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Aos meus pais,



”O que é, o que é?
Clara e salgada,
Cabe em um olho
E pesa uma tonelada

Tem sabor de mar,
Pode ser discreta
Inquilina da dor,
Morada predileta

Na calada ela vem,
Refém da vingança,
Irmã do desespero,
Rival da esperança

Pode ser causada por
Vermes e mundanas
E o espinho da flor,
Cruel que você ama

Amante do drama,
Vem pra minha cama, por querer
Sem me perguntar, me fez sofrer

E eu que me julguei forte,
E eu que me senti,
Serei um fraco quando outras delas vir

Se o barato é louco e o processo é lento,
No momento, deixa eu caminhar contra o vento

Do que adianta eu ser durão e o coração ser vulnerável?
O vento não, ele é suave, mas é frio e implacável...”

Jesus chorou . (Racionais MC’s)
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e pesquisar em matemática. Pelo exemplo de professor, orientador e pesquisador que foi
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Resumo

Neste trabalho, estudamos a existência de soluções para uma classe de problemas envolvendo
um operador de crescimento rápido com peso e diferentes tipos de não linearidade. Na
primeira parte do trabalho, estudamos o problema

(P )
{

−div(K(x)∇u) = a(x)K(x)|u|q−2u+K(x)f(u) in RN ,

onde N ≥ 3, K(x) = exp( |x|
2

4 ), 1 < q < 2 e f é uma função cont́ınua com crescimento
arbitrário no infinito. Assumindo algumas hipóteses sobre o potencial a, fazemos um tun-
cramento sobre a não linearidade f de modo a nos permitir usar Teoria de Genêro no prob-
lema truncado e finalmente, usando Iteração de Moser, nós mostramos que toda solução do
problema truncado é também solução do problema original. Obtendo assim uma infinidade
de soluções para este problema.

Na segunda parte, consideramos o sistema

(S)


−div(K(x)∇u) = K(x)Qu(u, v) +

1
2∗K(x)Hu(u, v) in RN ,

−div(K(x)∇v) = K(x)Qv(u, v) +
1
2∗K(x)Hv(u, v) in RN ,

onde N ≥ 3, K(x) = exp
(
|x|2/4

)
, Q e H são funções homogeneas de classe C1 com

H tendo crescimento cŕıtico. Usando métodos variacionais, obtemos a existência de uma
solução ground state para este sistema. Além disso, também provamos um resultado de
existência para uma versão com crescimento supercŕıtico deste sistema.

Por último, consideramos o seguinte problema com crescimento cŕıtico e um salto de
descontinuidade

(Pa) −div(K(x)∇u) = K(x)
(
λh(x) +H(u− a)|u|2∗−2u

)
in RN .

onde, a e λ são parâmetros positivos, h é uma função não negativa e H é a função de
Heaviside definida por

H(s) :=

{
0 if s ≤ 0,
1 if s > 0.

.

Obtemos para a > 0 suficientemente pequeno duas soluções não negativas ui, i = 1, 2 para
esta equação. A primeira solução u1 é obtida usando uma versão do Teorema do Passo da
Montanha para funcionais não diferenciáveis. A segunda solução u2 foi encontrada através
de uma aplicação local do Prinćıpio Variacional de Ekeland. Além disso, mostramos também
que os conjuntos de pontos x ∈ RN tais que ui(x) > a têm medida positiva e os conjuntos
de pontos x ∈ RN tais que ui(x) = a têm medida nula.



Abstract

In this work, we study the existence of solutions for a class of problems involving an operator
with rapidly growing weights and differents types of nonlinearities. First of all we study
the problem

(P )
{

−div(K(x)∇u) = a(x)K(x)|u|q−2u+K(x)f(u) in RN ,

where N ≥ 3, K(x) = exp( |x|
2

4 ), 1 < q < 2 and f is a continuous function with arbitrary
growth at infinity. Under some assumptions on the potential a, we make a suitable trunca-
tion on the nonlinearity f in such a way that we can apply Genus Theory with the truncated
problem and finally, using Moser iteration we show that each solution of truncated problem
is a solution of the original problem.

In the second part, we consider the system

(S)


−div(K(x)∇u) = K(x)Qu(u, v) +

1
2∗K(x)Hu(u, v) in RN ,

−div(K(x)∇v) = K(x)Qv(u, v) +
1
2∗K(x)Hv(u, v) in RN ,

where N ≥ 3, K(x) = exp
(
|x|2/4

)
, Q and H are homogeneous functions of class C1 with H

having critical growth. Using variational methods, we obtain the existence of a ground state
solution for this system. Furthermore, we also proved an existing result for a supercritical
growth version of this system.

Finally, we consider the following problem with critical growth and a jump of disconti-
nuity

(PH) −div(K(x)∇u) = K(x)
(
λh(x) +H(u− a)|u|2∗−2u

)
in RN .

where, a e λ are positive parameters, h is a nonnegative function and H is a Heaviside
function defined by

H(s) :=

{
0 if s ≤ 0,
1 if s > 0.

We obtain for a > 0 sufficiently small two nonnegative solutions ui, i = 1, 2 for this equa-
tion. The first solution u1 is obtained using a version of the Mountain Pass Theorem for
nonsmooth functionals. The second solution u2 was obtained through a local application of
the Ekeland Variational Principle. In addition, we also show that the set of points x ∈ RN

such that ui(x) > a has positive measure and the set of points x ∈ RN such that ui(x) = a
has zero measure.
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Introduction

In this work we are going to study equations involving an operator with rapidly growing
weights. That is, the operator that appears on the left-hand side of the problems we deal
with in this work, appears naturally when we look for solutions on the form

v(x, t) = t(2−N)/(N+2)u(xt−1/2)

for the following parabolic equation

(P ) vt −∆v = |v|
4

(N−2) v, RN × (0,+∞).

According to [54], a function like v(t, x) is called a self-similiar solution for (P ). So, v is a
solution of (P ) if, and only if, u is a solution of the problem

(PE) −∆u− 1

2
(x · ∇u) = 1

2∗ − 1
u+ |u|2∗−2u in RN ,

where 2∗ = 2N/(N − 2) for N ≥ 3 and 2∗ = +∞ for N = 1 or N = 2. Haraux and
Weissler considered in [54] problem (PE) in order to prove some nonuniqueness results for
the Cauchy problem associated to (P ) in the case N = 1. Among other properties, the
solutions of (PE) have decay to zero exponentially at infinity (e.g., see [36] and [75]) and
give some information on the asymptotic behavior of (P ) (e.g., see [54] and [74]).

As far as we now, the first variational approach for this class of problems was done by
Escobedo and Kavian in [36]. The artifice to start this variational approach is due to the
observation that the exponential-type weight K(x) verifies ∇K(x) = 1

2xK(x). In this way,
it was possible to write the equation in (PE) in the divergent form

(PE′) −div(K(x)∇u) = K(x)

(
1

2∗ − 1
u+ |u|2∗−2u

)
in RN ,

in which the authors proved that the existence of positive solutions is related to the inter-
action of the parameter λ with the first positive eigenvalue of the associated linear problem

−div(K(x)∇u) = λK(x)u in RN ,

which is λ1 = N
2 . To this end, they prove some compactness results for the embedding

H1(Kθ) ⊂ L2(Kθ) under suitable conditions on the weights K(θ(x)) , where H1(Kθ) is a
weighted Sobolev space with a weight of the form Kθ(x) = exp(θ(x)) with θ ∈ C2(RN ,R+).
Furthermore, due to the similarity with the problem treated by Brezis and Nirenberg in [22],
an attempt would be to use the same method, but as no test function was known to
approximate the constant S(K), the idea was to compare S and S(K), where

S = inf
u∈D1,2(RN )\{0}

∫
RN |∇u|2(∫

RN |u|2∗
)2/2∗ and S(Kθ) = inf

u∈H1(Kθ)\{0}

∫
RN Kθ(x)|∇u|2(∫

RN Kθ(x)|u|2∗
)2/2∗ .
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Thus, they proved that, when N ≥ 4 the equation (EK) has positive solution if, and only
if, λ ∈ (N/4, N/2).When N = 3 there exists a positive solution if, and only if, λ ∈ (1, N/2),
and there is no positive solution for λ ≤ N/4 and λ ≥ N/2.

This dichotomy observed by Escobedo and Kavian was later extended by Catrina, Fur-
tado and Montenegro in [25], where the authors considered the problem

−∆u− 1

4
α|x|α−2(x · ∇u) = λ|x|α−2u+ |u|2∗−2u in RN (P)

where α ≥ 2, and they observed an analogous dichotomy happens, dependind on the param-
eters α and λ. Moreover, they also showed a non-existence result similar to the one in [13]
relative to radial solutions of (P). Analogously to the results of Escobedo and Kavian, the
results obtained by Catrina, Furtado and Montenegro in [25] were established in terms of
the first eigenvalue

λ1(α) =
1

4
α(N − 2 + α),

of the problem
−div(K(x)∇u) = λK(x)|x|α−2u in RN ,

where K(x) = exp( |x|
α

4 ). To calculate the first eigenvalue λ1(α), they considered the eigen-

function φ1(x) = e|x|
α/4. The dichotomy obtained was as follows: If 2 ≤ α ≤ N − 2, then

the problem (P2) has a positive solution if, and only if, λ ∈ (λ1(α)/2, λ1(α)); If α > N − 2
and λ ∈ (α2/4, λ1(α)) then the problem (P) has a positive solution; There is no positive
solution if λ ≤ λ1(α)/2 or λ ≥ λ1(α). So if α > 2 then the critical dimension depends on α.
Other papers with existence, multiplicity results of positive or nodal solution on this class
of problem can be seen in [37], [38], [40], [42], [45], [47], [48], [49], [50], [60], [64], [65] and
references therein.

In this thesis, we study a class of elliptic problems involving the same operator mentioned
above. This thesis has three chapters and two appendices. In each of the first three chapters
we study a different problem. To make it easier to read, each chapter has an introduction
where we repeat all the hypotheses about the problem studied in that chapter. We first
consider an equation involving a potential a and a nonlinearity with no growth restriction
at infinity. For this problem we obtain a result of multiplicity solution making use of genus
theory. In the second part of the work, we consider a system with critical or supercritical
growth and obtain a result of the existence of a nontrivial solution. In the final chapter, we
consider an equation with critical growth and a jump of discontinuity given by the presence
of a Heaviside function in the equation. For this problem we obtain a result of existence
and asymptotic behavior.

As mentioned earlier, we started our work by studying the existence of infinitely many
solutions for the equation

(Pa) −∆u− 1

2
(x · ∇u) = a(x)|u|q−2u+ f(u),

where 1 < q < 2, N ≥ 3, a is a positive function and the function f : R → R has arbitrary
growth at infinity, that is, the function f is superlinear with no growth restriction and
can be allowed to be in the range subcritical, critical or supercritical. More precisely, the
nonlinearity f is assumed to be a C0(R) function satisfying:

(f1) There exists δ > 0 such that f is odd for |s| ≤ δ.

(f2) There exists 2 < p < 2∗ such that

lim
|s|→0

f(s)

|s|p−1
= 0.

10



(f3) The function f(s)
s is decreasing in [−δ, 0] and increasing in [0, δ].

Since our approach is variational, we need to rewrite the problem (Pa) in its divergent
form

(P ′
a) −div(K(x)∇u) = K(x)a(x)|u|q−2u+K(x)f(u),

where K(x) = exp( |x|
2

4 ), and we also need to make one hypothesis on the function a so that
the functional associated to problem will be well-defined:

(a1) The function a is positive in RN and there exists σq ∈ R such that a ∈ L
σq

K (RN ) ∩
L∞(RN ) with

p

p− q
< σq ≤

2

2− q
.

In this first part of the work, our main result is:

Theorem 1.1.1. Suppose that the function f satisfies (f1)−(f3) and the function a satisfies
(a1). Then there exists λ∗ > 0 such that, if ∥a∥σq ∈ (0, λ∗), problem (P ) has infinitely many
weak solutions.

In the proof of this result, we apply variational methods. However, since we have no
control on the behavior of f at infinity, the associated functional to (P ′

a)

Φ(u) =
1

2

∫
RN

K(x)|∇u|2dx− 1

q

∫
RN

K(x)a(x)|u|qdx−
∫
RN

K(x)F (u)dx,

is not well defined in the entire space X, for which we will look for solutions and is defined
as the closure of C∞

0 (RN ) with respect to the norm

∥u∥ =

(∫
RN

K(x)|∇u|2 dx
) 1

2

.

In order to overcome this, we consider an auxiliary function g defined from f such that
g(s) = f(s) if s is small enough, and we consider the functional I of C1 class given by

I(u) =
1

2

∫
RN

K(x)|∇u|2dx− 1

q

∫
RN

K(x)a(x)|u|qdx−
∫
RN

K(x)G(u)dx,

where G(s) =

∫ s

0
g(t)dt. So, the idea is to get critical points u of I such that ∥u∥L∞ is

small enough in such a way that each solution of the modified problem was a solution to
the original problem. According to this space function X, the solutions found are forced to
have a rapid decay at infinity.

There is a vast literature concerning nonlinearities with arbitrary growth, for example,
see [24], [31], [53], [59] and [73].

Chapter 1 is devoted to the proof of Theorem 1.1.1 and is organized as follows. In order
to use variational methods, in Section 2 we define the proper spaces to address the problem
and we use an argument inspired by [33]. In Section 2 we show existence of infinitely many
critical points of the functional associated to problem (P ′

a). In order to use Genus theory,
it was necessary to make another truncation. In Section 3 we prove the main result making
use of Moser’s iteration.

In Chapter 2 we study the existence of nontrivial solutions for some systems with critical
or supercritical growth. More precisely, we consider the systems

11



(S)


−∆u− 1

2x · ∇u = Qu(u, v) +
1
2∗Hu(u, v) in RN ,

−∆v − 1
2x · ∇v = Qv(u, v) +

1
2∗Hv(u, v) in RN ,

where N ≥ 3, Q and H are functions of class C1 and

(SC)


−∆u− 1

2x · ∇u = Qu(u, v) + |u|Υ1−2u in RN ,

−∆v − 1
2x · ∇v = Qv(u, v) + |v|Υ2−2v in RN ,

where Υi > 2∗, i = 1, 2.
Setting R2

+ := [0,∞)× [0,∞), for any given q ≥ 1 we denote by Hq the collection of all
functions F ∈ C2(R2

+,R) satisfying the following properties.

(Hq
0) F is q-homogeneous, that is,

F (λs, λt) = λqF (u, v), for each λ > 0 and (s, t) ∈ R2
+.

(Hq
1) There exists c1 > 0 such that

|Fs(s, t)|+ |Ft(s, t))| ≤ c1
(
sq−1 + tq−1

)
for each (s, t) ∈ R2

+.

(H2) F (s, t) > 0 for each s, t > 0.

