Poisson process

given by

J(t) =

N(t)∑
j=1

Yj , (4.11)

where the number of jumps is a Poisson process N = {N(t); t ≥ 0} with intensity λ = ν(R) <∞ and

the jumps’ size are independent and identically distributed random variables Y1, · · · , YN(t) with common

distribution F .

Set ∆i := ti+1−ti, for i = 1, · · · , n−1, and ∆n := max
i=1,··· ,n−1

∆i. Assume that ∆n → 0 and tn →∞

as n → ∞. Given a real function g, we will denote the i-th increment of g as ∆ig = g(ti+1) − g(ti).

Denote by X(ti) and Xti = {Xt1 , · · · , Xti}, respectively, the process observed at time ti and the process’

history until time ti.

As mentioned in Sections 2.4 and 3.3 and inspired by the studies of threshold estimation for stochastic

models with jumps done in Gloter, Loukianova and Mai [13], Mai [42, 43] and Mancini [44, 45] we

propose the following filtered maximum likelihood estimator (FMLE)

θ̂FMLE
n := S−1

n An,

where

An =

(
1

σ2

n−1∑
i=1

bj(Xti)∆iX1[|∆iX|≤∆β
n

]
)
N×1
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and

Sn =

(
1

σ2

n−1∑
i=1

bj(Xti)bk(Xti)∆i

)
N×N

, (4.12)

for a fixed β ∈ (0, 1/2).

Observe that An and Sn are discrete time versions of A(t) and S(t) defined in the Proposition 4.2.2,

respectively.

Denote by D = {D(t); t ≥ 0} the drift component of X which, under Assumption 4.2.1 it can be

written as

D(t) =

∫ t

0
b(θ,Xs)ds =

N∑
j=1

θj

∫ t

0
bj(Xs)ds. (4.13)

In order to determine the asymptotic behavior of the normalized estimator θ̂FMLE
n , we assume the

following conditions, in addition to those previously assumed in Section 4.2.

Assumption 4.3.1. Assume that:

1. n∆nt
−1
n = O(1), tn∆1−2β

n = o(1) and there exists β ∈ (0, 1/2) such that the distribution F of the

jump heights satisfies

PF

(
−2∆β

n, 2∆β
n

)
= o(t−1

n ), as n→∞

where PF is the Lebesgue-Stieltjes measure associated with F ;

2. ϕ̄(t) = t in Assumption 4.2.3;

3. under Pθ0 , Xc, ∆iW , ∆iD and bj(Xti) are mutually independent, for each i ∈ {1, · · · , n − 1}
and j ∈ {1, · · · , N};

4.

max
(j,k)∈{1,··· ,N}2

∣∣∣∣∣
n−1∑
i=1

bj(Xti)

∫ ti+1

ti

bk(Xs)ds−
n−1∑
i=1

bj(Xti)bk(Xti)∆i

∣∣∣∣∣ = oPθ0

(√
tn
)

;

5. the process X has finite second moments.

The following result shows that θ̂FMLE
n has the same asymptotic distribution as MLE θ̂(t) observed

at continuous time.

Theorem 4.3.2. In addition to the hypothesis of Theorem 4.2.4, assume that Assumption 4.3.1 holds.

Then

Law
(√

tn

(
θ̂FMLE
n − θ0

)∣∣∣Pθ0)→ N(0,Σ(θ0)−1), as n→∞.

Moreover, θ̂FMLE
n is asymptotically efficient in the sense of Hájek-Le Cam Convolution Theorem.

We finish this section by pointing out that the results obtained in this chapter generalize the results of

Mai [42, 43] for the Langevin equation (4.3) and the Stochastic delay differential equation (4.4), but they

cannot be used for the estimating the drift parameter of the GOU-FE (3.5).
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4.4 Proofs

Proof of the Proposition 4.2.2

Proof of the Proposition 4.2.2. Consider θ′ = 0 ∈ Θ. Under Assumption 4.2.1, b(0, Xs) ≡ 0 and the

integral processes in (2.4) have the following decomposition∫ t

0
b(θ,Xs)dX

c(s) =
N∑
j=1

θj

∫ t

0
bj(Xs)dX

c(s) (4.14)

and ∫ t

0
b2(θ,Xs)ds =

N∑
j=1

N∑
k=1

θjθk

∫ t

0
bj(Xs)bk(Xs)ds. (4.15)

Let P 0
θ = P 0

0 be the initial measure of the process X. By (4.14), (4.15) and Proposition 2.2.2, the

likelihood function can be written as

dP tθ
dP t0

(Xt) = exp

 1

σ2

N∑
j=1

θj

∫ t

0
bj(Xs)dX

c(s)− 1

2σ2

N∑
j=1

N∑
k=1

θjθk

∫ t

0
bj(Xs)bk(Xs)ds

 ,

which proves the proposition.

�

Proof of the Theorem 4.2.4

Under the Assumption 4.2.1, define a N -dimensional martingale M(t)> = (M1(t), · · · ,MN (t)) such

that, for each j ∈ {1, · · · , N},

Mj(t) =
1

σ

∫ t

0
bj(Xs)dW (s), (4.16)

where W = {W (t); t ≥ 0} is a Pθ-Wiener process.

Thus, we are able to prove the following result, which will be an essential tool to prove the Theorem

4.2.4. Essentially, this result is a consequence of the CLT for N−dimensional martingales (cf. Theorem

A.7.4, Crimaldi and Pratelli [8, Theorem 2.2], Küchler and Sφrensen [33, Theorem A.7.7] or, [34,

Theorem 2.1]).

Lemma 4.4.1. Under Assumptions 4.2.1 and 4.2.3, we have that, for all θ ∈ Θ0,

Law
(
ϕ(t)−1/2M(t), ϕ(t)−1[M ](t)

∣∣∣Pθ)→ (
Σ(θ)1/2Z, Σ(θ)

)
, as t→∞,

where Z is aN−dimensional random vector with standard normal distribution, [M ] denotes the quadratic

covariation matrix of M and ϕ(t) and Σ(θ) are defined in Assumption 4.2.3.

Proof. By Assumption 4.2.3, applying Proposition A.7.3, we obtain that M(t) is a continuous zero mean

square integrable martingale with quadratic covariation matrix

[M ](t) =
(
Mjk(t)

)
N×N ,

where

Mjk(t) =
1

σ2

∫ t

0
bj(Xs)bk(Xs)ds.
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Clearly,
N∑
j=1

|Kjk(t)|Eθ
[
sup
s≤t
|∆Mk(s)|

]
≡ 0,

where Kjk(t) = ϕ(t)−1/2 if j = k or 0 otherwise. Moreover, under the Assumption 4.2.3,

ϕ(t)−1S(t)→ Σ(θ),

Pθ-a.s. as t→∞. The result follows from the CLT for N -dimensional martingales A.7.4.

�

Remark 4.4.2. The quadratic covariation matrix of M(t) is the same matrix S(t) that appears in (4.7).

Proof of the Theorem 4.2.4. This proof will be divided into two steps.

Step 1. (Strong consistency and asymptotic normality of MLE θ̂(t)). It follows from the large of

numbers law for martingales (see, for example, Theorem A.7.5) that the N -dimensional martingale M(t)

defined in (4.16) satisfies

1

ϕ(t)
Mj(t) =

1

ϕ(t)

∫ t

0
bj(Xs)dW (s)→ 0, Pθ0 − a.s. as t→∞, (4.17)

for each j = 1, · · · , N . Observe that the continuous Pθ-martingale part Xc(t) of X(t) gives us

dXc(s) = σdW (s) + b (θ,Xs) ds. (4.18)

Under Assumption 4.2.1, we have for each j = 1, · · · , N

Mj(t) =
1

σ2

∫ t

0
bj (Xs) dX

c(s)− 1

σ2

N∑
k=1

θk

∫ t

0
bj (Xs) bk (Xs) ds. (4.19)

Using the decomposition (4.19), under θ0, we can rewrite A(t) as

A(t) = S(t)>θ0 +M(t), (4.20)

where M(t) is the N -dimensional martingale defined in (4.16). Hence, by (4.20),

θ̂(t)− θ0 = S(t)−1A(t)− θ0

= S(t)−1
(
S(t)>θ0 +M(t)

)
− θ0

= S(t)−1M(t) (4.21)

=

(
1

ϕ̄(t)
S(t)

)−1 1

ϕ̄(t)
M(t),

which converges to zero Pθ0-a.s. as t→∞ due to Assumption 4.2.3 and (4.17).

