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Instituto de Ciências Exatas
Departamento de Matemática
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Braśılia

2022



Universidade de Brasília 

Instituto de Ciências Exatas 

Departamento de Matemática 

 

Existence of positive solutions for a class of elliptic 
systems 

por 
 

 Letícia dos Santos Silva 
 

Tese apresentada ao Departamento de Matemática da Universidade de Brasília como 
parte dos requisitos para obtenção do grau de 
 
 

DOUTORA EM MATEMÁTICA 
 
 

Brasília, 18 de fevereiro de 2022. 
 
 
 

Comissão Examinadora: 
 
 
 
 
 

           Prof. Dr. Giovany de Jesus Malcher Figueiredo- MAT/UnB (Orientador) 
 
 
 
            Profa. Dra. Liliane de Almeida Maia– MAT/UnB (Membro) 
 
 
 

        ___________________________________________________________________ 
         Prof. Dr. Grey Ercole–  UFMG (Membro) 
 
 
        _________________________________________________________________ 
        Prof. Dr. Marcos Tadeu Oliveira Pimenta–  UNESP (Membro) 
 
 

Liliane defluoride faia



Aos meus pais,

Ao meu irmão.
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Resumo

Os caṕıtulos 1 e 2 deste trabalho tratam respectivamente do estudo de existência de solução
dos seguintes sistemas: 

−∆u+ a(x)u =
1

2∗
Ku(u, v) in RN ,

−∆v + b(x)v =
1

2∗
Kv(u, v) in RN ,
u, v > 0 in RN ,

u, v ∈ D1,2(RN ), N ≥ 3,

e 

−∆u+ a(x)u =
1

2∗
Ku(u, v) in RN+ ,

−∆v + b(x)v =
1

2∗
Kv(u, v) in RN+ ,

u > 0, v > 0 in RN+ ,
∂u

∂ν
=
∂v

∂ν
= 0 on ∂RN+ ,

com as hipóteses sobre as funções K ∈ C2(R2
+,R) e a, b a serem apresentadas.

No caṕıtulo 3 é estudada a multiplicidade de solução usando resultados de categoria de
Ljusternick-Schnirelmann no seguinte sistema

−∆u = 2αϵ
αϵ+βϵ

|u|αϵ−2u|v|βϵ in Ω,

−∆v = 2βϵ
αϵ+βϵ

|u|αϵ |v|βϵ−2v in Ω,

u = v = 0 on ∂Ω,

onde Ω é domı́nio regular limitado em RN , N ≥ 3, αϵ, βϵ > 1, αϵ = α− ϵ/2, βϵ = β − ϵ/2 e
α+ β = 2∗.



Abstract

In the chapters 1 and 2 we study respectively the existence of solutions of the following
systems: 

−∆u+ a(x)u =
1

2∗
Ku(u, v) in RN ,

−∆v + b(x)v =
1

2∗
Kv(u, v) in RN ,
u, v > 0 in RN ,

u, v ∈ D1,2(RN ), N ≥ 3,

and 

−∆u+ a(x)u =
1

2∗
Ku(u, v) in RN+ ,

−∆v + b(x)v =
1

2∗
Kv(u, v) in RN+ ,

u > 0, v > 0 in RN+ ,
∂u

∂ν
=
∂v

∂ν
= 0 on ∂RN+ ,

where the hypotheses about the functions K ∈ C2(R2
+,R) and a, b will be defined in the

related chapter.

In Chapter 3 we study multiplicity of solutions using Ljusternick-Schnirelmann category
results in the following system

−∆u = 2αϵ
αϵ+βϵ

|u|αϵ−2u|v|βϵ in Ω,

−∆v = 2βϵ
αϵ+βϵ

|u|αϵ |v|βϵ−2v in Ω,

u = v = 0 on ∂Ω,

where Ω is a bounded domain in RN , N ≥ 3, αϵ, βϵ > 1, αϵ = α − ϵ/2, βϵ = β − ϵ/2 and
α+ β = 2∗.



Notations

2∗ = 2N
N−2 ;

RN+ = {x = (x1, x2, ..., xN ) ∈ RN : xN ≥ 0};

catX(A) it is the Ljusternik-Schnirelmann category of A with respect to X;

catX,Y (A) it is the category of A in X relative to Y ;

H1
0 (A) =W 1,2

0 (A) = C∞
0 (A)

∥.∥W1,2
;

D1,2(A) = {u ∈ L2∗(A) : |∇u| ∈ L2(A)};

S = inf

{∫
RN

|∇u|2dx; u ∈ D1,2(RN ),
∫
RN

|u|2∗dx = 1

}
;

SK = inf

{∫
RN

|∇u|2 + |∇v|2dx; (u, v) ∈ D1,2(RN )×D1,2(RN ),
∫
RN

K(u, v)dx = 1

}
;

ΣK = inf

{∫
RN
+

|∇u|2 + |∇v|2dx; (u, v) ∈ D1,2(RN+ )×D1,2(RN+ ),

∫
RN
+

K(u, v)dx = 1

}
;

Ω+
r = {x ∈ RN : d(x, ∂Ω) ≤ r};

Ω−
r = {x ∈ RN : d(x, ∂Ω) ≥ r}.
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Introduction

Consider the elliptic problems given by

(BC1)
{

−∆u+ a(x)u = |u|2∗−2u in RN

and

(BC2)

{
−∆u+ a(x)u = |u|2∗−2u in RN+ ,

∂u

∂ν
= 0 on ∂RN+ ,

where N ≥ 3 and 2∗ = 2N/(2N − 2). In the last years the main interest in this general
class of problems has been due to the fact that they arise from applications in physics and
related sciences, such as biophysics, plasma physics and chemical reaction, as it can be seen
for example in [19], [23], [24] and [26].

An interesting fact about this kind of problem is that Pohozaev’s identity [25] shows
that problems (BC1) and (BC2) have no solution if a(x) is a positive constant. But in
the celebrated paper [6], Benci and Cerami studied the semilinear elliptic problem (BC1)
and proved existence of positive solutions with the following hypotheses about the function
a(x):

(a)1 a(x) ≥ 0 and a(x) ≥ a0 > 0 for all x in a neighborhood of a point x0.

(a)2 a ∈ Lq(RN ) for all q ∈ [p1, p2] with 1 < p1 <
N
2 < p2 and p2 <

N

4−N
if N = 3.

(a)3 |a|LN/2(RN ) < S(22/N − 1), where S = inf
u∈D1,2(RN )

∫
RN |∇u|2dx(∫

RN |u|2∗dx
)2/2∗ .

This conditions on a(x) were sufficient to guarantee existence and multiplicity of positive
solutions for problem (BC1). It was used properties of the solution of the Limit problem,
where a ≡ 0, the version to RN of Struwe’s Global Compactness result [29], Lions’s Concen-
tration and Compactness result [22] and arguments of Brouwer degree theory. This paper
motivated other works as follows.

The version of [6] for p−Laplacian operator was studied in [1], where in this case there
is some technical difficulties with the lack of linearity and homogeneity. The version of
bi-Laplacian operator was studied by Alves and do Ó in [3]. A multiplicity result involving
category theory was studied in [11] by Chabrowski and Yang. More recently, in [32] Xie,
Ma and Xu proved a version for [6] considering the Kirchhoff operator. Nascimento and
Figueiredo showed the same result of [6] in [10] considering the fractional Laplacian. In [8]
it was studied existence and positive solutions for a Schrödinger-Poisson system. Recently,
a version for Choquard equation using variational methods combined with degree theory
was proved in [4].
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A natural extension of problem (BC1) consists in studying elliptic systems such as

(S1)


−∆u+ a(x)u =

1

2∗
Ku(u, v) in RN ,

−∆v + b(x)v =
1

2∗
Kv(u, v) in RN ,
u, v > 0 in RN ,

u, v ∈ D1,2(RN ), N ≥ 3.

The main difficult of this class of systems is a double lack of compactness due to the
unboundedness of the domain and the presence of the critical Sobolev exponent, since K is
2∗-homogeneous. Then in Chapter 1 we shall focus our attention on questions of existence
and positivity of solutions for the system (S1).

We state our main hypotheses on the function K ∈ C2(R2
+;R) as follows:

(K0) K is 2∗-homogeneous, that is,

K(λs, λt) = λ2
∗
K(s, t) for each λ > 0, (s, t) ∈ R2

+.

(K1) there exists c1 > 0 such that

|Ks(s, t)|+ |Kt(s, t)| ≤ c1

(
s2

∗−1 + t2
∗−1
)

for each (s, t) ∈ R2
+.

(K2) K(s, t) > 0 for each s, t > 0;

(K3) ∇K(0, 1) = ∇K(1, 0) = (0, 0);

(K4) Ks(s, t),Kt(s, t) ≥ 0 for each (s, t) ∈ R2
+.

(K5) the 1-homogeneous function G : R2
+ → R given by G(s2

∗
, t2

∗
) := K(s, t) is concave.

Let us denote
Pq(s, t) =

∑
pi+qi=q

Ci|s|pi |t|qi .

where pi ≥ 1, qi ≥ 1 and i ∈ J , with J ⊂ N finite set. With appropriate choices of
coefficients Ci and exponents pi and qi, we have the following examples of functions that
satisfy hypotheses (K0) - (K5):

K1(s, t) = P2∗(s, t),

K2(s, t) =
r

√
Pq(s, t) with q/r = 2∗,

K3(s, t) =
Pq1(s, t)

Pq2(s, t)
, with q1 − q2 = 2∗.

Hypothesis (K3) allow us to give a C1 extension of K to the whole plan as

H(s, t) = H(s+, t+),

with s, t ∈ R and u+ := max{u, 0}.
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Hypothesis (K5) provides a Hölder type inequality for all u, v ∈ L2∗(Ω)∫
Ω
K(u, v)dx ≥ K(|u|2∗ , |v|2∗),

which is used in [13] to prove some lemmas that we used in Chapter 1 and 2. It is important
to remark that in those lemmas we used, the domain Ω is not necessarily bounded.

The hypotheses on the functions a; b : RN 7−→ R+ are given by:

(a, b)1 The functions a, b are positive in a same set of positive measure.

(a, b)2 a, b ∈ Lq(RN ) for all q ∈ [p1, p2] with 1 < p1 <
N
2 < p2 and p2 <

N

4−N
if N = 3.

(a, b)3 sNo |a|LN/2(RN ) + tNo |b|LN/2(RN ) < SK(22/N − 1), where

SK = inf
u,v∈D1,2(RN )

∫
RN |∇u|2 + |∇v|2dx(∫
RN K(u, v)dx

)2/2∗
and s0 and t0 will be defined in Chapter 1 and 2.

Using the above notation about the functions K, a and b we are able to state our main
result of Chapter 1:

Theorem 0.0.1. Assume that (a, b)1 − (a, b)3 and (K0) − (K5) hold. Then, (S1) has a
positive solution (u0, v0) ∈ D1,2(RN )×D1,2(RN ) with

1

N
S
N/2
K < I(u0, v0) <

2

N
S
N/2
K ,

where the associated functional I will be defined in Chapter 1.

In order to prove this main result, Chapter 1 is organized as follows. In Section 1 we
study the limit system associated to (S1). In Section 2 we are interested in a compactness
result and we obtain some properties about Palais-Smale sequences. In Section 3 we start
showing some technical lemmas and we finalize this section proving our main result.

The work studied in Chapter 1 was published in [14].

In Chapter 2 we are interested in the same kind of problem defined in the half-space. In
the paper [9], Cerami and Passaseo gave sufficient conditions on function a(x) to guarantee
existence and multiplicity of positive solutions for problem (BC2). Also, in [2] the authors
studied the p− laplacian problem defined in half-space involving a critical exponent. Then,
motivated by these papers, in Chapter 2 we study a natural extension of the problem (BC2)
consisting in the following elliptic systems defined in the half-space:

(S2)



−∆u+ a(x)u =
1

2∗
Ku(u, v) in RN+ ,

−∆v + b(x)v =
1

2∗
Kv(u, v) in RN+ ,
u, v > 0 in RN+ ,

∂u

∂ν
=
∂v

∂ν
= 0 on ∂RN+ , N ≥ 3.

Using the above notation about functions a, b and K we are able to state our main
result of Chapter 2:
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Theorem 0.0.2. Assume that (a, b)1 − (a, b)2 and (K0) − (K5) hold. Then, (S2) has a
positive solution (u0, v0) ∈ D1,2(RN+ )×D1,2(RN+ ).

As in Chapter 1, we have observed that there is not a version of the paper [9] for systems.
Motivated by this fact, we have decided to study this class of systems. However, we would
like point out that some estimates made in [9] or [2] are not immediate for systems. For
example, in Lemma 2.1.3, Lemma 2.1.4 and Proposition 2.1.5 was necessary to use a Global
Compactness Lemma for system that was proved in Chapter 1 and can be found published
in [14]. In other words, some results that were proved in Chapter 1, were also important to
obtain the second main theorem.

This chapter is organized as follows. In Section 1 we show a nonexistence result of
solution for a minimization problem and some properties. In Section 2 we prove some
technical lemmas. Then, finally in Section 3 we prove the main result.

Chapter 3 was inspired by the following problem studied by Benci, Cerami and Passaseo
in [7] {

−∆u = u2
∗−ϵ−1 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain.
The interesting fact about this problem is that, by Pohozaev’s identity [25], we have

nonexistence of positive solutions for ϵ = 0 for certain class of domain Ω, but when we take
ϵ > 0 small, we can prove that we have multiplicity of solutions influenced by the topology
of the domain.

There are other papers motivated by this class of problems. In [18] it was studied
a problem involving the fractional Laplacian, obtaining a lower bound on the number of
positive solutions when the exponent of the non-linearity is near to the critical Sobolev
exponent 2∗s = 2N/(N − 2s). This lower bound is also given by the topology of the domain.
In [28] it was studied the same kind of problem for a Schrödinger-Poisson-Slater system.

Also motivated by [7], in [17] it was studied the following problem:{
−∆u− u

(
∆u2

)
= |u|p−2u in Ω,

u = 0 on ∂Ω,

where p is taken near to the exponent 22∗ = 4N/(N − 2). In [17] the number of positive
solutions is estimated from below by values related to topological properties of the domain
Ω, in this case the Ljusternick-Schnirelmann category and the Poincaré polynomial. In [5]
it was studied a case with a discontinuous non-linearity, where using an auxiliary problem,
the authours proved the multiplicity of positive solutions using Ljusternick-Schnirelmann
category.

In Chapter 3, we are interested in the search of positive solutions for the following
problem

(S3)


−∆u = 2αϵ

αϵ+βϵ
|u|αϵ−2u|v|βϵ in Ω

−∆v = 2βϵ
αϵ+βϵ

|u|αϵ |v|βϵ−2v in Ω

u = v = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN , N ≥ 3, αϵ, βϵ > 1, αϵ = α− ϵ/2, βϵ = β− ϵ/2
and α+ β = 2∗. Then we have the following multiplicity result.

Theorem 0.0.3. There exists ϵ0 > 0 such that for any ϵ ∈ (0, ϵ0), problem (S3) has at
least catΩ positive weak solutions. Moreover if Ω is not contractible in itself then (S3) has
at least catΩ+ 1 positive weak solutions.
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As in the problem studied in [7], for ϵ = 0, we prove that the system only has the trivial
solution, but for ϵ > 0 small enough we have a multiplicity result associated to the topology
of the domain.

Our approach to study the system case and prove Theorem 0.0.3 is variational, finding
its solutions as critical points of a C1 functional on the Nehari manifold. We show that the
functional on the Nehari manifold is bounded from below, achieves the ground state level
mϵ, for ϵ ∈ (0, ϵ0),and by means of the Ljusternik-Schnirelmann we prove the multiplicity
result.

In the first section of this chapter, we prove some Nehari manifold and compactness
results. Then in section 2, we prove some barycentre map results. In the final section we
prove the main theorem using Ljusternik-Schnirelmann category.

The results obtained in Chapter 2 and 3 are submitted in [15] and [16], respectively.

The hypotheses about the functions and the definitions presented in this Introduction
will be recovered in the related chapters.
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Chapter 1

Existence of positive solutions of a
critical system in RN

In this chapter we will show existence of positive solution to the following system

(S1)


−∆u+ a(x)u =

1

2∗
Ku(u, v) in RN ,

−∆v + b(x)v =
1

2∗
Kv(u, v) in RN ,
u, v > 0 in RN ,

u, v ∈ D1,2(RN ), N ≥ 3.

Let R2
+ := [0,∞)× [0,∞) and set 2∗ := 2N/(N − 2). We state our main hypothesis on

the function K ∈ C2(R2
+,R) as follows.

(K0) K is 2∗-homogeneous, that is,

K(λs, λt) = λ2
∗
K(s, t) for each λ > 0, (s, t) ∈ R2

+.

(K1) there exists c1 > 0 such that

|Ks(s, t)|+ |Kt(s, t)| ≤ c1

(
s2

∗−1 + t2
∗−1
)

for each (s, t) ∈ R2
+.

(K2) K(s, t) > 0 for each s, t > 0;

(K3) ∇K(0, 1) = ∇K(1, 0) = (0, 0);

(K4) Ks(s, t),Kt(s, t) ≥ 0 for each (s, t) ∈ R2
+.

(K5) the 1-homogeneous function G : R2
+ → R given by G(s2

∗
, t2

∗
) := K(s, t) is concave.

To state our main result we need some previous definitions and notations. Let us denote
by SK the following constant

SK := inf
u,v∈D1,2(RN ),u,v ̸=0

∫
RN

(|∇u|2 + |∇v|2)dx(∫
RN

K(u, v)dx

)2/2∗
.
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From now on, we consider the function Φδ,y ∈ D1,2(RN ) given by

Φδ,y(x) = c

(
δ

δ2 + |x− y|2

)(N−2)/2

, x, y ∈ RN and δ > 0, (1.0.1)

where c is a positive constant. In [30] we can see that every positive solution of

(P∞)


−∆u = |u|2∗−2u in RN ,

u > 0 in RN ,
u ∈ D1,2(RN ), N ≥ 3.

is as (1.0.1). Moreover, it satisfies for a suitable constant c

∥Φδ,y∥2 = S and |Φδ,y|2∗ = 1, (1.0.2)

where

S := inf
u∈D1,2(RN ),u̸=0

∫
RN

|∇u|2dx(∫
RN

|u|2∗dx
)2/2∗

.

By [13, Lemma 3], there exist so, to > 0 such that SK is attained by (soΦδ,y, toΦδ,y). More-
over,

MKSK = S, (1.0.3)

where MK = max
s2+t2=1

K(s, t)2/2
∗
= K(so, to)

2/2∗ .

The hypotheses on the functions a, b : RN 7→ R+ are given by:

((a, b)1) The functions a, b are positive in a same set of positive measure.

((a, b)2) a, b ∈ Lq(RN ) for all q ∈ [p1, p2] with 1 < p1 <
N
2 < p2 and p2 <

N

4−N
if N = 3.

((a, b)3) s
N
o |a|LN/2(RN ) + tNo |b|LN/2(RN ) < SK(22/N − 1).

We say that (u, v) : RN ×RN → R×R is a positive weak solution of (S1) if u, v > 0 in
D1,2(RN ) and for all φ,ψ ∈ D1,2(RN ) we get∫

RN

∇u∇φdx+

∫
RN

∇v∇ψdx+

∫
RN

a(x)uφdx+

∫
RN

b(x)vψdx

=
1

2∗

∫
RN

Ku(u, v)φdx+
1

2∗

∫
RN

Kv(u, v)ψdx.

In order to state the main result, we consider the C1 functional I : D1,2(RN ) ×
D1,2(RN ) 7→ R associated to system (S1) given by

I(u, v) =
1

2
∥u∥2 + 1

2
∥v∥2 + 1

2

∫
RN

a(x)u2dx+
1

2

∫
RN

b(x)v2dx− 1

2∗

∫
RN

K(u, v)dx,

where ∥u∥2 =
∫
RN

|∇u|2dx, ∥v∥2 =
∫
RN

|∇v|2dx. Note that

I ′(u, v)(φ,ψ) =

∫
RN

∇u∇φdx+

∫
RN

∇v∇ψdx+

∫
RN

a(x)uφdx+

∫
RN

b(x)vψdx

− 1

2∗

∫
RN

Ku(u, v)φdx− 1

2∗

∫
RN

Kv(u, v)ψdx,

for all (φ,ψ) ∈ D1,2(RN )×D1,2(RN ).
Using the above notation we are able to state our main result.
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Theorem 1.0.1. Assume that ((a, b)1)− ((a, b)3) and (K0)− (K5) hold. Then, (S1) has a
positive solution (u0, v0) ∈ D1,2(RN )×D1,2(RN ) with

1

N
S
N/2
K < I(u0, v0) <

2

N
S
N/2
K .

1.1 Limit problem

We notice that we can use the homogeneity condition (K0) to conclude that

K(s, t) =
1

2∗
sKs(s, t) +

1

2∗
tKt(s, t), (1.1.1)

since by (K0), we have

d

dλ
K(λs, λt) =

d

dλ

(
λ2

∗
K(s, t)

)
2∗ = 2∗λ2

∗−1K(s, t), (1.1.2)

and

d

dλ
K(λs, λt) = sKs(λs, λt) + tKt(λs, λt)

= sλ2
∗−1Ks(λs, λt) + tλ2

∗−1Kt(λs, λt) (1.1.3)

Then, by equations (1.1.2) and (1.1.3) we got

2∗K(s, t) = sKs(s, t) + tKt(s, t).

In this section we study the limit problem given by

(S∞)


−∆u =

1

2∗
Ku(u, v) in RN ,

−∆v =
1

2∗
Kv(u, v) in RN ,
u, v > 0 in RN ,

u, v ∈ D1,2(RN ), N ≥ 3,

which the functional associated I∞ : D1,2(RN )×D1,2(RN ) 7→ R given by

I∞(u, v) =
1

2
∥u∥2 + 1

2
∥v∥2 − 1

2∗

∫
RN

K(u, v)dx.

Lemma 1.1.1. Let (un, vn) be a sequence (PS)c for I∞. Then

(i) The sequence (un, vn) is bounded in D1,2(RN )×D1,2(RN ).

(ii) If un ⇀ u in D1,2(RN ) and vn ⇀ v in D1,2(RN ), then I ′∞(u, v) = 0.

(iii) If c ∈ (−∞,
1

N
S
N/2
K ), then I∞ satisfies the (PS)c condition, i.e, up to a subsequence,

(un, vn) → (u, v) in D1,2(RN )×D1,2(RN ).

Proof. Since I∞(un, vn) → c and I ′∞(un, vn) → 0 and from (1.1.1), we conclude that there
exists C > 0 such that

C + ∥un∥+ ∥vn∥ ≥ I∞(unvn)−
1

2∗
I ′∞(un, vn)(un, vn) =

1

N
∥un∥2 +

1

N
∥vn∥2 + on(1)
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and the proof of part (i) is over. Now we prove (ii). Since un ⇀ u in D1,2(RN ) and vn ⇀ v
in D1,2(RN ), up to a subsequence, we get

un → u in Lqloc(R
N ), vn → v in Lqloc(R

N ),

and
un(x) → u(x) a.e in RN , vn(x) → v(x) a.e in RN .

Using a density argument we obtain∫
RN

Ku(un, vn)φdx+

∫
RN

Kv(un, vn)ψdx→
∫
RN

Ku(u, v)φdx+

∫
RN

Kv(u, v)ψdx.

for all φ,ψ ∈ D1,2(RN ), which implies (ii).
In order to prove (iii), consider wn = un − u and zn = vn − v. Note that applying [20,

Lemma 4.6], we get

on(1) = I ′∞(un, vn)(un, vn) = ∥un∥2 + ∥vn∥2 −
1

2∗

∫
RN

Ku(un, vn)undx (1.1.4)

− 1

2∗

∫
RN

Kv(un, vn)vndx

= ∥wn∥2 + ∥u∥2 + ∥zn∥2 + ∥v∥2 − 1

2∗

∫
RN

Ku(wn + u, zn + v)(wn + u)dx

− 1

2∗

∫
RN

Kv(wn + u, zn + v)(zn + v)dx. (1.1.5)

From [13, Lemma 8], we have

on(1) = ∥wn∥2 + ∥u∥2 + ∥zn∥2 + ∥v∥2 − 1

2∗

∫
RN

Ku(wn, zn)wndx

− 1

2∗

∫
RN

Kv(wnzn)zndx− 1

2∗

∫
RN

Ku(u, v)udx− 1

2∗

∫
RN

Kv(u, v)vdx.

Using the item (ii) and (1.1.1) we obtain

on(1) = ∥wn∥2 + ∥zn∥2 −
∫
RN

K(wn, zn)dx.

Up to a subsequence, we conclude that there exists ρ ≥ 0 such that

0 ≤ ρ = lim
n→∞

[
∥wn∥2 + ∥zn∥2

]
= lim

n→∞

∫
RN

K(wn, zn)dx.

Suppose, by contradiction, that ρ > 0. From the inequality

SK

(∫
RN

K(wn, zn)dx

)2/2∗

≤ ∥wn∥2 + ∥zn∥2,

we get

ρ ≥ SKρ
2/2∗ ⇒ ρ ≥ S

N/2
K . (1.1.6)

Since

I∞(u, v) =

(
1

2
− 1

2∗

)
[∥u∥2 + ∥v∥2] = 1

N
[∥u∥2 + ∥v∥2] ≥ 0
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and

c =
1

N
[∥wn∥2 + ∥zn∥2] + I∞(u, v) + on(1), (1.1.7)

we conclude

c =
1

N
[∥wn∥2 + ∥zn∥2] + I∞(u, v) + on(1) ≥

1

N
[∥wn∥2 + ∥zn∥2] + on(1) =

1

N
ρ ≥ 1

N
S
N/2
K ,

which is a contradiction. Hence ρ = 0 and

∥wn∥2 = ∥un − u∥2 → 0 and ∥zn∥2 = ∥vn − v∥2 → 0.

1.2 A compactness result

Now, we establish the following lemma which will be useful to prove a compactness result.

Lemma 1.2.1. Let (un, vn) be a (PS)c sequence for the functional I∞ with un ⇀ 0, vn ⇀ 0
and un ↛ 0, vn ↛ 0. Then, there are sequences (Rn) ⊂ R, (xn) ⊂ RN and (Υ0,Υ1) ∈
D1,2(RN )×D1,2(RN ) nontrivial solution of (P∞) and a sequence (τn, ζn) which is a (PS)c̃
for I∞ such that, up to a subsequence of (un, vn),

τn(x) = un(x)−R(N−2)/2
n Υ0(Rn(x− xn)) + on(1)

and
ζn(x) = vn(x)−R(N−2)/2

n Υ1(Rn(x− xn)) + on(1).

Proof. Let (un, vn) ⊂ D1,2(RN )×D1,2(RN ) be a (PS)c sequence for the functional I∞, i.e,

I∞(un, vn) → c and I ′∞(un, vn) → 0. (1.2.1)

From Lemma 1.1.1, (i), we get that (un, vn) is bounded in D1,2(RN ) × D1,2(RN ). Since
un ⇀ 0, vn ⇀ 0 by hypotheses and un ↛ 0, vn ↛ 0 it follows from Lemma 1.1.1 (iii) that

c ≥ 1

N
S
N/2
K .