(H3) ∇F (1, 0) = ∇F (0, 1) = (0, 0).

(H4) Fs(s, t), Ft(s, t) ≥ 0 for each (s, t) ∈ R2
+.

The hypotheses on the functions Q and H are the following:

(A1) H ∈ H2∗ and Q ∈ Hp for some 2 < p < 2∗.

(A2) The 1-homogeneous function G : R2
+ → R given by G(s2

∗
, t2

∗
) := H(s, t) is concave.

(A3) Q(s, t) ≥ σsγtβ for all (s, t) ∈ R2
+, with γ, β > 1, γ + β =: p1 ∈ (2, 2∗) and σ satisfies

(i) σ > 0 if either N ≥ 4, or N = 3 and 2∗ − 2 < p1 < 2∗;

(ii) σ is sufficiently large if N = 3 and 2 < p1 < 2∗ − 2.

(Ã3) There exists σ∗ > 0 such that Q(s, t) ≥ σsγtβ for all (s, t) ∈ R2
+, γ, β > 1, γ + β =:

p1 ∈ (2, 2∗), for all σ > σ∗ and σ∗ to be fixed later.

In this second part of the work, our main results are:

Theorem 2.1.1. Assume that conditions (A1), (A2), (A3) are hold. Then, system (S) has
a weak positive solution.

Theorem 2.1.2. Assume that conditions (A1), (A2), (Ã3) are hold. Then, system (SC)
has a weak positive solution.
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The hypotheses (A1) − (A3) have already appeared in [32]. In that paper, de Morais
Filho and Souto [32] investigate the existence of solutions for the following system:

(DM)


−∆pu = Qu(u, v) +Hu(u, v) in Ω,

−∆pv = Qv(u, v) +Hv(u, v) in Ω,

u = v = 0 on ∂Ω,

where ∆p denotes the p−Laplacian operator, p > 1 and Ω is a bounded domain in RN .
In [32] they showed that the number

S̃H := inf
u,v∈W 1,p

0 (Ω)\{0}

∫
Ω
|∇u|pdx+

∫
Ω
|∇v|pdx(∫

Ω
H(u, v)dx

)p/p∗
,

plays an important role in the study of the system (DM), where they obtained a relationship
between S, the best Sobolev constant, and S̃H using the hypothesis (A2) and guaranteed
that SH does not depend on Ω.

As always, the biggest difficulty in dealing with nonlinearities with critical growth is
the lack of compact immersion. To get around this problem in (DM), the authors proved
a version of the Concentration and Compactness Lemma due to Lions [61, Lemma 1.2].

In the proof of our results about the systems (S) and (SC), we use variational methods.
Again, we use the fact that 2∇K(x) = xK(x) to rewrite the systems in its divergence form,
so we look at systems

(S′)


−div(K(x)∇u) = K(x)Qu(u, v) +

1
2∗K(x)Hu(u, v) in RN ,

−div(K(x)∇v) = K(x)Qv(u, v) +
1
2∗K(x)Hv(u, v) in RN ,

and

(SC ′)


−div(K(x)∇u) = K(x)Qu(u, v) +K(x)|u|Υ1−2u in RN ,

−div(K(x)∇v) = K(x)Qv(u, v) +K(x)|v|Υ2−2v in RN ,

with the same assumptions stated above, where K(x) = exp(|x|2/4).
Our arguments were strongly influenced by [25], [32] and [71]. It was necessary to adapt

some estimates found in [32] for the RN considering the weight function K, in order to
obtain a type of Brézis-Lieb lemma, as can be seen in Lemma 2.2.1. Also inspired by [32],
making strong use of hypothesis (A2) we proved a kind of Hölder inequality involving the
function H and the weight function K, this is the content of Lemma 2.2.4. This Hölder
inequality together with the estimates found in [25] allowed us to obtain a relationship
between the constants S, SK , S̃K,H and S̃H .

In order to get around the lack of compactness, in [25] estimates are used involving
the Talenti’s functions type and the weight function K. As can be seen in Lemma 2.2.5
and Lemma 2.2.6, the estimates to get around the lack of compactness with the systems in
RN are more delicate. We completed the study that was done in [71] in the sense that we
are studying another class of systems considering the critical and supercritical cases. To
circumvent the lack of variational structure of the supercritical system, we use a truncation
argument. To recover the solution to the original problem, we used the study on a problem
in a bounded domain.

13



The Chapter 2 is organized as follows. Section 2 is devoted to variational framework
and some preliminary results for the critical case. In Section 3 we show the solution of the
critical case proving the second main result. In the Section 4 we study the supercritical
case and prove the third main result.

In the Chapter 3 we study the existence of nonegative solutions to a class of elliptic
problems with fast increasing weights and critical growth in RN . More precisely, we consider
the following problem

−∆u− 1

2
(x · ∇u)) = λh(x) +H(u− a)|u|2∗−2u in RN , (3.1.1)

where 2∗ = 2N/(N − 2), N ≥ 3, λ > 0, h : RN → R is a positive function such that

h ∈ Lθ
K(RN ) with

1

θ
+

1

2∗
= 1 (3.1.5)

and H is the Heaviside function, i.e,

H(t) =

{
0 if t ≤ 0,
1 if t > 0.

As in the studies of the previous problems, we use the fact noted by Escobedo and
Kavian that the exponential-type weight K(x) = exp(|x|2/4) verifies ∇K(x) = 1

2xK(x), to
check that the problem ((3.1.1)) can be written as

− div(K(x)∇u) = K(x)
(
λh(x) +H(u− a)|u|2∗−2u

)
in RN , (3.1.2)

Thanks to the presence of the discontinuity caused by the Heaviside function in the
equation, the associated functional

Iλ,a(u) =
1

2
∥u∥2 −

∫
RN

K(x)FH(u) dx− λ

∫
RN

K(x)h(x)u dx,

is not C1(X,R) class. So, the presence of a discontinuity avoids the immediate application
of usual variational techniques. We also have the difficult of the lack of compactness due
to critical exponent and also due to the problem is on whole RN . Many authors have
treated problems with discontinuous non-linearity in different ways, in our work we will
use the techniques and results of Convex Analisys since the associated functional is locally
Lipschitz.

Our main result in Chapter 3 is:

Theorem 0.0.1. Assume that (3.1.5) holds. Then, there exists λ∗ > 0 and a∗ > 0 such
that for all λ ∈ (0, λ∗) and a ∈ (0, a∗), problem (3.1.2) has two nonnegative solutions
ui = ui(a), i = 1, 2, with the following properties:

(i) −div(K(x)∇ui) ∈ Lθ
K(RN ) with 1

θ + 1
2∗ = 1.

(ii) meas({ui = a} := {x ∈ RN : ui(x) = a}) = 0.

(iii) meas({ui > a} := {x ∈ RN : ui(x) > a}) > 0.

(iv) Iλ,a(u2) < 0 < Iλ,a(u1),
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where meas( . ) denotes the Lebesgue measure. Moreover, if an → 0+ there exist two
functions vi ∈ X, i = 1, 2, such that, up to a subsequence, ui(an) → vi in X, Iλ,0(v2) < 0 <
Iλ,0(v1) and v1, v2 are solutions of{

−div(K(x)∇v) = K(x)
(
λh(x) + |v|2∗−2v

)
a.e in RN ,

v ∈ X, v ≥ 0 a.e in RN ,

for all λ ∈ (0, λ∗).

Chapter 3 first introduce some basic results about Convex Analysis. Since we are
dealing with a problem involving critical growth in RN , we need to work around the lack
of compactness problem. For this, we use the version of compactness and concentration
principle due to Lions involving the weight function K found in [46]. The first solution was
obtained using a version of the Mountain Pass Theorem for Locally Lipschitz functionals.
The second soluton was found using a version of Ekeland Variational Principle.

We would like to emphasize that the results obtained in Chapter 1 were published in
the journal Complex Variables and Elliptic Equations, and the results in Chapter 2 were
published in the journal Nonlinear Analysis: Real World Applications, 64(2022), 103431.
The results obtained in chapter three were also submitted for publication. Although the
problems studied here are connected via the operator, all chapters are independent and can
be read separately.
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Chapter 1

Multiple solutions for an equation
with weights and nonlinearity with
arbitrary growth

1.1 Introduction

As already said, in this first chapter of the work we are interested in the existence of
solutions for the following equation

(P ′
a)

{
−div(K(x)∇u) = a(x)K(x)|u|q−2u+K(x)f(u) in RN ,

where K(x) = exp
(
|x|2
4

)
, N ≥ 3 and 1 < q < 2. The nonlinearity f has arbitrary growth at

infinity, that is, the function f is superlinear with no growth restriction and can be allowed
to be in the range subcritical, critical or supercritical. More precisely, the nonlinearity f is
a C1(R) function satisfying:

(f1) There exists δ > 0 such that f is odd for |s| ≤ δ.

(f2) There exists 2 < p < 2∗ such that

lim
|s|→0

f(s)

|s|p−1
= 0.

(f3) The function f(s)
s is decreasing in [−δ, 0] and increasing in [0, δ].

The function a is a positive function satisfying:

(a1) There exists σq ∈ R such that a ∈ L
σq

K (RN ) ∩ L∞(RN ) with

p

p− q
< σq ≤

2

2− q
. (1.1.1)

Below, we set out the main result of this chapter.

Theorem 1.1.1. Suppose that the function f satisfies (f1)−(f3) and the function a satisfies
(a1). Then there exists λ∗ > 0 such that, if ∥a∥σq ∈ (0, λ∗), problem (P ′

a) has infinitely many
weak solutions.
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We emphasize that the theorem holds independently of the growth of f at infinity. Some
typical examples of functions satisfying the conditions (f1)− (f3) are the following:

(1)
f(s) = |s|r−2s exp(st),

(2)
f(s) = |s|r−2s,

(3)
f(s) = |s|r−2s exp(st) + |s|r−2s

where p < r such that p satisfies the condition (f2) and t ≥ 1.

In the proof of the main result, we apply variational methods. However, since we have
no control on the behaviour of f at infinity, the associated functional to (P ′

a) is not well
defined in the entire space X. In the literature, there are some papers with nonlinearities
with arbitrary growth. For example, in [73] the existence of infinitely many solutions were
obtained for some elliptic problems with Dirichlet boundary condition, Neumann boundary
condition and for an Hamiltonian system considering nonlinearities with behaviour sublinear
on the origin. The strategy consisted of modifying the nonlinearity, obtaining solutions with
small L∞ norms in such a way that each solution of the modified problem was a solution
to the original problem. The version of [73] with the nonlinearity being able to change the
sign was considered in [53]. In [44] was studied Kirchhoff problem considering nonlinearities
with behaviour sublinear and linear on the origin using the strategy from [73].

Hamiltonian system also was studied with nonlinearities with arbitrary growth in [24],
[31] and [59].

On the other hand, equations with this class of weights have been studied extensively in
the literature. For example, the version of classical Brezis - Nirenberg problem was studied
in [25]. The version with critical concave-convex nonlinearities was studied in [45]. The
study in dimension two and nonlinearity with exponential growth was made in [39], [42]
and [43].

The present work is strongly influenced by the articles above. Below we list what we
believe that are the main contributions of our paper.

(1) Unlike [25], [39], [42], [43] and [45], we show existence of infinitely many solutions
with the nonlinearity with arbitrary growth.

(2) The truncation used here is different of the truncation used in [44], [53] and [73]. We
were influenced by arguments that can be found in [33].

(3) We complement the study that can be found in [44], because we consider the non-
linearity with behaviour superlinear on the origin. We were influenced by arguments
that can be found in [14].

This chapter is organized as follows. In Section 1.2, in order to be able to deal vari-
ationally, we use introduce some definitions and we use an argument inspired by [33]. In
Section 1.3 we show existence of infinitely many critical points of the functional associated
to problem (P ′

a). In order to use Genus theory, it was necessary to make another truncation.
In Section 1.4 we prove the main result.
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1.2 Variational framework and a modified problem

We define the space X as the completion of the smooth functions with compact support
C∞
c (RN ) with respect to the norm

∥u∥2K =

∫
RN

K(x)|∇u|2dx.

As quoted in [45, Proposition 2.1], X is a Banach space and the weighted Lebesgue
spaces

Ls
K(RN ) :=

{
u measurable in RN : ∥u∥ss :=

∫
RN

K(x)|u|sdx <∞
}

are such that the embedding X ↪→ Ls
K(RN ) are continuous for 2 ≤ s ≤ 2∗ := 2N

N−2 and
compact for 2 ≤ s < 2∗.

A weak solution of problem (P ) is a function u ∈ X such that∫
RN

K(x)∇u∇vdx−
∫
RN

K(x)a(x)|u|q−2uvdx−
∫
RN

K(x)f(u)vdx = 0,

for all v ∈ X and if

∫
RN

K(x)f(u)vdx <∞.

From the variational point of view, the equation in (P ′
a) is the Euler - Lagrange equation

of the energy functional

Φ(u) =
1

2

∫
RN

K(x)|∇u|2dx− 1

q

∫
RN

K(x)a(x)|u|qdx−
∫
RN

K(x)F (u)dx,

where F (s) =

∫ s

0
f(t)dt. Note that the term

∫
RN

K(x)a(x)|u|qdx is finite because from

(1.1.1), we have 2 ≤ qβq ≤ p < 2∗ and from (a1) we obtain∫
RN

K(x)a(x)|u|qdx ≤ ∥a∥σq∥u∥
q
qβq
,

where βq is the conjugated exponent of σq, that is,
1
σq

+ 1
βq

= 1.

However we have no control on the behaviour of f at infinity. Then the functional Φ is
not well defined in the entire space X. In order to be able to deal variationally, we consider
the following auxiliary function:

g(s) =



f(δ)

δp−1
|s|p−2s if s < −δ,

f(s) if − δ ≤ s ≤ δ,

f(δ)

δp−1
|s|p−2s if s > δ,

where p was given in (f2).

Now we consider the functional I of C1 class given by

I(u) =
1

2

∫
RN

K(x)|∇u|2dx− 1

q

∫
RN

K(x)a(x)|u|qdx−
∫
RN

K(x)G(u)dx,
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where G(s) =

∫ s

0
g(t)dt. By some direct calculations, we get

I ′(u)v =

∫
RN

K(x)∇u∇vdx−
∫
RN

K(x)a(x)|u|q−2uvdx−
∫
RN

K(x)g(u)vdx,

for all v ∈ X. Note that if u ∈ X ∩ L∞(RN ) is a critical point of I such that ∥u∥∞ ≤ δ,
then g(u) = f(u) and u is a weak solution of problem (P ′

a).

1.3 Existence of infinitely many critical points of the func-
tional I

The main result in this section is:

Theorem 1.3.1. Suppose that the function f satisfies (f1)−(f3) and the function a satisfies
(a1). Then there exists λ∗ > 0 such that, if ∥a∥σq ∈ (0, λ∗), the functional I has infinitely
many critical points.

