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devo isso ao senhor. Meus sinceros agradecimentos e que Deus o abençoe sempre.
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concedida para cursar este doutorado. Em especial, aos professores Marlos Albuquerque
e Emerson Ribeiro pela amizade e apoio durante esse processo.
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Resumo

Nesta tese calculamos estimativas universais de autovalores de um sistema de equações
diferenciais eĺıpticas acoplado na forma divergente em um domı́nio limitado no espaço
Euclidiano. Como aplicação, mostramos um interessante caso de rigidez de desigualdades
de autovalores do Laplaciano, mais precisamente, consideramos uma famı́lia enumerável
de domı́nios limitados no soliton Gaussiano contrátil, que torna o comportamento de
estimativas conhecidas dos autovalores do Laplaciano invariante por uma perturbação de
primeira ordem deste operador. Também tratamos do soliton Gaussiano expansivo em
dois cenários diferentes. Finalizamos com o caso especial de tensores livres de divergência,
o qual está diretamente relacionado ao operador de Cheng-Yau.

Palavras-chave: Problemas de autovalores; Estimativas de autovalores; Sistema difer-
encial eĺıptico; Soliton Gaussiano; Resultados de Rigidez.
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Abstract

In this thesis we compute universal estimates of eigenvalues of a coupled system of elliptic
differential equations in divergence form on a bounded domain in Euclidean space. As an
application, we show an interesting case of rigidity inequalities of the eigenvalues of the
Laplacian, more precisely, we consider a countable family of bounded domains in Gaussian
shrinking soliton that makes the behavior of known estimates of the eigenvalues of the
Laplacian invariant by a first-order perturbation of the Laplacian. We also address the
Gaussian expanding soliton case in two different settings. We finish with the special case
of divergence-free tensors which is closely related to the Cheng-Yau operator.

Keywords: Eigenvalue problems; Estimate of eigenvalues; Elliptic differential system;
Gaussian soliton; Rigidity results.
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Introduction

In this thesis, we study an eigenvalue problem that involve a second-order elliptic operator

in divergence form. It is an eigenvalue problem for a coupled system of second-order

elliptic differential equations on a bounded domain in Euclidean spaces. We will be more

precise in the next paragraph where we present such problem. For this, let us consider a

symmetric positive definite (1, 1)-tensor T and a smooth function η on an n-dimensional

Euclidean space Rn, so that we can define a second-order elliptic differential operator L

in the (η, T )-divergence form, as follows

L f := divη(T (∇f)) = div(T (∇f))− ⟨∇η, T (∇f)⟩,

where div stands for the divergence operator and ∇ for the gradient operator.

We study the eigenvalue estimates for an operator which is a second-order perturba-

tion of L . More precisely, let Rn be the n-dimensional Euclidean space with its canonical

metric ⟨, ⟩, and Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω. We com-

pute universal estimates of the eigenvalues of the coupled system of second-order elliptic

differential equations, namely:{
L u+ α∇(divηu) = −σu in Ω,

u = 0 on ∂Ω,
(1)

where u = (u1, u2, . . . , un) is a vector-valued function from Ω to Rn, the constant α is

non-negative and L u = (L u1,L u2, . . . ,L un).

Notice that, since Ω is bounded in the mentioned problem, there exist two positive

real constants ε and δ, such that εI ≤ T ≤ δI, where I is the (1, 1)-tensor identity on Rn.

Problem 1 is partial differential equations (PDE) with the Dirichlet boundary con-

dition. It is known that PDE’s play a fundamental role not only from a mathematical

point of view, but also in the description and modeling of many physical and probabilistic

phenomena. Such equations appear, for example, in Laplace’s equation, in Helmholtz’s

equation, linear transport equation, in Liouville’s equation, Kolmogorov’s equation and

Schrödinger’s equation. In a differential geometry context, an interesting example of PDE

appears in the equation of minimal surfaces, see e.g. [14,17]. In particular, Schrödinger’s

equation is a central equation in quantum mechanics. For instance, the eigenvalues of

1



Schrödinger’s equation corresponding to the allowed energy levels of the quantum sys-

tem, and the gap between them is the gap between the energy levels. These eigenvalues

are related to the Hamiltonian operator that appears in Schrödinger’s equation. Indeed,

this equation is an eigenvalue problem for the Hamiltonian operator where the eigenvalues

are the (allowed) total energies.

So, the analysis of the sequence of the eigenvalues of elliptic differential operators in

divergence forms in bounded domains is an interesting topic in both mathematics and

physics. In particular, problems linking the shape of a domain to the spectrum of an

operator are among the most fascinating of mathematical analysis. One of the reasons

which make them so attractive is that they involve different fields of mathematics such

as spectral theory, Riemannian geometry, and partial differential equations. Not only the

literature about this subject is already very rich, but also it is not unlikely that operators

in divergence forms may play a fundamental role in the understanding of countless physical

facts.

We now present a brief overview of research related to Problem 1. When η is a constant

and T is the identity operator I on Rn, Problem 1 becomes{
∆u+ α∇(div u) = −σu in Ω,

u = 0 on ∂Ω,
(2)

where ∆u = (∆u1, . . . ,∆un) and ∆ is the Laplacian operator on C∞(Ω). The operator

∆ + α∇div is known as Lamé’s operator. In the 3-dimensional case it shows up in

the elasticity theory, more precisely, in this case Problem 2 for α = λ+µ
µ

describes the

behaviour of the elastic vibration, where λ and µ are the positive constants of Lamé and

u = (u1, u2, u3) denotes the elastic displacement vector, see Pleijel [30] or Kawohl and

Sweers [21].

In 1985, for Problem 2, Levine and Protter [23] proved

k∑
i=1

σi ≥
4π2n

n+ 2

k1+2/n

(V ωn−1)2/n
, for k = 1, 2, . . . ,

where ωn−1 is the volume of the (n− 1)-dimensional unit sphere. Furthermore, Hook [20]

studied universal inequalities for eigenvalues of Problem 2 and proved that

k∑
i=1

σi

σk+1 − σi

≥ n2k

4(n+ α)
, for k = 1, 2, . . . . (3)

Livitin and Parnovski [24] obtained

σk+1 − σk ≤
max{4 + α2; (n+ 2)α + 8}

n+ α

1

k

k∑
i=1

σi, for k = 1, 2, . . . .

2



Cheng and Yang [9] proved the following universal inequality of Yang type:

k∑
i=1

(σk+1 − σi) ≤
2
√
n+ α

n

{ k∑
i=1

(σk+1 − σi)
1
2

k∑
i=1

(σk+1 − σi)
1
2σi

} 1
2
. (4)

Also in [9], the authors gave the following estimate for a lower order eigenvalues of the

Problem 2

σ2 + σ3 + · · ·+ σn+1

σ1

≤ n+ 4(1 + α). (5)

Recently, Chen et al. [7] proved the following

σk+1 − σk ≤
4(n+ α)

n2

1

k

k∑
i=1

σi. (6)

When η is not necessarily constant and T = I, Problem 1 is rewritten as{
∆ηu+ α∇(divηu) = −σu in Ω,

u = 0 on ∂Ω,
(7)

where ∆ηu = (∆ηu
1, . . . ,∆ηu

n) and ∆η = divη∇ is the drifted Laplacian operator on

C∞(Ω). Du and Bezerra in [13] obtained the following estimates for the eigenvalues of

Problem 7

σk+1 − σk ≤
4(n+ α)

n2

1

k

k∑
i=1

(σi + C0), (8)

where C0 = supΩ{1
2
∆η− 1

4
|∇η|2}. These authors, also get the following estimate for lower

order eigenvalues of Problem 7

n∑
i=1

(σi+1 − σ1) ≤ 4(1 + α)(σ1 + C0). (9)

Notice that Inequality (8) generalizes Inequality (6), whereas Inequality (9) generalizes

Inequality (5).

This thesis is divided into two main chapters. In Chapter 1 we establish the conven-

tions, definitions, and tools needed for all the rest of the work. For example, in Section 1.2

we give a brief review of some background material on tensors. In Section 1.3, we also

present some properties of the operator L such as its relation with the Cheng-Yau oper-

ator. In the last two sections of the chapter, we present some properties of the problem

in question as well as we list some results that will be useful in the next chapter.

In Chapter 2 we compute inequalities for eigenvalues of Problem 1. In Section 2.1,

we begin by presenting two main results, in the more general settings of Problem 1.

3



We observe that Lemma 1 below is the key tool in this chapter, which is known in the

literature in particular cases. For instance, in a particular case, it was used by Chen et

al. [7] to prove Inequality (4).

Lemma 1. Let Ω ⊂ Rn be a bounded domain, σi be the i-th eigenvalue of Problem 1

and ui be a normalized vector-valued eigenfunction corresponding to σi. Then, for any

f ∈ C2(Ω) ∩ C1(∂Ω) and any positive constant B, we obtain

k∑
i=1

(σk+1 − σi)
2
{
(1−B)

∫
Ω

T (∇f,∇f)|ui|2dm−Bα

∫
Ω

|∇f · ui|2dm
}

≤ 1

B

k∑
i=1

(σk+1 − σi)∥T (∇f,∇ui) +
1

2
L fui∥2,

where T (∇f,∇ui) = (T (∇f,∇u1), . . . , T (∇f,∇un)) and ui = (u1
i , . . . , u

n
i ).

From Lemma 1 we obtain our first theorem, which is a quadratic inequality of σk+1.

Theorem 1. Let Ω ⊂ Rn be a bounded domain, and ui be a normalized eigenfunction

corresponding to i-th eigenvalue σi of Problem 1. For any positive integer k, we have

k∑
i=1

(σk+1 − σi)
2 ≤ 4δ(nδ + α)

n2ε2

k∑
i=1

(σk+1 − σi)
{[

(σi − α∥divηui∥2)
1
2 +

T0

2
√
δ

]2
+

C0

δ

}
,

where

C0 = sup
Ω

{1

2
div(T 2(∇η))− 1

4
|T (∇η)|2

}
+

δ

2
T0η0, (10)

T0 = supΩ |tr(∇T )| and η0 = supΩ |∇η|.

We observe that the quadratic estimate in Theorem 1 is the most appropriate inequal-

ity for the applications of our results in the Chapter 2. In particular, the constant C0 in

(10) has a crucial importance for us.

In Section 2.1, we also give an estimate for the sum of lower order eigenvalues in terms

of the first eigenvalue and its correspondent eigenfunction.

Theorem 2. Let Ω ⊂ Rn be a bounded domain, σi be the i-th eigenvalue of Problem 1, for

i = 1, . . . , n, and u1 be a normalized eigenfunction corresponding to the first eigenvalue.

Then, for any positive integer k, we have

n∑
i=1

(σi+1 − σ1) ≤
4δ(δ + α)

ε2

{[
(σ1 − α∥divηu1∥2)

1
2 +

T0

2
√
δ

]2
+

C0

δ

}
,

where C0 is given by (10).

We note that, since α ≥ 0, from Theorem 2 we obtain immediately Inequality (9), and

consequently Inequality (5), see Corollary 2.

4



In Subsection 2.2.1, we obtain applications for the case where the operator L becomes

the drifted Laplacian ∆η, that is, for Problem 7. The first one is the following quadratic

inequality in σk+1 obtained immediately from Theorem 1.

Corollary 1. Let Ω ⊂ Rn be a bounded domain and ui be a normalized eigenfunction

corresponding to i-th eigenvalue σi of Problem 7. For any positive integer k, we have

k∑
i=1

(σk+1 − σi)
2 ≤ 4(n+ α)

n2

k∑
i=1

(σk+1 − σi)(σi − α∥divηui∥2 + C0), (11)

where C0 = supΩ

{
1
2
∆η − 1

4
|∇η|2

}
. Moreover, σi − α∥divηui∥2 +C0 > 0, for i = 1, . . . , k.

The following corollary is an immediate consequence of Theorem 2.

Corollary 2. Let Ω ⊂ Rn be a bounded domain, σi be the i-th eigenvalue of Problem 7, for

i = 1, . . . , n, and u1 be a normalized eigenfunction corresponding to the first eigenvalue.

For any positive integer k, we get

n∑
i=1

(σi+1 − σ1) ≤ 4(1 + α)(σ1 +D1), (12)

where D1 = −α∥divηu1∥2 + C0 and C0 = supΩ

{
1
2
∆η − 1

4
|∇η|2

}
.

Let us consider

D0 = −α min
j=1,...,k

∥divηuj∥2 + C0, (13)

so that, from (11), we obtain

k∑
i=1

(σk+1 − σi)
2 ≤ 4(n+ α)

n2

k∑
i=1

(σk+1 − σi)(σi +D0). (14)

Notice that σi +D0 > 0, and we immediately recover the following inequality:

k∑
i=1

(σk+1 − σi)
2 ≤ 4(n+ α)

n2

k∑
i=1

(σk+1 − σi)σi, (15)

which has been obtained by Chen et al. [7, Corollary 1.2] for Problem 2. Indeed, it follows

from (13) and (14), since α ≥ 0 and we can take η to be a constant. Moreover, Inequal-

ity (15) implies Inequality (4), whereas Inequality (4) implies Inequality (3). However, we

highlight that Inequality (14) provides an estimate for the eigenvalues of Problem 2 which

is better than Inequality (15). Besides, note that Inequality (12) is better than Inequal-

ity (9) in Du and Bezerra [13]; whereas Inequality (14) is better than Inequality (1.3)

again in [13].

5



Since Inequality (14) is a quadratic inequality for σk+1, solving it we obtain an upper

bounded for σk+1 and the gap of consecutive eigenvalues of Problem 7.

Corollary 3. Under the same setup as in Corollary 2.2.1, we have

σk+1 +D0 ≤
(
1 +

2(n+ α)

n2

)1
k

k∑
i=1

(σi +D0) +
[(2(n+ α)

n2

1

k

k∑
i=1

(σi +D0)
)2

−
(
1 +

4(n+ α)

n2

)1
k

k∑
j=1

(
σj −

1

k

k∑
i=1

σi

)2] 1
2

and

σk+1 − σk ≤2
[(2(n+ α)

n2

1

k

k∑
i=1

(σi +D0)
)2

−
(
1 +

4(n+ α)

n2

)1
k

k∑
j=1

(
σj −

1

k

k∑
i=1

σi

)2] 1
2
,

(16)

where D0 is given by (13).

We emphasize that Inequality (16) strengthens inequalities (6) and (8), in the sense

that they are easily obtained from Inequality (16).

Again from (14) and by applying the recursion formula of Cheng and Yang, we obtain

the following corollary.

Corollary 4. Under the same setup as in Corollary 2.2.1, we have

σk+1 +D0 ≤
(
1 +

4(n+ α)

n2

)
k

2(n+α)

n2 (σ1 +D0), (17)

where D0 is given by (13).

From the classical Weyl’s asymptotic formula for the eigenvalues [38], we know that

estimate (17) is optimal in the sense of the order on k.

Notice that the appearance of the constant C0 in the previous results is natural, since

we did not impose any restriction on the function η. We highlight that this constant has

an interesting geometric interpretation, actually, it can be obtained as the supremum of

the scalar curvature on the warped product Ω × S1 with respect a rescaling the warped

metric g = g0 + e−ηdθ2, where g0 stands for the canonical metric in the domain Ω ⊂ Rn

and dθ2 is the canonical metric of the unit sphere S1.

So, we ask the following natural question:

Question 1. Under which conditions the inequalities for the eigenvalues obtained in the

previous corollaries do not depend on the constant C0 for a nontrivial function η?

We give an answer to this question in Corollary 5 considering annular domains in the

Gaussian shrinking soliton. First, we recall that the gradient Ricci soliton (Mn, g, η) is
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characterized by Ric +∇2η = λg, for some constant λ, where Ric +∇2η is called the

Bakry-Emery Ricci tensor. For λ = 0, λ > 0 and λ < 0, the gradient Ricci soliton is called

steady, shrinking, and expanding, respectively. Then, let us consider the countable family

of bounded domains {Ωl}∞l=1 in Gaussian shrinking or expanding soliton (Rn, δij,
λ
2
|x|2)

given by

Ωl = B(rl)− B̄(
√

2n/|λ|) =
{
x ∈ Rn;

2n

|λ|
< |x|2 < r2l

}
, (18)

where rl >
√

2n/|λ| is a rational number, and B(r) stands for the open ball of radius r

centered at the origin in Rn.

