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Resumo

Neste trabalho estamos interessados na existéncia, concentracao e multiplicidade de solucoes
para os sistemas

—e2div(a(z)Vu) + u = Qu(u,v) + £ Ky(u,v) em RV,
—e2div(b(z)Vv) + v = Qy(u,v) + £ Ky(u,v) em RY,
u,v € HY(RY), u(z),v(z) >0 para cada z € RV,

—e2div(a(z)Vu) + u = Qu(u,v) + 3 Ky(u,v) emRY,
—2Av+b(z)v = Qu(u,v) + £ Ky(u,v) em RY,
u,v € HY(RN), u(z),v(r) >0 para cada x € RV,

onde 2* = 2N/(N —2), N > 3, ¢ > 0, Q e K sao fungbes homogéneas com K tendo
crescimento critico, a e b sao potenciais continuous positivos tais que existem ag, bg > 0 com

ap < a(z), by < b(x) paratodo z e RN
e existe um dominio limitado A C RY tal que

0<agp ;I€1Aa(l’) <IIE%A(1($) e 0<b muelAb(:B) <xle%Ab({L‘)

Palavras-chave: Sistemas elipticos; equacao de Schrédinger; Teoria de Ljusternick-Schnirelman;
Solugoes positivas.



Abstract

In this work we are interested in the existence, concentration and multiplicity of solutions
for the systems

—e2div(a(z)Vu) + u = Qu(u,v) + £ Ky(u,v) em RV,
—e2div(b(z)Vv) + v = Qy(u,v) + £ Ky(u,v) em RY,
u,v € HY(RY), u(z),v(z) >0 para cada z € RV,

and
—e2div(a(z)Vu) + u = Qu(u,v) + 3 Ku(u,v) emRY,

—2Av+b(z)v = Qu(u,v) + £ Ky(u,v) em RY,
u,v € HY(RN),u(x),v(r) >0 para cada xz € RY,

where 2* =2N/(N —2), N > 3, ¢ > 0, @ and K are homogeneous function with K having
critical growth, a and b are positive continuous potentials such that there exist ag,bg > 0
with

ap < a(z), by < b(zx) forall z € RN

and there exist a bounded domain A ¢ R¥Y such that

= inf inf d bg = inf b inf b(x).
0 <ap ;relAa(:p)<z1€naAa(1:) and 0 < by inf (x)<x1€naA (z)

Key words: Elliptic systems; Schrodinger equation; Ljusternik-Schnirelmann theory; pos-
itive solutions.
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Introduction

Several physical phenomena related to the equilibrium of continuous media are modeled by
the problem

where € is a domain of RY, ¢ is a regular function and @ is a nonnegative weight. For
example, equations like (P;) are introduced in [18] by Dautray and Lions as models for
several physical phenomena related to equilibrium of anisotropic media which possibly are
somewhere perfect insulators or perfect conductors. In order to be able to deal with these
problems we allow the coefficient a to vanish somewhere or to be unbounded.

Caldiroli and Musina [12] used variational methods to prove the existence of solutions
to problem (P;) under suitable assumptions on the data. They assumed that €2 is a given
domain in RY with N > 2, which can be either bounded or unbounded. The coefficient a
is a measurable and non-negative weight on 2, with at most a finite number of (essential)
zeroes. Here g is a given regular function.

In [38], Passaseo considers problem (P;), where g has a powerlike behaviour, and a
is bounded. Here the case infa = 0 is considered so that the equation is degenerate,
and standard variational techniques do not apply; on the contrary, some concentration
phenomena arise, similar to those occurring with critical exponent. The author proves
first a very general identity (similar to the Pohozaev identity), from which he deduces a
nonexistence result in star-shaped domains. Then he gives a condition on a, sufficient to
ensure the existence and multiplicity of nonnegative solutions, and shows that this condition
is optimal. Finally, he studies the effect of the topology of the vanishing set of the function
a on the number of positive solutions of uniformly elliptic problems, which approximate the
one given.

In [39], Pomponio and Secchi considered a problem of the form

(P)

—e2div(a(z)Vu) + V(z)u =u? in RY,
u>0 in RV

where N > 3,1 < ¢ < 2*—1, and V is a positive potential, possibly unbounded from above.

They studied the existence and concentrating behavior of the single-peaked solutions for

problem (P,) by considering a to be a symmetric uniformly elliptic matrix depending on z.
In [15], Chabrowski studied the problem

(Ps) —div(a(z)Vu) + Au = K(z)|u|?%u in RV
with N >3, A > 0,2 < ¢ < 2* and a € C(RY) N L>®(RY) satisfying
0<a(z) < lim a(z),

- T x]—oo
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supposing additionaly that a is positive in the exterior of some ball Br(0). The author
showed an existence result by assuming an integrability condition for ¢ and requiring that
K € L®(RY) verifies either a periodicity condition or K (z) > | llim K(z).

T|—00

In [30], Lazzo considered the problem (P3) with K =1 and the function a satisfying

0 <ap:= inf a(z) < ax :=liminfa(z). (0.0.1)
z€RN |z|—00

It was proved that for \ sufficiently large, the number of solutions of (Ps) is bounded below
by the Ljusternik-Schnirelmann category catys (M), where M = {z € RY : a(z) = inf a}.
R

Another result involving the Ljusternik-Schnirelmann theory were treated by Figueiredo
and Furtado in [22]|. They studied the problem

(Py) —e2div(a(z)Vu) +u = f(u) in RV

with f being a superlinear function and a satisfying (0.0.1). They show the existence of
a ground state solution using minimax theorems and a result on the existence of multiple
solutions.

In [23], the same authors dealt with problem (P4) by considering a weaker condition
than (0.0.1), namely

0<ap= ;reljf\a(:z) < xle%an(I)’ (0.0.2)

where A is a bounded domain in RY and f with subcritical growth. The critical version of
(Py) was studied in [24], another work by the same authors.

Motivated by the aforementioned results, we study in this thesis some classes of elliptical
systems, which we now describe. In Chapter 1, we consider a version for systems of (Py)
with f being a homogeneous function. More precisely, we studied the system

—e2div(a(r)Vu) + u = Qu(u,v) in RY,
(Se) —e2div(b(x)Vv) + v = Qy(u,v) in RY,
u,v € HYRY), wu(z),v(x) > 0 for each z € RV,

where € > 0, N > 3. The continuous potentials a and b satisfy the following conditions:
(aby) there are ag > 0 and by > 0 such that

ap < a(z) and by <b(z) for all e RY;

(ab) there exists a bounded domain A C RY such that

0<ap= ;gjfxa(x) < xignaan(x)

and
0<bgp=1infb inf b(x).
<t = iaf o) < of b0

We suppose that @ € C*(R3,R) where R? := [0,00) x [0,00). In addition, the nonlin-
earity () satisfies the following properties:

(Qo) there exits 2 < p < 2* := 2N/(N — 2) such that

Q(tu, tv) = tPQ(u,v), for each ¢ >0, (u,v) € Ri;

11



(Q1) there exists ¢; > 0 such that

1Qu(u, v)| + |Qu(u,v)| < e (uP™' +0P71), for each (u,v) € RY;

We also introduce the following set:
M = {z eRY :a(z) =ap and b(x) =bg}.

We notice that the lack of compactness originated by the unboundedness of RY is one
of our issues. We have adapted a penalization method used by Alves in [1] while studying
the system

—e2Au+ W(z)u = Qu(u,v) in RY,
(Ce) —e2Av + V(2)v = Qy(u,v) in RY,
u,v € HYRY), wu(z),v(x) > 0 for each z € RV,

where € > 0, N > 3, and W,V are Hélder continuous potentials. The Penalization method
was introduced by Del Pino and Felmer for the scalar case [20]. It consists in modifying
appropriately the function @ outside the set A so that the energy functional of the modified
system satisfies the Palais-Smale condition. After that, it is proved that the solution of
modified system is in fact solution of the original system by obtaining uniform convergence
of the solution on compact sets. However, the arguments used in [1] are different from
that [20]. While in the scalar case each solution concentrates around the global minimum of
V as the parameter, ¢ tends to zero, in the case of the system studied in [1], each solution is
concentrated around the function & — C(§), where C'(§) is minimum value of the functional
restricted to the Nehari manifold associated to system

— Au + W(f)u = Qu(u7v) in RN?
(Ce) —Av +V(&)v = Qy(u,v) in RY,
u,v € H'(RN), wu(x),v(x) > 0 for each z € RV,

Multiplicity results for the system (C) involving Ljusternik-Schnirelmann theory and
the topology of the set of minimum points of the functions W and V' were studied in [3]
by Alves, Figueiredo and Furtado in the subcritical case. The existence of positive radial
solutions concentrating on spheres was studied in [13] by Carrido, Lisboa and Miyagaki.

The present work is strongly influenced by the above articles. Below we list what we
believe that are the main contributions of Chapter 1.

(1) To the best of our knowledge, there are no concentration and multiplicity involving
Ljusternik-Schnirelmann theory and the topology of the set of minimum points of
functions a and b for the sistem (S;). The results in this chapter extend or complement
the results in [12], [15], [22], [23], [24], [30], [38], [39] in the sense that we are working
with elliptic systems.

(2) Since in (S¢) the potentials a and b appear in divergence term, we cannot apply the
same argument used in [1] to show that the solution of the modified system is in fact
solution of the original system. We overcome this difficult using a Moser’s iteration
argument to estimate the L> norm of the solution (see Lemma 1.5.1).

12



(3) The concentration result is also different from the result found in [1]. Moser’s iteration
allowed to show that each solution is concentrates around the global minimum of the
potentials a and b when the parameter £ tends to zero.

The main result of Chapter 1 is:

Theorem 1. Suppose that a and b are continuous potentials satisfying (ab1) — (ab2) and
M # 0. Suppose also that Q satisfies (Qo) — (Qs). Then,

(1) for all e > 0, the system (S¢) has a positive ground state solution.
(73) for any 6 > 0 verifying
Ms := {z € RN : dist(x, M) < 6} C A,

there exists e5 > 0 such that, for any e € (0,¢5), the system (S;) has at least catyr, (M)
positive solutions.

(1) if (ue,ve) 4s a solution for (Se) and if e o and I, are maximum points of u. and ve
respectively, then Il. 4, I, € A, lim a(Il;,) = ap and lim b(IL.) = by, furthermore,
e—07t e—0+

each solution (uz,v.) € C2MNRN), for some X € (0,1).

For the reader’s convenience, the hypotheses in the previous theorem will be stated again
in the corresponding chapter.

Chapter 1 of this thesis was published in the following article,
G. M. Figueiredo and S. M. A. Salirrosas, Concentration, existence of ground state and
multiplicity of solutions for a subcritical elliptic system via penalization method, SN Partial
Differential Equations and Applications, 2, 6 (2021).
https://doi.org/10.1007 /s42985-020-00064-6

We now consider some results for system involving critical growth. In [19], Morais and
Souto show existence of solution for this system

_Apu = Qu(uav) + Ku(u7v) in §,
—Apv = Qy(u,v) + Ky(u,v) in Q.

The version of this system in an unbounded cylinder or a domain between two infinite
cylinders was studied in [14] by Carrido and Miyagaki. Infinitely many solutions were
obtained in a bounded domain in [21] by Demarque and Lisboa in the case of radial functions
and biharmonic operators. A multiplicity result with critical growth and Laplacian operators
involving the topology of the domain was studied in [26] by Furtado and Silva.

Multiplicity and concentration results for fractional Schrédinger system appeared in [7],
[8], 19] and [16].

A critical version of the system (C) was studied in [4] by Alves, Figueiredo and Furtado.
The authors applied Ljusternik-Schnirelmann theory to relate the number of solutions to
the topology of the set where W and V attain their minimum values. This motivates us to
consider in Chapter 2 a critical version of the system (S¢), namely the system

—e2div(a(z)Vu) + u = Qu(u,v) + 5= Ky (u,v) in RY,
(CS;) —e2div(b(z)Vv) + v = Qu(u,v) + 5 Ky(u,v) in RY,
u,v € HY(RN), u(x),v(x) >0 for each z € RV,

13
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where € > 0, N > 3 and 2* = % The conditions on the potentials a and b are the same

as in Chapter 1. Due to the similarities of the conditions that we would be imposing on Q
and K, for any given ¢ > 1 we denote by H? the collection of all functions F' € C? (Ri, R)
satisfying the following properties:

(H{) F is g-homogeneous; that is
F(As,\t) = X?F(s,t), for each A >0 and (s,t) € R%;

(H{) there exists ¢; > 0 such that
|Fs(s,t)| + [Fy(s,1)] < er (s971+¢771) for each (s,t) € RY;
(H2) F(s,t) > 0 for each s,t > 0;
(Ms) VF(1,0) = VF(0,1) = (0,0);
(Ha) Fs(s,t),Fi(s,t) >0 for each (s,t) € RZ.
The hypotheses on the functions @) and K are the following:

(A1) K € H* and Q € HP for some 2 < p < 2%;

*

Ajy) the 1-homogeneous function G : RZ — R given by G(s2",t¥") := K(s,t) is concave;
+

(As3)

Q(s,t) > ZsMP, for all (s,t) € R2,
p1

where A\, > 1, A+ 5 =:p1 € (2,2%) and

p1—2

C(a(), bo)
1 S
v (mln{ao, bg}S’K)

oc>o0" =

N/2

The constants that define o* will appear naturally in Proposition 2.3.1 and the definition
of Si will be given below.

Following the same ideas used in Chapter 1, we obtain an equivalent system to (C'S;).
Consequently, taking into account the term K and applying a penalization method, we
obtain the modified system. Due to the presence of the terms a and b, the energy levels
corresponding to functional associated to the autonomous system (namely ¢p) and modified
system (namely c.) are different. In [4], these values have a common bound, that is, are

below %gg/ 2, but this not happens in our case. We solved this issue by obtaining bounds
for ¢y and c., as € — 0. Furthermore, we cannot argue as in [4] to show that a solution
of the modified system is a solution of the original system. Once again we had to apply
Moser’s iteration techinique, see Lemma 2.5.1. As in the subcritical case, each solution of
the system (C'S:) concentrates around the global minimum of the potentials ¢ and b as
e — 0 and the problem (C'S;) has at least catys, (M) positive solutions.

Since the nonlinearity K has critical growth, we apply the ideas of Brezis and Nirenberg
[11] and also Morais and Souto [19]. In that paper it is proved that the number

Sk :=inf {/ (IVul* +|Vv*) dz : u,v e HY(RM), K", vh)dr = 1}
RN

RN
plays an important role when dealing with a critical system. This constant was used to

obtain the energy levels where the Palais-Smale condition fails.
Below we list what we believe that are the main contributions of our Chapter 2.

14



(1) To the best of our knowledge, there are no concentration and multiplicity involving
Ljusternik-Schnirelmann theory and the topology of the set of minimum points of
functions a and b for the sistem (S:). The results in this paper extend or complement
the results in [12], [15], [22], [23], [24], [30], [38], [39] in the sense that we are working
with elliptic systems.

(2) Here we also use the penalization method introduced in [1] and our result is similar
to the result found in [4]. It is worthwhile to mention that, since in our case the
potentials a and b appear in divergence term, we cannot apply the same argument
found in [1] to show that the solution of the modified system is in fact solution of
the original system. We overcome this difficult using a Moser’s iteration argument to
estimate the L norm of the solution, as can be seen in section 2.5.

(3) The concentration result is also different from that obtained in [1]. Moser’s iteration
allowed to show that each solution concentrates around the global minimum of the
potentials a and b when the parameter € tends to zero.

The main result of Chapter 2 is the following.

Theorem 2. Suppose that a and b are continuous potentials satisfying (aby) — (ab2) and
M # 0. Suppose also that Q and K satisfy (A1) — (As). Then,

(i) there exists eg > 0 such that, for any e € (0,ep) the system (CS:) has a positive ground
state solution.

(ii) for any § > 0 verifying
Ms = {z ¢ R : dist(x, M) < 6} C A,

there exists €5 > 0 such that, for any ¢ € (0,e5), the system (CS:) has at least
catr, (M) positive solutions.

(1) if (ue,ve) is a solution for (CSe) and if . o and Il. , are mazimum points of u. and ve
respectively, then 1. 4,11, € A, lim a(ll; ) = ap and lim b(Il.) = by, furthermore,
e—0t e—0t
each solution (u.,v.) € CPNRN), for some X € (0,1).

The hypotheses of the previous theorem will be stated again throughout the thesis.

The following article is a consequence of Chapter 2.
Giovany M. Figueiredo, Segundo Manuel A. Salirrosas, On multiplicity and concentration
behavior of solutions for a critical system with equations in divergence form, Journal of
Mathematical Analysis and Applications, v. 494, p. 124446, 2021.
https://doi.org/10.1016/j.jmaa.2020.124446

Inspired by systems (S:), (CS:), (C¢), and their critical versions [4], we deal in Chapter
3 with the system

—e2div(a(z)Vu) + u = Qu(u,v) + - Ky(u,v) in RY,
(P:) —2Av+b(z)v = Qu(u,v) + £ Ky(u,v) in RY,
u,v € HYRY), u(z),v(x) > 0 for each z € RV,

where ¢ > 0, N > 3 and 2* = % We consider the subcritical case for v = 0 and the
critical case when v = 1. The hypotheses made for a, b, @) and K are as in Chapter 2.

We now state the main results of Chapter 3,

15
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Theorem 3 (v = 0). Suppose that a and b are continuous potentials and satisfy (aby)—(abs).
Suppose also that Q@ € HP for any 2 < p < 2*. Then,

(7) for all e >0, system (P:) has a ground state positive solution.

(73) for any 6 > 0 there exists 5 > 0 such that, for any € € (0,¢5), the system (P:) has at
least cat g, (M) positive solutions.

(14i) if (ue,ve) is a solution for (S:) and if Il. , and Il., are mazimum points of u. and v,
respectively, then Il. 4, I, € A, lim a(Il;,) = ap and lim b(Il;) = by, furthermore,
e—0t e—0+

each solution (ue,v.) € C2MNRN), for some X € (0,1).

The main novelty of the above theorem is that we give results of concentration and
multiplicity for a new class of system that, to our knowledge there have not been studied.
For achieving those results, we adapted again a penalization method given in [1] such that
the energy functional of the modified system satisfies the Palais-Smale condition. Next, we
proceed as in Chapter 1.

A critical version of Theorem 3 (v = 1) can be obtained with @ and K satisfying
(A1) — (A3). But in this case

P1—2
2

C(ag, bo)
+ (min{ag, 1}§K)

To obtain these results we do as in Chapter 2.
Chapter 3 of this thesis gave rise to an article entitled “On concentration behavior and
multiplicity of solutions for a system in R™”, which is submitted.

o>o0" =

N/2

After the completion of this work we achieved other results:
Continuing with the study of critical systems started in Chapter 2, we study the following

system
—e*div(a(z)Vu) +u = f(2)Qu(u,v) + 3¢ g(z) Ku(u, v) in RY,

—div(b(x) Vo) + 0 = F(@)Qu(u,0) + 2 (@) Ko(u,v) in RY,
u,v € HY(RY), u(z),v(z) > 0 for each x € RV,

where the potentials f and g also are continuous.

The major novelty of the paper relies on the fact that nonconstant coefficients appear
in the nonlinearities, which means that a competition occurs in the concentration among
the different potentials. In this case solutions reveal to concentrate where the x—depending
energy minimizes, i.e. in the set M of points of minima of a and b (in the divergence
operators) and of f and ¢ (in the nonlinearities).

The presence of variable coefficients increases the difficulties and the technicalities of the
procedure, based on careful comparisons with different limiting problems and the analysis
of corresponding Nehari least energy levels. The presence of the critical growth reduces
moreover the applicability of Palais-Smale arguments to some particular sets of levels.

This work gave rise an article:

Giovany M. Figueiredo, Segundo Manuel A. Salirrosas, Multiplicity of Semiclassical States
Solutions for a Weakly Coupled Schrédinger System with Critical Growth in Divergent
Form. Potential Anal (2022).

https://doi.org/10.1007/s11118-021-09966-5

When we tried to solve a system with supercritical growth, our main difficulty was that
the nonlinearity that appeared in our truncated problem was no longer p—homogeneous,
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which made impossible to apply the result obtained in Chapter 1. So we begin by studying
a system where nonlinearity is not p-homogeneous. More specifically we study the following

system
{ —e2div(a(z)Vu) +u = Qy(u,v) + AKy(u,v) in RY,

—e2div(b(z)Vv) + v = Qu(u,v) + AK,(u,v) in RV,

where € > 0, N > 3, A > 0, a,b are continuous potentials. The nonlinearity () satisfies the
following properties:

(Qo) Q € CH(R?,R) such that Q(s,t) > 0if (s,t) # (0,0), Q(0,0) =0, Qs(s,t) =0if s <0
and Q(s,t) =0if t <0,

(Q1) there exist p1,p2 € (2,2%) and ¢ > 0 such that

|Qs(s, ) +1Qu(s, )] < ex(ls| 71+ [¢P27") forall (s,t) € R,

(Q2) there exists 2 < p < p1, p2 such that
0 < uQ(s,t) < sQq(s,t) +tQq(s,t) forall (s,t) € R*\ {(0,0)};

T sQs(Ts, Yt) ;— tQ:(Ys, Tt)

(Q4) there exists o* > 0 such that Q(s,t) > p%sﬁty for all s,t > 0, B,v > 1, p5s € (2,2%)
with 8+ v = ps, for all ¢ > ¢* and o* to be fixed later;

(Q3)

is an increasing functions of s,¢ > 0;

(Q4) there exists o > 0 such that Q(s,t) > I%sﬁt” for all s,t > 0, B,v > 1, p5s € (2,2%)
with 84+ v = ps.

We obtain results of existence and concentration of solutions for the subcritical case
A=0. For A = 2% we get the same results by considering K as in Chapter 2. In the
supercritical case, we consider K (u,v) = |u|? + |v|%2, where q1, g2 > 2*.

This work gave rise to an article entitled “Local Mountain Pass for a class of elliptic

systems without homogeinity on the nonlinearity”, which is submitted.
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Notation

In this work we use the following notation:

ou ou
Uy = <%,...8$N>

2
Au = 2 g;ﬁ; = div(Vu)
%
a.e.
supp f
Bpr

¢; and C; with ¢ =0,1,2,...

X/

gradient of the function wu;

Laplacian of u;

weak convergence;

strong convergence;

almost everywhere;

support of the function f;

open ball of radius R centered at 0;
(possibly different) positive constants;
dual space of the Banach space X;
C'-manifold;

space of all classes of functions which are in L® on every
compact subset of RY;

norm in the normed space X¢;

norm in the space H'(RY) x H*(RV);

norm of the derivative of I restricted to V at the point wu;
Nehari manifold of I;

Nehari manifold of Jg;

Ljusternik-Schnirelmann category of Y in X.



Chapter 1

Concentration, existence of a ground
state and multiplicity of solutions for
a subcritical elliptic system via
penalization method

1.1 Introduction

In this chapter we show concentration, existence and multiple positive solutions for the
following system given by

{ —e2div(a(z)Vu) + u = Qu(u,v) in RV,

a(x)V
—e2div(b(x)Vv) + v = Qy(u,v) in RY,
u,v € HYRY), wu(z),v(x) > 0 for each z € RV,

(5¢)

where € > 0, a and b are positive continuous potentials and @ is a p-homogeneous function
with subcritical growth.
More precisely, the hypotheses on functions a and b are the following:

(aby) there are ag > 0 and by > 0 such that
0<ap<a(zx)

and
0 < by <b(zx) forall xR,

(abs) there exists a bounded domain A C RY such that

= inf inf
0 <agp ;relAa(x) < xlenaAa(x)

() D — Hlf olx lllf 0 xZ).

Setting R2 := [0,00) x [0,00), we can state our hypothesis on @ € C*(R%,R) in the
following way:

(Qo) there exits 2 < p < 2* := 2N/(N — 2) such that

Q(tu,tv) = t*PQ(u,v) for each t >0, (u,v) € R%;
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(Q1) there exists ¢; > 0 such that

|Qu(u,v)| + [Qu(u,v)| < ¢ (up_l + vp_l) for each (u,v) € R%;

(Q2)

(@3) Qu(1,0) =0, Qu(0,1) = 0;
(Q4) Q(u,v) >0 for each u,v > 0;
(@s)

Qu(0,1) =0, Qy(1,0) = 0;

Qu(u,v), Qu(u,v) >0 for each (u,v) € R2.
For each & > 0, a pair (ue,v:) € HY(RY) x HY(RY) is a positive solution of system (S;)
if ue > 0 and v, > 0 a.e. in RY and
g2 / a(x)VuVodr + £ / b(x) V. Vipdr + / uepdx + / vetpdx
RN RN RN RN
= /N [0Qu(ue, ve) + YQy(ue, ve)|dz,
R

for all (¢,7) € HY(RY) x HY(RM).
A solution (u,v) of system (S;) is said to be ground state if

I(u,v) = inf{](w,z) : (w, 2) is a solution of (Sg)},

where I : H'(RV) x H'(RY) — R is the functional associated to (S.).
In this paper we also relate the number of solutions of (S¢) with the topology of the
set of minima of the potentials @ and b. In order to present our result we introduce the

following set:
M= {zecRY :a(z) =ay and b(zx)=by}.