Finally, by (4.21),

ϕ(t)1/2
(
θ̂(t)− θ0

)
=
(
ϕ(t)[M ](t)−1

)
ϕ(t)−1/2M(t),

thus, Lemma 4.4.1 implies that (4.10) holds.
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Step 2. (locally asymptotically normal property). For any h> = (h1, · · · , hN ) ∈ RN , observe that

the Radon-Nikodym Chain Rule gives us

log
dP t

θ+hϕ(t)−1/2

dP tθ
= l
(
θ + hϕ(t)−1/2, Xt

)
− l(θ,Xt).

By Proposition 4.2.2,

l(θ + hϕ(t)−1/2, Xt)− l(θ,Xt) =
(
θ + hϕ(t)−1/2

)>
A(t)

− 1

2

(
θ + hϕ(t)−1/2

)>
S(t)

(
θ + hϕ(t)−1/2

)
− θ>A(t) +

1

2
θ>S(t)θ

=
(
θ + hϕ(t)−1/2 − θ

)>
A(t)

− 1

2

(
θ + hϕ(t)−1/2

)>
S(t)

(
θ + hϕ(t)−1/2

)
+

1

2
θ>S(t)θ

= h>ϕ(t)−1/2A(t)− θ>S(t)h>ϕ(t)−1/2

− 1

2
h>ϕ(t)−1/2S(t)hϕ(t)−1/2,

which can be rewritten as

l(θ + δ(t)h,Xt)− l(θ,Xt) = h>
1√
ϕ̄(t)

A(t)− 1√
ϕ̄(t)

θ>S(t)h− 1

2ϕ̄(t)
h>S(t)h. (4.22)

Using the decomposition (4.19), we can rewrite A(t) as

A(t) = S(t)>θ +M(t), (4.23)

where M(t) is the N -dimensional martingale defined in (4.16). Replacing (4.23) in (4.22) and by Remark

4.4.2, we obtain

l(θ + hϕ(t)−1/2, Xt)− l(θ,Xt) =
1

ϕ(t)1/2
h>M(t)− 1

2ϕ(t)
h>[M ](t)h. (4.24)

We conclude from (4.24) and Lemma 4.4.1 that (1.2) holds, which implies that the LAN property is

satisfied for all θ ∈ int Θ0.

�

Proof of Theorem 4.3.2

The step-by-step to proof the Theorem 4.3.2 is based on the proof of Mai [43, Theorem 3.5].

Before we prove the first technical lemma, we will recall the (upper bound of) well-known Mills ratio

(see, for example, Feller [11, Lemma 2, p.175]). Let Z be a normal random variable under the probability

measure P , with density fZ(·) and set z > 0. Then

P (Z > z) <
1

z
fZ(z)· (4.25)

Lemma 4.4.3. Suppose that Assumption 4.2.1 holds. Then, for any β ∈ (0, 1/2), we have

Pθ0

(
|∆iW + ∆iD| > ∆β

n

)
= O(∆2−2β

n ), as n→∞,

for i = 1, · · · , n− 1, where W denotes the Gaussian component of L and D is the drift part of X defined

in (4.13).
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Proof. We will assume, without losing of generality, that σ = 1. Otherwise, the same approach could be

developed giving the fact that σW (t) ∼ N(0, σ2t). Observe that

ω /∈

[
|∆iW | >

∆β
n

2

]⋃[
|∆iD| >

∆β
n

2

]

implies

ω ∈

[
|∆iW | ≤

∆β
n

2

]⋂[
|∆iD| ≤

∆β
n

2

]

and consequently

|∆iW (ω) + ∆iD(ω)| ≤ |∆iW (ω)|+ |∆iD(ω)| ≤ ∆β
n.

Thus,

Pθ0

(
|∆iW + ∆iD| > ∆β

n

)
≤ Pθ0

(
|∆iW | >

∆β
n

2

)
+ Pθ0

(
|∆iD| >

∆β
n

2

)
·

By ∆iW ∼ N(0,∆i), the symmetry of the normal distribution and the Mills ratio (4.25), it follows that

Pθ0

(
|∆iW | ≥

∆β
n

2

)
= 2Pθ0

(
1√
∆i

∆iW ≥
∆β
n

2
√

∆i

)

≤ 2
2
√

∆i√
2π∆β

n

exp

−1

2

(
∆β
n

2
√

∆i

)2
 .

Since 2√
2π

∆
1/2
i

∆β
n
≤ ∆

1/2−β
n and 1

2

(
∆β
n

2∆
1/2
i

)2

≥ 1

8∆1−2β
n

, we have

Pθ0

(
|∆iW | ≥

∆β
n

2

)
≤ 2∆1/2−β

n exp

{
− 1

8∆1−2β
n

}
·

We claim that

Pθ0

(
|∆iD| >

∆β
n

2

)
= O(∆2−2β

n )·

Indeed, by Jensen’s Inequality for finite measures,

(∫ ti+1

ti

b(θ0, Xs)ds

)2

= ∆2
i

(
1

∆i

∫ ti+1

ti

b(θ0, Xs)ds

)2

≤ ∆i

∫ ti+1

ti

b2(θ0, Xs)ds

≤ ∆n

∫ ti+1

ti

b2(θ0, Xs)ds,
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which, from (4.15), implies

Eθ0

[
(∆iD)2

]
≤ ∆nEθ0

 N∑
j=1

N∑
k=1

θ0
j θ

0
k

∫ ti+1

ti

bj(Xs)bk(Xs)ds


= ∆n

N∑
j=1

N∑
k=1

θ0
j θ

0
k

∫ ti+1

ti

Eθ0 [bj(Xs)bk(Xs)] ds

≤ ∆n

N∑
j=1

N∑
k=1

θ0
j θ

0
k

∫ ti+1

ti

Eθ0 [bj(Xs)bk(Xs)] ds

≤ ∆2
n

N∑
j=1

N∑
k=1

θ0
j θ

0
k sup
s∈[ti,ti+1]

Eθ [bj(Xs)bk(Xs)] ·

It follows from Markov Inequality

Pθ0

(
|∆iD| >

∆β
n

2

)
≤

Eθ0

[
(∆iD)2

]
(

∆β
n

2

)2

≤ 4
∆2
n

∆2β
n

N∑
j=1

N∑
k=1

θ0
j θ

0
k sup
s∈[ti,ti+1]

Eθ0 [bj(Xs)bk(Xs)]

= O(∆2−2β
n ),

as claimed, hence proving the lemma.

�

Remark 4.4.4. We assume Assumption 4.2.1 in Lemma 4.4.3. However, we do not need that decomposition

explicitly. It suffices to assume that b(θ,Xs) ∈ L2(dPθ × ds).

Define, for each i ∈ {1, · · · , n},

Ei :=

[
1[|∆iX|≤∆β

n

] = 1[∆iN=0]

]
.

Lemma 4.4.5. In addition to the hypothesis of Lemma 4.4.3, assume that n∆nt
−1
n = O(1), and

tn∆1−2β
n = o(1), as n→∞. Then

Pθ0

(
n⋂
i=1

Ei

)
−→ 1 as n→∞.

Proof. Observe that

Pθ0

((
n⋂
i=1

Ei

)c)
= Pθ0

(
n⋃
i=1

Eci

)
≤

n∑
i=1

Pθ0 (Eci ) .

Taking Ki =
[
|∆iX| ≤ ∆β

n

]
and Mi = [∆iN = 0], we can write Eci as

Eci = [1Ki 6= 1Mi ] = (Ki −Mi) ∪ (Mi −Ki) . (4.26)
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Note that

Pθ0 (Ki −Mi) = Pθ0

(
|∆iX| ≤ ∆β

n,∆iN > 0
)

=

∞∑
j=1

e−λ∆i
(λ∆i)

j

j!
Pθ0

(
|∆iX| ≤ ∆β

n

∣∣∣∆iN = j
)

≤ Pθ0 (∆iN = 1)Pθ0

(
|∆iX| ≤ ∆β

n

∣∣∣∆iN = 1
)

+O
(
∆2
n

)
.