Corollary 5 (Non-dependence of η). Let us consider the family of domains {Ωl}∞l=1

given by (18) in Gaussian shrinking soliton (Rn, δij,
λ
2
|x|2). Let σi be the i-th eigenvalue

of the drifted Laplacian ∆η on real-valued functions, with drifting function η(x) = λ
2
|x|2,

on each Ωl with Dirichlet boundary condition. Then,

k∑
i=1

(σk+1 − σi)
2 ≤ 4

n

k∑
i=1

(σk+1 − σi)σi, (19)

σk+1 ≤
(
1 +

2

n

)1
k

k∑
i=1

σi +
[( 2

n

1

k

k∑
i=1

σi

)2

−
(
1 +

4

n

)1
k

k∑
j=1

(
σj −

1

k

k∑
i=1

σi

)2] 1
2
, (20)

σk+1 − σk ≤ 2
[( 2

n

1

k

k∑
i=1

σi

)2

−
(
1 +

4

n

)1
k

k∑
j=1

(
σj −

1

k

k∑
i=1

σi

)2] 1
2
,

σk+1 ≤
(
1 +

4

n

)
k

2
nσ1 (21)

and
n∑

i=1

(σi+1 − σ1) ≤ 4σ1. (22)

We highlight that Inequalities (19), (20), (21) and (22) have the same behavior as the

known estimates of the eigenvalues of the Laplacian, see [8, Inequality (1.7)](or in the

proof of [39, Theorem 1]), [8, Inequality (1.8)], [8, Corollary 2.1] and [3, Inequality (6.2)],

respectively. Therefore, the countable family of bounded in Gaussian shrinking soliton

given by (18) makes the behavior of known estimates of the Laplacian invariant by a

first-order perturbation of the Laplacian.

In the next two corollaries we will apply our results, in the case of identity tensor, to

the Gaussian expanding soliton.

Corollary 6. Let B(r) be the open ball of radius r centered at the origin in Gaussian

expanding soliton (Rn, δij,
λ
2
|x|2). Let σ1 be the first eigenvalue of the drifted Laplacian
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∆η on real-valued functions, with drifting function η(x) = λ
2
|x|2, on B(r) with Dirichlet

boundary condition. Then, we have

σ1 ≥
π2n

64r2
− λn

2
,

and the next estimate for the sum of lower order eigenvalues σi of ∆η in terms of the first

eigenvalue
n∑

i=1

(σi+1 − σ1) ≤ 4(σ1 +
λn

2
).

Corollary 7. Let us consider the family of domains {Ωl}∞l=1 given by (18) in Gaussian

expanding soliton (Rn, δij,
λ
2
|x|2). Let σi be the i-th eigenvalue of the drifted Laplacian ∆η

on real-valued functions, with drifting function η(x) = λ
2
|x|2, on each Ωl with Dirichlet

boundary condition. Then, it is valid the following estimate for the sum of lower order

eigenvalues of ∆η in terms of the first eigenvalue:

n∑
i=1

(σi+1 − σ1) ≤ 4(σ1 + λn).

In Subsection 2.2.2 we generalize the main results of Subsection 2.2.1. For this, let us

consider the case where the tensor T is divergence-free, that is, divT = 0. Divergence-free

tensors often appear in physical facts, for instance, dynamic fluids, see Serre [36]. We

highlight that Serre’s work deals with divergence-free positive definite symmetric tensors

and fluid dynamics. We can notice that, when T is divergence-free (see Eq. (1.13)), the

operator L becomes

L f = □f − ⟨∇η, T (∇f)⟩, (23)

where □ is the operator introduced by Cheng and Yau [11] which arise from the study of

complete hypersurfaces of constant scalar curvature in space forms. Therefore, Eq. (23) is

a first-order perturbation of the Cheng-Yau operator, and it defines a drifted Cheng-Yau

operator which we denote by □η with a drifting function η. Furthermore, in this case, our

Problem 1 becomes {
□ηu+ α∇(divηu) = −σu in Ω,

u = 0 on ∂Ω,
(24)

where u = (u1, u2, . . . , un) is a vector-valued function from Ω to Rn, the constant α is

non-negative and □ηu = (□ηu
1,□ηu

2, . . . ,□ηu
n).

Now, also from Theorems 1 and 2 we immediately obtain the next two corollaries for

Problem 24.
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Corollary 8. Let Ω ⊂ Rn be a bounded domain, and ui be a normalized eigenfunction

corresponding to i-th eigenvalue σi of Problem 24. For any positive integer k, we get

k∑
i=1

(σk+1 − σi)
2 ≤ 4δ(nδ + α)

n2ε2

k∑
i=1

(σk+1 − σi)(σi − α∥divηui∥2 +
C0

δ
),

where C0 = supΩ

{
1
2
div(T 2(∇η))− 1

4
|T (∇η)|2

}
.

Corollary 9. Let Ω ⊂ Rn be a bounded domain, σi be the i-th eigenvalue of Problem 2.22,

for i = 1, . . . , n, and u1 be a normalized eigenfunction corresponding to the first eigen-

value. Then, we get
n∑

i=1

(σi+1 − σ1) ≤
4δ(δ + α)

ε2
(σ1 +D1),

where D1 = −α∥divηu1∥2 + C0

δ
.

Also in Subsection 2.2.2, from Corollary 8 and following the steps of the proof of Corol-

lary 3, we obtain the inequalities.

Corollary 10. Under the same setup as in Corollary 8, and by defining D0 = C0

δ
−

αminj=1,...,k ∥divηuj∥2, we have

σk+1 +D0 ≤
(
1 +

2δ(nδ + α)

ε2n2

)1
k

k∑
i=1

(σi +D0) +
[(2δ(nδ + α)

ε2n2

1

k

k∑
i=1

(σi +D0)
)2

−
(
1 +

4δ(nδ + α)

ε2n2

)1
k

k∑
j=1

(
σj −

1

k

k∑
i=1

σi

)2] 1
2

and

σk+1 − σk ≤ 2
[(2δ(nδ + α)

ε2n2

1

k

k∑
i=1

(σi +D0)
)2

−
(
1 +

4δ(nδ + α)

ε2n2

)1
k

k∑
j=1

(
σj −

1

k

k∑
i=1

σi

)2] 1
2
.

Again from Corollary 8 and by applying the recursion formula of Cheng and Yang [8], we

obtain the next corollary.

Corollary 11. Under the same setup as in Corollary 10, we have

σk+1 +D0 ≤
(
1 +

4δ(δn+ α)

ε2n2

)
k

2δ(nδ+α)

ε2n2 (σ1 +D0).

In Section 2.3, in the more general setting, we obtain the gap of consecutive eigenvalues

of Problem 2.1. In fact, since α ≥ 0, immediately from Theorem 1, we obtain

k∑
i=1

(σk+1 − σi)
2 ≤ 4δ(nδ + α)

n2ε2

k∑
i=1

(σk+1 − σi)
[(√

σi +
1

2
√
δ
T0

)2

+
C0

δ

]
. (25)
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Hence, from Inequality (25) we get the following estimate.

Corollary 12. Under the same setup as in Theorem 1, we get

σk+1 ≤ ςk +
√

ς2k − ϑk

and the gap of any consecutive eigenvalues

σk+1 − σk ≤ 2
√

ς2k − ϑk,

where

ςk =
1

k

{ k∑
i=1

σi +2δ(nδ+α)
n2ε2

∑k
i=1

[(√
σi +

1
2
√
δ
T0

)2

+ C0

δ

]}
and

ϑk =
1

k

{ k∑
i=1

σ2
i +4δ(nδ+α)

n2ε2

∑k
i=1 σi

[(√
σi +

1
2
√
δ
T0

)2

+ C0

δ

]}
.

From Corollary 2.3.1, using Chebyshev’s inequality we have.

Corollary 13. Under the same setup as in Theorem 2.1.1, we get

σk+1 ≤
1

k

k∑
i=1

σi +
4δ(nδ + α)

n2ε2
1

k

k∑
i=1

[(√
σi +

1

2
√
δ
T0

)2

+
C0

δ

]
(26)

and the gap of any consecutive eigenvalues

σk+1 − σk ≤
4δ(nδ + α)

n2ε2
1

k

k∑
i=1

[(√
σi +

1

2
√
δ
T0

)2

+
C0

δ

]
. (27)
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Chapter 1

Elliptic differential system in

divergence form

In this chapter, we establish the tools, notations, conventions, and definitions needed for

all the rest of the work. We start the chapter by presenting definitions and properties

about differential operators in Section 1.1, e.g., the Laplacian operator. Next, we present

the main properties regarding tensors in Section 1.2. In Section 1.3, we will see the

motivation for operator L and present some important information such as its relation

with the Cheng-Yau operator. In the last two sections of this chapter, we see important

tools for the course of the thesis, for instance, the recursive formula of Cheng and Yang.

We would like to emphasize that throughout the text we are working with bounded

domains.

1.1 Gradient, Hessian and Laplacian

In this section we give definitions of the operators: gradient, Hessian and Laplacian. The

interested reader is referred to the book by Chavel [6] for more details.

Let us consider a Riemannian manifold (M, ⟨, ⟩) so that we define the following oper-

ators.

Definition 1.1.1. Given a real-valued Ck, k ≥ 1, function f on M , we define the gradient

of f , denoted by ∇f , to be the vector field on M for which

⟨∇f,X⟩ = X(f),

for all X ∈ X(M).

One has for all functions f, h on M

i) ∇(f + h) = ∇f +∇h;
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ii) ∇(fh) = h∇f + f∇h.

Definition 1.1.2. Given a Ck, k ≥ 1, vector field X on M , define the real-valued function

the divergence of X, divX, by

(divX)(p) = trace{Y → ∇YX},

where Y ∈ TpM and ∇ is the Levi-Civita connection of M .

The divergence of X is a Ck−1 function on M , and for the function f , and vector fields

X, Y on M , we have the followings properties

i) div(X + Y ) = divX + divY ;

ii) div(fX) = f(divX) + ⟨∇f,X⟩.

Another important operator is the Hessian, its definition is given below.

Definition 1.1.3. Given a real-valued Ck, k ≥ 2, function f on M , we define the Hessian

of f , denoted by ∇2f , by

∇2f(X, Y ) = ⟨∇X∇f, Y ⟩, for all X, Y ∈ X(M).

Now we define the Laplacian operator of real-valued functions on M .

Definition 1.1.4. For any Ck, k ≥ 2, function f on M we define the function the Lapla-

cian of f , denoted by ∆f , by

∆f = div(∇f).

One has that ∆f ∈ Ck−2, and from divergence properties, the Laplacian satisfies

i) ∆(f + h) = ∆f +∆h;

ii) div(h∇f) = h∆f + ⟨∇h,∇f⟩;

iii) ∆(fh) = h∆f + 2⟨∇f,∇h⟩+ f∆h.

To finish this section, we would like to observe the following relation between Hessian

and Laplacian

∆f = tr(∇2f) for all f ∈ Ck, k ≥ 2.

1.2 Tensors in Riemannian manifolds

Let us start this section with the tensor definition and its properties. This is the fun-

damental concept for understanding this work. The interested reader is referred to the

books by Petersen [29] and Lee [22] for further results about tensors.
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Definition 1.2.1. A (1, r)-tensor in a Riemannian manifold (M, ⟨, ⟩) is a multilinear

map

T : X(M)× . . .× X(M)︸ ︷︷ ︸
(r−factors)

−→ X(M)

over the ring C∞(M) of differential maps in M . Moreover, a (0, r)-tensor is defined in

an analogous way just by changing the counter-domain to the ring C∞(M) of differential

maps in M . Formally

T (Y1, . . . , fX + ℓY, . . . , Yr) = fT (Y1, . . . , X, . . . , Yr) + ℓT (Y1, . . . , Y, . . . , Yr),

for all X, Y ∈ X(M) and f, ℓ ∈ C∞(M).

We can identify a (0, r)-tensor T with a (1, r + 1)-tensor which we will still indicate

by T through the Riemannian metric ⟨, ⟩, as follow

⟨T (X1, . . . , Xr−1), Xr⟩ = T (X1, . . . , Xr).

In particular, the metric tensor ⟨, ⟩ is identified with the identity (1, 1)-tensor I in X(M).

Another important definition is the definition of a covariant derivative of a tensor.

Definition 1.2.2. The covariant derivative of an (1, r)-tensor T is an (1, r + 1)-tensor

∇T given by

∇T (X, Y1, . . . , Yr) = ∇X(T (Y1, . . . , Yr))− T (∇XY1, . . . , Yr)− · · · − T (Y1, . . . ,∇XYr).

For each X ∈ X(M) we can define the covariant derivative ∇XT of T as a tensor of the

same order of T given by

∇XT (Y1, . . . , Yr) := ∇T (X, Y1, . . . , Yr).

Analogously the covariant derivative of the a (0, r)-tensor is a (0, r + 1)-tensor given

by (1.2.2). The tensor T is parallel when ∇T ≡ 0.

Another important concept is the divergence of a tensor.

Definition 1.2.3. We define the divergence of a (1, r)-tensor T in (Mn, ⟨, ⟩) as the (0, r)-
tensor given by

(divT )(v1, . . . , vr)(p) = tr{w 7→ (∇wT )(v1, . . . , vr)(p)},

where p ∈ Mn, (v1, . . . , vr) ∈ TpM ×· · ·×TpM and tr denote the trace. Moreover, we say

that the tensor T is divergence-free when divT = 0.
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Given an n-dimensional Riemannian manifold (M, ⟨, ⟩), to each X ∈ X(M) we asso-

ciate the (0, 1)-tensor X♭ : X(M) → C∞(M), given by

X♭(Y ) = ⟨X, Y ⟩ for all Y ∈ X(M).

We denote by ♯ : X∗(M) → X(M) the inverse of the mapping ♭ : X(M) → X∗(M),

called the musical isomorphism.

Now we recall the Hilbert-Schmidt inner product, for this, let {e1, . . . , en} be an or-

thonormal basis in TpM , S and T be (1, 1)-tensor with adjoints S∗ and T ∗, respectively.

The Hilbert-Schmidt inner product is given by

⟨T, S⟩ := tr(TS∗) =
n∑

i=1

⟨TS∗(ei), ei⟩ =
n∑

i=1

⟨S∗(ei), T
∗(ei)⟩ =

n∑
i=1

⟨T (ei), S(ei)⟩.

Let T be a symmetric and positive definite (1, 1)-tensor in a Riemannian manifold

Mn, let us define the vector field tr(∇T ) ∈ X(M) by

tr(∇T ) :=
n∑

i=1

(∇T )(ei, ei) =
n∑

i=1

(
∇eiT (ei)− T (∇eiei)

)
, (1.1)

where {e1, . . . , en} is a local orthonormal frame in p ∈ M .

Since T is symmetric, ∇XT is also symmetric for each X ∈ X(M), that is,

⟨(∇XT )Y, Z⟩ = ⟨Y, (∇XT )Z⟩, ∀Y, Z ∈ X(M). (1.2)

In fact, for X, Y, Z ∈ X(M) we have

⟨(∇XT )Y, Z⟩ = ⟨∇XT (Y )− T (∇XY ), Z⟩

= X⟨T (Y ), Z⟩ − ⟨T (Y ),∇XZ⟩ − ⟨∇XY, T (Z)⟩

= X⟨Y, T (Z)⟩ − ⟨Y, T (∇XZ)⟩ − ⟨∇XY, T (Z)⟩

= ⟨Y,∇XT (Z)− T (∇XZ)⟩ = ⟨Y, (∇XT )Z⟩.

Using this fact we get the following lemma.

Lemma 1.2.1. Let T be a (1, 1)-tensor symmetric in a Riemannian manifold Mn. If T

is divergence-free, then tr(∇T ) = 0.

Proof. Fix p ∈ M and let {e1, . . . , en} be a local orthonormal geodesic frame in an open
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Ω ⊂ M containing p. Since T is divergence-free, that is, divT = 0, from (1.2) we have

0 = divT (v) =
n∑

i=1

⟨(∇eiT )(v), ei⟩ =
n∑

i=1

⟨v, (∇eiT )(ei)⟩

= ⟨v,
n∑

i=1

(∇eiT )(ei)⟩, for all v ∈ X(Ω),

hence
∑n

i=1(∇eiT )(ei) = 0. Therefore, from (1.1)

tr(∇T ) =
n∑

i=1

(∇T )(ei, ei) =
n∑

i=1

(∇eiT )(ei) = 0.

Lemma 1.2.2. Let T be a (1, 1)-tensor symmetric and positive definite in a Riemannian

manifold Mn. If εI ≤ T ≤ δI, for some positive real numbers ε and δ, then

ε⟨T (X), X⟩ ≤ |T (X)|2 ≤ δ⟨T (X), X⟩ for all X ∈ X(M). (1.3)

In particular, we obtain

ε2|∇η|2 ≤ |T (∇η)|2 ≤ δ2|∇η|2, (1.4)

for some function η ∈ C∞(M).

Proof. By hypotheses, we have

ε|X|2 ≤ ⟨T (X), X⟩ ≤ δ|X|2 for all X ∈ X(M). (1.5)

Since T is symmetric and positive definite there exists a local frame {ei}ni=1 such that

T (ei) = γiei with γi > 0 for all 1 ≤ i ≤ n. From (1.5) we get

ε ≤ γi = ⟨T (ei), ei⟩ ≤ δ for all 1 ≤ i ≤ n. (1.6)

Let X ∈ X(M), which can be expressed in terms of this frame as X =
∑n

i=1 aiei, from

(1.6) we obtain

|T (X)|2 =⟨T (
n∑

i=1

aiei), T (
n∑

j=1

ajej)⟩ =
n∑

i=1

γ2
i a

2
i .