Our main result is as follows:

Theorem 1. Suppose that a and b are continuous potentials satisfying (aby) — (abs) and
M # 0. Suppose also that Q satisfies (Qo) — (Qs). Then,

(1) for all e > 0, the system (Sc) has a positive ground state solution.
(ii) for any § > 0 verifying
My = {z € RN : dist(z, M) < §} C A,

there exists es > 0 such that, for any e € (0,¢5), the system (S;) has at least catpz, (M)
positive solutions.

(i) if (ue,ve) is a solution for (S:) and if Il. , and Il., are mazimum points of u. and v,
respectively, then Il o, 1., € A, lim a(Il; ) = ap and lim b(Il;) = by, furthermore,
’ e—07t ’ e—07+
each solution (ue,v.) € C?MNRN), for some X € (0,1).

We recall that, if Y is a closed set of a topological space X, catx(Y) is the Ljusternik-
Schnirelmann category of Y in X, namely the least number of closed and contractible set
in X which cover Y.

Now we give two examples of the potentials a and b that satisfy the hypotheses (ab;) —

(abg).
(1 ffa <1, (1 iffa <1,
o(z) _{ 2?2 |z >1, @ —{ [t if |z| > 1.
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For this example, we can take A = B2(0) and M = B;(0).
Consider now

1 ifz =0,
a(ac)—b(x)_{ 1 + |z|sin (L) if 2 # 0.

||

For this example, we can take A = B1(0).
Concerning the class of nonlinearities we are dealing, we have the following examples
from [19]. Let ¢ > 1 and
P,(s,t) = Z a;s®ithi,
a;+Bi=q
where i € {1,...,k}, a;,8; > 1 and a; € R. The following functions and their possible
combinations, satisfy our hypothesis on @)

Qi(s,t) = Bp(s, 1), Qals,t) = {/Pils,t) and Qs(s,t) = le(s’t)

with 7 = pl and [; — lo = p, under appropriate choices of the coefficients a;.

The chapter is organized as follows. In Section 1.2 we present the variational framework
and a modified system. In Section 1.3 we prove the existence of a ground sate solution
for the modified system (S;quz). Multiplicity result for the modified system (Se guz) in-
volving Ljusternik-Scrinirelmann theory is section 1.4. In Section 1.5 we prove that each
solution of the modified system (.S; que) is a solution of the original system. We also prove
a concentration result.

1.2 Variational framework and a modified system

Since we are interested in positive solutions we extend the function @ to the whole R? by
setting Q(u,v) = 0 if u < 0 or v < 0. We also note that, since @ is p-homogeneous, for each
(s,t) € R? we have
pQ(s,t) = sQs(s, 1) + tQ:(s, 1) (1.2.1)
and
p(p — 1)Q(s,1) = s°Qus(s, ) + t2Qus(s,1) + 25t Qs (5, 1). (1.2.2)

Hereafter, we will work with the following system equivalent to (S¢).
—div(a(ex)Vu) +u = Qu(u,v) in RY,
(S.) —div(b(e2) V) + v = Qy(u,v) in RV,
u,v € HY(RYN), wu(x),v(x) >0 for each z € RV.
In order to overcome the lack of compactness originated by the unboundedness of RY we
use a penalization method. Such kind of idea has first appeared in the paper of Del Pino
and Felmer [20]. Here we use an adaptation of this method for systems, as introduced in [1].

We start by choosing a > 0 and considering 1 : R — R a non-increasing function of class
C? such that

n=1on (—oo,a], n=0on [ba,+x), |7'(s)] < g and |n"(s)] < % (1.2.3)

for each s € R and for some positive constant C' > 0. Using the function 7, we define
Q:R? = R by

~

Q(s. 1) = n(|(s, )N Q(s,t) + (L = n(|(s, 1)) A(s* + 12),
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where

A= max{ Q(j_’ ) :(s,t) €R?, a < |(s,1)] < 5a}.

Notice that, since A > 0 tends to zero as a — 0, we may suppose that A < 1.
Now we give an example of a function 7. Let 8 : R — R be a function of C'*° class given
by

B exp(l:iQ) if [s] < 1,
6(8)_{ 0 if |s] > 1.

Then .
/ B(t)dt = 1.
—1

1
s) = [ sy

Consider

and 7(s) = h(s — 3a). Note that

W)= 5P (3 ;Of’o‘> and  7(s) = —————f (3 - 30‘) |

200 2 20

If s<aors>5a,n(s)=0=n"(s). For a < s < 5a we have

1 s — 3« 11 1
/
= — < — = ——= —
‘77 (S)’ 2a6< 200 ) ~ 2« max (s) 2cc e « !
and 1 3 1 1
1" ) [ S — o
()l 4a? 2 ( 2a >‘ ~ 402 oz2CQ

Finally, denoting by I, the characteristic function of the set A, we define H : RN x R? —
R by setting

~

H(z,s,t) = IzA(z)Q(s,t) + (1 — In(x))Q(s, t). (1.2.4)

For future reference we note that arguing as in [1, Lemma 2.2|, for any o > 0 small and
(s,t) € R? we have the following result:

Lemma 1.2.1. The function H satisfies the following estimates:
(H1) pH(x,s,t) = sHs(x,s,t) + tHy(x, s,t), for each x € A;

(Hy) 2H(x,s,t) < sHy(z,s,t) + tHy(x,5,t), for each x € RN\ A;

1
(Hs) for a small we have sHg(x,s,t) + tHy(x, s,t) < 1(32 + t2> for each x € RN\ A;

(Hy) for a small we have

|H8(x7 Svt)’ |Ht($v S, t)|
a )

1
< = for each x € RN\ A,
o 4

From now on we assume that « is chosen in such way that the last inequality above
holds. In view of definition (1.2.4), we deal in the sequel with the modified system

—div(a(ex)Vu) +u = Hy(ex,u,v) in RY,
(Se.auz) —div(b(ez)Vv) + v = Hy(ex,u,v) in RY,
u,v € HY(RY)
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and we will look for solutions (u,v.) verifying
|(ue(ex),ve(ex))| < @ for each 2 € RN \ A,

where A. := {z € RN : ex € A}.
For each € > 0 we denote by X, the Hilbert space

X, = {(u,v) € H'(RY) x HY(RY) : /

]RN

(a(ex)|Vul? + b(ex)|Vo|?)dz < oo}
endowed with the norm
[, 0) |2 = / (a(ex)|Vul® + b(ex) | Vo|* + uf® + |v]*)dz.
]RN

Conditions (H3) and (Q1) imply that the critical points of the C!-functional J. : X, — R
given by

1
Je(u,v) == 3 /RN (a(ex)|Vul® + b(ex)|Vo|* + [uf? + [v]?) dz — /RN H(ex,u,v)dx

are weak solutions of (S;quz). We recall that these critical points belong to the Nehari
manifold of J., namely

Ne = {(u,v) € X\ {(0,0)} : J.(u,v)(u,v) = 0}.

Arguing as [40, Lemma 4.1], for any nontrivial element (u,v) € X the function
t — Jo(tu,tv), for t > 0, achieves its maximum value at a unique point ¢,, > 0 such
that ¢, ,(u,v) € Nz. We define the number b, by setting

be := (u,ir)lefj\/a Je(u,v). (1.2.5)

The main result in this section is:

Theorem 1.2.2. Suppose that a and b are continuous potentials and satisfy (aby) — (abz)
and M # (. Suppose also that Q satisfies (Qo) — (Q5). Then,

(i) for all e >0, the system (Se qus) has a positive ground state solution.
(ii) for any § > 0 verifying
Ms := {z € RN : dist(x, M) < 6} C A,
there exists €5 > 0 such that, for any € € (0,e5), the system (Scquz) has at least

catr, (M) positive solutions.

1.3 Existence of a ground state solution for the modified sys-
tem (S: quz)

We start defining the Palais-Smale compactness condition. A sequence ((un,vy)) C X¢ is a
Palais-Smale sequence at level ¢, for the functional J; if

Je(Up, V) = Ce

and
JL(Un,vn) — 0 in (X.),
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where

e = 1 f Je t)) >0
ce = Inf max (n(t))

and
I':={n € C([0,1], X¢) : n(0) = (0,0), J=(n(1)) <0}

If every Palais-Smale sequence of J; has a strong convergent subsequence, then one says
that J. satisfies the Palais-Smale condition ((PS) for short).

In order to show existence of a ground state solution for the modified system (Sc quz),
we use the Mountain Pass Theorem |[6].

Lemma 1.3.1. The functional J. satisfies the following conditions

(i) there is C,p > 0, such that

Je(u,0) = C, df [[(w,0)]le = p.
(it) for any (¢,v) € C§°(As) x C§°(Ae) with ¢, > 0, we have

Proof. Using (Q1), (1.2.1), (H1), (H2) and (Hgz), we have

1 201
Je(u,0) 2 S l(u,0)[2 = —
2 8 RN\A

£

1
(ul? + oP)do— 5 [ (ul? o+ Jo)da.
\Ae
By Sobolev embeddings, there exists C' > 0 such that
3 c
Je(u,v0) = 2l|(w, 0)|I2 = EH(U’ v)l2

and the proof of item () is finished. Now, by definition of H and (Qp), we get

t2
Lto,t0) = S0 - [ Qov)ds
Ae

and the proof of item (i) is also finished. O

Hence, there exists a Palais-Smale sequence ((un,v,)) C X at level c.. Using (Qo), it is
possible to prove that

c.=b. = inf sup Je:(tu, tv), 1.3.1
E T T W)eX{00)} b e(tu, t0) (1.3.1)

where b, was defined in (1.2.5).
In order to prove the Palais-Smale condition, we need to prove the next lemma.

Lemma 1.3.2. Let ((un,vr)) be a (PS)q sequence for J.. Then for each & > 0, there exists
R = R(&) > 0 such that

n—oo

limsup/ [a(sx)]Vun]2 +b(ex)| Vo |? + [un|? + |va)? |dz < €.
RN\BR(0)
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Proof. Let ng € C®(RY) such that nr(z) = 0 if # € Bp/»(0) and nr(z) = 1 if = & Br(0),
with 0 < nr(z) < 1 and |Vng| < %, where C' is a constant independent of R. Since that

the sequence ((nrun, NrVR)) is bounded in X, fixing R > 0 such that A. C Bp/»(0) and by
definition of the functional J., we obtain

/ [a(ex)|Vun|2—i—b(s:r)|an|2—|—|un|2—|—|vn|2 do
RN\Bg(0)
< Jé(un,vn)(unnR,vnnR)Jr/ [un Hy (€, Un, vn) + vn Hy (€2, Up, vn)] Rd
RN
- / [a(ex)unVu, + b(ex)v, Vo, Vngde.
RN

Using (H3), we get the estimate

3
4/ |a(e2)Vun|? + b(e) | Von 2 + [un[2 + [0, ] da
RN\Br

< / [aen) unllTunl + bew) onl Vol [Vnrldz + 0n(1).
R

Since ((un,vy)) is bounded in X, and |Vng| < % and passing to the limit in the last

estimate, it follows that

n—o0

lirnsup/ {a(ax)wunﬁ + b(ew)| Vonl? + [un]? + |vn\2] dr < €.
RN\Br

for some R sufficiently large and for some fixed £ > 0. O
Lemma 1.3.3. The functional J. satisfies the Palais-Smale condition at any level c.

Proof. Let ((un,vyn)) C Xc such that J.(up,v,) — ¢ and J.(up,vn) = 0p(1). Then, from
(Hy), we get

1 1

4 00(1) 01t 0)) = 2t 00) = 2Tt o)) = (= )l )2

1
— / [H(Ex,unavn) - 7[unHu(5m’unavn) +UHHU(5$7U"’U”)]:|dx‘
RN\ A, p
From (Hs), we have

L VTN S e
<2 p>‘|< ns o) 2 < e+ 0n(1) + o([| (1, v0) |-)

1 1
< — ) |:unHu(€l'aumUn) +UnHv(€$aum’Un):| du.
2 pJJrM\A.

Using (Hs) we obtain

2 (5 5 ) N0l < e 0n0) + om0
which implies that ((uy, vy)) is bounded in X.. Then, up to a subsequence, we may suppose
that,
(Up,vp) = (u,v) weakly in X,
Un = u, v, — v strongly in L{ (RY), for any 2<s< 2%, (1.3.2)
un () = u(z),vp(x) = v(z) for ae. xRV,
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Now using a density argument, we can conclude that (u,v) is a critical point of J..
From Lemma 1.3.2, for any £ > given, there exists R > 0 such that

limsup/ [a(sx)|Vun|2 + b(ex)|[Von|? + |un|® + |[va|? |dz < €.
RM\Bpr

n—o0

This inequality, (Hs) and the Sobolev embeddings imply that, for n large enough, there
holds

1
/ [unHy(e2, Un, vp) + v Hy (e, Uup, vy)]de < =£C1, (1.3.3)
RN\Bg 4

where C1 is positive constant. On the other hand, taking R large enough, we can suppose
that

<&, (1.3.4)

/RN\BR [wH, (ex,u,v) + vH,(ex,u,v)|dz
Then, by (1.3.3) and (1.3.4), we can conclude
/RN\BR [ Hy (e, Up, Un) + U Hy (€T, Uy, vp)|dew
= /RN\BR [uHy(ex,u,v) + vHy(ex,u,v)|dx + 0p(1).
Then,
/RN [t Hy (€2, Uy, V) + Vn Hy (£, Up, vy )]diz
= /]RN [(wHy(ex, u,v) + vHy(ex, u,v)]dz + 0,(1).

The last equality implies

I Cm, va) 2 = [l (w, 0) 12 + 0n (D).

1.3.1 Proof of the item (i) of Theorem 1.2.2

Proof. The proof is a consequence of Lemma 1.3.1, Lemma 1.3.3, Mountain Pass Theorem [6]
and of the characterization of minimax level ¢, given in (1.3.1). O
1.4 Multiple solutions for the modified system (S: q..)

In order to prove the item (i) of Theorem 1.2.2, we consider the following autonomous

System:

—apAu +u = Qu(u,v) in RY,
(So) —boAv + v = Qy(u,v) in RY,
u,v € HYRY), wu(z),v(x) > 0 for each z € RV,

In view of conditions (aby) and (Q1), the above system has a variational structure and the
associated functional given by

1
To(u,v) i= /R (a0l Vul? + bo Vo + Juf? + o) da - /R Q(u,v)dr,
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well defined for (u,v) € Eg := H'(RY) x HY(RY). We denote the norm in Ey by

H(u,v)H2:a0/ |Vuy2dx+b0/ ]Vv]zdx—i—/ \uy2dx+/ (|2
RN RN RN RN

Arguing as in Lemma 1.3.1, we can show that I has the mountain pass geometry and
therefore we can set the the minimax level ¢g in the following way

:= inf I t
co := Inf max o(v(1)),

where I' := {y € C([0,1], Ep) : v(0) = (0,0), Ip(y(1)) < 0}. Moreover, ¢y can be further

characterized as

co= inf Iy(u,v), 1.4.1
0=, nf o(u,v) (1.4.1)

with Mg being the Nehari manifold of Iy, that is
Mo = {(u,v) € Ep \ {(0,0)} : Io(u, v)(u,v) = 0}.
The next result allows to show that system (Sp) has a solution that reaches co.

Lemma 1.4.1. Let ((upn,vy,)) C Mo be a sequence such that Io(up,vy) — co. Then there
are a sequence (yp) C RN and constants R,n > 0 such that

n—oo

lim inf/ (|un|2 + |vn|2)dx > . (1.4.2)
Br(yn)

Proof. Suppose that (1.4.2) is not satisfied. Since ((un,v,)) is bounded in H(RY) x
H'(RY), then, from [32, Lemma 1.1], we get

lim |un|dx =0
n—oo RN

and

lim |op|*dz = 0,
n—oo RN

for all s € (2,2%). Thus, from (Q1), we conclude

/]R{N [UnQu(Una 'Un) + UnQv(una ’Un)]dl' = On(l)'

Since 1()(tn, vp)(tun,vy) = 0, we obtain ||(up,vy,)|| = op(1), which implies ¢g = 0, which
is a contradiction. O

Now we are ready to show that system (Sy) has a solution that reaches ¢g.

Lemma 1.4.2. (A Compactness Lemma) Let ((un,vyn)) C Mo be a sequence satisfying
Io(up,vn) — co. Then, there exists a sequence (yn) C RN such that, up to a subsequence,
(wn (), 20(2)) = (Un(z + o), vn(T + Tn)) converges strongly in HY(RYN) x HY(RY). In
particular, there exists a minimizer for cg.
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Proof. Applying Ekeland’s Variational Principle [40, Theorem 8.5|, we may suppose that
((un,vn)) is a (PS)e, for I. Since ((upn,v,)) is bounded in HY(RY) x HY(RY), we have
that wu, — u, v, — v weakly in H'(RY) x HY(RY).

Then, ||(u,v)||* < linnl)gf | (tn, v)||?. We are going to prove that

I ) = lim | ut, )2 (1.4.3)

Suppose, by contradiction, that (1.4.3) does not hold. Then, by (Q2) — (Q3), we can
consider (u,v) # (0,0). Using a density argument we have that I)(u, v)(u,v) = 0, where we
conclude that (u,v) € My. Using (1.2.1), we obtain

1 1 1
co < Ip(u,v) — Efé(u,v)(u,v) < ( — p)liminf | (s o) ||?

2 n——+o0o

o 1
= lrigl-il—gof IO(un, vn) - EI(,)(una Un)(una vn):| = Co,
which is a contradiction. Hence, (un,v,) — (u,v) in HY(RN) x H'(RY). Consequently,
Iy(u,v) = ¢ and g, = 0, for all n € N.

If (u,v) = (0,0), then in this case we cannot have (up, v,) — (u,v) strongly in H!(RM) x
H'(RY) because cg > 0. Hence, using the Lemma 1.4.1, there exists a sequence (7,) C RY
such that

(Wn, 2n) — (w,2) in Hl(]RN) X HI(RN),

where wy, () = up(x+yp) and z,(x) = vp(xr+7yy). Therefore, ((wy, 2,,)) is also a (PS)., se-
quence of Iy and (w, z) Z (0,0). It follows from above arguments that, up to a subsequence,
((wn, 2,)) converges strongly in H'(RY) x H'(RY) and the proof of lemma is finished. [J

The proof of the (i7) of Theorem 1.2.2 is rather long and will be done by applying the
following Ljusternik-Schnirelmann abstract result. The proof of this result can be found
in |27, Corollary 4.17|:

Theorem 1.4.3. Let I be a C'-functional defined on a C'-Finsler manifold V. If I is
bounded from below and satisfies the Palais-Smale condition, then I has at least caty (V)
distinct critical points.

The following result, which has a proof similar to that presented in [10, Lemma 4.3], will
be used.

Lemma 1.4.4. LetT', QT, Q= be closed sets with @~ C Q. Let 3: T —QT, ®:Q~ =T
be two continuous maps such that 8 o ® is homotopically equivalent to the embedding ¢ :
QO — Q. Then catp(T') > catg+(Q7).

1.4.1 The Palais-Smale condition in the Nehari manifold associated to J.

Since we are intending to apply critical point theory, we need to introduce some compactness
property. So, let V be a Banach space, V be a C'-manifold of V and I : V — R a C'-
functional. We say that I|y satisfies the Palais-Smale condition at level ¢ ((PS). for short)
if any sequence (u,) C V such that I(u,) — ¢ and ||I'(uy)||« — O contains a convergent
subsequence. Here, we are denoting by ||I’(u)||« the norm of the derivative of I restricted
to V at the point wu.

From Lemma 1.3.3, the functional J. satisfies (PS). for each ¢ € R. Nevertheless, to
get multiple critical points, we need to work with the functional J. constrained to N:. In
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order to prove the desired compactness result, we shall first present some properties of Nz,
which the proofs of the next three results follow by using the same arguments employed
in [3, Lemma 2.2, Lemma 2.3 and Proposition 2.4] for other classes of systems. For the sake
of completeness, we sketch here.

Lemma 1.4.5. There exist positive constants ay,1,C such that, for each a € (0,q1),
(u,v) € Ng, there hold

/ Q(u,v)dz > & (1.4.4)
A

and

/RN\A (u? +0v?)dz < C A Q(u, v)da. (1.4.5)

Proof. Since H has subcritical growth, it is easy to obtain § > 0 such that
| (u,v)||- >0 for each (u,v) € N

Thus, we can use (1.2.1) and (H3) to get

Pl = [ @eurQiirs [+ oH s

IN

p/ Q(u,v)dx + 1/ (u2 + v2)d1:
Ae 4 JrV\A.

and therefore
352

=<
TS

e~ w

s 0) 2 < p /A Q(u, v)da,

which implies (1.4.4) with &, = 2.

By using (H3) and (1.2.1) again, we obtain
1

4/]R{N\Aa(u2+v2)dx < ||(U,v)||§+/Ag(uQu+UQv)d93

4p
3 Ja.

IN

Q(u,v)dz —I—p/A Q(u,v)dz,

from which follows (1.4.5). The lemma is proved. O
The following technical results are central to the compactness result.

Lemma 1.4.6. Let ¢. : X — R be given by

be(u,v) := ||(u,v)|)? —/ <uHu(5x,u,v) +vH,(ex,u, v))dm.
RN
Then there exist aa, K > 0 such that, for each o € (0, v2),
O (u,v)(u,v) < —K <0 for each (u,v) € N-. (1.4.6)
Proof. Given (u,v) € N, we can use the definition of H, (1.2.1) and (1.2.2) to get

(bla(ua 'U)(uv U) = / ((UQU + 'UQU) - (UQQuu + UQQU’U + QUUqu)>dl’
+/ (uH, +vH,)dx — / (uQHuu + 02 Hy, + 2uvHy,) dz (1.4.7)
RN\A, RN\A.

=—p(p— 2)/ Q(u,v)dx +/ Dydx — / Dodax
Ae RN\A. RN\A,
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with
Dy :=uH,+vH, and Dsy:=u’Hyu, + v>Hy, + 2uvHy,.

In what follows we denote |z| := vu? 4+ v2. By using the definition of @, n and (1.2.1) again,

we obtain

n’a +pn‘jg — Ar'|z| + 2A(1 —n)

[Di| = K&

C C
< <aA5a +pA+ Aa5a + 4A> |2|?

< 1Az

Since A — 0 as a — 07, the last inequality leads to

/ (uH, +vH,)dz < 0(1)/ (u?® +v?)dz,
RN\A. RN\A,

where o(1) — 0 as a — 0.
In order to estimate the last integral in (1.4.7), we first compute

Dy = = Anf([2f2 + 4|z1) 22 + 24(1 = )| + 0" Q2l|22 + Dy + D,
with
20/

Ds = W (u3Qu + v3Q, + u?vQ, + uvZQu)

and
Dy = n(u*Quu + v’ Quy + 20vQuy).-

In view of (1.2.3) we have that

|A’I7/(|Z|2 + 4\z|)\z|2’ < Ag(25a2 + 200[)|Z|2 = 0(1)|z|2.
By using the definition of A, we also obtain

2A(1 = n)|z> = o(1)[z* and 5" Qz[[z]* = o(1)|2]*.
Moreover, we infer from (1.2.1) that

5] = [4pr/ Q12| < 4p° AlzlP50 = 20pC ALz = o(D)]:

Finally, (1.2.2) implies that

Dy = 1(u*Quu + v*Quo + 2uvQuu) = np(p — 1)Q > 0.

From these estimates, we derive that

/ (uQHuu + 02 Hy, + 2uvHuv) dz < 0(1)/ (u? + v?)dz.
RN \A. RN\A.

Thus, it follows from (1.4.8) and (1.4.7) that

¢ (1, 0) (w,0) < —p(p—2) | Qlu,v)dz +o(1) / (u? + v?)da.

Ae RM\Ae

Now we can use Lemma 1.4.5 to obtain, for a small enough,

00 0)(w,) < (ol -2 +o(1) [ Qluv)do < -EL=2

and the lemma is proved.
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Proposition 1.4.7. The functional J. restricted to N satisfies (PS), for each c € R.

Proof. Let ((un,v,)) C Nz be such that
Je(Un,vn) — ¢ and || JL(un, vn)|l« = on(1),
where 0,(1) approaches zero as n — oo. Then there exists (\,) C R satisfying
JL(tn, v5) = M@ (tn, vp) + 0n (1), (1.4.10)
with ¢, as in Lemma 1.4.6. Since (un,v,) € Nz we have that
0 = JZ(tn, vn) (tn, vn) = Ande(tn, V1) (Un, vn) + 0 (1) (tn, ) |le-

Straightforward calculations show that ((uy,,vy)) is bounded. Moreover, in view of Lemma
1.4.6, we may suppose that ¢.(uy,,vy)(un,v,) — I < 0. Hence, the above expression shows
that A\, — 0 and therefore we conclude that J.(un,v,) — 0 in the dual space of X.. Tt
follows from Lemma 1.3.3 that ((u,,vy)) has a convergent subsequence. O

From now on we will denote by (w;,w2) the solution for the system (Sp) given at the
beginning of this section.