We still have to

Pθ0

(
|∆iX| ≤ ∆β

n

∣∣∣∆iN = 1
)

= Pθ0

(
|∆iX| ≤ ∆β

n, |∆iJ | > 2∆β
n

∣∣∣∆iN = 1
)

+ Pθ0

(
|∆iX| ≤ ∆β

n, |∆iJ | ≤ 2∆β
n

∣∣∣∆iN = 1
)
· (4.27)

We claim that the first term on the right side of (4.27) is bounded by Pθ0 (∆iN = 1)−1O(∆2−2β
n ). Indeed,

denote pi := Pθ0

(
|∆iX| ≤ ∆β

n, |∆iJ | > 2∆β
n

∣∣∣∆iN = 1
)

, by triangular inequality,

pi = Pθ0

(
|∆iW + ∆iJ + ∆iD| ≤ ∆β

n, |∆iJ | > 2∆β
n

∣∣∣∆iN = 1
)

=
Pθ0

(
|∆iW + ∆iJ + ∆iD| ≤ ∆β

n, |∆iJ | > 2∆β
n,∆iN = 1

)
Pθ0 (∆iN = 1)

≤
Pθ0

(
|∆iW + ∆iD| > ∆β

n,∆iN = 1
)

Pθ0 (∆iN = 1)
,

hence, by Lemma 4.4.3,

Pθ0

(
|∆iX| ≤ ∆β

n, |∆iJ | > 2∆β
n

∣∣∣∆iN = 1
)
≤

Pθ0

(
|∆iW + ∆iD| > ∆β

n

)
Pθ0 (∆iN = 1)

= Pθ0 (∆iN = 1)−1O(∆2−2β
n )·

Since F is the distribution of the size of the jumps of J, we obtain that the second term in the right side of

(4.27) satisfies

Pθ0

(
|∆iX| ≤ ∆β

n, |∆iJ | ≤ 2∆β
n

∣∣∣∆iN = 1
)
≤ Pθ0

(
|∆iJ | ≤ 2∆β

n

∣∣∣∆iN = 1
)

= PF

((
−2∆β

n, 2∆β
n

))
hence,

Pθ0 (Ki −Mi) ≤ O(∆2−2β
n ) + ∆nPF

((
−2∆β

n, 2∆β
n

))
+O

(
∆2
n

)
= O(∆2−2β

n ) + ∆nPF

((
−2∆β

n, 2∆β
n

))
· (4.28)

On the other hand, by Lemma 4.4.3,

Pθ0 (Mi −Ki) = Pθ0

(
|∆iX| > ∆β

n,∆iN = 0
)

≤ Pθ0

(
|∆iW + ∆iD| > ∆β

n

)
= O(∆2−2β

n ),
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which, together with (4.26) and (4.28), implies

Pθ0 (Eci ) ≤ O(∆2−2β
n ) + ∆nPF

((
−2∆β

n, 2∆β
n

))
·

Therefore, since n∆nt
−1
n = O(1), we have

Pθ0

((
n⋂
i=1

Ei

)c)
≤

n∑
i=1

Pθ0 (Eci ) ≤ O(tn)PF

((
−2∆β

n, 2∆β
n

))
+O(tn∆1−2β

n ), as n→∞,

which proves the lemma, provided that PF
(
−2∆β

n, 2∆β
n

)
= o(t−1

n ) and tn∆1−2β
n = o(1).

�

Lemma 4.4.6. In addition to the hypothesis of Lemma 4.4.5, assume that the Lévy process L has

characteristic triplet (0, σ2, ν) and that ∆iW , ∆iD and bj(Xi) are mutually independent, under Pθ0 , for

each i ∈ {1, · · · , n− 1} and j ∈ {1, · · · , N}. Then, for each j ∈ {1, · · · , N},∣∣∣∣∣
n−1∑
i=1

bj(Xi)

(
∆iX1[|∆iX|≤∆β

n

] −∆iX
c

)∣∣∣∣∣ = O
(
tn∆1/2

n

)
, as t→∞·

Proof. On
⋂n
i=1Ei holds

n−1∑
i=1

bj(Xi)

(
∆iX1[|∆iX|≤∆β

n

] −∆iX
c

)
=

n−1∑
i=1

bj(Xi)
(
∆iX1[∆iN=0] −∆iX

c
)
·

Set Ci = [∆iN > 0]. Then

∆iX1[∆iN=0] −∆iX
c = −∆iX

c1Ci ,

which implies

Eθ0

∣∣∣∣∣1⋂ni=1 Ei

n−1∑
i=1

bj(Xi)
(
∆iX1[∆iN=0] −∆iX

c
)∣∣∣∣∣ = Eθ0

∣∣∣∣∣
n−1∑
i=1

bj(Xi)∆iX
c1Ci∩(

⋂n
i=1 Ei)

∣∣∣∣∣
and, by triangular inequality and the decomposition Xc = W +D, we obtain

Eθ0

∣∣∣∣∣
n−1∑
i=1

bj(Xi)∆iX
c1Ci∩(

⋂n
i=1 Ei)

∣∣∣∣∣ ≤
n−1∑
i=1

Eθ0

[
(|bj(Xi)∆iW + bj(Xi)∆iD|)1Ci∩(⋂ni=1 Ei)

]
≤

n−1∑
i=1

Eθ0 [(|bj(Xi)∆iW |+ |bj(Xi)∆iD|)1Ci ] ·

It follows, from independence of ∆iW , ∆iN and bj(Xi), that

n−1∑
i=1

Eθ0 |bj(Xi)∆iW1Ci | =
n−1∑
i=1

Eθ0 |bj(Xi)|Eθ0 |∆iW |Pθ0 (Ci)

which implies, from Pθ0(Ci) ≤ λ∆n,

n−1∑
i=1

Eθ0 |bj(Xi)∆iW1Ci | ≤
n−1∑
i=1

Eθ0 |bj(Xi)|Eθ |∆iW |Pθ0(Ci)

≤ max
i=1,··· ,n−1

{Eθ0 |bj(Xi)|Eθ0 |∆iW |} (n− 1)λ∆n (4.29)

≤ K0(θ0)(n− 1)∆1/2
n

= O
(
tn∆1/2

n

)
,
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where K0(θ0) is a constant and the last equality holds since n∆nt
−1
n = O(1). Analogously, by Hölder’s

Inequality,

n−1∑
i=1

Eθ0 |bj(Xi)∆iD1Ci | ≤
n−1∑
i=1

(
Eθ0

∣∣∣b2j (Xi) (∆iD)2
∣∣∣)1/2

Pθ0 (Ci)
1/2 = O

(
tn∆1/2

n

)
, as n→∞·

�

Consider the natural discretized estimator obtained from θ̂(t), that is,

θ̄n = S−1
n Ān,

where

Ān =

(
1

σ2

n−1∑
i=1

bj(Xi)∆iX

)
j=1,··· ,N

and Sn is as in (4.12).

Lemma 4.4.7. In addition to the hypothesis of Theorem 4.2.4, assume that Assumption 4.3.1 holds. Then

Law
(
t1/2n

(
θ̄n − θ0

)∣∣∣Pθ0)→ N(0,Σ(θ0)−1), as t→∞,

where Σ(θ0) is defined in Assumption 4.2.3.

Proof. Note that, by (4.18), the continuous martingale part can be decomposed as

Xc(t) = D(t) + σW (t),

where W is a Wiener process and D is defined in (4.13). Thus,

1

σ2

n−1∑
i=1

bj(Xi)∆iX
c =

1

σ2

n−1∑
i=1

bj(Xi)∆iD +
1

σ

n−1∑
i=1

bj(Xi)∆iW ·

Therefore,

t1/2n

(
θ̄n − θ0

)
= t1/2n

(
S−1
n Ān − θ0

)
= t1/2n

S−1
n

(
1

σ2

n−1∑
i=1

bj(Xi)∆iD

)
N×1

− θ0


+ t1/2n S−1

n

(
1

σ

n−1∑
i=1

bj(Xi)∆iW

)
N×1

·

Observe that, for each j = 1, · · · , N ,

1

t
1/2
n

n−1∑
i=1

bj(Xi)∆iW ∼
1

t
1/2
n

∫ tn

0
bj(Xs)dW (s), as n→∞,

which, together with tnS−1
n → Σ(θ0)−1, implies

Law

 tnS−1
n

1

t
1/2
n

(
1

σ

n−1∑
i=1

bj(Xi)∆iW

)
N×1

∣∣∣∣∣∣Pθ0
→ N

(
0,Σ(θ0)−1

)
, as n→∞·
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It remains to be proved that

t1/2n

S−1
n

(
1

σ2

n−1∑
i=1

bj(Xi)∆iD

)
N×1

− θ0

→ 0

in Pθ0-probability as n→∞. Indeed, let us define a N ×N -matrix S̄n that is asymptotically equivalent

to Sn by

S̄n :=

(
1

σ2

n−1∑
i=1

bj(Xi)

∫ ti+1

ti

bk(Xs)ds

)
N×N

·

Then, (
1

σ2

n−1∑
i=1

bj(Xi)∆iD

)
N×1

=

(
1

σ2

n−1∑
i=1

bj(Xi)