Now note that

ε

n∑
i=1

γia
2
i ≤

n∑
i=1

γiγia
2
i ≤ δ

n∑
i=1

γia
2
i
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which is enough to complete the proof of the lemma.

1.3 Operator L in the divergence form and its prop-

erties

In this section, the manifold (Mn, ⟨, ⟩) is assumed to be complete and the bounded domain

Ω ⊂ M is assumed to be connected (otherwise the problem decomposes into a finite

number of independent subproblems) and with smooth boundary ∂Ω. The section is brief

and serves to set the stage, introducing some basic notation and describing what is meant

by the properties of a (1, 1)-tensor on bounded domains.

Throughout the thesis, we will be constantly using the identification of a (0, 2)-tensor

T : X(Ω) × X(Ω) → C∞(Ω) with its associated (1, 1)-tensor T : X(Ω) → X(Ω) by the

equation

⟨T (X), Y ⟩ = T (X, Y ).

In particular, the tensor ⟨, ⟩ will be identified with the identity I in X(Ω).

We would like to extend the definition of the divergence as follows.

Definition 1.3.1. For each X ∈ X(M) and a fixed function η ∈ C∞(M), let us define

the η-divergence of X as follows

divηX := eηdiv(e−ηX) = divX − ⟨∇η,X⟩.

Therefore, we can see from the previous definition and the usual properties of diver-

gence of vector fields that

divη(fX) = fdivηX + ⟨∇f,X⟩ and div(e−ηX) = e−ηdivηX, (1.7)

for all f ∈ C∞(M).

We can define a second-order elliptic differential operator L in the (η, T )-divergence

form as follows:

Definition 1.3.2. Let T be a symmetric and positive definite (1, 1)-tensor on a Rieman-

nian manifold (M, ⟨, ⟩). Let us define the (η, T )-divergence operator by

L f := divη(T (∇f)) = div(T (∇f))− ⟨∇η, T (∇f)⟩, (1.8)

for all f ∈ C∞(M), where div stands for the divergence operator and ∇ for the gradient

operator.

Now, we see some information and properties of the operator L . Notice that the

(η, T )-divergence form of L in Eq. (1.8) on Ω allows us to check that the divergence
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theorem remains true in the form∫
Ω

divηXdm =

∫
∂Ω

⟨X, ν⟩dµ. (1.9)

In particular, for X = T (∇f),∫
Ω

L fdm =

∫
∂Ω

T (∇f, ν)dµ,

where dm = e−ηdΩ and dµ = e−ηd∂Ω are the weight volume form on Ω and the volume

form on the boundary ∂Ω induced by the outward unit normal vector ν on ∂Ω, respectively.

Thus, the integration by parts formula is given by∫
Ω

ℓL fdm = −
∫
Ω

T (∇ℓ,∇f)dm+

∫
∂Ω

ℓT (∇f, ν)dµ, (1.10)

for all ℓ, f ∈ C∞(Ω). Hence, L is a formally self-adjoint operator in the Hilbert space of

all functions in L2(Ω, dm) that vanish on ∂Ω, with inner product given by (1.10).

Moreover, since L f := divη(T (∇f)), for all real-valued functions f, ℓ ∈ C∞(Ω) it is

immediate from the properties of divη and the symmetry of T that

L (fh) = fL h+ 2T (∇f,∇h) + hL f. (1.11)

In fact, from (1.7) we have

L (fh) = divη(T (∇(fh))) = divη(T (f∇h+ h∇f))

= divηT (f∇h) + divη(T (h∇f))

= fdivη(T (∇h)) + ⟨∇f, T (∇h)⟩+ hdivη(T (∇f)) + ⟨∇h, T (∇f)⟩

= fL + 2T (∇f,∇h) + hL f.

Moreover, we can see that the operator L appears as the trace of a (1, 1)-tensor on a

Riemannian manifold Mn. In fact, let us consider the (1, 1)-tensor

τη,f := ∇T (∇f)− 1

n
T (∇f,∇η)I,
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we have

tr(τη,f ) =
n∑

i=1

⟨∇T (∇f)(ei)−
1

n
T (∇f,∇η)ei, ei⟩

=
n∑

i=1

⟨∇eiT (∇f), ei⟩ −
1

n
T (∇f,∇η)

n∑
i=1

⟨ei, ei⟩

= divT (∇f)− T (∇f,∇η) = L f.

Hence, we obtain

τ̊η,f = τη,f −
L f

n
I,

and

|τ ◦η,ff |2 ≥
(L f)2

n
.

Cheng and Yau [11] introduced a differential operator appropriate for the study of

complete hypersurfaces of constant scalar curvature in space forms, namely

□f = tr(∇2f ◦ T ) = ⟨∇2f, T ⟩,

where f ∈ C∞(M) and T is a symmetric (1, 1)-tensor. In fact, with a careful study of

this operator, using a divergence-free tensor, Cheng and Yau obtained remarkable rigidity

results for such hypersurfaces. For instance, for Euclidean space, they proved that the only

complete and non-compact hypersurfaces with non-negative constant normalized scalar

curvature and non-negative sectional curvature are the generalized cylinders, for more

details see [11].

It is worth mentioning here the paper by Gomes and Miranda [15] from which we know

some geometric motivations to work with the operator L in the (η, T )-divergence form

in bounded domains in Riemannian manifolds. They showed that it appears as the trace

of a (1, 1)-tensor on a Riemannian manifold M , and computed a Bochner-type formula

for it. They also observed a relation between operator L and operator □, see Eq. (1.13).

Such a relation follows from

divη(T (h∇f)) = h⟨divηT,∇f⟩+ h⟨∇2f, T ⟩+ T (∇h,∇f), (1.12)

where divηT := divT − dη ◦ T is the η-divergence of a symmetric tensor T , and dη ◦ T =

⟨∇η, T (·)⟩ = T (∇η, ·). Its proof follows immediately from the properties of divergence

operator and definition of the Hilbert-Schmidt inner product, for a complete proof see

Gomes [16], for the η =constant case, and Mesquita [31] for η non-constant case. In

particular, this formula has been used by Gomes to obtain a characterization of the

Euclidean sphere. He also highlights that it has already been used in the literature for

several cases, the interested reader can consult Rosenberg [35], Obata and Yano [26] or
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Yano’s book [40].

From (1.12) we get the promised relation

L f = □f + ⟨divηT,∇f⟩ = □f + ⟨divT,∇f⟩ − ⟨∇η, T (∇f)⟩. (1.13)

Using Eq. (1.13), Gomes and Miranda [15] gave a Bochner-type formula for the operator

L . This relation shows that the operator L can be seen as a first-order perturbation

of the operator □ of Cheng and Yang in the case where the tensor is divergence-free, see

Section 2.2.2.

1.4 Basic concepts from an elliptic differential system

in divergence form

In this section we recall some information necessary for our work regarding the elliptic

differential operator L + α∇divη with Dirichlet boundary condition, such as some infor-

mation about spectral theory of these operators and the Rayleigh quotient. Initially, we

would like to emphasize that the concepts and properties in Sections 1.2 and 1.3 remains

true when the complete Riemannian manifold Mn is Rn.

Let Rn be the n-dimensional Euclidean space with its canonical metric ⟨, ⟩, and Ω ⊂ Rn

be a bounded domain with smooth boundary ∂Ω. Recall that we are interested to compute

universal estimates of the eigenvalues of the following problem:{
L u+ α∇(divηu) = −σu in Ω,

u = 0 on ∂Ω,
(1.14)

where u = (u1, u2, . . . , un) is a vector-valued function from Ω to Rn, the constant α is

non-negative and L u = (L u1,L u2, . . . ,L un).

For a vector-valued function u = (u1, u2, . . . , un) from Ω to Rn, we define

∇u = (∇u1, . . . ,∇un).

Now, we are going to some definitions for T , and since there is no risk of confusion, we are

using the same notation T for both definitions. Let X be a vector field on Ω, we define

T (∇u) = (T (∇u1), . . . , T (∇un)),
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and

T (X,∇u) = (⟨T (X),∇u1⟩, . . . , ⟨T (X),∇un⟩)

= (⟨X,T (∇u1)⟩, . . . , ⟨X,T (∇un)⟩)

= (T (X,∇u1), . . . , T (X,∇un)). (1.15)

Furthermore, from (1.7) we have

divη((divηu)v) = divηudivηv + v · ∇(divηu).

Hence, from (1.9) we obtain∫
Ω

v · ∇(divηu)dm = −
∫
Ω

divηudivηvdm, (1.16)

for all vector-valued function u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) both from Ω to

Rn, with v vanishing on ∂Ω.

Now, using (1.11), the next equation is well understood for a vector-valued function

u and a real-valued function f ∈ C∞(Ω)

L (fu) = (L (fu1), . . . ,L (fun))

= (fL u1 + 2⟨T (∇f),∇u1⟩+ L (f)u1, . . . , fL un + 2⟨T (∇f),∇un⟩+ L (f)un)

= f(L u1, . . . ,L un) + 2(⟨T (∇f),∇un⟩, . . . , ⟨T (∇f),∇un⟩) + L (f)(u1, . . . , un)

= fL u+ 2T (∇f,∇u) + L fu. (1.17)

Let us denote by L2(Ω, dm) the space of vector-valued functions with the inner product

⟨u,v⟩L2 = ⟨u1, v1⟩L2 + · · ·+ ⟨un, vn⟩L2 ,

where u = (u1, . . . , un), v = (v1, . . . , vn) are vector-valued functions in Ω ∈ Rn and

⟨ui, vi⟩L2 =
∫
Ω
uividm, 1 ≤ i ≤ n, is the inner product in L2(Ω, dm). Besides, we are

using the classical norms: |u|2 =
∑n

i=1(u
i)2 and ∥u∥2L2 =

∫
Ω
|u|2dm.

Lemma 1.4.1. For the operator L + α∇divη the following identity applies

⟨L u+ α∇(divηu),v⟩⟩L2 = ⟨u,L v + α∇(divηv)⟩L2 ,

where u = (u1, . . . , un) and v = (v1, . . . , vn) are vector-valued functions that vanish on ∂Ω.
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Proof. In fact, from (1.10) we have∫
Ω

L u · vdm = +

∫
Ω

L u1v1dm+ · · ·+
∫
Ω

L unvndm

= −
∫
Ω

T (∇u1,∇v1)dm− · · · −
∫
Ω

T (∇un,∇vn)dm

= −
∫
Ω

T (∇v1,∇u1)dm− · · · −
∫
Ω

T (∇vn,∇un)dm

=

∫
Ω

L v1u1dm+ · · ·+
∫
Ω

L vnu
ndm

=

∫
Ω

u · L vdm. (1.18)

And from (1.16) we have∫
Ω

∇(divηu) · vdm =

∫
Ω

u · ∇(divηv)dm. (1.19)

Therefore, from (1.18) and (1.19) we get

⟨L u+ α∇(divηu),v⟩L2 =

∫
Ω

(L u+ α∇(divηu)) · vdm

=

∫
Ω

L u · vdm+ α

∫
Ω

∇(divηu) · vdm

=

∫
Ω

u · L vdm+ α

∫
Ω

u · ∇(divηv)dm

=

∫
Ω

u · (L v + α∇(divηv))dm

= ⟨u,L v + α∇(divηv)⟩L2 ,

and we conclude the proof of the lemma.

Lemma 1.4.1 says that L + α∇divη is a formally self-adjoint operator in the Hilbert

space L2(Ω, dm) of all vector-valued functions that vanish on ∂Ω. Therefore, the eigen-

value problem 2.1 has a real and discrete spectrum 0 < σ1 ≤ σ2 ≤ · · · ≤ σk ≤ · · · → ∞,

where each σi is repeated according to its multiplicity and its positively is ensure by

Lemma 1.4.2. Eigenspaces belonging to distinct eigenvalues are orthogonal in L2(Ω, dm),

which is the direct sum of all the eigenspaces. We refer to the dimension of each eigenspace

as the multiplicity of the eigenvalue.

Lemma 1.4.2. All eigenvalues of Problem 1.14 are positive.

Proof. Let u = (u1, . . . , un) be an eigenfunction with corresponding eigenvalue σ. Then,
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from (1.10) we have

−
∫
Ω

u · L udm = −
∫
Ω

u1L u1dm− · · · −
∫
Ω

unL undm

=

∫
Ω

T (∇u1,∇u1)dm+ · · ·+
∫
Ω

T (∇un,∇un)dm

=

∫
Ω

T (∇u,∇u)dm, (1.20)

Moreover, from (1.16) we get

−
∫
Ω

u · ∇(divηu)dm =

∫
Ω

(divηu)
2dm = ∥divnu∥2. (1.21)

Hence, from (1.14), (1.20) and (1.21) we obtain

σ

∫
Ω

u2dm =

∫
Ω

T (∇u,∇u)dm+ ∥divnu∥2 ≥ ε

∫
Ω

|∇u|2dm.

Note that this is sufficient to conclude that all eigenvalues of Problem 1.14 are positive.

We now adapt the Rayleigh quotient for our operator, the interested reader is encour-

aged to consult about it on Chavel [6] and Olver [27].

Definition 1.4.1. The Rayleigh quotient of L + α∇divη is defined as

R(u) =
⟨−(L + α∇divη)u,u⟩L2

∥u∥2L2

.

Theorem 1.4.1. The minimum value of Rayleigh quotient of L + α∇divη,

σ1 = min{R(u) with u ̸= 0 and u|∂Ω = 0},

is the smallest eigenvalue of the operator L + α∇divη. Moreover, any 0 ̸= u1 ∈
L2(Ω, dm) that achieves this minimum value, is an associated eigenfunction, that is,

−(L + α∇divη)u1 = σ1u1.

Proof. See [27, Theorem 9.42].

One of the most important results for obtaining our theorems in Chapter 2 is the

following characterization of the eigenvalues of our problem.

Theorem 1.4.2. Let u1, . . . ,un−1 be the eigenfunctions corresponding to the first n − 1

eigenvalues 0 < σ1 ≤ · · · ≤ σn−1 of L + α∇divη. Let

Vn−1 = {v ∈ L2(Ω, dm) with v|∂Ω = 0; ⟨v,u1⟩L2 = · · · = ⟨v,un−1⟩L2 = 0}
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be the set of vector-valued functions that are orthogonal to the indicated eigenfunctions.

Then the minimum value of the Rayleigh quotient function restricted to the subspace Vn−1

is the n-th eigenvalue of L + α∇divη, that is,

σn = min{R(v); 0 ̸= v ∈ Vn−1}

= min
0̸=v∈Vn−1

−
∫
Ω
v · (L v + α∇(divηv))dm∫

Ω
|v|2dm

. (1.22)

Proof. See [27, Theorem 9.43].

The interested reader can also see a version of the previous theorem in Chavel [6].

1.5 Auxiliary results

In this section, we present some known results from the literature which are related to

our results.

The first one, is the inequality of real numbers known as the recursion formula of Cheng

and Yang which has been used by many researchers to obtain estimates of eigenvalues, for

instance, by Chen et al. [7, Corollary 1.4]. We would like to emphasize that the recursive

formula in Lemma 1.5.1 was initially proved by Cheng and Yang [9, Theorem 2.1] for

t = n a natural number. Since n being a natural or real number does not influence the

proof, later in Cheng and Yang [10, Theorem 2.1], they rewritten this formula for any

positive real number t to serve their purposes of studying the Pólya conjecture for the

case of complete Riemannian manifolds.

Lemma 1.5.1 (Cheng and Yang [10]). Let µ1 ≤ µ2 ≤ · · · ≤ µk+1 be non-negative real

numbers satisfying
k∑

i=1

(µk+1 − µi)
2 ≤ 4

t

k∑
i=1

µi(µk+1 − µi).

Define

Gk =
1

k

k∑
i=1

µi, Tk =
1

k

k∑
i=1

µ2
i , Fk = (1 +

2

t
)G2

k − Tk.

Then, we have

Fk+1 ≤ C(t, k)
(k + 1

k

) 4
t
Fk,

where t is any positive real number and

C(t, k) = 1− 1

3t

( k

k + 1

) 4
t (1 +

2
t
)(1 + 4

t
)

(k + 1)3
< 1.

Proof. The proof is the same as that made by Cheng and Yang [9, Theorem 2.1] replacing
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the natural number n by the real number t. For a complete and more accessible proof,

see Miranda [32, Lemma 2.4] where she used t = n
c
for some positive real number c.

As an application of the previous lemma and following the same steps by Cheng and

Yang [9, Corollary 2.1] we have the next corollary.

Corollary 1.5.1. Under the same setup of Lemma 1.5.1, we have

µk+1 ≤
(
1 +

4

t

)
k

2
tµ1.

Proof. The proof is the same as in [9, Corollary 2.1]. For a complete and detailed proof,

see [32, Corollary 2.1].

The next lemma often appears in similar configurations when looking for universal

inequalities for eigenvalues of elliptic problems, it is based on the Yang inequality for

Laplacian eigenvalues. Actually, this lemma is a more general version of such Yang’s

result [39], and follows the same steps as its proof. A more detailed proof can be found

in Miranda [32, Theorem 2.1]. For the sake of completeness, we are going to prove it in

a more general setting.