Let us consider § > 0 such that Ms C A and v € C*®(R",[0,1]) a non-increasing
function such that ¥y = 1 on [0,6/2] and ¢» = 0 on [d,00). For any y € M, we define the
function ¥; . , € X, by setting

3

EX —Y .
Viey(z) == 1(lex — y\)wz'( ) i=1,2,
and denote by t. > 0 the unique positive number verifying

Ja(ts(‘l’l,ayyv \1’27673/)) = 111;18( Ja(t(‘ljl,a,yv ‘1’27641))'

In view of the above remarks, it is well defined the function ®. : M — N given by

D (y) := ta(qjl,&y’ ‘IJZE,ZJ)'

In next lemma we prove an important relationship between ®. and the set M.

Lemma 1.4.8. Uniformly for y € M, we have

lim J.(®.(y)) = co,

e—0*t
where ¢y was given in (1.4.1).

Proof. Suppose, by contradiction, that the lemma is false. Then there exist dg > 0, (y,) C
M and &,, — 01 such that
| e, (Pe,, (Yn)) — co| = 60 > 0. (1.4.11)

We notice that, if z € Bs., (0) then e,2 + yn € Bs(yn) C Ms C A. Thus, recalling that
H =@ in A and ¥(s) =0 for s > §, we can use the change of variables z — (g, — yn)/en
to write
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T @euln)) = 5 [ alenz + 0 V(0 () P

2
t2 t2
+ B [ e+ S [ blens ) Vel unl=) s

2

+ % /R [t (lenz]yws(2)Pdz —ANQ<tsnw<|enz|>w1<z>,temﬂsnz>wz<Z>>dZ~

Since () is homogeneous, we have that ., — 1. This and Lebesgue’s theorem imply that

T (012, W, )2, = 01, 0)
and
lim Q(\Ijlyf'ruyn’ \Ij275n7yn)d’z = Q(’LU]_, U}Q)dz.
n—oo JpN RN
Therefore
lim J., (@, (yn)) = To(w1, w2) = co
n—oo
which contradicts (1.4.11). The lemma is proved. O

Proposition 1.4.9. Let ¢, — 0 and (up,v,) € N, be such that Jz, (un,v,) — co.
Then there erists a sequence (y,) C RY such that (wp (), 2,(2)) = (un(x + Fn), vn (2 +
Un)) has a convergent subsequence in H'(RY) x HY(RN). Moreover, up to a subsequence,
Yn — Yy € M, where Yy, = €nlyn.

Proof. Since ag < a(x) and by < b(x) for x € RY and ¢y > 0, we can repeat the same
arguments in Lemma 1.4.1 to conclude that there exists a sequence (7,,) C RY and positive
constants R and n such that

liminf/ (|un|2 + |vn|2)dx > .
BR(gn

n—oo

Thus, since ((wy,v,)) is bounded in H'(RNV)x HY(RY), considering (wy, (), z,(z)) = (un(z+
Un)s Un(+7)), up to a subsequence, we have that w, — w % 0 in H'(R™) and z, — z # 0
in H'(RY). Let t, > 0 be such that

(W, Zn) = tn(wWn, 2,) € M. (1.4.12)
Then,
co < Io(Wn, zn) < Jg, (te, (Un,vn)) < Je, (Un, vn) = co + 0n(1) (1.4.13)
which implies
Io(Wn, zn) — co and ((Wy, 2,)) C M.

From boundedness of ((wy, z,)) and (1.4.13), we get that (¢,) is bounded. As a consequence,
the sequence ((wy,Z,)) is also bounded in H'(RY) x H'(RY), which implies, for some
subsequence, (W, Z,) — (W, 2) weakly in H*(RY) x HY(RV).

Note that we can assume that t,, — o > 0. Then, this limit and (Q2) — (Q3) imply that
(w,Z) # (0,0). From Lemma 1.4.2, we conclude that (wy, z,) — (w0, z) in H*(RV)x H'(RY)
and, as a consequence, (Wy, 2,) — (w,z) in HY(RY) x HY(RYN).

To conclude the proof of the proposition, we consider y,, = €,¥,. Our goal is to show
that (y,) has a subsequence, still denoted by (y,), satisfying v, — y for y € M. First of
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all, we claim that (y,) is bounded. Indeed, suppose that there exists a subsequence, still
denoted by (y,), verifying |y,| — oo. Note that from (ab;) we have

ao/ |an|2dx+bo/ |Vzn|2dx+/ |wn|2dac+/ |20 |2d
RN RN RN RN

< /N [wnHw(gnx + Yn, Wn, Zn) + ZnHz(Enx + Yn, W, Zn)]dx
R

Fixing R > 0 such that Br(0) D A, since |enx + yn| > R and (H3), we have

ao/ |an]2dx—|—bo/ |Vzn|2dx—i—/ |wn|2dx—i—/ |20 |2d
RN RN RN RN

1
< / (w? + 22)dx 4 0, (1).
4 B, )

It follows that (wy,z,) — (0,0) in HY(RYN) x H'(RM), which is a contradiction because
cy > 0.

Hence (y,,) is bounded and, up to a subsequence,

yn—>§€RN.

Arguing as above, if § € A , we will obtain again (wy, z,) — (0,0) in H}(RY) x HY(RN),
thus 7 € A.

Now we are going to show that § € M. It is sufficient to show that a(y) = ag and
b(y) = by. Supposing, by contradiction, that a(y) > ag or b(y) > by, we have

1 1
co = Io(i@,3) < / o(§)|Vil2dz + / b(7)| V3 2da
2 RN 2 RN

1 1
+ / wzdwr/ Ede—/ Q(w,2)dx.
2 ]RN 2 ]RN RN

Using again the fact that (@, z,) — (0,z) in H'(RY) x HY(RY), from Fatou’s Lemma

n—o0

1 ~ 1 ~
+ liminf [/ | Wy, |2d + / |zn|2d3:]

RN

1 ~ 1 ~
co < liminf [ / a(enx + yn )|V, |*)dz + = / b(en + Yn)| V| da
2 RN 2 RN

n—00
that is,
co < linn_1>ioréf Je, (tn(tun, vy)) < linrr_l)i;gf Je,, (un, vyn) = co,
obtaining a contradiction. Then, we conclude that §y € M. O

Corollary 1.4.10. Assume the same hypotheses of Proposition 1.4.9. Then, for any given
v > 0, there exists R > 0 and ng € N such that

/ (IVun|* + |up|?) dz ~l—/ (IVon|? + [on|?) dz < v, for all n > ny.
BR gn ¢ BR Zjn ¢
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Proof. By using the same notation of the proof of Proposition 1.4.9, we have for any R > 0
/ (\Vun\2+|un\2) dﬂs+/ (|an|2+|vn|2) dz
BR(gn)C BR(gn)c
_ / (Vwnl? + |wnl?) dz + / (1V2nl? + |20]?) da
BRr(0)° Br(0)°

Since ((wp, 2,)) strongly converges in H'(RY) x HY(RY), the result follows. O

Let us consider p = ps > 0 in such way that Ms C B,(0) and define Y : RY — RY
by setting Y(z) := z for |z| < p and Y(z) := pz/|z| for |x| > p. We also consider the
barycenter map B. : Nz — RY given by

/RN T (ex) (\u(m)\2 + \v(az)|2) dzx
/ ([u(@)? + [o(@)?) dz
RN

Since M C B,(0), the definition of T and Lebesgue’s theorem imply that

Be(u,v) :=

liH(l] Be(P(y)) =y uniformly for y € M. (1.4.14)
E—>

Following [17], we introduce the set
Y, = {(u, v) € Ne : Je(u,v) < o+ h(&?)},

where b : R — R is such that h(e) — 0 ase — 0F. Given y € M, we can use Lemma 1.4.8
to conclude that h(e) = |J-(P-(y)) — co| satisfies h(e) — 0 as € — 0T. Thus, . (y) € X.
and therefore Y. # ), for any ¢ > 0 small.

Lemma 1.4.11. For any § > 0 we have

lim sup dist(5:(u,v), Ms) = 0. (1.4.15)

20" (yv)es,

Proof. Let (g,) C R be such that &, — 0". By definition, there exists ((uy, v,)) C X, such
that

dist(B:, (un,vn), Ms) = sup  dist(Be, (u,v), Ms) + o, (1).
(u,v)€Xe,,

Thus, it suffices to find a sequence (y,) C Ms such that

|B€n(unavn) - yn| = On(l) (1416)
Thus, recalling that (uy,,v,) € X., C N, , we obtain

co < max Io(tuy, tv,) < max Je,, (tup, tvy) = Je, (Un,vn) < co + h(ey), (1.4.17)

from which follows that J._ (un,v,) = co. Thus, we may invoke Proposition 1.4.9 to obtain
a sequence (7,) C RY such that (y,) := (€,9n) C Ms, for n large. Hence,
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/ T (enx) (|un\2 + |vn\2) dx
RN
2 2
/RN (Iunf? + lon[2) de

[ ez ) (a4 Tl ol + TP

/Ban (uny Un) =

[ (e B o+ )

/IRN (T(Enz + yn) - yn) (]un(z + gn)P + ‘Un(z + gn)‘Q) dz
/RN (Jun(z + Tu)l? + lon(z + Fu)|?) d2

Since epz 4+ Yn — Yo € M and from strong convergence of (un (- + Yn), Un(- + Un)), we
have that ¢, (un,vn) = yn + 0,(1) and therefore the sequence (y,,) satisfies (1.4.16). The
lemma is proved. O

We finalize the section presenting a relation between the topology of M and the number
of solutions of the modified system (¢ quz), Which is the proof of the item (i7) of Theorem
1.2.2.

Proof. Given ¢ > 0 such that Ms C A, we can use (1.4.14), Lemma 1.4.8, (1.4.15) and argue
as in [17, Section 6| to obtain £ > 0 such that, for any ¢ € (0,&s), the diagram

M 2w P
is well defined and (. o ®. is homotopically equivalent to the embedding ¢ : M — Mjs. Thus,
caty,_ () > catp, (M).

From Proposition 1.4.7 and Theorem 1.4.3 that J. possesses at least cat s, (M) critical points
on N.. The same argument employed in the proof of Proposition 1.4.7 shows that each of
these critical points is also a critical point of the unconstrained functional J.. Thus, we
obtain cat s, (M) nontrivial solutions for (Se guz)- O

1.5 Proof of Theorem 1

In this section we prove our main theorem. The idea is to show that the solutions obtained
in Theorem 1.2.2 verify the following estimate |(uc(ex),v:(ez))] < aVz € RNV \ A as
is small enough. This fact implies that these solutions are in fact solutions of the original
system (S¢). The key ingredient is the following result, whose proof uses an adaptation of
the arguments found in [31], which are related with the Moser’s iteration method [34] .

Lemma 1.5.1. Let (g,) be a sequence such that e, — 0% and for each n € N, let (up,v,) €
Y., be a solution of system (Sc, auz). Then Je, (un,vn) — co and (un,v,) € L®(RN) x
L®(RN). Moreover, given & > 0, there exist R > 0 and ng € N such that

|[Wn| Loo@M\BR(0)) <& for all n = n,

|2n| oo @N\ BR0)) < &5 for all n > ny,

where wy(x) = up(T + Yn), 2n(x) = vn(z + yn) and (yyn) is the sequences of Proposition

1.4.9.
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Proof. Since J;, (un,vyn) < co + h(e,) with nlgrolo h(en) = 0, we can argue as in (1.4.17) to
conclude that J., (up,v,) — ¢o. Thus, we may invoke Proposition 1.4.9 to obtain a sequence
() C RY satisfying the conclusions of that Proposition.

Fix R:= Ry > Ry > ... > Ry > Ry_1 > ... > Rg and consider g, € C*(R") such that
0 <ng, <1, nr, =0in Br/y(0), ng, =1 in Br(0)¢ and [Vng,| < C/Ry. For each n € N
and L > 0, we define n,(x) := ng, (€ — Yn), WL n, 2Ln € Xc by setting

wrp(z) = min{wy(z), L}, Yy rn:= U?Lwi(ﬁ Dy Wr

and .
zrn(x) == min{z,(z), L}, Y.pn,:= 777%751:(5 )zn,

with 8 > 1 to be determined later.
By definition of (Yuw,r.n, Yz,0,n) JL, (Wn, 20)(Yw L0y Lz 1,n) = 0 and since

2a0(8 — 1)/ n2w,w> P w, Vg, e > 0
RN ’

and
2bo (8 — 1)/ Unznzi( - VzanL ndx >0,
RN

we have that
ao/ nnwL 'n \anIde + 2a0/ nnwnwL(i )Vnn -Vuw,dz
RN

+bo / 2z V|V 2|2 da + 2bg /R Mznzg Vi - Venda
RN RN

e (1.5.1)

< . Hy(enx + yn, wnp, zn)nnwnwL 'n dx

R
2(8-1) 4
+ . H,(epx + yn, w, zn)nnznzL n .
R
In view of (Q1) and (H4) we can obtain C; > 0 such that
1 1 * x
Hy(x,5,t) + Hy(w,5,1) < Z[s| + 2 [t + Culls|* D + [{17V), for any (x,5,) € RY¥2,

Using the last inequality in (1.5.1), we obtain

ao/ nnwLn |an\2dx—|—bo/ nnz (’8 D\Vz 2dx
RY RN

< 2a0/ nnwnwL(fL )Vnn-andx—f—Qbo/ nnznzL(n )Vnn Vz,dx

RN RN
+/ ngw2 wL(n )dx +/ nizfl zL(n )d:c
RN RN

For any 7 > 0 we can use Young’s inequality to obtain

2(8-1)
ao/ niwLi |Vw,| da:+bo/ nnan \Vzn\Qda;
RN RN
_ B-1
2a0/RN[fy77n|Vfwn2+C’q|wn]2|V7]n] ]wLn ) dz

+2bo /R F2IV 22 + C5lza 2V )23~V da

+/ n2w? wL(n )d:c+/ n2z2 22(5 Yz,
RN
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By choosing ¥ < 1/4 we get, there exists Cy > 0 such that

/ nnwLn |an| dﬂc+/ nnan |Vzn| dx
RN
§C2</ [wn] \Vnn|2wLn )dx—i—/ |2 |V77n|2zi(i_1)dx (1.5.2)
RN K b
RN

Let S be the best constant of the embedding D1’2(]RN) — L2 (RY) and define @y, , =
nnwnwf_nl and 2, 1= 77n2’n2€711~ Since wr,, < wy and 21, < 2,, we have that

2 2
S[|@ 2,.]< / ‘v(nnwnwf;})) dz + / ]v(nnznzgjj)‘ dz
§2/ ]wn\QwLn \Vnn] dx+2/ ‘Zn’2ZLn ]Vnn\de
RN RN

—1—252/ nnwLn ]an\Qda:—FZBQ/ nzzig R |V 2 | dx.

The last inequality and (1.5.2) provide
10 + Bl < o2 ( [ ol o P

+/ |Zn|2ZLn |V77n| dx—l—/ 77n|wn|2 wL(n )dm_"/ nn’2n|2 ZLn )d$>
RN

for all g > 1.
The above expression, the properties of n, and wr, ,, < |wy|, 21, < |2p|, imply that

(1.5.3)

T I@Lal 7 + 2Ll 7e]

< O / (R e T e P R
Bpry2(yn)©

e [ (12021902 + (22”2120l dir (1.5.4)
BR/Z Un)©
If we now set oeoe o
ti=———>1 =< 2" 1.5.5
s =g b ST < (15.5)

we can apply Holder’s inequality with exponents ¢/(t — 1) and ¢ in (1.5.4), to get

1/t
V1, I2tdx>

1/t
|V77n|2tdx)

e (15.6)

_ ~ ~ 2
S 1Ll + 1Bzl ] < CaBlonlZie s, e </B

2
+C452 ||Z7’L HL[ZK(BR/Q(@"/L)C) (/

BR/Q(gn)C

+C452||wn||ig<(BR/2(gn)c) </B B ‘lUn|2*(2*/2)d.’E

R/Q(yn)c

1/t
+C4/82HZ”H?Z%C(BRQ(%)C) </B B ’Zn|2*(2*/2)dx> .

Rr/2(Un)©

R/Q(gn)c

Since 7, is constant on Bg/s(yn) U Br(yn)® and [Vn,| < C/ Ry, we have that

[ v | Vi s <~
Bpry2(yn)© R/2<|z—yn|<R Ry
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where we have used, without of generality, that Ry > 1 and 2t = %N > N in the last
inequality.

Claim. There exists ng € N and K > 0 such that , for any n > ng, there holds

/ o @ P dy < K
BR/2(§n)c

/ 22 @Dy < K.
Bry2(yn)©

Assuming the claim, we can use (1.5.6) and (1.5.7) to conclude that

and

_ ~ ~ 2 2
S [”wL,nH%z* + ||ZL,n||%2*]§ C6B2||wn”L€3<(BR/2(gn)c) + 0652||ZnHLg€(BR/2@n)c)‘

Since

2/2*
25 _ £52*
A (/BR<an)ch’”d$>

27(B-1) vy
(/RN T [ YLn d:zt>

~ 2
= N@Lallfer < CoBlwnllFi s, o

IN

Un)®)

and

lzL.n

2/2*
28 o [£2*
‘L,62* (BR(?Jn)C) - </BR(§H)C zL,n dl’)

2% (1) il
([ Ve

~ 2
= NZzalle < CoBlznlTic 5, 0y

IN

we can apply Fatou’s lemma in the variable L to obtain

1
HwnHLﬂ2*(BR@n)C)+||ZnHLB2*(BR@n)c) < 07/651/5HwnHLBC(BR/Q(gn)C)
+C1BYP |zl e B e

whenever wﬁg, 22 ¢ Ll(BR/Q@n)C)-

We now set 3 := 2*/¢ > 1 and note that, since wy, z, € L* (RN ), the above inequality
holds for this choice of B. Moreover, since 82¢ = 2%, it follows that the inequality also
holds with 3 replaced by 32.

Hence,
1/82 2
[y 20)ll 22 ey < 7 B s 20) |2 ey

By iterating this process and recalling that ¢ = 2* we obtain, for k € N,

< o g

H (wna Zn) ||L6k2* (Br(Tn)°) (wm Zn) ”LQ* (Bry2(¥n)©)"
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Since 8 > 1 we can take the limit as k — oo to get

H(wmzn)HLN(BR(ﬂn)c) < 08||(wmzn)||L2*(BR/2(gn)c)~

By using the change of variables z — = — 7, we obtain

1
3

[ (wns 2n)ll oo (Br@)e) < Cs(/ |un(2+z7n)|2*dz)2

Br/2(0)¢ .

~ (2% 2%

+Cy (/ |vn(z + Un)| dz) ,
Br/2(0)¢

where (wy, (), zn(x)) = (un(x+Yn), vn(x+7yn)). By Proposition 1.4.9 we have that (wy, 2,)
strongly converges in L? (RV) x L? (RY). Thus, for R > 0 sufficiently large, there holds

[ (wn, 20) | Lo (Br(@n)e) < Vs

for large n, which prove this lemma.

It remains to prove the claim. Of course, it is sufficient to prove that the first integral
is finite. For that purpose we consider a new cut-off function given by 7, (z) := n,(2z), in

such way that 7, = 0 on Bg/4(yn) and 7, = 1 on Brs(yn). If wp, = ﬁn|wn|w€;1, we
can proceed as before to prove the following version of (1.5.3)

il < Cof* ([ PtV Pao+ [ B i Vas), 058)

We set 8 := 2*/2 to obtain

~ 2*—2 ~
@02 < Cao ( [ w2 v P+
R

2%—2 *_
N 77?1|wn’2w(L,n )|wn’(2 mdﬂ?) .
Bprya(yn)©

By Holder’s inequality with exponents 2*/2 and 2*/(2* — 2), we get

~ 2% -2 ~
|Tealls < Cuo [ lunfff, Vi P

. 2/2*
_ (2°—2)/2\? 2+ 2
+ CIO (/BR/4(?7TL)C (nnlwn\wLm > de’) HwnHLQ* (BR/4(§TL)C).

From Proposition 1.4.9 we obtain ng € N and R > 1 such that

[ s ()
wy|” dr < ;
Bprya(yn)© 2Ch0

2% -2 ~
2, < cm/RN [wn Pw 2 | Vi) de

for all n > ng. Then

(Enrae

2/2*

1 5 (25—2)/2\ 2"
+ / T | W | w n dx)
2 ( Bl~t/4(?jn)C ( b >

Thus, recalling that ﬁn|wn|wé2;72)/2 = WL p, WLy < |wy| and Vn, is bounded, we obtain

”@Lnniz* < Cha.
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The definition of 7, and the above inequality imply that
_ * 2% /9
/ (|wn|wgn1)2 de < 012/ )
BR/Q(gn)C
for all n > ng. Using Fatou’s lemma in the variable L, we have

/ |wn]2*(2*/2)d:v <K .= 012;/27
Bpry2(yn)©

for all n > ng, and therefore the claim holds. O

We are now ready to prove the main result of this chapter.
Proof of Theorem 1. Suppose that § > 0 is such that Ms C A. We first claim that there
exists €5 > 0 such that, for any 0 < € < €5 and any solution (ug,v.) € X of the system
(Se,quz), there holds

|(ue(ex), ve(ex))| < @ for each z € RN \ A,. (1.5.9)

In order to prove the claim we argue by contradiction. So, suppose that for some sequence
en, — 07 we can obtain (u,,v,) € X¢, such that J. (un,v,) =0 and

||(Un,'Un)HLoo(RN\AEn) > Q. (1510)

As in Lemma 1.5.1, we have that J., (un,v,) — c¢o and therefore we can use Proposition
1.4.9 to obtain a sequence (7,) C RY such that &,7, — yo € M.
If we take r > 0 such that B,(yo) C Ba2,(yo) C A we have that

1
BT/Sn(yO/En) = ;BT(Z/O) CA,.

n

Moreover, for any z € B, /., (yn), there holds

for n large. For this values of n we have that B, . (yn) C A, or, equivalently, RNV\ A, C
RN\ B, /e, (Un). On the other hand, it follows from Lemma 1.5.1 with § = « that, for any
n > ng such that r/e, > R, there holds

[tnll oo @A) < lltnllLee@™\B,,., @) < lunllLo@\Br@.)) < @

and
[onll Lo @A) < lonllLeo @B, ., @) < 100l Lo @3\ Br@a)) < @
which contradicts (1.5.10) and proves the claim.

Considering 0 < g5 < &5, we shall prove the main theorem for this choice of 5. Let
0 < € < g5 be fixed. By applying Theorem 1.2.2, we obtain cat s, (M) nontrivial solutions
of the system (S quz). If (u,v) € X, is one of these solutions we have that (u,v) € X,
and therefore we can use (1.5.9) and the definition of H to conclude that H(-,u,v) =
Q(u,v). Hence, (u,v) is also a solution of the system (§5) An easy calculation shows that
(u(x),v(x)) = (u(x/e),v(x/e)) is a solution of the original system (S.). Then, (S;) has at
least catpy, (M) nontrivial solutions.
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We now consider €, — 07 and take a sequence (uy,v,) € X, of solutions of the system
(S.,) as above. By applying Lemma 1.5.1 we obtain R > 0 and (7,) C R" such that

unll Loo (BR @) <V (1.5.11)

and
[vnll oo (Br @) < V- (1.5.12)

Up to a subsequence, we may also assume that

unllLoo(Br@n)) = - (1.5.13)

and
|vnllLoo (Br@a)) = V- (1.5.14)

Indeed, if this is not the case, we have [|uy|[ ooy < v or |[Un|Loo(mry < 7 Which is a
contradiction with (1.4.4). Thus (1.5.13) and (1.5.14) hold.