∫ ti+1

ti

b(θ0, Xs)ds

)
N×1

=

(
1

σ2

n−1∑
i=1

bj(Xi)

∫ ti+1

ti

b(θ0, Xs)ds

)
N×1

,

by Assumption 4.2.1 we have(
1

σ2

n−1∑
i=1

bj(Xi)∆iD

)
N×1

=

(
1

σ2

n−1∑
i=1

bj(Xi)

N∑
k=1

θ0
k

∫ ti+1

ti

bk(Xs)ds

)
N×1

=

(
N∑
k=1

θ0
k

1

σ2

n−1∑
i=1

bj(Xi)

∫ ti+1

ti

bk(Xs)ds

)
N×1

=

(
1

σ2

n−1∑
i=1

bj(Xi)

∫ ti+1

ti

bk(Xs)ds

)
N×1

θ0

= S̄nθ0,

which implies

t1/2n

S−1
n

(
1

σ2

n−1∑
i=1

bj(Xi)∆iD

)
N×1

− θ0

 = tnS
−1
n

1

t
1/2
n

S̄nθ0 − tnS−1
n

1

t
1/2
n

Snθ0

= tnS
−1
n

1

t
1/2
n

(
S̄n − Sn

)
θ0·

The statement follows since 1

t
1/2
n

(
S̄n − Sn

)
→ 0 in Pθ0-probability as n→∞.

�

Now we are able to prove Theorem 4.3.2.

Proof of Theorem 4.3.2. Observe that

t1/2n

(
θ̂FMLE
n − θ0

)
= t1/2n

(
θ̂FMLE
n − θ̄n

)
− t1/2n

(
θ̂FMLE
n − θ0

)
·

By Lemma 4.4.7,

Law
(
t1/2n

(
θ̄n − θ0

)∣∣∣Pθ0)→ N(0,Σ(θ0)−1), as t→∞·
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Finally, by Lemma 4.4.6, we have

t1/2n

(
θ̂FMLE
n − θ̄n

)
= t1/2n

(
S−1
n An − S−1

n Ān
)

= tnSn
1

tn

(
An − Ān

)
= oPθ0 (1),

which proves the theorem.

�
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Chapter 5

Conclusion

Our studies aimed to investigate the estimation of the drift parameter of GLE with Lévy jumps, which is

non-Markovian and non-Gaussian continuous time stochastic process. The results indicated that the MLE

for the GLE is consistent, asymptotically normal and efficient. Further findings showed that this estimator,

under filtering "big" jumps, can be applied to estimate drift parameter from an associated discrete time

process.

Research focused on statistical inference issues for the GLE have not been widely explored in the

literature yet. We proposed estimation methods for several GLE models, without initially requiring

knowledge of the explicit GLE solution.

We analyzed the influence of jumps in the estimation through simulations and concluded that a higher

frequency of jumps did not interfere in the estimation of the 3-parameter GOU-FE. On the other hand,

certain regions of the parameter space have better estimates than others. This was expected since parameter

space restrictions are necessary to guarantee ergodicity and good asymptotic properties for the GLE.

We summarize some of our main results bellow:

1. We extended the studies on estimators for the Langevin equation and SDDE. More precisely, we

studied MLE for the drift parameter of the GLE observed continuously in time. In Theorem 2.3.4

we showed that with appropriated convergence assumptions we have a consistent and asymptotically

normal MLE which is also efficient in the sense of Hájek-Le Cam convolution theorem.

2. In Section 2.4, a filtered MLE (FMLE) was proposed for cases where the GLE is observed on

discrete times. We evaluated the results of this discretization via studies of simulations of the

GOU-FE process. Potentials and limitations (computational time and optimization difficulties) of

the applications of these models were presented.

3. In Section 3.2, a new process was proposed generalizing the GOU-FE process (called 3-parameter

GOU-FE). In Theorem 3.2.1 we showed that this process is a solution of a class of GLE. Further-

more, an order 3 autoregressive form for these processes were obtained in Proposition 3.2.2. An

autoregressive form and its error distribution for the GOU process in its general form was also

addressed (Theorem 3.2.6 and Proposition 3.2.7).

4. In Section 3.3, a modified FMLE (mFMLE) was proposed by introducing the information of the

simulated Lévy path. The FMLE and mFMLE have so far been studied only through simulations of
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the 3-parameter GOU-FE. Our simulations showed that mFMLE can indeed improve the estimation

in relation to FMLE, however a previous study of Lévy noise path is necessary.

5. The goal of Chapter 4 was to study the theoretical asymptotic behavior of the FMLE. For this, based

on Langevin equation, Cosine process and SDDE, we considered a particular class of GLE for

which the drift parameter can be "separated" of the process information (Assumption 4.2.1). Then,

an explicit MLE was found and Theorem 4.2.4 presented its asymptotic behaviour, which is the

same of Theorem 2.3.4 but with less assumptions and technical difficulties. In Theorem 4.3.2 we

showed that, with a suitable discrete time information, the FMLE inherits the asymptotic properties

of the MLE. Unfortunately, despite the technical simplicity, this result cannot be applied to the

GOU-FE process.

Based on these conclusions, we finish this chapter presenting a list of open problems related to the

results obtained in previous chapters.

i. Ergodicity (in the sense of Birkhoff’s theorem) proved to be an essential condition for studying the

asymptotic behavior of the MLE. What can we say about ergodicity for GLE with Lévy jumps?

How can we verify this property for a real temporal series?

ii. Convergence rates are natural questions for the asymptotic behaviour of the MLE since a version

of CLT was proved (Theorem 2.3.4). Can we obtain a Large Deviation theorem for the MLE?

iii. In Proposition 3.2.2 the autoregressive form of the discrete time process does not have a white noise

error. Alcântara [1] proposed use the model ARMA(p, p− 1) for describe better the GOU-FE with

two parameters. How can we approximate the error distribution of the autoregressive form?

iv. Knowing a good noise approximation proved to be important for the mFMLE estimator. Thus,

this becomes a fundamental initial step for the estimator. What is the best way to simulate the Lévy

path for real applications?

v. The memory function found in Theorem 3.2.1 has a very similar form of the covariance function of

the stationary solution from a SDDE (see [30, Equation (9)]). What are the connections between
the memory function of the GOU-FE and the autocorrelation function of the SDDE?

vi. Hypotheses tests for the drift parameter estimation is an open problem.

vii. It is possible to use a Bayesian approach for estimating the drift parameter of the GLE?
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Appendix A

Review of the Theory of Stochastic
Processes and Statistical Inference

In this appendix we present a revision of the main theoretical results used in this thesis, with the purpose

that this work be self-contained. As these are very technical topics, we suggest a detailed reading of the

following references Applebaum [2], Ibragimov and Has’minskii [22], Jacod and Shiryaev [23], Klebaner

[27], Küchler and Sφrensen [33], Le Cam and Yang[36] and Vaart[65]. Other references are suggested

throughout this appendix to consult some specific results.

A.1 Basic Definitions and Properties

Consider a filtered probability space (Ω,F , {Ft; t ≥ 0},P).

Definition A.1.1 (Usual Conditions). We say that a filtration {Ft; t ≥ 0} satisfies the usual conditions
if

1. it is right-continuous, i.e., Ft = Ft+ =
⋃
ε>0Ft+ε;

2. F0 contains all the P-negligible (P-null) events in F , i.e., if N ∈ F is such that P(N) = 0, then

N ∈ F0.

A random set A (i.e. a subset of Ω× R+) is called evanescent if the set

{ω; ∃t ∈ R+ with (ω, t) ∈ A}

is P-null.

Consider two processes X = {X(t); t ≥ 0} and Y = {Y (t); t ≥ 0}. We say that Y is a modification

of X if, for every t ≥ 0, we have

P (X(t) = Y (t)) = 1.

X and Y are indistinguishable if

P (X(t) = Y (t); 0 ≤ t <∞) = 1.

Consider a family of measures {Pθ; θ ∈ Θ} on a filtered probability space (Ω,F , {Ft; t ≥ 0},P) with

parameter set Θ ⊂ RN such that the interior int Θ is non-empty. We assume that the filtration {Ft; t ≥ 0}
satisfies the usual conditions.
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Definition A.1.2. We say that Pθ is locally absolutely continuous with respect to Pθ0 and write

Pθ
loc
� Pθ0 if P tθ << P tθ0 for all t ∈ R+, where P tθ := Pθ|Ft denotes the restriction of Pθ to Ft.

Usually, a "local" property is localized along a sequence of stopping times. The notion
loc
� indeed

satisfies the same rule.