Lemma 1.5.2. Let v1 ≤ v2 ≤ · · · ≤ vk+1 be an non-negative real numbers satisfying

k∑
i=1

(vk+1 − vi)
2 ≤ κ0

k∑
i=1

(vk+1 − vi)vi. (1.23)

for some positive real number κ0. Then, we have

vk+1 ≤
(
1 + κ0

)1
k

k∑
i=1

vi +
[(κ0

2

1

k

k∑
i=1

vi

)2

− (1 + κ0)
1

k

k∑
j=1

(
vj −

1

k

k∑
i=1

vi

)2] 1
2
, (1.24)

and

vk+1 − vk ≤ 2
[(κ0

2

1

k

k∑
i=1

vi

)2

− (1 + κ0)
1

k

k∑
j=1

(
vj −

1

k

k∑
i=1

vi

)2] 1
2
. (1.25)

Proof. Notice that (1.23) is a quadratic inequality of vk+1, that is,

Q(vk+1) = kv2k+1 − vk+1

(
2 + κ0

) k∑
i=1

vi +
(
1 + κ0

) k∑
i=1

v2i ≤ 0,

hence the discriminant of Q(vk+1) satisfies

D =
(
2 + κ0

)2( k∑
i=1

vi

)2

− 4k
(
1 + κ0

) k∑
i=1

v2i ≥ 0. (1.26)
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Therefore, let r1 and r2 be the smaller and the biggest root of Q(vk+1), respectively. Since

Q(vk+1) ≤ 0 and D ≥ 0 we must have r1 ≤ vk+1 ≤ r2, therefore

vk+1 ≤ r2 =
1

2k

(
2 + κ0

) k∑
i=1

vi +
1

2k

√
D.

Substituting (1.26) into the previous inequality, we get

vk+1 ≤
1

k

(
1 +

κ0

2

) k∑
i=1

vi +
[(1

k
+

κ0

2k

)2( k∑
i=1

vi

)2

− 1

k

(
1 + κ0

) k∑
i=1

v2i

] 1
2

(1.27)

=
1

k

(
1 +

κ0

2

) k∑
i=1

vi +
[(κ0

2k

k∑
i=1

vi

)2

+
1

k2

(
1 + κ0

)( k∑
i=1

vi

)2

− 1

k

(
1 + κ0

) k∑
i=1

v2i

] 1
2
.

Therefore,

vk+1 ≤
1

k

(
1 +

κ0

2

) k∑
i=1

vi +
[(κ0

2k

k∑
i=1

vi

)2

− 1

k

(
1 + κ0

)( k∑
i=1

v2i −
1

k

( k∑
i=1

vi

)2)] 1
2

=
1

k

(
1 +

κ0

2

) k∑
i=1

vi

+
[(κ0

2k

k∑
i=1

vi

)2

− 1

k

(
1 + κ0

)( k∑
i=1

v2i −
2

k

( k∑
i=1

vi

)2

+
1

k

( k∑
i=1

vi

)2)] 1
2

=
1

k

(
1 +

κ0

2

) k∑
i=1

vi

+
[(κ0

2k

k∑
i=1

vi

)2

− 1

k

(
1 + κ0

)( k∑
i=1

v2i −
2

k

k∑
i,j=1

vivj +
1

k

( k∑
i=1

vi

)2)] 1
2
.

Consequently, we conclude that

vk+1 ≤
1

k

(
1 +

κ0

2

) k∑
i=1

vi +
[(κ0

2k

k∑
i=1

vi

)2

− 1

k

(
1 + κ0

) k∑
j=1

(
vj −

1

k

k∑
i=1

vi

)2] 1
2
,

which proves (2.13). Now, notice that Inequality (1.23) also holds if we replace the integer

k with k − 1, that is,
k−1∑
i=1

(vk − vi)
2 ≤ κ0

k−1∑
i=1

(vk − vi)vi,

or equivalently,
k∑

i=1

(vk − vi)
2 ≤ κ0

k∑
i=1

(vk − vi)vi.
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Therefore, vk satisfies the same quadratic inequality and we have

vk ≥ r1 =
1

k

(
1 +

κ0

2

) k∑
i=1

vi −
[(κ0

2k

k∑
i=1

vi

)2

− 1

k

(
1 + κ0

) k∑
j=1

(
vj −

1

k

k∑
i=1

vi

)2] 1
2
.

From (1.24) and the previous inequality we get (1.25) and complete the proof of Corol-

lary 2.2.3.

Corollary 1.5.2. Under the same setup as Corollary 2.2.3, Inequality (1.24) implies

vk+1 ≤ (1 + κ0)
1

k

k∑
i=1

vi.

Proof. In fact, (1.24) is equivalently to (1.27), and since −k
∑k

i=1 v
2
i ≤ −(

∑k
i=1 vi)

2, from

(1.27) we get

vk+1 ≤
1

k

(
1 +

κ0

2

) k∑
i=1

vi +
[(1

k
+

κ0

2k

)2( k∑
i=1

vi

)2

− 2

k

( 1

2k
+

κ0

2k

)
k

k∑
i=1

v2i

] 1
2

≤ 1

k

(
1 +

κ0

2

) k∑
i=1

vi +
[(1

k
+

κ0

2k

)2( k∑
i=1

vi

)2

− 2

k

( 1

2k
+

κ0

2k

)( k∑
i=1

vi

)2] 1
2
.

Moreover, we notice that(1
k
+

κ0

2k

)2

− 2

k

( 1

2k
+

κ0

2k

)
=

( 1

2k
+

κ0

2k
+

1

2k

)2

− 2

k

( 1

2k
+

κ0

2k

)
=

( 1

2k
+

κ0

2k
− 1

2k

)2

=
(κ0

2k

)2

.

Therefore, we obtain

vk+1 ≤
1

k

(
1 +

κ0

2

) k∑
i=1

vi +
[(κ0

2k

)2( k∑
i=1

vi

)2] 1
2
=

[(
1 +

κ0

2

)
+

κ0

2

]1
k

k∑
i=1

vi,

which completes the proof.

For an n-dimensional complete Riemannian manifold (Mn, ⟨, ⟩) isometrically immersed

in Rm let us denote by A the second fundamental form and so H = 1
n
tr(A) is the mean

curvature vector. We can associate with a symmetric (1, 1)-tensor T the following normal
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vector field:

HT =
1

n

n∑
i,j=1

T (ei, ej)A(ei, ej)

=
1

n

n∑
i=1

A(T (ei), ei)

:=
1

n
tr(A ◦ T ),

where {e1, e2, . . . , en} is a local orthonormal frame of TM and HT is called the generalized

mean curvature vector. The definition of the generalized mean curvature vector had been

considered by Grosjean [18] and Roth [33, 34] to get upper bound for the first positive

eigenvalue of the operator L .

The next lemma is a rewrite of some equalities obtained by Gomes and Miranda [15]

and plays an important role in obtaining our Lemma 2.4.2.

Lemma 1.5.3 (Gomes and Miranda). Let Ω be a domain of an n-dimensional complete

Riemannian manifold M isometrically immersed in Rm, T be a (1, 1)-tensor symmetric

on Ω, and x = (x1, . . . , xm) be the position vector of the immersion of M in Rm, then

m∑
ℓ=1

T (∇xℓ,∇xℓ) = tr(T ),

divη(T (∇x)) = nHT (x) + tr(∇T )(x)− T (∇η)(x), (1.28)

and, consequently

m∑
ℓ=1

(L xℓ)
2 = n2|HT |2 + |tr(∇T )− T (∇η)|2,

where divη(T (∇x)) := (divη(T (∇x1)), . . . , divη(T (∇xm))) and HT is the generalized mean

curvature vector of immersion. In particular, for M = Rm we get

m∑
ℓ=1

(L xℓ)
2 = |tr(∇T )− T (∇η)|2. (1.29)

Proof. The proof of this lemma is the same presented by Gomes and Miranda [15,

Eq. 3.23], with a slight modification. In fact, just replace
∑n

i=1A(T (ei), ei) = nHT

in their proof.

The following theorem is due to Ma and Liu [25, Theorem 3] and it will be used in

one of our results in Chapter 2.2. They considered the eigenvalue problem for the drifted
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Laplacian in convex domains of Euclidean space and showed that the first eigenfunction

for this problem is convex. Moreover, using this and a gradient estimate, they also showed

a lower bound for the gap between the first and the second eigenvalue.

Theorem 1.5.1 (Ma and Liu [25]). Assume that η is a smooth concave function on the

closure of the bounded convex domain Ω ⊂ Rn. Assume that,

f =
1

2
∆η − 1

4
|∇η|2,

is concave on Ω̄. Let λ1 and λ2 be the first two eigenvalues non-zero of problem:{
−∆ηu = λu in Ω,

u = 0 on ∂Ω.

Then, we have

λ2 − λ1 ≥
π2

4d2
,

where d is diameter of Ω.

Proof. See [25, Theorem 3].

Lemma 1.5.4 (Chebyshev’s Inequality [1]). Let a1, a2, . . . , ak and b1, b2, . . . , bk two arbi-

trary sets of real numbers such that either a1 ≤ a2 ≤ · · · ≤ ak and b1 ≤ b2 ≤ · · · ≤ bk or

a1 ≥ a2 ≥ · · · ≥ ak and b1 ≥ b2 ≥ · · · ≥ bk. Then

(1
k

k∑
i=1

ai

)(1
k

k∑
i=1

bi

)
≤ 1

k

k∑
i=1

aibi.

The equality holds if, and only if, either a1 = a2 = . . . = ak or b1 = b2 = . . . = bk.

We would like to observe that a generalized version of Chebyshev’s Inequality can be

founded in Hardy et al. [19, p. 43].
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Chapter 2

Estimates of eigenvalues of an

elliptic differential system in

divergence form

In this chapter, we prove some estimates of eigenvalues of an elliptic differential system

in divergence form. We begin by presenting the main results and some corollaries. Next,

we give applications of our main results to particular cases, for example, to the Gaussian

shrinking soliton. In the last section we prove our results. This chapter is a joint work

with professor José N. V. Gomes [2].

2.1 Main results

Let Rn be the n-dimensional Euclidean space with its canonical metric ⟨, ⟩, and Ω ⊂ Rn

be a bounded domain with smooth boundary ∂Ω. Let us consider a symmetric positive

definite (1, 1)-tensor T on Rn and a function η ∈ C2(Rn), so that we can define a second-

order elliptic differential operator L in the (η, T )-divergence form as in Definition 1.3.2.

In this chapter, we address the eigenvalue problem for an operator which is a second-

order perturbation of L . More precisely, we compute universal estimates of the eigenvalues

of the coupled system of second-order elliptic differential equations, namely:{
L u+ α∇(divηu) = −σu in Ω,

u = 0 on ∂Ω,
(2.1)

where u = (u1, u2, . . . , un) is a vector-valued function from Ω to Rn, the constant α is

non-negative and L u = (L u1,L u2, . . . ,L un).

We proved in Section 1.3 that L + α∇divη is a formally self-adjoint operator in

the Hilbert space of all vector-valued functions that vanish on ∂Ω. Let us consider the
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sequence

0 < σ1 ≤ σ2 ≤ · · · ≤ σk ≤ · · · → ∞, (2.2)

of the eigenvalue problem (2.1), where each σi is repeated according to its multiplicity.

A special case of Problem 2.1 occurs when T is divergence-free, see Problem 2.22.

For the sake of convenience, we address this case in Section 2.2.2. Some results from

Problems 2.3 and 2.4 below are particular cases of this section. However, these two

latter problems still remain prototype for us. In the next two paragraphs, we make brief

comments about them.

When η is a constant and T is the identity operator I on Rn, Problem 2.1 becomes{
∆u+ α∇(div u) = −σu in Ω,

u = 0 on ∂Ω,
(2.3)

where ∆u = (∆u1, . . . ,∆un) and ∆ is the Laplacian operator on C∞(Ω). The operator

∆ + α∇div is known as Lamé’s operator. In the 3-dimensional case it appears in the

elasticity theory and α is determined by the positive constants of Lamé, so the assumption

α ≥ 0 is justified. For further details on this issue, the interested reader can consult

Pleijel [30] or Kawohl and Sweers [21]. It is worth mentioning here the works of Levine

and Protter [23], Livitin and Parnovski [24], Hook [20], Cheng and Yang [9] and Chen et

al. [7] in which we can find some interesting estimates of the eigenvalues of Problem 2.3.

We will be more precise later when we discuss the three latter papers.

When η is not necessarily constant and T = I, Problem 2.1 is rewritten as{
∆ηu+ α∇(divηu) = −σu in Ω,

u = 0 on ∂Ω,
(2.4)

where ∆ηu = (∆ηu
1, . . . ,∆ηu

n) and ∆η = divη∇ is the drifted Laplacian operator on

C∞(Ω). The drifted Laplacian as well as the Bakry-Emery Ricci tensor Ric + ∇2η

are the most appropriate geometric objects to study the smooth metric measure spaces

(Mn, g, e−ηdvolg). In particular, the Bakry-Emery Ricci tensor has been especially studied

in the theory of Ricci solitons, since a gradient Ricci soliton (Mn, g, η) is characterized by

Ric+∇2η = λg, for some constant λ.

In Corollary 2.2.5, we show an interesting case of rigidity inequalities of eigenvalues

of the Laplacian in a countable family of bounded domains in Gaussian shrinking soliton

(Rn, δij,
λ
2
|x|2) by taking a specific isoparametric function as being the drifting function

η, see Remarks 2.2.2 and 2.2.3. We address the Gaussian expanding soliton case in

Corollaries 2.2.6 and 2.2.7.

Our proofs will be facilitated by analyzing the more general setting in which the

function η is not necessarily constant and T is not necessarily the identity. In this case,

we prove an universal quadratic estimate for the eigenvalues of Problem 2.1, which is an
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essential tool to obtain some of our estimates.

Theorem 2.1.1. Let Ω ⊂ Rn be a bounded domain, and ui be a normalized eigenfunction

corresponding to i-th eigenvalue σi of Problem 2.1. For any positive integer k, we have

k∑
i=1

(σk+1 − σi)
2 ≤ 4δ(nδ + α)

n2ε2

k∑
i=1

(σk+1 − σi)
{[

(σi − α∥divηui∥2)
1
2 +

T0

2
√
δ

]2
+

C0

δ

}
,

where

C0 = sup
Ω

{1

2
div(T 2(∇η))− 1

4
|T (∇η)|2

}
+

δ

2
T0η0, (2.5)

T0 = supΩ |tr(∇T )| and η0 = supΩ |∇η|.

Remark 2.1.1. Notice that the constant C0 in Eq. (2.5) has been appropriately defined

such that
[
(σi − α∥divηui∥2)

1
2 + T0

2
√
δ

]2
+ C0

δ
> 0, for i = 1, . . . , k.

We identify the quadratic estimate in Theorem 2.1.1 as the most appropriate inequality

for the applications of our results. In particular, the constant C0 in (2.5) has a crucial

importance for us.

Theorem 2.1.1 is an extension for L +α∇divη on vector-valued functions of the well-

known Yang’s estimate of the eigenvalues of the Laplacian on real-valued functions. Its

proof is motivated by the corresponding results for the Laplacian on real-valued functions

case by Yang [39], for ∆ + α∇div on vector-valued functions case by Chen et al. [7,

Theorem 1.1], and for L on real-valued functions case by Gomes and Miranda [15].

We also prove an estimate for the sum of lower order eigenvalues in terms of the first

eigenvalue and its correspondent eigenfunction.

Theorem 2.1.2. Let Ω ⊂ Rn be a bounded domain, σi be the i-th eigenvalue of Problem 2.1,

for i = 1, . . . , n, and u1 be a normalized eigenfunction corresponding to the first eigen-

value. Then, we get

n∑
i=1

(σi+1 − σ1) ≤
4δ(δ + α)

ε2

{[
(σ1 − α∥divηu1∥2)

1
2 +

T0

2
√
δ

]2
+

C0

δ

}
,

where C0 is given by (2.5).

Theorem 2.1.2 is an extension for L +α∇divη on vector-valued functions of a stronger

result obtained by Cheng and Yang [9, Theorem (1.2)] for lower order eigenvalues of

Problem 2.3. Its proof is motivated by the corresponding results for ∆ + α∇div case

in [9, Theorem 1.2] as well as for ∆η + α∇divη case in [13, Theorem 1.3].
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2.2 Applications of the main results

We start by presenting applications of our results for the case in which the tensor T is

divergence-free. In Section 2.2.1, we get inequalities estimates Problem 2.4. Next, we

prove an interesting case of non-dependence of η in this case.