Note that from (1.1.1) we obtain

c+ on(1) = I∞(un, vn)−
1

2∗
I ′∞(un, vn)(un, vn) =

1

N

∫
RN

[|∇un|2 + |∇vn|2]dx,

which implies ∫
RN

[|∇un|2 + |∇vn|2]dx = S
N/2
K . (1.2.2)

Let L be a integer such that B2(0) is covered by L balls of radius 1, (Rn) ⊂ R, (xn) ⊂ RN
such that

sup
y∈RN

∫
B

R−1
n

(y)
[|∇un|2 + |∇vn|2]dx =

∫
B

R−1
n

(xn)
[|∇un|2 + |∇vn|2]dx =

S
N/2
K

2L
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and define the vectors

(wn(x), zn(x)) =

(
R(2−N)/2
n un

(
x

Rn
+ xn

)
, R(2−N)/2

n vn

(
x

Rn
+ xn

))
.

Using a change of variables, we can prove that∫
B1(0)

[|∇wn|2 +∇zn|2]dx =
S
N/2
K

2L
= sup

y∈RN

∫
B1(y)

[|∇wn|2 + |∇zn|2]dx.

Now, for each (Φ1,Φ2) ∈ D1,2(RN )×D1,2(RN ), we define

(Φ̃1,n, Φ̃2,n)(x) = (R(N−2)/2
n Φ1(Rn(x− xn)), R

(N−2)/2
n Φ2(Rn(x− xn)))

which satisfies∫
RN

[∇un∇Φ̃1,n +∇vn∇Φ̃2,ndx]dx =

∫
RN

[∇wn∇Φ1 +∇zn∇Φ2]dx (1.2.3)

and∫
RN

[Ku(un, vn)Φ̃1,n +Kv(un, vn)Φ̃2,n]dx =

∫
RN

[Kw(wn, zn)Φ1 +Kz(wn, zn)Φ2]dx,(1.2.4)

where we conclude that

I∞(wn, zn) → c and I ′∞(wn, zn) → 0. (1.2.5)

From Lemma 1.1.1, there exists (Υ0,Υ1) ∈ D1,2(RN ) × D1,2(RN ) such that, up to a
subsequence, (wn, zn)⇀ (Υ0,Υ1) in D

1,2(RN )×D1,2(RN ) and I ′∞(Υ0,Υ1) = 0.
As a consequence of [13, Lemma 6], we get∫

RN

K(wn, zn)ϕdx→
∫
RN

K(Υ0,Υ1)ϕdx+
∑
j∈J

ϕ(xj)νj , ∀ϕ ∈ C∞
0 (RN ) (1.2.6)

and

|∇wn|2 + |∇zn|2 ⇀ µ+ σ ≥ |∇Υ0|2 + |∇Υ1|2 +
∑
j∈J

ϕ(xj)µj +
∑
j∈J

ϕ(xj)σj , ∀ϕ ∈ C∞
0 (RN ),

for some {xj}j∈J ⊂ RN and for some {νj}j∈J , {µj}j∈J , {σj}j∈J ⊂ R+.

Since SKν
2/2∗

j ≤ µj + σj , we can conclude that J is finite. From now on, we denote by

J = {1, 2, ...,m} and Γ ⊂ RN the set given by

Γ = {xj ∈ {xj}j∈J ; |xj | > 1}, (xj given by (1.2.6)).

We are going to show that (Υ0,Υ1) ̸= (0, 0). Suppose, by contradiction, that (Υ0,Υ1) =
(0, 0). Then, by (1.2.6) we have∫

RN

K(wn, zn)ϕdx→ 0, ∀ϕ ∈ C∞
0 (RN \ {x1, x2, ..., xm}). (1.2.7)

Since (ϕ1,n, ϕ2,n) = (ϕwn, ϕzn), with ϕ ∈ C∞
0 (RN \ {x1, x2, ..., xm}), is bounded, we

obtain
I ′∞(wn, zn)(ϕ1,n, ϕ2,n) = on(1),
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that is,∫
RN

[∇wn∇ϕ1,n +∇zn∇ϕ2,ndx]−
1

2∗

∫
RN

[Kw(wn, zn)ϕ1,n +Kz(wn, zn)ϕ2,ndx = on(1).

Using the definition of (ϕ1,n, ϕ2,n) and (1.1.1) , we have∫
RN

[|∇wn|2 + |∇zn|2]ϕdx+

∫
RN

[wn∇wn∇ϕ+ zn∇zn∇ϕ]dx−
∫
RN

K(wn, zn)ϕdx = on(1).

Then,∫
RN

[|∇wn|2 + |∇zn|2]ϕdx ≤
∫
RN

[|wn||∇wn||∇ϕ|+ |zn||∇zn||∇ϕ|]dx+

∫
RN

K(wn, zn)ϕdx.

Using Hölder inequality we get∫
RN

[|∇wn|2 + |∇zn|2]ϕdx ≤ |∇wn|2
(∫

RN

|wn|2|∇ϕ|2dx
)1/2

+ |∇zn|2
(∫

RN

|zn|2|∇ϕ|2dx
)1/2

+

∫
RN

K(wn, zn)ϕdx.

Since there exists R > 0 such that suppϕ ⊂ BR(0), we have

∫
RN

[|∇wn|2 + |∇zn|2]ϕdx ≤ C|∇wn|2
(∫

BR(0)
|wn|2dx

)1/2

+ C|∇zn|2
(∫

BR(0)
|zn|2dx

)1/2

+

∫
RN

K(wn, zn)ϕdx = on(1).

Since (wn, zn) is bounded in D1,2(RN )×D1,2(RN ), from compact embedding in L2(RN )
and (1.2.7), we obtain

∫
RN

[|∇wn|2 + |∇zn|2]ϕdx→ 0, ∀ϕ ∈ C∞
0 (RN \ {x1, x2, ..., xm}). (1.2.8)

Let ρ ∈ R be a number that satisfies 0 < ρ < min{dist(Γ, B̄1(0)), 1)}. We will show
that ∫

B1+ρ(0)\B1+
ρ
3
(0)

[|∇wn|2 + |∇zn|2]ϕdx→ 0. (1.2.9)

We consider ϕ ∈ C∞
0 (RN ) such that 0 ≤ ϕ(x) ≤ 1 and ϕ(x) = 1 if x ∈ B1+ρ(0). If

ϕ̃ = ϕ|RN\{x1,...,xm}, follows by (1.2.8) that∫
RN

[|∇wn|2 + |∇zn|2]ϕ̃dx→ 0.

Since

0 ≤
∫
B1+ρ(0)\B1+

ρ
3
(0)

[|∇wn|2 + |∇zn|2]dx ≤
∫
B1+ρ(0)

[|∇wn|2 + |∇zn|2]dx

=

∫
B1+ρ(0)

[|∇wn|2 + |∇zn|2]ϕ̃dx ≤
∫
RN

[|∇wn|2 + |∇zn|2]ϕ̃dx,
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we have that (1.2.9) is true.
Let Ψ ∈ C∞

0 (RN ) be such that 0 ≤ Ψ(x) ≤ 1 for all x ∈ RN and

Ψ(x) =

1, x ∈ B1+ ρ
3
(0),

0, x ∈ Bc
1+ 2ρ

3

(0)

and consider the sequence (Ψ1,n,Ψ2,n) given by (Ψ1,n,Ψ2,n)(x) = (Ψ(x)wn(x),Ψ(x)zn(x)).
Note that ∫

B1+ρ(0)\B1+
ρ
3
(0)

[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx

≤ 4

∫
[B1+ρ(0)\B1+

ρ
3
(0)]2

|Ψ|2|∇wn|2dx+ 4

∫
[B1+ρ(0)\B1+

ρ
3
(0)]2

|Ψ|2|∇zn|2dx

+ 4

∫
[B1+ρ(0)\B1+

ρ
3
(0)]2

|wn|2|∇Ψ|2dx+ 4

∫
[B1+ρ(0)\B1+

ρ
3
(0)]2

|zn|2|∇Ψ|2dx

From (1.2.9) we obtain∫
B1+ρ(0)\B1+

ρ
3
(0)

[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx→ 0. (1.2.10)

Since (Ψ1,n,Ψ2,n) is bounded in D1,2(RN )×D1,2(RN ), we derive that∫
B1+ρ(0)\B1+

ρ
3
(0)

∇wn∇Ψ1,ndx+

∫
B1+

ρ
3
(0)

∇wn∇Ψ1,ndx

+

∫
B1+ρ(0)\B1+

ρ
3
(0)

∇zn∇Ψ2,ndx+

∫
B1+

ρ
3
(0)

∇zn∇Ψ2,ndx

− 1

2∗

∫
B1+ρ(0)\B1+

ρ
3
(0)

Ψ1,nKw(wn, zn)dx− 1

2∗

∫
B1+

ρ
3
(0)

Ψ1,nKw(wn, zn)dx

− 1

2∗

∫
B1+ρ(0)\B1+

ρ
3
(0)

Ψ2,nKz(wn, zn)dx− 1

2∗

∫
B1+

ρ
3
(0)

Ψ2,nKz(wn, zn)dx = on(1).

From definition of Ψ we have

on(1) =

∫
B1+ρ(0)\B1+

ρ
3
(0)

∇wn∇Ψ1,ndx+

∫
B1+

ρ
3
(0)

|∇Ψ1,n|2dx (1.2.11)

+

∫
B1+ρ(0)\B1+

ρ
3
(0)

∇zn∇Ψ2,ndx+

∫
B1+

ρ
3
(0)

|∇Ψ2,n|2dx

− 1

2∗

∫
B1+ρ(0)\B1+

ρ
3
(0)

Ψ1,nKw(wn, zn)dx− 1

2∗

∫
B1+

ρ
3
(0)

Ψ1,nKw(Ψ1,n,Ψ2,n)dx

− 1

2∗

∫
B1+ρ(0)\B1+

ρ
3
(0)

Ψ2,nKz(wn, zn)dx− 1

2∗

∫
B1+

ρ
3
(0)

Ψ2,nKz(Ψ1,n,Ψ2,n)dx.

Note that from Hölder inequality and (1.2.10) we get∫
B1+ρ(0)\B1+

ρ
3
(0)

∇wn∇Ψ1,ndx+

∫
B1+ρ(0)\B1+

ρ
3
(0)

∇zn∇Ψ2,ndx→ 0, (1.2.12)
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when n→ ∞.

Moreover, from direct calculations we have

1

2∗

∫
B1+ρ(0)\B1+

ρ
3
(0)

Ψ1,nKw(wn, zn)dx+
1

2∗

∫
B1+ρ(0)\B1+

ρ
3
(0)

Ψ2,nKz(wn, zn)dx = on(1). (1.2.13)

From (1.2.11), (1.2.12) and (1.2.13) we obtain∫
B1+

ρ
3
(0)

|∇Ψ1,n|2dx+

∫
B1+

ρ
3
(0)

|∇Ψ2,n|2dx− 1

2∗

∫
B1+

ρ
3
(0)

Ψ1,nKw(Ψ1,n,Ψ2,n)dx

− 1

2∗

∫
B1+

ρ
3
(0)

Ψ2,nKz(Ψ1,n,Ψ2,n)dx = on(1). (1.2.14)

Note that∫
RN

[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx =

∫
B1+ρ(0)

[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx

=

∫
B1+ρ(0)\B1+

ρ
3
(0)

[|∇Ψ1,n|2 + |∇Ψ2,n|2]

+

∫
B1+

ρ
3
(0)

[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx

= on(1) +

∫
B1+

ρ
3
(0)

[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx

and using (1.1.1), we get∫
RN

K(Ψ1,n,Ψ2,n)dx =

∫
B1+ρ(0)

K(Ψ1,n,Ψ2,n)dx

=

∫
B1+ρ(0)\B1+

ρ
3
(0)

K(Ψ1,n,Ψ2,n)dx+

∫
B1+

ρ
3
(0)

K(Ψ1,n,Ψ2,n)dx

Then we conclude that∫
RN

[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx−
∫
RN

K(Ψ1,n,Ψ2,n)dx = on(1).

From definition of SK , we have

∥Ψ1,n∥2 + ∥Ψ2,n∥2
[
1−

(
1

S
2∗/2
K

)
[∥Ψ1,n∥2 + ∥Ψ2,n∥2]2

∗−2

]
= [∥Ψ1,n∥2 + ∥Ψ2,n∥2]−

1

S
2∗/2
K

[∥Ψ1,n∥2 + ∥Ψ2,n∥2]2
∗

≤
∫
RN

[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx−
∫
RN

K(Ψ1,n,Ψ2,n)dx = on(1). (1.2.15)

Note that

∥Ψ1,n∥2 + ∥Ψ2,n∥2 =

∫
B1+ρ(0)\B1+

ρ
3
(0)

[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx+

∫
B1+

ρ
3
(0)

[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx

= on(1) +

∫
B1+

ρ
3
(0)

[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx.

Since Φ1,n = wn, Φ2,n = zn in B1+ ρ
3 (0)

and that B1+ ρ
3 (0)

⊂ B2(0), we obtain

∥Ψ1,n∥2 + ∥Ψ2,n∥2 ≤ on(1) +

∫
B2(0)

[|∇Ψ1,n|2 + |∇Ψ2,n|2]dx,
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which implies

∥Ψ1,n∥2 + ∥Ψ2,n∥2 ≤ on(1) +

∫
⋃L

k=1 B1(yk)

[|∇wn|2 + |∇zn|2]dx

≤ on(1) +

L∑
k=1

∫
B1(yk)

[|∇w2
n + |∇zn|2]dx

≤ on(1) + L sup
y∈RN

∫
B1(y)

[|∇wn|2 + |∇zn|2]dx ≤ on(1) +
S
N/2
K

2
.

Then, (
∥Ψ1,n∥2 + ∥Ψ2,n∥2

)1/2

≤ on(1) +
S
N/4
K

21/2

implies (
∥Ψ1,n∥2 + ∥Ψ2,n∥2

)(2∗−2)/2

≤ on(1) +

(
S
N/4
K

21/2

)2∗−2

. (1.2.16)

Using (1.2.15) and (1.2.16), we have that

[∥Ψ1,n∥2 + ∥Ψ2,n∥2]
[
1 + on(1)−

1

S
2∗/2
K

(
S
N/4
K

21/2

)2∗−2]

= [∥Ψ1,n∥2 + ∥Ψ2,n∥2]
{
1 +

1

S
2∗/2
K

[
on(1)−

(
S
N/4
K

21/2

)2∗−2]}
≤ [∥Ψ1,n∥2 + ∥Ψ2,n∥2]

[
1− 1

S
2∗/2
K

[∥Ψ1,n∥2 + ∥Ψ2,n∥2]2
∗−2

]
= on(1).

Using the equality

N

4
(2∗ − 2)− 2∗

2
=
N

4

(
4

N − 2

)
− N

N − 2
= 0,

implies

[∥Ψ1,n∥2 + ∥Ψ2,n∥2]
[
1−

(
1

2

)(2∗−2)/2]
≤ on(1),

and we conclude that (Ψ1,n,Ψ2,n) → (0, 0) in D1,2(RN )×D1,2(RN ).

Since wn = Ψ1,n, zn = Ψ2,n in B1(0), we obtain

0 ≤
∫
B1(0)

[|∇wn|2 + |∇zn|2]dx ≤ |Ψ1,n∥2 + ∥Ψ2,n∥2,

which implies ∫
B1(0)

[|∇wn|2 + |∇zn|2]dx→ 0 when n→ ∞.

But this last convergence is a contradiction with∫
B1(0)

[|∇wn|2 + |∇zn|2]dx =
S
N/2
K

2L
, ∀n ∈ N.

Then, (Υ0,Υ1) ̸= (0, 0). Now we are going to show that there is (τn, ζn) in D
1,2(RN )×D1,2(RN )

such that (τn, ζn) is a (PS)c̃ sequence for I∞ satisfying

τn(x) = un(x)−R(N−2)/2
n Υ0(Rn(x− xn)) + on(1),
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ζn(x) = vn(x)−R(N−2)/2
n Υ1(Rn(x− xn)) + on(1),

for some subsequence of (un, vn) that still will be denoted by (un, vn). For this, we consider ψ ∈
C∞

0 (RN ) such that 0 ≤ ψ(x) ≤ 1 for all x ∈ RN and

ψ(x) =

{
1, if x ∈ B1(0),

0, if x ∈ Bc
2(0)

and consider (τn, ζn) a sequence defined by

τn(x) = un(x)−R(N−2)/2
n Υ0(Rn(x− xn))ψ(R̄n(x− xn)), (1.2.17)

ζn(x) = vn(x)−R(N−2)/2
n Υ1(Rn(x− xn))ψ(R̄n(x− xn)), (1.2.18)

where (R̄n) satisfies R̃n =
Rn

R̄n
→ ∞. From (1.2.17) and (1.2.18), we obtain

R(2−N)/2
n τn(x) = R(2−N)/2

n un(x)−Υ0(Rn(x− xn))ψ(R̄n(x− xn))

and
R(2−N)/2

n ζn(x) = R(2−N)/2
n vn(x)−Υ1(Rn(x− xn))ψ(R̄n(x− xn)).

Making a change of variables, we conclude

R(2−N)/2
n τn

(
z

Rn
+ xn

)
= R(2−N)/2

n un

(
z

Rn
+ xn

)
−Υ0ψ

(
z

R̃n

)
.

and

R(2−N)/2
n ζn

(
z

Rn
+ xn

)
= R(2−N)/2

n vn

(
z

Rn
+ xn

)
−Υ1ψ

(
z

R̃n

)
.

Now we define

τ̃n = R(2−N)/2
n τn

(
z

Rn
+ xn

)
and

ζ̃n = R(2−N)/2
n ζn

(
z

Rn
+ xn

)
.

Since

wn(x) = R(2−N)/2
n un

(
x

Rn
+ xn

)
and

zn(x) = R(2−N)/2
n vn

(
x

Rn
+ xn

)
,

it holds

τ̃n(z) = wn(z)−Υ0(z)ψ

(
z

R̃n

)
(1.2.19)

and

ζ̃n(z) = ζn(z)−Υ1(z)ψ

(
z

R̃n

)
. (1.2.20)

If

ψn(z) = ψ

(
z

R̃n

)
(1.2.21)

we have that

ψn(z) =

{
1, if z ∈ BR̃n

(0),

0, if z ∈ Bc
2R̃n

(0).
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From (1.2.19), (1.2.20) and (1.2.21), we derive that

τ̃n(z) = wn(z)−Υ0(z)ψn(z)

and
ζ̃n(z) = zn(z)−Υ1(z)ψn(z).

Since R̃n → ∞, we get that Υiψn → Υi in D
1,2(RN ), i = 0, 1. Then

τ̃n(z) = wn(z)−Υ0(z) + on(1) (1.2.22)

and

ζ̃n(z) = zn(z)−Υ1(z) + on(1). (1.2.23)

To finish the proof, it is enough to show that (τn, ζn) is a (PS)c̃ sequence for I∞. Note that
making a change of variables we get

I∞(τn, ζn) = I∞(τ̃n, ζ̃n)

Using (1.2.22) and (1.2.23) and applying [20, Lemma 4.6], [13, Lemma 8] and (1.2.5), we have

I∞(τn, ζn) = I∞(wn, zn)− I∞(Υ0,Υ1) + on(1) = c̃+ on(1),

where c̃ = c− I∞(Υ0,Υ1).
Now, since

0 ≤ ∥I ′∞(τn, ζn)∥D′ ≤ ∥I ′∞(τ̃n, ζ̃n)∥D′ ,

it is sufficient to prove that ∥I ′∞(τ̃n, ζ̃n)∥D′ → 0 which is equivalent to show that

∥I ′∞(τ̃n, ζ̃n)− I ′∞(wn, zn) + I ′∞(Υ0,Υ1)∥D′ → 0. (1.2.24)

But the last convergence is a direct consequence of [13, Lemma 8].

The next result is a version for a gradient system in RN of the result due to Struwe that
can be found in [29].

Theorem 1.2.2. (A global compactness result) Let (un, vn) be a (PS)c sequence for I with
un ⇀ u0 in D1,2(RN ) and vn ⇀ v0 in D1,2(RN ). Then, up to a subsequence, (un, vn)
satisfies either,

(a) (un, vn) → (u0, v0) in D
1,2(RN )×D1,2(RN ) or,

(b) there exist k ∈ N and nontrivial solutions (z10 , ζ
1
0 ), (z

2
0 , ζ

2
0 ), ..., (z

k
0 , ζ

k
0 ) of the system

(S∞), such that

∥un∥2 + ∥vn∥2 → ∥u0∥2 + ∥v0∥2 +
k∑
j=1

[∥zj0∥
2 + ∥ζj0∥

2]

and

I(un, vn) → I(u0, v0) +
k∑
j=1

I∞(zj0, ζ
j
0).
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Proof. From the weak convergence and a density argument, we have that (u0, v0) is a
critical point of I. Suppose that un ↛ u0, vn ↛ v0 in D1,2(RN ) and let (w1

n, z
1
n) ⊂

D1,2(RN ) × D1,2(RN ) be the sequence given by w1
n = un − u0 and z1n = vn − v0. Then,

w1
n ⇀ 0, z1n ⇀ 0 in D1,2(RN ) and w1

n ↛ 0, z1n ↛ 0 in D1,2(RN ).
Applying [20, Lemma 4.6] and [13, Lemma 8], we obtain

I∞(w1
n, z

1
n) = I(un, vn)− I(u0, v0) + on(1) (1.2.25)

and

I ′∞(w1
n, z

1
n) = I ′(un, vn)− I ′(u0, v0) + on(1). (1.2.26)

Then, we conclude from (1.2.25) and (1.2.26) that (w1
n, z

1
n) is a (PS)c1 sequence for I∞.

Hence, by Lemma 1.2.1, there are sequences (Rn,1) ⊂ R, (xn,1) ⊂ RN , (z10 , ζ10 ) ∈ D1,2(RN )×
D1,2(RN ) nontrivial solution of the system (P∞) and a (PS)c2 sequence (w

2
n, z

2
n) ⊂ D1,2(RN )×

D1,2(RN ) for I∞ such that

w2
n(x) = w1

n(x)−R
(N−2)/2
n,1 z10(Rn,1(x− xn,1)) + on(1)

and
z2n(x) = z1n(x)−R

(N−2)/2
n,1 ζ10 (Rn,1(x− xn,1)) + on(1).

If we define

Φ1
n(x) = R

(2−N)/2
n,1 w1

n

(
x

Rn,1
+ xn,1

)
, (1.2.27)

Ψ1
n(x) = R

(2−N)/2
n,1 z1n

(
x

Rn,1
+ xn,1

)
(1.2.28)

and

w̃2
n(x) = R

(2−N)/2
n,1 w2

n

(
x

Rn,1
+ xn,1

)
,

z̃2n(x) = R
(2−N)/2
n,1 z2n

(
x

Rn,1
+ xn,1

)
,

we get

w̃2
n(x) = Φ1

n(x)− z10(x) + on(1), (1.2.29)

z̃2n(x) = Ψ1
n(x)− ζ10 (x) + on(1) (1.2.30)

and

∥Φ1
n∥ = ∥w1

n∥, ∥Ψ1
n∥ = ∥z1n∥ and

∫
RN

K(Φ1
n,Ψ

1
n)dx =

∫
RN

K(w1
n, z

1
n)dx. (1.2.31)

Hence,

I∞(Φ1
n,Ψ

1
n) = I∞(w1

n, z
1
n) (1.2.32)

and

I ′∞(Φ1
n,Ψ

1
n) → 0 in (D1,2(RN )×D1,2(RN ))′. (1.2.33)
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From (1.2.32), (1.2.33) and from item (a) by Lemma 1.1.1, we have that (Φ1
n,Ψ

1
n) is a

bounded sequence in D1,2(RN )×D1,2(RN ) and, up to a subsequence,

Φ1
n ⇀ z10 , Ψ1

n ⇀ ζ10 in D1,2(RN ). (1.2.34)

Applying [20, Lemma 4.6] and [13, Lemma 8] again, we obtain

I∞(w̃2
n, z̃

2
n) = I∞(Φ1

n,Ψ
1
n)− I∞(z10 , ζ

1
0 ) + on(1)

= I(un, vn)− I(u0, v0)− I∞(z10 , ζ
1
0 ) + on(1). (1.2.35)

and

I ′∞(w̃2
n, z̃

2
n) = I ′∞(Φ1

n,Ψ
1
n)− I ′∞(z10 , ζ

1
0 ) + on(1). (1.2.36)

If w̃2
n, z̃

2
n → 0 in D1,2(RN ), the proof is over for k = 1, because in this case, we have

∥un∥2 + ∥vn∥2 → ∥u0∥2 + ∥v0∥2 + ∥z10∥2 + ζ10∥2.

Moreover, by continuity of I∞, we get

I(un, vn) → I(u0, v0) + I∞(z10 , ζ
1
0 ).

If w̃2
n ↛ 0, z̃2n ↛ 0 in D1,2(RN ), using (1.2.29), (1.2.30) and (1.2.34) that w̃2

n, z̃
2
n ⇀ 0

D1,2(RN ), by (1.2.35) and (1.2.36), we conclude that (w̃2
n, z̃

2
n) is a (PS)c2 sequence for I∞.

By Lemma 1.2.1, there are sequences (Rn,2) ⊂ R, (xn,2) ⊂ RN , (z20 , ζ20 ) ∈ D1,2(RN ) ×
D1,2(RN ) nontrivial solutions of (S∞) and a (PS)c3 sequence (w3

n, z
3
n) ⊂ D1,2(RN ) ×

D1,2(RN ) for I∞ such that

w3
n(x) = w̃2

n(x)−R
(N−2)/2
n,2 z20(Rn,2(x− xn,2)) + on(1),

z3n(x) = z̃2n(x)−R
(N−2)/2
n,2 ζ20 (Rn,2(x− xn,2)) + on(1).

If

Φ2
n(x) = R

(2−N)/2
n,2 w̃2

n

(
x

Rn,2
+ xn,2

)
,

Ψ2
n(x) = R

(2−N)/2
n,2 z̃2n

(
x

Rn,2
+ xn,2

)
and

w̃3
n(x) = R

(2−N)/2
n,2 w3

n

(
x

Rn,2
+ xn,2

)
,

z̃3n(x) = R
(2−N)/2
n,2 z3n

(
x

Rn,2
+ xn,2

)
,

we have that

w̃3
n(x) = Φ2

n(x)− z20(x) + on(1), (1.2.37)

z̃3n(x) = Ψ2
n(x)− ζ20 (x) + on(1). (1.2.38)

Arguing as before, we conclude

∥w̃3
n∥2 + ∥z̃3n∥2 = ∥un∥2 + ∥vn∥2 − ∥u0∥2 − ∥v0∥2 − ∥z10∥2 − ∥ζ10∥2

− ∥z20∥2 − ∥ζ20∥2 + on(1), (1.2.39)
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I∞(w̃3
n, z̃

3
n) = I(un, vn)− I(u0, v0)− I∞(z10 , ζ

1
0 )− I∞(z20 , ζ

2
0 ) + on(1), (1.2.40)

and

I ′∞(w̃3
n, z̃

3
n) = I ′∞(Φ2

n,Ψ
2
n)− I ′∞(z20 , ζ

2
0 ) + on(1). (1.2.41)

If w̃3
n, z̃

3
n → 0 in D1,2(RN ), the proof is over with k = 2, because ∥w̃3

n∥2 → 0 , ∥z̃3n∥2 → 0
and from (1.2.39), we have

∥un∥2 + ∥vn∥2 → ∥u0∥2 + ∥v0∥2 +
2∑
j=1

[∥zj0∥
2 + ∥ζj0∥

2].