Lemma A.1.3 (Lemma III.3.3 in Jacod and Shiryaev [23]). Pθ
loc
� Pθ0 if and only if there is an increasing

sequence {Tn;n ∈ N} of stopping times, such that Tn ↑ ∞ Pθ-a.s. and P Tnθ � P Tnθ0 for all n ∈ N.

Definition A.1.4. We say that a process X = {X(t); t ≥ 0} is a càd (resp. càg, resp. càdlàg) process
if all its paths are right-continuous (resp. are left-continuous, resp. are right-continuous and admit

left-hand limits).

Definition A.1.5. We say that a filtration {Ft; t ≥ 0} is generated by a process X = {X(t); t ≥ 0} and

a σ-field G if

1. Ft =
⋂
s>tF0

s and F0
s = G∨σ (X(r); r ≤ s) (in other words, {Ft; t ≥ 0} is the smallest filtration

such that X is adapted and G ⊂ F0);

2. F = F∞− (=
∨
tFt).

Definition A.1.6. 1. We call optional σ-field a σ-field O on Ω× R+ that is generated by all càdlàg

adapted process.

2. We say that a σ-field a σ-field P on Ω× R+ is a predictable σ-field if it is generated by all càd

adapted process.

3. We put Ω̃ = Ω×R+ ×E with the σ-field Õ = O×B(E) and P̃ = P ×B(E). A function Y on Ω̃

that is Õ-measurable (resp.P̃-measurable) is called an optional (resp. a predictable) function.

We denote by V the class of all real-valued process A = {A(t); t ≥ 0} that are càdlàg, adapted, with

A(0) = 0 and whose each path has finite variation over each interval [0, t].

Let A ∈ V . For each ω ∈ Ω, the path t 7→ A(ω, t) is the distribution function of a signed measure

(a positive measure if A is increasing) on R that is finite on each interval [0, t]. Denote this measure by

dA(ω, t).

Let A ∈ V and let H = {H(t); t ≥ 0} be an optional process. By Jacod and Shiryaev [23] I.1.21,

t 7→ H(ω, t) is Borel measurable. Thus, we can define the integral process, denoted by H ·A, as follows

H ·A(ω, t) :=


∫ t

0
H(ω, s)dA(ω, s) if

∫ t

0
|H(ω, s)| dA(ω, s) <∞,

+∞ othewise.
(A.1)

Proposition A.1.7 (Proposition I.3.5 in Jacod and Shiryaev [23]). Consider A ∈ V and let H =

{H(t); t ≥ 0} be an optional process, such that B = H ·A is finite-value. Then B ∈ V and dB � dA.

Moreover, if A and H are predictable, then B is also predictable.

Let Aloc the class of all process with locally integrable variation.
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Proposition A.1.8 (Theorem I.3.18 in Jacod and Shiryaev [23]). If A ∈ Aloc, then there exists a process,

called compensator of A and denoted by Ap, which is unique up to an evanescent set, and which is

characterized by being a predictable process of Aloc that A−Ap is a local martingale.

Consider B(Rd) the Borel σ-field of Rd. For a subset E ⊂ Rd, we will denote by B(E) a σ-field of

subsets of E (but not necessarily the Borel σ-field).

Let (Ω,F , {Ft; t ≥ 0},P) be a filtered probability space and consider (E,B(E)) be a Blackwell

space (here it is enough to know that (Rd,B(Rd)) is a Blackwell space).

Definition A.1.9. A random measure on R+ × E is a family

µ = {µ(ω; dt, dx);ω ∈ Ω}

of non-negative measures on
(
R+ × E,B(R+)⊗ B(E)

)
satisfying µ (ω; {0} × E) = 0 identically.

Definition A.1.10. An integral-valued random measure is a random measure that satisfies

1. µ(ω; {t} × E) ≤ 1 identically;

2. for each A ∈ B(R+)⊗ B(E), µ(.;A) takes values in N̄;

3. µ is optional and P̃-σ-finite.

Proposition A.1.11 (Proposition II.1.16 in Jacod and Shiryaev [23]). Let X = {X(t); t ≥ 0} be an

adapted càdlàg Rd-valued process. Then

µX(ω; dt, dx) =
∑
s

1[∆X(ω,s)]ε(s,∆X(ω,s))(dt, dx),

defines an integer valued random measure on R+ × Rd, where ε denotes the Dirac measure at point a.

Let ν denote the compensator of µ. By II.1.17 in Jacod and Shiryaev [23], there exists a version of ν

such that ν(ω; {t} × E) ≤ 1. We define a predictable process a = {a(t); t ≥ 0} by

a(ω, t) := ν(ω; {t} × E). (A.2)

For each measurable function Y on Ω̃ we define

Ŷ (ω, t) :=


∫
E
Y (ω, t, x)ν(ω; {t} × dx) if this integral converges,

+∞ otherwise.
(A.3)

A.2 Semimartingale

Definition A.2.1. An adapted process M = {M(t); t ≥ 0} is called a local martingale if there exists

a sequence of stopping times {Tn;n ∈ N} such that Tn ↑ ∞ and for each n the stopped processes

M(t ∧ Tn) is a uniformly integrable martingale in t.

Definition A.2.2. We say that a process X = {X(t); t ≥ 0} is a semimartingale if it is an adapted

process such that, for each t ≥ 0,

X(t) = M(t) + V (t) (A.4)

where M = {M(t), t ≥ 0} is a local martingale and V = {V (t); t ≥ 0} is an adapted process of finite

variation.
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Definition A.2.3. We call a truncation function all h : Rd → Rd which are bounded and satisfy

h(x) = x in a neighborhood of 0.

Definition A.2.4. Let h be a truncation function. We call characteristics (associated with h) of a

semimartingale X = {X(t); t ≥ 0} the triplet (B,C, ν) consisting in:

1. B = B(h) = (Bi)i≤d is a predictable random process of finite variation V appearing in (A.4);

2. C = (Cij)i,j≤d given by

Cij = [Xi,c, Xj,c],

where Xc is the continuous martingale part of X.

3. ν is a predictable random measure on R+ × Rd, namely the compensator of the random measure

µX associated to the jumps of X, where

µX(ω; dt× dx) =
∑
s

1[∆X(ω,s)6=0]ε(s,∆X(ω,s))(dt, dx).

Consider a d-dimensional semimartingale X = (Xi)i≤d on (Ω,F , {Ft; t ≥ 0}, Pθ0) with character-

istics (B0, C0, ν0) relative to a given truncation function h. Let A = {A(t); t ≥ 0} be an increasing

predictable process such that C0
ij = cij ·A.

Proposition A.2.5 (Girsanov’s Theorem. See Theorem III.3.24 in Jacod and Shiryaev [23]). Assume that

Pθ
loc
� Pθ0 , and let X = {X(t); t ≥ 0} be as above. There exists a P̃-measurable non-negative function

Y (·, ·) and a predictable process β = (βi)i≤d satisfying

|h(x)(Y − 1)| ∗ ν0
t <∞ Pθ − a.s. for t ∈ R+,∣∣∣∣∣∣

∑
j≤d

cijβj

∣∣∣∣∣∣ ·A(t) <∞ and

∑
j,k≤d

βjcjkβ
k

 ·A(t) <∞ Pθ − a.s. for t ∈ R+,

and such that a version of the characteristics of X relative to Pθ are
Bi = B0

i +
(∑

j≤d cijβj

)
·A+ hi(x)(Y − 1) ∗ ν0,

C = C0,

ν = Y · ν0.

(A.5)

Consider X = {X(t); t ≥ 0} to be a process on a filtered space
(
Ω,F , {Ft; t ≥ 0},P

)
. Let

{Gt; t ≥ 0} be a filtration generated by a process X and a sub-σ-field H ⊂ F . To emphasize the fact

that {Gt; t ≥ 0} is not right-continuous, in general, Jacod and Shiryaev [23] gave a specific name to the

Gt-stopping times.

Definition A.2.6. A mapping T : Ω → R̄+ such that [T ≤ t] ∈ Gt for all t ∈ R+ is called a Gt-strict
stopping time.

Assume that (c, A, β, Y ) are given by Theorem A.2.5 and a = {a(t); t ≥ 0} and Ŷ (·, ·) are given as

in (A.2) and (A.3), respectively. Set

τ = inf
{
t; either

(
Ŷ (t) > 1

)
or
(
a(t) = 1 and Ŷ (t) < 1

)}
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a positive predictable time. Define

H = (βcβ)1[0,τ) ·A +
(

1−
√
Y
)2

1[0,τ) ∗ ν +
∑
s≤·

(√
1− a(s)−

√
1− Ŷ (s)

)2

1[s<τ ]

and

T = inf {t;H(t) =∞} .