2.2.1 Identity tensor case

We begin this section by defining a known class of the functions which is closely related

to our applications. A nonconstant smooth function f : Rn → R is called transnormal

function if

|∇f |2 = b(f), (2.6)

for some smooth function b on the range of f in R. The function f is called an isopara-

metric function if it moreover satisfies

∆f = a(f), (2.7)

for some continuous function a on the range of f in R.
Eq. (2.6) implies that the level set hypersurfaces of f are parallel hypersurfaces and it

follows from Eq. (2.7) that these hypersurfaces have constant mean curvature. Isoparamet-

ric functions appear in the isoparametric hypersurfaces theory (i.e., has constant principal

curvatures) systematically developed by Cartan [5] on space forms. Wang [37] considered

the problem of extending this theory to a general Riemannian manifold and studied some

properties of (2.6) and (2.7) more closely. Notice that isoparametric functions exist on

a large class of spaces (e.g. symmetric spaces) other than space forms. Currently, new

examples of isoparametric functions on Riemannian manifolds have been discovered, for

instance, the potential function of any noncompact gradient Ricci soliton (Mn, g, η) with

constant scalar curvature R is an isoparametric function, since we can assume that η (after

a possible rescaling) satisfies |∇η|2 = 2λη−R and ∆η = λn−R, see, e.g., Chow et al. [12].

In particular, the potential function of the Gaussian shrinking soliton (Rn, δij,
λ
2
|x|2) is

an isoparametric function, see Example 2.2.1. This latter fact and a brief analysis of the

constant C0 in (2.5) were the main motivations to consider the isoparametric function

η(x) = λ
2
|x|2 to give some applications of our results. The quadratic estimate below is a

basic result for it.

Corollary 2.2.1. Let Ω ⊂ Rn be a bounded domain and ui be a normalized eigenfunction

corresponding to i-th eigenvalue σi of Problem 2.4. For any positive integer k, we have

k∑
i=1

(σk+1 − σi)
2 ≤ 4(n+ α)

n2

k∑
i=1

(σk+1 − σi)(σi − α∥divηui∥2 + C0), (2.8)
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where C0 = supΩ

{
1
2
∆η − 1

4
|∇η|2

}
. Moreover, σi − α∥divηui∥2 +C0 > 0, for i = 1, . . . , k.

Proof. In Problem 2.4 we must have T = I. Then, we get ε = δ = 1 and T0 = 0. Hence,

the result of the corollary follows from Theorem 2.1.1.

The following corollary is an immediate consequence of Theorem 2.1.2.

Corollary 2.2.2. Let Ω ⊂ Rn be a bounded domain, σi be the i-th eigenvalue of Prob-

lem 2.4, for i = 1, . . . , n, and by u1 a normalized eigenfunction corresponding to the first

eigenvalue. Then, for any positive integer k, we have

n∑
i=1

(σi+1 − σ1) ≤ 4(1 + α)(σ1 +D1), (2.9)

where D1 = −α∥divηu1∥2 + C0 and C0 = supΩ

{
1
2
∆η − 1

4
|∇η|2

}
.

Proof. In fact, in this case we also have ε = δ = 1 and T0 = 0. Hence, the result of the

corollary follows from Theorem 2.1.2.

Notice that the appearance of the constant C0 is natural, since we did not impose

any restriction on the function η. We highlight that this constant has an unexpected

geometric interpretation. Indeed, let us consider the warped metric g = g0 + e−ηdθ2 on

the product Ω × S1, where g0 stands for the canonical metric in the domain Ω ⊂ Rn,

whereas dθ2 is the canonical metric of the unit sphere S1, so that the scalar curvature of

g is given by 1
2
∆η − 1

4
|∇η|2. Hence, by rescaling the previous warped metric g we can

obtain C0 as the supremum of the scalar curvature on the warped product Ω × S1 with

this new metric. Moreover, we ask the following natural question:

Question 2.2.1. Under which conditions the inequalities for the eigenvalues obtained

from (2.8) and (2.9) do not depend on the constant C0 for a nontrivial function η?

We give an answer to this question by using a specific family of domains in Gaussian

shrinking soliton. More precisely, we consider a countable family of bounded domains in

Rn that makes the behavior of known estimates of eigenvalues of the Laplacian invariant

by a first-order perturbation of the Laplacian, see Corollary 2.2.5.

Coming back to Corollary 2.2.1, we define

D0 = −α min
j=1,...,k

∥divηuj∥2 + C0, (2.10)

so that, from (2.8), we get

k∑
i=1

(σk+1 − σi)
2 ≤ 4(n+ α)

n2

k∑
i=1

(σk+1 − σi)(σi +D0). (2.11)
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Notice that σi +D0 > 0.

Now, as mentioned in Section 2.1, we immediately recover the following inequality:

k∑
i=1

(σk+1 − σi)
2 ≤ 4(n+ α)

n2

k∑
i=1

(σk+1 − σi)σi, (2.12)

which has been obtained by Chen et al. [7, Corollary 1.2] for Problem 2.3. Indeed, it

follows from (2.10) and (2.11), since α ≥ 0 and we can take η to be a constant. Moreover,

Inequality (2.12) implies Theorem 1.1 in Cheng and Yang [9], whereas [9, Theorem 1.1]

implies Theorem 10 in Hook [20]. However, we highlight that Inequality (2.11) provides

an estimate for the eigenvalues of Problem 2.3 which is better than Inequality (2.12).

In the case of Problem 2.4, we can see that Inequality (2.9) is better than Inequal-

ity (1.7) in Du and Bezerra [13]; whereas Inequality (2.11) is better than Inequality (1.3)

again in [13].

Besides, from Inequality (2.11) and following the steps of the proof of [15, Theorem 3],

we obtain the inequalities:

Corollary 2.2.3. Under the same setup as in Corollary 2.2.1, we have

σk+1 +D0 ≤
(
1 +

2(n+ α)

n2

)1
k

k∑
i=1

(σi +D0) +
[(2(n+ α)

n2

1

k

k∑
i=1

(σi +D0)
)2

−
(
1 +

4(n+ α)

n2

)1
k

k∑
j=1

(
σj −

1

k

k∑
i=1

σi

)2] 1
2

(2.13)

and

σk+1 − σk ≤2
[(2(n+ α)

n2

1

k

k∑
i=1

(σi +D0)
)2

−
(
1 +

4(n+ α)

n2

)1
k

k∑
j=1

(
σj −

1

k

k∑
i=1

σi

)2] 1
2
,

(2.14)

where D0 is given by (2.10).

Proof. Notice that σk+1 − σi = σk+1 +D0 − σi −D0. Let vi = σi +D0, then from (2.11)

we have

k∑
i=1

(vk+1 − vi)
2 ≤ 4(n+ α)

n2

k∑
i=1

(vk+1 − vi)vi. (2.15)

By (2.2), we can see that v1 ≤ v2 ≤ · · · vk+1. Setting κ0 = 4(n+α)
n2 into (2.15), we will be

in Lemma 1.5.2 settings, and so we complete the proof using that lemma.

Again from (2.11) and by applying the recursion formula of Cheng and Yang (see

Corollary 1.5.1), we obtain the following corollary.
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Corollary 2.2.4. Under the same setup as in Corollary 2.2.1, we have

σk+1 +D0 ≤
(
1 +

4(n+ α)

n2

)
k

2(n+α)

n2 (σ1 +D0), (2.16)

where D0 is given by (2.10).

Proof. Notice that the recursion formula by Cheng and Yang [8, Corollary 2.1] remains

true for any positive real number, see Corollary 1.5.1. In particular, it holds for t = n̄ =
n2

n+α
, then from (2.15) we can apply Corollary 1.5.1 to obtain immediately (2.16).

From the classical Weyl’s asymptotic formula for the eigenvalues [38], we know that

estimate (2.16) is optimal in the sense of the order on k.

Remark 2.2.1. If D0 = 0, then the inequalities of eigenvalues (2.11) and (2.16) have

the same behavior as the known estimates of the eigenvalues of ∆+ α∇div, see Inequal-

ity (2.12) and Chen et al. [7, Corollary 1.4], respectively. In the same way, from Corol-

lary 1.5.2, the inequalities of eigenvalues (2.13) and (2.14) imply

σk+1 ≤
(
1 +

4(n+ α)

n2

)1
k

k∑
i=1

σi and σk+1 − σk ≤
4(n+ α)

n2

1

k

k∑
i=1

σi,

which have the same behavior as the inequalities of the eigenvalue of ∆+α∇div obtained

by Chen et al. [7, Corollary 1.3].

If D1 = 0, then the inequality of eigenvalues (2.9) has the same behavior as the known

estimate of the eigenvalues of ∆+ α∇div proved by Cheng and Yang [9, Theorem 1.2].

Remark 2.2.2. For α = 0 case, if C0 = 0 for some function η (possibly radial or isopara-

metric), then the inequalities (2.9), (2.11), (2.13) and (2.16) have the same behavior as

the known estimates of the eigenvalues of the Laplacian, see [3, Inequality (6.2)], [39, The-

orem 1], [8, Inequality (1.8)] and [8, Corollary 2.1], respectively. We highlight that [3, In-

equality (6.2)] was first obtained by Payne et al. [28] in the two-dimensional case.

Example 2.2.1 below is a special case of C0 = 0. To see this, let us consider an

isoparametric function η(x) = λ
2
(x2

1+ · · ·+x2
k) on Rn, where λ is any nonzero real number,

k an integer with 0 < k ≤ n and x = (x1, . . . , xn) ∈ Rn. It is easy to verify that

|∇η|2 = 2λη and ∆η = λk.

In particular, if k = n, the function η(x) = λ
2
|x|2 is the potential function of the Gaussian

shrinking (λ > 0) or expanding (λ < 0) soliton on Rn. We now take η(x) = λ
2
|x|2 into the

equation of C0 in Corollary 2.2.1, so that,

C0 = sup
Ω

{λn

2
− λ2

4
|x|2

}
. (2.17)
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With these considerations in mind, we write the next two examples.

Example 2.2.1. Let us consider the family of bounded domains {Ωl}∞l=1 in Gaussian

shrinking or expanding soliton (Rn, δij,
λ
2
|x|2) given by

Ωl = B(rl)− B̄(
√

2n/|λ|) =
{
x ∈ Rn;

2n

|λ|
< |x|2 < r2l

}
,

where rl >
√
2n/|λ| is a rational number, and B(r) stands for the open ball of radius r

centered at the origin in Rn. So,

min
Ω̄l

|x|2 = 2n

|λ|
, for all l = 1, 2, . . . .

(a) Shrinking case:

C0 =
λ

2
sup
Ωl

{
n− λ

2
|x|2

}
=

λ

2

(
n− λ

2
min
Ω̄l

|x|2
)
= 0, for all l = 1, 2, . . . .

(b) Expanding case:

C0 =
λ

2
inf
Ωl

{
n− λ

2
|x|2

}
=

λ

2

(
n− λ

2
min
Ω̄l

|x|2
)
= λn, for all l = 1, 2, . . . .

Example 2.2.2. Let us consider the domain Ω to be the open ball B(r) of radius r centered
at the origin in Gaussian shrinking or expanding soliton (Rn, δij,

λ
2
|x|2). From Eq. (2.17),

we easily see that C0 = λn/2 for both shrinking and expanding case.

We are now in the position to give the interesting applications that we had promised.

Corollary 2.2.5 (Non-dependence of η). Let us consider the family of domains {Ωl}∞l=1

given by Example 2.2.1 in Gaussian shrinking soliton (Rn, δij,
λ
2
|x|2). Let σi be the i-th

eigenvalue of the drifted Laplacian ∆η on real-valued functions, with drifting function

η(x) = λ
2
|x|2, on each Ωl with Dirichlet boundary condition. Then,

k∑
i=1

(σk+1 − σi)
2 ≤ 4

n

k∑
i=1

(σk+1 − σi)σi,

σk+1 ≤
(
1 +

2

n

)1
k

k∑
i=1

σi +
[( 2

n

1

k

k∑
i=1

σi

)2

−
(
1 +

4

n

)1
k

k∑
j=1

(
σj −

1

k

k∑
i=1

σi

)2] 1
2
,

σk+1 − σk ≤ 2
[( 2

n

1

k

k∑
i=1

σi

)2

−
(
1 +

4

n

)1
k

k∑
j=1

(
σj −

1

k

k∑
i=1

σi

)2] 1
2
,
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σk+1 ≤
(
1 +

4

n

)
k

2
nσ1

and
n∑

i=1

(σi+1 − σ1) ≤ 4σ1.

Proof. We start by taking α = 0 as in Problem 2.4. Next, we note that the constant

C0 = 0 for the shrinking case. So, the required inequalities follows as an immediate

application of the inequalities (2.11), (2.13), (2.14), (2.16) and (2.9), respectively.

Remark 2.2.3. Notice that Corollary 2.2.5 can be regarded as rigidity inequalities (see

Remark 2.2.2) on the family of bounded domains {Ωl}∞l=1 given by Example 2.2.1 in Gaus-

sian shrinking soliton (Rn, δij,
λ
2
|x|2).

Now, we will address the expanding case.

Corollary 2.2.6. Let B(r) be the open ball of radius r centered at the origin in Gaussian

expanding soliton (Rn, δij,
λ
2
|x|2). Let σ1 be the first eigenvalue of the drifted Laplacian

∆η on real-valued functions, with drifting function η(x) = λ
2
|x|2, on B(r) with Dirichlet

boundary condition. Then, we have

σ1 ≥
π2n

64r2
− λn

2
,

and the next estimate for the sum of lower order eigenvalues σi of ∆η in terms of the first

eigenvalue
n∑

i=1

(σi+1 − σ1) ≤ 4(σ1 +
λn

2
). (2.18)

Proof. Let σ1 and σ2 be the first and second eigenvalues of the drifted Laplacian ∆η on

real-valued functions on B(r) with Dirichlet boundary condition, respectively. If λ < 0,

then both η = λ
2
|x|2 and f = 1

2
∆η − 1

4
|∇η|2 are concave functions on the closure of the

convex domain B(r). Thus, we can apply Theorem 1.5.1 by Ma and Liu [25] to obtain

σ2 − σ1 ≥
π2

16r2
. (2.19)

On the other hand,we can use (2.14) or (2.16), for α = 0, to get

σ2 − σ1 ≤
4

n
σ1 + 2λ. (2.20)

Combining (2.19) and (2.20), we conclude that

σ1 ≥
π2n

64r2
− λn

2
.

Moreover, we can use (2.9), for α = 0, to obtain (2.18).
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Corollary 2.2.7. Let us consider the family of domains {Ωl}∞l=1 given by Example 2.2.1

in the Gaussian expanding soliton (Rn, δij,
λ
2
|x|2). Let σi be the i-th eigenvalue of the

drifted Laplacian ∆η on real-valued functions, with drifting function η(x) = λ
2
|x|2, on

each Ωl with Dirichlet boundary condition. Then, the following estimate holds for the sum

of lower order eigenvalues of ∆η in terms of the first eigenvalue:

n∑
i=1

(σi+1 − σ1) ≤ 4(σ1 + λn).

Proof. We can use (2.9), for α = 0, to deduce the required estimate.

Remark 2.2.4. A final remark is in order. We observe that Corollaries 2.2.1 and 2.2.2

can be obtained from Corollaries 2.2.8 and 2.2.9, respectively. Whereas Corollaries 2.2.3

and 2.2.4 can be obtained from Corollaries 2.2.10 and 2.2.11, respectively. However, as

we already mentioned before, they have been a prototype for us.

2.2.2 Divergence-free tensors case

This section is a generalization of some results of Section 2.2.1. Here, we are assuming

the tensor T to be divergence-free, i.e., divT = 0. Divergence-free tensors often arise from

physical facts. We can find some of them in fluid dynamics, for instance, in the study of:

compressible gas; rarefied gas; steady/self-similar flows and relativistic gas dynamics, see

e.g. Serre [36]. We highlight that Serre’s work deals with divergence-free positive definite

symmetric tensors and fluid dynamics.

Example 2.2.3. Let f be a smooth function on a Riemannian manifold (M, ⟨, ⟩) and

define

Tf := −df ⊗ df +
|∇f |2

2
⟨, ⟩.

When ∆f = 0, the symmetric tensor Tf is divergence-free. In fact, using the well-known

fact (see e.g. Barros and Gomes [4, Lemma 2])

div(df ⊗ df) = ∆fdf + d
|∇f |2

2

and since ∆f = 0, we get

divTf := −div(df ⊗ df) + d
|∇f |2

2
= 0.

In Rn − {0} we can take f(x) = ln |x|2.

Example 2.2.4. Let (Mn, ⟨, ⟩) be an n(≥ 3)-dimensional Einstein manifold, that is,

Ric = R0

n
⟨, ⟩ where Ric is the Ricci tensor and R0 = tr(Ric) is the scalar curvature, which
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by Schur’s lemma it must be constant. If R0 > 0, then Ric is a tensor symmetric and

positive definite which is divergence-free, since in general divRic = dR0

n
. Moreover, if

R0 < 0 the Einstein tensor

E = Ric− R0

2
⟨, ⟩

is a tensor symmetric and positive definite which is divergence-free.

For divergence-free tensors, from Eq. (1.13), the operator L can be decomposed as

follows

L f = □f − ⟨∇η, T (∇f)⟩, (2.21)

where □ is the operator introduced by Cheng and Yau [11], namely:

□f = tr(∇2f ◦ T ) = ⟨∇2f, T ⟩.

Cheng-Yau operator arises from the study of complete hypersurfaces of constant scalar

curvature in space forms. For more details, the reader can be consult Gomes and Mi-

randa [15].