Moreover, by continuity of I∞, we have that I∞(w̃3
n, z̃

3
n) → 0. Now using (1.2.40) we

get

I(un, vn) → I(u0, v0) +
2∑
j=1

I∞(zj0, ζ
j
0).

If w̃3
n, z̃

3
n ↛ 0 in D1,2(RN ), we can repeat the same previous arguments to find (z10 , ζ

1
0 ),

(z20 , ζ
2
0 ),..., (z

k−1
0 , ζk−1

0 ) nontrivial solutions for the system (S∞) satisfying

∥w̃kn∥2 + ∥z̃kn∥2 = ∥un∥2 + ∥vn∥2 − ∥u0∥2 − ∥v0∥2 −
k−1∑
j=1

[∥zj0∥
2 − ∥ζj0∥

2] + on(1), (1.2.42)

and

I∞(z̃kn, z̃
k
n) = I(un, vn)− I(u0, v0)−

k−1∑
j=1

I∞(zj0, ζ
j
0) + on(1). (1.2.43)

From definition of SK , we conclude that(∫
RN

K(zj0, ζ
j
0)dx

)2/2∗

SK ≤ ∥zj0∥
2 + ∥ζj0∥

2, j = 1, 2, ..., k − 1. (1.2.44)

Since (zj0, ζ
j
0) is nontrivial solution of (S∞), for all j = 1, 2, ..., k − 1, we get

∥zj0∥
2 + ∥ζj0∥

2 =

∫
RN

K(zj0, ζ
j
0)dx

Hence,

−∥zj0∥
2 − ∥ζj0∥

2 ≤ −SN/2K , j = 1, 2, ..., k − 1. (1.2.45)

From (1.2.42) and (1.2.45), we have

∥w̃kn∥2 + ∥z̃kn∥2 = ∥un∥2 + ∥vn∥2 − ∥u0∥2 − ∥v0∥2

−
k−1∑
j=1

[∥zj0∥
2 + ∥ζj0∥

2] + on(1)

≤ ∥un∥2 + ∥vn∥2 − ∥u0∥2 − ∥v0∥2 − (k − 1)S
N/2
K + on(1). (1.2.46)

Since (un, vn) is bounded in D1,2(RN ) × D1,2(RN ), for k sufficient large, we conclude
that w̃kn, z̃kn → 0 in D1,2(RN ) and the proof is over.
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Corollary 1.2.3. Let (un, vn) be a (PS)c sequence for I with c ∈ (0, 1
N S

N/2
K ). Then, up to

a subsequence, (un, vn) strongly converges in D1,2(RN )×D1,2(RN ).

Proof. We have that (un, vn) is bounded in D1,2(RN )×D1,2(RN ),

un ⇀ u0, vn ⇀ v0 in D1,2(RN )

and by a density argument I ′(u0, v0) = 0. Suppose, by contradiction, that

un ↛ u0, vn ↛ v0 in D1,2(RN ).

From Theorem 1.2.2, there are k ∈ N and nontrivial solutions (z10 , ζ
1
0 ), (z

2
0 , ζ

2
0 ), ..., (z

k
0 , ζ

k
0 )

of the system (S∞) such that,

∥un∥2 + ∥vn∥2 → ∥u0∥2 + ∥v0∥2 +
k∑
j=1

[|zj0∥
2 + |ζj0∥

2]

and

I(un, vn) → I(u0, v0) +
k∑
j=1

I∞(zj0, ζ
j
0).

Note that by (1.1.1) we have

I(u0, v0) =
1

2
∥u0∥2 +

1

2
∥v0∥2 +

1

2

∫
RN

a(x)u20dx+
1

2

∫
RN

b(x)v20dx

− 1

2∗

∫
RN

K(u0, v0)dx

=
1

2
∥u0∥2 +

1

2
∥v0∥2 +

1

2

(∫
RN

K(u0, v0)dx− ∥u0∥2 − ∥v0∥2
)

− 1

2∗

∫
RN

K(u0, v0)dx

=
1

N

∫
RN

K(u0, v0)dx ≥ 0.

Then,

c = I(u0, v0) +

k∑
j=1

I∞(zj0, ζ
j
0) ≥

k∑
j=1

I∞(zj0, ζ
j
0) ≥

k

N
S
N/2
K ≥ 1

N
S
N/2
K ,

which is a contradiction with c ∈ (0, 1
N S

N/2
K ).

Corollary 1.2.4. The functional I : D1,2(RN )×D1,2(RN ) → R satisfies the Palais-Smale

condition in ( 1
N S

N/2
K , 2

N S
N/2
K ).

Proof. Let (un, vn) be a sequence in D1,2(RN )×D1,2(RN ) that satisfies

I(un, vn) → c ∈ (
1

N
S
N/2
K ,

2

N
S
N/2
K ) and I ′(un, vn) → 0.

Since (un, vn) is bounded in D1,2(RN )×D1,2(RN ), up to a subsequence, we have

un ⇀ u0, vn ⇀ v0 in D1,2(RN ).
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Moreover, I(u0, v0) ≥ 0. Suppose, by contradiction, that

un ↛ u0, vn ↛ v0 in D1,2(RN ).

From Theorem 1.2.2, there are k ∈ N and nontrivial solutions (z10 , ζ
1
0 ), (z

2
0 , ζ

2
0 ), ..., (z

k
0 , ζ

k
0 )

of the system (S∞) such that

∥un∥2 + ∥vn∥2 → ∥u0∥2 + ∥v0∥2 +
k∑
j=1

[∥zj0∥
2 + ∥ζj0∥

2]

and

I(un, vn) → I(u0, v0) +
k∑
j=1

I∞(zj0, ζ
j
0) = c.

Since I(u0, v0) ≥ 0, then k = 1 and z10 , ζ
1
0 cannot change of the sign. Hence,

c = I(u0, v0) + I∞(z10 , ζ
1
0 ) = I(u0, v0) +

1

N
S
N/2
K .

From definition of SK , I ′(u0, v0)(u0, v0) = 0 and

I(u0, v0) =
1

N

∫
RN

K(u0, v0)dx,

we have,
2

N
S
N/2
K ≤ I(u0, v0) +

1

N
S
N/2
K = c,

which contradicts the fact that c ∈ ( 1
N S

N/2
K , 2

N S
N/2
K ).

Corollary 1.2.5. Let (un, vn) ⊂ D1,2(RN ) × D1,2(RN ) be a (PS)c sequence for I with

c ∈ ( kN S
N/2
K , (k+1)

N S
N/2
K ), where k ∈ N. Then, the weak limit (u0, v0) of (un, vn) is not the

trivial one.

Proof. Suppose, by contradiction, that u0, v0 ≡ 0. Since c > 0, then un, vn ↛ 0 inD1,2(RN ).
From Theorem 1.2.2, up to subsequence, we get

∥un∥2 + ∥vn∥2 → ∥u0∥2 + ∥v0∥2 +
k∑
j=1

[∥zj0∥
2 + ∥ζj0∥

2] =

k∑
j=1

[∥zj0∥
2 + ∥ζj0∥

2]

and

I(un, vn) → I(u0, v0) +
k∑
j=1

I∞(zj0, ζ
j
0) =

k∑
j=1

I∞(zj0, ζ
j
0) = c ≥ (k + 1)

N
S
N/2
K ,

which a contradiction with c ∈ ( kN S
N/2
K , (k+1)

N S
N/2
K ).

From now on we consider the functional f : D1,2(RN )×D1,2(RN ) → R given by

f(u, v) =

∫
RN

|∇u|2dx+

∫
RN

|∇v|2dx+

∫
RN

a(x)u2dx+

∫
RN

b(x)v2dx

and the manifold M ⊂ D1,2(RN )×D1,2(RN ) given by

M =

{
(u, v) ∈ D1,2(RN )×D1,2(RN ) :

∫
RN

K(u, v)dx = 1

}
.

The next results are direct consequence of the above corollaries.
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Lemma 1.2.6. Let (un, vn) ⊂ M be a sequence that satisfies

f(un, vn) → c and f ′|M(un, vn) → 0.

Then, the sequence (wn, zn) ⊂ D1,2(RN ), where (wn, zn) = (c(N−2)/4un, c
(N−2)/4vn), satis-

fies the following limits

I(wn, zn) →
1

N
cN/2 and I ′(wn, zn) → 0.

Lemma 1.2.7. Suppose that there are a sequence (un, vn) ⊂ M and c ∈ (SK , 2
2/NSK)

such that
f(un, vn) → c and f ′|M(un, vn) → 0.

Then, up to a subsequence, un → u, vn → v in D1,2(RN ), for some u, v ∈ D1,2(RN ).

Corollary 1.2.8. Suppose that there are a sequence (un, vn) ⊂ M and c ∈ (SK , 2
2/NSK)

such that
f(un, vn) → c and f ′(un, vn) → 0.

Then I has a critical point (u0, v0) ∈ D1,2(RN )×D1,2(RN ) with I(u0, v0) =
1

N
cN/2.

1.3 Existence of positive solution to (S1)

Now we recall some properties on the function Φδ,y given by in (1.0.1). Note that

(Φδ,y,Φδ,y) ∈ Σ =

{
(u, v) ∈ D1,2(RN )×D1,2(RN );u, v ≥ 0

}
. (1.3.1)

Moreover, making a change of variable we can prove that

Φδ,y ∈ Lq(RN ) for q ∈
(

N

N − 2
, 2∗
]
, ∀δ > 0 and ∀y ∈ RN . (1.3.2)

The proof of next result can be seen in [1, Lemma 4].

Lemma 1.3.1. For each y ∈ RN , we have

(i) ∥Φδ,y∥H1,∞(RN ) → 0 when δ → +∞,

(ii) |Φδ,y|q → 0 when δ → 0, ∀q ∈
(

N

N − 2
, 2∗
)
,

(iii) |Φδ,y|q → +∞ when δ → +∞, ∀q ∈
(

N

N − 2
, 2∗
)
.

The proof of next result can be seen in [1, Lemma 5].

Lemma 1.3.2. For each ε > 0, we have∫
RN\Bε(0)

|∇Φδ,0|2dx→ 0 when δ → 0.
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1.3.1 Technical Lemmas

Lemma 1.3.3. Suppose that a, b ∈ Lq(RN ), ∀q ∈ [p1, p2], where 1 < p1 <
N

2
< p2 with

p2 < 3 if N = 3. Then, for each ε > 0, there are δ = δ(ε) > 0 and δ̄ = δ̄(ε) > 0 such that

sup
y∈RN

f(soΦδ,y, toΦδ,y) < SK + ε, δ ∈ (0, δ] ∪ [δ̄,∞).

Proof. Consider y ∈ RN , q ∈
(
N

2
, p2

]
and t ∈ (1,+∞) with

1

q
+

1

t
= 1. Making a direct

calculations we have

N

N − 2
< 2t < 2∗. (1.3.3)

Since Φδ,b ∈ Ld(RN ), ∀d ∈
(

N

N − 2
, 2∗
)
, we get |Φδ,b|2 ∈ Lt(RN ). Then, using Holder

inequality and change of variable, we have∫
RN

a(x)|Φδ,b|2dx ≤ |a|q|Φδ,0|22t, ∀y ∈ RN

and ∫
RN

b(x)|Φδ,b|2dx ≤ |b|q|Φδ,0|22t, ∀y ∈ RN

From item (iii) of Lemma 1.3.1, given ε > 0, there exists δ = δ(ε) > 0 such that

sup
y∈RN

f(soΦδ,y, toΦδ,y) ≤ SK +
ε

2
< SK + ε, ∀δ ∈ (0, δ].

Suppose that q ∈
[
p1,

N

2

)
with t ∈ (1,+∞) and

1

q
+

1

t
= 1. Note that 2t− 2∗ > 0 and

for δ > 1,

|Φδ,y| ∈ L∞(RN ) (1.3.4)

and |Φδ,y|2
∗ ∈ L1(RN ). Then, |Φδ,y|2 ∈ Lt(RN ). Using Holder inequality with q and t, we

get

s2o

∫
RN

a(x)|Φδ,y|2dx ≤ s2o|a|q
(∫

RN

|Φδ,0|2tdz
)1/t

= s2o|a|q
(∫

RN

|Φδ,0|2
∗
s |Φδ,0|2t−2∗sdz

)1/t

≤ s2o|a|q|Φδ,0|(2t−2∗)/t
∞

(∫
RN

|Φδ,0|2
∗
dz

)1/t

≤ s2o|a|q|Φδ,0|(2t−2∗)/t
∞

≤ s2o|a|qc(2t−2∗)/tδ((2−N)/2)((2t−2∗)/t), ∀y ∈ RN .

Then, given ε > 0, there is δ̄ = δ̄(ε) > 1 such that

δ((2−N)/2)/2)((2t−2∗)/t) <
ε

2s2o|a|qc(2t−2∗)/t
, ∀δ ∈ [δ̄,∞).
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Arguing in the same way, we have

t2o

∫
RN

b(x)|Φδ,y|2dx ≤ t2o|b|qc(2t−2∗)/tδ((2−N)/2)((2t−2∗)/t), ∀y ∈ RN .

Then

f(soΦδ,y, toΦδ,y) = SK + s2o

∫
RN

a(x)|Φδ,y|2dx+ t2o

∫
RN

b(x)|Φδ,y|2dx

≤ S + s2o sup
y∈RN

∫
RN

a(x)|Φδ,y|2dx+ t2o sup
y∈RN

∫
RN

b(x)|Φδ,y|2dx

≤ SK +
ε

2
< SK + ε, ∀y ∈ RN and ∀δ ∈ [δ̄,∞).

Lemma 1.3.4. Suppose that (a, b)3 is true. Then,

sup
y∈RN

δ∈(0,+∞)

f(soΦδ,y, toΦδ,y) < 22/NSK .

Proof. Using Holder inequality with N/2 and N/(N − 2), we get

f(soΦδ,y, toΦδ,y) ≤ SK + sNo |a|LN/2(RN ) + tNo |b|LN/2(RN ).

From (a, b)3 we conclude

sup
y∈RN

δ∈(0,∞)

f(soΦδ,y, toΦδ,y) ≤ SK + SK(22/N − 1) = 22/NSK .

Consider the function

ξ(x) =

{
0, if |x| < 1
1, if |x| ≥ 1

and define α : D1,2(RN )×D1,2(RN ) → RN+1 by

α(u, v) =
s2o + t20
SK

∫
RN

(
x

|x|
, ξ(x)

)
[|∇u|2 + |∇v|2]dx = (β(u, v), γ(u, v)),

where

β(u, v) =
s2o + t20
SK

∫
RN

x

|x|
[|∇u|2 + |∇v|2]dx

and

γ(u, v) =
s2o + t20
SK

∫
RN

ξ(x)[|∇u|2 + |∇v|2]dx.

Lemma 1.3.5. If |y| ≥ 1

2
, then

β(Φδ,y,Φδ,y) =
y

|y|
+ oδ(1) when δ → 0.
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Proof. Given ε > 0, from Lemma 1.3.2, there is δ̂ > 0 such that∫
RN\Bε(y)

|∇Φδ,y|2dx =

∫
RN\Bε(0)

|∇Φδ,0|2dz < ε, ∀δ ∈ (0, δ̂).

Then,∣∣∣∣β(Φδ,y,Φδ,y)− s2o + t20
SK

∫
Bε(y)

x

|x|
|∇Φδ,y|2dx

∣∣∣∣ ≤ s2o + t20
SK

∫
RN\Bε(y)

|∇Φδ,y|2dx

< ε, ∀δ ∈ (0, δ̂). (1.3.5)

Note that∣∣∣∣ y|y| − s2o + t20
SK

∫
Bε(y)

x

|x|
|∇Φδ,y|2dx

∣∣∣∣ < 4ε+ ε = Cε, ∀δ ∈ (0, δ̂). (1.3.6)

From (1.3.5) and (1.3.6), we have∣∣∣∣β(Φδ,y,Φδ,y)− y

|y|

∣∣∣∣ =

∣∣∣∣β(Φδ,y,Φδ,y)− s2o + t20
SK

∫
Bε(y)

x

|x|
|∇Φδ,y|2dx

+
s2o + t20
SK

∫
Bε(y)

x

|x|
|∇Φδ,y|2dx− y

|y|

∣∣∣∣
≤

∣∣∣∣β(Φδ,y,Φδ,y)− s2o + t20
SK

∫
Bε(y)

x

|x|
|∇Φδ,y|2dx

∣∣∣∣
+

∣∣∣∣s2o + t20
SK

∫
Bε(y)

x

|x|
|∇Φδ,y|2dx− y

|y|

∣∣∣∣
< ε+ Cε

= Kε, ∀δ ∈ (0, δ̂).

Lemma 1.3.6. Suppose that a, b ∈ Lq(RN ), ∀q ∈ [p1, p2], where 1 < p1 <
N

2
< p2 with

p2 < 3 if N = 3. Then, for every δ > 0, we have

lim
|y|→∞

f(soΦδ,y, toΦδ,y) = SK .

Proof. Since

f(soΦδ,y, toΦδ,y)) = SK + s2o

∫
RN

a(x)|Φδ,y|2dx+ t2o

∫
RN

b(x)|Φδ,y|2dx,

we need to prove that

lim
|y|→∞

∫
RN

a(x)|Φδ,y|2dx = 0, ∀δ > 0 (1.3.7)

and

lim
|y|→∞

∫
RN

b(x)|Φδ,y|2dx = 0, ∀δ > 0. (1.3.8)

Note that given ε > 0, there is k0 > 0 such that(∫
RN\Bρ(0)

a(x)N/2dx

)2/N

< ε, ∀ρ > k0.
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and (∫
RN\Bρ(y)

|Φδ,y|2
∗
dx

)1/2∗

=

(∫
RN\Bρ(0)

|Φδ,0|2
∗
dz

)1/2∗

< ε, ∀ρ > k0. (1.3.9)

For ρ fixed, consider

k0 < 2ρ < |y| (1.3.10)

and note that

Bρ(0) ∩Bρ(y) = ∅. (1.3.11)

Using Holder inequality with N/2 and N/(N − 2), we get∫
RN

a(x)|Φδ,y|2dx ≤
(∫

RN\(Bρ(0)∪Bρ(y))

aN/2dx

)2/N(∫
RN\(Bρ(0)∪Bρ(y))

|Φδ,y|2
∗
dx

)(N−2)/N

+

(∫
Bρ(0)

aN/2dx

)2/N(∫
Bρ(0)

|Φδ,y|2
∗
dx

)(N−2)/N

+

(∫
Bρ(y)

aN/2dx

)2/N(∫
Bρ(y)

|Φδ,y|2
∗
dx

)(N−2)/N

≤
(∫

RN\Bρ(0)

aN/2dx

)2/N(∫
RN\Bρ(y)

|Φδ,y|2
∗
dx

)(N−2)/N

+

(∫
RN

aN/2dx

)2/N(∫
RN\Bρ(y)

|Φδ,y|2
∗
dx

)(N−2)/N

+

(∫
RN\Bρ(0)

aN/2dx

)2/N(∫
RN

|Φδ,y|2
∗
dx

)(N−2)/N

=

(∫
RN\Bρ(0)

aN/2dx

)2/N

< εε2 + |a|N/2ε
2 + ε.

Arguing of the same way for the term (1.3.8), the proof is over.

Now we define the set

ℑ =

{
(u, v) ∈ M;α(u, v) =

(
0,

1

2

)}
.

and note that from Lemma 1.3.2 and Lemma 1.3.1, item (i), there is δ1 > 0 such that
(Φδ1,0,Φδ1,0) ∈ ℑ.

Lemma 1.3.7. The number c0 = inf
(u,v)∈ℑ

f(u, v) satisfies the inequality c0 > SK .

Proof. Since ℑ ⊂ M, we have
SK ≤ c0.

Suppose, by contradiction, that SK = c0. By Ekeland variational principle [31], there
exists (un, vn) ⊂ D1,2(RN )×D1,2(RN ) such that∫

RN

K(un, vn)dx = 1, α(un, vn) →
(
0,

1

2

)
(1.3.12)
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and

f(un, vn) → SK , f ′|M(un, vn) → 0. (1.3.13)

Then, (un, vn) is bounded in D1,2(RN )×D1,2(RN ) and, up to a subsequence, un ⇀ u0,
vn ⇀ v0 in D1,2(RN ).

If wn = S(N−2)/4un, zn = S(N−2)/4vn and w0 = S(N−2)/4u0, z0 = S(N−2)/4v0, we have
that wn ⇀ w0, zn ⇀ z0 in D1,2(RN ). Moreover, from (1.3.13) and Lemma 1.2.6, we get

I(wn, zn) →
1

N
S
N/2
K and I ′(wn, zn) → 0.

We are going to show that (w0, z0) ≡ (0, 0). Note that

un ↛ u0, un ↛ u0 in D1,2(RN ), (1.3.14)

since otherwise, (u0, v0) ∈ M implies u0 ̸= 0, v0 ̸= 0. Then,

SK ≤

∫
RN

|∇u0|2dx+

∫
RN

|∇v0|2dx(∫
RN

K(u0, v0)dx

)2/2∗
=

∫
RN

|∇u0|2dx+

∫
RN

|∇v0|2dx

<

∫
RN

|∇u0|2dx+

∫
RN

|∇v0|2dx+

∫
RN

a(x)|u0|2dx+

∫
RN

b(x)|v0|2dx = SK ,

which is an absurd. Hence, wn ↛ w0, zn ↛ z0 in D1,2(RN ) and, since (wn, zn) is a (PS)c
sequence for I, by Theorem 1.2.2 we obtain that

I(wn, zn) → I(w0, z0) +

k∑
j=1

I∞(zj0, ζ
j
0) =

1

N
S
N/2
K .

Since I ′∞(zj0, ζ
j
0) = 0, we have that

I(w0, z0) = 0, (1.3.15)

k = 1, (1.3.16)

z10 , ζ
1
0 > 0, (1.3.17)

I(w0, z0) =
1

N

∫
RN

K(w0, z0)dx

and from (1.3.15), we conclude that w0 ≡ 0 and z0 ≡ 0. Then, (wn, zn) is a (PS)c sequence
for I such that wn ⇀ 0, zn ⇀ 0 and wn ↛ 0, zn ↛ 0.

Note that

∫
RN

a(x)|wn|2dx = on(1) and

∫
RN

b(x)|zn|2dx = on(1). Then,

1

N
S
N/2
K + on(1) = I(wn, zn) = I∞(wn, zn) +

∫
RN

a(x)|wn|2dx+

∫
RN

b(x)|zn|2dx

= I∞(vn) + on(1) (1.3.18)

and

∥I ′∞(wn, zn)∥D′ ≤ ∥I ′(wn, zn)∥D′ + on(1). (1.3.19)
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From (1.3.18) and (1.3.19) we conclude that (wn, zn) is a (PS)c sequence for I∞ and
by Lemma 1.2.1, there are sequences (Rn) ⊂ R, (xn) ⊂ RN , (z10 , ζ10 ) nontrivial solution of
(S∞) and (Φn,Ψn) a (PS)c sequence for I∞ such that

wn(x) = Φn(w) +R(N−2)/2
n z10(Rn(x− xn)) + on(1)

zn(x) = Ψn(w) +R(N−2)/2
n ζ10 (Rn(x− xn)) + on(1). (1.3.20)

Note that if we define

Φ̃n(x) = R(N−2)/2
n z10(Rn(x− xn)), Ψ̃n(x) = R(N−2)/2

n ζ10 (Rn(x− xn)),

making a change of variable, we have

I ′∞(Φ̃n, Ψ̃n)(φ,ψ) = I ′∞(z10 , ζ
1
0 )(φn, ψn) = 0, ∀(φ,ψ) ∈ D1,2(RN )×D1,2(RN ), ∀n ∈ N,

i.e, (Φ̃n, Ψ̃n) a solution of (S∞) , for all n ∈ N.
Moreover, from the definition of (Φ̃n, Ψ̃n) and by (1.3.17), we get

Φ̃n(x) = Ψ̃n(x) = c

(
δn

δ2n + |x− yn|2

)(N−2)/2

.

By (1.3.20), we obtain

un(x) = Φ̂n(x) + Φδn,yn(x) + on(1), vn(x) = Ψ̂n(x) + Φδn,yn(x) + on(1)

where

Φ̂n(x) =
1

S
(N−2)/4
K

Φn(x), Ψ̂n(x) =
1

S
(N−2)/4
K

Ψn(x).

Using (1.3.16), we derive that Φn → 0, Ψn → 0 in D1,2(RN ), which implies that Φ̂n → 0,
Ψ̂n → 0 in D1,2(RN ). From (1.3.12) we have(

0,
1

2

)
+ on(1) = α(un, vn) = α(Φ̂n(x) + Φδn,yn(x), Ψ̂n(x) + Φδn,yn(x)) + on(1))

= α(Φδn,yn ,Φδn,yn)

which implies
(i) β(Φδn,yn ,Φδn,yn) → 0

and

(ii) γ(Φδn,yn ,Φδn,yn) →
1

2
.

Passing to a subsequence, one of these possibilities can occur.

(a) δn → +∞ when n→ +∞;

(b) δn → δ̃ ̸= 0 when n→ +∞;

(c) δn → 0 and yn → ỹ when n→ +∞ with |ỹ| < 1

2
;

(d) δn → 0 when n→ +∞ and |yn| ≥
1

2
for n sufficient large.
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Suppose that (a) is true. Then,

γ(Φδn,yn) = 1− s2o + t20
SK

∫
B1(0)

|∇Φδn,yn |2dx,

which implies by Lemma 1.3.1,

|γ(Φδn,yn)− 1| =
s2o + t20
SK

∫
B1(0)

|∇Φδn,yn |2dx ≤ s2o + t20
SK

∫
RN

|∇Φδn,yn |2dx = on(1),

which contradicts (ii).
Suppose that (b) is true. In this case we can suppose that |yn| → +∞, because if

yn → ỹ, we can prove that

Φδn,yn → Φδ̃,ỹ in D1,2(RN ).

Since Φ̂n, Ψ̂n → 0 in D1,2(RN ) and un = Φ̂n+Φδn,yn + on(1), vn = Ψ̂n+Φδn,yn + on(1),
we have that (un, vn) converges in D1,2(RN ) × D1,2(RN ) but this is a contradiction with
(1.3.14).