In order to use variational methods, we first derive some results related to the Palais-
Smale compactness condition.

A sequence (un) ⊂ X is a (PS)c sequence for I if

I(un) → c and ∥I ′(un)∥X′ → 0, as n→ ∞ (1.3.1)

where
c := inf

π∈Γ
max
t∈[0,1]

I(π(t)) > 0

and
Γ := {π ∈ C([0, 1], X) : π(0) = 0, I(π(1)) < 0}.

If (1.3.1) implies the existence of a subsequence (unj ) ⊂ (un) which converges in X, we
say that I satisfies the Palais-Smale condition on the level c.

1.3.1 Technical results

The genus theory requires that the functional I is bounded from below. Since this is not
the case, it is necessary to define a new functional J which is bounded from below such
that a critical point of J is a critical point of I. The definiton of such functional J follows
by some ideas contained in [14].

From Sobolev embedding, we define the function h given by

h(∥u∥2) := 1

2
∥u∥2 −

∥a∥σq

qS
qβq/2
qβq

∥u∥βqq − 1

pS
p/2
p

∥u∥p ≤ I(u), (1.3.2)

where

Sp = inf
u∈X\{0}

∥u∥2

∥u∥2p
and Sqβq = inf

u∈X\{0}

∥u∥2

∥u∥2qβq

.

Hence, there exists τ1 > 0 such that, if ∥a∥σq ∈ (0, τ1), then h attains its positive
maximum. Let 0 < R0 < R1 be the only roots of h. We have that R0 = R0(∥a∥σq) and the
following result holds:
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Lemma 1.3.2. Using the definition of h in (1.3.2), we have

R0(∥a∥σq) → 0 as ∥a∥σq → 0.

Proof. From h(R0(∥a∥σq)) = 0 and h′(R0(∥a∥σq)) > 0, we have

1

2
R0(∥a∥σq) =

∥a∥σq

qS
qβq/2
qβq

R0(∥a∥σq)
βqq/2 +

1

pS
p/2
p

R0(∥a∥σq)
p/2 (1.3.3)

and
1

2
>
βq
2

∥a∥σq

S
qβq/2
qβq

R0(∥a∥σq)
(βqq−2)/2 +

1

2S
p/2
p

R0(∥a∥σq)
(p−2)/2, (1.3.4)

for all ∥a∥σq ∈ (0, τ1). Since p > 2, from (1.3.3) we conclude that R0(∥a∥σq) is bounded.

Suppose, by contradiction, that up to a subsequence, we get R0(∥a∥σq) → α > 0 as
∥a∥σq → 0. Then, passing to the limit as ∥a∥σq → 0 in (1.3.3) and (1.3.4), we obtain

1

2
=

1

pSp/2
α(p−2)/2 (1.3.5)

and
1

2
≥ 1

2S
p/2
p

α(p−2)/2. (1.3.6)

Using (1.3.5) and (1.3.6) we derive a contradiction, because 2 < p. Therefore α = 0.

We modify the functional I in the following way. Take ϕ ∈ C∞([0,+∞)), 0 ≤ ϕ ≤ 1
such that ϕ(t) = 1 if t ∈ [0, R0] and ϕ(t) = 0 if t ∈ [R1,+∞). Now, we consider the
truncated functional

J(u) =
1

2

∫
RN

K(x)|∇u|2 dx− 1

q

∫
RN

K(x)a(x)|u|q dx− ϕ(∥u∥2)
∫
RN

K(x)G(u) dx.

Note that J ∈ C1(X,R) and, as in (1.3.2), J(u) ≥ h(∥u∥2), where

h(t2) :=
1

2
t2 −

∥a∥σq

qS
qβq/2
qβq

tβqq − ϕ(t2)
1

pS
p/2
p

tp.

Let us remark that if ∥u∥2 ≤ R0, then J(u) = I(u). In the light of Proposition 3.4.5, it
seems to be useful proving that the set of critical points of J has genus greater than 2, in
order to obtain infinitely many critical points of J .

Note that if ∥u∥2 ≥ R1, then J(u) =
1

2

∫
RN

K(x)|∇u|2 dx − 1

q

∫
RN

K(x)a(x)|u|q dx,
which implies that J is coercive and hence bounded from below.

In the next lemma we show that J satisfy the Palais-Smale condition for any level c.

Lemma 1.3.3. For c ∈ R, let (un) ⊂ X be a bounded sequence such that

I(un) → c and I ′(un) → 0.

Then, up to a subsequence, (un) is strongly convergent in X.
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Proof. Note that, up to a subsequence, using the compactness result that can be found
in [45, Proposition 2.1], we have,

un ⇀ u in X,

un → u in Ls
K(RN ),

un → u a.e in RN

and
|un| ≤ ψ a.e in RN ,

for some ψ ∈ Ls
K(RN ) and 2 ≤ s < 2∗. Then, from Lebesgue’s Theorem, we obtain∫

RN

K(x)a(x)|un|q−2(un − u)dx→ 0

and ∫
RN

K(x)g(un)(un − u)dx→ 0.

Then,

on(1) =

∫
RN

K(x)∇un∇(un − u)dx = ∥un∥2 − ∥u∥2

and the proof is over.

Lemma 1.3.4. If J(u) < 0, then ∥u∥2 < R0 and J(v) = I(v), for all v in a small
neighborhood of u. Moreover, J verifies a local Palais-Smale condition for c < 0.

Proof. Since h(∥u∥2) ≤ J(u) < 0, then ∥u∥2 < R0. By the definition of J , we have that
J(u) = I(u). Moreover, since J is continuous, we conclude that J(v) = I(v), for all
v ∈ BR0/2(0). Besides, if (un) is a sequence such that J(un) → c < 0 and J ′(un) → 0 as
n → ∞, then for n sufficiently large I(un) = J(un) → c < 0 and I ′(un) = J ′(un) → 0 as
n → ∞. Since J is coercive, we get that (un) is bounded in X. From Lemma 1.3.3, up to
a subsequence (un) is strongly convergent in X.

Now, we construct an appropriate minimax sequence of negative critical values.

Lemma 1.3.5. Given k ∈ N, there exists ϵ = ϵ(k) > 0 such that

γ(J−ϵ) ≥ k,

where J−ϵ = {u ∈ X : J(u) ≤ −ϵ}.

Proof. Consider k ∈ N and let Xk be a k-dimensional subspace of X and note that(∫
RN

K(x)a(x)|u|q dx
) 1

q

is a norm in Xk. Since in Xk all norms are equivalent, there exists C(k) > 0 such that

−C(k)∥u∥q ≥ −
∫
RN

K(x)a(x)|u|qdx,

for all u ∈ Xk.
We now use the inequality above to conclude that

J(u) ≤ 1

2
∥u∥2 − ∥a∥σq

C(k)

q
∥u∥q = ∥u∥q

(
1

2
∥u∥2−q −

C(k)∥a∥σq

q

)
.

21



Considering R > 0 sufficiently small, there exists ϵ = ϵ(R) > 0 such that

J(u) < −ϵ < 0,

for all u ∈ SR = {u ∈ Xk; ∥u∥ = R}. Since Xk and Rk are isomorphic and SR and Sk−1 are
homeomorphic, we conclude from Corollary 3.4.2 that γ(SR) = γ(Sk−1) = k. Moreover,
once that SR ⊂ J−ϵ and J−ϵ is symmetric and closed, we have

k = γ(SR) ≤ γ(J−ϵ).

We define now, for each k ∈ N, the sets

Γk = {C ⊂ X : C is closed, C = −C and γ(C) ≥ k},

Kc = {u ∈ X : J ′(u) = 0 and J(u) = c}

and the number
ck = inf

C∈Γk

sup
u∈C

J(u).

Lemma 1.3.6. Given k ∈ N, the number ck is negative.

Proof. From Lemma 1.3.5, for each k ∈ N there exists ϵ > 0 such that γ(J−ϵ) ≥ k.
Moreover, 0 /∈ J−ϵ and J−ϵ ∈ Γk. On the other hand

sup
u∈J−ϵ

J(u) ≤ −ϵ.

Hence,
−∞ < ck = inf

C∈Γk

sup
u∈C

J(u) ≤ sup
u∈J−ϵ

J(u) ≤ −ϵ < 0.

The next Lemma allows us to prove the existence of critical points of J .

Lemma 1.3.7. If c = ck = ck+1 = ... = ck+r for some r ∈ N, then

γ(Kc) ≥ r + 1.

Proof. Since c = ck = ck+1 = ... = ck+r < 0, from Lemma 1.3.3 and Lemma 1.3.6, we
get that Kc is compact. Moreover, Kc = −Kc. If γ(Kc) ≤ r, there exists a closed and
symmetric set U with Kc ⊂ U such that γ(U) = γ(Kc) ≤ r. Note that we can choose
U ⊂ J0 because c < 0. By the deformation lemma [17] we have an odd homeomorphism
η : X → X such that η(Jc+δ − U) ⊂ Jc−δ for some δ > 0 with 0 < δ < −c. Thus,
Jc+δ ⊂ J0 and by definition of c = ck+r, there exists A ∈ Γk+r such that sup

u∈A
J < c + δ,

that is, A ⊂ Jc+δ and

η(A− U) ⊂ η(Jc+δ − U) ⊂ Jc−δ. (1.3.7)

But γ(A− U) ≥ γ(A)−γ(U) ≥ k and γ(η(A− U)) ≥ γ(A− U) ≥ k. Then η(A− U) ∈ Γk.
Then, by (1.3.7)

c = ck ≤ sup
u∈η(A−U)

J(u) ≤ sup
u∈Jc−δ

J(u) < c− δ,

which is a contradiction.
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1.4 Proof of Theorem 1.1

Proof. If −∞ < c1 < c2 < ... < ck < ... < 0 with ci ̸= cj , once each ck is a critical value of
J , we obtain infinitely many critical points of J .

On the other hand, if ck = ck+r for some k and r, then c = ck = ck+1 = ... = ck+r and
from Lemma 1.3.7, we have

γ(Kc) ≥ r + 1 ≥ 2.

From Proposition 3.4.5, we conclude that Kc has infinitely many points.

If u0 ∈ X is a critical point of J in level ck, from Lemma 1.3.6 we conclude that ck < 0.
Using Lemma 1.3.4, u0 ∈ X is a critical point of I with ∥u0∥2 ≤ R0.

Now it is sufficient to prove that there exists a positive constant C, independent on
∥a∥σq such that

∥u0∥∞ ≤ C∥u0∥. (1.4.1)

In this case, we can use Lemma 1.3.2 to conclude that, there exists a λ∗ > 0 such that
∥a∥σq ∈ (0, λ∗), which implies

∥u0∥∞ ≤ δ,

where we conclude that u0 ∈ X is a weak solution of problem (P ). Now we use the Moser
iteration technique in order to prove (1.4.1). In order to save the notation, from now on we
denote u0 by u.

For each L > 0, we define uL ∈ H1(RN ) by setting

uL(x) := min{u(x), L}, ΥL := u
2(β−1)
L u

with β > 1 to be determined later.

We would like to emphasize that we will consider in these calculations that u is non-
negative, because if u change the sign, we can consider the negative part of u in ΥL and
get the estimates for the positive part. After that, we consider the positive part of u in ΥL

and obtain the estimates for the negative part.

Now we define the function H(x, t) := a(x)tq−1+ tp−1, for all t ≥ 0. Since a ∈ L∞(RN ),
we have that

lim
t→0

H(x, t) = 0 and lim
t→+∞

H(x, t)

tp − 1
= 1, uniformly in x ∈ RN .

Then, there exists a positive contant C such that

H(x, t) ≤ Ctp−1. (1.4.2)

Note that I ′(u)ΥL = 0. Considering that

2(β − 1)

∫
RN

K(x)u
2(β−1)−1
L ∇u∇uLdx ≥ 0,

we obtain∫
RN

K(x)u
2(β−1)
L |∇u|2dx ≤

∫
RN

K(x)a(x)|u|q−2u2u
2(β−1)
L dx+

∫
RN

K(x)g(u)uu
2(β−1)
L dx.

(1.4.3)
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By definition of g, we derive

∫
RN

K(x)u
2(β−1)
L |∇u|2dx ≤

∫
RN

K(x)a(x)|u|qu2(β−1)
L dx+

∫
RN

K(x)upu
2(β−1)
L dx

=

∫
RN

K(x)H(x, u)uu
2(β−1)
L dx

Using the inequality (1.4.2) we conclude

∫
RN

K(x)u
2(β−1)
L |∇u|2dx ≤ C

∫
RN

K(x)upu
2(β−1)
L dx. (1.4.4)

Let S be the best constant of the embedding X ↪→ L2∗
K (RN ) and define ûL := uuβ−1

L .
Since uL ≤ u, we have that

S∥ûL∥22∗ ≤
∫
RN

∣∣∣K(x)∇
(
uuβ−1

L

)∣∣∣2 dx ≤ β2
∫
RN

K(x)u
2(β−1)
L |∇u|2dx.

The last inequality and (1.4.4) provide

S∥ûL∥22∗ ≤ C4β
2

∫
RN

K(x)|u|pu2(β−1)
L dx, (1.4.5)

for all β > 1.
The definition of ûL imply that

S∥ûL∥22∗ ≤ C4β
2

∫
RN

K(x)|u|p−2|ûL|2dx. (1.4.6)

Using Hölder’s inequality with 2∗

p−2 and 2∗

2∗−(p−2) , we get

S∥ûL∥22∗ ≤ C4β
2

(∫
RN

K(x)|u|2∗dx
)(p−2)/2∗ (∫

RN

K(x)|ûL|
22∗

(2∗−(p−2))dx

) (2∗−(p−2))
2∗

,

(1.4.7)
where 2 < 22∗

(2∗−(p−2)) < 2∗.

Note that

(∫
RN

K(x)|u|2∗dx
)(p−2)/2∗

= ∥u∥p−2
2∗ ≤ S

2−p
2 ∥u∥p−2 ≤ S

2−p
2 Rp−2

0 ≤ 1, for

∥a∥σq sufficient small.
Then,

S∥ûL∥22∗ ≤ C4β
2

(∫
RN

K(x)|ûL|
22∗

(2∗−(p−2))dx

) (2∗−(p−2))
2∗

,

where we conclude that

S∥ûL∥22∗ ≤ C5β
2∥ûL∥2ζ ,

where ζ = 22∗

(2∗−(p−2)) .

Using uL ≤ |u|, we get

S∥ûL∥2L2∗ ≤ C5β
2

(∫
RN

|u|βζdx
)2/ζ

.
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From Fatou’s lemma in the variable L we obtain

∥u∥β2∗ ≤ C
1/β
6 β1/β∥u∥βζ ,

whenever uβζ ∈ L1
K(RN ).