We have that H = {H(t); t ≥ 0} is a predictable and generalized increasing process, i.e., it is a R̄+-

valued, H(0) = 0, its paths are non-decreasing and it is right-continuous on [0, T ) (and of course on

(T,∞)). We define a sequence of strict stopping times and a random set

Tn = inf {t;H(t) ≥ n}

and

∆ = [0, τ ] ∩

(⋃
n

[0, Tn]

)
.

Proposition A.2.7 (Proposition III.5.10 in Jacod and Shiryaev [23]). Assume the above conditions. There

is a process U = {U(t); t ≥ 0}, unique (up to P -indistinguishability) on the set ∆, such that for every

stopping time S such that [0, S] ⊂ ∆, the stopped process U(S) is the following Pθ-local martingale

U(S) = (β1[0,S]) ·Xc +

(
Y − 1 +

Ŷ − a
1− a

1[a<1]

)
1[0,S] ∗ (µ− ν).

Construction of the stochastic integral of locally bounded predictable processes with respect to a

semimartingale can be find in Jacod and Shiryaev [23, Section I.4d] and Protter [54, Chapter II].

A.3 Lévy Process

In this section, we present some notions around the Lévy processes that are a particular case of semi-

martingales. For a more careful study of the Lévy processes, we recommend Applebaum [2], Sato

[26].

Let M1(Rd) denote the set of all Borel probability measures on Rd. We say that µ ∈ M1(Rd)
is infinitely divisible if for any n ∈ N there exists µn ∈ M1(Rd) such that µ = µnn := µ ∗ · · · ∗ µ︸ ︷︷ ︸

n

.

Equivalently, µ is infinitely divisible if, and only if, for each n ∈ N there exists µn ∈M1(Rd) for which

the characteristic functions satisfy

φµ(u) = [φµn(u)]n

for each u ∈ Rd.

Let ν be a Borel measure on Rd − {0}. We say that it is a Lévy measure if∫
Rd−{0}

(|y|2 ∧ 1)ν(dy) <∞·

Theorem A.3.1 (Lévy-Khintchine, Theorem 1.2.14 in Applebaum [2]). µ ∈M1(Rd) is infinitely divisible

if there exists a vector b ∈ Rd, a positive definite symmetric d × d matrix A and a Lévy measure ν on

Rd − {0} such that, for all u ∈ Rd,

φµ(u) = exp

{
i(b, u)− 1

2
(u,Au) +

∫
Rd−{0}

[
ei(u,y)−1−i(u,y)ξB1(0)

(y)
]
ν(dy)

}
· (A.6)
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Conversely, any mapping of the form (A.6) is the characteristic function of an infinitely divisible probability

measure on Rd.

In Theorem A.3.1, (·, ·) denotes the inner product in Rd. We call (b, A, ν) the characteristic triplet

associated with µ.

Definition A.3.2. Let L= {L(t); t ≥ 0} be a stochastic process defined on a probability space (Ω,F ,P).

We say that L is a Lévy process if

L1. L(0) = 0 (a.s.);

L2. L has independent increments, i.e., L(t0), L(t1) − L(t0), · · ·L(tn) − L(tn−1) are independent

random variables for every 0 < t0 < t1 < · · · < tn−1 < tn and for all positive integer n;

L3. L has stationary increments, i.e., for all t ≥ 0, L(t+ h)− L(t) has the same distribution as L(h)

for all h > 0;

L4. L is stochastically continuous, i.e., for all δ > 0 and s ≥ 0

lim
t→s

P (|L(t)− L(s)| > δ) = 0;

L5. L has càdlàg paths.

Example A.3.3. The following processes are examples of Lévy process:

1. a standard Brownian motion (or Wiener process) W = {W (t); t ≥ 0}

W (t)−W (s) ∼ N(0, |t− s|);

2. a Poisson process N = {N(t); t ≥ 0} of intensity λ > 0

N(t)−N(s) ∼ Poisson(λ|t− s|);

3. a Compound Poisson process

Ñ(t) =

N(t)∑
j=1

Xj

where {Xn;n ∈ N} is a sequence of i.i.d. random variables;

Proposition A.3.4 (Proposition 1.3.1 in Applebaum [2]). If L is a Lévy process, then L(t) is infinitely

divisible for each t ≥ 0.

Proposition A.3.5 (Lévy-Itô’s Decomposition, Theorem 2.4.16 in Applebaum [2]). If X = {X(t); t ≥ 0}
is a Lévy process, then there exists b ∈ Rd, a Brownian motion {BA(t); t ≥ 0} with covariance matrix A

and an independent Poisson random measure N on R+ × (Rd − {0}) such that, for each t ≥ 0,

X(t) = bt+BA(t) +

∫
|x|<1

xÑ(t, dx) +

∫
|x|≥1

xN(t, dx)·

Corollary A.3.6 (Corollary 2.4.21 in Applebaum [2]). The Lévy characteristics (b, A, ν) of a Lévy process

are uniquely determined by the process.

Theorem A.3.7 (Theorem 2.4.25 in Applebaum [2]). A Lévy process with characteristics (b, A, ν) has a

finite variation if, and only if, A = 0 and
∫
|x|<1 |x|ν(dx)∞.

Proposition A.3.8 (Proposition 2.7.1 in Applebaum [2]). Every Lévy process is a semimartingale.
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A.4 Martingale Problem

Definition A.4.1. Suppose that X = {X(t); t ≥ 0} is a càdlàg function on (Ω,F , {Ft; t ≥ 0}). A

measure P on (Ω,F) solves the martingale problem associated with X, an initial distribution π on

(Ω,F0) and a triplet (B,C, ν) if

1. Under P the distribution of X(0) equals π;

2. X is a semimartingale on (Ω,F , {Ft; t ≥ 0} ,P) with characteristics (B,C, ν) relative to h.

We denote by s(X|π;B,C, ν) the set of all solution measures P of the martingale problem associated

with the process X, initial distribution π and characteristics (B,C, ν).

Definition A.4.2. Let {Gt; t ≥ 0} denote the filtration generated by X = {X(t); t ≥ 0}. We say that

local uniqueness holds for a martingale problem s(X|π;B,C, ν) if for every strict stopping time

T any two solutions P,P′ ∈ s (X(T )|π;BT , CT , νT ) of the stopped problem coincide on GT , where

X(T ) = {X(T ∧ t); t ≥ 0} denotes the stopped process.

Theorem A.4.3 (Theorem III.5.32 in Jacod and Shiryaev [23]). Assume that (B,C, ν) and (β, Y ) are

given by Theorem A.2.5, {Ft; t ≥ 0} is generated by X = {X(t); t ≥ 0}. Let ∆ =
⋃
n[0, Tn] up to

Pθ-evanescent set where {Tn;n ∈ N} is a sequence of strict stopping times. Suppose that local uniqueness

holds for the martingale problem s(X|π;B,C, ν), with Pθ as its unique solution. If Pθ
loc
� Pθ0 , then the

density process Z = {Z(t); t ≥ 0} of Pθ relative to Pθ0 is given by

Z(t) =

 Z0 exp
{
U(t)− 1

2 (βcβ) ·A(t)
} ∏
s≤t

(1 + ∆U(s)) e−∆U(s), t ∈ ∆,

0, t /∈ ∆.

where Z0 is (Pθ0-a.s. equals) the Radon-Nikodym derivative Z0 = dπ/dπ0.

A.5 Hellinger Processes and Absolute Continuity of Measures

We consider a filtered space (Ω,F , {Ft; t ≥ 0}) with F = F∞− and two fixed probability measure Pθ
and Pθ0 on (Ω,F). Instead of Pθ � µ and Pθ′ � µ, we will assume

Pθ
loc
� µ and Pθ0

loc
� µ.

We call Z = {Z(t); t ≥ 0} and Z0 = {Z0(t); t ≥ 0} the density process of Pθ and Pθ0 , relative to µ.

By III.3.4 in Jacod and Shiryaev [23], they are µ-martingale.

Set 
Rn = inf

{
t;Z(t) < 1

n

}
,

R′n = inf
{
t;Z0(t) < 1

n

}
,

Γ′′ =

(⋃
n

[0, Rn]

)⋂(⋃
n

[0, R′n]

)
.