By using (1.5.13) and (1.5.14) we conclude that the maximum point 7, , € RY of u,
and the maximum point 7, j € RY of v, belong to Br (). Hence T, 4 = Un + Gn.a, for some
In,a € Br(0) and 7,5 = Yn + Gnp, for some g, € Br(0). Recalling that the associated
solution of (Sg,) is of the form (4 (z), 0, (x)) = (un(x/en), vo(x/en)), we conclude that the
maximum point Il , of u, and the maximum point Il ; of v, are Il., o := €,Yn + Endna
and Il p := €n¥n + €ngnp. Since (¢n.a), (gnp) C Br(0) are bounded and e,y, — yo € M
(according to Proposition 1.4.9), we obtain

lim a(Il, «) = a(yo) = ao
n—00

and
lim b(Hgmb) = b(yo) = b().

n—o0

Now we prove the regularity of the solution. Note that from Lema 1.5.1, (1.5.13) and
(1.5.14), we have that ue,v. € L2(RY) N L>®(RY). From interpolation inequality, we get
(ue,ve) € LARN)x LY(RYN), V¥ ¢ > 2, that implies Qy (uz, ve), Qu(ue, v:) € LI(RN), V ¢ > 2.
From regularity elliptic theory, we get (ue,v.) € W24(RY) x W24(RN), ¥ ¢ > 2. For ¢
sufficiently large, we obtain W24(RV) < CTARN), for some 0 < A < 1. Then, u.,v. €
CTARN). Since Q € C?*(RY), we obtain that u.,v. € C>*(R"), which concludes the proof
of the theorem. O
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Chapter 2

On multiplicity and concentration
behavior of solutions for a critical
system with equations in divergence
form

2.1 Introduction

In this chapter we show existence, multiplicity and concentration of positive solutions for
the following system given by

—e2div(a(z)Vu) + u = Qu(u,v) + 5= Ky (u,v) in RY,
(Se) —£2div(b(z) Vo) + v = Qu(u,v) + 5 Ky(u,v) in RY,

u,v € HYRY), wu(z),v(x) > 0 for each z € RV,

where e > 0, N > 3, 2* = ]\2,—]_\[2, a and b are positive continuous potentials, and ) and K

are homogeneous function with K having critical growth.
The hypotheses on functions a and b are the following:

(aby) there are ag > 0 and by > 0 such that
0<ap<a(zx)

and
0 < by < b(x) forall zeRY;

(abs) there exists a bounded domain A C RY such that

et
w0 =gl < g o)

and

Setting R2 := [0, 00) x [0, 00), for any given ¢ > 1 we denote by HY the collection of all
functions F € C*(R%, R) satisfying the following properties:

(H{) F is g-homogeneous; that is
F(As,\t) = X1F(s,t), foreach A>0 and (s,t) € R%;
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(H{) there exists ¢; > 0 such that
|Fs(s,t)| + [Fy(s,1)] < er (s +¢771) for each (s,t) € RY;

(Hs2) F(s,t) > 0 for each s,t > 0;
(H3) VF(1,0) = VF(0,1) = (0,0);
(Ha) Fi(s,t),Fi(s,t) >0 for each (s,t) € R%.
The hypotheses on the functions @@ and K are the following:
(A;) K € H? and Q € HP for some 2 < p < 2%;
(A2) the 1-homogeneous function G : R — R given by G(s*",t¥") := K (s,t) is concave;

(As3)

g A
Q(s,t) > p—ls t7, for all (s,t) € R%,

where A\, > 1, A+ 5 =:p; € (2,2%) and

p1—2
2

* C(a()vbO)
1 - S
¥ (mln{ao, bO}SK)

o>0

N/2

The hypothesis (A2) appeared in the first time in [19] and will be used in Proposition
2.3.1. The constant that define o* also will appear naturally in Proposition 2.3.1

For each ¢ > 0, a pair (us,v.) € H'(RY) x H'(RV) is a positive solution of system (S.)
if u. > 0 and v. > 0 a.e. in RY and

g2 /RN a(x)Vu.Vodr + €2 /RN b(x)Vu:Vipdx + /IR{N uspdz + /RN vehdr
= /RN [‘bQu(Um Ua) + wQU(Uaa Us)]dx + i [¢Ku(ua; Us) + TZJKv(Ue, Ua)]dwv

2* RN
for all (¢,v) € HY(RN) x H'(RY).

A solution (u,v) of system (S;) is said to be ground state if
I(u,v) = inf{[(w,z) : (w, 2) is a solution of (5’5)},

where I : HY(RY) x H'(RY) — R is the functional associated to (S¢).

In this chapter we also relate the number of solutions of (S;) with the topology of the
set of minima of the potentials a and b. In order to present our result we introduce the
following set:

M ={z eRY :a(z) =ap and b(x) =bg}.
Our main result is as follows:

Theorem 2. Suppose that a and b are continuous potentials satisfying (aby) — (ab2) and
M # 0. Suppose also that Q and K satisfy (A1) — (As). Then,

(1) there exists €9 > 0 such that, for any € € (0,e0) the system (S:) has a positive ground
state solution.
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(73) for any & > 0 verifying
My = {z € RN : dist(z, M) < §} C A,

there exists e5 > 0 such that, for any e € (0,¢€5), the system (S:) has at least catpg, (M)
positive solutions.

(1) if (ue,ve) is a solution for (Se) and if e o and I, are maximum points of ue and ve
respectively, then 1. 4,11, € A, lim a(ll; ) = ap and lim b(Il.) = by, furthermore,
e—0t e—0t

each solution (ug,v.) € C2MNRN), for some X € (0,1).

We recall that, if Y is a closed set of a topological space X, catx(Y) is the Ljusternik-
Schnirelmann category of Y in X, namely the least number of closed and contractible set
in X which cover Y.

Concerning the class of nonlinearities we are dealing, we have the following examples
from [19]. Let ¢ > 1 and

P,(s,t) = Z a;s®itPi,
ait+Bi=q
where i € {1,...,k}, a;,8; > 1 and a; € R. The following functions and their possible
combinations, satisfy our hypothesis on @

B, (s, 1)

Quls1) = Byl 1), Qals0) = YP0) and Qslot) = B,

with » = pl and [y — Iy = p, under appropriate choices of the coefficients a;. Condition (As)
restricts the expression of the critical function K. However, it can have the polynomial form
K(s,t) = Pa+(s,t).

The chapter is organized as follows. In section 2.2 we present the variational framework
and a modified system. In section 2.3 we give some information on the autonomous system.
Existence of a ground state solution and multiplicity result for the modified system (.S; quz)
involving Ljusternik-Scrinirelmann theory is section 2.4. In section 2.5 we prove that each
solution of the modified system (S¢ quz) is @ solution of the original system. We also prove
a concetration result.

2.2 Variational framework and a modified system

Since we are interested in positive solutions we extend the function () and K to the whole
R? by setting Q(u,v) = K(u,v) =0 if u < 0 or v < 0. We also note that for any function
F € H%, we can use the homogeneity condition (H) to conclude that

qF(s,t) = sFs(s,t) + tFy(s,t) (2.2.1)

. q(q — 1)F(s,t) = 82 Fys(s,t) + t2Fy(s,t) + 25t Fy (s, 1) (2.2.2)
for any (s,t) € R2.
Hereafter, we will work with the following system equivalent to (S¢).
—div(a(ez)Vu) +u = Qu(u,v) + 5= Ky(u,v) in RY,
(S.) —div(b(ex) Vo) + v = Qu(u,v) + o Ky(u,v) in RV,
u,v € HY(RY), wu(x),v(x) >0 for each z € RY.
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In order to overcome the lack of compactness originated by the unboundedness of RY we
use a penalization method. Such kind of idea has first appeared in the paper of Del Pino
and Felmer [20]. Here we use an adaptation of this method for systems, as introduced in [1].

We start by choosing a > 0 and considering 1 : R — R a non-increasing function of class
C? such that

C C
n=1on (—o0o,a], n=0on [ba,+x), |7'(s)] < o and |n”(s)] < 2 (2.2.3)

for each s € R and for some positive constant C' > 0. Using the function 7, we define
Q:R? = R by

~

Qo) = 16,0 Qs 8+ 5K 58] + (1= (5. OD)AG +£2)

where

t) + = K(s,t
A= max{Q(S’ ):2 5 (s ):(s,t)eRz, a <|(s,t)] §5a}.
se+t

Notice that, since A > 0 tends to zero as o — 0T, we may suppose that A < 1.
Finally, denoting by I the characteristic function of the set A, we define H : RN x R? —
R by setting

1

H(z,s,t) = Iz(x) <Q(s,t) + o

K(s,t)> + (1= In(2))Q(s, 1) (2.2.4)

For any o > 0 small and (s,t) € R? we have the following result.

Lemma 2.2.1. The function H satisfies the following estimates:
(H1) pH(z,s,t) < sHs(z,s,t) + tHy(z,s,t), for each x € A;

(Hy) 2H(x,s,t) < sHy(z,s,t) + tHy(x,5,t), for each x € RN\ A;
1
(Hs) for a small we have sH(x,s,t) + tHy(x, s,t) < 1(32 + t2> for each x € RN\ A;

Hq(z, s, Hy(x, s, 1
(Hy) for a small we have |Hs (z, 5 t)’, [ Hi(w,s,t) < 1 for each x € RN\ A.
a a

Proof. We note that arguing as in [4, Lemma 2.4], it is possible to prove the items (Hj) —

A~

(Hs). Then, we prove (Hy). Since H(z,u,v) = Q(u,v) for all z € R\ A, from definition of
Q, we obtain

"((w, v)Nu w,v) + = K(u,v
Huru) = DO LKD) 0 (Quu + 5 Katwn))
(o, 0) A + 02)

a N + (1 =n(l(u, v)]))2uA

Then, using (H}), (H?") and (2.2.3) we have

Q(u,v) + 3¢ K (u, v) o .
! 2 2 p—1 . = 2 1
= w o)+ 2nlen (1w o)+ ()]
1| Al (u, 0)|? + 4A](u, )|

C

(%

’HU(SL',’LL, U)| S |77

IN

A-25-0° +2¢ ((505)7’*1 - (5a)2**1) + gA 250 +20-a-A
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Then, for « sufficiently small we have that

[ Hu(2, u,v)|

1

< -.

«a — 4
Using similar arguments, it is possible to prove that

|Hy(x,u,v)]
«a

IA
B

O

From now on we assume that « is chosen in such way that the last inequality above
holds. In view of definition (2.2.4), we deal in the sequel with the modified system

—div(a(ez)Vu) +u = H,(ex,u,v) in RV,
(Se auz) —div(b(ez)Vv) + v = Hy(ex,u,v) in RY,
u,v € HY(RY)

and we will look for solutions (ue,v.) verifying
|(us(ex),ve(ex))| < o for each z € RV \ A,
where A, := {x € RN : ez € A}.
For each € > 0 we denote by X, the Hilbert space
X, = {(u, v) € HY(RY) x HY(RY) : / (a(ex)|Vul? + b(ex)|Vo|?)dz < oo}
RN
endowed with the norm

I(u,0) |12 = / (a(e)|Vul® + b(ex)|Vol* + [ul® + [v]*)da.
RN

Conditions (H3) and (A;) imply that the critical points of the C!-functional J. : X, — R
given by

1
Je(u,v) = 3 /RN (a(ex)|Vul® + b(ex)|Vo|* + [uf? + [v]*) dz — /RN H(ex,u,v)dx

are weak solutions of (S;quz). We recall that these critical points belong to the Nehari
manifold of J., namely on the set

Nz = {(u,v) € X\ {(0,0)} : J.(u,v)(u,v) = 0}.

It is well known that, for any nontrivial element (u,v) € X. the function
t — Jo(tu,tv), for t > 0, achieves its maximum value at a unique point ¢,, > 0 such
that ¢, ,(u,v) € N.. We define the number b, by setting

be == (u’ir)lest Je(u,v). (2.2.5)

We define the Palais-Smale compactness condition for the functional J.. A sequence
((upn,vy)) C Xc is a Palais-Smale sequence at level c. for the functional J; if

Je(Up, V) = Ce
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and
1 T2 (tns vp) || = 0 in (Xe)',

where

e = 1 f Je t)) >0
ce = Inf max (n(t))

and
I':={n € C([0,1], Xc) : n(0) = (0,0), J=(n(1)) <0}

If every Palais-Smale sequence of J; has a strong convergent subsequence, then one says
that J. satisfies the Palais-Smale condition.

2.3 On the autonomous problem
In order to prove the multiplicity result for the system (§€), we consider the autonomous
system (Sp), namely
—apAu +u = Qu(u,v) + 5 Ky(u,v) in RY,
(So) —boAv + v = Qy(u,v) + 5= Ky(u,v) in RY,
u,v € HYRY), wu(z),v(x) > 0 for each z € RV.

In view of conditions (aby), (H}]) and (H2"), the above system has a variational structure
and the associated functional is given by

1
Bw) = 5 [ (@lVal? + lVoP + o + o) do— [ Qoo
1
—— K(u,v)dz,
2* ]RN

is well defined for (u,v) € Eg := H'(RY) x H'(R"). We denote the norm in Ey by

H(u,v)H2—a0/ |Vu!2dx+bo/ ]Vv]2dx+/ |uy2dx+/ (v2dz.
RN RN RN RN

Standard calculations show that Iy has the Mountain Pass geometry and therefore we
can set the minimax level ¢g in the following way

;= inf I t
¢o = inf max o(v(t)),

where I' := {y € C([0,1], Ep) : v(0) = (0,0), Ip(y(1)) < 0}. Moreover, ¢y can be further

characterized as

co = inf Ip(u,v), 2.3.1
0 (u,w)EMo O( ) ( )

with Mg being the Nehari manifold of Iy, that is
My = {(u,v) € Ep\ {(0,0)} : I{(u,v)(u,v) = 0}.

As usual, we denote by S the best constant of the embedding D'2(RY) — L¥ (RN). To
state the next result we need to define Sk the best constant of the immerson DV2(RY) x
DY2(RN) — L2 (RN) x L¥" (RV), that is

/ (1Vul? + [Vo[2)da
Sk = inf RY

u,vEDl*Z(RN) 2/27 "
w40 K(u,v)dx
RN
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Proposition 2.3.1. There exists c* > 0 such that for all ¢ > o*
1 ~ \N/2
co < N (min{ao,bo}SK) .

Proof. By using (H5) and (H2'), and arguing as [40, Theorem 4.2, it is possible to prove
that
= inf Io(tu,tv) > 0.
D= oreinli00y T Toltu, tv) >

Thus, it suffices to obtain (u,v) € Ey such that

1 . ~ \N/2
max Ip(tu, tv) < N (mln{ag,bo}SK> :

We first recall that, for any > 0 the function
wi(w) := [IN(N = 2)]N=2/4(5 4 |o?) =/
satisfies
/ \Vw(;\Qd:r—/ lws|? da = SN/2.
RN RN
By [19, Lemma 3|, there exist A, B € R such that Sk is attained by

5 Jev (IV(Aws)? + |V (Bws)|?) da SN/2(A2 4 B2)
K= _
(f]RN chg,Bw(;)dx) 2/ (fRN Aw(;,Bwl;)da:) 2/

Let n € Cg°(RY, [0, 1]) be such that n = 1 on B1(0) and n = 0 on RY \ By(0). Consider
n(x)ws(z)

[nws|2+

Ys(x) ==
By using the definition of 95, (A3) and (HZ" ) we get

2
In(tAvs,tBys) < t*Da(A2 + B?) — UtplAABB/ Y5t dx
h1 B3(0)

t2"
/ K (Aus, Bis)da

where p; € (2,2%) is given by condition (A3) and

Ds = [ max{ao,bo, 1} (V6if? + [us]?) da
R

Thus

2 2%
max d = Ds(A2 4 B2) — L A BP / P — / K (Adps, Bips)dz
20 | 2 p1 Ba(0) 2" Jrw

> Io(tAvs, tBs).

Straightforward calculations show that

Io(tAs, tBYs) < o <1 1) (Ds(A% + B2))n/ (1)

2/(11—2) \ 2 2/(p1—-2)
o A)BB fB2(0) |¢5|P1dx)
1
e mC(ao, bo)
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1 ~ \N/2
Thus, I?EOXIO(tAq/J(;, tBiys) < N (min{ao, bo}SK> , for all o > o* where

p1—2
2

. C'(ao, bo)
1 ; 3
v (mln{ao, bo}SK>

The proof is finished. ]

N/2

The proof of the next result is in the same spirit of [4, Lemma 2.2]. We omit the details.

Lemma 2.3.2. Let ((up,vy)) C Mo be a sequence such that Io(up,v,) — co. Then there
are a sequence (y,) C RN and constants R,n > 0 such that

n—oo

liminf/ (Jtn|? + |vn)?)dz > n. (2.3.2)
Br(yn)

Now we are ready to show that system (Sp) has a solution that reaches co.

Lemma 2.3.3. (A Compactness Lemma) Let ((un,vn)) C Mo be a sequence satisfying
Io(tn,vy) — co. Then, there exists a sequence (3,) C RN such that, up to a subsequence,
(wn (), 2n(2)) = (un(z + Jn), vn(x + Yn)) converges strongly in H'(RN) x H'(RY).

In particular, there exists a minimizer for cg.

Proof. Applying Ekeland’s Variational Principle [40, Theorem 8.5|, we may suppose that
((un,vn)) is a (PS)e, for Iy. Since ((un,v,)) is bounded in H'(RY) x HY(RY), we have
that u, — u, v, — v weakly in H*(R"). From weak convergence, we obtain

[[(w, v) || < liminf [| (un, vn) |-
n—oo
We are going to prove that
[, )l = T {[(u, o) (2.3.3)

Suppose, by contradiction, that (2.3.3) does not hold. Then, by (H3), we can consider
(u,v) # (0,0), using a density argument we have that Ij)(u,v)(u,v) = 0, where we conclude
that (u,v) € My and

1
¢ < IO(“) U) - 71{)(“3 ’U)(U, U)

1 1 1 1
< liminf (2 - p) || (e, v) |12 + (p - 2*> . K (up, vn)d$]

n—-+00

o . . R —
= %gfolf Io(un,vy) plo(un,vn)(un,vn) co,

which is a contradiction. Hence, (un,vn) — (u,v) in HY(RY) x H'(RY), consequently,
Ip(u,v) = co and the sequence (¥,) is the sequence null.

If (u,v) = (0,0), then in this case we cannot have (uy, v,) — (u,v) strongly in H'(RY) x
H'(RYN) because cg > 0. Hence, using the Lemma 2.3.2, there exists a sequence (7,) C RY
such that

(Wn, 2n) — (w,2) in HI(RN) X HI(RN),

where wy, = up(-+7¥pn) and z, = vp(-+yn). Therefore, ((wy, 2,,)) is also a (PS)., sequence of
Iy and (w, z) # (0,0). It follows form above arguments that, up to a subsequence, (wp, zy,)
converges strongly in H'(RY) x H'(RY) and the proof of lemma is over. O
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2.4 Existence of a ground state and multiple solutions for the
modified system (S 4uz)

In this section we show existence of a ground state and multiple solutions for the modified
system (S¢ quz). The main result in this section is:

Theorem 2.4.1. Suppose that a and b are continuous potentials satisfying (aby) — (abz) and
M # 0. Suppose also (A1) — (As). Then,

(i) there exists €1 > 0 such that, for any e € (0,e1) the system (Szquz) has a positive
ground state solution.

(it) for any & > 0 verifying
Ms := {z € RN : dist(x, M) < 6} C A,

there exists e5 > 0 such that, for any € € (0,e5), the system (S¢quz) has at least
catr, (M) positive solutions.

In order to show existence of a ground state solution for the modified system (Se quz),
we use the Mountain Pass Theorem |[6].

Lemma 2.4.2. The functional J. satisfies the following conditions

(i) there is C,p > 0, such that
Je(u,v) =2 C, if [[(u,v)]e = p.
(it) for any (¢,) € C§°(As) x C§°(Ae) with ¢, > 0, we have
Jim Je(t¢, 1)) = —oo.

Proof. Using (Hi), (Hz), (Hs), (H}) and (H?"), we have

261

Je(u,v) > 5ll(u,v)||§— (ful? + [oP)da — o /(W +[0]*)dz
e P JA.

1
5 [ (P ey,
RN\A.

By Sobolev embeddings, there exists C' > 0 such that

2%
€

C
3o 1)

3 C
Je(u,v) = g\l(u,v)\lﬁ - gll(%v)llﬁ’ -

and the proof of item (i) is over. Now, by definition of H, (H}) and (H2"), we get
t? 2 t

and the proof of item (i) is over. O

Hence, there exists a Palais-Smale sequence ((un,v,)) C X, at level ¢.. Using (Hf) and
(7—[(2)*), it is possible to prove that

ce =b. = inf sup Je (tu, tv), 2.4.1
E T T )eX(00)} oh e(tu, t0) (24.1)

where b, was defined in (2.2.5)
In order to prove the Palais-Smale condition, we need to prove the next lemma.
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Lemma 2.4.3. Let ((un,vy,)) be a (PS)q sequence for J.. Then for each & > 0, there exists
R = R(§) > 0 such that

limsup/ [a(sm)WunF + b(ex)|[Von|? + |un|® + [va|? |dz < €.
RN\Bg(0)

n—o0

Proof. Straight forward calculations show that ((uy,v,)) is bounded in X.. Let np €
C>(RY) such that ng(z) = 0if € Br/(0) and nr(z) = 1if 2 ¢ Bg(0), with 0 < ng(z) <

C
1 and |Vng| < B where C is a constant independent of R. Since that the sequence

((unnr,vnngr)) is bounded in X, fixing R > 0 such that Ac C Bp/2(0) and by definition of
the functional J., we obtain

/ [a(saz)]Vun]2 + b(ex) |V |2 + |un|® + [va|? | da
RM\Bg(0)

< Jé(un,vn)(unnR,vnnR)+/N[unHu(6x,un,vn)+vnHv(8m,un,vn)]anfﬁ
R

- / [a(ex)unVu, + b(ex)vy, Vo, | Vnrdz.
RN

Using (H3), we get the estimate

3

/ [a(em)|Vun|2+b(5:L‘)|an|2+ |, |2 + |vn|2] dx
4 Jr\Br(0)

< / [a(ex)|un||Vun| + b(ex) [vn|[Vonl][Vig|dz + on(1).
RN
: . : C
Since ((un,vy)) is bounded in X, and |Vng| < R Ve get

/ [a(sx)|Vun|2 + b(m:)|an|2 + |un|2 + |vn|2] dr < ﬁ + on(1).
RN\ Bg(0) R

proving the lemma. O

Lemma 2.4.4. Any sequence ((un,vy)) C X such that

1 ~ \N/2
Je(Up,vp) = ¢ < N (min{ao,bo}SK) and  J.(up,vn) — 0
possesses a convergent subsequence.

Proof. Standart calculations show that ((un,v,)) is bounded in X.. Then, up to a subse-
quence, we may suppose that

(Un,vp) — (u,v) weakly in X,
Up — u, v, — v strongly in L (RY), for any 2 < s < 2%, (2.4.2)

loc

Un () = u(z),v,(x) = v(z) for ae. z € RV,

Now using a density argument, we can conclude that (u,v) is a critical point of Jg.
Hence

1w, 0) 2 = /R uHu (e, u,v) + vHy (e, u,)ldr. (2.4.3)

On the other hand, we have

| (i, v |2 = / [unHy (X, Un, vp,) + v Hy (e, Up, vp)|dz + 05, (1). (2.4.4)
RN
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Claim 1. le K (up, vy da;—/ K(u,v)dz.

Ac
Since ((up,vy)) is bounded, we may suppose that
Vun|> = p, |Vuu|* =0 and K(u,,v,) — v (weak*sense of measures).

From [19, Lemma 6|, we obtain an at most countable index set I', sequences (x;) € RY,
(i), (04), (vi) C (0,00) such that

p> |Vul? + Zﬂiéfﬂﬂ o> |Vl + Zaiémi

i€l el
v=K(u,v)+ Z%‘(Sm and §KVZ-2/2* < ui + o; (2.4.5)
i€l

for all 4 € T', where d,, is the Dirac mass at the point x; € RY.

Suppose that {x;};er N A: # 0, then exists x; € A for some i € T'. Define, for o > 0, the
function ,(z) := ¥((z—x;)/0) where ¢» € C$°(R¥, [0, 1]) is such that ¢ = 1 on B1(0), ¢ = 0
on RV \ B3(0) and |V1)|o < 2. We suppose that g is chosen in such a way that the support
of 1, is contained in A.. Since ((Youn, ¥,vy)) is bounded, JL(un, vn)(Yotn, ovn) = on(1).
Then

/ (e, |V ? + b(ex) s, |Von Y da

]RN

+/ [a(ex)un Vu,Vipy + b(ex)v, Vo, Vip,dz + / [1hou? + ova]da
RN RN

= / [unHy (e, Un, vp) + vp Hy (e, Up, vn)]odz + 0p (1).
]RN

Since supp(v,) C Ag, we can use definition of H, (2.2.1) and (ab;) to get

winfao.bo} [ [6a]90 P+ 5|V Plds

RN

< —/ la(ex)un,Vu,Vip, + b(ex)v, Vo, Vip,ldx
RN

+p /RN Q(un,vp)Yodr + /RN K (tp, vn)odz + 0y (1).

Since ) has subcritical growth and 1, has compact support, we can let n — oo, o — 0 and
use (2.4.5) to conclude that

min{ag, bo} (i + 0i) < v;
As §K1/i2/2* < w; + o;, we get

_ \N/2

v; > (min{ao,b0}5K> .