We now set β := 2∗/ζ > 1 and note that, since u ∈ L2∗
K (RN ), the above inequality holds

for this choice of β. Moreover, since β2ζ = β2∗, it follows that the inequality also holds
with β replaced by β2.

Hence,

∥u∥β22∗ ≤ C
1/β2

7 β1/β
2∥u∥β2ζ .

By iterating this process and recalling that βζ = 2∗, we obtain, for k ∈ N,

∥u∥βk2∗ ≤ C

k∑
i=1

β−i

7 β

k∑
i=1

iβ−i

∥u∥2∗ .

Since β > 1 we can take the limit as k → ∞ to get

∥u∥∞ ≤ C8∥u∥2∗ ≤ C8S
−1/2∥u∥ ≤ C8S

−1/2R
1/2
0 ≤ δ,

for ∥a∥σq sufficient small, which prove the main result.
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Chapter 2

On a critical and a supercritical
system with fast increasing weights

2.1 Introduction

In this chapter we prove a result as in [25] for some systems with critical or supercritical
growth. More precisely we show the existence of nontrivial solutions to the systems

(S′)


−div(K(x)∇u) = K(x)Qu(u, v) +

1
2∗K(x)Hu(u, v) in RN ,

−div(K(x)∇v) = K(x)Qv(u, v) +
1
2∗K(x)Hv(u, v) in RN ,

where N ≥ 3, K(x) = exp
(
|x|2/4

)
, Q and H are functions of class C1 and

(SC ′)


−div(K(x)∇u) = K(x)Qu(u, v) +K(x)|u|Υ1−2u in RN ,

−div(K(x)∇v) = K(x)Qv(u, v) +K(x)|v|Υ2−2v in RN ,

where Υi > 2∗, i = 1, 2.

Setting R2
+ := [0,∞)× [0,∞), for any given q ≥ 1 we denote by Hq the collection of all

functions F ∈ C2(R2
+,R) satisfying the following properties.

(Hq
0) F is q-homogeneous, that is,

F (λs, λt) = λqF (s, t), for each λ > 0 and (s, t) ∈ R2
+.

(Hq
1) There exists c1 > 0 such that

|Fs(s, t)|+ |Ft(s, t))| ≤ c1
(
sq−1 + tq−1

)
for each (s, t) ∈ R2

+.

(H2) F (s, t) > 0 for each s, t > 0.

(H3) ∇F (1, 0) = ∇F (0, 1) = (0, 0).

(H4) Fs(s, t), Ft(s, t) ≥ 0 for each (s, t) ∈ R2
+.

The hypotheses on the functions Q and H are the following:

(A1) H ∈ H2∗ and Q ∈ Hp for some 2 < p < 2∗.

(A2) The 1-homogeneous function G : R2
+ → R given by G(s2

∗
, t2

∗
) := H(s, t) is concave.
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(A3) Q(s, t) ≥ σsγtβ for all (s, t) ∈ R2
+, with γ, β > 1, γ + β =: p1 ∈ (2, 2∗) and σ satisfies

(i) σ > 0 if either N ≥ 4, or N = 3 and 2∗ − 2 < p1 < 2∗;

(ii) σ is sufficiently large if N = 3 and 2 < p1 < 2∗ − 2.

(Ã3) There exists σ∗ > 0 such that Q(s, t) ≥ σsγtβ for all (s, t) ∈ R2
+, γ, β > 1, γ + β =:

p1 ∈ (2, 2∗), for all σ > σ∗ and σ∗ to be fixed later.

The main results are:

Theorem 2.1.1. Assume that conditions (A1), (A2), (A3) are hold. Then, system (S′) has
a weak positive solution.

Theorem 2.1.2. Assume that conditions (A1), (A2), (Ã3) are hold. Then, system (SC ′)
has a weak positive solution.

The search for self-similar solutions for systems appeared in the first time in [71]. In that
paper, Yuan-wei Qi shows the existence of both slowly and fast decaying positive solutions
for the system

(Q)


−∆u− 1

2(x.∇u) =
k1
2 u+ vp in RN ,

−∆v − 1
2(x.∇v) =

k2
2 v + vq in RN ,

where k1, k2 > 0 and p, q > 1. The asymptotic behaviour of positive solutions such system
also was studied by Yuan-wei Qi in [71].

The hypotheses (A1) − (A3) had already appeared in [32]. In that paper, de Morais
Filho and Souto [32] investigate the existence of solutions for the following system:

(DM)


−∆pu = Qu(u, v) +Hu(u, v) in Ω,

−∆pv = Qv(u, v) +Hv(u, v) in Ω,

u = v = 0 on ∂Ω,

where ∆p denotes the p−Laplacian operator, p > 1 and Ω is a bounded domain in RN .

Our arguments were strongly influenced by [25], [32] and [71]. Below we list what we
believe to be the main contributions of our paper.

i) In order to get around the lack of compactness, in [25] estimates are used involving
the Talenti’s functions type and the weight function K. As can be seen in Lemma
2.2.5 and Lemma 2.2.6, the estimates to get around the lack of compactness with the
systems in RN are more delicate.

ii) We completed the study that was done in [71] in the sense that we are studying
another class of systems considering the critical and supercritical cases.

iii) It was necessary to adapt some estimates found in [32] for the RN considering the
weight function K, as can be seen in Lemma 2.2.1 and Lemma 2.2.4.

iv) To circumvent the lack of variational structure of the supercritical system, we use a
truncation argument. To recover the solution to the original problem, we used the
study on a problem in a bounded domain.
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Concerning the class of nonlinearities we are dealing, we have the following examples
from [32]. Let q ≥ 1 and

Pq(s, t) =
∑

αi+βi=q

ais
αitβi ,

where i ∈ {1, . . . , k}, αi, βi ≥ 1 and ai ∈ R. The following functions and its possible
combinations, with appropriated choices of the coefficients ai, satisfy our hypothesis on Q

Q1(s, t) = Pp(s, t), Q2(s, t) =
r
√
Pl(s, t) and Q3(s, t) =

Pl1(s, t)

Pl2(s, t)
,

with r = pl and l1 − l2 = p. Condition (A2) restricts the expression of the critical function
H. However, it can have the polynomial form H(s, t) = P2∗(s, t).

The chapter is organized as follows. In Section 2 is devoted to variational framework
and some preliminary results for the critical case. In Section 3 we show the solution of the
critical case proving the first main result. In the Section 4 we study the supercritical case
and prove the second main result.

2.2 Variational framework and some preliminary results for
the critical case

We define the space X as the completion of the smooth functions with compact support
C∞
c (RN ) with respect to the norm

∥u∥2K =

∫
RN

K(x)|∇u|2dx.

We are looking for solution on the space X ×X with respect to the norm

∥(u, v)∥2 = ∥u∥2K + ∥v∥2K .

As quoted in [45, Proposition 2.1], X is a Banach space and the weighted Lebesgue
spaces

Ls
K(RN ) :=

{
u mensurable in RN : ∥u∥ss,K :=

∫
RN

K(x)|u|sdx <∞
}

are such that the embedding X ↪→ Ls
K(RN ) are continuous for 2 ≤ s ≤ 2∗ and compact for

2 ≤ s < 2∗.

A pair (u, v) ∈ X ×X is a weak positive solution of system (S′) if u > 0 and v > 0 a.e.
in RN and∫

RN

K(x)∇u∇ϕdx+

∫
RN

K(x)∇v∇ψdx =

∫
RN

K(x)[ϕQu(u, v) + ψQv(u, v)]dx

+
1

2∗

∫
RN

K(x)[ϕHu(u, v) + ψHv(u, v)]dx,

for all (ϕ, ψ) ∈ X ×X. With the same reasoning, we defined a weak positive solution for
the system with supercritical growth (SC ′).

Since we are interested in positive solutions we extend the functions Q and H to the
whole R2 by setting Q(u, v) = H(u, v) = 0 if u ≤ 0 or v ≤ 0. We also note that for any
function F ∈ Hq, we can use the homogeneity condition (Hq

0) to conclude that

qF (s, t) = sFs(s, t) + tFt(s, t). (2.2.1)
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for any (s, t) ∈ R2. Moreover, since {(s, t) ∈ R2 : |s|q + |t|q = 1} is a compact set and F is
a continuous function on it, then there exists MF > 0 such that

|F (s, t)| ≤MF (|s|q + |t|q), (2.2.2)

where MF = max{F (s, t) : s, t ∈ R, |s|q + |t|q = 1} and the maximum MF is attained for
some (s0, t0) ∈ R2.

The associated functional to system (S′) is given by

I(u, v) :=
1

2
∥(u, v)∥2 −

∫
RN

K(x)Q(u, v)dx− 1

2∗

∫
RN

K(x)H(u, v)dx,

is well defined for (u, v) ∈ X ×X. Thus,

I ′(u, v)(ϕ, ψ) : =

∫
RN

K(x)∇u∇ϕdx+

∫
RN

K(x)∇v∇ψdx

−
∫
RN

K(x)Qu(u, v)ϕdx−
∫
RN

K(x)Qv(u, v)ψdx

− 1

2∗

∫
RN

K(x)Hu(u, v)ϕdx− 1

2∗

∫
RN

K(x)Hv(u, v)ψdx.

Hence, critical points of I are weak solutions of (S′).
Now we prove a version of Brezis-Lieb lemma for class of the system that we are studying.

Lemma 2.2.1. Let (un, vn) be bounded sequence in X×X and u, v ∈ X such that un(x) →
u(x) and vn(x) → v(x) a.e in RN . Then,∫

RN

K(x)Q(un, vn)dx−
∫
RN

K(x)Q(un − u, vn − v)dx =

∫
RN

K(x)Q(u, v)dx+ on(1).

and∫
RN

K(x)H(un, vn)dx−
∫
RN

K(x)H(un − u, vn − v)dx =

∫
RN

K(x)H(u, v)dx+ on(1).

Proof. Since Q is a q-homogeneous function, from (Hq
1) and arguing as [32, Lemma 7], given

ϵ > 0 there exists Cϵ such that

K(x)|Q(un, vn)−Q(un − u, vn − v)|
≤ ϵK(x) (|un − u|q + |vn − v|q) + CϵK(x) (|u|q + |v|q) . (2.2.3)

Now, for each x ∈ RN , let us define the function

hϵ,n(x) := max
[
K(x)|Q(un(x), vn(x))−Q(u(x), v(x))−Q(un(x)− u(x), vn(x)− v(x))|

− ϵK(x) (|un(x)− u(x)|q + |vn(x)− v(x)|q) , 0
]
. (2.2.4)

Note that by hypothesis hϵ,n(x) → 0, a.e in RN . Now from (2.2.3) and (2.2.4), we obtain

|hϵ,n(x)| ≤ K(x)Q(u, v) + CϵK(x) (|u|q + |v|q) .

Then, from Dominated Convergence Theorem we get

lim
n→∞

∫
RN

hϵ,ndx = 0.
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From definition of hϵ,n, there exists C > 0 such that

lim sup
n→∞

∣∣∣∣∫
RN

K(x)Q(un, vn)dx−
∫
RN

K(x)Q(un − u, vn − v)dx−
∫
RN

K(x)Q(u, v)dx

∣∣∣∣
≤ lim sup

n→∞

∫
RN

ϵK(x) (|un(x)− u(x)|q + |vn(x)− v(x)|q) dx ≤ ϵC

and the result follows taking ϵ → 0+. The second convergence follows by using the same
argument and we omit it.

In order to use variational methods, we first derive some results related to the Palais-
Smale compactness condition.

We say that a sequence (un, vn) is a Palais-Smale sequence for the functional I at the
level d ∈ R if

I(un, vn) → d and ∥I ′(un, vn)∥ → 0 in X ×X.

If every Palais-Smale sequence of I has a strong convergent subsequence, then one says
that I satisfies the Palais-Smale condition ((PS) for short).

In the sequel, we prove that the functional I has the Mountain Pass Geometry. This
fact is proved in the next lemmas:

Lemma 2.2.2. Assume that condition (A1) is hold. Then, there exist positive numbers ρ
and α such that,

I(u, v) ≥ α > 0,∀(u, v) ∈ X ×X : ∥(u, v)∥ = ρ.

Proof. It follows from (A1) that there exists a positive constant c1 > 0 such that

I(u, v) ≥ 1

2
∥u∥2K +

1

2
∥v∥2K − c1(∥u∥pp,K + ∥v∥pp,K)− c1

2∗
(∥u∥2∗2∗,K + ∥v∥2∗2∗,K).

Now, from Sobolev embedding, there is a positive constant C > 0 such that

I(u, v) ≥ 1

2
∥(u, v)∥2 − C∥(u, v)∥p − C∥(u, v)∥2∗ .

Since 2 < p < 2∗, the result follows by choosing ρ > 0 small enough.

Lemma 2.2.3. Assume that condition (A1) is hold. Then, there exists (e1, e2) ∈ X ×X
with I(e1, e2) < 0 and ∥(e1, e2)∥ > ρ.

Proof. Fix (u0, v0) ∈ C∞
0 (RN )× C∞

0 (RN ) \ {(0, 0)} with u0, v0 ≥ 0 in RN . From (A1), we
get

I(t(u0, v0)) =
t2

2
∥(u0, v0)∥2 − tp

∫
RN

K(x)Q(u0, v0) dx− t2
∗

2∗

∫
RN

K(x)H(u0, v0) dx.

Since 2 < p < 2∗, the result follows by considering (e1 = t∗u0, e2 = t∗v0) for some t∗ > 0
large enough.

Using a version of the Mountain Pass Theorem due to Ambrosetti and Rabinowitz [10],
without (PS) condition (see [76, Theorem p.12]), there exists a sequence (un, vn) ⊂ X ×X
satisfying

I(un, vn) → c∗ and I ′(un, vn) → 0,

where

c∗ = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) > 0, (2.2.5)
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and
Γ := {γ ∈ C([0, 1], X ×X) : γ(0) = 0, I(γ(1)) < 0}.

As in [32, Lemma 3], we need a Hölder type inequality involving the weight function K.

Lemma 2.2.4. Let H be a function in Hq such that, the 1-homogeneous function G, defined
by

G(sq, tq) = H(s, t) for all s, t ≥ 0, is concave. (2.2.6)

Then the Hölder type inequality holds:∫
RN

K(x)H(u, v)dx ≤ H(∥u∥q,K , ∥v∥q,K) (2.2.7)

for all u, v ∈ Lq
K(RN ), u, v ≥ 0.

Proof. Firstly we will treat the case q = 1. Let u, v ∈ Lq
K(RN ), with u, v ≥ 0. Thus,

Ku,Kv ∈ L1(RN ). Since H is 1-homogeneous, from [32, Proposition 4] we have that∫
RN

K(x)H(u, v)dx =

∫
RN

H(K(x)u,K(x)v)dx

≤ H(|Ku|1, |Kv|1)
= H(∥u∥1,K , ∥v∥1,K).