Theorem A.5.1 (Theorems IV.1.18 and IV.1.22 in Jacod and Shiryaev [23]). Let α ∈ (0, 1) and Y(α) =

ZαZ1−α
0 . There exists a predictable increasing R̄+-valued process H(α; θ, θ0) = {H(α; θ, θ0, t); t ≥ 0}
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unique up to µ-indistinguishable, called Hellinger process of order α between Pθ and Pθ0 , which

meets H(α; θ, θ0, 0) = 0 and the following two conditions

H(α; θ, θ0, t) = 1Γ′′ ·H(α; θ, θ0, t)

and

Y (α, t) + Y (α, t−) ·H(α; θ, θ0, t)

is a µ-martingale. Moreover, H(α; θ, θ0) does not depend upon the measure µ in the following sense: if µ̄

is another measure with µ
loc
� µ̄ and if H(α; θ, θ0) and H′(α; θ, θ0) are the process computed through µ

and µ̄, then H(α; θ, θ0) and H′(α; θ, θ0) are µ-indistinguishable.

Theorem A.5.2 (Theorem IV.2.1 in Jacod and Shiryaev [23]). Let T be a stopping time. For α ∈ [0, 1)

let H(α; θ, θ0) be any version of the Hellinger process (see IV.1.52 in Jacod and Shiryaev [23] for the

case α = 0). There is equivalence between:

1. P Tθ � P Tθ0;

2. P 0
θ � P 0

θ0
, Pθ (H(1/2; θ, θ0, T ) <∞) = 1 and Pθ (H(0; θ, θ0, T ) = 0) = 1;

3. P 0
θ � P 0

θ0
and H(α; θ, θ0, T )

Pθ→ 0 as α ↓ 0.

Remark A.5.3. We could replace H(1/2; θ, θ0, T ) by H(β; θ, θ0, T ), for any fixed β ∈ (0, 1), in the

Theorem A.5.2.

Consider that the space (Ω,F) is endowed with a càdlàg d-dimensional process X = (Xi)i≤d and a

filtration {Ft; t ≥ 0} generated by X.

We denote by µ = µX the random measure on R+ × Rd associated with the jumps of X. We fix a

truncation function h, two triplets (B,C, ν), (B0, C0, ν0) and two initial measures π and π0 on (Ω,F0).

We also consider two probability measures Pθ and Pθ0 on (Ω,F), which are solutions to the martingale

problems s(X|π;B,C, ν) and s(X|π0;B0, C0, ν0), respectively.

Although the properties stated in Theorem A.5.1 do characterize the Hellinger process H(α; θ, θ0),

they do not give any "explicit" form to it. In order to obtain a form for the Hellinger Process, we introduce

a function ϕα : R2
+ → R+ (where for α ∈ (0, 1)), defined by

ϕα(u, v) := αu+ (1− α)v − uαv1−α.

We will consider:

1. Let A be an increasing predictable finite-valued process and let c and c′ be two processes taking

values in the set of non-negative symmetric d× d-matrices and predictable, such that

C = c ·A, C ′ = c′ ·A,

up tu a (Pθ + Pθ0)-evanescent set;

2. Let λ be a predictable random measure on R+ × Rd, such that (|x|2 + 1) ∗ λt <∞ for all t <∞
and that

ν � λ and ν0 � λ;
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3. Let U = {U(t); t ≥ 0} be a non-negative predictable function on Ω̃ such that ν = U · λ;

4. We know from (A.2) that a(ω, t) := ν
(
ω; {t} × Rd

)
≤ 1. Up to a (Pθ + Pθ0)-evanescent set, we

have

a(t) =

∫
U(t, x)λ({t} × dx) ≤ 1;

5. Denote by Σ a predictable random set such that

Σ =
{

(ω, t); |h(x)
(
U − U ′

)
| ∗ λt(ω) <∞

}
;

6. We define the stopping time

τ = inf
{
t; either t /∈ Σ, or C(t) 6= C ′(t), or t ∈ Σ and b̃ ·A(t) + B̃′(t) 6= 0

}
;

Proposition A.5.4 (Corollary IV.3.68 in Jacod and Shiryaev [23]). Suppose that the martingale problem

s

(
X

∣∣∣∣π + π0

2
;
B +B0

2
,
C + C0

2
,
ν + ν0

2

)
has at least one solution and local uniqueness for both problems s(X|π;B,C, ν) and s

(
X|π0;B0, C0, ν0

)
.

Assume that H(1/2) does not jump to infinity and that τ =∞. Then if α ∈ (0, 1), a version of H(α; θ, θ0)

is

H(α; θ, θ0, t) =
α(1− α)

2
(βcβ)1Σ ·A+ ϕα(U,U0) ∗ λ+

∑
s≤t

ϕα
(
1− a(s), 1− a0(s)

)
. (A.7)

A.6 Exponential Families of Stochastic Process

Consider a family of measures {Pθ; θ ∈ Θ} on a filtered probability space (Ω,F , {Ft; t ≥ 0},P) with

parameter set Θ ⊂ RN such that the interior int Θ is non-empty. We assume that the filtration {Ft; t ≥ 0}
satisfies the usual hypothesis.

Definition A.6.1. The class {Pθ; θ ∈ Θ} is called a exponential family on the filtered space (Ω,F , {Ft; t ≥ 0})
if there exists a σ-finite measure µ on (Ω,F) such that, for all θ ∈ Θ, Pθ

loc
� µ and

dP tθ
dµt

= a(θ, t)q(t) exp
{
γ(θ, t)>A(t)

}
, t ≥ 0, θ ∈ Θ. (A.8)

Considered as a function of θ, this Radon-Nikodym derivative is the likelihood function corresponding

to the observation of events in Ft.

Definition A.6.2. A statistical experiment {Pθ; θ ∈ Θ} forms a curved exponential family if the

likelihood function exists and is of the form

dP tθ
dP t0

= exp
{
θ>A(t)− κ(θ)S(t)

}
(A.9)

where κ : Θ→ R+ and A : Ω× R+ → RN is a càdlàg process and S : Ω× R+ → R is assumed to be

a non-decreasing continuous process with S(0) = 0 and S(t)→∞ Pθ-a.s. as t→∞ for all θ ∈ Θ.
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Definition A.6.3. We say that a function κ : Θ→ R+ is a steep function if for all θ1 ∈ Θ \ int Θ and

all θ0 ∈ int Θ,
d

ds
κ(θs)→∞ as s ↑ 1,

where θs = θ0(1− s) + θ1s, 0 < s < 1.

Theorem A.6.4 (Theorem 5.2.1 in Küchler and Sφrensen [33]). Suppose a curved exponential family of

the form (A.9) is given such that κ(·) is a steep function and S(t) > 0 for t > 0 Pθ-a.s., for all θ ∈ Θ.

Then the maximum likelihood estimator θ̂t based on observation in the time interval [0, t] exists and is

uniquely given by

θ̂t = κ̇−1

(
A(t)

S(t)

)
if and only if A(t)

S(t) ∈ int κ̇(int Θ).

Suppose θ ∈ int Θ. Then under Pθ the maximum likelihood estimator is unique for t sufficiently large and

θ̂t
t→∞−→ θ Pθ − a.s.

Theorem A.6.5 (Theorem 5.2.2 in Küchler and Sφrensen [33]). For a curved exponential family of the

form (A.9) assume that θ ∈ int Θ and there exists an increasing positive non-random function φθ(t) such

that under Pθ
φ−1
θ (t)S(t)→ η2(θ)

in probability as t→∞, where η2(θ) is a finite random variable such that it is non-negative Pθ-almost

sure. Then, under Pθ,(
S−1/2(t) (A(t)− κ̇(θ)S(t)) , φ−1

θ (t)S(t)
)
→ N (0, κ̈(θ))× Fθ

weakly as t→∞ conditionally on [η2(θ) > 0], where Fθ is the conditional distribution of η2(θ) given

[η2(θ) > 0]. Moreover, under Pθ,(
S1/2

(
θ̂t − θ

)
, φ−1

θ (t)S(t)
)
→ N

(
0, κ̈−1(θ)

)
× Fθ

weakly as t→∞ conditionally on [η2(θ) > 0]. Moreover,

− 2 logQ(t)→ χ2(k − l) (A.10)

weakly as t→∞ conditionally on [η2(θ) > 0]. Here

Q(t) =
supβ∈BL(g(β); t)

supθ∈ΘL(θ; t)

is the likelihood ratio test statistic for the hypothesis that the true parameter value θ belongs to an g(B),

where B ⊂ Rl (l < k) and g : B 7→ intΘ is a differentiable function for which the matrix {∂g/∂β} has

full rank for all β ∈ B.