By using Lemma 2.2.1, p > 2 and (2.2.1) we get
1
c = J(up,vn) — iJé(un, Un) (Un, Up) + 0p(1)

= / <1[UnHu(€$,Un,Un) +UnHv(5xaUn7Un)} — H(Ew,un,vn)) dx
RN\A 2
(;[un@u(um Un) + UnQv(Um 'Un)] - Q(Um Un)) dx

(;[unK (Uny V) + U Ky (U, 0p)] — K (U, vn)) dx + o (1)

1
N/ K (up,vp)dx + op(1) > N/AE VoK (Up, vy)dx + 0, (1).

£

+
[\3*—‘\

\Y]

52



By taking the limit and using (2.4.5) we get

c> % Z Yo(wi)v; = % Z v > % (min{ambo}gK)

{ielx; €A} {ieT:z;€A}

N/2

which does not make sense. Therefore {z;};cr N A. = (), this conclude the proof of the claim
1.
Claim 2.

/ [un Hy (2, Up, V) + vp Hy (62, Uy, vp,)|d — [uHy(ex,u,v) + vHy(ex, u,v)|dz.
RN RN
From Lemma 2.4.3, for any £ > 0 given, there exists R > 0 such that A, C Br(0) and

limsup/ [a(ex)|Vun|2 + b(ex) [Vun |2 + [un)? + o] | dz < €.
RN\BR(0)

n—oo

This inequality, (Hs) and the Sobolev embeddings imply that, for n large enough, there
holds )
/ [un Hy (62, U, vy,) + vn Hy (e, Uy, vp)]dz < C1=E€, (2.4.6)
RN\ BR(0) 4

where C] is positive constant. On the other hand, taking R large enough, we can suppose
that

<& (2.4.7)

/RN\B o [uH, (ex,u,v) + vHy,(ex, u,v)]|dx
R

Then, by (2.4.6) and (2.4.7), we can conclude
/ [un Hy (e, tp, vn) + v Hy (e, up, vy ) |dz
RN\BR(0)
= / [uHy(ex,u,v) + vHy(ex,u,v)|dx + op(1). (2.4.8)
RN\BR(0)

On the other hand, since the set Br(0) N (RY \ A.) is bounded, we can use (H3), (2.4.2)
and Lebesgue’s theorem to conclude that

lim [un Hy (e, tp, vn) + v Hy (€2, Uy, vp)|d
790 JBR(0O)N(RN\A,)

[uHy(ex,u,v) + vHy(ex, u,v)|dz. (2.4.9)

/BR(O)O(RN\AE)

By using Claim 1, (HY}), (2.4.2) and Lebesgue’s theorem again, we obtain

lim [unHy (X, Un, vp,) + v Hy (e, up, vy |da
n—oo AS

= / [uH, (ex,u,v) + vH,(ex, u,v)|dx. (2.4.10)

€

From (2.4.8), (2.4.9) and (2.4.10) the claim 2 is proved.
By using (2.4.3), claim 2 and (2.4.4), we have || (un, vn)||> = [|(w,v)||?. Then (un,v,) —
(u,v) in X.. O
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The multiplicity result for system (Se quz) is rather long and will be done by applying
the following Ljusternik-Schnirelmann abstract result. The proof of this result can be found
in |27, Corollary 4.17].

Theorem 2.4.5. Let I be a C'-functional defined on a C'-Finsler manifold V. If I is
bounded from below and satisfies the Palais-Smale condition, then I has at least caty (V)
distinct critical points.

The following result, which has a proof similar to that presented in [10, Lemma 4.3], will
be used.

Lemma 2.4.6. Let ', QT, Q= be closed sets with Q= C Q. Let 3:T - QT, ®: Q" =T
be two continuous maps such that 8 o ® is homotopically equivalent to the embedding ¢ :
QO — Q. Then catp(T) > catq+ (27).

2.4.1 The Palais-Smale condition in the Nehari manifold associated to J.

Since we are intending to apply critical point theory we need to introduce some compactness
property. So, let V be a Banach space, V be a C'-manifold of V and I : V — R a C'-
functional. We say that I|y satisfies the Palais-Smale condition at level ¢ ((PS). for short)
if any sequence (uy,) C V such that I(u,) — ¢ and ||I'(uy,)||+ — 0 contains a convergent
subsequence. Here, we are denoting by ||I’(u)|/« the norm of the derivative of I restricted
to V at the point u.

From Lemma 2.4.4, the unconstrained functional satisfies (PS). for
c < %(min{ag,bo}SK)N/ 2. Nevertheless, to get multiple critical points, we need to work
with the functional J. constrained to A. In order to prove the desired compactness result
we shall first present some properties of NV, which the proofs of the next three results follows
by using the same arguments employed in |3, Lemma 2.2, Lemma 2.3 and Proposition 2.4|
for other class of system. For the sake of completeness, we sketch here.

Lemma 2.4.7. There exist positive constants ay,0d1,C such that, for each o € (0,0),
(u,v) € Ng, there hold

[ QG 0) + K o)lds 2 5, (2.411)

€

and
/ (u? 4+ v3)dz < C | [pQ(u,v) + K (u,v)]dz. (2.4.12)
RN\A, Ae
Proof. From the growth conditions on () and K, it is easy to obtain & > 0 such that
l[(u,v)||s >3 for each (u,v) € N..

Thus, we can use (2.2.1) and (Hs) to get

32 < |(uwv)|? = / {u@uﬂ@ﬁé[ui{uﬂm@ dx

€

+ [uH, + vH,|dz
RN\A.
< / [PQ(u, v) + K (u,v)]dz + L / (u? +v?)dx
AE 4 RN\AE
and therefore
352 3 )
- S ZH(U,U)Hg < A [pQ(u,v) + K (u,v)]dz,

o4



which implies (2.4.11) with &; = 32°.
By using (H3) and (2.2.1) again, we obtain

Jo e < w2

PQ(u,v) + K(u,v)|dx + E / (u? + v?)dz,
A 4 Jr\A.

IA

from which follows (2.4.12). The lemma is proved. O

The following technical results is the key stone in our compactness result.

Lemma 2.4.8. Let ¢. : X; — R be given by
be(u,v) == || (u,v)|)? / [uHy(ex,u,v) + vHy (e, u,v)|dz.
RN

Then there exist oo, M > 0 such that, for each a € (0, az),
A (u,v)(u,v) < —M <0 for each (u,v) € N-. (2.4.13)
Proof. Given (u,v) € N, we can use the definition of H, (2.2.1) and (2.2.2) to get

¢/5(u7 U)(u7 ’U) = / [uQu + 'UQU]dx - / ['UJQQuu + ’UQQU”U + QUUQuU]dx

€ AE

1 1
+§ [UKU + UKU]dl' — ? [UQKUU -+ 'UQKUU + 2U’UKU/U]
Ae Ae

—I—/ [uH, + vH,|dx — / [u2Huu + v Hyy + 2uvHyyldx

RN\A, RN\A,

=—p(p—2) Q(u,v)dx — (2* = 2) K(u,v)dz + / [D1 — Dsldx
Ac Ac RN\A¢

with
Dy :=uH, +vH, and Dy := u’Hy, + v>Hyy + 2uvHy,.

Since p < 2%, we get

& (u,v)(u,v) < —(p — 2)/ [pQ(u,v) + K(u,v)|dx —i—/ [D1 — Ds]dzx.

Ac RN\A.

Arguing as in the proof of |3, Lemma 2.3|, we have

/ [Dy — Dyldx < 0(1)/ (u? + v?)dx
RN\A, RN\A.

where o(1) — 0 as a — 07.
Now we can use Lemma 2.4.7 to obtain, for o small enough

6.1, 0) (1, ) < (—(p — 2) + 0(1) /A PQ(u,v) + K (u, 0))dz < —

and the proof is over. O

Proposition 2.4.9. The functional J. restricted to N satisfies (PS),. at any level ¢ <
~ \N/2
% (min{ag, bo}SK> .
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Proof. Let ((un,vy)) C Nz be such that
Je(tn,vy) — ¢ and || JL(un, vn) ||« = 0n(1),
where 0, (1) approaches zero as n — oo. Then there exists (\,) C R satisfying
JL (U, v5) = Ay (tn, v) + 0n (1), (2.4.14)
with ¢ as in Lemma 2.4.8. Since (u,,v,) € Nz we have that

0= Jé(un,vn)(un, Un) = >\n¢/g(umvn)(umvn) + 0n (1) || (un; vn) |le-

Straightforward calculations show that ((uy,v,)) is bounded. Moreover, in view of Lemma
2.4.8, we may suppose that ¢.(un, vy)(un, v,) — | < 0. Hence, the above expression shows
that A\, — 0 and therefore we conclude that J!(up,v,) — 0 in the dual space of X.. Tt
follows from Lemma 2.4.4 that ((u,,v,)) has a convergent subsequence. O

From now on we will denote by (w;, w2) the solution for the system (Sp) given in Lemma
2.3.3 in section 3.

Let us consider § > 0 such that Ms C A and v € C*®°(R",[0,1]) a non-increasing
function such that ¢» = 1 on [0,6/2] and ¥ = 0 on [§,00). For any y € M, we define the
function ¥, . , € X, by setting

ET — )
U, o y(z) == Y(lex — y|)wi< y>, i=1,2,

3

and denote by t. > 0 the unique positive number verifying

Je(ts(qjl,e,ya ‘IJQ,s,y)) = T?gg‘: Jz—:(t(\ljl,s,ya \112,5,7;))-

In view of the above remarks, it is well defined the function ®. : M — N given by

®5(y) = t€(qjl,€,y7 \P2’€ay)'

In next lemma we prove an important relationship between ®. and the set M.

Lemma 2.4.10. Uniformly for y € M, we have

lim J.(®.(y)) = co,

e—0t
where co was given in (2.3.1).

Proof. Suppose, by contradiction, that the lemma is false. Then there exist 6 > 0, (y,) C M
and €, — 0T such that
| Jen (P, (yn)) — co| =6 > 0. (2.4.15)

We notice that, if 2 € Bs/., (0) then e,z + y, € Bs(yn) C Ms C A. Thus, recalling
that H = Q + 5K in A and 1(s) = 0 for s > §, we can use the change of variables
z +— (enT — Yn)/en to write
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12 {2
e (Pc, (yn)) = 7 . a(enz + Yn) |V (U(lenz])wi(z))Pdz + 7 /RN Y (|enz|)w1(2)?dz
12 2
2 [ bens +u) Vsl + 2 [ ez

—/RN Qte, Y(lenz|)wi(2), te, Y (|enz])wa(2)) dz
1

o K(te, ¥ (lenz)wi(2), te, ¥(lenz])wa(2)) dz.
RN

Since ) and K are homogeneous, we have that ., — 1. This and Lebesgue’s theorem
imply that

T [[(Z e, g0 W) 12, = [, 09)]
hm Q(\Ijl,énvyn? \:[1275n7yn)d2 = Q(w17 UJQ)dZ,
n—oo RN RN
and
lim KW,y Yoe,y,)dz = K(wi,wsy)dz.
n—oo RN RN
Therefore
lim Jen (Cbsn (yn)) = Ig(wl,wQ) = C0
n—oo
which contradicts (2.4.15). The lemma is proved. O

Proposition 2.4.11. Let &, — 07 and ((up,v,)) C N, be such that J., (up,vn) — co.
Then there erists a sequence (y,) C RY such that (wp(x), 2,(2)) = (un(z + ), vn (2 +
Un)) has a convergent subsequence in H'(RN) x HY(RN). Moreover, up to a subsequence,
Yn = Yy € M, where Yy, = €xln.

Proof. Since ag < a(x) and by < b(z) for x € RY and ¢y > 0, we can repeat the same
arguments in Lemma 2.3.2 to conclude that there exists a sequence (7,,) C RY and positive
constants R and 7 such that

liminf/ (tn|2 + [on[2)dz > n.
Br(

n—oo

Un)

Thus, since ((wn,v,)) is bounded in H'(RY)x HY(RY), considering (wy, (), 2,(z)) = (un(z+
Un)s Un(+7)), up to a subsequence, we have that w, — w % 0 in H'(R™) and z, — z # 0
in H'(RY). Let t, > 0 be such that

({Em zn) = tn(wm Zn) € M. (2~4-16)
Then,
€o < IO('iDny zn) < Jen (tn(unvvn)) < an (un7 Un) =co+ On(1)7 (2417)

which implies
Io(lzn,gn) — ¢g and ((wn,Zn)) C M.
From boundedness of ((wy, z,,)) and (2.4.17), we get that (¢,) is bounded. As a consequence,

the sequence ((wp,2,)) is also bounded in H'(RY) x H'(RY), which implies, for some
subsequence, (W, 2Z,) — (W, Z) weakly in H'(RY) x HY(RN).
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Note that we can assume that ¢, — to > 0. Then, this limit implies that (w, 2) # (0, 0).
From Lemma 2.3.3, we conclude that (w,,z,) — (0,2) in H}(RY) x HY(RY), and as a
consequence, (wy, z,) — (w,z) in HY(RN) x HY(RN).

To conclude the proof of the Proposition, we consider y, = €,9,. Our goal is to show
that (y,) has a subsequence, still denoted by (y,), satisfying y,, — y for y € M. First of
all, we claim that (y,) is bounded. Indeed, suppose that there exists a subsequence, still
denote by (yy), verifying |y,| — oco. Note that from (ab;) we have

ao/ |an|2dx+bo/ |Vzn|2dﬂc+/ |wn|2dﬂc+/ |20 2z
RN RN RN RN

< /N [wnHw(gnx + Yn, W, Zn) + ZnHz(Enx + Yn, Wn, Zn)]dx
R

Fixing R > 0 such that Br(0) D A, since |e,x + yn| > R and (Hs), we have

ao/ |an|2dx—|—bo/ |Vzn|2dx+/ |wn|2dac+/ |20 |2d
RN RN RN RN

1
< / (w? + 22)dz 4 0, (1).
4B, 0

It follows that (wp,z,) — (0,0) in HY(RY) x H'(RY), obtain this way a contradiction
because ¢y > 0.

Hence (y,,) is bounded and, up to a subsequence,

yn—>y€RN.

Arguing as above, if y € A , we will obtain again (wy, z,) — (0,0) in H*(RY) x HY(RN),
thus y € A.

Now we are going to show that y € M. It is sufficient to show that a(y) = ag and
b(y) = bp. Supposing, by contradiction, that a(y) > ag or b(y) > by, we have

~ 1 ~ 1 ~
co = Ip(w,z) < / a(y) |V |*d + / b(y)|VZ|2da
2 RN 2 RN

1 1 - ~ 1 ~
+ / |w|*dx + / 1Z)%dx — / Q(w,z)dx — — K(w,z)dz.
2 RN 2 RN RN 2* RN

Using again the fact that (@, 2,) — (@,2) in H'(RY) x HY(RY), from Fatou’s lemma

n—oo

1 ~ 1 ~
+ lim [/ ]wn\zdx—i-/ ]zn\zd:c}
n—oo| 2 JpN 2 JrN

1
— lim [ Q(wy, zn)dr + — K(wy, Zn)dm} ,
]RN

n—oo 2* RN

1 1
o < liminf {/ a(en® + yn) |V |*dr + - / blenx + yn)|V3n|2dx}
2 RN 2 RN

that is,
co < liminf Jo, (tn(un,vy)) < liminf J. (un,vn) = co,
n—oo n—o0
obtaining a contradiction. Then, we conclude that y € M. O

o8



Corollary 2.4.12. Assume the same hypotheses of Proposition 2.4.11. Then, for any given
v > 0, there exists R > 0 and ng € N such that

/ (IVun|* + |up|?) da +/ (Vv |? + |vn|?) dz < 7, for all m > ng.
Br(jn)° Br(in)°

Proof. By using the same notation of the proof of Proposition 2.4.11, we have for any R > 0
/ (IVun|? + |un|?) da:—i—/ (IVon 2 + |vn)?) dz
Br(yn)° Br(¥n)®
= / (IVw,? + |wn|?) da:—i—/ (IV2n|* + |20 ]?) da.
Br(0)° Br(0)°

Since ((wn, 2,)) strongly converges in H'(RY) x H'(RY), the result follows. O

Let us consider p = p(§) > 0 in such way that M; C B,(0) and define T : RV — RY
by setting Y(z) := z for |z| < p and Y(z) := pz/|z| for |x| > p. We also consider the
barycenter map . : Nz — R given by

Be(u,v) 1=

Since M C B,(0), the definition of T and Lebesgue’s theorem imply that

lim 5. (®(y)) =y uniformly for y € M. (2.4.18)

e—0

Following [17], we introduce the set
Se = {(u,v) € Nz : Jo(u,v) < co + h(e)},

where h : Rt — RT is such that h(g) — 0 as e — 07. Given y € M, we can use Lemma
2.4.10 to conclude that h(e) = |J-(P:(y)) — co| satisfies h(e) — 0 as ¢ — 0F. Thus,
O (y) € X, and therefore 3. # (), for any € > 0 small.

Lemma 2.4.13. For any 6 > 0 we have

lim sup dist(5:(u,v), Ms) = 0. (2.4.19)

e—0* (u,w)EX,

Proof. Let (g,) C R be such that &, — 0". By definition, there exists ((un, v,)) C X, such
that

dist(B:, (un,vn), Ms) = sup  dist(B:, (u,v), Ms) + on(1).
(u,v)€Xe,,

Thus, it suffices to find a sequence (y,) C My such that

|Ber, (Uns vn) = Yn| = 0n(1). (2.4.20)
Thus, recalling that ((uy,v,)) C Xe, C N, , we obtain

co < max Iy(tuy, tv,) < max Je,, (tup, tvy) = Je, (un,vn) < co + h(ey), (2.4.21)

from which follows that J., (un,v,) — co. Thus, we may invoke Proposition 2.4.11 to obtain
a sequence (7,) C RY such that (y,,) := (en¥n) C Ms, for n large. Hence,
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/ Y(enz) (|unl® + |vn|?) dz
RN

/RN (unf? + [va]?) da

/Ban (uTM Un) =

Y(enz + yYn) (]un(z + gn)P + [vn (2 + gn)‘Q) dz
N

| (an(E )P+ foa(z + G)l?) dz

(T(gnz + yn) - yn) (’un(z + gn)’2 + \vn(z + gn)‘Q) dz

= Ynt —
[ e+ G+ o+ Gu)l?) 2

Since €,z + yn — Yo € M and from strong convergence of (un (- + Un), vn(- + Un)), we
have that S, (un,vn) = yn + 0,(1) and therefore the sequence (y,,) satisfies (2.4.20). The
lemma is proved. O

Lemma 2.4.14. The minimazx level c. satisfies

limsupc. < ¢g.
e—0t

Proof. Let n € C§°(RY,[0,1]) be such that n = 1 on B;(0) and n = 0 on RY \ By(0). For
any given r > 0 we define (vq,(z),v2,(x)) = (n(z/r)wi(x),n(x/r)ws(z)), where (w1, ws)
is a ground state solution of the system (Sp).

Let tc, > 0 be such that ¢, ,(v1,,v2,) € Ne and note that

2

t
e < Je(te,rvl,rata,rUQ,r) = ;r /N (a(ex)|Vv1,r|2 + ”Ul,r’z) dz
R
tgn" 2 2
—}-—2 (b(E.I)|VU27T| + |va.| ) dr — H(ex, te pv1 0, te yv2,)de.
RN RN

It is easy to check that, for r fixed, t., — t, > 0 as ¢ — 0. Moreover, without loss of
generality, we may suppose that a(0) = ap and b(0) = byg. Hence, since (v1,,v2,) has
compact support, we can use Lebesgue’s theorem to get

t2 t2
limsupec. < 5/ (a0|VUL,«|2 + |UL,«|2) dr + T/ (bo’v’UQ,r‘Q + "UQ.T‘Q) dx
RN RN

e—0t 2

1
- N Q(trvl,ra trUQ,r)d:E - ? /N K(trvl,ra trUQ,r)dx-
R R

Since (wy,w2) € Mo and (vy,,v2,) — (w1, w2) in Ey as r — oo, we can check that
t, — 1 as r — oo. Thus, it follows from the above expression that

limsup e, < lim Io(tpv1 0, trva,) = lo(wi, we) = o
e—0+ r—00

and the proof is over. ]

We are now ready to present the proof of Theorem 2.4.1.
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2.4.2 Proof of Theorem 2.4.1

Proof. (i) From Lemma 2.4.14, we obtain €1 > 0 such that ¢. < ¢ for any € € (0,1).
For these values of ¢, since J. has the mountain pass geometry, we can take a sequence
((un,vy)) C Xe such that

Je(Un,vn) — e and  JL(up,v,) — 0.

By using Proposition 2.3.1, we garantee that c. < % <min{a0,b0}§K)N/2. Thus, from
Lemma 2.4.4 we get that, along a subsequence (uy,vy,) — (ue, ve) with (ue,ve) being such
that Je(ue,ve) = ¢ and J.(ug,v:) = 0.

Now we prove the item (i7). Given § > 0 such that Ms C A, we can use (2.4.18), Lemma
2.4.10, (2.4.13) and argue as in [17, Section 6] to obtain &5 > 0 such that, for any ¢ € (0, &),
the diagram

VRSN SN

is well defined and 5. o ®. is homotopically equivalent to the embedding ¢ : M — Mjs. Thus
caty, (X¢) > catp, (M).

It follows from Proposition 2.4.9 and Theorem 2.4.5 that J. possesses at least catpz, (M)
critical points on M. The same argument employed in the proof of Proposition 2.4.9 shows
that each of these critical points is also a critical point of the unconstrained functional J..
Thus, we obtain cat s, (M) nontrivial solutions for (S quz)- O

2.5 Proof of Theorem 2

In this section we prove our main theorem. The idea is to show that the solutions obtained
in Theorem 2.4.1 verify the following estimate |(uc(ex),v:(ex))| < a Vz € RV \ A, as ¢ is
small enough. This fact implies that these solutions are in fact solutions of the system (§€)
The key ingredient is the following result, whose proof uses an adaptation of the arguments
found in [31], which are related with the Moser’s iteration method [34] .

Lemma 2.5.1. Let Let (,,) be a sequence such that e, — 0% and for each n € N, let
(Un,vn) € X, be a solution of system (Se, quz). Then Je, (un,vn) — co and (up,v,) €
L®(RN) x L®(RN). Moreover, given & > 0, there exist R > 0 and ng € N such that, for
wp () = up(x + Yn) and zp(x) = vy (x + yp), we have

[Wn | oo M\ BR0)) < & for all n > no,

|2n| oo @3\ Br(0)) < & for all n > ny,

where (yy,) is the sequences of Proposition 2.4.11.

Proof. Since J., (un,vn) < co + h(e,) with 11113;@ h(en) = 0, we can argue as in (2.4.21)
to conclude that J., (up,v,) — co. Thus, we may invoke Proposition 2.4.11 to obtain a
sequence (,) C RY satisfying the conclusions of that Proposition.