To prove the general case, we use the case q = 1 and the fact that the function G is
1-homogeneous. That is,∫

RN

K(x)H(u, v)dx =

∫
RN

K(x)G(uq, vq)dx

=

∫
RN

G(K(x)uq,K(x)vq)dx

≤ G(|Kuq|1, |Kvq|1)
= G(∥u∥qq,K , ∥v∥

q
q,K)

= H(∥u∥q,K , ∥v∥q,K).

In the following, we will use the number S̃K,H , S̃K , SH and S0 given by

S̃K,H := inf
u,v∈X\{0}

∫
RN

K(x)|∇u|2dx+

∫
RN

K(x)|∇v|2dx(∫
RN

K(x)H(u, v)dx

)2/2∗
,

SK := inf
u∈X\{0}

∫
RN

K(x)|∇u|2dx(∫
RN

K(x)|u|2∗dx
)2/2∗

,

S̃H := inf
u,v∈X\{0}

∫
RN

|∇u|2dx+

∫
RN

|∇v|2dx(∫
RN

H(u, v)dx

)2/2∗
,
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S := inf
u∈D1,2(RN ){0}

∫
RN

|∇u|2dx(∫
RN

|u|2∗dx
)2/2∗

.

From now on, we consider the function Φδ,y ∈ D1,2(RN ) given by

Φδ,y(x) =
(δN(N − 2))(N−2)/4

(δ + |x− y|2)(N−2)/2
, x, y ∈ RN and δ > 0. (2.2.8)

In [70] we can see that every positive solution of

(P∞)


−∆u = |u|2∗−2u in RN ,

u > 0 in RN ,
u ∈ D1,2(RN ), N ≥ 3.

is as (2.2.8). Moreover, it satisfies∫
RN

|∇Φδ,y|2dx = S and

∫
RN

|Φδ,y|2
∗
dx = 1. (2.2.9)

By [32, Lemma 3], there exist so, to > 0 such that S̃H is attained by (soΦδ,y, toΦδ,y).
Moreover,

MH S̃H = S, (2.2.10)

where MH = max
s2+t2=1

H(s, t)2/2
∗
= H(so, to)

2/2∗ .

In the next result let us prove a relation between S̃K,H , S̃K and S.

Lemma 2.2.5. Assume that condition (A2) is hold. Then,

MH S̃K,H = SK = S.

Proof. From the definition of MH , we get

H(
s

(|s|2 + |t|2)1/2∗
,

t

(|s|2 + |t|2)1/2∗
)2/2

∗ ≤MH

and homogeneity of H, we have

1

MH
H(s, t)2/2

∗ ≤ |s|2 + |t|2, for all s, t ∈ R. (2.2.11)

Moreover,
1

MH
H(s0, t0)

2/2∗ = s20 + t20. (2.2.12)

Consider (ωn) ⊂ X a minimizing sequence for SK and the sequence (s0ωn, t0ωn) ⊂ X ×X.
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Thus, using (2.2.12) we have that∫
RN

K(x)|∇(s0ωn)|2dx+

∫
RN

K(x)|∇(t0ωn)|2dx(∫
RN

K(x)H(s0ωn, t0ωn)dx

)2/2∗

=

(s20 + t20)

∫
RN

K(x)|∇ωn|2dx(∫
RN

K(x)ω2∗
n H(s0, t0)dx

)2/2∗
=

(s20 + t20)

∫
RN

K(x)|∇ωn|2dx

H(s0, t0)2/2
∗
(∫

RN

K(x)ω2∗
n dx

)2/2∗

=
1

MH

∫
RN

K(x)|∇ωn|2dx(∫
RN

K(x)ω2∗
n dx

)2/2∗
.

Taking the limit on n in the last equality, we obtain

S̃K,H ≤ 1

MH
SK .

To prove the reverse inequality, we use Lemma 2.2.4. Let (un, vn) ⊂ X×X, be a minimizing
sequence for S̃K,H . By definition of SK we have

SK∥un∥22∗,K ≤
∫
RN

K(x)|∇un|2dx

and

SK∥vn∥22∗,K ≤
∫
RN

K(x)|∇vn|2dx

which gives us

SK
(
∥un∥22∗,K + ∥vn∥22∗,K

)
≤
∫
RN

K(x)|∇un|2dx+

∫
RN

K(x)|∇vn|2dx.

Using Lemma 2.2.4 and the inequality (2.2.11), we obtain∫
RN

K(x)|∇un|2dx+

∫
RN

K(x)|∇vn)|2dx(∫
RN

K(x)H(un, vn)dx

)2/2∗

≥ SK

(
∥un∥22∗,K + ∥vn∥22∗,K

)
(∫

RN

K(x)H(un, vn)dx

)2/2∗

≥ SK

(
∥un∥22∗,K + ∥vn∥22∗,K

)
H(∥un∥2∗,K , ∥vn∥2∗K)2/2∗

≥ 1

MH
SK .

Taking the limit on n we have

S̃K,H ≥ 1

MH
SK .

The equality SK = S can be seen in [25, section 4].
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Lemma 2.2.6. If the conditions (A1)− (A3) are hold, then 0 < c∗ <
1
N S̃

N/2
K,H , where c∗ was

defined in (2.4.3).

Proof. We adapt the arguments and some calculations perfomed in [50, Proposition 3.2].
We taking a smooth function φ ∈ C∞

c (RN , [0, 1]) satisfying φ ≡ 1 in BR(0) and φ ≡ 0
outside B2R(0). We consider the function

uϵ(x) := K(x)−1/2φ(x)Φϵ,0(x).

Setting

vϵ(x) :=
uϵ(x)

∥uϵ∥2∗,K
we can use the definition of vϵ and (A3) to get

I(tsovϵ, ttovϵ) =
1

2
∥(ts0vϵ, tt0vϵ)∥2 −

∫
RN

K(x)Q(ts0vϵ, tt0vϵ)dx

− 1

2∗

∫
RN

K(x)H(ts0vϵ, tt0vϵ)dx ≤ t2

2
(s2o + t2o)∥vϵ∥2K

− σtp1sγo t
β
o

∫
RN

K(x)|vϵ|p1dx− t2
∗

2∗

∫
RN

K(x)|vϵ|2
∗
H(so, to)dx

=
t2

2
(s2o + t2o)∥vϵ∥2K − σtp1sγo t

β
o

∫
RN

K(x)|vϵ|p1dx− t2
∗

2∗
H(so, to),

where (so, to) appeared in (2.2.10) and p1 ∈ (2, 2∗). Denoting the right size of the above
equality by hϵ(t), as in [18, Lemma 3.5] we conclude that hϵ(t) has a unique critical point
tϵ > 0 such that

hϵ(tϵ) = max
t≥0

hϵ(t). (2.2.13)

Define

gϵ(t) :=
t2

2
(s2o + t2o)∥vϵ∥2K − t2

∗

2∗
H(so, to), t ≥ 0, (2.2.14)

and notice that the maximum of gϵ(t) is attained at

t̃ϵ =

{
s2o + t2o
H(so, to)

∥vϵ∥2K
}1/(2∗−2)

=

{
1

MH
∥vϵ∥2K

}1/(2∗−2)

≥ tϵ. (2.2.15)

Since the function gϵ is increasing in (0, t̃ϵ), we can use the definition of hϵ to get

hϵ(tϵ) ≤
1

N

(
s2o + t2o
H(so, to)

∥vϵ∥2K
)N/2

− σtp1ϵ s
γ
o t

β
o

∫
RN

K(x)|vϵ|p1dx.

From [50, pp.1043–1046], we have

∥vϵ∥2K = S +O(ϵ), (2.2.16)

which implies

hϵ(tϵ) ≤ 1

N

(
s2o + t2o
H(so, to)

S +O(ϵ)

)N/2

− σtp1ϵ s
γ
o t

β
o

∫
RN

K(x)|vϵ|p1dx. (2.2.17)

34



From Lemma 2.2.5, we obtain

hϵ(tϵ) ≤
1

N

(
S̃K,H +O(ϵ)

)N/2
− σtp1ϵ s

γ
o t

β
o

∫
RN

K(x)|vϵ|p1dx.

If a, b ≥ 0 and m ≥ 1, then (a+ b)m ≤ am +m(a+ b)m−1b. Therefore,

hϵ(tϵ) ≤
1

N
S̃
N/2
K,H +O(ϵ(N−2)/2)− σtp1ϵ s

p1
o t

p1
o

∫
RN

K(x)|vϵ|p1dx.

Moreover, we can obtain ρ > 0 such that tϵ > ρ for ϵ small. Hence, it follows from the
above inequality that

hϵ(tϵ) ≤
1

N
S̃
N/2
K,H + ϵ(N−2)/2

(
C − σρp1sp1o t

p1
o

ϵ(N−2)/2

∫
RN

K(x)|vϵ|p1dx
)
.

From [50, Proposition 3.2], we have that lim
ϵ→0+

1

ϵ(N−2)/2

∫
RN

K(x)|vϵ|p1dx = +∞, which

we concluded that, for ϵ small enough

c∗ ≤ sup
t≥0

I(tsovϵ, ttovϵ) ≤ hϵ(tϵ) <
1

N
S̃
N/2
K,H .

2.3 Proof of Theorem 2.1.1

Proof. From Lemmas 2.2.2, 2.2.3 and 2.2.6, there exists a sequence (un, vn) ⊂ X × X
verifying I(un, vn) → c∗ and I ′(un, vn) → 0 with

0 < c∗ <
1

N
S̃
N/2
K,H .

From (A1) we have

c∗ + on(1) = I(un, vn)−
1

p
I ′(un, vn)(un, vn)

= (
1

2
− 1

p
)∥(un, vn)∥2 +

(
1

p
− 1

2∗

)∫
RN

K(x)H(un, vn)dx

≥ (
1

2
− 1

p
)∥(un, vn)∥2,

which implies that the sequence (un, vn) is bounded in X ×X. Then there exists (u, v) ∈
X × X such that, and, up to a subsequence, (un, vn) ⇀ (u, v) in X × X. From [45,
Proposition 2.1], up to a subsequence, we have that (un, vn) → (u, v) in Lp

K(RN )×Lp
K(RN ).

Considering (wn, zn) := (un − u, vn − v) and using Lemma 2.2.1 we get (wn, zn) is a
(PS)d for I and I(wn, zn) = I(un, vn)− I(u, v) + on(1).

Moreover, from weak convergence and [45, Proposition 2.1] again, we obtain I ′(u, v) = 0
and I ′(wn, zn) = I ′(un, vn) = on(1). Since∫

RN

K(x)Q(wn, zn)dx = on(1), (2.3.1)

where conclude that

∥(wn, zn)∥2 =
∫
RN

K(x)H(wn, zn)dx+ on(1).
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Then, there exists l ≥ 0 such that

∥(wn, zn)∥2 → l and

∫
RN

K(x)H(wn, zn)dx→ l.

Suppose, by contradiction, that l > 0 and note that by definition of S̃K,H , we have that

l ≥ S̃
N/2
K,H . Then,

c∗ + on(1) = I(un, vn)−
1

2
I ′(un, vn)(un, vn)

= I(wn, zn)−
1

2
I ′(wn, zn)(wn, zn) + on(1)

≥ 1

N

∫
RN

K(x)H(wn, zn)dx+ on(1) =
1

N
l + on(1) ≥

1

N
S̃
N/2
K,H ,

which is absurd. Hence, l = 0, which implies that (un, vn) → (u, v) in X ×X.

2.4 Supercritical case

To solve system (SC ′), we first consider a truncated problem which involves only a sub-
critical Sobolev exponent. As in the case of critical growth, we will use the Mountain Pass
Theorem to show the existence of a positive solution for the truncated system. After that
we are going to show that any positive solution of truncated system is a positive solution
of system (SC ′).

2.4.1 Truncated problem

First of all, note that since Υi > 2∗ we cannot use directly variational techniques to study
system (SC ′). Hence we construct a suitable truncation of on the nonlinearity in order to
use variational methods. This truncation was used in [26] in the escalar case and in [66] in
the system case. Consider the functions li : R → R given by

li(t) =


0 if t ≤ 0,

tΥi−1 if 0 < t ≤ 1,
tp−1 if t ≥ 1,

where 2 < p < 2∗ and i = 1, 2. Considering Li(t) =

∫ t

0
li(s)ds, we have

li(t) ≤ tp−1 and Li(t) ≤
1

p
tp (2.4.1)

and the truncated system

(SCT )

{
−div(K(x)∇u) = K(x)Qu(u, v) +K(x)l1(u) in RN ,
−div(K(x)∇v) = K(x)Qv(u, v) +K(x)l2(v) in RN .

We recall that the weak solutions of (SCT ) are the critical points of the functional

Jσ(u, v) =
1

2
∥(u, v)∥2 −

∫
RN

K(x)Q(u, v)dx−
∫
RN

K(x)L1(u)dx−
∫
RN

K(x)L2(v)dx

36



and

Jσ
′(u, v)(φ,ψ) =

∫
RN

K(x) [∇u∇φ+∇v∇ψ] dx

−
∫
RN

K(x) [Qu(u, v)φ+Qv(u, v)ψ] dx

−
∫
RN

K(x) [l1(u)φ+ l2(v)ψ] dx.

Moreover

Jσ(u, v)−
1

p
Jσ

′(u, v)(u, v) ≥
(
1

2
− 1

p

)
∥(u, v)∥2 (2.4.2)

Note that the functional associated to system (SCT ) depends on σ due to the hypothesis
(Ã3).

2.4.2 The existence result for the truncated system

Theorem 2.4.1. Assume that conditions (A1), (A2), (Ã3) are hold. Then, system (SCT )
has a weak positive solution.

Proof. Arguing as Lemma 2.2.2, there exist positive numbers ρ and α such that,

Jσ(u, v) ≥ α > 0,∀(u, v) ∈ X ×X : ∥(u, v)∥ = ρ.

Now since 2 < p < 2, arguing as Lemma 2.2.3, there exists (e1, e2) ∈ X × X with
Jσ(e1, e2) < 0 and ∥(e1, e2)∥ > ρ.

Using a version of the Mountain Pass Theorem due to Ambrosetti and Rabinowitz [10],
without (PS) condition (see [76, Theorem p.12]), there exists a sequence (un, vn) ⊂ X ×X
satisfying

Jσ(un, vn) → cσ and Jσ
′(un, vn) → 0,

where

cσ = inf
γ∈Γ

max
t∈[0,1]

Jσ(γ(t)) > 0, (2.4.3)

and
Γ := {γ ∈ C([0, 1], X ×X) : γ(0) = 0, Jσ(γ(1)) < 0}.

Since the embedding X ↪→ Ls
K(RN ) are continuous for 2 ≤ s ≤ 2∗ and compact for

2 ≤ s < 2∗ [45, Proposition 2.1], we can use well-known arguments to prove that there is
(u, v) ∈ X ×X such that Jσ(u, v) = cσ and Jσ

′(u, v) = 0.