Then,

γ(Φδn,yn ,Φδn,yn) =
s2o + t20
SK

∫
RN

ξ(x)|∇Φδn,yn |2dx =
s2o + t20
SK

∫
RN\B1(0)

|∇Φδn,yn |2dx

= 1− s2o + t20
SK

∫
B1(−yn)

|∇Φδn,0|2dx. (1.3.21)

From Lebesgue Theorem we can prove that∫
B1(−yn)

|∇Φδn,0|2dx→ 0

and from (1.3.21), we obtain

γ(Φδn,yn ,Φδn,yn) → 1 when n→ +∞,

which is a contradiction with (ii).
Suppose that (c) is true. We have that

γ(Φδn,yn ,Φδn,yn) =
s2o + t20
SK

∫
RN

ξ(x)|∇Φδn,yn |2dx =
s2o + t20
SK

∫
RN\B1(0)

|∇Φδn,yn |2dx

=
s2o + t20
SK

∫
RN

|∇Φδn,yn |2dx− s2o + t20
SK

∫
B1(−yn)

|∇Φδn,0|2dz

= 1− s2o + t20
SK

∫
B1(−yn)

|∇Φδn,0|2dz. (1.3.22)

Note that using Lebesgue Theorem again, we can prove that

lim
n→+∞

s2o + t20
SK

∫
B1(−yn)

|∇Φδn,0|2dz = 1.

Then, by (1.3.22) we have that

γ(Φδn,yn ,Φδn,yn) → 0,
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which is a contradiction with (ii).

Suppose that (d) is true. Since |bn| ≥
1

2
for n large, then bn ↛ 0 in RN . From Lemma

1.3.5, we get

β(Φδn,yn ,Φδn,yn) =
yn
|yn|

+ on(1).

Hence,
β(Φδn,yn ,Φδn,yn) ↛ 0,

which is a contradiction with (i). The, we conclude that SK < c0 and the proof is over.

Lemma 1.3.8. There is δ1 ∈ (0, 1/2) such that

(a) f(s0Φδ1,y, t0Φδ1,y) <
SK + c0

2
, ∀y ∈ RN ;

(b) γ(Φδ1,y,Φδ1,y) <
1

2
, ∀y ∈ RN such that |y| < 1

2
;

(c)

∣∣∣∣β(Φδ1,y,Φδ1,y)− y

|y|

∣∣∣∣ < 1

4
, ∀y ∈ RN such that |y| ≥ 1

2
.

Proof. From Lemma 1.3.3, we can choose ε =
c0 − S

2
> 0 and δ2 < min{δ, 1/2} and

conclude that for all y ∈ RN

f(s0Φδ,y, t0Φδ,y) ≤ sup
y∈RN

f(s0Φδ,y, t0Φδ,y) < SK +
c0 − SK

2
=
SK + c0

2
. (1.3.23)

Now by definition of ξ, we have

γ(Φδ,y,Φδ,y) = 1− s2o + t20
SK

∫
B1(−y)

|∇Φδ,0|2dz.

From Lebesgue Theorem

s2o + t20
SK

∫
B1(−y)

|∇Φδ,0|2dz = 1

and the proof of this item is over.
Note that from Lemma 1.3.5, we conclude that

β(Φδ,y,Φδ,y) =
y

|y|
+ oδ(1) when δ → 0, ∀y ∈ RN ; |y| ≥ 1

2

and the proof is finished.

Lemma 1.3.9. There is δ2 > 1 such that

(a) f(s0Φδ2,y, t0Φδ2,y) <
SK + c0

2
, ∀y ∈ RN ,

(b) γ(Φδ2,y,Φδ2,y) >
1

2
, ∀y ∈ RN .
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Proof. From Lemma 1.3.3, we can choose ε =
c0 − SK

2
> 0 and δ3 > max{δ̄, 1} we have

f(s0Φδ,y, t0Φδ,y) ≤ sup
y∈RN

f(s0Φδ,y, t0Φδ,y) < SK +
c0 − SK

2
=
SK + c0

2
, ∀y ∈ RN .(1.3.24)

Moreover, from definition of ξ and Lemma 1.3.1, we can conclude that

γ(Φδ,y,Φδ,y) → 1 when δ → +∞

and the proof is over.

Lemma 1.3.10. There is R > 0 such that

(a) f(s0Φδ,y, t0Φδ,y) <
SK + c0

2
, ∀y; |y| ≥ R and δ ∈ [δ1, δ2],

(b) (β(Φδ,y,Φδ,y)|y))RN > 0 ∀y; |y| ≥ R and δ ∈ [δ1, δ2].

Proof. The first item follows by Lemma 1.3.3 and the choose of ε =
c0 − S

2
> 0. The second

item follows of the definition of β and Φδ,y and adaptations the same arguments explored
in [6]

Consider the set

V = {(y, δ) ∈ RN × (0,∞); |y| < R and δ ∈ (δ1, δ2)},

where δ1, δ2 and R are given by Lemmas 1.3.8, 1.3.9 and 1.3.10, respectively.
Let Q : RN × (0,+∞) → D1,2(RN ) be the continuous function given by

Q(y, δ) = Φδ,y.

Consider now the sets

Θ = {(Q(y, δ), Q(y, δ)); (y, δ) ∈ V},

H =

{
h ∈ C(Σ ∩M);h(u, v) = (u, v), ∀(u, v) ∈ Σ ∩M; f(sou, tov) <

SK + c0
2

}
and

Γ = {A ⊂ Σ ∩M;A = h(Θ), h ∈ H}.

Note that Θ ⊂ Σ ∩M, Θ = Q(V)×Q(V) is compact and H ≠ ∅, because the identity
function is in H.

Lemma 1.3.11. Let F : V → RN+1 be a function given by

F(y, δ) = (α ◦ (Q,Q))(y, δ) =
s2o + t20
SK

∫
RN

(
x

|x|
, ξ(x)

)
|∇Φδ,y|2dx.

Then,
d(F ,V, (0, 1/2)) = 1.
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Proof. Let
Z : [0, 1]× V → RN+1

be the homotopy given by

Z(t, (y, δ)) = tF(y, δ) + (1− t)IV(y, δ),

where IV is the identity operator. Using lemma 1.3.8 and Lemma 1.3.9, we can show that
(0, 1/2) /∈ Z([0, 1]× (∂V)), i.e,

tβ(Φδ,y,Φδ,y) + (1− t)y ̸= 0, ∀t ∈ [0, 1] and ∀(y, δ) ∈ ∂V (1.3.25)

or

tγ(Φδ,y,Φδ,y) + (1− t)δ ̸= 1

2
, ∀t ∈ [0, 1] and ∀(y, δ) ∈ ∂V. (1.3.26)

Hence (0, 1/2) /∈ Z([0, 1]×∂V) where we conclude that d(F ,V, (0, 1/2)), d(iV ,V, (0, 1/2))
and d(Z(t, ·),V, (0, 1/2)) are well defined and

d(F ,V, (0, 1/2)) = d(iV ,V, (0, 1/2)) = 1.

Lemma 1.3.12. If A ∈ Γ, then A ∩ ℑ ̸= ∅.

Proof. It is sufficient to prove that for all h ∈ H, there exists (y0, δ0) ∈ V such that

(α ◦ H ◦ (Q,Q))(y0, δ0) =

(
0,

1

2

)
.

Given h ∈ H, let
Fh : V → RN+1

be the continuous function given by

Fh(y, δ) = (α ◦ h ◦ (Q,Q))(y, δ).

We are going to show that Fh = F in ∂V. Note that

∂V = Π1 ∪Π2 ∪Π3, (1.3.27)

where
Π1 = {(y, δ1); |y| ≤ R},

Π2 = {(y, δ2); |y| ≤ R}

and
Π3 = {(y, δ); |y| = R and δ ∈ [δ1, δ2]}.

If (y, δ) ∈ Π1, then (y, δ) = (y, δ1) and by item (a) from Lemma 1.3.8, we have

f(soQ(y, δ), toQ(y, δ)) = f(soQ(y, δ1), toQ(y, δ1)) = f(s0Φδ1,y, t0Φδ1,y)

<
SK + c0

2
, ∀(y, δ) ∈ Π1. (1.3.28)

If (y, δ) ∈ Π2, then (y, δ) = (y, δ2) and by item(a) from Lemma 1.3.9, we get

f(soQ(y, δ), toQ(y, δ)) = f(soQ(y, δ2), toQ(y, δ2)) = f(s0Φδ2,y, t0Φδ2,y)

<
SK + c0

2
, ∀(y, δ) ∈ Π2. (1.3.29)
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If (y, δ) ∈ Π3, then |y| = R and δ ∈ [δ1, δ2] and by item (a) from Lemma 1.3.10, we
obtain

f(soQ(y, δ), toQ(y, δ)) = f(s0Φδ,y, t0Φδ,y)

<
SK + c0

2
, ∀(y, δ) ∈ Π3. (1.3.30)

From (1.3.27), (1.3.28), (1.3.29) and (1.3.30) we conclude that

f(soQ(y, δ), toQ(y, δ)) <
SK + c0

2
, ∀(y, δ) ∈ ∂V.

Hence,

Fh(y, δ) = (α ◦ h ◦ (Q,Q))(y, δ) = (α ◦ h)(Q(y, δ), Q(y, δ))

= α(h((Q(y, δ), Q(y, δ)))) = α((Q(y, δ), Q(y, δ)))

= (α ◦ (Q,Q))(y, δ) = F(y, δ), ∀(y, δ) ∈ ∂V.

Since (0, 1/2) /∈ F(∂V), we have

d(F ,V, (0, 1/2)) = d(Fh,V, (0, 1/2)).

From Lemma 1.3.11, we get

d(Fh,V, (0, 1/2)) = d(F ,V, (0, 1/2)) = 1,

and there exists (y0, δ0) ∈ V such that

Fh(y0, δ0) = (α ◦ h ◦ (Q,Q))(y0, δ0) =

(
0,

1

2

)
and the proof is over.

1.3.2 Proof of the main theorem

Consider the number

c = inf
A∈Γ

max
(u,v)∈A

f(u, v)

and for each q ∈ R,
f q = {(u, v) ∈ Σ ∩M; f(u, v) ≤ q}.

We are going to show that

SK < c < 22/NSK . (1.3.31)

Note that

c = inf
A∈Γ

max
(u,v)∈A

f(u, v) ≤ max
(u,v)∈Θ

f(u, v) ≤ sup
y∈RN

δ∈(0,+∞)

f(soΦδ,y, toΦδ,y) < 22/NSK .

On the other hand, from Lemma 1.3.12, we have that
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c0 = inf
u∈ℑ

f(u, v) ≤ c = inf
A∈Γ

max
u∈A

f(sou, tov)

≤ sup
y∈RN

δ∈(0,+∞)

f(soΦδ,y, toΦδ,y) < 22/NSK . (1.3.32)

From Lemma 1.3.7, we have that SK < c0 and the proof of (1.3.31) is over.
Using the definition of c, there exists (un, vn) ⊂ Σ ∩M such that

f(un, vn) → c. (1.3.33)

Suppose, by contradiction, that

f ′|M(un, vn) ↛ 0.

Then, there exists (unj , vnj) ⊂ (un, vn) such that

∥f ′|M(unj , vnj)∥∗ ≥ C > 0, ∀j ∈ N.

Using a Deformation Lemma [31], there exists a continuous application η : [0, 1]× (Σ ∩
M) → (Σ ∩M), ε0 > 0 such that

(1) η(0, u, v) = (u, v);

(2) η(t, u, v) = (u, v), ∀(u, v) ∈ f c−ε0 ∪ {(Σ ∩M) \ f c+ε0}, ∀t ∈ [0, 1];

(3) η(1, f c+
ε0
2 ) ⊂ f c−

ε0
2 .

From the definition of c, there exists Ã ∈ Γ such that

c ≤ max
(u,v)∈Ã

f(u, v) < c+
ε0
2
,

where

Ã ⊂ f c+
ε0
2 . (1.3.34)

Since Ã ∈ Γ, we have Ã ⊂ (Σ ∩M) and there exists h̄ ∈ H such that

h̄(Θ) = Ã. (1.3.35)

From the definition of η, we have

η(1, Ã) ⊂ (Σ ∩M). (1.3.36)

Let ĥ : (Σ ∩M) → (Σ ∩M) be the function given by ĥ(u, v) = η(1, h̄(u, v)) and note
that ĥ ∈ C(Σ ∩M). We are going to show that

f c+ε0 \ f c−ε0 ⊂ f2
2s/NS \ f (S+c0)/2. (1.3.37)

Considering (u, v) ∈ f c+ε0 \ f c−ε0 , we have

c− ε0 < f(u, v) ≤ c+ ε0
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and by (1.3.31), for ε0 sufficiently small, we get

c− ε0 < f(u, v) ≤ c+ ε0 < 22/N S̃K . (1.3.38)

Now from Lemma 1.3.7 and (1.3.32), we obtain

SK + c0
2

< c0 − ε0 < c− ε0 < 22/N S̃K

and

SK + c0
2

< c0 − ε0 ≤ c− ε0 < f(u, v), (1.3.39)

which implies

(u, v) ∈ f2
2/NSK \ f (SK+c0)/2.

Consider (u, v) ∈ (Σ ∩M) such that

f(u, v) <
SK + c0

2
. (1.3.40)

Then,
h̄(u, v) = (u, v)

and from (1.3.40), we have that (u, v) /∈ f2
2/NSK \ f (SK+c0)/2 and by (1.3.37), we get

(u, v) /∈ f c+ε0 \ f c−ε0 .

Then,
(u, v) ∈ f c−ε0 ∪ {(Σ ∩M) \ f c+ε0}

and from Deformation Lemma, we obtain

η(1, u, v) = (u, v).

Hence,
ĥ(u, v) = η(1, h̄(u, v)) = η(1, u, v) = (u, v)

where we conclude that ĥ ∈ H, which implies

ĥ(Θ) = η(1, h̄(Θ))

and from (1.3.35), we conclude that

ĥ(Θ) = η(1, h̄(Θ)) = η(1, Ã). (1.3.41)

From (1.3.36), we have η(1, Ã) ∈ Γ, which implies

c = inf
A∈Γ

max
u∈A

f(u, v) ≤ max
u∈η(1,Ã)

f(u, v). (1.3.42)

From Deformation Lemma again and by (1.3.34), we get

η(1, Ã) ⊂ η(1, f c+
ε0
2 ) ⊂ f c−

ε0
2 .

Then,

f(u, v) ≤ c− ε0
2
, ∀(u, v) ∈ η(1, Ã),
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which implies

max
u∈η(1,Ã)

f(u, v) ≤ c− ε0
2

and using (1.3.42), we conclude that

c ≤ max
u∈η(1,Ã)

f(u, v) ≤ c− ε0
2
,

which is an absurd.
Then,

f(un, vn) → c and f ′|M(un, vn) → 0

and from Lemma 1.2.7, up to a subsequence, un → ũ0, vn → ṽ0 in D1,2(RN ), which implies
that ũ0, ṽ0 ≥ 0,

f(ũ0, ṽ0) = c and f ′|M(ũ0, ṽ0) = 0

and from(1.3.31)
SK < f(ũ0, ṽ0) < 22/NSK .

The positivity of ũ0 and ṽ0 is a consequence of the classical maximum principle.
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Chapter 2

Existence of positive solution for a
critical system in RN

+

In this chapter we will deal with the following system

(S2)



−∆u+ a(x)u =
1

2∗
Ku(u, v) in RN+ ,

−∆v + b(x)v =
1

2∗
Kv(u, v) in RN+ ,

u > 0, v > 0 in RN+ ,
∂u

∂ν
=
∂v

∂ν
= 0 on ∂RN+ .

Let R2
+ := [0,∞)× [0,∞) and set 2∗ := 2N/(N − 2). We state our main hypothesis on

the function K ∈ C2(R2
+,R) as follows.

(K0) K is 2∗-homogeneous, that is,

K(λs, λt) = λ2
∗
K(s, t) for each λ > 0, (s, t) ∈ R2

+.

(K1) there exists c1 > 0 such that

|Ks(s, t)|+ |Kt(s, t)| ≤ c1

(
s2

∗−1 + t2
∗−1
)

for each (s, t) ∈ R2
+.

(K2) K(s, t) > 0 for each s, t > 0;

(K3) ∇K(0, 1) = ∇K(1, 0) = (0, 0);

(K4) Ks(s, t),Kt(s, t) ≥ 0 for each (s, t) ∈ R2
+.

(K5) the 1-homogeneous function G : R2
+ → R given by G(s2

∗
, t2

∗
) := K(s, t) is concave.

In the sequel, we denote by SK and ΣK , respectively,

SK = inf

{∫
RN

|∇u|2 + |∇v|2dx; (u, v) ∈ D1,2(RN )×D1,2(RN ),
∫
RN

K(u, v)dx = 1

}
(2.0.1)

and

ΣK = inf

{∫
RN
+

|∇u|2 + |∇v|2dx; (u, v) ∈ D1,2(RN+ )×D1,2(RN+ ),

∫
RN
+

K(u, v)dx = 1

}
.

(2.0.2)
The hypotheses on the functions a, b : RN 7→ R+ are given by:
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(a, b)1 The functions a(x) ≥ 0 and b(x) ≥ 0, for all x ∈ RN+ .

(a, b)2 a, b ∈ LN/2(RN+ ) and |a|LN/2(RN
+ ) ̸= 0 and |b|LN/2(RN

+ ) ̸= 0.

Using the above notation we are able to state our main result.

Theorem 2.0.1. Assume (a, b)1 and (a, b)2, (K0)− (K5) and

|a|LN/2(RN
+ ) + |b|LN/2(RN

+ ) < SK − ΣK . (2.0.3)

Then, system (S2) has a positive solution (u, v) ∈ D1,2(RN+ )×D1,2(RN+ ).

We denote by J : D1,2(RN+ )×D1,2(RN+ ) → R the functional given by

J(u, v) =

∫
RN
+

|∇u|2 + |∇v|2 + a(x)|u|2 + b(x)|v|2dx

and by M the manifold

M =

{
(u, v) ∈ D1,2(RN+ )×D1,2(RN+ );

∫
RN
+

K(u, v)dx = 1

}
.

The solutions of (S2) correspond to the positive functions that are critical points of the
energy functional J constrained on the manifold M.

Let us denote by S the following number

S := inf
u∈D1,2(RN ),u̸=0

∫
RN

|∇u|2dx(∫
RN

|u|2∗dx
)2/2∗

.

It is well known (see for example [12,27]) that all the minimizers for S are of the type

Φδ,y(x) = c

(
δ

δ2 + |x− y|2

)(N−2)/2

, x, y ∈ RN and δ > 0, (2.0.4)

Moreover, it satisfies for a suitable choice of c

∥Φδ,y∥2 = S and |Φδ,y|2∗ = 1.

By [13, Lemma 3], there exist so, to > 0 such that SK is attained by (soΦδ,y, toΦδ,y).
Moreover,

MKSK = S, (2.0.5)

where MK = max
s2+t2=1

K(s, t)2/2
∗
= K(so, to)

2/2∗ .

If we consider the definition and properties of SK , we can check that ΣK = 2−2/NSK
and the constant ΣK is achieved by the function (s0Φ̃1,0, t0Φ̃1,0) where

Φ̃1,0(x) = 21/2
∗
Φ1,0(x), ∀x ∈ RN+

and all the minimizers for ΣK are of the type (s0Φ̃δ,y, t0Φ̃δ,y) where

Φ̃δ,y(x) = σ−
N−2

2 Φ̃1,0

(
x− y

δ

)
, δ > 0, and y ∈ ∂RN+ .
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2.1 Preliminaries

We notice that we can use the homogeneity condition (K0) to conclude that

K(s, t) =
1

2∗
sKs(s, t) +

1

2∗
tKt(s, t),

since by (K0), we have

d

dλ
K(λs, λt) =

d

dλ

(
λ2

∗
K(s, t)

)
2∗ = 2∗λ2

∗−1K(s, t), (2.1.1)

and

d

dλ
K(λs, λt) = sKs(λs, λt) + tKt(λs, λt)

= sλ2
∗−1Ks(λs, λt) + tλ2

∗−1Kt(λs, λt) (2.1.2)

Then, by equations (2.1.1) and (2.1.2) we got

2∗K(s, t) = sKs(s, t) + tKt(s, t).

We started showing a result of non-existence.

Proposition 2.1.1. Assume that (a, b)1 - (a, b)2 holds and consider

Σ∗
K = inf {J(u, v); (u, v) ∈ M} . (2.1.3)

Then, Σ∗
K = ΣK and the minimization problem (2.1.3) has no solution.

Proof. Since a(x) ≥ 0 and b(x) ≥ 0 in RN+ , we have Σ∗ ≥ Σ. To show that the equality
holds, let us consider the sequence

(ψϵ(x), ϕϵ(x)) = ξ(|x|)(s0Φϵ,0(x), t0Φϵ,0(x))

where ξ ∈ C∞(0,+∞) is a non increasing cut-off such that

ξ(t) =

{
1, if t ∈ [0, 1/2],

0, if t ≥ 1.

We have∫
RN
+

|∇ψϵ|2dx =

∫
RN
+

|ξ∇s0Φϵ,0 + s0Φϵ,0∇ξ|2dx ≤
∫
RN
+

|∇s0Φϵ,0|2dx

+ 2

∫
RN
+ \B 1

2
(0)

|s0Φϵ,0ξ|2|∇ξ|2dx

 1
2
∫

RN
+ \B 1

2
(0)

|∇s0Φϵ,0|2dx

 1
2

dx

+

∫
RN
+

|∇ξ|2|s0Φϵ,0|2dx ≤
∫
RN
+

|∇s0Φϵ,0|2dx

+ C

∫
RN
+ \B 1

2
(0)

|Φϵ,0|2dx

 1
2
∫

RN
+ \B 1

2
(0)

|∇Φϵ,0|2dx

 1
2

dx

+ C

∫
RN
+

|Φϵ,0|2dx.
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By properties of Φϵ,0 we have |Φϵ,0|2 −→ 0 and∫
RN
+ \B 1

2
(0)

|∇s0Φϵ,0|2dx −→ 0,

as ϵ −→ 0. Then

∫
RN
+

|∇ψϵ|2dx ≤
∫
RN
+

|∇s0Φϵ,0|2 + oϵ(1).

Similarly ∫
RN
+

|∇ϕϵ|2dx ≤
∫
RN
+

|∇t0Φϵ,0|2 + oϵ(1).

Then,∫
RN
+

|∇ψϵ|2 + |∇ϕϵ|2dx ≤
∫
RN
+

|∇s0Φϵ,0|2 + |∇t0Φϵ,0|2 + oϵ(1) =
1

2
SK + oϵ(1)

≤ ΣK + oϵ(1). (2.1.4)

On the other hand,∫
RN
+

a(x)ψ2
ϵ (x)dx =

∫
RN
+∩Bρ(0)

a(x)ψ2
ϵ (x)dx+

∫
RN
+ \Bρ(0)

a(x)ψ2
ϵ (x)dx

≤ |ψϵ|2L2∗ (RN
+ )

(∫
RN
+∩Bρ(0)

|a(x)|N/2dx

)2/N

+ |a|LN/2(RN
+ )

(∫
RN
+ \Bρ(0)

|ψ2
ϵ (x)|2

∗
dx

)2/2∗

.

Now note that

lim
ϵ→0

∫
RN
+ \Bρ(0)

|ψϵ(x)|2
∗
dx = 0

and
lim
ϵ→0

|ψϵ|L2∗ (RN
+ ) = 1.

Then, for all ρ > 0, we have∫
RN
+

a(x)ψ2
ϵ (x)dx ≤

(∫
RN
+∩Bρ(0)

|a(x)|N/2dx

)2/N

+ oϵ(1).

Since a ∈ LN/2(RN+ ), we get

lim
ρ→0

(∫
RN
+∩Bρ(0)

|a(x)|N/2dx

)2/N

= 0

and then

lim
ϵ→0

∫
RN
+

a(x)ψ2
ϵ (x)dx = 0. (2.1.5)
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Similarly,

lim
ϵ→0

∫
RN
+

b(x)ϕ2ϵ (x)dx = 0. (2.1.6)

Therefore, from (2.1.4), (2.1.5) and (2.1.6), we obtain

Σ∗
K ≤ lim

ϵ→0
J(ψϵ(x), ϕϵ(x)) ≤ ΣK ,

and we conclude Σ∗
K = ΣK .

Now, suppose that the minimization problem (2.1.3) has a solution (u, v) and without
loss of generality that u, v ≥ 0. Let us denote by u∗, v∗, a∗ and b∗ the extension by reflection
to all of RN of u, v, a and b, respectively. Then∫

RN

[|∇u∗|2 + |∇v∗|2 + a∗|u∗|2 + b∗|u∗|2]dx(∫
RN

K(u∗, v∗)dx

) 2
2∗

= SK .

Since a∗, b∗ ≥ 0 and by definition of SK we have

SK ≤

∫
RN

[|∇u∗|2 + |∇v∗|2]dx(∫
RN

K(u∗, v∗)dx

) 2
2∗

≤

∫
RN

[|∇u∗|2 + |∇v∗|2 + a∗|u∗|2 + b∗|u∗|2]dx(∫
RN

K(u∗, v∗)dx

) 2
2∗

= SK ,

which implies that

∫
RN

a∗|u∗|2dx =

∫
RN

b∗|v∗|2dx = 0 and (u∗, v∗) = (s0Φδ,y, t0Φδ,y), for

some δ > 0 and y ∈ RN . Thus, using the assumptions on a and b and the fact that Φδ,y > 0
for all x ∈ RN , we deduce

0 =

∫
RN

a∗|u∗|2 + b∗|v∗|2dx =

∫
RN

a∗|s0Φδ,y|2 + b∗|t0Φδ,y|2dx > 0,

which is an absurd.

Lemma 2.1.2. Let a and b be functions verifying (a, b)1 - (a, b)2. If (u, v) is a critical
point of J on M such that J(u, v) ≤ SK , then u and v do not change sign.

Proof. Assume that u = u+ + u−, v = v+ + v− with u+, u− ̸= 0 or v+, v− ̸= 0. By
Proposition 2.1.1,

ΣK

(∫
RN
+

K(u±, v±)dx

) 2
2∗

<

∫
RN
+

[|∇u±|2 + |∇v±|+ a|u±|2 + b|v±|2]dx

and since (u, v) is a critical point of J on M,

∫
RN
+

[|∇u±|2 + |∇v±|+ a|u±|2 + b|v±|2]dx ≤ J(u, v)

∫
RN
+

K(u±, v±)dx. (2.1.7)

Then ∫
RN
+

K(u±, v±)dx ≥
(

ΣK
J(u, v)

)N/2
,
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which, considering that
∫
RN
+
K(u, v)dx = 1, gives

J(u, v) > 22/NΣK = SK ,

which contradicts our assumption.

The next proposition guarantees us the existence of an interval where the functional J
verifies the Palais-Smale conditions on M.

Proposition 2.1.3. Assume that a and b satisfies (a, b)1 - (a, b)2 and let (un, vn) ⊂ M be
a sequence verifying

J(un, vn) → c and J ′|M(un, vn) → 0,

with c ∈ (ΣK , SK). Then (un, vn) has a strongly convergent subsequence in D1,2(RN+ ) ×
D1,2(RN+ ).