Fix R:== Ry > Ry > ... > R > Rj_1 > ... > Ry and consider ng, € COO(]RN) such that
0 <ng, <1, nr, =0in Br/y(0), ng, =1 in Br(0)¢ and |[Vng,| < C/Ry. For each n € N
and L > 0, we define n,(x) := ng, (z — Yn), WL n, 2Ln € Xe by setting

. 2(8—1
wrp(x) == min{wy(x), L}, Yy rn:= niwL(’fL )wn
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and 51
z2rn(x) == min{z,(z), L}, Y.pn,:= nizL('z )zn,

with 8 > 1 to be determined later.
By definition of (Yo 1,0, Yz 1n), JL

L (Wn,2n)(Yw,Ln, Yz 1,n) = 0 and since

2a0(B — 1)/ niwnwi(ifl)AanVwL,ndx >0
RN ’

and

2bo(8 — 1) / 22z TN 2 Vo pda > 0,
RN ’

we have that

a0/ nnw (ﬁ 1)\Vw | d:c+2a0/ nnwnwL(n )Vnn Vwydz
RN

+bo/ nnan ]Vzn] dx + 2bg nnznzL(n )Vnn Vzpdz
RN

2 —1
< H, (E«T + Yn, Wn, zn)nnwnwl/(i )dJI

RN
+ H,(ex + yn,wn,zn)ﬂnZnZL(g Yz,
RN

(2.5.1)

In view of (H}), (H?") and (H,) we can obtain C; > 0 such that
1 1 * x
Hy(w,5,) + Hy(w,5,) < Zls| + [t/ + Cal|s|® 70 + [{{#7V], for any (v, 5,1) € RY*2,
Using the last inequality in (2.5.1), we obtain

ao/ nnwLn |an|2dx—i—b/ nnz (B 1)|Vzn]2dx
RN RN

< 2a0/ nnwnwL(ﬁ I)Vnn Vw,dzr + Qbo/ nnznzL(n )Vr]n Vz,dzx
RN RN
+/ n2w2 wL(n Yz +/ n2z2 zL(n Yz,
RN
For any 7 > 0 we can use Young’s inequality to obtain

ag/ nnwLn |an]2d$+bo/ nizig 2 V2, |2da
RN RN
< 24 / T2 Vi ? + C5wn Vi 22

RN

+2bg /R T2V 202 + Cs 202V 2230~V de

—I-/ n2w? wL(n )da:+/ n2zZ zi(i_l)dx.
RN RN
By choosing ¥ < 1/4 we get, there exists Cy > 0 such that

2
/ 77721 L(ﬁ |Vwn| dx—i—/ 77n Ln |Vzn| dx
RN RN

§02</ w2V [P0} )dx—ir/ 202V 2250 da (2.5.2)
RN RN

—i—/RN 772102 wL(n )dx—l—/ n2z2 zL(n )da;)
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Let S be the best constant of the embedding DV2(RY) — L¥ (RY) and define iy, ,, :=
nnwnwg_nl and zp,p = nnznzle. Since wr,, < wy and 27, < 2,, we have that

U LQ*}g /]RN ‘V <’7nwnw€;})’2dw + /RN ’V (nnznzg—nl> ‘de

<2 / |wn12w;§‘”\w|2dx+2 / o223 |V Pdat
RN RN

ZBQ/ nnwLn |Vfwn\2dx+2ﬁ2/ nnan |Vzn| dx.
RN
The last inequality and (2.5.2) provide

_ ~ 1
@2, +HanHL2*]<c452( /R P20 V1, 2
+/R PR 1\V77n!2dx+/ 02 wn|? w5 )dw+/ 02 |znl? 2] )dx>

for all g > 1.
The above expression, the properties of 1, and wr, , < |wyl|, 215 < |25/, imply that

(2.5.3)

S 1Bl + BB 1< o8 [ (jwnPA T a2 do

Bpry2(yn)©
+C452/ ) (!znlzﬁlvnnPJr\znP*—2yzn\25) da. (2.5.4)
Br2(yn)°
If we now set - ot
t:= @ =2 >1, (:= —1 < 2%, (2.5.5)

we can apply Holder’s inequality with exponents ¢/(t — 1) and ¢ in (2.5.4), to get
1/t
_ ~ ~ 2 2
st [HwL,nH%z* + HZLJIH%Q*]S C4ﬂz”wnHLg<(BR/2@n)c) (/ . [Vn| tdx>
Bry2(yn)

1/t
+Cy3? HZnHLﬁC(BR/Q(yn)«) </B \Vnn]%dac>

1t (2.5.6)
+Cy 3w ”26
MU LBS(Bry2(Gn)°) Br/2(Yn)¢

1/t
. ‘@ /2)
FCB nll Lo (5@ </BR/2@n)c ' dx) |

Since 7y, is constant on Bg/3(yn) U Br(yn)® and [Vn,| < C/Ro, we have that

C
/ |V77n|2tda: = / \Vnn|2tda: < ZSN < Cs, (2.5.7)
Bry2(Un)° R/2<|z—yn|<R Ry

where we have used, without of generality, that Ry > 1 and 2t = %N > N in the last
inequality.

Rr/2(Yn)¢

/2 dx

Claim. There exists ng € N and K > 0 such that , for any n > ng, there holds

/ w2 Dy < &
Bpry2(yn)©
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and

/ a2 @Dy < R
Bpry2(yn)©

Assuming the claim, we can use (2.5.6) and (2.5.7) to conclude that

 + CoB°l1zall

1~ ~ 2
T [HwL,nHiz* + ||ZL,n||%2*]§ CGBQHU)TLHL%C( LBS(Brys(iin)°)"

Bpry2(yn)©

Since

2/2*
283 o B82*
HwL,nHLBQ*(BR@n)C) B (/BR(%)C wLﬂdw)

2%(8-1) 2
([, P Vas

. 2
= M@zl < CoBlwnlFae s, o

2/2*
283 o B82*
‘Lﬁ2* (Br(7n)°) — </;R(gn)c ZL,n d.fl?)

- 1 2/2*
< (/ 0 el 220 )dw)
]RN

~ 2
= IBal?e < CoB%lznl e aey

IN

and

lzL.n

we can apply Fatou’s lemma in the variable L to obtain

1
lwnll Loz (Br@ae) + 12nllLo2s (Br@ye) < C7/Bﬂ1/ﬁHw””L“(BR/z@n)C)
1
+CH P BY 12l 156 (810 G)e)

whenever wi¢, 22¢ € L' (Bgo(yn)°).

We now set 3 := 2*/¢ > 1 and note that, since w,, z, € L* (RY), the above inequality
holds for this choice of 3. Moreover, since f?¢ = [32*, it follows that the inequality also
holds with 3 replaced by 32.

Hence,
1/52 2
[@ns 20l 322 (g gy < C77 B Nwns 20) 20

By iterating this process and recalling that ¢ = 2* we obtain, for k € N,

I:c —i k i —1
w20l stor ggagey < OF =7 B s 20)l2 (5 o

Since 8 > 1 we can take the limit as £k — oo to get
H(wn,zn)HLoo(BR(ﬂn)c) < CSH(wmzn)||L2*(BR/2(gn)c)~

By using the change of variables z — x — ¥,, we obtain
1

lwnszlmongry < Co( [ el + G dz)?

Bpry2(0)¢

1
2*

+08(/ onz 4 5) 7 dz) ™
Bpry2(0)¢
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where (wp (), zn(z)) = (up(z + Un),vn(z + ¥n)). By Proposition 2.4.11 we have that
((wn, 2,)) strongly converges in L2 (RY) x L?"(RY). Thus, for R > 0 sufficiently large,
there holds

[(wn, 2n) || Loo (BR@a)e) < 7>
for large n, which prove this lemma.

It remains to prove the claim. Of course, it is sufficient to prove that the first integral
is finite. For that purpose we consider a new cut-off function given by 7, (z) := n,(2z), in
such way that 7, = 0 on Bg/4(yn) and 7, = 1 on Brs(yn). If wp, = ﬁn|wn|w§;l1, we
can proceed as before to prove the following version of (2.5.3)

ol < 0o [ lunPuil Wit [ Pl V). (258

We set 3 := 2*/2 to obtain

~ (2*—2) |~ 2%_9 .
||wL,n”%2* < Cho (/R |wn’2wLn )|V77n’2d95 +/B - 77n|wn|2wLn )|wn|(2 Q)d:v> )
Rr/4(Yn )

By Holder’s inequality with exponents 2*/2 and 2*/(2* — 2) we get

~ 2% —2 ~
e M

2/2*
2)/2 2% 9
£ </B’R/4(§n)c (nn|wn|wL” > dx) e L (Brya(@n)°)’

From Proposition 2.4.11 we obtain ng € N and R > 1 such that

/ o 1 \27/(2-2)
Br/a(iin)° 2C10

for all n > nyg.
Then

< Clo/ !wn|2w(L2n_2)N77n|2d$
RN

. ) 2/2*
(2=2)/2

+ = / iinlwn|wi?, dx) :

2 ( BR/4(177L)C( b >

Thus, recalling that 77n|wn|wL2n_2)/2

= WL n, WLy < |wy| and Vn, is bounded, we obtain

1@ |72+ < Cro.

The definition of 77, and the above inequality imply that

/ (Jwalw} 1 de < O,
BR/Q(gn)c

for all n > ng. Using Fatou’s lemma in the variable L, we have
/ w2 @/ dz < K = CH/%,
Bpry2(yn)
for all n > ng, and therefore the claim holds. O
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We are now ready to prove the main result of this chapter.
Proof of Theorem 2. Suppose that § > 0 is such that Ms C A. We first claim that there
exists €5 > 0 such that, for any 0 < ¢ < &5 and any solution (u,v:) € . of the system
(Sc,auz), there holds

|(us(ex),ve(ex))| < o for each z € RV \ A.. (2.5.9)

In order to prove the claim we argue by contradiction. So, suppose that for some sequence
en — 01 we can obtain (uy,v,) € Xc, such that J. (tn,vn) =0 and

H(UTL’UN)HLOO(RN\AEH) > Q. (2510)

As in Lemma 2.5.1, we have that J., (up,v,) — ¢o and therefore we can use Proposition
2.4.11 to obtain a sequence (7,) C RY such that &,7, — yo € M.
If we take r > 0 such that B,(yo) C Ba2,(yo) C A we have that

1
By e, (yo/en) = —~Br(yo) C Ae,.

Moreover, for any z € B, /., (yn), there holds

~ Yo
Yn — —
e

n

‘z—yo <z — Gl +

n

< rto) < 2,

n gn

for n large. For this values of n we have that B, /., (Jn) C A, or, equivalently, RV \ A, C
RN\ B, /e, (yn)- On the other hand, it follows from Lemma 2.5.1 with { = « that, for any
n > ng such that r/e, > R, there holds

[t Lo @A) < lltnllLee@™\B,,., @) < lunllLoo@¥\Br@.)) < @

and
[onllzoo@i\A,) < lvnlle@m\s,,., @) < 1onllLe @\ Br(@.)) < @

which contradicts (2.5.10) and proves the claim.

Considereing 0 < g5 < &5, we shall prove the main theorem for this choice of 5. Let
0 < € < g5 be fixed. By applying Theorem 2.4.1, we obtain catys; (M) nontrivial solutions
of the system (Scquz). If (u,v) € X, is one of these solutions we have that (u,v) € X,
and therefore we can use (2.5.9) and the definition of H to conclude that H(-,u,v) =
Q(u,v) + 5 K (u,v). Hence, (u,v) is also a solution of the system (§5) An easy calculation
shows that (u(z),v(z)) := (u(xz/e),v(x/e)) is a solution of the original system (S;). Then,
(Sc) has at least catjz, (M) nontrivial solutions.

We now consider &, — 07 and take a sequence (u,,v,) € X, of solutions of the system

~

(S.,) as above. By applying Lemma 2.5.1, we obtain R > 0 and (7,,) C RY such that

[unll Lo (Br@a))e < (2.5.11)

and
vnll oo (Br@))e < - (2.5.12)

Up to a subsequence, we may also assume that

unllLoo(Br@n)) = - (2.5.13)

and
vnllLoo (Br@a)) = V- (2.5.14)
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Indeed, if this is not the case, we have ||uy|| oo gy < v O ||Un]| foo(mry < 7, Which is a
contradiction with (2.4.11). Thus (2.5.13) and (2.5.14) hold.

By using (2.5.13) and (2.5.14) we conclude that the maximum point 7, , € RY of u,
and the maximum point m,; € RY of v, belong to Br(¥,). Hence Tn,a = Yn~+Gn,a, fOr some
dna € Br(0) and 7,5 = Yn + Gnp, for some g, € Br(0). Recalling that the associated
solution of (S;,) is of the form (U, (z), 0, (z)) = (un(z/en), vn(x/ey)), we conclude that the
maximum point II,, , of %, and the maximum point II. ; of v, are Il¢, 4 := €,Un + €ngna
and Il p := €p¥n + Engnp- Since (¢n.a), (gnp) C Br(0) are bounded and e,y, — yo € M
(according to Proposition 2.4.11), we obtain

lim a(Il;, o) = a(yo) = ao
n—0o0

and

lim b(Hsn,b) = b(yo) = bo.

n—o0

Now we prove the regularity of the solution. Note that from Lema 2.5.1, (2.5.13) and
(2.5.14), we have that uc,v. € L2(RY) N L®(RY). From interpolation inequality, we get
(ue,ve) € LY(RN) x LY(RN), ¥V ¢ > 2, that implies Qy(ue,v.) + 2%Ku(ue,vg), Qu(ue,ve) +
Ky (ue,ve) € LYRY), V ¢ > 2. From regularity elliptic theory, we get (uc,v.) € W24(RV)x
W24(RN), V g > 2. For ¢ sufficiently large, we obtain W24(RY) < C1A(RY), for some 0 <
A < 1. Then, u.,v. € CYARY). Since Q, K € C*(RY), we obtain that u.,v. € C2*(RY),
which concludes the proof of the theorem. O
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Chapter 3

On concentration behavior and

multiplicity of solutions for a system
in RY

3.1 Introduction

In this chapter we will describe a result on the behavior asymptotic of the solutions of a
system with two elliptic equations in the RY involving a small parameter. More precisely,
we study the system

—2div(a(z)Vu) + u = Qu(u,v) + 5- Ky(u,v) in RY,
—2Av+b(x)v = Qu(u,v) + 3= Ky(u,v) in RN,
u,v € HY(RN), u(z),v(x) >0 for each z € RV,

where 2* = 2N/(N —2), N > 3, £ > 0, a and b are positive continuous potentials, and @
and K are homogeneous function with K having critical growth.

In the first part of this chapter we are concerned with the existence, multiplicity and
concentration of positive solutions for the following system given by

—e2div(a(z)Vu) +u = Qy(u,v) in RY,
(Se) —2Av+b(z)v = Qu(u,v) in RY,

u,v € HYRY), wu(z),v(x) > 0 for each z € RV,

where ¢ > 0, N > 3, 2* = % and a, b are continuous potentials.

The hypotheses on functions a and b are the following:
(aby) there are ag > 0 and by > 0 such that
ap < a(x)

and
bo < b(x) for all z € RY;

(aby) there exists a bounded domain A C R¥ such that

= inf < inf
0= fuf o) < o o)

and

bop = inf b inf b(x).
0= P < g )
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Setting R2 := [0, 00) x [0, 00), for any given ¢ > 1 we denote by HY the collection of all
functions F € C?*(R%, R) satisfying the following properties:

(H{) F is g-homogeneous; that is

2
F(As,\t) = M1F(s,t), foreach A >0 and (s,t) € R%;

(H{) there exists ¢; > 0 such that

|Fy(s, )| + [Fy(s,t)] < c1 (s771 +1971)  for each (s,t) € RY;

(H2) F(s,t) > 0 for each s,t > 0;
(Hs) VF(1,0) = VF(0,1) = (0,0);
(Ha) Fs(s,t),Fi(s,t) >0 for each (s,t) € RZ.

We relate the number of solutions of (S;) with the topology of the set of minima of the
potentials a and b. In order to present our result we introduce the following set:

M = {z e RY :a(z) =ap and b(x) =by}.

We recall that, if Y is a closed set of a topological space X, catx(Y) is the Ljusternik-
Schnirelmann category of ¥ in X, namely the least number of closed and contractible set
in X which cover Y. We denote by

Ms := {z € RY : dist(z, M) < 6} C A,

the closed d-neighborhood of M, and we shall prove the following result.

Theorem 3. Suppose that a and b are continuous potentials satisfying (aby) — (ab2) and
M # (. Suppose also that Q € HP for any 2 < p < 2*. Then,

(1) for all e > 0, the system (S¢) has a positive ground state solution.

(17) for any 6 > 0 there exists e5 > 0 such that, for any € € (0,¢5), the system (S¢) has at
least cat g, (M) positive solutions.

(1) if (ue,ve) 4s a solution for (Se) and if e o and Il. , are mazimum points of u. and ve
respectively, then Il ,, 1., € A, lim+ a(Il; 4) = ag and lim+ b(Il.) = by, furthermore,
e—0 e—0

each solution (ug,v.) € C2MNRN), for some X € (0,1).

In the second part of the chapter we deal with a critical version of (S¢), namely the
system

—e2div(a(z)Vu) + u = Qu(u,v) + 5= Ky (u,v) in RY,
(CS;) —e2Av +b(z)v = Qu(u,v) + 5= Ky(u,v) in RY,
u,v € HYRY), wu(z),v(x) > 0 for each z € RV,

In order to deal with the critical growth of the nonlinearity we assume the following
hypotheses on the functions ) and K:

(A1) K € H* and Q € HP for some 2 < p < 2*;

(A2) the 1-homogeneous function G : R2 — R given by G(s*",t?") := K (s,t) is concave;
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(A3)

Q(s,t) > gs>‘t5, for all (s, t) € R?,
b1

where A, 5> 1, A+ 8 =:p; € (2,2%) and

P1—2

C(ao, bo)
+ (min{ao, 1}§K)

o>o0" =

N/2

The hypothesis (A2) appeared in the first time in [19] and will be used in Proposition 3.6.2.
The constants that define ¢* will appear naturally in Proposition 3.6.2.

The critical version of Theorem 3 can be stated as follows.

Theorem 4. Suppose that a and b are continuous potentials satisfying (aby) — (ab2) and
M # Q. Suppose also that Q and K satisfy (A1) — (A3). Then,

(1) there exists 9 > 0 such that, for any e € (0,eq) the system (CSe) has a positive ground
state solution.

(73) for any § > 0 there exists e5 > 0 such that, for any € € (0,¢5), the system (CSe) has
at least catps; (M) positive solutions.

(¢i) if (ue,ve) is a solution for (C'S:) and if Il. , and Il are mazimum points of us and v.
respectively, then I, o, 1., € A, lim a(Il;,) = ap and lim b(Il;) = by, furthermore,
’ e—07t ’ e—07+
each solution (uz,v.) € C>MNRYN), for some X € (0,1).

The chapter is organized as follows. In order to overcome the lack of compactness, in
section 3.2 we make a penalization of the nonlinearity using arguments that can be found
in [1]. In section 3.3 we show existence of solution for the auxiliary system introduced in
section 3.2. In section 3.4 we obtain uniform estimates in order to show that the solution
of the auxiliary system is a solution of the original system. The proof of the main result in
the subcritical case is in section 3.5. The critical case is studied in section 3.6.

3.2 Variational framework and a modified system

Since we are interested in positive solutions we extend the function ¢ and K to the whole
R? by setting Q(u,v) = K(u,v) =0 if u < 0 or v < 0. We also note that for any function
F € H%, we can use the homogeneity condition (H) to conclude that

qF(s,t) = sFs(s,t) + tF(s,t) (3.2.1)

. q(q — 1)F(s,t) = 82 Fys(s, ) + t*Fy(s, 1) + 25t Fy (s, 1) (3.2.2)
for any (s,t) € R2.
Hereafter, we will work with the following system equivalent to (S;).
—div(a(ez)Vu) +u = Qy(u,v) in RY,
(5.) —Av+b(ex)v = Qy(u,v) in RY,
u,v € HYRY), wu(z),v(x) > 0 for each z € RV,
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In order to overcome the lack of compactness originated by the unboundedness of RY we
use a penalization method. Such kind of idea has first appeared in the paper of Del Pino
and Felmer [20]. Here we use an adaptation of this method for systems, as introduced in [1].

We start by choosing a > 0 and considering 1 : R — R a non-increasing function of class
C? such that

(3.2.3)

C C
n=1on (—o0o,a], n=0on [ba,+00), [7'(s)| < - and |’ (s)] < 2

for each s € R and for some positive constant C' > 0. Using the function n, we define
Q:R?2 - R by

Qs t) = n(|(s,)NQ(s,t) + (1 = (| (s, ) A(s* + 1)

where

A := max {g(i 2 L (s,1) €R? a < |(s,1)] < 5a}.

Notice that, since A > 0 tends to zero as « — 0T, we may suppose that A € (0, u/4) where
p=max{1,1/by} 1.

Finally, denoting by I, the characteristic function of the set A, we define H : RN x R? —
R by setting

H(z,s,t) =I5 (2)Q(s,t) + (1 — In(2))Q(s, t). (3.2.4)
For any a > 0 small and (s,t) € R? we have the following result.

Lemma 3.2.1. The function H satisfies the following estimates:
(H1) pH(x,s,t) = sHs(z,s,t) + tHy(x, s,t), for each x € A;
(Hy) 2H(x,s,t) < sHy(z,s,t) + tH(z,5,t), for each x € RN \ A;

(Hs3) for a small we have sHy(z,s,t) + tHy(z,s,t) < — (s* 4+ b(x)t?) for each x € RN \ A;

>~ =

|Hg(z, s,1)]| \Ht(x,s,t)]
a )

(Hy) for a small we have >

%for each x € RV \ A.
Proof. Since H(x,s,t) = Q(s,t) on the set A, we can use (3.2.1) to get
pH(x,s,t) = sHg(x,s,t) + tH(z,s,t)

for all € A. This proves (Hj). R
In what follows we denote |z| := V/s2 +t>. Notice that H(z,s,t) = Q(s,t) for all
x € RV \ A, consequently

Hy = | ’Q+nQS— H A(s® + 1) +24(1 —n)s
and >
Hy = | |Q+th ‘ | A(s® +12) +2A(1 — )t
so,
sHs +tHy =1|2| [Q — A(s® +1°)] + 1 [sQs + tQq] + 2A(1 — n)(s* + t?) (3.2.5)

Notice that, in view of the definition of A, we have that

Q(s,t) — Alz|* <0,
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for all z belonging in the support of 1. Hence recalling that ' < 0, we can use the above
estimate, (3.2.5), (3.2.1) and the fact 2 < p < 2*, to obtain

pnQ + 2A(1 — n)|2)?
2 [nQ + A(L —n)|2*] =2H

for all z € RV \ A. Thus, (H2) holds.
Since 7 is smooth and supp 1’ C [a,5a], we can use (3.2.5), (HY), (3.2.3) and the
definition of A, to get

sHs +tH, ’ Q(s,1) n
—5 . = —A —s s+1 2A(1 —
2 1 12 2| |:82+t2 +|z\2 [sQs +1Q¢] + 2A(1 — 1)
Q(s 1) U
< 17|z [524—752 —A —|—261W(Sp+tp)—|—214(1—77)

< |7l

Q(s,1) -
2 — Al +4c|2|P? 4+ 44

C

< = 5a-2A 4 dep(5a)PT2 4 4A.
o

Then, for a sufficiently small we have that

SH, + tH, < %(52 +12).

Thus, for this choice of «, we can use the above estimate and (ab;) to obtain, for each
r € RN\ A,

—_

sHy +tH, < — (s* 4 b(z)t?)

S

showing that (H3) holds. R
Since H(z,s,t) = Q(s,t) for all z € RN \ A, from definition of Q, supp 7' C [a, 5a], HY
and (3.2.3)

S S
|H(x,5,t)] = n’mQ + Qs — H’MA(SQ +1%) +2A(1 —n)s
5, t I
< In’\%k\mmq(sp L7 4 /| Al + 44|
st _
= '""gl t;’Z\Q + [nl2e1 2P~ + Al + 4Al2]
¢ 2 1, C 2
< —-A-250° + 2¢1(ba)P" + — - A-25a° + 20aA.
(6% «

Then, for «a sufficiently small we have that

|Hs(z,s,t)]

<k
o — 4
Using similar arguments, it is possible to prove that

’Ht(x7 S, t)’
(6%

IN
RS

proving (Hy). O
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In view by definition (3.2.4), we deal in the sequel with the modified system
—div(a(ez)Vu) +u = H,(ex,u,v) in RV,
(Se.auz) —Av 4 b(ex)v = Hy,(ex,u,v) in RY,
u,v € HYRY), wu(z),v(x) > 0 for each z € RV,
and we will look for solutions (ue, v.) verifying
|(ue(ex), ve(ex))| < @ for each z € RN \ A,
where A, = {z € RY : ez € A}.
For each € > 0 we denote by X, the Hilbert space
X, = {(u, v) € HY(RY) x HY(RY) : /]RN (a(ex)|Vul? + bex)|v]?) dz < oo}
endowed with the norm

1, 02 = / [aea)|[Vaul® + Vol + [uf? + b(ex)[v]?] de.
RN

Conditions (Hs3) and (H}) imply that the critical points of the C'-functional J; : X, — R
given by

1
Je(u,v) = 5 /RN [a(ex)|Vul> + |Vo]? + [u]?® + b(ez)|v]?] dz — - H(ex,u,v)dx

are weak solutions of (S;quz). We recall that these critical points belong to the Nehari
manifold of J., namely on the set

Nz = {(u,v) € X:\ {(0,0)} : J.(u,v)(u,v) =0} .

(
It is well known that, for any nontrivial element (u,v) € X the function ¢ — J.(tu, tv), for
t > 0, achieves its maximum value at a unique point ¢, ,(u,v) € N;. We define the number
be by setting

be := inf  J.(u,v). (3.2.6)

(u,v)EN:

3.3 Existence of a ground state solution for the modified sys-
tem (S: quz)

We start defining the Palais-Smale compactness condition. A sequence ((un,v,)) C X is a
Palais-Smale sequence at level ¢, for the functional .J; if

Je(Up,vp) — e

and
[T (un, vn) | =0 in (X)),
where
= inf Je(n(t)) >0
¢ = Inf max =(n(t))
and

I':= {n € C([0,1], X2) : n(0) = (0,0), J:(n(1)) < O}.

If every Palais-Smale sequence of J; has a strong convergent subsequence, then one says
that J. satisfies the Palais-Smale condition ((PS) for short).

In order to show existence of a ground state solution for the modified system (S quz),
we use the Mountain Pass Theorem |[6].
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Lemma 3.3.1. The functional J. satisfies the following conditions

(i) There exists C,p > 0, such that
Je(u,v) 2 C, if [[(u,v)]le = p.
(it) For any (¢,) € C§°(As) x C3°(As) with ¢, > 0, we have

tlg-noo Js(t¢7 t¢) = -

Proof. By using Lemma 3.2.1 and (H}), we have

1 2cq 1
Je(u,v) > S[[(w,0)[I2 = == [ (Jul’ + |v’) dz — / (luf® + b(ex)|v]?) da.
2 P Ja. 8 JrRM\A.