Let us now consider the following problem{
−∆ω = |ω|p1−2ω in Ω,
ω ∈ H1

0 (Ω),
(PΩ)

where p1 is the constant which appears in the hypothesis (Ã3). It is well-known that
using the Mountain Pass Theorem [10], problem (PΩ) has a nontrivial solution ω ∈ H1

0 (Ω)
satisfying

∥ω∥2H1
0 (Ω) =

∫
Ω
|ω|p1dx. (2.4.4)

This information will be used to obtain an estimate for cσ and it will be crucial to show
the existence of a solution for the supercritical system.
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Lemma 2.4.2. lim
σ→+∞

cσ = 0.

Proof. Note that, by definition of cσ, (2.4.4) and (Ã3), we have

cσ ≤ max
t≥0

Jσ(tω) ≤ max
t≥0

[
t2
∫
Ω
K(x)|∇ω|2dx−

∫
Ω
K(x)Q(tω, tω)dx

]
≤ max

t≥0

[
t2KM −Kmσt

p1
]
∥ω∥2H1

0 (Ω)

=
K

p1/(p1−2)
M

(kmσ)2/(p1−2)

[
(
2

p1
)2/(p1−2) − (

2

p1
)p1/(p1−2)

]
,

whereKM = max
x∈Ω

K(x) andKm = min
x∈Ω

K(x). Since 2 < p1, we have that
[
( 2
p1
)2/(p1−2) − ( 2

p1
)p1/(p1−2)

]
>

0 and the prove is over.

2.4.3 Proof of Theorem 2.1.2

Let (u, v) be a solution of (SCT ), by definition of Q and Li we can assume without loss of
generality, that u, v ≥ 0. It is sufficient to show that |u|∞ ≤ M and |v|∞ ≤ M.

For each L ≥ 1 we can define

uL(x) =

{
u(x), if u(x) ≤ L
L, if u(x) > L

and

vL(x) =

{
u(x), if u(x) ≤ L
L, if u(x) > L

.

Consider w1 = uu
2(β−1)
L and w2 = vv

2(β−1)
L , where β > 1 is a constant to be determined

later. Taking (w1, 0) as a test function, we obtain

∫
RN

K(x)∇u∇w1dx =

∫
RN

K(x) [Qu(u, v)w1dx+ l1(u)w1] dx.

Since ∫
RN

K(x)uu
2(β−1)−1
L ∇uL∇u =

∫
u≤L

K(x)u2(β−1)|∇u|2 ≥ 0,

it follows that∫
RN

K(x)u
2(β−1)
L |∇u|2 ≤

∫
RN

K(x)
[
Qu(u, v)uu

2(β−1)
L dx+ l1(u)uu

2(β−1)
L

]
dx. (2.4.5)

Note that

lim
s→∞

Qs(s, t)

sp−1
= c1 lim

s→0
Qs(s, t) = 0 (2.4.6)

where c1 is the constant that appeared in (Hq
1). Combining (2.4.6), the definition of uL and

(2.4.1) with (2.4.5), we conclude that there exists M1 > 0 suchat∫
RN

K(x)u2(β−1)|∇u|2dx ≤ (M1 + 1)

∫
RN

K(x)upu
2(β−1)
L dx. (2.4.7)

On the other hand, consider ûL = uuβ−1
L . Since uL ≤ u, we have

SK∥ûL∥22∗,K ≤
∫
RN
K(x)|∇

(
uuβ−1

L

)
|2dx ≤ β2

∫
RN
K(x)u

2(β−1)
L |∇u|2dx.
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Then, using (2.4.7) we obtain

SK∥ûL∥22∗,K ≤ β2 (M1 + 1)

∫
RN

K(x)upu
2(β−1)
L dx

= β2 (M1 + 1)

∫
RN
K(x)up−2|ûL|2dx.

Now, applying the Hölder inequality with exponents 2∗

p−2 and 2∗

2∗−(p−2) , we get

SK∥ûL∥22∗,K ≤ β2 (M1 + 1) ∥u∥
p−2
2∗
2∗,K

(∫
RN

K(x)|ûL|
22∗

2∗−(p−2)

) 2∗−(p−2)
2∗

.

From continuous embedding from X ×X into L2∗
K (RN )× L2∗

K (RN ) and (2.4.2) we have

SK∥ûL∥22∗,K ≤ β2 (M1 + 1)

(
2pcσ
p− 2

) p−2
22∗
(∫

RN

K(x)|ûL|
22∗

2∗−(p−2)

) 2∗−(p−2)
2∗

,

where we conclude that

SK∥ûL∥22∗,K ≤ β2 (M1 + 1)

(
2pcσ
p− 2

) p−2
22∗

∥ûL∥2ζ,K ,

with ζ = 22∗

2∗−(p−2) . Using uL ≤ |u|, we have

SK∥ûL∥22∗,K ≤ β2 (M1 + 1)

(
2pcσ
p− 2

) p−2
22∗
(∫

RN

K(x)|u|βζdx
)2/ζ

.

By Fatou’s Lemma in the variable L we obtain

SK∥u∥2β2∗,K ≤ β2 (M1 + 1)

(
2pcσ
p− 2

) p−2
22∗

∥u∥2ββζ,K ,

which implies

∥u∥β2∗,K ≤ β1/β

[
S−1
K (M1 + 1)

(
2pcσ
p− 2

) p−2
22∗
] 1

2β

∥u∥βζ,K .

We now taking β = 2∗/ζ > 1, and note that, since u, v ∈ L2∗
K (RN ), the above inequality

is holds for this choice of β. Moreover, since β2ζ = β2∗, it follows that the inequality also
holds with β replaced by β2.

Hence,

∥u∥β22∗,K ≤ (β2)1/β
2

[
S−1
K (M1 + 1)

(
2pcσ
p− 2

) p−2
22∗
] 1

2β2

∥u∥β2ζ,K .

By iterating this process and recalling that βζ = 2∗, we obtain, for k ∈ N,

∥u∥βk2∗,K ≤ β
∑k

i=1 iβ
−i

[
S−1
K (M1 + 1)

(
2pcσ
p− 2

) p−2
22∗
]∑k

i=1 β
−i

∥u∥2∗,K .
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Note that since K(x) ≥ 1 for all x ∈ RN , β > 1, from continuous embedding from
X ×X into L2∗

K (RN ) × L2∗
K (RN ) and (2.4.2), we have we can take the limit as k → ∞ to

get

∥u∥∞ ≤ βσ1

[
S−1
K (M1 + 1)

(
2pcσ
p− 2

) p−2
22∗
]σ2 (

2pcσ
p− 2

)1/2

,

where

σ1 =

∞∑
i=1

iβ−i σ2 =

∞∑
i=1

β−i.

Choosing σ∗ sufficient large and fixing σ∗ ≤ σ, we have ∥u∥∞ ≤ 1. Repeating the
same reasoning with the test function (0, w2), we have ∥v∥∞ ≤ 1 and, in this case, if
(u, v) ∈ X×X is a positive solution of system (SCT ), then it is a solution of system (SC ′).
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Chapter 3

Existence of positive solutions for a
class of elliptic problems with fast
increasing and critical exponent
and discontinuous nonlinearity

3.1 Introduction

In this chapter we are looking for positive solutions to a problem with nonlinearity discon-
tinuous. To be specific, we are looking positive solutions for the following class of problems

−∆u− 1

2
(x · ∇u) = λh(x) +H(u− a)|u|2∗−2u in RN , (3.1.1)

where a > 0, N ≥ 3, 2∗ is the critical Sobolev exponent (i.e. 2∗ := 2N/(N−2)), h : RN → R
is a nonnegative function and H is the Heaviside function, defined as

H(s) :=

{
0 if s ≤ 0,
1 if s > 0.

Since many obstacle problems and free boundary problems (that appear in certain
physical situations) may be reduced to partial differential equations with discontinuous
nonlinearities, in recent decades, the study of existence, nonexistence and multiplicity of
solutions for problems with discontinuous nonlinearity has attracted the interest of several
researchers, see [8,9,11,15,16,18,19,27–30,38,51,58,67,70] and the references therein. For
more recent papers, see [5–7, 34, 68, 72]. Moreover, some physical problems are related to
discontinuous surface

Γa(u) = {x ∈ RN ;u(x) = a}

which causes difficulties in analyzing this kind of problems, as can be seen in [8] and [12].

On the operator, we would like to emphasize that, as observed by Escobedo and Kavian
in [36], problem

−∆u− 1

2
(x · ∇u) = λu+ |u|p−2u in RN ,

with 2 < p ≤ 2∗ naturally appears when we deal with the nonlinear heat equation

ut −∆u = |u|p−2u in (0,∞)× RN ,
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and look for solutions with the special form uλ(t, x) = tλu(t−1/2x), for λ = 1/(p − 1). We
quote the works [13], [21], [25], [46] , [54], [62], [63] and references therein for information
about existence, nonexistence, decay rate and many other aspects concerning this subject.

Since the exponential-type weight K(x) = exp(|x|2/4) verifies ∇K(x) = 1
2xK(x), prob-

lem (3.1.1) can be written as

− div(K(x)∇u) = K(x)
(
λh(x) +H(u− a)|u|2∗−2u

)
in RN . (3.1.2)

We are looking for solution of (3.1.2) on the space X defined as the completion of the
smooth functions with compact support C∞

c (RN ) with respect to the norm

∥u∥2 =
∫
RN

K(x)|∇u|2dx; u ∈ X. (3.1.3)

As quoted in [45, Proposition 2.1], X is a Banach space and the weighted Lebesgue spaces

Ls
K(RN ) :=

{
u measurable in RN : ∥u∥sK,s :=

∫
RN

K(x)|u|sdx <∞
}

are such that the embedding X ↪→ Ls
K(RN ) are continuous for 2 ≤ s ≤ 2∗ := 2N

N−2 and
compact for 2 ≤ s < 2∗.

Since the nonlinearity in (3.1.2) is discontinuous, we will consider the following notion
of solution to (3.1.2) inspired by Chang in [27] and [28]. A function u ∈ X is a solution of
(3.1.2) if

− div(K(x)∇u)− λK(x)h(x) ∈ K(x)f̂H(u) a.e in RN , (3.1.4)

where f̂H is a multi-valued function

f̂H(s) =


{0} if s < a,

{s2∗−1} if s > a,

[0, a2
∗−1] if s = a.

We emphasize that the solutions of (3.1.2) are critical points of locally Lipschitz func-
tional Iλ,a : X → R given by

Iλ,a(u) =

∫
RN

K(x)|∇u|2dx−
∫
RN

K(x)FH(u)dx− λ

∫
RN

K(x)h(x)udx.

Throughout the paper, we will assume h is a nonnegative function which satisfies

h ∈ Lθ
K(RN ) with

1

θ
+

1

2∗
= 1 and h ̸= 0. (3.1.5)

The main result is:

Theorem 3.1.1. Assume that (3.1.5) holds. Then, there exists λ∗ > 0 and a∗ > 0 such
that for all λ ∈ (0, λ∗) and a ∈ (0, a∗), problem (3.1.2) has two nonnegative solutions
ui = ui(a), i = 1, 2, with the following properties:

(i) −div(K(x)∇ui) ∈ Lθ
K(RN ).

(ii) meas({ui = a} := {x ∈ RN : ui(x) = a}) = 0.

(iii) meas({ui > a} := {x ∈ RN : ui(x) > a}) > 0.
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(iv) Iλ,a(u2) < 0 < Iλ,a(u1),

where meas(·) denote the Lebesgue measure. Moreover, if an → 0+ there exist two functions
vi ∈ X, i = 1, 2, such that, up to a subsequence, ui(an) → vi in X, Iλ,0(v2) < 0 < Iλ,0(v1)
and v1, v2 are solutions of{

−div(K(x)∇v) = K(x)
(
λh(x) + |v|2∗−2v

)
a.e in RN ,

v ∈ X, v ≥ 0 a.e in RN ,
(3.1.6)

for all λ ∈ (0, λ∗).

Remark 1. The item (ii) of Theorem 3.1.1 is very important because it ensures that the
following equality is true

−div(K(x)∇ui) = K(x)
(
λh(x) +H(ui − a)|ui|2

∗−2ui

)
a.e in RN .

Item (iii) implies that each ui is different from of solution of the equation −div(K(x)∇u) =
λK(x)h(x) in RN .

Our arguments were strongly influenced by [2], [3], [4] and [34]. In [2], using convex analysis,
the authors establish the existence of at least two nonnegative solutions for the quasilinear
problem {

−∆pu = λh(x) +H(u− a)|u|p∗−2u a.e in RN ,
u ∈W 1,p(RN ), u ≥ 0 a.e in RN ,

(3.1.7)

where ∆p is the p-Laplacian operator and h is a positive function.

The authors in [3] study the existence and multiplicity of positive solutions for a class
of semilinear elliptic problems of second order, posed in all of RN , where the nonlinearity
is discontinuous and of the form λh(x)H(u− a)uq + |u|2∗−2u.

Assuming that f is a discontinuous function with exponential critical growth, in [4],
the authors have applied variational methods for locally Lipschitz functional to get two
solutions for {

−∆u = ϵh(x) +H(u− a)f(u) a.e in R2,
u ∈ H1(RN ), u ≥ 0 a.e in R2,

where ϵ is a positive small parameter. The version of problem (3.1.7) with fractional
Laplacian was studied in [34].

Below we list what we believe that are the main contributions of our paper.

1) The arguments involved in the study of the problem (3.1.2) are not standard ones:
First of all because we are working with the exponential-type weightK(x) = exp(|x|2/4),
which causes some difficulties, as can be seen in Lemma 3.1, Lemma 3.3 and Lemma
3.4.

2) In [2], [3] and [4] the asymptotic behavior of the solutions found was not studied. Fur-
thermore, in order to carry out this study of asymptotic behavior, some independent
estimates of the parameter a were necessary.

3) We study the asymptotic behavior of the solutions ui = ui(a), i = 1, 2, when the
parameter a goes to 0, which, in general, it is not studied in problems of this nature.
This study requires delicate uniform estimates of the parameter a to prove that (ui,a)
is bounded and that the weak limit is nontrivial.
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4) Since we have the presence of the function H(u − a), we are not able to use Varia-
tional Methods for C1 functionals. For this reason, we use Variational Methods for
nondifferentiable functionals, motivated by the works of Chang [27], [28], [29], [30]
and [52], see Section 2.

This chapter is organized as follows. In Section 2 we remember some results from
Convex Analysis. Some estimates on the minimax level is given in Section 3. The proof of
the main result is in Section 4.

3.2 Basic results from convex analysis

In this section, for the reader’s convenience, we recall some definitions and basic results
on the critical point theory of locally Lipschitz continuous functionals as developed by
Chang [28], Clarke [29,30] and Grossinho and Tersian [52].