Proof. If (u∗n, v
∗
n), a

∗ and b∗ denote the functions obtained by (un, vn), a and b extended to
RN by reflection, we have that u∗n, v

∗
n ∈ D1,2(RN ), ∀n ∈ N.

Moreover, using the definition of the reflection, we obtain∫
RN

K

(
1

21/2∗
(u∗n, v

∗
n)

)
dx = 1,

1

22/2∗

∫
RN

[|∇u∗n|2 + |∇v∗n|2 + a∗|u∗n|2 + b∗|v∗n|2]dx→ 22/Nc

and∫
RN

[∇u∗n∇u+∇v∗n∇v+a∗u∗nv+b∗v∗nv]dx+(22/N+on(1))

∫
RN

Ku(u
∗
n, v

∗
n)u+Kv(u

∗
n, v

∗
n)vdx = on(1),

for all u, v ∈ D1,2(RN ).
Since c ∈ (ΣK , SK) we have

22/Nc ∈ (22/NΣK , 2
2/NSK) = (SK , 2

2/NSK)

and from [14, Lemma 3.3], (u∗n/2
1/2∗ , v∗n/2

1/2∗) has a strongly convergent subsequence inD1,2(RN )×
D1,2(RN ), and thus (un, vn) has a strongly convergent subsequence in D1,2(RN

+ )×D1,2(RN
+ ).

Let Π : RN+ → ∂RN+ denote the projection

Π(x1, x2, ..., xN ) = (x1, x2, ..., xN−1, 0).

We consider the functions β : D1,2(RN+ )×D1,2(RN+ ) → ∂RN+ and γ : D1,2(RN+ )×D1,2(RN+ ) →
R defined by

β(u, v) =

∫
RN
+

Π(x)

1 + |Π(x)|
K(u, v)dx∫

RN
+

K(u, v)dx

and

γ(u, v) =

∫
RN
+

∣∣∣∣ Π(x)

1 + |Π(x)|
− β(u, v)

∣∣∣∣K(u, v)∫
RN
+

K(u, v)dx

.

For all ρ > 0 and y ∈ RN , let us denote by Aρ(y) the following set:

Aρ(y) =
{
x ∈ RN+ ; |Π(x)−Π(y)| < ρ

}
.
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Lemma 2.1.4. Let (un, vn) be a sequence in D1,2(RN+ )×D1,2(RN+ ) verifying

(un, vn) ⊂ M, lim
n→+∞

∫
RN
+

|∇un|2 + |∇vn|2dx = ΣK , β(un, vn) = 0 and γ(un, vn) =
1

3
.

Then, up to subsequences, there are sequences (δn) ⊂ R+, (yn) ⊂ ∂RN+ and wn, ζn ⊂
D1,2(RN+ ) such that

(i) un = Φ̃δn,yn + wn, vn = Φ̃δn,yn + ζn

(ii) (δn) and (yn) are bounded, and

(iii) wn, ζn → 0 in D1,2(RN+ ).

Proof. From [14, Lemma 3.1], we deduce

un(x) = s0Φ̃δn,yn(x) + wn(x), ∀x ∈ RN+ ,

vn(x) = t0Φ̃δn,yn(x) + ζn(x), ∀x ∈ RN+ ,

where δn ∈ R+ \ {0}, yn ∈ ∂RN+ and wn, ζ are sequences that goes strongly to zero in
D1,2(RN+ ). Consequently, by Brezis Lieb, for all ρ > 0 holds∫

Aρ(0)
K(un, vn)dx =

∫
Aρ(0)

K(s0Φ̃δn,yn , t0Φ̃δn,yn)dx+ on(1). (2.1.8)

Therefore, in order to complete the proof of the lemma, it is enough to show that, up
to subsequences, (a) lim

n→+∞
δn = δ > 0;

(b) lim
n→+∞

yn = y ∈ ∂RN+ .
(2.1.9)

To prove (2.1.9) (a), let us first show that (δn) is bounded. In fact, if for some subse-
quence, still denoted by (δn), lim

n→+∞
δn = +∞ occurs, then using (2.1.8), for all ρ > 0, we

have

lim
n→+∞

∫
Aρ(0)

K(un, vn)dx = lim
n→+∞

∫
Aρ(0)

K(s0Φ̃δn,yn(x), t0Φ̃δn,yn(x))dx

= lim
n→+∞

∫
A ρ

δn
(0)
K

(
s0Φ̃1,0

(
x− yn

δn

)
, t0Φ̃1,0

(
x− yn

δn

))
dx = 0.

Since β(un, vn) = 0 and

∫
RN
+

K(un, vn)dx = 1, for all ρ > 0, we deduce

γ(un, vn) =

∫
RN
+

|Π(x)|
1 + |Π(x)|

K(un, vn)dx ≥
∫
RN
+ \Aρ(0)

|Π(x)|
1 + |Π(x)|

K(un, vn)dx

≥ ρ

1 + ρ

∫
RN
+ \Aρ(0)

K(un, vn)dx.

Since lim
n→+∞

∫
Aρ(0)

K(un, vn)dx = 0, we have lim
n→+∞

∫
RN
+ \Aρ(0)

K(un, vn)dx = 1. Then,

lim inf
n→+∞

γ(un, vn) ≥
ρ

1 + ρ
, ∀ρ > 0,
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and then

lim inf
n→+∞

γ(un, vn) ≥ 1. (2.1.10)

Since γ(un, vn) = 1/3, we have a contradiction. Thus, (δn) is bounded and we can
assume that

lim
n→+∞

δn = δ with δ ≥ 0.

We claim that δ is positive. In fact, if δ = 0, using again (2.1.8), for all ρ > 0, we have
that

lim
n→+∞

∫
RN
+ \Aρ(yn)

K(un, vn)dx = lim
n→+∞

∫
RN
+ \Aρ(yn)

K(s0Φ̃δn,yn(x), t0Φ̃δn,yn(x))dx

= lim
n→+∞

∫
RN
+ \A ρ

δn
( yn
δn

)
K

(
s0Φ̃1,0

(
x− yn

δn

)
, t0Φ̃1,0

(
x− yn

δn

))
dx = 0. (2.1.11)

Since β(un, vn) = 0,

∫
RN
+

K(un, vn)dx = 1 and from (2.1.11), there is K > 0 verifying

|yn|
1 + |yn|

=

∣∣∣∣∣
∫
RN
+

(
yn

1 + |yn|
− Π

1 + |Π|

)
K(un, vn)dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫
RN
+ \Aρ(yn)

(
yn

1 + |yn|
− Π

1 + |Π|

)
K(un, vn)dx

∣∣∣∣∣
+

∣∣∣∣∣
∫
Aρ(yn)

(
yn

1 + |yn|
− Π

1 + |Π|

)
K(un, vn)

∣∣∣∣∣ ≤ Kρ+ on(1).

Hence,

lim sup
n→+∞

|yn|
1 + |yn|

≤ Kρ, ∀ρ > 0,

from where it follows
lim

n→+∞
|yn| = 0.

On the other hand,

lim
n→+∞

γ(un, vn) = lim
n→+∞

∫
RN
+

∣∣∣∣ Π(x)

1 + |Π(x)|
− β(un, vn)

∣∣∣∣K(un, vn)dx

= lim
n→+∞

∫
RN
+

∣∣∣∣ Π(x)

1 + |Π(x)|
− yn

1 + |yn|

∣∣∣∣K(un, vn)dx = 0,

which is a contradiction.
Now, we are able to prove that (yn) is bounded. For this, suppose by contradiction,

that there is a subsequence, still denoted by (yn), such that

lim
n→+∞

|yn| = +∞.

Then, for all ϵ > 0, there is R > 0 and n0 ∈ N such that

|Π(x)− yn| < R⇒
∣∣∣∣ Π(x)

1 + |Π(x)|
− yn

1 + |yn|

∣∣∣∣ < ϵ, ∀n ≥ n0 (2.1.12)
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and ∫
RN
+ \AR(yn)

K(s0Φ̃δ,yn , t0Φ̃δ,yn)dx =

∫
RN
+ \AR(0)

K(s0Φ̃δ,0, t0Φ̃δ,0)dx < ϵ. (2.1.13)

From (2.1.12) and (2.1.13),∣∣∣∣β(un, vn)− yn
1 + |yn|

∣∣∣∣ ≤
∫
RN
+

∣∣∣∣ Π(x)

1 + |Π(x)|
− yn

1 + |yn|

∣∣∣∣K(un, vn)dx

=

∫
RN
+ \AR(yn)

∣∣∣∣ Π(x)

1 + |Π(x)|
− yn

1 + |yn|

∣∣∣∣K(s0Φ̃δ,yn , t0Φ̃δ,yn)dx

+

∫
AR(yn)

∣∣∣∣ Π(x)

1 + |Π(x)|
− yn

1 + |yn|

∣∣∣∣K(s0Φ̃δ,yn , t0Φ̃δ,yn)dx+ on(1)

≤ ϵ+ 2ϵ+ on(1) = 3ϵ+ on(1),

where we conclude
lim

n→+∞
|β(un, vn)| = 1,

which is an absurd. Therefore, (yn) is bounded.

We will present below some important properties involving the functions β, γ and the
constant ΣK . Hereafter, we assume that a, b verifies (a, b)1 - (a, b)2. Moreover let us denote
by Cab the following real number:

Cab = inf

{∫
RN
+

[|∇u|2 + |∇v|2 + a|u|2 + b|v|2]dx; (u, v) ∈ M, β(u, v) = 0, γ(u, v) =
1

3

}
.

Proposition 2.1.5. Let a, b ∈ LN/2(RN+ ) be a non-negative functions with |a|LN/2(RN
+ ) ̸=

0,|b|LN/2(RN
+ ) ̸= 0. Then, ΣK < Cab.

Proof. By definition of ΣK we have ΣK ≤ Cab. Then, suppose by contradiction that equality
holds in the above relation. Thus, there is a sequence (un, vn) ⊂ D1,2(RN+ ) × D1,2(RN+ )
verifying 

(a)

∫
RN
+

K(un, vn)dx = 1, β(un, vn) = 0, γ(un, vn) =
1

3
;

(b) lim
n→+∞

∫
RN
+

[|∇un|2 + |∇vn|2 + a|un|2 + b|un|2]dx = ΣK .
(2.1.14)

Since a(x), b(x) ≥ 0 for all x ∈ RN+ , from (2.1.14)

ΣK = lim
n→+∞

∫
RN
+

[|∇un|2 + |∇vn|2 + a|un|2 + b|un|2]dx (2.1.15)

≥ lim
n→+∞

∫
RN
+

[|∇un|2 + |∇vn|2]dx ≥ ΣK , (2.1.16)

we obtain

lim
n→+∞

∫
RN
+

[|∇un|2 + |∇vn|2]dx = ΣK .
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From Lemma 2.1.4, we have

un(x) = s0Φ̃δn,yn(x) + wn(x), ∀x ∈ RN+ ,
vn(x) = t0Φ̃δn,yn(x) + ζn(x), ∀x ∈ RN+ ,

where δn ∈ R+ \ {0}, yn ∈ ∂RN+ and wn, ζn are sequences that go strongly to zero in
D1,2(RN+ ).

Also from Lemma 2.1.4, we can assume that

lim
n→+∞

δn = δ > 0, lim
n→+∞

yn = y ∈ ∂RN+

and so by Lebesgue’s Theorem we have

Φ̃δn,yn → Φ̃δ,y in D1,2(RN+ ) and L2∗(RN+ ). (2.1.17)

Thus, from (2.1.14)

ΣK = lim
n→+∞

∫
RN
+

[|∇un|2 + |∇vn|2 + a|un|2 + b|un|2]dx

= lim
n→+∞

∫
RN
+

[|∇s0Φ̃δn,yn |2 + |∇t0Φ̃δn,yn |2 + a|s0Φ̃δn,yn |2 + b|t0Φ̃δn,yn |2]dx

= lim
n→+∞

∫
RN
+

[|∇s0Φ̃δ,y|
2 + |∇t0Φ̃δ,y|

2 + a|s0Φ̃δ,y|
2 + b|t0Φ̃δ,y|

2]dx

= ΣK +

∫
RN
+

[a|s0Φ̃δ,y|
2 + b|t0Φ̃δ,y|

2]dx,

from where it follows that ∫
RN
+

[a|s0Φ̃δ,y|
2 + b|t0Φ̃δ,y|

2]dx = 0,

which is an absurd, because Φ̃δ,y is positive. Thus, the proposition is proved.

2.2 Technical results

From (a, b)1 and (a, b)2 and Proposition 2.1.5 we derive that

Cab > ΣK .

Using the numbers Cab and ΣK , we consider a new number C given by

C =
Cab +ΣK

2

and remark that the following inequality holds:

ΣK < C < Cab. (2.2.1)

We denote by φ, ϕ functions that belong toW 1,2
0 (B1(0)) and has the following properties:

φ, ϕ ∈ C∞
0 (B1(0)), φ(x), ϕ(x) > 0 ∀x ∈ B1(0),

φ, ϕ are symmetric and |x1| < |x2| ⇒ φ(x1) > φ(x2) and ϕ(x1) > ϕ(x2),∫
RN
+∩B1(0)

K(φ, ϕ)dx = 1, |φ|L2∗ (RN
+∩B1(0))

≤ 1, |ϕ|L2∗ (RN
+∩B1(0))

≤ 1

ΣK <

∫
RN
+∩B1(0)

|∇φ|2 + |∇ϕ|2dx ≡ ΣK < min
{
C,SK − |a|LN/2(RN

+ ) − |b|LN/2(RN
+ )

}
.

(2.2.2)
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For every σ > 0 and b ∈ RN , we set

φδ,y(x) =

δ−
N−2

2 φ

(
x− y

δ

)
, x ∈ Bδ(y),

0, x /∈ Bδ(y).
(2.2.3)

ϕδ,y(x) =

δ−
N−2

2 ϕ

(
x− y

δ

)
, x ∈ Bδ(y),

0, x /∈ Bδ(y).
(2.2.4)

We remark that by the definition of φσ,b and ϕσ,b we have∫
RN
+

K(φδ,y, ϕδ,y)dx =

∫
Bδ(y)

K(φδ,y, ϕδ,y)dx =

∫
B1(0)

K(φ, ϕ)dx

and

|∇φδ,y|L2(RN
+ ) = |∇φδ,y|L2(Bδ(y)) = |∇φ|L2(B10),

|∇ϕδ,y|L2(RN
+ ) = |∇ϕδ,y|L2(Bδ(y)) = |∇ϕ|L2(B10).

Lemma 2.2.1. Let a, b ∈ LN/2(RN+ ) be non-negative functions. Then,

(a) lim
δ→0

sup

{∫
RN
+

[aφ2
δ,y + bϕ2δ,y]dx; y ∈ ∂RN+

}
= 0;

(b) lim
δ→+∞

sup

{∫
RN
+

[aφ2
δ,y + bϕ2δ,y]dx; y ∈ ∂RN+

}
= 0;

(c) lim
r→+∞

sup

{∫
RN
+

[aφ2
δ,y + bϕ2δ,y]dx; |y| = r, δ > 0, y ∈ ∂RN+

}
= 0.

(2.2.5)

Proof. Let y ∈ ∂RN+ be chosen arbitrarily. Then, by the Hölder inequality, we get∫
RN
+

aφ2
δ,ydx =

∫
RN
+∩Bδ(y)

aφ2
δ,ydx ≤ |a|LN/2(RN

+∩Bδ(y))
|φδ,y|2L2∗ (RN

+∩Bδ(y))

= |a|LN/2(RN
+∩Bδ(y))

|φ|2
L2∗ (RN

+∩B1(y))
= |a|LN/2(RN

+∩Bδ(y))
, ∀δ > 0,

Similarly ∫
RN
+

bϕ2δ,ydx ≤ |b|LN/2(RN
+∩Bδ(y))

, ∀δ > 0,

Then

sup

{∫
RN

+

[aφ2
δ,y + bϕ2δ,y]dx; y ∈ ∂RN

+

}
≤ sup

{
|a|LN/2(RN

+∩Bδ(y)) + |b|LN/2(RN
+∩Bδ(y)); y ∈ ∂RN

+

}
.

(2.2.6)

We note that

lim
δ→0

|a|LN/2(RN
+∩Bδ(y)) = lim

δ→0
|b|LN/2(RN

+∩Bδ(y)) = 0, ∀y ∈ ∂RN
+ ,

so (a) follows from (2.2.6).
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To prove (b), we fix arbitrarily y ∈ ∂RN
+ and note that by the Hölder inequality, we obtain∫

RN
+

aφ2
δ,ydx =

∫
RN

+∩Bρ(0)

aφ2
δ,ydx+

∫
RN

+ \Bρ(0)

aφ2
δ,ydx

≤ |a|LN/2(RN
+∩Bρ(0))|φδ,y|2L2∗ (Bρ(0))

+ |a|LN/2(RN
+ \Bρ(0))|φδ,y|2L2∗ (RN

+ \Bρ(0))

≤ |a|LN/2(RN
+∩Bρ(0)) sup

y∈∂RN
+

|φδ,y|2L2∗ (Bρ(0))
+ |a|LN/2(RN

+ \Bρ(0)), ∀ρ, δ > 0.

Similarly,∫
RN

+

bϕ2δ,ydx ≤ |b|LN/2(RN
+∩Bρ(0)) sup

y∈∂RN
+

|ϕδ,y|2L2∗ (Bρ(0))
+ |b|LN/2(RN

+ \Bρ(0)), ∀ρ, δ > 0.

Moreover,
lim

δ→+∞
|φδ,y|L2∗ (Bρ(0)) = lim

δ→+∞
|ϕδ,y|L2∗ (Bρ(0)) = 0, ∀y ∈ RN ,

hence

lim
σ→+∞

sup

{∫
RN

+

[aφ2
δ,y + bϕ2δ,ydx; y ∈ ∂RN

+

}
≤ |a|LN/2(RN

+ \Bρ(0)) + |b|LN/2(RN
+ \Bρ(0)).

Passing the limit of ρ→ +∞ in the last inequality, we obtain (b).

To prove (c), we will assume by contradiction that there are sequences (yn) ⊂ ∂RN
+ and (δn) ⊂

R+ such that

lim
n→+∞

∫
RN

+

[aφ2
δn,yn

+ bϕ2δn,yn
]dx = L > 0 and |yn| → +∞. (2.2.7)

From (a) and (b), we can suppose that

lim
n→+∞

δn = δ > 0.

Using the hypotheses that |yn| → +∞ and a, b ∈ LN/2(RN
+ ) together with Lebesgue’s Theorem,

we have
lim

n→+∞
|a|LN/2(RN

+∩Bδn (bn)) = lim
n→+∞

|b|LN/2(RN
+∩Bδn (bn)) = 0.

Then

lim
n→+∞

∫
RN

+

[aφ2
δn,yn

+ bϕ2δn,yn
]dx ≤ lim

n→+∞
[|a|LN/2(RN

+∩Bδn (yn)) + |b|LN/2(RN
+∩Bδn (yn))] = 0,

which contradicts (2.2.7). Therefore (c) occurs.

Lemma 2.2.2. The following relations hold:
(a) lim

δ→0
sup

{
γ(φδ,y, ϕδ,y); y ∈ ∂RN+

}
= 0;

(b) lim
δ→+∞

inf
{
γ(φδ,y, ϕδ,y); y ∈ ∂RN+ , |y| ≤ r

}
= 1, ∀r > 0;

(c) (β(φδ,y, ϕδ,y)|y)RN > 0; ∀y ∈ ∂RN+ \ {0}, ∀δ > 0.

(2.2.8)

Proof. Let y ∈ ∂RN+ be chosen arbitrarily. For any δ > 0, we have

0 ≤ γ(φδ,y, ϕδ,y) =

∫
RN
+

∣∣∣∣ Π(x)

1 + |Π(x)|
− β(φδ,y, ϕδ,y)

∣∣∣∣K(φδ,y, ϕδ,y)dx

≤
∫
RN
+∩Bδ(y)

∣∣∣∣ Π(x)

1 + |Π(x)|
− β(φδ,y, ϕδ,y)

∣∣∣∣K(φδ,y, ϕδ,y)dx

+

∣∣∣∣ y

1 + |y|
− β(φδ,y, ϕδ,y)

∣∣∣∣ . (2.2.9)
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We remark that by (2.2.3) and (2.2.2) we can write∣∣∣∣ y

1 + |y|
− β(φδ,y, ϕδ,y)

∣∣∣∣ =

∣∣∣∣∣
∫
RN

+

(
y

1 + |y|
− Π(x)

1 + |Π(x)|

)
K(φδ,y, ϕδ,y)dx

∣∣∣∣∣
≤

∫
RN

+∩Bδ(y)

∣∣∣∣ y

1 + |y|
− Π(x)

1 + |Π(x)|

∣∣∣∣K(φδ,y, ϕδ,y)dx. (2.2.10)

Combining (2.2.9) with (2.2.10) and taking into account that x ∈ RN
+ ∩Bσ(b), we have

0 ≤ γ(φδ,y, ϕδ,y) ≤
∫
RN

+∩Bδ(y)

∣∣∣∣ Π(x)

1 + |Π(x)|
− β(φδ,y, ϕδ,y)

∣∣∣∣K(φδ,y, ϕδ,y)dx

+

∫
RN

+∩Bδ(y)

∣∣∣∣ y

1 + |y|
− Π(x)

1 + |Π(x)|

∣∣∣∣K(φδ,y, ϕδ,y)dx ≤ 2δ.

Hence
0 ≤ sup

{
γ(φδ,y, ϕδ,y); y ∈ ∂RN

+

}
≤ 2δ,

which letting δ → 0, we obtain (a).
To prove (b), let us first show that for all y ∈ ∂RN

+ ,

lim
δ→+∞

|β(φδ,y, ϕδ,y)| = 0. (2.2.11)

Since β(φδ,0, ϕδ,0) = 0 because of symmetry, we have

|β(φδ,y, ϕδ,y)| = |β(φδ,y, ϕδ,y)− β(φδ,y, ϕδ,0)|

=

∣∣∣∣∣
∫
RN

+

Π(x)

1 + |Π(x)|
(K(φδ,y, ϕδ,y)−K(φδ,0, ϕδ,0)) dx

∣∣∣∣∣
≤

∫
RN

+

|Π(x)|
1 + |Π(x)|

|K(φδ,y, ϕδ,y)−K(φδ,0, ϕδ,0)| dx

≤
∫
RN

+

|K(φδ,y, ϕδ,y)−K(φδ,0, ϕδ,0)| dx

=

∫
RN

+

∣∣∣K(φ1, yδ
, ϕ1, yδ )−K(φ1,0, ϕ1,0)

∣∣∣ dx→ 0, σ → +∞,

showing that (2.2.11) occurs. Now, fix r > 0 arbitrarily and let y ∈ ∂RN
+ such that |y| ≤ r. For any

δ > 0, we have

γ(φδ,y, ϕδ,y) =

∫
RN

+

∣∣∣∣ Π(x)

1 + |Π(x)|
− β(φδ,y, ϕδ,y)

∣∣∣∣K(φδ,y, ϕδ,y)dx

≤
∫
RN

+

|Π(x)|
1 + |Π(x)|

K(φδ,y, ϕδ,y)dx+ |β(φδ,y, ϕδ,y)|

≤ 1 + |β(φδ,y, ϕδ,y)|,

which together with (2.2.11) leads us to

lim sup
δ→+∞

[
inf
{
γ(φδ,y, ϕδ,y); y ∈ ∂RN

+ , |y| ≤ r
}]

≤ 1. (2.2.12)

If
lim sup
δ→+∞

[
inf
{
γ(φδ,y, ϕδ,y); y ∈ ∂RN

+ , |y| ≤ r
}]
< 1,

there are sequences (δn) ⊂ (0,+∞) and (yn) ⊂ ∂RN
+ such that δn → +∞, |yn| ≤ r and

lim
n→+∞

γ(φδn,yn
, ϕδn,yn

) < 1. (2.2.13)
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On the other hand, considering (2.2.11), for all ρ > 0 we deduce that

γ(φδn,yn , ϕδn,yn) =

∫
RN

+

∣∣∣∣ Π(x)

1 + |Π(x)|
− β(φδn,yn , ϕδn,yn)

∣∣∣∣K(φδn,yn , ϕδn,yn)dx

≥
∫
RN

+

|Π(x)|
1 + |Π(x)|

K(φδn,yn , ϕδn,yn)dx− |β(φδn,yn , ϕδn,yn)|

≥
∫
RN

+ \Aρ(0)

|Π(x)|
1 + |Π(x)|

K(φδn,yn , ϕδn,yn)dx− on(1)

≥ ρ

1 + ρ

∫
RN

+ \Aρ(0)

K(φδn,yn
, ϕδn,yn

)dx− on(1)

≥ ρ

1 + ρ

∫
RN

+ \A ρ
δn

(0)

K(φδn,yn , ϕδn,yn)dx− on(1),

hence
lim

n→+∞
γ(φδn,yn , ϕδn,yn) ≥

ρ

1 + ρ
, ∀ρ > 0.

From this, since ρ > 0 is arbitrarily, we have that

lim
n→+∞

γ(φσn,bn) ≥ 1,

which contradicts (2.2.13). Thus, the equality in (2.2.12) holds and the proof of (b) is finished.
Now, we will prove (c). We note that if 0 /∈ Bδ(y), we have (Π(x)|y) > 0 and thus

(β(φδ,y, ϕδ,y)|y) =
∫
RN

+

(Π(x)|y)
1 + |Π(x)|

K(φδ,y, ϕδ,y)dx > 0.

If 0 ∈ Bδ(y), for each x ∈ Bδ(y) ∩ RN
+ such that (Π(x)|y) < 0, the point x, symmetrical to −x

with respect to ∂RN
+ , belongs to Bδ(y) ∩ RN

+ and (Π(x)|y) > 0 which leads to

(β(φδ,y, ϕδ,y)|y) =
∫
RN

+

(Π(x)|y)
1 + |Π(x)|

K(φδ,y, ϕδ,y)dx > 0,

as desired.

Corollary 2.2.3. There is δ1, δ2 whit 0 < δ1 <
1

3
< δ2 such that

(a) γ(φδ1,y, ϕδ1,y) <
1

3
to any y ∈ ∂RN+ ;

(b) γ(φδ2,y, ϕδ2,y) >
1

3
to any y ∈ ∂RN+ .

Proof. By Lemma 2.2.2 (a), we have that

γ(φδ,y, ϕδ,y) → 0 as δ → 0 ∀y ∈ ∂RN+ .

So there is σ̂ > 0 such that

γ(φδ,y, ϕδ,y) <
1

3
∀δ ∈ (0, σ̂) and ∀y ∈ ∂RN+ .

Choosing δ1 < min{σ̂, 1/3} we deduce that

γ(φδ1,y, ϕδ1,y) <
1

3
∀y ∈ ∂RN+ ,
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proving item (a).
Now, we will prove (b). We note that by Lemma 2.2.2 (b), there is σ > 0 such that

γ(φδ,y, ϕδ,y) >
1

3
∀δ ∈ (σ,+∞) and ∀y ∈ ∂RN+ .

Choosing δ2 > max{σ, 1/3} we deduce that

γ(φδ2,y, ϕδ2,y) >
1

3
∀y ∈ ∂RN+

proving item (b).