By Sobolev embeddings, there exists C' > 0 such that
3 C
Je(u,v) > gll(u,v)llg - EH(U’ vl

and the proof of item (i) is over. Now, by definition of H and (H}), we get

J. (b, 1)) = fH 6.0)]2 —tp/ Q6, $)d

and the proof of item (i) is over. O

Hence, there exists a Palais-Smale sequence ((un,v,)) C X at level c.. Using (H}), it
is possible to prove that

ce=b, = inf sup Je(tu, tv 3.3.1
© T T )X (0.0 120 (tu, tv) (3:3.1)

where b, was defined in (3.2.6).

In order to prove the Palais-Smale condition, we need to prove the next lemma.

Lemma 3.3.2. Let ((un,vr)) be a (PS)q sequence for J.. Then for each & > 0, there exists
R = R(&) such that

limsup/ [a(ex)|Vun|? + |Vun|? + |un|? + blez)|vy ] dz < €
RN\BR(0)

n—oo

Proof. Let ng € C*=(RY) such that ng(z) = 0 if 2 € Bp/2(0) and nr(z) = 1 if = ¢ Bg(0),
with 0 < ng(z) < 1 and |Vng| < &, where C is constant independent of R. Since that the
sequence ((unnR,vnnr)) is bounded in X, fixing R > 0 such that A. C Bpg/»(0) and by
definition of the functional J., we obtain

/ [a(sx)|Vun|2 + [Vou|? + |un]? + b(sx)|vn|2] nrdx
RN
= J(tun,vn)(Unnr, vanR) + / [y, Hu (€T, Upy Un) + vn Hy (€T, Up, vy) ] nRAT

RN

- / [a(ex)unVu, + v, Vu,| Vnrdz.
RN
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Using (Hs), we get the estimate

3/ [a(ax)\Vun\Q + [Von|? + un]? + b(ax)\vn\Q] dx
4 JrRN\BR(0)

< /N [alen) |V unl + [0Vl [Vl + 03 (1).
R
Since ((un,vy)) is bounded in X, and |Vng| < &, exists C > 0 such that
2 2 2 2 1
[a(ex)]Vun] + |Vun|® + |un|* + bex)| vy }da: < — +o,(1)
RY\Br(0) R

proving the lemma. O
Lemma 3.3.3. The functional J. satisfies the Palais-Smale condition at any level c.

Proof. Let ((un,v,)) C X¢ such that J.(up,v,) — ¢ and J.(up,v,) — 0. Standart calcula-
tions show that ((un,vy)) is bounded in X.. Then, up to a subsequence, we may suppose
that,

(Un,vp) = (u,v) weakly in X,
Up — u, v, — v strongly in L (RY), forany 2<s< 2%, (3.3.2)

loc
un(z) = u(z), va(z) = v(z) for a.e. xRV,

Now using a density argument, we can conclude that (u,v) is a criticl point of J.. Hence
| (u,v)|)? = /]RN [uHy(ex,u,v) + vHy(ex,u,v)] dz. (3.3.3)
On the other hand, we have
o)1 = [ ol 00) + (e 0, 00)] o+ on(1). (33.4)
From Lemma 3.3.2, for any £ > 0 given, there exists R > 0 such that A, C Br(0) and
limsup/ [a(e2)|Vun|? + |Vou|* + [un|? + b(ez)|v,|?] do < €.
n—00  JRN\Bg(0)

This inequality, (H3) and the Sobolev embedding imply that, for n large enough, there holds
1

/ [un Hy (e, U, Vn) + 0n Hy (X, Uy, vp)] dz < C1=€ (3.3.5)
RN\ B (0) 4

where (] is positive constant. On the other hand, taking R large enough, we can suppose
that

/ [uHy(ex,u,v) + vHy(ex,u,v)| dx| < &. (3.3.6)
RN\BR(0)

Then, by (3.3.5) and (3.3.6), we conclude that
/ [unHy (X, Un, vp) + v Hy (e, Uy, vp)] dx
RN\BR(0)

= / [uHy(ex,u,v) + vHy(ex,u,v)] dx + o, (1). (3.3.7)
RN\BR(0)
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Since the set Br(0)N (RN \ A.) is bounded, we can use (H3), (3.3.2) and Lebesgue’s theorem
to conclude that

lim [unHy (2, U, vp,) + v Hy (e, up, vy,)] dx
"0 JBR(O)N(RN\A.)

[uHy(ex,u,v) + vHy,(ex, u,v)| dz. (3.3.8)

/BR(O)W(RN\AE)
Using (HY), (3.3.2) and Lebesgue’s theorem again, we obtain

lim [un Hy (e, U, vn) + vp Hy(ex, up, vy)] dz
n—oo AE
= / [uHy (ex,u,v) + vH,(ex,u,v)| dz. (3.3.9)
A

From (3.3.7), (3.3.8) and (3.3.9) we get

lim [un Hy (62, U, vn) + vp Hy (e, up, vy)] dz
n—oo RN

= / [uH,(ex,u,v) + vHy,(ex,u,v)] dz.
RN

This, (3.3.3) and (3.3.4) implies that |(un,vn)||? = ||(w,v)||?. Then (up,v,) — (u,v) in
Xe. O

3.4 Multiple solutions for the modified system (5. qu.)
In order to prove the multiplicity result, we consider the following autonomous system
associated to (Sp), namely
—apAu 4 u = Qy(u,v) in RY,
(So) —Av+bpv = Qy(u,v) in RY,
u,v € HY(RN), wu(x),v(x) > 0 for each z € RV,

In view of conditions (aby) and (H}), the above system has a variational structure and the
associated functional is given by

1
Ip(u,v) := 3 /]RN [ao|Vul? + | V| + |u]?* + bo|v|*] dz — /]RN Q(u,v)dz

is well defined for (u,v) € Eg := H'(RV) x H'(RY). We denote the norm in Ey by
(s 0)|? = / [ao [Vl + [Vof? + [uf? + bolo[?] da.
RN

We can show that Iy has the Mountain Pass geometry and therefore we can set the
minimax level ¢ in the following way

:= inf I t
¢o = Inf max o(v(1)),

where I' := {y € C([0,1], Ep) : v(0) = (0,0), Ip(y(1)) < 0}. Moreover, ¢y can be further
characterized as

co= inf Iy(u,v 3.4.1
0 (u,w)EMo 0( ) ( )

with Mg being the Nehari manifold of Iy, that is
My = {(u, v) € Ep\ {(0,0)} : I{(u,v)(u,v) = 0} .

76



Lemma 3.4.1. Let ((un,vy)) C Mo be a sequence such that Iy(up,vy,) — co. Then there
are a sequence (y,) C RY and constants R,n > 0 such that

n—oo

lim inf/ (|un|2 + |vn|2) dx > . (3.4.2)
BR(yn

Proof. Suppose that (3.4.2) is not satisfied. Since ((un,v,)) is bounded in H(RY) x
H'(RY), then, from [32, Lemma 1.1], we get

lim |un|de =0
n—oo RN

and

lim |on|*dx = 0,
n—oo RN

for all s € (2,2*). Thus, from (H}), we conclude

/RN [UnQu(UnaUn) + UnQv(unavn)] dr = On(l)‘

Since Ify(un, vn)(Un, vy) = 0, we obtain ||(un,vy)|| = 0,(1), which implies ¢g = 0, which is a
contradiction. O

The next result allows to show that system (Sp) has a solution that reaches cy.

Lemma 3.4.2. (A Compactness Lemma) Let ((un,vy,)) C Mo be a sequence satisfying
Iy(un,vy) — co. Then, there exists a sequence (Yn) C RN such that, up to a subsequence,
(wn (), 20()) = (un (T + Tn), va(x + 7)) converges strongly in H'(RV) x HY(RN).

In particular, there exists a minimizer for cg.

Proof. Applying Ekeland’s Variational Principle [40, Theorem 8.5|, we may suppose that
((un,vn)) is a (PS)e, for I. Since ((un,v,)) is bounded in HY(RY) x HY(RY), we have
that u, — u, v, — v weakly in Hl(RN).

Then, ||(u,v)||* < linniigf | (ttn, v)||?. We are going to prove that

1w, 0) |2 = Tin || (un, vn)[|. (3.4.3)
n—oo
Suppose, by contradiction, that (3.4.3) does not hold. Then, by (H3), we can consider

(u,v) # (0,0), using a density argument we have that Ij)(u,v)(u,v) = 0, where we conclude
that (u,v) € Mg. Using (3.2.1), we obtain

1
co < Ip(u,v) = Ip(u,v) — ]SI(')(U, v)(u,v)
11 )
= (3-5) o
1 1
< — ) lim inf H(un,vn)H2
2 P n—00

1
= liminf [Io(un,fun) — I (upy vp) (U, v0) | = o
p

A

n—oo

which is a contradiction. Hence, (un,v,) — (u,v) in HY(RY) x H'(RY). Consequently,
Iy(u,v) = ¢ and the sequence (y,) is the sequence null.
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If (u,v) = (0,0), then in this case we cannot have (up, v,) — (u,v) strongly in H(RM) x
H'(RY) because ¢y > 0. Hence, using the Lemma 3.4.1, there exists a sequence (7,) C RY
such that

(Wn, zn) = (w,2) in HYRY) x HY(RY),
where wy,(z) = up(z + yn) and z,(z) = v, (z + Yn). Therefore, ((wn, 2z,,)) is also (PS),, se-

quence of Iy and (w, z) Z (0,0). It follows form above arguments that, up to a subsequence,
((wn, zn)) converges strongly in H'(RY) x H'(RY) and the proof of lemma is over. O

In order to prove the multiplicity results, we need of the following the abstract results
that involve category theory.

Theorem 3.4.3. Let I be a C'-functional defined on a C'-Finsler manifold V. If I is
bounded from below and satisfies the Palais-Smale condition, then I has at least caty (V)
distinct critical points.

The following result, which has a proof similar to that presented in [10, Lemma 4.3], will
be used.

Lemma 3.4.4. Let ', QT, Q= be closed sets with @~ C Q. Let 3:T - QT, ®: Q" =T
be two continuous maps such that B o ® is homotopically equivalent to the embedding v :
QO — Q. Then catp(T) > catq+ (27).

3.4.1 The Palais-Smale condition in the Nehari manifold associated to J.

From Lemma 3.3.3, the unconstrained functional satisfies (PS). for each ¢ € R. Neverthe-
less, to get multiple critical points, we need to work with the functional J. constrained to
Nz. We denote by ||J.(u)||« the norm of the derivative of J; restricted to N: at the point w.
In order to prove the desired compactness result we shall first present some properties of Nz,
which the proofs of the next three results follows by using the same arguments employed
in [3, Lemma 2.2, Lemma 2.3 and Proposition 2.4| for other class of system. For the sake
of completeness, we sketch here.

Lemma 3.4.5. There exist positive constants ay,01,C such that, for each o € (0,y),
(u,v) € Nz, there hold

Q(u,v)dr > & (3.4.4)
Ae

and
/ (v + b(ez)v?) dz < C | Q(u,v)dz. (3.4.5)
RN\ A, Ac
Proof. Since H has subcritical growth, it is easy to obtain 5 > 0 such that
(u,0)||lc >8 for each (u,v) € M.

Thus, we can use (3.2.1) and (H3) to get

82 < [ (u, 0)|2

IN

/ [1Qu (1, ©) + Q0 (1, v)] da + / (wH, + vH,] do

€ RN\AE

IN

1
p | Qu,v)dr+ - / (u® 4 b(ex)v?)da
Ae 4 Jrv\A.

and therefore 5
252 <

1 < i< [ Qu v

=~
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which implies (3.4.4) with &, = 2.
By using (3.2.1) and (H3) again, we obtain

foy, (b e < o)

< p/ Q(u,v)dz + 1/ (u? + b(ez)v?) dx
Ae 4 JrV\A.

from which follows (3.4.5). The lemma is proved. O

The following technical results is the key stone in our compactness result.

Lemma 3.4.6. Let ¢. : X — R be given by
el ) i= (w0 = [ | [Ha(ew,,0) + o, (e, u,0)) do
RN

Then there exist ao, M >0 such that, for each a € (0, az),
O (u,v)(u,v) < —M <0 for each (u,v) € N (3.4.6)

Proof. Given (u,v) € N, we can use the definition of H, (3.2.1) and (3.2.2) to get
S o)u0) = [ @+ 0Qu) = (12 Qs + 6 Quy + 2u0Qu)] d
Ae

+/ [uH, + vH,| dx — / [quuu + 2 Hyy + QUUHM,] dx
RN \A. RN\A.

- pp-2) Qmwm+/ Dy — D) da
Ac RN\ A,

with
D :=uH,+vH, and Dy:=u’Hyy+ v*Hyy, + 2uvHy,.

Arguing as in the proof of |3, Lemma 2.3|, and using (ab;), we have

/ [D1 — Doldx < 0(1)/ (u® 4 v?)dx < 0(1)/ (u® + b(ex)v?)da
RN\A. RN\A. RN\A.

where o(1) — 0 as a — 07.
Now we can use Lemma 3.4.5 to obtain, for o small enough

6 0,0)(0,0) < [-plp ~ D) + (V)] [ Qi <222y i <o,

The lemma is proved. O
Proposition 3.4.7. The functional J. restricted to N; satisfies (PS). for each ¢ € R.

Proof. Let ((un,vyn)) C Nz be such that
Je(un,vn) — ¢ and  |[JL(up,vp) |« = on(1),
where 0,(1) approaches zero as n — oo. Then there exists (\,) C R satisfying

JL(Un, Vn) = An @ (tn, vp) + 0p (1) (3.4.7)
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with ¢, as in Lemma 3.4.6. Since (u,vy,) € Nz we have that

0= Jé(un,vn)(un, Up) = An(bla(unavn)(umvn) + 0on (1) || (tn, vn) |-

Straightforward calculations show that ((uy,,vy)) is bounded. Moreover, in view of Lemma
3.4.6, we may suppose that ¢.(up, v,)(un,v,) — 1 < 0. Hence, the above expression shows
that A\, — 0 and therefore we conclude that J.(un,v,) — 0 in the dual space of X.. Tt
follows from Lemma 3.3.3 that ((u,,vy)) has a convergent subsequence. O

From now on we will denote by (w;, w2) the solution for the system (Sp) given by Lemma
3.4.2.

Let us consider § > 0 such that Ms C A and v € C*®(R",[0,1]) a non-increasing
function such that ¢» = 1 on [0,6/2] and ¢ = 0 on [§,00). For any y € M, we define the
function ¥; . , € X, by setting

ex — ,
\I’i,a,y(l’) = ¢(|€(E — y|)fwz < y) , 1= 1727

€

and denote by t. > 0 the unique positive number verifying
Je (te(\Ill,s,yy \p2,s,y)) = 1?35( Je (t(\Pl,s,w \IIZ,E,y))-
In view of the above remarks, it is well defined the function ®. : M — N given by

éf(y) = tE(\Ijl,E,yv ‘112"5’:‘/)'

In next lemma we prove an important relationship between ®. and the set M.

Lemma 3.4.8. Uniformly for y € M, we have

lim J.(®:(y)) = co

e—0t
where co was given in (3.4.1).

Proof. Suppose, by contradiction, that the lemma is false. Then there exist 6 > 0, (y,) C M
and €, — 07 such that
| Jen (P, (Yn)) — col >0 > 0. (3.4.8)

We notice that, if z € By, (0) then £,2 + yn € Bs(yn) C Ms C A. Thus recalling that
H =@ in A and ¢(s) = 0 for s > §, we can use the change of variables 2 > 27— to write

1
Je, (e, (y)) = §H(tsnml,en,yvtsn‘IJZ,en,y)”gn - /RN H(ffnxvtsn\pl,sn,wtenq’len,y)da“

t2 t2

& /R alenz + )|V (W(lenslyun (2) Pz + 2 /R V(@ (s (2))Pd

t2 t2
2 [ Wlenshun P+ 5 [ bzt mlienchun(e)Pd:
- [ Qteuilenslyuon (). tenblenzua())d

Since @) is homogeneous, we have that t., — 1. This and Lebesgue’s theorem imply that

T (W1c, s o )2, = [(a0n,00)
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and

lim QWi yns Yo, y,)dr = Q (w1, wy)dz.
n—oo RN ]RN
Therefore
lim J., (P, (yn)) = lo(wi, w2) = co
n—oo
which contradicts (3.4.8). The lemma is proved. O

Proposition 3.4.9. Let g, — 0 and ((un,vn)) C Nz, be such that J., (upn,vs) — co. Then
there eists a sequence () C RY such that (wn (), 2,(2)) := (un(+Tn), va(x+Tn)) has a
convergent subsequence in H'(RN) x HY(RN). Moreover up to a subsequence, y, — y € M,
where Yn = Enln-

Proof. Since ap < a(z) and by < b(z) for x € RY and ¢y > 0, we can use (H}), (Hs)
and repeat the same arguments in Lemma 3.4.1 to conclude that there exists a sequence
(7,) € RN and constants R,n > 0 such that

lim inf (Jun|® + [vp]?) dz > 1.
n—o0 BR(gn)

Thus, since ((wy,v,)) is bounded in H'(RN)x HY(RY), considering (w, (), 2,(z)) = (un(z+
Un),Vn(2+7n)), up to a subsequence, we have that w,, — w % 0 in H'(RY) and 2z, — 2 Z 0
in H'(RY). Let t,, > 0 be such that

(Wn, Zn) = tn(wn, 2n) € Mo. (3.4.9)

Then,
co < Io(Wn, Zn) < Je, (te, (un, vp)) < Je, (Un,vn) = co + 0p(1) (3.4.10)

which implies
Io(wn,gn) —co and ((@n,zn)) C M.

From boundedness of ((wy, 2,)) and (3.4.10), we get that (¢) is bounded. As conse-
quence, the sequence ((wy,Z2,)) is also bounded in H*(RY) x H'(RY), which implies, for
some subsequence, (Wy, 2,) — (W, Z) weakly in H'(RY) x HY(RY).

Note that we can assume that ¢, — to > 0. Then, this limit implies that (w,z) =
to(w,z) # (0,0). From Lemma 3.4.2, we conclude that (wy,2,) — (w,2) in HY(RY) x
H'(RY), and as a consequence (wy, z,) — (w,z) in HY(RY) x HY(RY).

Now, we consider y, = €,y,. Our goal is to show that (y,) has a subsequence, still
denoted by (yy), satisfying y,, — y for y € M. First of all, we claim that (y,) is bounded.
Indeed, suppose that there exists a subsequence, still denoted by (yy,), verifying |y,| — oo.
Note that from (ab;)

/ (40| Vawn? + [Vzn[? + |wnl? + bolzal?] da
N

IN

/N 57155 + yn)‘vwn|2 + |vzn|2 + |’U)n‘2 + b(enx + yn)|zn\ ]
R

- /R )| Vin ()2 + [V (2) 2 + [tn]? + blenz) [vn(2) 2] d

z

- /N w(EnT + Yn, Wny 2n) + 2nHo(En® + Yn, Wh, 2n)] d.
R
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Fixing R > 0 such that A C Bg(0), since e,z + yn| > R and (Hs), we have

[ 04 0, 20) 20+ s, 20))
R

1

= 4/ (lwn|* + b(en + yn)|2n]?) dz + 04(1).
BR/en(O)

This implies that,
3
M, 20)[1* < on(1).
It follows that (wp,z,) — (0,0) in HY(RY) x H'(RY), obtain this way a contradiction

because cg > 0.
Hence (y,,) is bounded and, up to a subsequence,

yn—>yERN.

Arguing as above, if y ¢ A, we will obtain again (wy,, z,) — (0,0) in HY(RY) x H'(RV),
thus y € A.

Now we are going to show that y € M. It is sufficient to show that a(y) = ap and
b(y) = bg. Supposing, by contradiction, that a(y) > ag or b(y) > by, we have

w=10(@2) <5 [ [Vl + V2 + 13 + b)) do - | Q@ 2.

Using again the fact that (wy, z,) — (0, 2) in HY(RY) x HY(RY), from Fatou’s lemma we
get

n—oo

t2
co < liminf{;/ [a(€nz)|vun|2 + |Von |2 + |un|? +b(£nz)\vn’2] dz
RN

- Q(tnuny tnvn)dz}

RN

n—oo

/2
< liminf {2"/ [a(en2)|Vun|* + | Vup|® + [un|? + b(en2)|vn|*] dz
RN

— H(epz, thunp, tnvn)dz}
]RN

= I%Lnl)ioréf Je,, (tn(tn, vp)) < linII_l>i£f Je,, (Un,vpn) = co

obtaining a contradiction. Then, we conclude that y € M. O

Let us consider p = ps > 0 in such way that Ms C B,(0) and define T : RY — RY
by setting Y(z) := x for |z| < p and Y(x) := pz/|z| for || > p. We also consider the
barycenter map . : Nz — R given by

| /RN T(ex) (|Ju(z)|* + |v(2)?) dx
[ @P @R

Since M C B,(0), the definition of T and Lebesgue’s theorem imply that

/Bé(u7 v

ling) Be(®:(y)) =y uniformly for y e M. (3.4.11)
E—r
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Following [17], we introduce the set
Yo = {(u,v) € Nz : Jo(u,v) <o+ h(e)},

where b : R — R is such that h(e) — 0 ase — 0F. Given y € M, we can use Lemma 3.4.8
to conclude that h(e) = |J-(P-(y)) — co| satisfies h(e) — 0 as € — 0T. Thus, ®.(y) € X.
and therefore . # ), for any ¢ > 0 small.

Lemma 3.4.10. For any § > 0 we have

lim sup dist (B:(u,v), Ms) = 0. (3.4.12)

e—0t (u,v)ESe

Proof. Let (g,) C R be such that &, — 0%. By definition, there exists ((uy, v,)) C X, such
that

dist (B, (un,vn), Ms) = sup dist (B, (u,v), Ms) + on(1).
(uw)EXe,,

Thus, it suffices to find a sequence (y,) C Ms such that
|Be,, (Un, Vn) — yn| = 0n(1). (3.4.13)
Thus, recalling that ((un,v,)) C 3e, C N, , we obtain

co < max Io(tun, tvn) < max Je, (bun, tvn) = Je, (un, vn) < co + hien)

from which follows that J._ (un,v,) — co. Thus, we may invoke Proposition 3.4.9 to obtain
a sequence (7,) C RY such that (y,) := (£,9n) C Mj, for n large. Hence,

/RN T(ana:) (|un(x)’2 + \Un(a:)|2) de
[ (ua@P + o)) da
RN

[ ez ) (a4 Tl + ol + TP

/Ban (urw Un) =

L (5P + o+ 7)) dz

/RN (Y(enz + Yn) — Yn) (]un(z + gn)P + |vn (2 + gn)‘Q) dz

= Yn+
[ Qa4 307+ e+ 50))

Since £,z + Yy, — y € M and from strong convergence of ((un(- + Un), vn(- + Un))), we
have that B, (un,vn) = yn + 0n(1) and therefore the sequence (y,) satisfies (3.4.13). The
lemma is proved. O

Theorem 3.4.11. Suppose that a and b are continuous potentials satisfying (aby) — (abz)
and M # (. Suppose also that Q satisfies (Qo) — (Q5). Then,

(i) for alle > 0, the system (S¢ quz) has a positive ground state solution.

(13) for any § > 0 there exists e5 > 0 such that, for any € € (0,¢5), the system (S¢ quz) has
at least catps; (M) positive solutions.
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Proof. By using Lemma 3.3.1, Lemma 3.3.3, Mountain Pass Theorem [6] and of the char-
acterization of minimax level ¢, given in (3.3.1) we conclude that the system (Se gus) has a
ground state positive solution.

Now, given 6 > 0 such that Ms C A, we can use (3.4.11), Lemma 3.4.8, (3.4.12) and
argue as in [17, Section 6] to obtain &5 > 0 such that, for any € € (0, &5), the diagram

JVEENG SN Y
is well defined and 5. o ®. is homotopically equivalent to the embedding ¢ : M — Mjs. Thus
caty, (3:) > catp, (M).

It follows from Proposition 3.4.7 and Theorem 3.4.3 that J. possesses at least catpz; (M)
critical points on AV;. The same argument employed in the proof of Proposition 3.4.7 shows
that each of these critical points is also a critical point of the unconstrained functional J..
Thus, we obtain cat s, (M) nontrivial solutions for (Sz quz ). O

3.5 Proof of Theorem 3

Proof. Suppose that § > 0 is such that My C A. Arguing by contradiction we can use
Lemma 1.5.1 given in Chapter 1 to get €5 > 0 such that, for any 0 < ¢ < &5 and any
solution (ug,v:) € X, of the system (S; guz) there holds

|(ue(ex),ve(ex))| < for each z € RN\ A.. (3.5.1)

Considering 0 < g5 < &g, we shall prove the theorem for this choice of 5. Let 0 <
e < g5 be fixed. By applying Theorem 3.4.11, we obtain catyz, (M) nontrivial solutions
of the system (S:quz). If (u,v) € X, is one of these solutions we have that (u,v) € X,
and therefore we can use (3.5.1) and the definition of H to conclude that H(-,u,v) =
Q(u,v). Hence, (u,v) is also a solution of the system (§5) An easy calculation shows that
(u(x),v(x)) = (u(x/e),v(x/e)) is a solution of the original system (S:). Then, (Se) has at
least catpz, (M) nontrivial solutions.