Eq. (2.21) is a first-order perturbation of the Cheng-Yau operator, and it defines a

drifted Cheng-Yau operator which we denote by □η with a drifting function η.

We now turn our attention to the main problem of this paper. Since T is divergence-

free, the coupled system of second-order elliptic differential equations (2.1) becomes{
□ηu+ α∇(divηu) = −σu in Ω,

u = 0 on ∂Ω,
(2.22)

where u = (u1, u2, . . . , un) is a vector-valued function from Ω to Rn, the constant α is non-

negative and □ηu := (□ηu
1,□ηu

2, . . . ,□ηu
n). Moreover, we have tr(∇T ) = 0, because T

is divergence-free. Thus, the constant C0 in (2.5) becomes

C0 = sup
Ω

{1

2
div(T 2(∇η))− 1

4
|T (∇η)|2

}
.

Hence, from Theorems 2.1.1 and 2.1.2 we immediately obtain the next two corollaries.

Corollary 2.2.8. Let Ω ⊂ Rn be a bounded domain, and ui be a normalized eigenfunction

corresponding to i-th eigenvalue σi of Problem 2.22. For any positive integer k, we get

k∑
i=1

(σk+1 − σi)
2 ≤ 4δ(nδ + α)

n2ε2

k∑
i=1

(σk+1 − σi)(σi − α∥divηui∥2 +
C0

δ
).

Proof. Since T is divergence-free, from Lemma 1.2.1 we have tr(∇T ) = 0 and so T0 = 0

which, combining with Theorem 2.1.1 completes the proof.
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Corollary 2.2.9. Let Ω ⊂ Rn be a bounded domain, σi be the i-th eigenvalue of Problem 2.22,

for i = 1, . . . , n, and u1 be a normalized eigenfunction corresponding to the first eigenvalue.

For some positive integer k, we get

n∑
i=1

(σi+1 − σ1) ≤
4δ(δ + α)

ε2
(σ1 +D1),

where D1 = −α∥divηu1∥2 + C0

δ
.

Proof. Since T is divergence-free, from Lemma 1.2.1 we have tr(∇T ) = 0 and so T0 = 0

which, combining with Theorem 2.1.2 implies the result.

Now, from Corollary 2.2.8 and following the same steps of the proof of Corollary 2.2.3,

we obtain the estimates.

Corollary 2.2.10. Under the same setup as in Corollary 2.2.8, defining

D0 = −α min
j=1,...,k

∥divηuj∥2 +
C0

δ
,

we have

σk+1 +D0 ≤
(
1 +

2δ(nδ + α)

ε2n2

)1
k

k∑
i=1

(σi +D0) +
[(2δ(nδ + α)

ε2n2

1

k

k∑
i=1

(σi +D0)
)2

−
(
1 +

4δ(nδ + α)

ε2n2

)1
k

k∑
j=1

(
σj −

1

k

k∑
i=1

σi

)2] 1
2

and

σk+1 − σk ≤2
[(2δ(nδ + α)

ε2n2

1

k

k∑
i=1

(σi +D0)
)2

−
(
1 +

4δ(nδ + α)

ε2n2

)1
k

k∑
j=1

(
σj −

1

k

k∑
i=1

σi

)2] 1
2
.

Proof. To proof this corollary it is enough to consider vi = σi +D0 and k0 =
4δ(nδ+α)

n2ε2
into

Lemma 1.5.2.

Again from Corollary 2.2.8 and by applying the recursion formula of Cheng and

Yang [8], we obtain the next corollary.

Corollary 2.2.11. Under the same setup as in Corollary 2.2.10, we have

σk+1 +D0 ≤
(
1 +

4δ(δn+ α)

ε2n2

)
k

2δ(nδ+α)

ε2n2 (σ1 +D0).

Proof. It is sufficient take µi = σi +D0 and t = 4δ(nδ+α)
n2ε2

into Corollary 1.5.1.

40



2.3 Gap of consecutive eigenvalues in the general set-

ting

In this section we obtain the gap of consecutive eigenvalues of Problem 2.1 in the more

general setting.

Since α ≥ 0 we obtain immediately from Theorem 2.1.1 that

k∑
i=1

(σk+1 − σi)
2 ≤ 4δ(nδ + α)

n2ε2

k∑
i=1

(σk+1 − σi)
[(√

σi +
1

2
√
δ
T0

)2

+
C0

δ

]
. (2.23)

Inequality (2.23) is a quadratic inequality of σk+1 and solving it we derive the following

estimate for the upper bound of σk+1 in terms of the first k eigenvalues and the gap of

consecutive eigenvalues.

Corollary 2.3.1. Under the same setup as in Theorem 2.1.1, we get

σk+1 ≤ ςk +
√
ς2k − ϑk (2.24)

and the gap of any consecutive eigenvalues

σk+1 − σk ≤ 2
√
ς2k − ϑk, (2.25)

where

ςk =
1

k

{
k∑

i=1

σi +
2δ(nδ + α)

n2ε2

k∑
i=1

[(√
σi +

1

2
√
δ
T0

)2

+
C0

δ

]}

and

ϑk =
1

k

{
k∑

i=1

σ2
i +

4δ(nδ + α)

n2ε2

k∑
i=1

σi

[(√
σi +

1

2
√
δ
T0

)2

+
C0

δ

]}
.

Proof. To simplify the notation, let Λi =
(√

σi +
1

2
√
δ
T0

)2

+ C0

δ
and α0 = 4(nδ+α)

n2ε2
, then

from Inequality (2.23) we have

P(σk+1) = σ2
k+1 −

(2
k

k∑
i=1

σi +
α0

k

k∑
i=1

Λi

)
σk+1 +

1

k

k∑
i=1

σ2
i +

α0

k

∑
i=1

σiΛi ≤ 0.

Hence the discriminant of P(vk+1) satisfies

D =
(2
k

k∑
i=1

σi +
α0

k

k∑
i=1

Λi

)2

− 4
(1
k

k∑
i=1

σ2
i +

α0

k

∑
i=1

σiΛi

)
≥ 0.
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Since P(σk+1) ≤ 0 we have R1 ≤ σk+1 ≤ R2, where R1 and R2 are the roots of P ,

respectively. Thus,

σk+1 ≤ R2 =
1

2

(2
k

k∑
i=1

σi +
α0

k

k∑
i=1

Λi

)
+

1

2

√
D

=
1

k

k∑
i=1

σi +
α0

2k

k∑
i=1

Λi +

√
D
4
,

therefore, substituting α0,Λi and D into the previous inequality we obtain (2.24).

On the other hand, replacing the integer k with k − 1 into Theorem 2.1.1 we can see

that σk satisfies the same quadratic inequality, that is, we get P(σk) ≤ 0, then by the

same arguments, we have

σk ≥ R1 =
1

k

k∑
i=1

σi +
α0

2k

k∑
i=1

Λi −
√

D
4

= ςk −
√

ς2k − ϑk. (2.26)

Thus, from (2.24) and (2.26) we obtain (2.25) and conclude the proof of the corollary.

The next result is a consequence of Corollary 2.3.1.

Corollary 2.3.2. Under the same setup as in Theorem 2.1.1, we get

σk+1 ≤
1

k

k∑
i=1

σi +
4δ(nδ + α)

n2ε2
1

k

k∑
i=1

[(√
σi +

1

2
√
δ
T0

)2

+
C0

δ

]
(2.27)

and the gap of any consecutive eigenvalues

σk+1 − σk ≤
4δ(nδ + α)

n2ε2
1

k

k∑
i=1

[(√
σi +

1

2
√
δ
T0

)2

+
C0

δ

]
. (2.28)

Proof. Using the notation Λi =
(√

σi+
1

2
√
δ
T0

)2

+ C0

δ
and α0 = 2(nδ+α)

n2ε2
in Corollary 2.3.1.

From Chebyshev’s inequality, see Lemma 1.5.4, since σ1 ≤ · · · ≤ σk and Λ1 ≤ · · · ≤ Λk,

we known that

(1
k

k∑
i=1

σi

)2

≤ 1

k

k∑
i=1

σ2
i and

(1
k

k∑
i=1

σi

)(1
k

k∑
i=1

Λi

)
≤ 1

k

k∑
i=1

σiΛi.
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Hence, we have

ς2k =
(1
k

k∑
i=1

σi +
α0

k

k∑
i=1

Λi

)2

=
(1
k

k∑
i=1

σi

)2

+
2α0

k2

k∑
i=1

σi

k∑
i=1

Λi +
(α0

k

k∑
i=1

Λi

)2

≤ 1

k

k∑
i=1

σ2
i +

2α0

k

k∑
i=1

σiΛi +
(α0

k

k∑
i=1

Λi

)2

.

So, we get

ς2k − ϑk ≤
1

k

k∑
i=1

σ2
i +

2α0

k

k∑
i=1

σiΛi +
(α0

k

k∑
i=1

Λi

)2

− 1

k

k∑
i=1

σ2
i −

2α0

k

k∑
i=1

σiΛi

=
(α0

k

k∑
i=1

Λi

)2

.

Therefore, from (2.24) we obtain

σk+1 ≤ ςk +
√

ς2k − ϑk

≤ 1

k

k∑
i=1

σi +
α0

k

k∑
i=1

Λi +
α0

k

k∑
i=1

Λi

=
1

k

k∑
i=1

σi +
2α0

k

k∑
i=1

Λi,

which is enough to prove (2.27). Now, from (2.25) we have

σk+1 − σi ≤ 2
√

ς2k − ϑk

≤ 2α0

k

k∑
i=1

Λi,

which is enough to prove (2.28).

Remark 2.3.1. We would like to observe that Inequality (2.27) generalizes [13, In-

equality (1.4)], as well as generalizes [9, Inequality (1.6)]. Moreover, Inequality (2.28)

generalizes [13, Inequality (1.5)].
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2.4 Proof of the main results

2.4.1 Three technical lemmas

In order to prove our first theorem in this chapter, we need three technical lemmas. The

first one is motivated by the corresponding results to Problem 2.3 proven by Chen et

al. [7, Lemma 2.1] and to Problem 2.4 proven by Du and Bezerra [13, Lemma 2.1]. Here,

we follow the steps of the proof of Lemma 2.1 in [7] with appropriate adaptations for

L + α∇divη.

Lemma 2.4.1. Let Ω ⊂ Rn be a bounded domain, σi be the i-th eigenvalue of Problem 2.1

and ui be a normalized vector-valued eigenfunction corresponding to σi. Then, for any

f ∈ C2(Ω) ∩ C1(∂Ω) and any positive constant B, we obtain

k∑
i=1

(σk+1 − σi)
2
{
(1−B)

∫
Ω

T (∇f,∇f)|ui|2dm−Bα

∫
Ω

|∇f · ui|2dm
}

≤ 1

B

k∑
i=1

(σk+1 − σi)∥T (∇f,∇ui) +
1

2
L fui∥2.

Proof. Let ui be a normalized vector-valued eigenfunction corresponding to σi, i.e., it

satisfies 
L ui + α∇(divηui) = −σiui in Ω,

ui = 0 on ∂Ω,∫
Ω
ui · ujdm = δij for any i, j.

(2.29)

Since σk+1 is the minimum value of the Rayleigh quotient (1.22) (or see [27, Theo-

rem 9.43]), we must have

σk+1 ≤ −
∫
Ω
v · (L v + α∇(divηv))dm∫

Ω
|v|2dm

, (2.30)

for any nonzero vector-valued function v : Ω → Rn satisfying

v|∂Ω = 0 and

∫
Ω

v · uidm = 0, for any, i = 1, . . . , k.

Let us denote by aij =
∫
Ω
fui · ujdm = aji to consider the vector-valued functions vi

given by

vi = fui −
k∑

j=1

aijuj, (2.31)

so that

vi|∂Ω = 0 and

∫
Ω

uj · vidm = 0, for any i, j = 1, . . . , k. (2.32)
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Then, we can take v = vi in (2.30) and use formula (1.16) to obtain

σk+1∥vi∥2 ≤
∫
Ω

(
− vi · L vi + α(divηvi)

2
)
dm. (2.33)

From (2.31) and (1.17), we get

L vi =fL ui + 2T (∇f,∇ui) + L fui −
k∑

j=1

aijL uj

=f(−σiui − α∇(divηui)) + 2T (∇f,∇ui) + L fui

−
k∑

j=1

aij(−σjuj − α∇(divηuj)),

that is,

L vi =− σifui +
k∑

j=1

aijσjuj + 2T (∇f,∇ui) + L fui

− αf∇(divηui) + α
k∑

j=1

aij∇(divηuj).

Therefore,∫
Ω

−vi · L vidm =σi∥vi∥2 −
∫
Ω

vi · (2T (∇f,∇ui) + L fui)dm

+ α
(∫

Ω

fvi · ∇(divηui)dm−
k∑

j=1

aij

∫
Ω

vi · ∇(divηuj)dm
)
. (2.34)

From (1.7) and (1.16)∫
Ω

fvi · ∇(divηui)dm = −
∫
Ω

fdivηuidivηvidm−
∫
Ω

divηui∇f · vidm.

But, from (2.31)

−fdivηui = −divηvi +∇f · ui −
k∑

j=1

aijdivηuj,
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then ∫
Ω

fvi · ∇(divηui)dm =−
∫
Ω

(divηvi)
2dm+

∫
Ω

divηvi∇f · uidm

−
k∑

j=1

aij

∫
Ω

divηujdivηvidm−
∫
Ω

divηui∇f · vidm

=−
∫
Ω

(divηvi)
2dm+

∫
Ω

divηvi∇f · uidm

+
k∑

j=1

aij

∫
Ω

vi · ∇(divηuj)dm−
∫
Ω

divηui∇f · vidm.

Thus,

∫
Ω

fvi · ∇(divηui)dm−
k∑

j=1

aij

∫
Ω

vi · ∇(divηuj)dm

= −
∫
Ω

(divηvi)
2dm+

∫
Ω

(divηvi∇f · ui − divηui∇f · vi)dm

= −
∫
Ω

(divηvi)
2dm−

∫
Ω

(∇(∇f · ui) + divηui∇f) · vidm. (2.35)

So, replacing (2.35) into (2.34), we obtain

−σi∥vi∥2 =
∫
Ω

vi · L vidm−
∫
Ω

vi · (2T (∇f,∇ui) + L fui)dm

− α

∫
Ω

(divηvi)
2dm− α

∫
Ω

(∇(∇f · ui) + divηui∇f) · vidm. (2.36)

Hence, from (2.33) and (2.36), we have

(σk+1 − σi)∥vi∥2 ≤−
∫
Ω

(2T (∇f,∇ui) + L fui) · vidm

− α

∫
Ω

(∇(∇f · ui) + divηui∇f) · vidm. (2.37)

Claim 1. Using integration by parts formula (1.10) and (2.31), we get

∫
Ω

(2T (∇f,∇ui) + L fui) · vidm = −
∫
Ω

|ui|2T (∇f,∇f)dm− 2
k∑

j=1

aijbij, (2.38)

where

bij =

∫
Ω

(
T (∇f,∇ui) +

1

2
L fui

)
· ujdm = −bji. (2.39)

Furthermore, we also have the following
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Claim 2. By straightforward computation from (1.7), (1.9) and (2.31), we have∫
Ω

(∇(∇f · ui) + divηui∇f) · vidm

=
k∑

j=1

aij

∫
Ω

(∇f · uidivηuj − divηui∇f · uj)dm−
∫
Ω

|∇f · ui|2dm. (2.40)

Putting

wi = −
∫
Ω

(2T (∇f,∇ui) +L fui) ·vidm−α

∫
Ω

(
∇(∇f ·ui) + divηui∇f

)
·vidm, (2.41)

we have, from (2.37) and (2.41)

(σk+1 − σi)∥vi∥2 ≤ wi. (2.42)

Furthermore, from (2.38) and (2.40)

wi =

∫
Ω

|ui|2T (∇f,∇f)dm+ 2
k∑

j=1

aijbij

− α
k∑

j=1

aij

∫
Ω

(∇f · uidivηuj − divηui∇f · uj)dm+ α

∫
Ω

|∇f · ui|2dm. (2.43)

Since L is self-adjoint (see (1.18)), from (2.29) and (2.39),

2bij =

∫
Ω

(
2T (∇f,∇ui) + L fui

)
· ujdm =

∫
Ω

(
L (fui)− fL ui

)
· ujdm

=

∫
Ω

L (fui) · ujdm+

∫
Ω

(−L ui) · (fuj)dm

=

∫
Ω

fui · L ujdm+

∫
Ω

(−L ui) · (fuj)dm

=−
∫
Ω

(fui) · (σjuj + α∇divηuj)dm+

∫
Ω

(fuj) · (σiui + α∇divηui)dm

=σi

∫
Ω

fui · ujdm− σj

∫
Ω

fui · ujdm+ α

∫
Ω

(
(fuj) · ∇divηui − (fui) · ∇divηuj

)
dm

=(σi − σj)aij + α

∫
Ω

(
(fuj) · ∇divηui − (fui) · ∇divηuj

)
dm. (2.44)

From, (1.7) and (1.9) (or immediately from (1.16)) we have∫
Ω

(fuj) · ∇divηuidm = −
∫
Ω

divηuidivηujdm−
∫
Ω

divηui∇f · ujdm,
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and ∫
Ω

(fui) · ∇divηujdm = −
∫
Ω

divηujdivηuidm−
∫
Ω

divηuj∇f · uidm.