Now, consider the set

Υ =
{
(y, δ) ∈ ∂RN+ × R+; |y| ≤ r, δ ∈ [δ1, δ2]

}
, (2.2.14)

with δ1, δ2 as chosen before, so we have the following result:

Corollary 2.2.4. Let a, b satisfy (a, b)1 - (a, b)2, (2.0.3) and ϵ > 0 verify

ΣK + ϵ < min{C,SK − |a|LN/2(RN
+ ) − |b|LN/2(RN

+ )}.

Then, there are r, δ1, δ2 > 0 with

sup

{∫
RN
+

[|∇φδ,y|2 + |∇ϕδ,y|2 + a|φδ,y|2 + b|ϕδ,y|2]dx; (y, δ) ∈ ∂Υ

}
< ΣK +

ϵ

2
.

Proof. The existence of δ1 and δ2 is given by the Corollary 2.2.3. Now, note that by the
Lemma 2.2.1 (a) and (2.2.2) it follows that∫

RN
+

[|∇φδ,y|2+ |∇ϕδ,y|2+a|φδ,y|2+b|ϕδ,y|2]dx < ΣK+
ϵ

2
, ∀y ∈ ∂RN+ and δ = δ1. (2.2.15)

Furthermore, by the Lemma 2.2.1, we can chose r > 0 such that if |y| = r and b ∈ ∂RN+
so ∫

RN
+

[|∇φδ,y|2 + |∇ϕδ,y|2 + a|φδ,y|2 + b|ϕδ,y|2]dx < ΣK +
ϵ

2
, ∀δ > 0. (2.2.16)

Lastly, fixing r > 0 as chosen before, by the Lemma 2.2.1 (b) together with Corollary
2.2.3, we can find δ2 such that∫
RN
+

[|∇φδ,y|2+ |∇ϕδ,y|2+a|φδ,y|2+b|ϕδ,y|2]dx < ΣK+
ϵ

2
, ∀y ∈ ∂RN+ , |y| ≤ r and ∀δ = δ2.

(2.2.17)

Combining (2.2.15), (2.2.16) and (2.2.17) the result follows.

Corollary 2.2.5. Assume that a and b satisfy (a, b)1 - (a, b)2, (2.0.3) and let ϵ, δ1, δ2 and
r be the numbers given in Corollary 2.2.3, Corollary 2.2.4 and Υ defined in (2.2.14). Then,

sup

{∫
RN
+

[|∇φδ,y|2 + |∇ϕδ,y|2 + a|φδ,y|2 + b|ϕδ,y|2]dx; (y, δ) ∈ ∂Υ

}
< SK .
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Proof. For all y ∈ ∂RN+ and δ > 0, by Hölder inequality we get∫
RN
+

[a|φδ,y|2 + b|ϕδ,y|2]dx ≤ |a|LN/2(RN
+ )|φδ,y|

2
L2∗ (RN

+ )
+ |b|LN/2(RN

+ )|ϕδ,y|
2
L2∗ (RN

+ )

≤ |a|LN/2(RN
+ ) + |b|LN/2(RN

+ ).

From the last inequality, we obtain∫
RN
+

[|∇φδ,y|2 + |∇ϕδ,y|2 + a|φδ,y|2 + b|ϕδ,y|2]dx

≤
∫
RN
+

[|∇φδ,y|2 + |∇ϕδ,y|2]dx+ |a|LN/2(RN
+ ) + |b|LN/2(RN

+ )

=

∫
RN
+∩B1(0)

[|∇φ|2 + |∇ϕ|2]dx+ |a|LN/2(RN
+ ) + |b|LN/2(RN

+ ),

which combined with (2.2.2) and (2.0.3) give us∫
RN
+

[|∇φδ,y|2 + |∇ϕδ,y|2 + a|φδ,y|2 + b|ϕδ,y|2]dx ≤ ΣK + |a|LN/2(RN
+ ) + |b|LN/2(RN

+ ) < SK ,

for all (y, δ) ∈ ∂Υ. Therefore,

sup

{∫
RN
+

[|∇φδ,y|2 + |∇ϕδ,y|2 + a|φδ,y|2 + b|ϕδ,y|2]dx; (y, δ) ∈ ∂Υ

}
< SK

as we wanted.

Lemma 2.2.6. Let Υ be the set defined in (2.2.14) with δ1, δ2 and r be the numbers given
in Corollary 2.2.3 and Corollary 2.2.4. Then, there is (ŷ, δ̂) ∈ Υ satisfying

β(φŷ,δ̂, ϕŷ,δ̂) = 0 and γ(φŷ,δ̂, ϕŷ,δ̂) =
1

3
.

Proof. To prove the lemma, define the map g : ∂Υ → RN−1 × R by

g(y, δ) = (β(φδ,y, ϕδ,y), γ(φδ,y, ϕδ,y));

it is sufficient to show that its restriction to ∂Υ is homotopically equivalent to the identity
map in RN−1 × R \ {(0, 1/3)}.

Therefore, let us consider the homotopy G : [0, 1]× ∂Υ → RN−1 × R given by

G(t, y, δ) = (1− t)(y, δ) + t(β(φδ,y, ϕδ,y), γ(φδ,y, ϕδ,y)).

We remark G is continuous and that

G(0, y, δ) = (y, δ)

and
G(1, y, δ) = (β(φδ,y, ϕδ,y), γ(φδ,y, ϕδ,y)) = g(y, δ).

So it remains to show that(
0,

1

3

)
/∈ G(t, ∂Υ) ∀t ∈ [0, 1] (2.2.18)
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or equivalently

G(t, y, δ) ̸=
(
0,

1

3

)
∀(y, δ) and ∀t ∈ [0, 1].

In fact, set ∂Υ = Υ1 ∪Υ2 ∪Υ3 with
Υ1 = {(y, δ); |y| ≤ r, δ = δ1} ,
Υ2 = {(y, δ); |y| ≤ r, δ = δ2} ,
Υ3 = {(y, δ); |y| = r, δ ∈ [δ1, δ2]} .

If (y, δ) ∈ Υ1, then δ = δ1 and by the Corollary 2.2.3 (a)

(1− t)δ1 + tγ(φδ1,y, ϕδ1,y) < (1− t)
1

3
+ t

1

3
=

1

3
, ∀t ∈ [0, 1].

Analogously, if (y, δ) ∈ Υ2, then δ = δ2 and again by the Corollary 2.2.3 (b)

(1− t)δ2 + tγ(φδ2,y, ϕδ2,y) > (1− t)
1

3
+ t

1

3
=

1

3
, ∀t ∈ [0, 1].

If (y, δ) ∈ Υ3, then |y| = r and 0 < δ1 ≤ δ ≤ δ2, so using Lemma 2.2.2 (c), we obtain

((1− t)b+ tβ(φδ,y, ϕδ,y)|y) = (1− t)|y|2 + t(β(φδ,y, ϕδ,y)|y) > 0.

Finally, with the help of the previous lemmas we are ready to prove our main result.

2.3 Existence of positive solution of (S2)

Firstly we consider
d = sup {J(φδ,y, ϕδ,y); (y, δ) ∈ Υ} ,

J l = {(u, v) ∈ M; J(u, v) ≤ l}

and fix ϵ > 0 verifying

ΣK + ϵ < min
{
C,SK − |a|LN/2(RN

+ ) − |b|LN/2(RN
+ )

}
.

Combining the definition of Cab with (2.2.1), Corollary 2.2.5 and Lemma 2.2.6, we have

ΣK < C < Cab ≤ J(φδ̂,ŷ, ϕδ̂,ŷ) ≤ d < SK .

We will prove that functional J constrained to M has a critical level in the interval
(C,SK). For this, we fix σ > 0 such that

C < Cab − σ < d+ σ < S (2.3.1)

and we define

H =
{
(u, v) ∈ M; Cab − σ ≤ J(u, v) ≤ d+ σ; J ′|M(u, v) = 0

}
.

To prove the theorem, it remains to show that H ̸= ∅. In order to achieved this goal,
we will suppose by contradiction, that H = ∅. From (2.3.1) and Proposition 2.1.3, the pair
(J,M) satisfies the Palais-Smale condition in interval (Cab−σ, d+σ). Thus, using a variant
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of the Deformation Lemma (see [29]) we can find a continuous map η : [0, 1] × M → M
and a positive number ϵ0 < δ such that

η(0, u, v) = (u, v), ∀(u, v) ∈ M,

η(t, u, v) = (u, v), ∀(u, v) ∈ JCab−ϵ0 ∪ (M\ Jd+ϵ0), ∀t ∈ [0, 1],

(J ◦ η)(t, u, v) ≤ J(u, v), ∀t ∈ [0, 1],

and
η(1, Jd+ϵ0) ⊂ JCab−ϵ0 .

By the definition of d and Deformation Lemma, we have in particular that

∀(y, δ) ∈ Υ ⇒ J(φδ,y, ϕδ,y) < d⇒ J(η(1, φδ,y, ϕδ,y)) < Cab − ϵ0. (2.3.2)

Now, we define for all t ∈ [0, 1] and for all (y, δ) ∈ Υ the map

Γ̃(t, y, δ) =

{
G(2t− 1, y, δ), t ∈ [0, 1/2],

(β ◦ η(2t− 1, φδ,y, ϕδ,y), γ ◦ η(2t− 1, φδ,y, ϕδ,y)), t ∈ [1/2, 1],

where G is the map defined in Lemma 2.2.6. Clearly Γ̃ is continuous and as a consequence
of (2.2.18), we have(

0,
1

3

)
̸= Γ̃(t, y, δ), ∀(y, δ) ∈ ∂Υ and ∀t ∈ [0, 1/2].

Moreover, since

(y, δ) ∈ ∂Υ ⇒ J(φδ,y, ϕδ,y) ≤ ΣK + ϵ < C < Cab − σ < Cab − ϵ0

⇒ η(2t− 1, φδ,y, ϕδ,y) = (φδ,y, ϕδ,y), ∀t ∈ [1/2, 1],

we have

Γ̃(t, y, δ) = (β ◦ η(2t− 1, φσ,b), γ ◦ η(2t− 1, φδ,y, ϕδ,y)) = (β(φδ,y, ϕδ,y), γ(φδ,y, ϕδ,y))

= Γ̃

(
1

2
, y, δ

)
= G(1, y, δ), ∀t ∈ [1/2, 1], ∀(y, δ) ∈ ∂Υ.

Therefore, using again (2.2.18), we have(
0,

1

3

)
̸= Γ̃(t, y, δ), ∀(y, δ) ∈ ∂Υ and ∀t ∈ [1/2, 1].

Hence, there is (y∗, δ∗) ∈ Υ such that

β ◦ η(1, φδ∗,y∗ , ϕδ∗,y∗) = 0, γ ◦ η(1, φδ∗,y∗ , ϕδ∗,y∗) =
1

3
,

and so

J(η(1, φδ∗,y∗ , ϕδ∗,y∗)) ≥ inf

{
J(u, v); (u, v) ∈ M, β(u, v) = 0, γ(u, v) =

1

3

}
= Cab > Cab − ϵ0,

which contradicts (2.3.2) and so H ̸= ∅. Therefore, the functional J constrained on M has
at least one critical point (u, v) ∈ M such that ΣK < C < J(u) < S. Moreover, by Lemma
2.1.2, we deduce u, v > 0, concluding the proof.
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Chapter 3

Multiplicity of positive solutions
for an elliptic system

We are now interested in the search of positive solutions for the problem
−∆u = 2αϵ

αϵ+βϵ
|u|αϵ−2u|v|βϵ in Ω,

−∆v = 2βϵ
αϵ+βϵ

|u|αϵ |v|βϵ−2v in Ω,

u = v = 0 on ∂Ω,

(3.0.1)

where Ω is a smooth and bounded domain in RN , N ≥ 3, αϵ, βϵ > 1, αϵ = α − ϵ/2,
βϵ = β − ϵ/2 and α+ β = 2∗.

The main goal of this chapter is to show that for ϵ small, the topology of the domain
influences the number of positive solutions in the sense of Theorem 3.0.1 below.

Before stating our main results we recall that if Y is a closed set of a topological space
X, we denote the Ljusternik-Schnirelmann category of Y in X by catX(Y ), which is the
least number of closed and contractible sets in X that cover Y . Moreover, catX denotes
catX(X). Then we have the first multiplicity result.

Theorem 3.0.1. There exists ϵ0 > 0 such that for any ϵ ∈ (0, ϵ0), problem (3.0.1) has at
least catΩ positive weak solutions. Moreover if Ω is not contractible in itself then (3.0.1)
has at least catΩ+ 1 positive weak solutions.

The functional Iϵ associated to problem (3.0.1) is defined as

Iϵ(u, v) :=
1

2

∫
Ω
|∇u|2 + |∇v|2dx− 2

αϵ + βϵ

∫
Ω
|u|αϵ |v|βϵdx (3.0.2)

which is well defined on the space H1
0 (Ω)×H1

0 (Ω) endowed with the usual norm

∥(u, v)∥2 =
∫
Ω
|∇u|2 + |∇v|2dx.

A straightforward computation shows that the functional (3.0.2) is of class C1 with

I ′ϵ(u, v)[ϕ, ψ] =

∫
Ω
∇u∇ϕ+∇v∇ψdx− 2αϵ

αϵ + βϵ

∫
Ω
|u|αϵ−2u|v|βϵϕdx

− 2βϵ
αϵ + βϵ

∫
Ω
|u|αϵ |v|βϵ−2vψdx

for u, v, ϕ, ψ ∈ H1
0 (Ω). Thus, the critical points of Iϵ correspond exactly to the weak

solutions of the problem (3.0.1).
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3.1 The Nehari manifolds and compactness results

In this section we study the Nehari manifolds which appear in relation to problem that
involves problem (3.0.1). We have the set, usually called the Nehari manifold associated to
(3.0.1),

Nϵ =
{
(u, v) ∈ H1

0 (Ω)×H1
0 (Ω) \ {(0, 0)} : I ′ϵ(u, v)(u, v) = 0

}
.

In particular all the critical points of Iϵ lie in Nϵ. In the next Lemma we show the basic
properties of Nϵ.

Lemma 3.1.1. For all 0 < ϵ < 1, we have:

(i) Nϵ is a C1 manifold;

(ii) there exists cϵ > 0 such that ∥(u, v)∥ ≥ cϵ for every (u, v) ∈ Nϵ;

(iii) it holds inf
(u,v)∈Nϵ

Iϵ(u, v) > 0;

(iv) for every v ̸= 0, u ̸= 0 there exists a unique tϵ = tϵ[u, v] > 0 such that tϵ(u, v) ∈ Nϵ;

(v) Nϵ is homeomorphic to the unit sphere S = {(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) : ∥(u, v)∥1,2 = 1};

(vi) the following equalities are true

inf
(u,v)∈Nϵ

Iϵ(u, v) = inf
u̸=0,v ̸=0

max
t>0

Iϵ(tu, tv) = inf
(g,h)∈Γϵ

max
t∈[0,1]

Iϵ(g(t), h(t)),

where

Γϵ = { (g, h) ∈ C([0, 1];H1
0 (Ω)×H1

0 (Ω)) : g(0) = h(0) = 0, Iϵ(g(1), h(1)) ≤ 0,

g(1) ̸= 0, h(1) ̸= 0}.

Proof. Let Gϵ(u, v) := I ′ϵ(u, v)(u, v) Since

G′
ϵ(u, v)[u, v] = 2

∫
Ω
|∇u|2 + |∇v|2dx− 2(αϵ + βϵ)

∫
Ω
|u|αϵ |v|βϵdx

and Gϵ(u, v) = 0 if (u, v) ∈ Nϵ, we obtain

G′
ϵ(v)[v] = −(αϵ + βϵ − 2)∥(u, v)∥2 < 0,

which proves (i).

Let (u, v) ∈ Nϵ. Since Gϵ(u, v) = 0, we have

∥(u, v)∥2 = 2

∫
Ω
|u|αϵ |v|βϵdx ≤ 2

(∫
Ω
|u|αϵ+βϵdx

) αϵ
αϵ+βϵ

(∫
Ω
|v|αϵ+βϵdx

) βϵ
αϵ+βϵ

Since ∫
Ω
|u|αϵ+βϵdx ≤

(∫
Ω
|u|2∗dx

)αϵ+βϵ
2∗

|Ω|
ϵ
2∗ = |u|αϵ+βϵ

2∗ |Ω|
ϵ
2∗

Similarly

∫
Ω
|v|αϵ+βϵdx ≤ |v|αϵ+βϵ

2∗ |Ω|
ϵ
2∗ and hence we infer

∥(u, v)∥2 ≤ 2
(
|u|αϵ+βϵ

2∗ |Ω|
ϵ
2∗
) αϵ

αϵ+βϵ
(
|v|αϵ+βϵ

2∗ |Ω|
ϵ
2∗
) βϵ

αϵ+βϵ = 2|Ω|
ϵ
2∗ |u|αϵ

2∗ |v|
βϵ
2∗

≤ 2|Ω|
ϵ
2∗ (|u|2∗ + |v|2∗)αϵ+βϵ ≤ 2|Ω|

ϵ
2∗Cαϵ+βϵ(∥(u, v)∥)αϵ+βϵ
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Then,

∥(u, v)∥ ≥
(

1

2|Ω|
ϵ
2∗Cαϵ+βϵ

) 1
αϵ+βϵ−2

=: cϵ

which shows (ii).

On Nϵ, since Gϵ(u, v) = 0 we have

Iϵ(u, v) =

(
1

2
− 1

αϵ + βϵ

)
∥(u, v)∥2 ≥

(
1

2
− 1

αϵ + βϵ

)
c2ϵ > 0

and concludes the proof of (iii).

Let u, v ̸= 0 and, for t ≥ 0 define the map

g(t) := Iϵ(tv, tu) =
t2

2
∥(u, v)∥ − 2tαϵ+βϵ

αϵ + βϵ

∫
Ω
|u|αϵ |v|βϵdx.

Since αϵ + βϵ > 2, we have g(0) = 0, g(t) > 0 for small t and g(t) =< 0 for suitably
large t. Then there is a tϵ = tϵ(u, v) > 0 such that g′(tϵ) = 0 and g(tϵ) = maxt>0 g(t), i.e.
tϵ(u, v) ∈ Nϵ, proving (iv). It is easy to verify that tϵ is unique.

The proof of (v) and (vi) follows by standard arguments.

Remark 1. Actually in (ii) of Lemma 3.1.1 the constant cϵ can be made independent on

ϵ. Indeed it is easily seen that lim
ϵ→0

cϵ =

(
1

2C2∗

) 1
2∗−2

=: c0 > 0. Then, it is possible to take

a small ϵ0 > 0 such that

cϵ > ξ =
1

2
c0 > 0,

for all ϵ ∈ (0, ϵ0).
In other words, all the Nehari manifolds Nϵ are bounded away from zero, independently

on ϵ, i.e. there exists ξ > 0 such that, for all ϵ ∈ (0, ϵ0)

(u, v) ∈ Nϵ =⇒ ∥(u, v)∥ ≥ ξ.

The Nehari manifold well-behaves with respect to the (PS) sequences. Again, since at
this stage no compactness condition is involved, we can even state the result for ϵ ≥ 0.

Lemma 3.1.2. Let ϵ ≥ 0 be fixed and {(un, vn)} ⊂ Nϵ be a (PS) sequence for Iϵ|Nϵ. Then
{un, vn} is a (PS) sequence for the free functional Iϵ on H

1
0 (Ω)×H1

0 (Ω).

Now for ϵ > 0 it is known that the free functional Iϵ satisfies the (PS) condition
on H1

0 (Ω) × H1
0 (Ω) and also when restricted to Nϵ. In addition to the properties listed

in Corollary 3.1.1, the manifold Nϵ is a natural constraint for Iϵ in the sense that any
(u, v) ∈ Nϵ critical point of Iϵ|Nϵ is also a critical point for the free functional Iϵ. Hence the
(constraint) critical points we find are solutions of our problem since no Lagrange multipliers
appear.

In particular, as a consequence of the (PS) condition we have

∀ ϵ > 0 : mϵ := min
(u,v)∈Nϵ

Iϵ(u, v) = Iϵ(gϵ, hϵ) > 0 ,

i.e. mϵ is achieved on functions, hereafter denoted with (gϵ, hϵ). Since (gϵ, hϵ) minimizes the
energy Iϵ, it will be called a ground state. Observe that gϵ, hϵ ≥ 0 and are indeed positive
by the maximum principle.
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Remark 2. We note that, for all ϵ ∈ (0, ϵ0) , if (wϵ, zϵ) ∈ Nϵ, then

0 < ξ ≤ ∥(wϵ, zϵ)∥2 = 2

∫
Ω
|wϵ|αϵ |zϵ|βϵ ≤ 2|Ω|

ϵ
2∗ |wϵ|αϵ

2∗ |zϵ|
βϵ
2∗ < 2|Ω|

(
|wϵ|αϵ

2∗ + |zϵ|βϵ2∗
)
.

We deduce that the sequences {∥(wϵ, zϵ)∥}, {|(wϵ, zϵ)|2∗} and

{∫
Ω
|gϵ|αϵ |hϵ|βϵdx

}
are

bounded away from zero.
In particular, this is true for the family of ground states {(gϵ, hϵ)}. This last fact will

be used in the next sections and in particular in Proposition 3.1.7.

We address now two limit cases related to our equation involving the Laplacian operator.
They involve the critical problems both in the domain Ω and in the whole space RN .

3.1.1 Behavior of the family of ground state levels {mϵ}

We introduce the critical problem in the domain Ω. This is done in order to evaluate the
limit of the ground state levels {mϵ} when ϵ → 0. The main theorem in this subsection is
Theorem 3.1.9, which requires first some preliminary work.

Let us introduce the C1 functional associated to ϵ = 0,

I0(u, v) :=
1

2

∫
Ω
|∇u|2 + |∇u|2dx− 2

2∗

∫
Ω
|u|α|v|βdx, (u, v) ∈ H1

0 (Ω)×H1
0 (Ω)

whose critical points are the solutions of
−∆u = 2α

2∗ |u|
α−2u|v|β in Ω

−∆v = 2β
2∗ |u|

α|v|β−2v in Ω
u = v = 0 on ∂Ω,

(3.1.1)

It is known that the lack of compactness of the embedding of H1
0 (Ω) in L

2∗(Ω) implies
that I0 does not satisfies the (PS) condition at every level. This is due to the invariance
with respect to the conformal scaling

u(·) 7−→ vR(·) := RN/2
∗
v(R(·)) (R > 1)

which leaves invariant the L2−norm of the gradient as well as the L2∗−norm, i.e. |∇vR|22 =
|∇v|22 and |vR|2

∗
2∗ = |v|2∗2∗ .

Related to the critical problem we have the following:

Lemma 3.1.3. If Ω is a star-shaped domain then there exists only the trivial solution to
(3.1.1).

Proof. Let (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) be a solution to (3.1.1). According to elliptic regularity
theory, we have u, v ∈ C1(Ω). Thus, by using the Pohozaev identity (see e.g. [21]) we obtain

1

2

∫
∂Ω

(|∇u|2 + |∇v|2)σ.νdσ = N
2

2∗

∫
Ω
|u|α|v|βdx− N − 2

2

∫
Ω
|∇u|2 + |∇v|2dx

where ν denotes the unit outward normal to ∂Ω. Since (u, v) is a solution, one also has∫
Ω
|∇u|2 + |∇v|2dx =

∫
Ω
|u|α|v|βdx

Now, combining the last two equalities we reach that

∫
∂Ω

(|∇u|2 + |∇v|2)σ.νdσ ≤ 0 and

we must have u = v = 0 since σ.ν > 0 on ∂Ω.
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Let
N0 =

{
(u, v) ∈W 1,2

0 (Ω)×W 1,2
0 (Ω) \ {(0, 0)} : I ′0(u, v)(u, v) = 0

}
be the Nehari manifold associated to the critical problem (3.1.1). By Lemma 3.1.1 it results

m0 := inf
(u,v)∈N0

I0(u, v) > 0. (3.1.2)

In contrast to the case ϵ > 0, now m0 is not achieved.
The value m0 turns out to be an upper bound for the sequence of ground states levels

{mϵ}, as we will prove below. First we need a lemma.

Lemma 3.1.4. Let (w1, w2) ∈ H1
0 (Ω)×H1

0 (Ω) \ {(0, 0)} be fixed. For every 0 < ϵ < 1, let
tϵ = tϵ[w1, w2] > 0 given in (iv) of Lemma 3.1.1, i.e. such that tϵ(w1, w2) ∈ Nϵ. Then

lim
ϵ→0

tϵ = t0 > 0 and t0(w1, w2) ∈ N0.

Moreover if (w1, w2) ∈ N0, then lim
ϵ→0

tϵ = 1.

Proof. By definition

t2ϵ

∫
Ω
|∇w1|2 + |∇w2|2dx = 2tαϵ+βϵ

ϵ

∫
Ω
|w1|αϵ |w2|βϵdx. (3.1.3)

Then

tϵ =


∫
Ω
|∇w1|2 + |∇w2|2dx

2

∫
Ω
|w1|αϵ |w2|βϵdx


1

αϵ+βϵ−2

.

Then the result follows by

lim
ϵ→0

tϵ =


∫
Ω
|∇w1|2 + |∇w2|2dx

2

∫
Ω
|w1|α|w2|βdx


1

2∗−2

= t0.

If (w1, w2) ∈ N0, then t0 = 1.

Proposition 3.1.5. We have
lim sup
ϵ→0

mϵ ≤ m0.

Proof. Fix δ > 0. By definition of m0 there exists (u, v) ∈ N0 such that

I0(u, v) =
1

2
∥(u, v∥2 − 2

2∗

∫
Ω
|u|α|v|β < m0 + δ.

For every 0 < ϵ < 1, there exists a unique tϵ = tϵ(u, v) > 0 such that tϵ(u, v) ∈ Nϵ and
by Lemma 3.1.4 we know that lim

ϵ→0
tϵ = 1, since (u, v) ∈ N0.

Then

mϵ ≤ Iϵ(tϵu, tϵv) =
t2ϵ
2
∥(u, v)∥2 − 2tαϵ+βϵ

ϵ

αϵ + βϵ

∫
Ω
|u|αϵ |v|βϵdx

and so lim sup
ϵ→0

mϵ ≤ I0(u, v) < m0 + δ concluding the proof.
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In particular we deduce the following:

Corollary 3.1.6. The family of minimizers {(gϵ, hϵ)}ϵ>0 is bounded in H1
0 (Ω)×H1

0 (Ω).

Proof. By a direct calculation we get

mϵ = Iϵ(gϵ, hϵ)−
1

αϵ + βϵ
I ′ϵ(gϵ, hϵ)[gϵ, hϵ] =

(
1

2
− 1

αϵ + βϵ

)
∥(gϵhϵ)∥2.

Since lim
ϵ→0

αϵ + βϵ = 2∗ and by from Proposition 3.1.5, the result follows.

It will be useful the next result:

Remark 3. Corollary 3.1.6 can be generalized to arbitrary functions in the Nehari mani-
folds Nϵ, not necessary the ground states, as long as the functionals converge.