We now consider &, — 07 and take a sequence (uy,v,) € X, of solutions of the system

~

(S.,) as above. By applying Lemma 1.5.1, we obtain R > 0 and (¥,) C RY such that

[t | oo @Y\ B () <Y
and
[onl oo @3\ BR(@Gw) < V-

Up to a subsequence, we may assume that

unllLoo(Br@a)) = Y (3.5.2)

and
[vnll oo (Br@a)) = V- (3.5.3)

Indeed, if this is not the case, we have ||uy||oomvy < v Or ||Un]|focmny < 7, Which is a
contradiction with (3.4.4). Thus, (3.5.2) and (3.5.3) hold.

By using (3.5.2) and (3.5.3) we conclude that the maximum point m, , € RY of u,, and
the maximum point 7,5 € RY of v, belong to Br(,). Hence Tn,a = Yn + Qn,a, fOr some
dna € Br(0) and 7,5 = Yn + Gnp, for some g, € Br(0). Recalling that the associated
solution of (Sg,) is of the form (4 (z),vn(x)) = (un(x/en), vn(x/ern)), we conclude that the
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maximum point Il , of u, and the maximum point Il ; of v, are Il 4 := €,¥n + Endn,a
and IL., p := €,Un + €nGnp. Since (Gnya), (gnp) C Br(0) are bounded and e,y, — y € M
(according to Proposition 3.4.9), we obtain

lim a(Il;, o) = a(y) = ao

n—oo

and
lim b(Il., o) = b(y) = bo.

n—oo

Now we prove the regularity of the solution. By using Lemma 1.5.1, (3.5.2) and (3.5.3),
we have that u.,v. € L2(RY) N L>®(RY). From interpolation inequality, we get (ue,v.) €
LYRN) x LYRN), Vg > 2. That implies Q(ue,v:), Qu(ue,ve) € LI(RN), Vg > 2. From
regularity elliptic theory, we get (ue,v.) € W24(RN) x W24(RN), Vg > 2. For ¢ sufficiently
large, we obtain W24(RN) «— CUVMNRYN), for some 0 < A < 1. Then ug,v. € CPARN).
Since Q € C?(RY), we obtain that u.,v. € C>*(RY), which concludes the proof of the
theorem. O

3.6 The critical case

In this section we present the proof of Theorem 4. Since many calculations are adaptations
to that presented in the early section, we will emphasize only the differences between the
subcritical and the critical case.

Hereafter, we will work with the following system equivalent to (C'S;)

—div(a(ez)Vu) +u = Qu(u,v) + 5 Ky(u,v) in RY,
(CS;) —Av+blez)v = Qu(u,v) + % Ky(u,v) in RY,
u,v € HYRY), wu(z),v(x) > 0 for each z € RV,
Using a function 7 given in (3.2.3), we define K:R25R by

~

R(sut) = 105,00 (QUsvt) 4 oK (s.t)) (1 = (] A + 2

where

N {Q(s,t) + 5o K (5,1)

A := max 20 : (s,t) € R?, a§(s,t)|§5a}.

Notice that, since A > 0 tends to zero as a — 0T, we may suppose that A € (0, z1/4).
We define H : RY x R? — R by setting

H(x,s,t) = Ix(x) (Q(s,t) + ;K(s,t)) + (1= Ix(2)K (s, 1). (3.6.1)

Using the fact that Q € HP and K € H?", we can arguing as the proof of Lemma 3.2.1
to get

Lemma 3.6.1. The function H satisfies the following estimates:
(ﬁl) pﬁ(x, s,t) < sﬁs(w,s,t) + tﬁt(ac,s,t), for each x € A;

(Hy) 2H(z,s,t) < sHy(z,s,t) + tHy(z, s,t), for each z € RN \ A;

_ . . 1
(Hs) for a small we have sHq(x,s,t) + tH(x,s,t) < 1 (s + b(w)t2) for each x € RN \ A;
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~ H, H
(Hy) for a small we have | (x,s,t)]’ [ Hi(w,s,t) < % for each x € RN \ A.
« «

Using the definition (3.6.1), we deal in the sequel with the modified system
—div(a(ex)Vu) + u = Hy(ex,u,v) in RY,
(CSe quz) —Av+b(ex)v = Hy(ex,u,v) in RY,
u,v € HY(RY), wu(x),v(x) > 0 for each z € RV,
and we will look for solutions (ue, v.) verifying
|(uz(ex),ve(ex))| < o for each z € RV \ A..

Conditions (H3) and (A;) imply that the critical points of the C1-functional J, : X, — R
given by
5 _1 2 2 2 21 1 77
Je(u,v) = [a(ex)|Vul® + [Vl + |u]® + bex)|v]?] dx H(ex,u,v)dx
2 RN RN

are weak solutions of (CS; quz). We recall that these critical points belong to the Nehari
manifold of J., namely on the set

Nz = {(u,0) € X\ {(0,0)} + TL(, v)(u,v) = 0}

and we define the number EE by setting

be:= inf  J.(u,v). (3.6.2)
(u,v)EN

In order to prove the multiplicity result for the system (C’gg), we consider the critical
version of the problem (Sp), namely

—apAu + u = Qu(u,v)
(CSo) —Av +bov = Qy(u,v)
u,v € HY(RYN), wu(x),v(x) > 0 for each z € RV.

In view of conditions (ab;), (H}]) and (H2"), the above system has a variational structure
and the associated functional is given by

~ 1
Iy(u,v) := 3 /]RN [ao| Vul® + [Vv]? + |ul® + bo|v|*] dz — /]RN Q(u,v)dz
L K(u,v)dz,
2% RN

is well defined for (u,v) € Ep. N
Standard calculations show that Iy has the Mountain Pass geometry and therefore we
can set the the minimax level ¢j in the following way

co = inf Io(~(t
€o = inf max o(v()),

where T := {y € C([0,1], Eo) : v(0) = (0,0), Io(y(1)) < 0}. Moreover, ¢ can be further
characterized as

Go= inf_ Io(u,v), (3.6.3)
(u,w)EMo
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with Mvo being the Nehari manifold of 170, that is
Mo = {(u,v) € Eo\ {(0,0)} : I (u, v)(u,v) = 0}.

As usual, we denote by S the best constant of the embedding WH2(RN) — L2 (RN). To
state the next result we need to define Sk the best constant of the immersion D%?(RY) x
DY2(RN) — LZ(RN) x L¥ (RY), that is,

/ (1Vul? + [Vo[2)da
Sk = inf RY

u,UGDI*Z(RN) 2/27 "
w040 K(u,v)dzx
RN

Proposition 3.6.2. There exists c* > 0 such that for all 0 > o*

B 1 ‘ - \N/2
co < N (mln{ag, 1}SK) )

Proof. By using (H}) and (H#2"), and arguing as [40, Theorem 4.2], it is possible to prove
that

cp = (u,v)EiEIol{{(O,O)}I?ZaS( Io(tu, tv) > 0.
Thus, it suffices to obtain (u,v) € Ey such that
~ 1 ~ \N/2
I?;gilo(tu, tv) < N (min{ao, I}SK) .

We first recall that, for any 6 > 0 the function

ws(z) := [N(N — 2)]N=2/4(5 4 |z]?) 2N/

/ \Vw(;\gda::/ lws|? da = SN/2.
RN RN

By [19, Lemma 3|, there exist A, B € R such that Sk is attained by

satisfies

G — Jen (IV(Aws) > + |V (Bws)|?) da _ SN/2(A2 4+ B?)
(f]RN K(Aws, Bw(;)d:v) 2/ (fRN K (Aws, ng)da:)

2/2% "

Let n € C$°(RY, [0, 1]) be such that n =1 on B1(0) and = 0 on RY \ By(0). Consider

n(x)ws(x)
[nws|2-

Ys(x) =

By using the definition of 95, (A3) and (HZ" ) we get

- 2
Io(tAys,tBys) < t*Dd(AQ +B?) — JtplAABﬁ/ Y5t dx
2 P1 B2(0)

2"
2

|, Kavs, Bus)de,

where p; € (2,2%) is given by condition (A3z) and
_ 2 2
Ds = [ max{an,bo, 1} (V5P + [0sf?) do.
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Thus

20 D1

2 t2*

max t—D5(A2 + B?) — UtplAABB/ |45 |Pt da — / K (Atps, Bis)dx
2 Ba(0) 2¢ Jan

> Io(tAsps, t Bys).

Straightforward calculations show that

1 1 1 (Ds(A2 + B2))p1/(1=2)
< ) ( 6

Io(tAs, tBibs) <

2/(p1—2) \ 2 2/(p1-2)
o b1 A)BB fBQ(O) |¢5|P1dx)
1
= o2/ (p1—2) C(ao, bo)-

~ 1 ~ \N/2
Thus, I%l;lg([o(t/h!)g, tBiys) < N (min{ao, 1}SK) , for all ¢ > o* where

p1-2
2

. C(aop, bo)

T %(min{ag,l}gK)N/2

The proof is finished. ]
Lemma 3.6.3. Let ((un,vy)) C Mo be a sequence such that f()(un,vn) — Cp with ¢y <
~ \N/2
+ (min{ao, l}SK> . Then we have either
(i) l(tn,vn)|| =0, or

(ii) there exists a sequence (y,) C RN and constants R,n > 0 such that

n—oo

liminf/ (Jun|? + [on[2)dz > 1.
BRr(yn)

Proof. Suppose that (i7) does not hold. Since ((un,v,)) is bounded in H'(RY) x HY(RYV),
then, by in [32, Lemma I.1], we get

lim |un|®dx =0
n—oo RN

and
lim |op|*dz = 0,

n—0o0 ]RN

for all s € (2,2*). Thus, from (H}), we conclude
/N[UnQu(una 'Un) + UnQv(Una 'Un)]dx = Oﬂ(l)'
R
Since Té(un, Un) (un, vy,) = 0, taking a subsequence, we obtain [ > 0 such that

(tm, va)|2 = 1 and /RN K (1, v)d — 1. (3.6.4)
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Since fo(un, Un) — Cp, we can use (3.6.4) to conclude that [ = N¢y. Recalling the definition
of Sk we get

ns v P = [ [aolVnl+ [T+ [unf? + bolon?] o
R

> min{ao,l}/ Uvun’2+ \anm dx
RN

B 2/2*
> min{ap, 1}Sk </ K(un,vn)dx> .
RN

Taking the limit we conclude that [ > min{ag, 1}Sx(*?". If | > 0 we obtain N¢y = | >
~ \N/2
(min{ag, 1}S K) , which does not make sense. Hence | = 0 and therefore (¢) holds. [

By using Lemma 3.6.3, we can arguing as the proof of Lemma 3.4.2 and show that the
system (C'Sp) has a solution that reaches ¢.

Lemma 3.6.4. (A Compactness Lemma) Let ((un,vy)) C My be a sequence satisfying
To(un,vn) — ¢o. Then, there exists a sequence () C RN such that, up to a subsequence,
(Wn (), 2n(2)) = (un(@ + Fn), vn( + Jn)) converges strongly in H*(RN) x HY(RY).

In particular, there exists a minimizer for ¢gy.

As in Lemma 3.3.1, the functional jg satisfies the mountain Pass Geometry. Hence
there exists a Palais-Smale sequence ((uy,v,)) C X¢ at level ¢.. Using (H) and (H2'), it
is possible to prove that

Ce = b, = inf su J tu, tv 3.6.5
FT T )exa{0) 15h (tu, tv), (3.6:5)

where b, was defined in (3.6.2).
Lemma 3.6.5. Any sequence ((un,vy,)) C X such that

1 ) ~ \N/2 ~
Je(Up,vp) = ¢ < N <mm{a0, 1}SK) and  J(up,vy) = 0

POSSESSES a convergent subsequence.

Proof. Standart calculations show that ((uy,,vy,)) is bounded in X.. Then, up to a subse-
quence, we may suppose that

(Up,vp) — (u,v) weakly in X,
Un = u, v, — v strongly in L{ (RY), for any 2 <s< 2%, (3.6.6)
un(z) = u(z),vp(z) = v(z) for ae. xRV,

Now using a density argument, we can conclude that (u,v) is a critical point of jg
Hence

1w, 02 = /R uHu(er,u,0) + oy (e, ) d. (3.6.7)

On the other hand, we have

Il (un, vn)Hg = / [unffu(ex,un,vn) + v Hy (2, Uy, vy)]dx + 0, (1). (3.6.8)
]RN

Claim 1. lim K (up, vy da;—/ K (u,v)

n—oo A
£
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Since ((un,vy)) is bounded, we may suppose that
V| = g, |Vop|> =0 and K(un,v,) — v (weak*-sense of measures).

From [19, Lemma 6], we obtain an at most countable index set I', sequences (z;) € RN,
(i), (03), (i) C (0,00) such that

p> |Vul + > pide,, o> Vo> + ) oidy,

iel iel
v=K(u,v)+ Z vidy, and §K1/i2/2* < i + oy (3.6.9)
el

for all ¢ € I, where 6, is the Dirac mass at the point z; € RN,

Suppose that {x;};cr NA: # 0, then exists x; € A for some i € T'. Define, for ¢ > 0, the
function ¢, () := ¥((x—z;)/0) where 1p € CS°(RY, [0, 1]) is such that 1/ = 1 on By (0), 1) = 0
on RV \ By(0) and |V1)|se < 2. We suppose that o is chosen in such a way that the support
of 1, is contained in A.. Since ((¢oun, ¥ovy)) is bounded, J! (tn, V) (YoUn, YoUn) = 0p(1).
Then

/R (@) un? + | Ven Plda
+ /IRN [a(ex)unVu, Vb, + v, Vo, Vip,lda + /RN [%ui + b(ax)qbgvg]da:
= /]RN [unﬁu(ex, Up, Up) + vnﬁv(ax, Un, Un)]|Podz + 0p(1).
Since supp(1,) C Ac, we can use definition of H, (3.2.1) and (aby) to get
min{ao,l}/RN[@/JQVun2+¢9\V0n\2]dx
< _/RN la(ex)un,Vu, V1P, + v, Vv, Vi, |da

+p Q(un,vn)wgda:—i—/ K (U, vp)hpdz + 0,,(1).
RN RN

Since Q) has subcritical growth and 1, has compact support, we can let n — oo, o — 0 and
use (3.6.9) to conclude that
min{ag, 1}(u; + 0;) < v;.

As §K1/i2/2* < u; + o;, we get

v; > (min{ag, 1}§K)N/2 .

By using Lemma 3.6.1, p > 2 and (3.2.1) we get

¢ = Telumva) — 3T (tn, 00)tn, 00) + 00(1)
= / <1[unf~lu(€x,un,vn) + vnffv(gx, Up, V)] — fl(ex,un,vn)) dz
RN\AE 2
+ / (;[unQu(una Un) + UnQv(Um Un)] - Q(Um Un)) dx

1
b g [ (Gl t0) 4 00 )] = K ) ) i+ 0,0
Ae

1 1
> / K (up,vp)dx + op(1) > / VoK (Up, vy)dx + 0, (1).
N As N A
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By taking the limit and using (3.6.9) we get

cxv Y =g Y ViE%(mi“{GOvl}gK)m

{ieT:z;€A} {ieT:x; €A}

which does not make sense. Therefore {z;};cr N A = 0, this conclude the proof of the claim
élaim 2.

/RN [t Hoy (62, U, v3) + Vp Hy (62, Uy, 0,)]d — ox [uH, (2, u,v) + vH,(ex, u, v)]dz.
Arguing as in the Lemma 3.3.2, for any £ > given, there exists R > 0 such that A, C Br(0)

and

limsup/ [a(sm)|Vun|2 + |Vun |2 + [un]? + bex) v |? | dz < €.
RN\Bg(0)

n—oo

This inequality, (ﬁg) and the Sobolev embeddings imply that, for n large enough, there
holds

- . 1
/ [un Hy (2, U, vy,) + vn Hy (e, Uy, vp)]dz < C1=E, (3.6.10)
RN\ B(0) 4

where C] is positive constant. On the other hand, taking R large enough, we can suppose
that

<& (3.6.11)

/RN\B o [uH, (2, u,v) + vH,(ex, u,v)]dx
R

Then, by (3.6.10) and (3.6.11), we can conclude

/RN\B o [unﬁu(éx,un,vn) + vnﬁv(sm,un,vn)]dx
R

= / [uH,(ez, u,v) + vHy(ex, u,v)]dz + 0, (1). (3.6.12)
RN\ B (0)

On the other hand, since the set Br(0) N (RN \ A.) is bounded, we can use (Hs), (3.6.6)
and Lebesgue’s theorem to conclude that

lim [unHy (2, Up, V) + v Hy (e, up, vy,)|da
770 J BR(0)N(RN\A.)

[wH,(e2,u,v) + vH, (ex, u, v)]dx. (3.6.13)

/BR(O)H(RN\Aa)
By using Claim 1, (HY), (3.6.6) and Lebesgue’s theorem again, we obtain

lim [un Hy (e, U, vn) + v Hy (€2, Uy, vp) | d
n—oo AE

= / [uH, (2, u,v) + vH,(ex, u, v)]dz. (3.6.14)
Ae

From (3.6.12), (3.6.13) and (3.6.14) the claim 2 is proved.
By using (3.6.7), claim 2 and (3.6.8), we have ||(un,vn)||? = ||(u,v)||?. Then (uy,v,) —
(u,v) in X.. O
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From Lemma 3.6.5, the unconstrained functional satisfies (PS). for
¢ < +(min{ao, 11Sx)N/2. Nevertheless, to get multiple critical points, we need to work

with the functional J. constrained to /\7}. The proof the next three results follows by using
the same arguments employed in Lemma 3.4.5, Lemma 3.4.6 and Proposition 3.4.7

Lemma 3.6.6. There exist positive constants &1,51,5 such that, for each a € (0,a1),
(u,v) € Ng, there hold

/A [PQ(u,v) + K (u, v)]da > 5

and

/ (u2 + b(sx)v2) dr < 6’/ pQ(u,v) + K (u,v)|dz.
RN\ A Ae
Lemma 3.6.7. Let 55 : Xe — R be given by

Fe(,0) 1= [, 0) 2 — /

RN

[uﬁ[u(sx, u,v) +vHy(ex, u, v)] dzx.

Then there exist o, M > 0 such that, for each a € (0, az),
oL (u,v)(u,v) < —M <0 for each (u,v) € N-.
Proposition 3.6.8. The functional J. restricted to N satisfies (PS). at any level ¢ <
% (min{ao, 1}§K> N/2.
We also have the critical version of Proposition 3.4.9 and her proof is similar.

Proposition 3.6.9. Let &, — 07 and ((up,vn)) C Ne, be such that J., (un,vn) — Co.
Then there exists a sequence (7,) C RN such that (wn(2), 2n(2)) = (un(® + Un), va(z +
Un)) has a convergent subsequence in H'(RN) x HY(RN). Moreover, up to a subsequence,
Yn — Y € M, where Y, = 4.

The proof of the next result is in the same spirit of Lemma 2.4.14. We omit the details.

Lemma 3.6.10. The minimazx level ¢. satisfies

limsup ¢ < ¢.
e—07t

Theorem 3.6.11. Suppose that a and b are continuous potentials and satisfy (aby) — (abs).
Suppose also (A1) — (As). Then,

(i) there exists e1 > 0 such that, for any € € (0,e1) the system (CS¢ quz) has a positive
ground state solution.

(1) for any & > 0 there exists 5 > 0 such that, for any ¢ € (0,¢5), the system (CSe quz)
has at least catpr, (M) positive solutions.

Proof. The demonstration of item (i) follows from the fact that j; satisfies the mountain
Pass Geometry, Lemma 3.6.5, Mountain Pass Theorem [6], the characterization of minimax
level ¢. given in (3.6.5) and Lemma 3.6.10.

Now we prove the item (4i). As in the Section 3.4. Fix § > 0 such that M; C A and
¥ € C®°(R™, [0, 1]) a non-increasing function such that 1 (s) = 1if0 < s < §/2 and ¥(s) =0
if s > 0. Let (w1, ws) € Ey be a solution of (C'Sy) given by Lemma 3.6.4 and define, for any
yeM

o _ (ex—y .
W, y(@) = Y(lex — y|)w; < . > . i=1,2.
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We introduce the map d.: M — N by setting

cI)e(y) = g&(ijl,‘s,ya @276711)7

where ¢, is the unique positive number satisfying

Te(te(W1cy Waey)) = max T (H(V1 ey, Vo).

The following holds o
lim Je(2(y)) = o,

e—0t

_ Let T RN — RY be a function defined in Section 3.4 and consider the barycenter map
Be : N. = RN given by

[, Tl () + fo(e)f?) do
[ (u@P + @Ry
RN

56(“7”) =

As before we can to check that

lim 35(535(1/)) =y uniformly for ye M

e—0t
and _
lim sup dist <Be(u,v),M5> =0,
e—=0%* (u,0) €S,
where

Y. = {(u,v) e N.: J.(u,v) < & +ﬁ(6)}a

and h : [0,00) — [0, 00) satisfies h(g) — 0 as e — 0.
The above equations provide g5 > 0 such that, for any € € (0,&4), the diagram

VEEENS SN

is well defined and 55 o &)6 is homotopically equivalent to the embedding ¢ : M — Ms;.
Hence we conclude that catg (3c) > catp,(M). It follows from Proposition 3.6.8 and

Theorem 3.4.3 that J. possesses at least cat s (M) critical points on N.. The same argument
employed in the proof of Proposition 3.6.8 shows that each of these critical points is also
a critical point of the unconstrained functional J.. Thus, we obtain catpz, (M) nontrivial
solutions for (C'S; qug)- O

3.6.1 Proof of Theorem 4

Proof. By using Lemma 2.5.1 and repeating the same arguments that Theorem 3 we get
the result. O
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Appendix A

The Ljusternick-Schnirelmann
category

In this appendix we briefly define the notion of category and state some of its properties,
according to [5] and [40]. We have used category to obtain multiplicity results of critical
points of functionals.

Definition A.0.1. A closed subset A is contractible in a topological space X if there exist
v € X and a continuous map h: [0,1] x A — X, such that

h(0,u) =u and h(l,u)=wv, for alu e A.

Definition A.0.2. Let X be a topological space. The Ljusternick-Schnirelmann category of
A with respect to X, denoted by catx(A), is the least integer k such that A C Ay U...U Ay,
with A; (i =1,...,k) closed and contractible in X. We set catx () = 0 and catx(A) = 400
if there are no integers with the above property.

The essential idea of the Lusternik-Schnirelmann method is the following one: The
number of critical point of a C'—functional I defined on a compact manifold X is greater
than or equal to catx(X). The corresponding critical values are given by

¢, = inf supI(u) where Ay :={AC X : A closed,catx(A) > k}.
Ac A, uEA

From the definition it holds:
1. if A C B are subsets of X, catx(A) < catx(B);
2. catx(A) = catx(A);
3. if AC X CY with X closed in Y, caty(A) < catx(A).
We will set cat(X) := catx(X).
Example A.0.12.

(i) Let S~ = {x € R" : |z| = 1}. Since S"! is not contractible in itself but can be
covered by two closed hemispheres, then cat(S™!) = 2. Note that, catgn(S"1) = 1.

(i) If T? = St x St denotes the two-dimensional torus in R? then cat(T?) = 3. In general,
for the k dimensional torus T* = R¥/ZF one has cat(T*) =k + 1.
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Definition A.0.3. Let X be a topological space. A deformation of A C X in X is a
continuous map 1 : A — X homotopic to the inclusion A — X, i.e. there exists a continuous
map h:[0,1] x A — X such that

h(0,u) =u and h(l,u)=mn(u), for alu € A.
Let us now state the main properties of the category
Lemma A.0.13. Let A,B C X.
(i) If A C B then catx(A) < catx(B);
(i1) catx (AU B) < catx(A) + catx(B);
(iii) Let A be a closed in X, n a deformation of A in X. Then catx(A) < catx(n(A)).
Proof. See [5]. O

Definition A.0.4. Let X be a metric space. X satisfies the extension property if for every
metric space Y, every subset S closed in'Y and every continuous map f : S — X, there are
U a neighborhood of S in'Y and a map f € C(U; X) such that fls = f.

Lemma A.0.14. Let X me a metric space with the extension property and let A C X be a
compact subset. Then

(i) catx(A) < +oo.
(i) There exists Ua neighborhood of A in X such that catx (U ) = catx (A).

Proof. See [5]. O
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