Corollary A.6.6. Under conditions of Theorem A.6.5,

φ
1/2
θ (t)

(
θ̂t − θ

)
→ N

(
0,
··
κ
−1

(θ)η−2(θ)
)

weakly as t→∞ conditionally on [η2(θ) > 0].
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A more general class of models can be considered, the ones which have likelihood functions

dP tθ
dP t0

= exp


n∑
j=1

[
θ>(j)Aj(t)− κj(θ(j))Sj(t)

] , (A.11)

where θ> =
(
θ>(1), · · · , θ

>
(n)

)
∈ Θ1 × · · · ×Θn, Θj ∈ RNj , and intΘj 6= ∅. For every j we assume that

kj(·) and Sj(t) are one-dimensional and that Aj(t) is a Nj-dimensional càdlàg process. We also assume

that for each j, Sj(t) is a non-decreasing continuous process for which Sj(0) = 0 and Sj(t)→∞ Pθ-a.s.

as t→∞.

For this general class of models Küchler and Sφrensen [33] (Theorem 5.3.1, p.55.) establish the

following result.

Theorem A.6.7. Suppose Sj(t) is strict increasing for the jth component of (A.11). Then the statements

of Theorems A.6.4, A.6.5 and A.6.6 hold for this component. If the conditions hold for all j = 1, · · · , n
then (A.10) holds for the hypothesis that θ(j), j ∈ J , is the true value of these components while other

components are unspecified. Here J is an arbitrary subset of {1, · · · , n}, k =
∑

j∈J kj in (A.10).

A.7 Some Basic Concepts in Itô Integration and Martingale
Theory

Definition A.7.1. We say that a martingale is quadratic integrable on [0, t] if its second moment is

bounded.

Theorem A.7.2 (See Theorem 4.7 in Klebaner [27]). Let X = {X(t); t ≥ 0} be an adapted process such

that
∫ t

0 EX
2(s)ds <∞. Then

M(t) =

∫ t

0
X(s)dW (s), 0 ≤ t ≤ T,

is a continuous zero mean square integrable martingale.

Proposition A.7.3 (See Equation (4.25) in Klebaner [27]). Let M1(t) and M2(t) be Itô integrals of X1(t)

and X2(t) regarding the same Wiener process. Then, the quadratic covariation of M1 and M2 on [0, t] is

given by

[M1,M2] (t) =

∫ t

0
X1(s)X2(s)ds.

Central Limit Theorem

Let us establish some notations before presenting the next theorem. Let A = (ajk)N×N ∈ RN×N be a

positive semi-definite N ×N -matrix. Denote A1/2 and det(A) its positive semi-definite square root and

its determinant, respectively. Let v> = (v1, · · · , vn) ∈ RN be a vector. We denote

(diag A)> = (a11, a22, · · · , aNN )

the diagonal vector of A and diag v the diagonal N ×N -matrix with v as diagonal.
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Observe that, with this notation, the identity matrix IN can be written as IN = diag (1, · · · , 1)>.

Furthermore, diag(diag(A)) denotes the diagonal matrix that has the same diagonal of A. Remember that

the multiples of the identity, i.e.,

{λIN ;λ ∈ R}

are the center of the group of the quadratic matrix of order N ∈ N, N ≥ 2, with non-zero determinant

under the product operation. This will allow us to freely commute any matrix with diagonal matrix, when

all the elements of the diagonal are the same.

We present below a version of the Central Limit Theorem forN -dimensional martingales in continuous

time. This result is the Theorem A.7.7 in Küchler and Sφrensen [33] and its proof can be found in Küchler

and Sφrensen [34]. It is important to note that the Theorem 2.2 in Crimaldi and Pratelli [8] is a more

general version of the Theorem A.7.4 in which they suppress the assumption on the convergence of the

third condition.

Theorem A.7.4. Let M = (M1, · · · ,MN )> =
{

(M1(t), · · · ,MN (t))> ; t ≥ 0
}

be a N -dimensional

square integrable martingale with mean zero and quadratic covariation matrix [M ]. Let H(t) denote the

covariance matrix of M(t), i.e.,

H(t) = E
[
M(t)M(t)>

]
.

Assume that there exists a family of invertible non-random N ×N -matrices {K(t); t ≥ 0} such that as

t→∞ we have K(t)→ 0 and

1.
∑N

j=1 |Kjk(t)|E
[
sups≤t |∆Mk(t)|

]
→ 0, k = 1, · · · , N ;

2. K(t)[M ](t)K(t)> →W in probability,

where W is a random positive semi-definite matrix satisfying P (det W > 0) > 0;

3. K(t)H(t)K(t)> → Σ,

where Σ is a positive definite (deterministic) matrix.

Then (
K(t)M(t),K(t)[M ](t)K(t)>

)
→
(
W 1/2Z,W

)
and, conditionally on [det W > 0],

W−1/2K(t)M(t)→ Z

in distribution as t→∞, where Z is an N -dimensional standard normal distributed random vector

independent of W .

Law of Larger Numbers

Let (Ω,F , {Ft; t ≥ 0} ,P) be a filtered probability space.

Theorem A.7.5 (Liptser [38]). Let M = {M(t); t ≥ 0} be a locally square integrable martingale with

M(0) = 0 and suppose that A = {A(t); t ≥ 0} is a predictable, non-decreasing and right-continuous

process with A(0) = 0. Define

B(t) =

∫ t

0
(1 +A(s))−2 d[M ](s).

90



Then, as t→∞,
M(t)

A(t)

a.s.−→ 0,

on [A(∞) =∞] ∩ [B(∞) <∞].

Uniform Law of Large Numbers

Let Θ ⊂ RN be a compact set. Consider a family of real processes {M(θ, t); θ ∈ Θ and t ≥ 0} on a prob-

ability space (Ω,F , {Ft; t ≥ 0} ,P) such that for all θ the process {M(θ, t); t ≥ 0} is a continuous local

martingale starting at zero. Denote by [M(θ)](t) the quadratic variation of M(θ, t) and by [M(θ, θ′)](t)

that of M(θ, t)−M(θ′, t).

Theorem A.7.6 (Theorem 2 in Loukianova and Loukianov [40]). Suppose that there exists a constant

δ ∈ (0, 1] and a continuous increasing process V (t) > 0 such that V (∞) = ∞ a.s. and for all

(θ, θ′, t) ∈ Θ2 × R+

[M(θ, θ′)](t) ≤ V (t)|θ − θ′|2δ a.s.

Suppose also that there exist θ′ ∈ Θ such that

lim sup
t→∞

[M(θ′)](t)

V (t)
<∞ a.s.

Then there exists a continuous in θ modification M̃(θ, t) of M(θ, t) such that

lim
t→∞

sup
θ∈K

∣∣∣M̃(θ, t)
∣∣∣

[M(θ)](t)
= 0 a.s.

for any compact K ⊂ Θ satisfying that for all θ ∈ K

lim inf
t→∞

[M(θ)](t)

V (t)
> 0 a.s.

Burkholder-Davis-Gundy Inequalities

Proposition A.7.7 (Burkholder-Davis-Gundy Inequalities). For every 0 < p < ∞, there exist two

constants cp and Cp such that, for all local martingale M = {M(t); t ≥ 0} vanishing at zero, for any

stopping time T and any bounded predictable process H = {H(t); t ≥ 0}

cpE

[(∫ T

0
H2(s)d[M ](s)

)p/2]
≤ E

[
sup
t≤T

∣∣∣∣∫ t

0
H(s)dM(s)

∣∣∣∣p
]

≤ CpE

[(∫ T

0
H2(s)d[M ](s)

)p/2]
. (A.12)

Proof. See Revuz and Yor [57, Chapter IV, Section 4, pp.160-170].

A.8 M-Estimators

The next result gives us a sufficient condition for the consistency in Pθ0−probability of M−estimators.

Consider Θ ⊂ RN such that (Θ, d) is a metric space. Given an arbitrary random function θ 7→Mn(θ),

consider estimators θ̂n that nearly maximize Mn, that is

Mn(θ̂n) ≥ sup
θ∈Θ

Mn(θ)− oPθ0 (1)·
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Theorem A.8.1 (Theorem 5.7 in Vaart [65]). Let Mn be random functions and let M be a fixed function

of θ such that for every ε > 0

1. supθ∈Θ |Mn(θ)−M(θ)| → 0 in Pθ0−probability;

2. supθ;d(θ,θ0)≥εMn(θ) < M(θ0)·

Then any sequence of estimators θ̂n with Mn(θ̂n) ≥Mn(θ0)− oPθ0 (1) converges in Pθ0−probability to

θ0.
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