Let E be a real Banach space. A functional I : E → R is locally Lipschitz continuous,
I ∈ Liploc(E,R) for short, if given u ∈ E there is an open neighborhood V := Vu ⊂ E and
some constant M =MV > 0 such that

| I(v2)− I(v1) |≤M∥v2 − v1∥, vi ∈ V, i = 1, 2.

The directional derivative of I at u in the direction of v ∈ E is defined by

I0(u; v) = lim sup
h→0, σ↓0

I(u+ h+ σv)− I(u+ h)

σ
.

Hence I0(u; .) is continuous, convex and its subdifferential at z ∈ X is given by

I0(u; z) =
{
µ ∈ E∗; I0(u; v) ≥ I0(u; z) + ⟨µ, v − z⟩, v ∈ X

}
,

where ⟨., .⟩ is the duality pairing between E∗ and X. The generalized gradient of I at u is
the set

∂I(u) =
{
µ ∈ E∗; ⟨µ, v⟩ ≤ I0(u; v), v ∈ E

}
.

Since I0(u; 0) = 0, ∂I(u) is the subdifferential of I0(u; 0). A few definitions and properties
will be recalled below.

∂I(u) ⊂ E∗ is convex, non-empty and weak*-compact,

mI(u) = min
{
∥ µ ∥E∗ ;µ ∈ ∂I(u)

}
, (3.2.1)

and
∂I(u) =

{
I ′(u)

}
, if I ∈ C1(E,R).

A critical point of I is an element u0 ∈ E such that 0 ∈ ∂I(u0) and a critical value of I
is a real number c such that I(u0) = c for some critical point u0 ∈ E.

A sequence (un) ⊂ E is called Palais-Smale sequence at level c (PS)c if

I(un) → c and mI(un) → 0.

A functional I satisfies the (PS)c condition if any Palais-Smale sequence at nivel c has
a convergent subsequence.
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Proposition 3.2.1. (See [29, 30, 52]) Let I1, I2 : E → R be locally Lipschitz functions,
then:

(i) I1 + I2 ∈ Liploc(E,R) and ∂(I1 + I2)(u) ⊆ ∂I1(u) + ∂I2(u), for all u ∈ E.

(ii) ∂(λI1)(u) = λ∂I1(u) for each λ ∈ R, u ∈ E.

(iii) Suppose that for each point v in a neighborhood of u, I1 admits a Gateaux derivative
I ′1(v) and that I ′1 : E → E∗ is continuous, then ∂I1(u) = {I ′1(u)}.

Theorem 3.2.2. (See [29, 30, 52]) Let E be a Banach space and let I ∈ Liploc(E,R) with
I(0) = 0. Suppose there are numbers α, r > 0 and e ∈ E, such that

(i) I(u) ≥ α, for all u ∈ E; ∥u∥ = r,

(ii) I(e) < 0 and ∥e∥ > r.

Let

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) and Γ = {γ ∈ C([0, 1], X) : γ(0) = 0 and γ(1) = e}. (3.2.2)

Then c ≥ α and there is a sequence (un) ⊂ X satisfying

I(un) → c and mI(un) → 0.

If, in addition, I satisfies the (PS)c-condition, then c is a critical value of I.

Theorem 3.2.3. (Riesz representation theorem) Let Φ be a bounded linear functional on
Lr
K(RN ), 1 < r < ∞. Then, there is a unique function u ∈ Lr′

K(RN ) with 1
r′ +

1
r = 1, such

that 〈
Φ, φ

〉
=

∫
RN

K(x)uφdx, for all φ ∈ Lr
K(RN ).

Moreover, ∥Φ∥(Lr
K(RN ))∗ = ∥u∥K,r, where (Lr

K(RN ))∗ is the dual space of Lr
K(RN ) and

∥.∥K,r is given in (3.1.3).

Proof. Consider T : Lr′
K(RN ) → (Lr

K(RN ))∗ be the operator given by〈
Tu, φ

〉
=

∫
RN

K(x)uφdx,

by the Hölder inequality, it follows that

|
〈
Tu, φ

〉
| =

∣∣∣∣∫
RN

K(x)
1
r′ uK(x)

1
rφdx

∣∣∣∣
≤ ∥u∥K,r′∥φ∥K,r, for all u ∈ Lr′

K(RN ), φ ∈ Lr
K(RN ).

Hence, arguing as in the proof of [20, Theorem 4.11], for the case K(x) ≡ 1, we conclude
that ∥Tu∥

(Lr′
K(RN ))∗ = ∥u∥K,r for all u ∈ Lr

K(RN ) and T is surjective.

For the next lemma we need of the following definitions: Let f
H
, fH : R → R be the

functions N-mensurable, see [28], defined by

f
H
(t) := lim

δ↓0
ess inf|t−s|<δfH(s) and fH(t) := lim

δ↓0
ess sup|t−s|<δfH(s).

Using the Theorem 3.2.3 and arguing as in Chang [28], we obtain the following version
of the [28, Theorems 2.1 and 2.2] and your proof will be omitted.
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Lemma 3.2.4. The functional ΦH : L2∗
K (RN ) → R given by

ΦH(u) =

∫
RN

K(x)FH(u)dx, (3.2.3)

where FH(t) =

∫ t

0
fH(s)ds and fH(s) = H(s− a)s2

∗−1, satisfies:

(i) ΦH ∈ Liploc(L
2∗
K (RN ),R) and for every ρ∗ ∈ ∂ΦH(u) there exists ρ ∈ L

2∗
2∗−1

K (RN ) such
that ρ ∈ [f

H
(u), fH(u)] a.e in RN and

〈
ρ∗, φ

〉
=

∫
RN

K(x)ρφdx, for all φ ∈ L2∗
K (RN ).

(ii) If ΦH

∣∣
X

is the restriction to X of ΦH, then ∂
(
ΦH

∣∣
X

)
(u) = ∂ΦH(u), for all u ∈ X.

Remark 2. By definition of fH, it is clear that f
H
(s) = fH(s) = 0 for all s < a, f

H
(s) =

fH(s) = f(s) for all s > a and f
H
(s) = 0, fH(s) = f(a) for s = a. Then, defining

f̂H(s) = [f
H
(s), fH(s)], we have

f̂H(s) =


{0} if s < a,

{s2∗−1} if s > a,

[0, a2
∗−1] if s = a.

Now, let us consider the energy functional Iλ,a : X → R defined as follows:

Iλ,a(u) =
1

2
∥u∥2 −

∫
RN

K(x)FH(u)dx− λ

∫
RN

K(x)h(x)udx, (3.2.4)

for a ≥ 0. We observe that for the case a = 0, the functional Iλ,0 is given by

Iλ,0(u) :=
1

2
∥u∥2 − 1

2∗

∫
RN

K(x)(u+)
2∗dx− λ

∫
RN

K(x)h(x)udx,

where u+ = max{u, 0}. It is clear that, different of the case a > 0, the functional Iλ,0 is of
class C1(X,R).

Lemma 3.2.5. For each a > 0, the functional Iλ,a ∈ Liploc(X,R) and critical points of
Iλ,a are solutions of (3.1.2) in the sense of (3.1.4).

Proof. In fact, note that by (ii) of Lemma 3.2.4 we can write Iλ,a(u) = Ψ(u)−ΦH(u) with
Ψ ∈ C1(X,R) and ΦH ∈ Liploc(X,R), where

Q(u) =
1

2
∥u∥2 − λ

∫
RN

K(x)h(x)udx

and ΦH is given in (3.2.3). Hence, by Proposition 3.2.1, we have Iλ,a ∈ Liploc(X,R) and
∂Iλ,a(u) ⊆ {Q′(u)} − ∂ΦH(u), for all u ∈ X.

Therefore, if u ∈ X is a critical point of Iλ,a there exists ρ ∈ L2∗
K (RN ) such that∫

RN

K(x)∇u∇φdx = λ

∫
RN

K(x)h(x)φdx+

∫
RN

K(x)ρφdx, for all φ ∈ X, (3.2.5)
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where ρ ∈ ∂Φ(u). From Remark 2, we have ρ ∈ f̂H(u) with

f̂H(u) =


{0} if u < a,

{u2∗−1} if u > a,

[0, a2
∗−1] if u = a.

(3.2.6)

Taking φ = u− := min{u, 0} as a test function in (3.2.5) and using (3.2.6), we get
∥u−∥ ≤ 0, then u = u+ ≥ 0 a.e in RN . From (3.2.5), we have

−div(K(x)∇u) = L1 + L2 in X∗,

where L1, L2 : X → R are linear functionals given by

L1(v) = λ

∫
RN

K(x)h(x)v dx and L2(v) =

∫
RN

K(x)ρv dx.

Since L1, L2 ∈
(
Lθ
K(RN

)∗ ⊂ X∗, by Riesz’s Theorem, see Theorem 3.2.3, we have L1, L2 ∈
Lθ
K(RN ) and so

− div(K(x)∇u) ∈ Lθ
K(RN ). (3.2.7)

Since (3.2.5) holds, then

−div(K(x)∇u) = λK(x)h+K(x)ρ a.e. in RN

which implies that

−div(K(x)∇u)− λK(x)h(x) = K(x)ρ ∈ K(x)f̂(u) a.e. in RN .

This conclude that u is a solution of (3.1.2) in the sense of (3.1.4).

3.3 Preliminary results

The next result says that the functional Iλ,a satisfies the Palais-Smale condition at any level
c smaller than a certain threshold related to the best critical Sobolev constant SK of the
injection X ↪→ L2∗

K (RN ). More precisely, SK is defined by

SK := inf
u∈X\{0}

∫
RN

K(x)|∇u|2dx(∫
RN

K(x)|u|2∗dx
)2/2∗

> 0, (3.3.1)

see [25, Section 4] for more details.

Lemma 3.3.1. Iλ,a satisfies the (PS)c condition for each λ, a > 0 and

c <
1

N
S
N/2
K − cKλ

2N
N+2 , (3.3.2)

where cK = cK(N, θ, ∥h∥K,θ) is a positive constant that will be fixed later.

47



Proof. Let (un) ⊂ X be a (PS)c sequence for Iλ,a, that is,

Iλ,a(un) → c and mIλ,a(un) → 0.

From (3.2.1) and Lemma 3.2.4, there exists (wn) ⊂ ∂Iλ,a(un) such that

∥wn∥∗ = mIλ,a(un) = on(1) and wn = Ψ′(un)− ρn,

where ρn ∈ ∂ΦH(un). Then,

c+ 1 + ∥un∥ ≥ Iλ,a(un)−
1

2∗
⟨wn, un⟩+ on(1)

= Iλ,a(un)−
1

2∗
〈
Ψ′(un)− ρn, un

〉
+ on(1)

=

(
1

2
− 1

2∗

)
∥un∥2 +

(
1

2∗
− 1

)
λ

∫
RN

K(x)h(x)undx

+

∫
RN

K(x)

(
1

2∗
ρnun − FH(un)

)
dx+ on(1).

(3.3.3)

Note that by Lemma 3.2.4 and Remark 2,∫
RN

K(x)

(
1

2∗
ρnun − FH(un)

)
dx =

a

2∗

∫
{un=a}

K(x)ρndx ≥ 0. (3.3.4)

Moreover, by (3.1.5), Hölder inequality and the embedding properties of the space X,
we have

λ

∫
RN

K(x)h(x)udx ≤ λ

(∫
RN

K(x)h(x)θdx

) 1
θ
(∫

RN

K(x)|u|2∗dx
) 1

2∗

≤ λS
− 1

2
K ∥h∥K,θ∥u∥, for all u ∈ X,

(3.3.5)

where SK is given in (3.3.1).
Hence, by (3.3.3), (3.3.4) and (3.3.5), we obtain a constant C1 > 0 such that

λC1

θ
∥h∥K,θ∥un∥+ c+ 1 + ∥un∥ ≥ 1

N
∥un∥2 + on(1),

which implies that the sequence (un) is bounded in X. Using [45, Proposition 2.1], passing
to a subsequence if necessary, we obtain

un ⇀ u in X, un → u in Ls
K(RN )

K(x)un(x) → K(x)u(x) a.e in RN

|un(x)| ≤ φ(x) for some φ ∈ Ls
K(RN ), s ∈ [2, 2∗).

(3.3.6)

Since X ↪→ H1(RN ) ↪→ D1,2(RN ) we can argue along the same lines of the proof the
classical concentration-compactness principle due to Lions [61, Lemma l.1], to obtain J an
at most countable index set, sequences (µj), (νj) ⊂ [0,+∞) and (xj) ∈ RN such that

µn := K(x)|∇un|2 ⇀ µ and νn := K(x)|un|2
∗
⇀ ν (3.3.7)

in weak*-sense of measure, with

µ ≥ K(x)|∇u|2 +
∑
j∈J

µjδxj , ν = K(x)|u|2∗ +
∑
j∈J

νjδxj , (3.3.8)
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and SKν
2/2∗

j ≤ µj for all j ∈ J, where δxj is the Dirac mass at xj .
We claim that J = ∅. Arguing by contradiction that J ̸= ∅, we fixe i ∈ J. Considering

ϕ ∈ C∞
0 (RN , [0, 1]) such that

ϕ(x) =


1, if x ∈ B1(0),

0, if x ∈ RN \B2(0),

|∇ϕ|∞ ≤ 2

and we define ϕr(x) = ϕ
(
x−xi
r

)
, where r > 0. Hence, ∇ϕr(x) = 1

r∇ϕ
(
x−xi
r

)
, which implies

that the sequence (ϕrun) is bounded in X, hence on(1) = ⟨wn, ϕrun⟩ , that is,

on(1) =

∫
RN

K(x)∇un∇(ϕrun)dx− λ

∫
RN

K(x)h(x)ϕrundx−
∫
RN

K(x)ρnϕrundx

=

∫
RN

K(x)un∇un∇ϕrdx+

∫
RN

K(x)|∇un|2ϕrdx

− λ

∫
RN

K(x)h(x)ϕrundx−
∫
RN

K(x)ρnϕrundx.

(3.3.9)

Since supp(ϕr) is contained in B2r(xi), by Hölder’s inequality and the boundedness of
(un), we get∣∣∣∣∣
∫
RN

K(x)un∇un∇ϕr dx

∣∣∣∣∣ ≤
(∫

RN

K(x)|∇un|2 dx
)1/2(∫

RN

K(x)|un|2|∇ϕr|2 dx
)1/2

≤M

(∫
RN

K(x)|u|2|∇ϕr|2 dx
)1/2

+ on(1),

and taking the change variable x = ry + xi, we obtain

M

(∫
RN

K(x)|u|2|∇ϕr|2 dx
)1/2

=
M

r

(∫
r<|x−xi|<2r

K(ry + xi)u(ry + xi)
2|∇ϕ(y)|2rN dy

)1/2

≤Mr
N
2
−1|∇ϕ|∞

(∫
r<|x−xi|<2r

K(ry + xi)u(ry + xi)
2 dy

)1/2

≤ 2Mr
N
2
−1

(∫
RN

K(x)u(x)2 dx

)1/2

= 2Mr
N
2
−1∥u∥K,2.