In other words, let ϵn → 0 as n → +∞. If {(wn, zn)} ⊂ H1
0 (Ω) × H1

0 (Ω) is such that
(wn, zn) ∈ Nϵn for every n, and Iϵn(wn, zn) → l ∈ (0,+∞) as n → ∞, then {wn, zn} is
bounded in H1

0 (Ω)×H1
0 (Ω).

Indeed, similarly to the proof of Corollary 3.1.6, this easily follows from

l = Iϵn(wn, zn)−
1

αϵn + βϵn
I ′ϵn(wn, zn)[wn, zn]+on(1) =

(
1

2
− 1

αϵn + βϵn

)
∥(wn, zn)∥2+on(1).

We need now a technical lemma about the “projections” of the minimizers (gϵ, hϵ) on
the Nehari manifold of the critical problem N0. Let us first observe the following remark
which generalizes Lemma 3.1.4.

Remark 4. If {(wϵ, zϵ)} ⊂ H1
0 (Ω)×H1

0 (Ω) is such that

(a) for every 0 < ϵ < 1 : (wϵ, zϵ) ∈ Nϵ,

(b) there exist C1, C2 > 0 such that for every 0 < ϵ < 1 : 0 < C1 ≤
∫
Ω
|wϵ|αϵ |zϵ|βϵdx and

∥(wϵ, zϵ)∥ ≤ C2,

then setting t0,ϵ > 0 such that t0,ϵ(wϵ, zϵ) ∈ N0 (see (iv) of Lemma 3.1.1), it holds

0 < lim
ϵ→0

t0,ϵ < +∞. (3.1.4)

By (a), the sequence (wϵ, zϵ) is bounded in H1
0 (Ω)×H1

0 (Ω) and since I ′0(t0,ϵwϵ, t0,ϵzϵ)[(t0,ϵwϵ, t0,ϵzϵ)] =
0 we have

t2
∗−2

0,ϵ =
∥(wϵ, zϵ)∥2∫

Ω
|wϵ|α|zϵ|βdx

.

proving (3.1.4).

Proposition 3.1.7. Assume that {(wϵ, zϵ)} ⊂ H1
0 (Ω)×H1

0 (Ω) is such that

(a) for every 0 < ϵ < 1 : (wϵ, zϵ) ∈ Nϵ,

(b) there exist C1, C2 > 0 such that

0 < ϵ < 1 : 0 < C1 ≤
∫
Ω
|wϵ|α|zϵ|βdx and ∥(wϵ, zϵ)∥ ≤ C2,
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(c) wϵ ≥ 0 and zϵ ≥ 0 for every 0 < ϵ < 1.

Let t0[wϵ, zϵ] > 0 the unique value such that t0[wϵ, zϵ](wϵ, zϵ) ∈ N0. Then

lim
ϵ→0

t0[wϵ, zϵ] = 1.

In particular
lim
ϵ→0

t0[gϵ, hϵ] = 1.

Proof. We assume that ϵn → 0 as n → +∞, (wn, zn) := (wϵn , zϵn) ∈ Nϵn and t0,n =
t0[wϵn , zϵn ]. By Remark 4 we can assume that

lim
n→+∞

t0,n = t̃0 > 0.

Observe now that, since (wn, zn) ∈ Nϵn , up to subsequences, we have

∥(wn, zn)∥2 = 2

∫
Ω
|wn|αϵn |zn|βndx→ L ≥ 0. (3.1.5)

Since Nehari manifold is uniformly bounded away from zero (see Remark 1), we have
L > 0.

By the definition of t0,n,

t20,n∥(wn, zn)∥2 = 2t2
∗

0,n

∫
Ω
|wn|α|zn|βdx

Then,

t̃2
∗−2

0 = lim
n→+∞

t2
∗−2

0,n = lim
n→+∞

∥(wn, zn)∥2

2

∫
Ω
|wn|α|zn|βdx

= 1

and the conclusion follows

Finally, since

{∫
Ω
|gϵ|αϵ |hϵ|βϵdx

}
is bounded away from zero by Remark 2, and {(gϵ, hϵ)}

is bounded in H1
0 (Ω) ×H1

0 (Ω) by Corollary 3.1.6, we have that {(gϵ, hϵ)} satisfy (b), and
also (a) and (c).

Thanks to the previous result we get the next:

Proposition 3.1.8. We have
m0 ≤ lim inf

ϵ→0
mϵ.

Proof. For ϵn → 0 and (gn, hn) := (gϵn , hϵn) ∈ Nϵn by Corollary 3.1.6 we have (gn, hn) ⇀
(u, v) in W 1,2

0 (Ω)×W 1,2
0 (Ω). With t0,n(gn, hn) ∈ N0, we get

2

∫
Ω
|gn|αϵn |hn|βϵndx = ∥(gn, hn)∥2 , 2t2

∗
0,n

∫
Ω
|gn|α|hn|βdx = t20,n∥(gn, hn)∥2

By Proposition 3.1.7 we have t0,n → 1 and since (gn, hn) is bounded

∫
Ω
|gn|αϵn |hn|βϵndx− t2

∗
0,n

∫
Ω
|gn|α|hn|βdx = 1/2(1− t20,n)∥(gn, hn)∥2 = on(1)
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Also by definition

mϵn =
1

2
∥(gn, hn)∥2 −

2

αϵn + βϵn

∫
Ω
|gn|αϵn |hn|βϵndx.

Then we get

m0 ≤ I0(t0,ngn, t0,nhn) =
t20,n
2

∥(gn, hn)∥2 −
2t0,n

2∗

2∗

∫
Ω
|gn|α|hn|β

= t20,nmϵn +
2t0,n

2

αϵn + βϵn

∫
Ω
|gn|αϵn |hn|βϵndx−

2t2∗0,n
2∗

∫
Ω
|gn|2

∗ |hn|2
∗
dx

= t20,nmϵn + on(1).

and passing to the limit we deduce m0 ≤ lim inf
n→+∞

mϵn .

By Proposition 3.1.5 and Proposition 3.1.8 we deduce the following desired result.

Theorem 3.1.9. For any bounded domain Ω, it holds

lim
ϵ→0

mϵ = m0.

3.1.2 A local Palais-Smale condition for I0

To show the local Palais-Smale condition for I0 it will be useful the next auxiliary result.
The constant Sαβ is defined as follow

Sαβ = inf
u,v∈W 1,2

0 (Ω)\{0}

∥(u, v)∥2(
2

∫
Ω
|u|α|v|βdx

) 2
2∗

Lemma 3.1.10. Let {(un, vn)} be a (PS) sequence for the functional I0 at level d ∈ R.
Then, up to subsequences

1. (un, vn)⇀ (u, v) in H1
0 (Ω)×H1

0 (Ω),

2. I ′0(u, v) = 0, i.e. (u, v) is a solution of (3.1.1),

3. setting, wn := un − u and zn := vn − v , then

I0(un, vn) = I0(u, v) + I0(wn, zn) + on(1) and I ′0(wn, zn) → 0.

In particular {(wn, zn)} is a (PS) sequence for I0 at level d− I0(u, v).

Proof. If d ∈ R, I0(un, vn) → d and I ′0(un, vn) → 0 then

I0(un, vn)−
1

2∗
I ′0(un, vn)[un, vn] ≤ C(1 + ∥(un, vn)∥).

On the other hand, by the above computation

I0(un, vn)−
1

2∗
I ′0(un, vn)[un, vn] =

(
1

2
− 1

2∗

)
∥(un, vn)∥2

and the boundedness of {(un, vn)} follows.

Then we can assume that (un, vn) ⇀ (u, v) in H1
0 (Ω) × H1

0 (Ω) and {un}, {vn} have
strong convergence in Ls(Ω), s ∈ [1, 2∗) and un(x) → u(x), vn(x) → v(x) a.e. in Ω.
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For all ϕ, ψ ∈ C∞
0 (Ω), we have that I ′0(un, vn)[ϕ, ψ] → 0. Then we conclude that

I ′0(u, v)[ϕ, ψ] = 0, for all ϕ ∈ C∞
0 (Ω). By density, we get that I ′0(u, v)(ϕ, ψ) = 0 for all

ϕ, ψ ∈W 1,2
0 (Ω).

The last item is a consequence of Brezis-Lieb splitting Lemma.

Then we have the local (PS) condition for the functional I0.

Proposition 3.1.11. The functional I0 satisfies the (PS) condition at level d ∈ R, for

d <
1

N
S
N/2
αβ .

Proof. Let {(un, vn)} be a (PS)d sequence for I0. We know that (un, vn) ⇀ (u, v) in
H1

0 (Ω)×H1
0 (Ω) , I

′
0(u, v) = 0 and I0(u, v) ≥ 0. By defining wn := un− u and zn := vn− v,

we have (wn, zn) (PS) sequence for I0, then∫
Ω
|∇wn|2 + |∇zn|2dx→ A ≥ 0,

∫
Ω
|wn|α|zn|βdx→ A ≥ 0. (3.1.6)

All that we need to show is that A = 0. By contradiction, suppose A > 0. Note that

Sαβ ≤
∫
Ω |∇wn|2 + |∇zn|2dx(∫

Ω |wn|α|zn|βdx
) 2

2∗
=

A

A
2
2∗

+ on(1)

implies that S
N/2
αβ ≤ A. By using the Brezis-Lieb splitting we have

d+ on(1) = I0(un, vn)−
1

2∗
I ′0(un, vn)[un, vn] =

1

N
∥(un, vn)∥2

=
1

N
∥(wn, zn)∥2 +

1

N
∥(u, v)∥2 ≥ 1

N
A ≥ 1

N
S
N/2
αβ

and this contradiction implies that A = 0, concluding the proof.

3.1.3 A global compactness result

In order to prove our multiplicity results we need to deal with another “limit” functional,
now related to the critical problem in the whole RN .

Let us introduce the space D1,2(RN ) =
{
u ∈ L2∗(RN ) : |∇u| ∈ L2(RN )

}
which can also

be characterized as the closure of C∞
0 (RN ) with respect to the (squared) norm

∥u∥2D1,2(RN ) =

∫
RN

|∇u|2dx.

A function in H1
0 (Ω) can be thought as an element of D1,2(RN ).

Let us define the functional

Î(u, v) =
1

2

∫
RN

|∇u|2 + |∇v|2dx− 2

2∗

∫
RN

|u|α|v|βdx

whose critical points are the weak solutions of
−∆u = 2α

2∗ |u|
α−2u|v|β in RN

−∆v = 2β
2∗ |u|

α|v|β−2v in RN
(u, v) ∈ D1,2(RN )×D1,2(RN ).

(3.1.7)
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Setting as usual

N̂ =
{
(u, v) ∈ D1,2(RN )×D1,2(RN ) \ {(0, 0)} : Î ′(u, v)(u, v) = 0

}
,

all the solutions of (3.1.7) are in N̂ ; it is a differentiable manifold, bounded away from zero,
and

m̂ := inf
(u,v)∈N̂

Î(u, v) > 0.

The proof of these facts is exactly as in (i)-(iii) of Lemma 3.1.1.

As a matter of notation, in the rest of the paper given a function z ∈ D1,2(RN ), ξ ∈ RN
and R > 0, we define the conformal rescaling zR,ξ as

zR,ξ(x) := RN/2
∗
z(R(x− ξ)). (3.1.8)

Of course ∥z∥D1,2(RN ) = ∥zR,ξ∥D1,2(RN ).
We need the following important Lemma.

Lemma 3.1.12. Let {(wn, zn)} be a (PS)c sequence for I0 such that (wn, zn) ⇀ (0, 0) in
H1

0 (Ω) ×H1
0 (Ω). Then there exist sequences {xn} ⊂ Ω, {Rn} ⊂ (0,+∞) with Rn → +∞,

and a nontrivial solution (û, v̂) of (3.1.7) such that, up to subsequences,

(a) ŵn := wn− ûRn,xn + on(1) and ẑn := zn− v̂Rn,xn + on(1) is a (PS) sequence for I0 in
H1

0 (Ω)×H1
0 (Ω),

(b) (ŵn, ẑn)⇀ (0, 0) in H1
0 (Ω)×H1

0 (Ω),

(c) I0(ŵn, ẑn) = I0(wn, zn)− Î(û, v̂) + on(1),

(d) Rnd(xn, ∂Ω) → +∞,

(e) if c < c∗ := 1
N S

N/2
αβ then {(wn, zn)} is relatively compact; in particular (wn, zn) →

(0, 0) in H1
0 (Ω)×H1

0 (Ω) and I0(wn, zn) → β = 0.

Proof. If c ∈ (0, 1
N S

N/2
αβ ), by Proposition 3.1.11(iii), we have (wn, zn) strongly convergent.

Then suppose that c ≥ 1
N S

N/2
αβ . Let the Lévy concentration function be

Qn(λ) := sup
y∈RN

∫
Bλ(y)

|wn|α|zn|βdx

Note that there exists (xn, λn) ∈ RN × (0,∞) such that

Qn(λn) :=

∫
Bλn (xn)

|wn|α|zn|βdx =
1

2
S
N/2
αβ .

Setting

wn(x) = λ
N−2

2
n wn(λn(x+ xn)),

zn(x) = λ
N−2

2
n zn(λn(x+ xn)),

we have

sup
y∈RN

∫
B1(y)

|wn|α|zn|βdx =

∫
B1

|wn|α|zn|βdx =
1

2
S
N/2
αβ .
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Moreover, ∫
Ωn

|wn|α|zn|βdx =

∫
Ω
|wn|α|zn|βdx,∫

Ωn

[|∇wn|2 + |∇zn|2]dx =

∫
Ω
[|∇wn|2 + |∇zn|2]dx.

where Ωn = 1
λn

(Ω−xn). In what follows, Ω∞ is the limit set of Ωn. For each {(Φn,Ψn)} ⊂
H1

0 (Ωn)×H1
0 (Ωn) with bounded norm in D1,2(RN )×D1,2(RN ), we get

on(1) =

∫
RN

[∇wn∇Φn +∇zn∇Ψn]dx

− 2

2∗

∫
RN

|wn|α−2wn|zn|βΦn + |wn|α|zn|β−2znΨn]dx. (3.1.9)

since, setting Φn(x) = λ
2−N

2
n Φn(

1
λn

(x−xn)) and Ψn(x) = λ
2−N

2
n Ψn(

1
λn

(x−xn)), we have
that (3.1.9) is equivalent to

I ′0(wn, zn)(Φn,Ψn) = on(1)

Let (û, v̂) be the weak limit of {wn, zn} ⊂ D1,2(RN ) × D1,2(RN ) . Now, we wil show
that û, v̂ ̸= 0.

Suppose by contradiction û = v̂ = 0. Applying Lemma 6 from [13] there exists (xj) ⊂
RN , (µj), (σj) and (νj) ⊂ (0,∞), where J is at most a countable set, such that

∥wn∥2 + ∥zn∥2 ⇀ µ+ σ ≥
k∑
j=1

(µj + σj)δxj

in the sense of measures and∫
RN

|wn|α|zn|βϕdx ⇀ ν =
k∑
j=1

νjϕ(xj)

for all ϕ ∈ C∞
0 (RN ). Moreover, µj + σj ≥ νjS

2
2∗
αβ . We can conclude that xj ∈ Ω∞ and

J is finite or empty. If we suppose νj > 0 for some j, by well known arguments we get

νj ≥ S
N/2
αβ . By properties of (wn, zn) we get

1

2
S
N/2
αβ = sup

y∈RN

∫
B1(y)

|wn|α|zn|βdx ≥
∫
B1(xj)

|wn|α|zn|βdx ≥
∫
B1(xj)

|wn|α|zn|βϕϵ(x)dx

where ϕϵ ∈ C∞
0 (RN ), ϕϵ = 1 in Bϵ(xj) and ϕϵ = 0 in Bc

3ϵ(xj). Then passing to the limit
n→ ∞ and ϵ→ 0 we get

1

2
S
N/2
αβ ≥ νj

which is a contradiction. Then J is empty and for all ϕ ∈ C∞
0 (RN ) we get∫

RN

|wn|α|zn|βϕdx ⇀ ν = 0

which is an absurd since

0 <
1

2
S
N/2
αβ =

∫
B1

|wn|α|zn|βdx ≤
∫
RN

|wn|α|zn|βdx.

75



Consequently, û, v̂ ̸= 0. Using the fact the û, v̂ ̸= 0 we have that λn −→ 0, because if
there exists δ > 0 such that λn ≥ δ, we have the following inequality∫

RN

[|wn|2 + |zn|2]dx =
1

λ2n

∫
RN

[|wn|2 + |zn|2]dx ≤ 1

δ2

∫
RN

[|wn|2 + |zn|2]dx

Since (wn, zn) −→ (0, 0) in L2(Ω)× L2(Ω) it follows that∫
RN

[|û|2 + |v̂|2]dx = 0,

which is a contradiction. Then λn −→ 0. Since Ω is bounded, we may assume that there
exists x0 ∈ Ω such that xn −→ x0. By weak continuity of (wn, zn) and (3.1.9) the function
(û, v̂) is a solution of the problem

−∆u =
2α

2∗
|u|α−2u|v|β in Ω∞,

−∆v =
2β

2∗
|u|α|v|β−2v in Ω∞,

u, v ≥ 0, u, v ̸= 0 in Ω∞,
u = v = 0 in ∂Ω∞.

Then we have to consider two cases:

(A) 1
λn
dist(xn, ∂Ω) → ∞ as n→ ∞,

(B) 1
λn
dist(xn, ∂Ω) ≤ α for all n ∈ N for some α > 0.

Assume by contradiction that (B) holds and without loss of generality that xn −→ 0 ∈
∂Ω.

Moreover there exists δ > 0, an open neighborhood N of 0 and a diffeomorphism
Ψ : Bδ(0) −→ N which has a jacobian determinant at 0 equal to 1, with Ψ(B+

δ ) = N ∩ Ω
where B+

δ = Bδ(0) ∩ {xN > 0}.
Now let us define the functions (ξn, ζn) ∈ D1,2(RN )×D1,2(RN ) given by

ξn(x) =

{
λ

N−2
2

n wn(Ψ(λnx+ Pn))χ(Ψ(λnx+ Pn)), x ∈ Bδ/λn(−Pn/λn)
0, x ∈ RN \Bδ/λn(−Pn/λn)

ζn(x) =

{
λ

N−2
2

n zn(Ψ(λnx+ Pn))χ(Ψ(λnx+ Pn)), x ∈ Bδ/λn(−Pn/λn)
0, x ∈ RN \Bδ/λn(−Pn/λn)

where Pn = Ψ(xn), χ ∈ C∞
0 (RN ), 0 ≤ χ ≤ 1, χ ≡ 1 in Ψ(B δ

2
) and χ ≡ 0 in Ψ(B 3δ

4
)c. It is

possible to show that for some subsequence

PNn
λn

−→ α0 for some α0 ≥ 0 as n→ ∞

and there exists ξ, ζ ∈ D1,2
0 ({xN > −α0}) such that ξn → ξ and ζn → ζ in D1,2(RN ) wich

satisfies 
−∆ξ =

2

2∗
|ξ|α−2ξ|ζ|β in {xN > −α0},

−∆ζ =
2

2∗
|ξ|α|ζ|β−2ζ in {xN > −α0},
ζ ≥ 0, ξ ≥ 0 in {xN > −α0},
ξ = ζ = 0 on {xN = −α0}.

76



From Proposition 3.1.3, we have ξ = ζ ≡ 0. On the other hand,∫
B1

[wn
2 + zn

2]dx ≤ C

∫
A
[ξ2n + ζ2n]dx

where A ⊂ {xN > α0} is a bounded domain. Since {ξn} is a bounded sequence in
W 1,2(A) by Sobolev embedding ∫

A
[ξ2n + ζ2n]dx −→ 0.

Then, ∫
B1

[wn
2 + zn

2]dx −→ 0.

and so û = v̂ ≡ 0 in B1 which is a contradiction. Thus Case (A) holds, so that Ω∞ = RN
and (û, v̂) is a solution of 3.1.7.

To conclude, we consider Φ ∈ C∞
0 (RN ) verifying 0 ≤ Φ ≤ 1, Φ ≡ 1 in B1 and Φ ≡ 0 in

Bc
2. Let

w̃n(x) = wn(x)− λ
2−N

2
n û(

1

λn
(x− xn))Φ(

1

λn
(x− xn)),

z̃n(x) = zn(x)− λ
2−N

2
n v̂(

1

λn
(x− xn))Φ(

1

λn
(x− xn)).

where we choose λn verifying λ̃n = λn
λn

−→ 0. Considering

ŵn(x) = λ
N−2

2
n w̃n(λnx+ xn) = wn(x)− û(x)Φ(λ̃nx),

ẑn(x) = λ
N−2

2
n z̃n(λnx+ xn) = zn(x)− v̂(x)Φ(λ̃nx)

and by repeating the same arguments explored in [14], we conclude the proof.

Now we can prove the following “splitting lemma”, which is useful to study the behaviour
of the (PS) sequences for the limit functional I0 related to the critical problem in the domain
Ω.

In particular it says that, if the (PS) sequences does not converges strongly to their
weak limit, then this is due to the solutions of the problem in the whole RN .

Lemma 3.1.13 (Splitting). Let {un, vn} ⊂ H1
0 (Ω) × H1

0 (Ω) be a (PS) sequence for the
functional I0. Then either {un, vn} is convergent in H1

0 (Ω)×H1
0 (Ω), or there exist

i. a solution (u0, v0) ∈ H1
0 (Ω)×H1

0 (Ω) ⊂ D1,2(RN )×D1,2(RN ) of problem (3.1.1),

ii. a number k ∈ N, k sequences of points {xjn} ⊂ Ω and k sequences {Rjn} with Rjn →
+∞, where j = 1, . . . , k,

iii. nontrivial solutions {(uj , vj}j=1,...,k ⊂ D1,2(RN )×D1,2(RN ) of problem (3.1.7)

such that, up to subsequences,

un − u0 =
k∑
j=1

uj
Rj

n,x
j
n
+ on(1) in D1,2(RN ) (3.1.10)

vn − v0 =
k∑
j=1

vj
Rj

n,x
j
n
+ on(1) in D1,2(RN ) (3.1.11)

I0(un, vn) = I0(u0, v0) +
k∑
j=1

Î(uj , vj) + on(1). (3.1.12)
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Proof. We already know (see Lemma 3.1.10) that {(un, vn)} is bounded and then we can
assume that (un, vn)⇀ (u0, v0) in H

1
0 (Ω)×H1

0 (Ω),and (u0, v0 is a weak solution of (3.1.1)
and |I0(vn)| ≤ C. Assume that {un} and {vn} does not converges strongly to u0 and v0.

Let (w1
n, z

1
n) := (un, vn) − (u0, v0) ⇀ 0. Then by Lemma 3.1.10, {(w1

n, z
1
n)} is a (PS)

sequence for I0 and

I0(un, vn) = I0(u0, v0) + I0(w
1
n, z

1
n) + on(1). (3.1.13)

By Lemma 3.1.12 applied to {(w1
n, z

1
n)}, we get the existence of sequences {x1n} ⊂

Ω, {R1
n} ⊂ (0,+∞) with R1

n → +∞ and (u1, v1) ∈ D1,2(RN )×D1,2(RN ) solution of (3.1.1),
such that

(1a) defining (w2
n, z

2
n) := (w1

n, z
1
n)− (u1R1

n,x
1
n
, v1R1

n,x
1
n
) + on(1) with on(1) → 0 in D1,2(RN )×

D1,2(RN ), and {(w2
n, z

2
n)} is a (PS) sequence for I0,

(1b) (w2
n, z

2
n)⇀ (0, 0) in H1

0 (Ω)×H1
0 (Ω),

(1c) I0(w
2
n, z

2
n) = I0(w

1
n, z

1
n)− Î(u1, v1) + on(1),

(1d) R1
nd(x

1
n, ∂Ω) → +∞,

(1e) if I0(w
1
n, z

1
n) → β < β∗, then {(w1

n, z
1
n)} is relatively compact; in particular (w1

n, z
1
n) →

(0, 0) in H1
0 (Ω)×H1

0 (Ω) and I0(w
1
n, z

1
n) → 0.

Then by (1c) equation (3.1.13) becomes

I0(un, vn) = I0(u0, v0) + I0(w
2
n, z

2
n) + Î(u1, v1) + on(1). (3.1.14)

Note that, by definitions, w2
n = un−u0−u1R1

n,x
1
n
+on(1) and z

2
n = vn−v0−v1R1

n,x
1
n
+on(1)

Hence, if {(w2
n, z

2
n)} is strongly convergent to zero, the Theorem is proved with k = 1.

Otherwise, in virtue of (1a) and (1b), we can apply Lemma 3.1.12 to the sequence {(w2
n, z

2
n)}:

then we get the existence of sequences {x2n} ⊂ Ω, {R2
n} ⊂ (0,+∞) with R2

n → +∞ and
(u2, v2) ∈ D1,2(RN )×D1,2(RN ) solution of (3.1.1), such that

(2a) (w3
n, z

3
n) := (w2

n, z
2
n)−(u2R2

n,x
2
n
, v2R2

n,x
2
n
)+on(1) with on(1) → 0 in D1,2(RN )×D1,2(RN ),

and {(w3
n, z

3
n)} is a (PS) sequence for I0,

(2b) (w3
n, z

3
n)⇀ (0, 0) in H1

0 (Ω)×H1
0 (Ω),

(2c) I0(w
3
n, z

3
n) = I0(w

2
n, z

2
n)− Î(u2, v2) + on(1),

(2d) R2
nd(x

2
n, ∂Ω) → +∞,

(2e) if I0(w
2
n, z

2
n) → β < β∗, then {(w2

n, z
2
n)} is relatively compact; in particular (w2

n, z
2
n) →

(0, 0) in W 1,2
0 (Ω)×W 1,2

0 (Ω) and I0(w
2
n, z

2
n) → 0.

Then by (3.1.14) and (2c):

I0(un, vn) = I0(u0, v0) + I0(w
3
n, z

3
n) + Î(u1, v1) + Î(u2, v2) + on(1).
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Let w3
n = un− u0 − u1R1

n,x
1
n
+ u2R2

n,x
2
n
+ on(1) and z

3
n = vn− v0 − v1R1

n,x
1
n
+ v2R2

n,x
2
n
+ on(1).

If {(w3
n, z

3
n)} is strongly convergent to (0, 0), the theorem is proved with k = 2, otherwise

we can repeat the arguments.
By arguing in this way, at the j−th stage (j > 1) we have: (wj−1

n , zj−1
n ) ⇀ (0, 0) in

H1
0 (Ω)×H1

0 (Ω) and we get the existence of sequences {xj−1
n } ⊂ Ω, {Rj−1

n } ⊂ (0,+∞) with
Rj−1
n → +∞ and (uj−1, vj−1) ∈ D1,2(RN )×D1,2(RN ) solution of (3.1.1), such that

(ja) wjn := wj−1
n − vj−1

Rj−1
n ,xj−1

n
+ on(1) with on(1) → 0 in D1,p(RN ), and {wjn} is a (PS)

sequence for I0,

(jb) (wjn, z
j
n)⇀ (0, 0) in H1

0 (Ω)×H1
0 (Ω),

(jc) I0(w
j
n, z

j
n) = I0(w

j−1
n , zj−1

n )− Î(uj−1, vj−1) + on(1),

(jd) Rj−1
n d(xj−1

n , ∂Ω) → +∞,

(je) if I0(w
j−1
n , zj−1

n ) → β < β∗, then {(wj−1
n , zj−1

n )} is relatively compact; in particular
(wj−1

n , zj−1
n ) → (0, 0) in H1

0 (Ω)×H1
0 (Ω) and I0(w

j−1
n , zj−1

n ) → 0.