Therefore, substituting the two previous equalities into (2.44), we get

2bij = (σi − σj)aij + α

∫
Ω

(∇f · uidivηuj − divηui∇f · uj)dm,

then

2
k∑

j=1

aijbij =
k∑

j=1

(σi − σj)a
2
ij + α

k∑
j=1

aij

∫
Ω

(∇f · uidivηuj − divηui∇f · uj)dm. (2.45)

Thus, combining (2.43) and (2.45) we obtain

wi =

∫
Ω

|ui|2T (∇f,∇f)dm+
k∑

j=1

(σi − σj)a
2
ij + α

∫
Ω

|∇f · ui|2dm. (2.46)

For any constant B > 0, from (2.32), (2.38) and the inequality of Cauchy-Schwarz, we

infer

(σk+1 − σi)
2
(∫

Ω

T (∇f,∇f)|ui|2dm+ 2
k∑

j=1

aijbij

)
=(σk+1 − σi)

2

{
− 2

∫
Ω

(
T (∇f,∇ui) +

1

2
L fui −

k∑
j=1

bijuj

)
· vidm

}

≤2(σk+1 − σi)
2∥vi∥

∥∥∥T (∇f,∇ui) +
1

2
L fui −

k∑
j=1

bijuj

∥∥∥
≤(σk+1 − σi)

3B∥vi∥2 +
σk+1 − σi

B

∥∥∥T (∇f,∇ui) +
1

2
L fui −

k∑
j=1

bijuj

∥∥∥2

. (2.47)

Notice that

∥∥∥T (∇f,∇ui) +
1

2
L fui −

k∑
j=1

bijuj

∥∥∥2

=
∥∥∥T (∇f,∇ui) +

1

2
L fui

∥∥∥2

− 2
k∑

j=1

bij

∫
Ω

(
T (∇f,∇ui) +

1

2
L fui

)
· ujdm+

∥∥∥ k∑
j=1

bijuj

∥∥∥2

=
∥∥∥T (∇f,∇ui) +

1

2
L fui

∥∥∥2

− 2
k∑

j=1

b2ij +
k∑

j=1

b2ij =
∥∥∥T (∇f,∇ui) +

1

2
L fui

∥∥∥2

−
k∑

j=1

b2ij
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hence, using the previous equality, from (2.47), (2.42) and (2.46) , we obtain

(σk+1 − σi)
2
(∫

Ω

T (∇f,∇f)|ui|2dm+ 2
k∑

j=1

aijbij

)
≤(σk+1 − σi)

2Bwi +
σk+1 − σi

B

∥∥∥T (∇f,∇ui) +
1

2
L fui −

k∑
j=1

bijuj

∥∥∥2

≤(σk+1 − σi)
2B

(∫
Ω

|ui|2T (∇f,∇f)dm+
k∑

j=1

(σi − σj)a
2
ij + α

∫
Ω

|∇f · ui|2dm
)

+
σk+1 − σi

B

(∥∥∥T (∇f,∇ui) +
1

2
L fui

∥∥∥2

−
k∑

j=1

b2ij

)
.

Summing over i from 1 to k, we obtain

k∑
i=1

(σk+1 − σi)
2
(∫

Ω

T (∇f,∇f)|ui|2dm+ 2
k∑

j=1

aijbij

)
≤

k∑
i=1

(σk+1 − σi)
2B

(∫
Ω

|ui|2T (∇f,∇f)dm+
k∑

j=1

(σi − σj)a
2
ij + α

∫
Ω

|∇f · ui|2dm
)

+
k∑

i=1

σk+1 − σi

B

(∥∥∥T (∇f,∇ui) +
1

2
L fui

∥∥∥2

−
k∑

j=1

b2ij

)
. (2.48)

Since aij = aji and bij = −bji, we have

2
k∑

i,j=1

(σk+1 − σi)
2aijbij =2

k∑
i,j=1

(σk+1 − σi)(σk+1 − σj + σj − σi)aijbij

=2
k∑

i,j=1

(σk+1 − σi)(σk+1 − σj)aijbij − 2
k∑

i,j=1

(σk+1 − σi)(σi − σj)aijbij

=− 2
k∑

i,j=1

(σk+1 − σi)(σi − σj)aijbij,

and

k∑
i,j=1

(σk+1 − σi)
2(σi − σj)a

2
ij =

k∑
i,j=1

(σk+1 − σi)(σk+1 − σj + σj − σi)(σi − σj)a
2
ij

=
k∑

i,j=1

(σk+1 − σi)(σk+1 − σj)(σi − σj)a
2
ij +

k∑
i,j=1

(σk+1 − σi)(σj − σi)(σi − σj)a
2
ij

= −
k∑

i,j=1

(σk+1 − σi)(σi − σj)
2a2ij,
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where we have used the facts

k∑
i,j=1

(σk+1 − σi)(σk+1 − σj)aijbij = 0 and
k∑

i,j=1

(σk+1 − σi)(σk+1 − σj)(σi − σj)a
2
ij = 0.

Therefore, from (2.48), we get

k∑
i=1

(σk+1 − σi)
2
(
(1−B)

∫
Ω

T (∇f,∇f)|ui|2dm−Bα

∫
Ω

|∇f · ui|2dm
)

≤
k∑

i=1

σk+1 − σi

B

∥∥∥T (∇f,∇ui) +
1

2
L fui

∥∥∥2

+ 2
k∑

i,j=1

(σk+1 − σi)(σi − σj)aijbij

−
k∑

i,j=1

(σk+1 − σi)(σi − σj)
2a2ijB −

k∑
i,j=1

σk+1 − σi

B
b2ij

=
k∑

i=1

σk+1 − σi

B

∥∥∥T (∇f,∇ui) +
1

2
L fui

∥∥∥2

− 1

B

k∑
i,j=1

(σk+1 − σi)
[
(σi − σj)

2a2ijB
2 − 2(σi − σj)aijBbij + b2ij

]
=

k∑
i=1

σk+1 − σi

B

∥∥∥T (∇f,∇ui) +
1

2
L fui

∥∥∥2

− 1

B

k∑
i,j=1

(σk+1 − σi)
[
(σi − σj)a

2
ijB − bij

]2
,

since σk+1 − σi ≥ 0 and B > 0 we obtain

k∑
i=1

(σk+1 − σi)
2
(
(1−B)

∫
Ω

T (∇f,∇f)|ui|2dm−Bα

∫
Ω

|∇f · ui|2dm
)

≤ 1

B

k∑
i=1

(σk+1 − σi)
∥∥∥T (∇f,∇ui) +

1

2
L fui

∥∥∥2

.

This finishes the proof of Lemma 2.4.1.

2.4.2 Proof of Claims 1 and 2

Here, we prove the Claims 1 and 2 as mentioned in the proof of Lemma 2.4.1.
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Proof of Claim 1

Proof. From definition of vi we have∫
Ω

(2T (∇f,∇ui) + L fui) · vidm =

∫
Ω

(2T (∇f,∇ui) + L fui) · (fui)dm

− 2
k∑

j=1

aij

∫
Ω

(
T (∇f,∇ui) +

1

2
L fui

)
· ujdm

=

∫
Ω

(2T (∇f,∇ui) + L fui) · (fui)dm− 2
k∑

j=1

aijbij.

(2.49)

Moreover, notice that∫
Ω

(
2T (∇f,∇ui) + L fui

)
· (fui)dm =2

∫
Ω

T (∇f,∇u1
i )fu

1
i dm+

∫
Ω

f(u1
i )

2L fdm+ · · ·

+ 2

∫
Ω

T (∇f,∇u1
i )fu

n
i dm+

∫
Ω

f(un
i )

2L fdm,

(2.50)

since ui|∂Ω = 0 from integration by parts (1.10), for all 1 ≤ k ≤ n we get∫
Ω

f(uk
i )

2L fdm =−
∫
Ω

⟨∇
(
f(uk

i )
2
)
, T (∇f)⟩dm

=−
∫
Ω

(uk
i )

2⟨∇f, T (∇f)⟩dm− 2

∫
Ω

fuk
i ⟨∇uk

i , T (∇f)⟩dm

=−
∫
Ω

(uk
i )

2T (∇f,∇f)dm− 2

∫
Ω

fuk
i T (∇uk

i ,∇f)dm,

and substituting the previous equality into (2.50) we obtain∫
Ω

(
2T (∇f,∇ui) + L fui

)
· (fui)dm

=2

∫
Ω

T (∇f,∇u1
i )fu

1
i dm−

∫
Ω

(u1
i )

2T (∇f,∇f)dm

− 2

∫
Ω

fu1
iT (∇u1

i ,∇f)dm+ · · ·+ 2

∫
Ω

T (∇f,∇un
i )fu

n
i dm

−
∫
Ω

(un
i )

2T (∇f,∇f)dm− 2

∫
Ω

fun
i ⟨∇un

i , T (∇f)⟩dm

=−
∫
Ω

(u1
i )

2T (∇f,∇f)dm− · · · −
∫
Ω

(un
i )

2T (∇f,∇f)⟩dm

=−
∫
Ω

|ui|2T (∇f,∇f)dm. (2.51)

Therefore, from (2.49) and (2.51) we obtain (2.38) and conclude the proof.
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Proof of Claim 2

Proof. From definition of vi we obtain

∫
Ω

(
∇(∇f · ui) + divηui∇f

)
· vidm =

∫
Ω

(∇(∇f · ui) + divηui∇f) ·
(
uif −

k∑
j=1

aijuj

)
dm

=−
k∑

j=1

aij

∫
Ω

(
∇(∇f · ui) + divηui∇f

)
· ujdm

+

∫
Ω

(
∇(∇f · ui) + divηui∇f

)
· (fui)dm. (2.52)

From (1.7) we have

divη
(
(∇f · ui)uj

)
= (∇f · ui)divηuj +∇(∇f · ui) · uj,

and

divη
(
(∇f · ui)(fui)

)
= (∇f · ui)divη(fui) +∇(∇f · ui) · (fui)

= (∇f · ui)fdivηui + |∇f · ui|2 +∇(∇f · ui) · (fui),

hence, from the previous equalities and (1.9) we get∫
Ω

∇(∇f · ui) · ujdm = −
∫
Ω

(∇f · ui)divηujdm, (2.53)

and ∫
Ω

∇(∇f · ui) · (fui)dm = −
∫
Ω

(∇f · ui)fdivηuidm−
∫
Ω

|∇f · ui|2dm. (2.54)

Substituting (2.53) and (2.54) into (2.52) we complete the proof.

The proof of the next lemma follows the steps of the proof of Proposition 2 in Gomes

and Miranda [15] with appropriate adaptations for vector-valued functions from Ω to Rn.

Lemma 2.4.2. Let Ω be a bounded domain in Euclidean space Rn, σi be the i-th eigenvalue

of Problem 2.1 and ui be a normalized vector-valued eigenfunction corresponding to σi.

Then, for some positive real numbers ε and δ, we get

k∑
i=1

(σk+1−σi)
2 ≤ 4(nδ + α)

n2ε2

k∑
i=1

(σk+1 − σi)
{1

4

∫
Ω

|ui|2|tr(∇T )− T (∇η)|2dm

+

∫
Ω

ui ·
(
T (tr(∇T ),∇ui)− T (T (∇η),∇ui)

)
dm+ ∥T (∇ui)∥2

}
.

Proof. Let {xβ}nβ=1 be the coordinate functions of Rn, then taking f = xβ in Lemma 2.4.1
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and summing over β from 1 to n, we get

k∑
i=1

(σk+1−σi)
2

n∑
β=1

{
(1−B)

∫
Ω

T (∇xβ,∇xβ)|ui|2dm−Bα

∫
Ω

|∇xβ · ui|2dm

}

≤ 1

B

k∑
i=1

(σk+1 − σi)
n∑

β=1

∥∥∥T (∇xβ,∇ui) +
1

2
L xβui

∥∥∥2

=
1

B

k∑
i=1

(σk+1 − σi)

∫
Ω

n∑
β=1

∣∣∣T (∇xβ,∇ui) +
1

2
divη(T (∇xβ))ui

∣∣∣2dm.

Therefore,

k∑
i=1

(σk+1−σi)
2

n∑
β=1

{
(1−B)

∫
Ω

T (∇xβ,∇xβ)|ui|2dm−Bα

∫
Ω

|∇xβ · ui|2dm

}

≤ 1

B

k∑
i=1

(σk+1 − σi)

∫
Ω

n∑
β=1

{
|ui|2

4
(divη(T (∇xβ)))

2

+ ui ·
(
divη(T (∇xβ))T (∇xβ,∇ui)

)
+ |T (∇xβ,∇ui)|2

}
dm. (2.55)

By straightforward computation, we have

n∑
β=1

T (∇xβ,∇xβ) =
n∑

β=1

⟨T (eβ), eβ⟩ = tr(T ) and
n∑

β=1

|∇xβ · ui|2 = |ui|2.

Similarly to the calculations in [15, Eq. (3.23)] (see Eq. (1.29) in Lemma (1.5.3)) we obtain

n∑
β=1

(divη(T (∇xβ)))
2 =

n∑
β=1

(L xβ)
2 = |tr(∇T )− T (∇η)|2.

From (1.28) (see [15, Eq. (3.24)]), for all k = 1, . . . , n, we get

n∑
β=1

divη(T (∇xβ))T (∇xβ,∇uk
i ) =

n∑
β=1

divη(T (∇xβ))T (∇uk
i )(xβ)

=⟨divη(T (∇x)), T (∇uk
i )⟩

=⟨tr(∇T )− T (∇η), T (∇uk
i )⟩

=⟨tr(∇T ), T (∇uk
i )⟩ − ⟨T (∇η), T (∇uk

i )⟩,
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where divη(T (∇x)) := (divη(T (∇x1)), . . . , divη(T (∇xn))). Then, using (1.15), we obtain

n∑
β=1

divη(T (∇xβ))T (∇xβ,∇ui) =

=
( n∑

β=1

divη(T (∇xβ))T (∇xβ,∇u1
i ), . . . ,

n∑
β=1

divη(T (∇xβ))T (∇xβ,∇un
i )
)

= (⟨tr(∇T ), T (∇u1
i )⟩ − ⟨T (∇η), T (∇u1

i )⟩, . . . , ⟨tr(∇T ), T (∇un
i )⟩ − ⟨T (∇η), T (∇un

i )⟩)

= (⟨tr(∇T ), T (∇u1
i )⟩, . . . , ⟨tr(∇T ), T (∇un

i )⟩)− (⟨T (∇η), T (∇u1
i )⟩, . . . , ⟨T (∇η), T (∇un

i )⟩)

= T (tr(∇T ),∇ui)− T (T (∇η),∇ui).

Moreover,

n∑
β=1

|T (∇xβ,∇ui)|2 =
n∑

β=1

|T (eβ,∇ui)|2 =
n∑

β=1

|
(
⟨eβ, T (∇u1

i )⟩, . . . , ⟨eβ, T (∇un
i )⟩

)
|2

=
n∑

β=1

⟨eβ, T (∇u1
i )⟩2 + · · ·+

n∑
β=1

⟨eβ, T (∇un
i )⟩2 =

n∑
j=1

|T (∇uj
i )|2 = |T (∇ui)|2.

Remembering that ∥T (∇ui)∥2 =
∫
Ω
|T (∇ui)|2dm and substituting the previous equalities

into (2.55), we get

k∑
i=1

(σk+1 − σi)
2
[
(1−B)

∫
Ω

tr(T )|ui|2dm−Bα
]

≤ 1

B

k∑
i=1

(σk+1 − σi)

{
1

4

∫
Ω

|ui|2|tr(∇T )− T (∇η)|2dm

+

∫
Ω

ui ·
(
T (tr(∇T ),∇ui)− T (T (∇η),∇ui)

)
dm+ ∥T (∇ui)∥2

}
. (2.56)

Since εI ≤ T ≤ δI, then nε ≤ tr(T ) ≤ nδ. Hence from (2.56)

k∑
i=1

(σk+1 − σi)
2[nε− (nδ + α)B]

≤ 1

B

k∑
i=1

(σk+1 − σi)

{
1

4

∫
Ω

|ui|2|tr(∇T )− T (∇η)|2dm

+

∫
Ω

ui ·
(
T (tr(∇T ),∇ui)− T (T (∇η),∇ui)

)
dm+ ∥T (∇ui)∥2

}
. (2.57)

54



Let us consider

Mi =
1

4

∫
Ω

|ui|2|tr(∇T )− T (∇η)|2dm

+

∫
Ω

ui · (T (tr(∇T ),∇ui)− T (T (∇η),∇ui))dm+ ∥T (∇ui)∥2,

so that, from (2.57), we have

nεB
k∑

i=1

(σk+1 − σi)
2 − (nδ + α)B2

k∑
i=1

(σk+1 − σi)
2 ≤

k∑
i=1

(σk+1 − σi)Mi. (2.58)

Furthermore, since B is arbitrary positive constant, putting

B =

{ ∑k
i=1(σk+1 − σi)

(nδ + α)
∑k

i=1(σk+1 − σi)2
Mi

} 1
2

into (2.58), we obtain

nε

{ ∑k
i=1(σk+1 − σi)

(nδ + α)
∑k

i=1(σk+1 − σi)2
Mi

} 1
2 k∑

i=1

(σk+1 − σi)
2 ≤ 2

k∑
i=1

(σk+1 − σi)Mi,

and if we square the previous equality we get

n2ε2

nδ + α

k∑
i=1

(σk+1 − σi)
2 ≤ 4

k∑
i=1

(σk+1 − σi)Mi,

that is enough to complete the proof of Lemma 2.4.2.