As before it is

wjn = un − u0 −
j−1∑
i=1

uiRi
n,x

i
n
, (3.1.15)

zjn = vn − v0 −
j−1∑
i=1

viRi
n,x

i
n
, (3.1.16)

and by (jc) we have

I0(un, vn) = I0(u0, v0) + I0(w
j
n, z

j
n) +

j−1∑
i=1

Î(ui, vi) + on(1). (3.1.17)

Recalling that I0(u0, v0) ≥ 0 the previous identity gives

C ≥ I0(un, vn) ≥ I0(w
j
n, z

j
n) + (j − 1)m̂+ on(1). (3.1.18)

On the other hand, since {(wjn, zjn)} is a bounded (PS) sequence for I0,

I0(w
j
n, z

j
n) = I0(w

j
n, z

j
n)−

1

2∗
I ′0(w

j
n, z

j
n)[w

j
n, z

j
n] + on(1)

≥
(
1

2
− 1

2∗

)
∥(wjn, zjn)∥+ on(1) ≥ on(1)

Then,
C ≥ I0(w

j
n, z

j
n) + (j − 1)m̂+ on(1) ≥ (j − 1)m̂+ on(1)

so that, since m̂ > 0, we deduce that the process has to finish after a finite number of steps,
let us say at some index k. This means, by (3.1.15), that

wk+1
n = un − u0 −

k∑
i=1

uiRi
n,x

i
n
→ 0,
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zk+1
n = vn − v0 −

k∑
i=1

viRi
n,x

i
n
→ 0,

giving (3.1.10). Moreover as in (3.1.17) it is

I0(un, vn) = I0(u0, v0) + I0(w
k+1
n , zk+1

n ) +
k∑
i=1

Î(ui, vi) + on(1)

and we deduce (3.1.12), concluding the proof.

Now, there exists (U, V ) solution of
−∆u = 2α

2∗ |u|
α−2u|v|β in RN

−∆v = 2β
2∗ |u|

α|v|β−2v in RN
u, v ∈ D1,2(RN )

such that Î(UR,ξ, VR,ξ) = m∗ (recall the definitions in (3.1.2) adapted to the case Ω = RN
and (3.1.8)) and moreover for any other solution (W,Z) which is not of this type, one has
Î(W,Z) ≥ 2m∗.

By this observation, we deduce that if {(un, vn)} is a (PS) sequence for I0 at level m0 and
(un, vn) ⇀ (u0, v0). By Lemma 3.1.13 we have (un, vn) → (u, v) in D1,2(RN ) ×D1,2(RN ),
and in this case we have compactness, or equivalently, the Lemma holds with k = 1. In
this case

m0 = I0(u0, v0) + Î(u1, v1) + on(1)

and since I ′0(u0, v0) = 0, it has to be necessarily (u0, v0) = (0, 0), and denoting u1 = U and
v1 = V , we have

un = URn,xn + on(1)

vn = VRn,xn + on(1)

in D1,2(RN ). This final observation will be used below.

3.2 The barycenter map

We begin by introducing the barycenter map that will allow us to compare the topology
of Ω with the topology of suitable sublevels of Iϵ ; precisely sublevels with energy near the
minimum level mϵ.

For u ∈ W 1,2(RN ) with compact support, let us denote with the same symbol u its
trivial extension out of suppu. In particular a function in H1

0 (Ω) can be thought also as an
element of D1,2(RN ).

The barycenter of (u, v) (see [6]) is defined as

Υ(u, v) =

∫
RN

x(|∇u|2 + |∇v|2)dx∫
RN

(|∇u|2 + |∇v|2)dx
∈ RN .

From now on, we fix r > 0 a radius sufficiently small such that Br ⊂ Ω and the sets

Ω+
r = {x ∈ RN : d(x,Ω) ≤ r}

Ω−
r = {x ∈ Ω : d(x, ∂Ω) ≥ r}
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are homotopically equivalent to Ω. Br stands for the ball of radius r > 0 centred in 0. We
denote by

h : Ω+
r → Ω−

r (3.2.1)

the homotopic equivalence map such that h|Ω−
r
is the identity.

Now we have the following:

Proposition 3.2.1. There exists ϵ0 > 0 such that if ϵ ∈ (0, ϵ0), it follows

(u, v) ∈ Nϵ and Iϵ(u, v) < mϵ + ε =⇒ Υ(u, v) ∈ Ω+
r .

Proof. We argue by contradiction. Assume that there exist sequences εn → 0 and (wn, zn) ∈
Nϵn such that

mϵn ≤ Iϵn(wn, zn) ≤ mϵn + εn and Υ(wn, zn) /∈ Ω+
r . (3.2.2)

Then by Theorem 3.1.9 we deduce

Iϵn(wn, zn) → m0 (3.2.3)

and then by Remark 3, {(wn, zn)} is bounded in H1
0 (Ω) × H1

0 (Ω). We can suppose that
(wn, zn)⇀ (w, z) in H1

0 (Ω)×H1
0 (Ω). Since all the Nehari manifolds Nϵ are bounded away

from zero (see Lemma 3.1.1 and Remark 1) we know that wn ̸→ 0 and zn ̸→ 0 in H1
0 (Ω)

and then, by Remark 2, we deduce

∫
Ω
|wn|α|zn|βdx ̸→ 0. We can assume, without loss of

generality, that wn, zn ≥ 0.
Let t0,n := t0(wn, zn) > 0 such that t0(wn, zn)(wn, zn) ∈ N0. By Proposition 3.1.7 we

have lim
n→+∞

t0,n = 1.

The proof now consists in

• STEP 1: prove that {t0,n(wn, zn)} ⊂ N0 is a minimizing sequence for I0 on N0;

• STEP 2: use the Ekeland Variational Principle and write

t0,n(wn, zn) = (URn,xn , VRn,xn) + (ϕn, ψn)

where URn,xn and VRn,xn are introduced at the end of Section 3.1 and (ϕn, ψn) → (0, 0)
in D1,2(RN )×D1,2(RN );

• STEP 3: compute the barycentre of t0,n(wn, zn) by using the representation obtained
in STEP 2 and contradict (3.2.2), finishing the proof of the proposition.

STEP 1: lim
n→+∞

I0(t0,n(wn, zn)) = m0.

Observe that by the Hölder inequality and since limn→+∞ t0,n = 1 , we have:

I0(t0,n(wn, zn)− Iϵn(wn, zn) =
t20,n − 1

2
∥(wn, zn)∥2 −

2t2
∗

0,n

2∗

∫
Ω
|wn|α|zn|βdx

+
2

αϵn + βϵn

∫
Ω
|wn|αϵn |zn|βϵndx

≤
t20,n − 1

2
∥(wn, zn)∥2 + on(1)

By using that {(wn, zn)} is bounded, we infer

I0(t0,n(wn, zn))− Iϵn(wn, zn) ≤ on(1).
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Then
0 < m0 ≤ I0(t0,n(wn, zn)) ≤ Iϵn(wn, zn) + on(1)

and by (3.2.3) we conclude I0(t0,n(wn, zn)) → m0 for n→ +∞.

STEP 2: Representation of the minimizing sequence {t0,n(wn, zn)}.
Since {t0,n(wn, zn)} is a minimizing sequence for I0, the Ekeland’s Variational Principle

implies that there exist {(un, vn)} ⊂ N0 and {µn} ⊂ R, a sequence of Lagrange multipliers,
such that

∥t0,n(wn, zn)− (un, vn)∥ → 0

I0(un, vn) → m0

I ′0(un, vn)− µnG
′
0(un, vn) → 0

and Lemma 3.1.2 ensures that {(un, vn)} is a (PS) sequence for the free functional I0 on
the whole space W 1,2

0 (Ω) ×W 1,2
0 (Ω) at level m0. By the arguments at the end of Section

3.1 we have
un − URn,xn → 0 and vn − VRn,xn → 0

in D1,2(RN ) where {xn} ⊂ Ω, Rn → +∞. Then we can write

un = URn,xn + ϕn

vn = VRn,xn + ψn

with a remainder (ϕn, ψn) such that ∥(ϕn, ψn)∥D1,2(RN ) → 0 . It is clear that

t0,n(wn, zn) = (un, vn) + t0,n(wn, zn)− (un, vn) = (un, vn) + on(1);

so, renaming the remainder again ϕn and ψn, we have

t0,n(wn, zn) = (URn,xn , VRn,xn) + (ϕn, ψn).

STEP 3: Computing the barycenter and finishing the proof.

By using the representation obtained in STEP 2, the i−th coordinate of the barycenter
of t0,n(wn, zn) satisfies

Υ(t0,n(wn, zn))
i∥t0,n(wn, zn)∥2D1,2(RN ) =

∫
RN

xi(|∇URn,xn |2 + |∇VRn,xn |2)dx

+

∫
RN

xi(|∇ϕn|2 + |∇ψn|2)dx

+ 2

∫
RN

xi(∇URn,xn∇ϕn +∇VRn,xn∇ψn)dx

where xi is the i−th coordinate of x ∈ RN . In order to localize the barycenters we need
to pass to the limit in each term in the above expression; By computation of each using
changes of variables in the integrals, we get

∥t0,n(wn, zn)∥2D1,2(RN ) = ∥(U, V )∥2D1,2(RN ) + on(1),∫
RN

xi|∇URn,xn |2dx = xin

∫
RN

|∇U |2dx+ on(1),∫
RN

xi|∇VRn,xn |2dx = xin

∫
RN

|∇V |2dx+ on(1),∫
RN

xi|∇ϕn|2dx =

∫
RN

xi∇URn,xn∇ϕndx = on(1)∫
RN

xi|∇ψn|2dx =

∫
RN

xi∇VRn,xn∇ψndx = on(1).
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Then we have the i− th coordinate of the barycenter,

Υ(t0,n(wn, zn))
i =

xin

∫
RN

|∇U |2 + |∇V |2dx+ on(1)

∥(U, V )∥2
D1,2(RN )

+ on(1)
= xin + on(1), .

Since {xn} ⊂ Ω the above equation implies that Υ(wn, zn) = Υ(t0,n(wn, zn)) → x0 ∈ Ω,
when n→ +∞ and this is in contrast with (3.2.2) and proves the proposition.

3.3 Proof of Theorem 3.0.1

Here we complete the proof of our theorem but first we need a slight modification to the
previous notations. Let r > 0 be the one fixed at the beginning of Section 3.2, that is in
such a way that Ω+

r = {x ∈ RN : d(x,Ω) ≤ r} and Ω−
r = {x ∈ Ω : d(x, ∂Ω) ≥ r} are

homotopically equivalent to Ω. We add a subscript r, to denote the same quantities defined
in the previous sections when the domain Ω is replaced by Br; namely integrals are taken
on Br and norms are taken for functional spaces defined on Br. Hence for example, for all
ϵ > 0 we set:

Nϵ,r =

{
(u, v) ∈ H1

0 (Br)×H1
0 (Br) : ∥(u, v)∥2W 1,2

0 (Br)×W 1,2
0 (Br)

= 2

∫
Br

|u|αϵ |v|βϵdx
}
,

Iϵ,r(u, v) =
1

2
∥(u, v)∥2H1

0 (Br)×H1
0 (Br)

− 2

αϵ + βϵ

∫
Br

|u|αϵ |v|βϵdx,

mϵ,r = min
v∈Nϵ,r

Iϵ,r(u, v) = Iϵ,r(gϵ,r, hϵ,r).

Observe that, by means of the Palais Symmetric Criticality Principle, the ground state
(gϵ,r, hϵ,r) is radial. Moreover let

I
mϵ,r
ϵ = {(u, v) ∈ Nϵ : Iϵ(u, v) ≤ mϵ,r}

which is non vacuous since mϵ < mϵ,r.
Define also, for ϵ > 0 the map (Ψϵ,r,Φϵ,r) : Ω

−
r → Nϵ such that

(Ψϵ,r(y)(x),Φϵ,r(y)(x)) =

{
(gϵ,r(|x− y|), hϵ,r(|x− y|)) if x ∈ Br(y)

(0, 0) if x ∈ Ω \Br(y)

and note that we have

Υ(Ψϵ,r(y),Φϵ,r(y)) = y and (Ψϵ,r(y),Φϵ,r(y)) ∈ I
mϵ,r
ϵ .

Moreover, since mϵ + kϵ = mϵ,r where kϵ > 0 and tends to zero if ϵ → 0 (see Theorem
3.1.9), in correspondence of ε > 0 provided by Proposition 3.2.1, there exists a ϵ0 > 0 such
that ϵ ∈ (0, ϵ0) such that it results kϵ < ε; so if (u, v) ∈ I

mϵ,r
ϵ we have

Iϵ(u, v) ≤ mϵ,r < mϵ + ε,

at least for ϵ near 0. Hence we can define the following maps:

Ω−
r

(Ψϵ,r,Φϵ,r)−→ I
mϵ,r
ϵ

h◦β−→ Ω−
r

83



with h given by (3.2.1). Since the composite map h ◦ β ◦Ψϵ,r is homotopic to the identity
of Ω−

r by a property of the category we have

cat
I
mϵ,r
ϵ

(I
mϵ,r
ϵ ) ≥ catΩ−

r
(Ω−

r )

and due to our choice of r, it follows catΩ−
r
(Ω−

r ) = catΩ(Ω).

Then, we have found a sublevel of Iϵ on Nϵ with category greater than catΩ(Ω) and
since the (PS) condition is verified on Nϵ , the Lusternik-Schnirelmann theory guarantees
the existence of at least catΩ(Ω) critical points for Iϵ on the manifold Nϵ which give rise to
solutions of (3.0.1).

The existence of another solution is obtained with the same arguments of Benci, Cerami
and Passaseo [7]. We recall here the arguments for the reader convenience. Since by
assumption Ω is not contractible in itself, by the choice of r it results catΩ+

r
(Ω−

r ) > 1,

namely Ω−
r is not contractible in Ω+

r .

Claim: the set (Ψϵ,r(Ω
−
r ),Φϵ,r(Ω

−
r )) is not contractible in I

mϵ,r
ϵ .

Indeed, assume by contradiction that cat
I
mϵ,r
ϵ

(Ψϵ,r(Ω
−
r ),Φϵ,r(Ω

−
r )) = 1: this means that

there exists a map H ∈ C([0, 1]× (Ψϵ,r(Ω
−
r ),Φϵ,r(Ω

−
r )); I

mϵ,r
ϵ ) such that

H(0, u, v) = (u, v) ∀(u, v) ∈ (Ψϵ,r(Ω
−
r ),Φϵ,r(Ω

−
r )) and

∃ (w, z) ∈ I
mϵ,r
ϵ : H(1, u, v) = (w, z) ∀(u, v) ∈ (Ψϵ,r(Ω

−
r ),Φϵ,r(Ω

−
r )).

Then F = (Ψ−1
ϵ,r (Ψϵ,r(Ω

−
r )),Φ

−1
ϵ,r (Φϵ,r(Ω

−
r ))) is closed, contains Ω

−
r and is contractible in

Ω+
r since one can define the map

G(t, x) =

{
Υ(Ψϵ,r(x)),Φϵ,r(x)) if 0 ≤ t ≤ 1/2,

Υ(H(2t− 1,Ψϵ,r(x),Φϵ,r(x)))) if 1/2 ≤ t ≤ 1.

Then also Ω−
r is contractible in Ω+

r and this gives a contradiction.

On the other hand we can choose a function (w0, z0) ∈ Nϵ \ (Ψϵ,r(Ω
−
r ),Φϵ,r(Ω

−
r )) so that

the cone

C =
{
θ(w0, z0) + (1− θ)(u, v) : (u, v) ∈ (Ψϵ,r(Ω

−
r ),Φϵ,r(Ω

−
r )), θ ∈ [0, 1]

}
is compact and contractible in H1

0 (Ω) ×H1
0 (Ω) and (0, 0) /∈ C. For every u, v ̸= 0 let tϵ,u,v

be the unique positive number provided by (iv) in Lemma 3.1.1; it follows that if we set

Ĉ := {tϵ,u,v(u, v) : (u, v) ∈ C}, Mϵ := max
Ĉ

Iϵ

then Ĉ is contractible in IMϵ
ϵ and Mϵ > mϵ,r. As a consequence also (Ψϵ,r(Ω

−
r ),Φϵ,r(Ω

−
r )) is

contractible in IMϵ
ϵ .

In conclusion the set (Ψϵ,r(Ω
−
r ),Φϵ,r(Ω

−
r )) is contractible in IMϵ

ϵ and not in I
mϵ,r
ϵ and

this is possible, since the (PS) condition holds, only if there is another critical point with
critical level between mϵ,r and Mϵ.

It remains to prove that these solutions are positive. Note that we can apply all the
previous machinery replacing the functional Iϵ with

I+ϵ (u, v) =
1

2
∥(u, v)∥2 − 1

αϵ + βϵ

∫
Ω
|u+|αϵ |v+|βϵdx

where w+ := max{w, 0}. Then we obtain again at least catΩ(Ω) (or catΩ̄(Ω)+1) nontrivial
solutions that now are positive by the maximum principle.
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Appendix A

The Ljusternik-Schnirelmann category is a tool used to obtain multiplicity results of crit-
ical points of functionals, then obtaining solutions for variational equations. Let M be a
topological space.

Definition 1: A ⊂ M is contractible if the inclusion A ↪→ M is homotopic to a
constant map defined on A with value in M. In other words, there is H ∈ C([0, 1]×A,M)
such that for all u ∈ A and for some p ∈ M fixed we have

H(0, u) = u

H(1, u) = p.

Definition 2: The Ljusternik-Schnirelmann category of A with respect to M is defined
by

catM(A) =


0, if A = ∅,
inf{m ∈ N : A ⊂ ∪mj−1, Aj , Aj contractible in M}
∞, if there isn’t k ∈ N such that A ⊂ ∪kj−1, Aj contractible in M.

We denote catM = catMM.

Definition 3: Let A,B, Y be closed spaces of E. Then A ≺Y B if Y ⊂ A ∩ B and
there exists h ∈ C([0, 1]×A,E)

1) for all u ∈ A, h(0, u) = u and h(1, u) ∈ B,

2) for all t ∈ [0, 1], h(t, Y ) ⊂ Y .

In the reference that this appendix is based, [31], it is used the relative category as
follows

Definition 4: Let Y ⊂ A be closed subsets in a topological space E. The category of
A in E relative to Y is the least integer n such that exists n+1 closed subsets A0, A1, ..., An
of E satisfying

1) A = ∪nj=1Aj ,

2) A1, ..., An are contractible in E,

3) A0 ≺Y Y in E.

We denote the category of A in E relative to Y by catX,Y (A).
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Observation: Note that

catX(A) = catX,∅(A).

Examples:

1. Let B = BR(y) := {x ∈ RN : |x− y| < R}, then catB(B) = catRN (B);

2. Let S := SR(y) := {x ∈ RN : |x− y| = R}, then catS(S) = catRN (S) = 2

3. Let T ⊂ R3 the torus, then catT2(T2) = catRN (T2) = 4.

Then we have some important properties.

Lemma 3.3.1. Let A,B,C, Y be closed subsets of X such that Y ⊂ A∩B ∩C. If A ≺Y B
and B ≺Y C, then A ≺Y C.

Proof. Since A ≺Y B there exists h ∈ C([0, 1]×A,X) such that for all u ∈ A:

h(0, u) = u and h(1, u) ∈ B

h(t, Y ) ⊂ Y.

Since B ≺Y C there exists g ∈ C([0, 1]×B,X) such that for all u ∈ B:

g(0, u) = u and g(1, u) ∈ C

g(t, Y ) ⊂ Y.

Define the following continuous function f : [0, 1]×A→ X:

f(t, u) =

{
h(2t, u) if t ∈ [0, 1/2],
g(2t− 1, h(1, u)), if t ∈ (1/2, 1].

We get for all u ∈ A

f(0, u) = h(0, u) = u and f(1, u) = g(1, h(1, u)) ∈ C, since h(1, u) ∈ B.

By definition of g and h, f(t, Y ) ⊂ Y , for all t. Then A ≺Y C.

Theorem 3.3.2. Let A,B, Y be closed subsets of X such that Y ⊂ A. The relative category
satisfies the following properties

1) Normalisation: catX,Y (Y ) = 0

2) Subadditivity: catX,Y (A ∪B) ≤ catX,Y (A) + catX(B)

3) Monotonicity: If A ≺Y B, then catX,Y (A) ≤ catX,Y (B)

Proof. 1. Note that we can take A0 = Y , since Y ⊂ A0 ∩ Y and h : [0, 1] × A0 → X
defined as h(t, u) = u is continuous and satisfies

h(0, u) = u for all u ∈ A0,

h(1, u) = u ∈ Y for all u ∈ A0,

h(t, y) = y ∈ A0 = Y for all y ∈ Y .

Then A0 ≺Y Y and we conclude catX,Y (Y ) = 0, by definition.
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2. Let catX,Y (A) = n, then we have Aj ⊂ X closed subsets with A1, ..., An contractible
in X and A0 ≺Y Y such that

A = ∪nj=1Aj .

Also we have catX(B) = m, the there exists B1, ..., Bm closed subsets and contractible
in X such that

B = ∪nj=1Bj .

Then A∪B ⊂ A0 ∪ [A1 ∪ ...∪An ∪B1 ∪ ...∪Bm] and A0 ≺Y Y . By definition, we get

catX,Y (A) ≤ n+m = catX,Y (A) + catX(B).

3. Let catX,Y (B) = n and B0, ..., Bn the subsets of the definition. Define

A0 = {u ∈ A : h(1, u) ∈ Bj}.

Then we get A = ∪nj=1Aj . We need to prove that A0 ≺Y Y and A1, ..., An are
contractible.

Since B0 ≺Y Y , we get Y ⊂ B0. Also, if u ∈ Y , then h(1, u) ∈ Y ⊂ B0. By definition,
u ∈ A0. Finally, we use h0 := h |A0 . Then A0 ≺Y B0. Since B0 ≺Y Y , by Lemma we
get A0 ≺Y Y .

In order to show that Aj is contractible, let gj the deformation associated to Bj which
is contractible and define fj : [0, 1]×Aj → X as

fj(t, u) =

{
hj(2t, u) if t ∈ [0, 1/2],
gj(2t− 1, hj(1, u)), if t ∈ (1/2, 1].

Then we got Aj contractible, j = 1, ..., n, then

catX,Y (A) ≤ n = catX,Y (B).

Now we assume that E is a Banach space, V ⊂ E is a manifold given by V = ψ−1(1)
with ψ ∈ C2(E,R) and ψ′(u) ̸= 0 for all v ∈ V .

Also we define
ψd := {v ∈ V : ψ(v) ≤ d}

and

Kc := {v ∈ V : ψ(v) = c and ∥ψ′(u)∥∗.

For j ≥ 1,

Aj := {A ⊂ ψd : A is closed, catϕd(A) ≥ j}

cj := inf
A∈Aj

sup
u∈A

ψ(u)

Definition 5: The function ψ |V satisfies the (PS)c condition if any sequence (un) ⊂ V
such that ψ(un) → c and ∥ψ′(un)∥∗ → 0 has a convergent subsequence.
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Theorem 3.3.3. If a := supY ψ < c := ck = ck+1 = ... = ck+m ≤ d and if ψ |V satisfies
the (PS)c condition, then catψd(Kc) ≥ m+ 1.

Proof : See [31].

Theorem 3.3.4. If sup
u∈Y

ψ(u) < c1 and if ψ |V satisfies the (PS)c condition for all c ∈ [c1, d],

then ψ−1([c1, d]) contains at least catψd,Y (ψ
d) critical points of ψ |V .

Proof. If catψd,Y (ψ
d) = n and by consequence of the definition of cj , we obtain

sup
u∈Y

ψ(u) < c1 ≤ c2 ≤ ... ≤ cn ≤ d.

We can separate

ψ(u) < c1 = ... = cm1 < cm1+1 = ... = cm2 < ... < cmj−1+1 = ...cmj

where m0 = 0 and mj = n.

Then, applying the last theorem for sup
u∈Y

ψ(u) < cmi−1+1 = ... = cmi ≤ d, we obtain

catψd(Kcmi
) = mi −mi−1.

Since Kcmi
are disjoint sets ,

catψd(∪ji=1Kcmi
) =

j∑
i=1

mi −mi−1 = mj = n

Finally, ∪ji=1Kcmi
has at least n points and since ∪ji=1Kcmi

⊂ ψ−1([c1, d)], we obtain

that ψ−1([c1, d)] contains at least n critical points of ψ |V .

Theorem 3.3.5. If ψ |V is bounded from below and satisfies the (PS)c condition for all
c ∈ [ inf

u∈V
ψ(u), d], then ψ |V has a minimum and ψd has at least catψd(ψd) critical points of

ψ |V

Proof. First, let show that c1 = inf
u∈V

ψ(u). Note that for all A ∈ A1 we have

inf
u∈V

ψ(u) ≤ inf
u∈A

ψ(u) ≤ sup
u∈A

ψ(u)

By taking the infimum for all A ∈ A1, we get inf
u∈V

ψ(u) ≤ c1.

Since inf
u∈V

ψ(u) ≤ c1 ≤ d, we get ψd ̸= ∅. By consequence of the definition, we obtain

inf
u∈V

ψ(u) = inf
u∈ψd

ψ(u).

Note that for all u ∈ ψd, {u} ∈ A1, then

c1 = inf
A∈A1

sup
u∈A

ψ(u) ≤ sup
v∈{u}

ψ(v) = ψ(u)

Taking the infimum in u ∈ ψd, we get

c1 ≤ inf
u∈ψd

ψ(u) = inf
u∈V

ψ(u)
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Consequently, c1 = inf
u∈V

ψ(u).

By hipothesis, c1 = inf
u∈V

ψ(u) > −∞ and ψ−1([c1, d]) = ψd. Finally, apllying the last

theorem with y = ∅, we get that ψd has at least catψd(ψd) critical points of ψ |V . And by
Theorem 3.3.3 we get catψd(Kc1 ≥ 1, then there exists u ∈ V such that psi(u) = c1 and
∥ψ′(u)∥∗ = 0. In other words ψ |V has a minimum point.

89



Bibliography

[1] C. O. Alves, Existence of positive solutions for a problem with lack of compactness
involving the p-Laplacian, Nonlinear Anal. 51 (2002), 1187-1206. 10, 32

[2] C. O. Alves, A. R. de Holanda, and J. A. Fernandes,Existence of positive solution for
a quasi-linear problem with critical growth in RN+ , Glasg. Math. J. 51 (2009), no. 2,
367-383. 1, 2 12, 13
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