With these considerations in mind, we can rewrite the previous lemma in a more

convenient way for us.

Lemma 2.4.3. Under the same setup as in Lemma 2.4.2, we get

k∑
i=1

(σk+1 − σi)
2 ≤ 4(nδ + α)

n2ε2

k∑
i=1

(σk+1 − σi)
{
∥T (∇ui)∥2 + C

+
1

4

∫
Ω

|ui|2⟨tr(∇T ), tr(∇T )− 2T (∇η)⟩dm+

∫
Ω

ui · T (tr(∇T ),∇ui)dm
}
,

where C = supΩ

{
1
2
div(T 2(∇η))− 1

4
|T (∇η)|2

}
has been chosen such that the term on the

right-hand side must be positive.

Proof. We make use of Lemma 2.4.2. For this, we must notice that

|tr(∇T )− T (∇η)|2 = |tr(∇T )|2 − 2⟨tr(∇T ), T (∇η)⟩+ |T (∇η)|2,
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hence

1

4

∫
Ω

|ui|2|tr(∇T )− T (∇η)|2dm+

∫
Ω

ui · (T (tr(∇T ),∇ui)− T (T (∇η),∇ui)))dm

=
1

4

∫
Ω

|ui|2|T (∇η)|2dm−
∫
Ω

ui · T (T (∇η),∇ui)dm+
1

4

∫
Ω

|ui|2|tr(∇T )|2dm

− 1

2

∫
Ω

|ui|2⟨tr(∇T ), T (∇η)⟩dm+

∫
Ω

ui · T (tr(∇T ),∇ui)dm. (2.59)

Since ui|∂Ω = 0 by Eq. (1.15) and the divergence theorem, we have

−
∫
Ω

ui · T (T (∇η),∇ui)dm

= −
∫
Ω

u1
i ⟨T 2(∇η),∇u1

i ⟩dm− · · · −
∫
Ω

un
i ⟨T 2(∇η),∇un

i ⟩dm

= −1

2

∫
Ω

⟨T 2(∇η),∇(u1
i )

2⟩dm− · · · − 1

2

∫
Ω

⟨T 2(∇η),∇(un
i )

2⟩dm

=
1

2

∫
Ω

(u1
i )

2divη(T
2(∇η))dm+ · · ·+ 1

2

∫
Ω

(un
i )

2divη(T
2(∇η))dm

=
1

2

∫
Ω

|ui|2divη(T 2(∇η))dm.

Substituting the previous equation in Eq. (2.59), we get

1

4

∫
Ω

|ui|2|tr(∇T )− T (∇η)|2dm+

∫
Ω

ui · (T (tr(∇T ),∇ui)− T (T (∇η),∇ui))dm

=

∫
Ω

|ui|2
(1
4
|T (∇η)|2 + 1

2
divη(T

2(∇η))
)
dm+

1

4

∫
Ω

|ui|2⟨tr(∇T ), tr(∇T )⟩dm

− 1

2

∫
Ω

|ui|2⟨tr(∇T ), T (∇η)⟩dm+

∫
Ω

ui · T (tr(∇T ),∇ui)dm

=

∫
Ω

|ui|2
(1
2
div(T 2(∇η))− 1

4
|T (∇η)|2

)
dm+

1

4

∫
Ω

|ui|2⟨tr(∇T ), tr(∇T )⟩dm

− 1

2

∫
Ω

|ui|2⟨tr(∇T ), T (∇η)⟩dm+

∫
Ω

ui · T (tr(∇T ),∇ui)dm,

where we are using in the last equality that divη(T
2(∇η)) = div(T 2(∇η))− |T (∇η)|2. By

setting C = supΩ

{
1
2
div(T 2(∇η))− 1

4
|T (∇η)|2

}
in the previous equality, we have

1

4

∫
Ω

|ui|2|tr(∇T )− T (∇η)|2dm+

∫
Ω

ui · (T (tr(∇T ),∇ui)− T (T (∇η),∇ui)))dm

≤ C +
1

4

∫
Ω

|ui|2⟨tr(∇T ), tr(∇T )− 2T (∇η)⟩dm+

∫
Ω

ui · T (tr(∇T ),∇ui)dm. (2.60)

Replacing Inequality (2.60) into Lemma 2.4.2, we complete the proof of Lemma 2.4.3.

Now, we are in a position to give the proof of the two theorems of this thesis. For

this, let us make use of the results from the previous section.
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2.4.3 Proof of Theorem 2.1.1

Proof. The proof is a consequence of Lemma 2.4.3. We begin by computing

1

4

∫
Ω

|ui|2⟨tr(∇T ), tr(∇T )− 2T (∇η)⟩dm =
1

4

∫
Ω

|ui|2|tr(∇T )|2dm

− 1

2

∫
Ω

|ui|2⟨tr(∇T ), T (∇η)⟩dm.

Since T0 = supΩ |tr(∇T )| and η0 = supΩ |∇η|, we have

1

4

∫
Ω

|ui|2|tr(∇T )|2dm ≤ 1

4
T 2
0

∫
Ω

|ui|2dm =
1

4
T 2
0 ,

and using (1.4) we get

−1

2

∫
Ω

|ui|2⟨tr(∇T ), T (∇η)⟩dm ≤ 1

2

∫
Ω

|ui|2|tr(∇T )||T (∇η)|dm

≤ δ

2

∫
Ω

|ui|2|tr(∇T )||∇η|dm

≤ δ

2
T0η0.

Then,

1

4

∫
Ω

|ui|2⟨tr(∇T ), tr(∇T )− 2T (∇η)⟩dm ≤ 1

4
T 2
0 +

δ

2
T0η0. (2.61)

Furthermore,∫
Ω

ui · T (tr(∇T ),∇ui)dm ≤
(∫

Ω

|ui|2dm
) 1

2
(∫

Ω

|T (tr(∇T ),∇ui)|2dm
) 1

2

≤ T0

(∫
Ω

|T (∇ui)|2dm
) 1

2
= T0∥T (∇ui)∥. (2.62)

Substituting (2.61) and (2.62) into Lemma 2.4.3, we obtain

k∑
i=1

(σk+1 − σi)
2 ≤4(nδ + α)

n2ε2

k∑
i=1

(σk+1 − σi)
{
∥T (∇ui)∥2 +

1

4
T 2
0 + T0∥T (∇ui)∥

+
δ

2
T0η0 + C

}
.
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Moreover, from the proof of Lemma 2.4.2 and Lemma 2.4.3, we can see that

0 <
n∑

β=1

∥∥∥T (∇xβ,∇ui) +
1

2
L xβui

∥∥∥2

≤
{
∥T (∇ui)∥2 +

1

4
T 2
0 + T0∥T (∇ui)∥

+
δ

2
T0η0 + C

}
=
(
∥T (∇ui)∥+

1

2
T0

)2

+ C0,

where C0 = C + δ
2
T0η0 and {xβ}nβ=1 are the canonical coordinate functions of Rn. Thus,

we get

k∑
i=1

(σk+1 − σi)
2 ≤ 4(nδ + α)

n2ε2

k∑
i=1

(σk+1 − σi)
{(

∥T (∇ui)∥+
1

2
T0

)2

+ C0

}
. (2.63)

From (2.1), (1.10) and (1.16) we obtain

σi =

∫
Ω

T (∇ui) · ∇uidm+ α∥divηui∥2.

Since there exist positive real numbers ε and δ such that εI ≤ T ≤ δI, from the previous

inequality and (1.3), we get

∥T (∇ui)∥2 ≤ δ

∫
Ω

T (∇ui) · ∇uidm = δ(σi − α∥divηui∥2). (2.64)

Therefore, from (2.63) and (2.64) we obtain

k∑
i=1

(σk+1 − σi)
2 ≤ 4(nδ + α)

n2ε2

k∑
i=1

(σk+1 − σi)
{[√

δ(σi − α∥divηui∥2)
1
2 + T0

]2
+ C0

}
,

which is enough to complete the proof.

2.4.4 Proof of Theorem 2.1.2

Proof. Let {xβ}nβ=1 be the standard coordinate functions of Rn. Let us consider the matrix

D = (dij)n×n where

dij :=

∫
Ω

xiu1 · uj+1dm.

Using the orthogonalization of Gram and Schmidt, we know that there exists an upper

triangle matrix R = (rij)n×n and an orthogonal matrix S = (sij)n×n such that R = SD,

namely

rij =
n∑

k=1

sikdkj =
n∑

k=1

sik

∫
Ω

xku1 · uj+1dm =

∫
Ω

( n∑
k=1

sikxk

)
u1 · uj+1dm = 0,
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for 1 ≤ j < i ≤ n. Putting yi =
∑n

k=1 sikxk, we have∫
Ω

yiu1 · uj+1dm = 0 for 1 ≤ j < i ≤ n.

Let us denote by ai =
∫
Ω
yi|u1|2dm to consider the vector-valued functions wi given by

wi = (yi − ai)u1, (2.65)

so that

wi|∂Ω = 0 and

∫
Ω

wi · uj+1dm = 0, for any j = 1, . . . , i− 1.

Then, we can take v = wi in (2.30) and to use formula (1.16) to obtain

σi+1∥wi∥2 ≤
∫
Ω

(−wi · Lwi + α(divηwi)
2)dm. (2.66)

Using (1.17) we get

−
∫
Ω

wi · Lwidm = −
∫
Ω

wi · [(yi − ai)L u1 + u1L yi + 2T (∇yi,∇u1)]dm

= −
∫
Ω

wi · [(yi − ai)(−σ1u1 − α∇divηu1) + u1L yi + 2T (∇yi,∇u1)]dm

= σ1∥wi∥2 + α

∫
Ω

(yi − ai)wi · ∇divηu1dm−
∫
Ω

wi · (u1L yi + 2T (∇yi,∇u1))dm.

(2.67)

Using (1.7) and (1.9), by a computation analogous to (2.35), we obtain

α

∫
Ω

(yi − ai)wi · ∇divηu1dm =− α

∫
Ω

(divηwi)
2dm

− α

∫
Ω

(∇(∇yi · u1) + divηu1∇yi) ·widm.

Substituting the previous equality into (2.67), we get∫
Ω

(−wi · Lwi + α(divηwi)
2)dm =σ1∥wi∥2 − α

∫
Ω

(∇(∇yi · u1) + divηu1∇yi) ·widm

−
∫
Ω

wi · (u1L yi + 2T (∇yi,∇u1))dm. (2.68)
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Replacing (2.68) into (2.66), we have

(σi+1 − σ1)∥wi∥2 ≤−
∫
Ω

wi · (u1L yi + 2T (∇yi,∇u1))dm

− α

∫
Ω

wi · (∇(∇yi · u1) + divηu1∇yi)dm. (2.69)

By a straightforward computation, we have, from (1.7), (1.9), (1.10) and (2.65),

−
∫
Ω

wi · (u1L yi + 2T (∇yi,∇u1))dm =

∫
Ω

|u1|2T (∇yi,∇yi)dm. (2.70)

−α

∫
Ω

wi · (∇(∇yi · u1) + divηu1∇yi)dm = α

∫
Ω

|∇yi · u1|2dm. (2.71)

Therefore, substituting (2.70) and (2.71) into (2.69) we obtain

(σi+1 − σ1)∥wi∥2 ≤
∫
Ω

|u1|2T (∇yi,∇yi)dm+ α

∫
Ω

|∇yi · u1|2dm. (2.72)

From (2.70), for any constant B > 0, we infer

(σi+1 − σ1)

∫
Ω

|u1|2T (∇yi,∇yi)dm

=(σi+1 − σ1)
{
− 2

∫
Ω

wi ·
(1
2
u1L yi + T (∇yi,∇u1)

)
dm

}
≤2(σi+1 − σ1)∥wi∥

∥∥∥1
2
u1L yi + T (∇yi,∇u1)

∥∥∥
≤B(σi+1 − σ1)

2∥wi∥2 +
1

B

∥∥∥1
2
u1L yi + T (∇yi,∇u1)

∥∥∥2

,

hence using (2.72) and the previous inequality we get

(σi+1 − σ1)

∫
Ω

|u1|2T (∇yi,∇yi)dm

≤B(σi+1 − σ1)
(∫

Ω

|u1|2T (∇yi,∇yi)dm+ α

∫
Ω

|∇yi · u1|2dm
)

+
1

B

∥∥∥1
2
u1L yi + T (∇yi,∇u1)

∥∥∥2

. (2.73)

Summing over i from 1 to n in (2.73), we conclude that

n∑
i=1

(σi+1 − σ1)(1−B)

∫
Ω

|u1|2T (∇yi,∇yi)dm

≤ Bα
n∑

i=1

(σi+1 − σ1)

∫
Ω

|∇yi · u1|2dm+
1

B

n∑
i=1

∥∥∥1
2
u1L yi + T (∇yi,∇u1)

∥∥∥2

. (2.74)
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From the definition of yi and the fact that S is an orthogonal matrix, we know that {yi}ni=1

are also the coordinate functions in Rn. Then, as in the proof of Theorem 2.1.1, we can

also get

0 <
n∑

i=1

∥∥∥1
2
u1L yi + T (∇yi,∇u1)

∥∥∥2

≤
(
∥T (∇u1)∥+

1

2
T0

)2

+ C0,

where C0 is given by Eq. (2.5). Using (2.74) and εI ≤ T ≤ δI, we obtain

n∑
i=1

(σi+1 − σ1)(ε−B(δ + α)) ≤ 1

B

{
(∥T (∇u1)∥+

1

2
T0)

2 + C0

}
. (2.75)

Let us consider

N1 = (∥T (∇u1)∥+
1

2
T0)

2 + C0,

so that, from (2.75) we have

εB
n∑

i=1

(σi+1 − σ1)−B2(δ + α)
n∑

i=1

(σi+1 − σ1) ≤ N1. (2.76)

Since B is an arbitrary positive constant, we can take

B =

{
N1

(δ + α)
∑n

i=1(σi+1 − σ1)

} 1
2

into (2.76) and therefore we get

ε

{
N1

(δ + α)
∑n

i=1(σi+1 − σ1)

} 1
2 n∑

i=1

(σi+1 − σ1) ≤ 2N1. (2.77)

And if we square both sides of Inequality (2.77), we obtain

n∑
i=1

(σi+1 − σ1) ≤
4(δ + α)

ε2
N1 (2.78)

=
4(δ + α)

ε2

{
(∥T (∇u1)∥+

1

2
T0)

2 + C0

}
. (2.79)

We can take i = 1 in Inequality (2.64) and replace in (2.78) to obtain Theorem 2.1.2.
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Concluding remarks and future work

In this thesis, we studied eigenvalue estimates of a second-order elliptic problem. This

problem is a generalization of the Lamé system, see Chapter 2. We rely on known tech-

niques to make our proofs, many of which required adaptations to tensor theory. We

would like to mention that the system of second-order elliptic differential equations in

(2.1) is uncoupled for α = 0. In particular, when T = I and η is constant, it becomes

the Laplacian problem, in this case, we recover known estimates in the literature, see

Remark 2.2.2.

We observe the influence of the potential function η on the eigenvalue estimates. This

occurs by means of C0 = supΩ{1
2
∆η − 1

4
|∇η|2}. As we mentioned in p. 31, C0 has a

natural geometric interpretation in some cases. We show how such an influence happens,

e.g., we obtain a class of domains in Gaussian shrinking soliton in which our estimates do

not depend on the potential function of this soliton, answering the question proposed in

Question 2.2.1, see Corollary 2.2.5.

It is also interesting to observe the relation between operator L and Cheng-Yau

operator □ when the tensor T is divergence-free, it was done in Eq. 2.21. In fact, Eq. 2.21

says that operator L is a first-order perturbation of Cheng-Yau operator □, because this

we call it the drifted Cheng-Yau operator. Furthermore, in Subsection 2.2.2 we obtain

results that involve the drifted Cheng-Yau operator, e.g., an estimate of the type of the

first Yang inequality, which was not considered previously in the literature.

As future work, we plan to get eigenvalues estimates for second-order elliptic problems

for bounded domains in a complete Riemannian manifold isometrically immersed in a

Euclidean space, as well as eigenvalue estimates for fourth-order elliptic problems.
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