Thus,

lim
r→0

[
lim
n→∞

∫
RN

K(x)un∇un∇ϕr dx
]
= 0. (3.3.10)

Moreover, using the same argument we also obtain

lim
r→0

[
lim
n→∞

λ

∫
RN

K(x)h(x)ϕrun dx

]
= 0. (3.3.11)

Since 0 ≤ ρn ≤ |un|2
∗−1 a.e. in RN from (3.3.9), (3.3.10) and (3.3.11), it follows that

on(1) ≥ on,r(1) +

∫
RN

K(x)|∇un|2ϕrdx−
∫
RN

K(x)|un|2
∗
ϕrdx, (3.3.12)

where on,r(1) is a quantity that satisfies limr→0 limn→∞ or,n = 0. From (3.3.7),∫
RN

K(x)|∇un|2ϕrdx ≥
∫
RN

ϕrdµ and

∫
RN

K(x)|un|2∗ϕrdx→
∫
RN

ϕrdν,
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then, by (3.3.12) we obtain

lim
r→0

∫
RN

ϕrdν ≥ lim
r→0

∫
RN

ϕrdµ. (3.3.13)

From Concentration-Compactness Principle, we have∫
RN

ϕrdν =

∫
RN

ϕrνdx =

∫
RN

ϕrK(x)|u|2∗dx+
∑
j∈J

νjδxj (ϕr)

=

∫
RN

ϕrK(x)|u|2∗dx+
∑
j∈J

νjϕr(xj)

=

∫
RN

ϕrK(x)|u|2∗dx+
∑
j∈J

νjϕ

(
xj − xi
r

)
.

which give us

lim
r→0

∫
RN

ϕrdν = νi.

In the same way,∫
RN

ϕrdµ ≥
∫
RN

ϕrK(x)|∇u|2dx+
∑
j∈J

µjϕ

(
xj − xi
r

)
,

thus, we have

lim
r→0

∫
Ω
ϕrdµ ≥ µi.

Hence, from (3.3.13), we conclude that νi ≥ µi, wich implies SKν
2/2∗

i ≤ νi, so we obtain

ν
2/N
i ≥ SK .

Now, we shall prove that the above inequality cannot occur, and therefore the set J is

empty. Indeed, arguing by contradiction, let us suppose that ν
2/N
i ≥ SK for some i ∈ J.

Then,

c = Iλ,a(un)−
1

2

〈
Ψ′(un)− ρn, un

〉
+ on(1)

=

∫
RN

K(x)

(
1

2
ρnun − FH(un)

)
dx− λ

2

∫
RN

K(x)h(x)undx+ on(1)

≥ 1

N

∫
{un>a}

K(x)|un|2
∗
ϕrdx+

1

N

∫
{un=a}

K(x)ρnϕrdx− λ

2

∫
RN

K(x)h(x)undx+ on(1)

=
1

N

∫
RN

K(x)|un|2
∗
ϕrdx− λ

2

∫
RN

K(x)h(x)undx+ or,n + on(1),

in the last equality we use the fact that∫
{un≤a}

K(x)|un|2
∗
ϕrdx = or,n and

∫
{un=a}

K(x)ρnϕrdx = or,n,

where limr→0 limn→∞ or,n = 0.
Since (un) is bounded in L2∗

K (RN ), going if necessary to a subsequence, we may assume
un ⇀ u in L2∗

K (RN ), or equivalently (by Riesz representation theorem),∫
RN

K(x)unφdx→
∫
RN

K(x)uφdx, for all φ ∈ Lθ
K(RN ),
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where θ = 2∗/(2∗ − 1). This fact and (3.1.5), imply that

c ≥ 1

N

∫
RN

K(x)|un|2
∗
ϕrdx− λ

2

∫
RN

K(x)h(x)udx+ or,n + on(1),

by Hölder inequality and by passing to the limit, we get

c ≥ 1

N

(∫
RN

K(x)|u|2∗ϕrdx+
∑
j∈J

νjδxj (ϕr)

)
−λ
2
∥h∥K,θ∥u∥K,2∗.

Hence, using νi ≥ S
N/2
K we conclude that

c ≥ 1

N
S

N
2
K +

1

N
∥u∥2∗K,2∗ −

λ

2
∥h∥K,θ∥u∥K,2∗

=
1

N
S

N
2
K + g(∥u∥2∗K,2∗),

where g is the function given by g(t) =
1

N
t− λ

2
∥h∥K,θt

1
2∗ . Hence, if we define the constant

cK = cK(N, θ, ∥h∥K,θ) > 0 by min
t∈(0,∞)

g(t) = −cKλ
2N
N+2 , we have c ≥ 1

N S
N
2
K − cKλ

2N
N+2 , which

contradicts (3.3.2).

The next lemma shows the functional Iλ,a verifies the mountain pass geometry.

Lemma 3.3.2. There is λ0 > 0 such that for all λ ∈ (0, λ0) and a > 0 the functional Iλ,a
satisfies:
(i) There exist r, α > 0, which are independent on a, such that Iλ,a(u) ≥ α for all u ∈
X; ∥u∥ = r.
(ii) There exists e = e(a) ∈ C∞

0 (RN ) such that Iλ,a(e) < 0 and ∥e∥ > r.

Proof. Using fH(s) ≤ |s|2∗ for all s ∈ R and (3.3.5), we have

Iλ,a(u) ≥
1

2
∥u∥2 − 1

2∗
∥u∥2∗K,2∗ − λ∥h∥K,θ∥u∥K,2∗

≥ 1

2
∥u∥2 −

S
−2∗/2
K

2∗
∥u∥2∗ − λS

−1/2
K ∥h∥K,θ∥u∥

= ∥u∥2
(
1

2
−
S
−2∗/2
K

2∗
∥u∥2∗−2 − λS

−1/2
K ∥h∥K,θ∥u∥−1

)
,

where SK is given in (3.3.1). Making P (t) = 1
2 − S

−2∗/2
K
2∗ t2

∗−2 we have

P (t) >
1

4
if t ≤ r =

(
2∗

4S
−2∗/2
K

) 1
2∗−2

.

Thus,

P (t)− λ∥h∥K,θt
−1 >

1

8
if λ < λ0 =

r

8∥h∥K,θ
,

and so there exists α > 0, independent on a, such that Iλ,a(u) ≥ α whenever ∥u∥ = r, for
all λ ∈ (0, λ0) and a > 0.
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Taking φ ∈ C∞
0 (RN ), such that meas({φ > a}) > 0. We recall that meas(A) is the

Lebesgue measure of the measurable set A ⊂ RN and {φ > a} := {x ∈ RN : φ(x) > a}. We
get for each t ≥ 1,

Iλ,a(tφ) =
t2

2
∥φ∥2 −

∫
RN

K(x)FH(tφ)dx− tλ

∫
RN

K(x)h(x)φ dx

≤ t2

2
∥φ∥2 − t2∗

2∗

∫
{φ>a}

K(x)φ2∗dx+
a2

∗

2∗
meas(suppφ)

− tλ

∫
RN

K(x)h(x)φdx,

which implies in the existence of e satisfying (ii).

Lemma 3.3.3. There exist λ∗, a∗ > 0 and β ∈ (1, 3/2), independent of a, such that for all
λ ∈ (0, λ∗) and a ∈ (0, a∗), we have

0 < α ≤ c = inf
γ∈Γ

max
0≤t≤1

Iλ,a(γ(t)) <
1

N
S
N/2
K − βcKλ

2N
N+2 , (3.3.14)

with Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e} , where α, e and cK are as in Lemma 3.3.2
and Lemma 3.3.1, respectively.

Proof. Consider the family of functions wϵ : RN → R given by

wϵ(x) =
[Nϵ(N − 2)]

N−2
4

(ϵ+ |x|2)
N−2

2

; ϵ > 0.

We taking a smooth function φ ∈ C∞
c (RN , [0, 1]) satisfying φ ≡ 1 in B1(0) and φ ≡ 0

outside B2(0). We consider the function

uϵ(x) := K(x)−1/2φ(x)wϵ(x), x ∈ RN .

Now, let

vϵ(x) :=
uϵ(x)

∥uϵ∥2∗,K
,

Note that there exists ta = t(a) > 0 such that Iλ,a(tavϵ) = max
t≥0

Iλ,a(tvϵ). We claim that

(ta)a∈(0,a∗) is bounded in R, for some a∗ > 0 fixed. In fact, let Υ(t) = Iλ,a(tvϵ), then,

Υ(t) =
t2

2
∥vϵ∥2 −

∫
{tvϵ>a}

K(x)FH(tvϵ)dx− λt

∫
RN

K(x)h(x)vϵdx.

Since Υ(ta) > 0 we have that ta ≥ t := 2λ
∥vϵ∥2

∫
RN K(x)h(x)vϵdx. If meas({tavϵ > a}) = 0,

from Υ′(ta) = 0 and λ > 0, we get ta = 2λ
∥vϵ∥2

∫
RN K(x)h(x)vϵdx. If meas({tavϵ > a}) > 0,

using once more that λ > 0 and Υ(ta) > 0, we have

t2a
2
∥vϵ∥2 ≥

t2
∗

a

2∗

∫
{tavϵ>a}

K(x)v2
∗

ϵ dx−meas({tavϵ > a})a
2∗

2∗
,

then, as supp vϵ ⊂ B2(0), ta ≥ t and {tvϵ > a∗} ⊂ {tvϵ > a}, it follows that

meas(B2(0))
a2

∗

2∗
+
t2a
2
∥vϵ∥2 ≥

t2
∗

a

2∗

∫
{tvϵ>a∗}

K(x)v2
∗

ϵ dx,
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hence, (ta)a∈(0,a∗) is bounded in R, for some a∗ > 0 fixed.

Now, observe that, Ωa :=
{
x ∈ RN : tvϵ(x) > a

}
⊂
{
x ∈ RN : tvϵ(x) > a

}
, thus,

Iλ,a(tvϵ) ≤ t2

2
∥vϵ∥2 −

∫
Ωa

K(x)FH(tvϵ)dx− λt

∫
RN

K(x)h(x)vϵdx

=
t2

2
∥vϵ∥2 − λt

∫
RN

K(x)h(x)vϵdx− t2
∗

2∗

∫
Ωa

K(x)v2
∗

ϵ dx+
a2

∗

2∗

∫
Ωa

K(x)dx,

using that ∥vϵ∥2∗,K = 1 and K(x) ≥ 1 in RN , for all t ≥ 0 we get

Iλ,a(tvϵ) ≤ g(t)− λt

∫
RN

K(x)h(x)vϵdx+
t2

∗

2∗

∫
Ωc

a

K(x)v2
∗

ϵ dx+
a2

∗

2∗

∫
Ωa

K(x)dx,

where g(t) := t2

2 ∥vϵ∥
2 − t2

∗

2∗ ; t ≥ 0 and Ωc
a := {x ∈ RN : t0uϵ(x) ≤ a}. The function g has a

maximum at t = ∥vϵ∥
2

(2∗−2) which satisfy

g(t) =
1

N
(∥vϵ∥2)

N
2 =

1

N
(SK +O(ϵ))

N
2 , see [50, Proof of Proposition 3.2].

Hence,

Iλ,a(tavϵ) ≤ 1

N
(SK +O(ϵ))N/2 − λta

∫
RN

K(x)h(x)vϵdx

+
t2

∗
a

2∗

∫
Ωc

a

K(x)v2
∗

ϵ dx+
a2

∗

2∗

∫
Ωa

K(x)dx.

Moreover, note that Ωa ⊂ B2(0) because if |x| ≥ 2 we have vϵ(x) = 0 < a. So,
∫
Ωa
K(x) dx ≤∫

B2(0)
K(x) dx <∞, for all a > 0. This and the fact that (ta)a∈(0,a∗) is bounded imply that

a2
∗

2∗

∫
Ωa

K(x) dx→ 0 and
t2

∗
a

2∗

∫
Ωc

a

K(x)v2
∗

ϵ dx→ 0 as a→ 0. (3.3.15)

Since 1 < 2N/(N + 2) we can find λ1 > 0 small enough, such that

t0λ

∫
RN

K(x)h(x)vϵ dx >
3cK
2
λ

2N
N+2 , for all λ ∈ (0, λ1). (3.3.16)

Hence, by (3.3.15) and (3.3.16), we choose a∗ = a(λ1) satisfying

−λt
∫
RN

K(x)h(x)vϵ dx+
a2

∗

2∗

∫
Ωa

K(x) dx+
t2

∗
a

2∗

∫
Ωc

a

K(x)v2
∗

ϵ dx < −3cK
2
λ

2N
N+2 ,

for all a ∈ (0, a∗) and λ ∈ (0, λ1).
Thus, it follows that for all a ∈ (0, a∗) and λ ∈ (0, λ1),

Iλ,a(tavϵ) ≤ 1

N
(SK +O(ϵ))N/2 − 3cK

2
λ

2N
N+2

≤ 1

N
S
N/2
K +O(ϵ(N−2)/2)− 3cK

2
λ

2N
N+2

=
1

N
S
N/2
K + ϵ(N−2)/2

(
O(1)− 1

ϵ(N−2)/2

3cK
2
λ

2N
N+2

)
.

Since
lim
ϵ→0+

c1

ϵ(N−2)/2
= +∞,
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so, by choosing φ = vϵ in Lemma 3.3.2, we conclude that, for ϵ > 0 small enough, such that
meas({wϵ > a∗}) > 0, there exists β ∈ (1, 3/2) independent of a, such that

c ≤ sup
t≥0

Iλ,a(tvϵ) <
1

N
S
N/2
K − cKβλ

2N
N+2 , (3.3.17)

for all a ∈ (0, a∗) and λ ∈ (0, λ∗), where λ∗ = min{λ0, λ1} with λ0 and λ1 give in Lemma
3.3.2 and (3.3.16), respectively.

Lemma 3.3.4. Let Br be the ball of radius r and a∗, λ∗ given in Lemma 3.3.2 and 3.3.3,
respectively. There exist a sequence (un) ⊂ Br and a constant M < 0, independent on a,
such that for all a ∈ (0, a∗) and λ ∈ (0, λ∗), we have

Iλ,a(un) → c̃ and mIλ,a(un) → 0, (3.3.18)

where
c̃ := inf

Br

Iλ,a ≤M < 0. (3.3.19)

Proof. Fixed a nonnegative function φ ∈ C∞
0 (RN ) \ {0}, we have

Iλ,a(tφ) ≤M(t) :=
t2

2
∥φ∥2 − tλ

∫
RN

K(x)h(x)φ dx.

We can choose M := M(t) with t > 0 small enough, independent on a, such that for all
a ∈ (0, a∗) and λ ∈ (0, λ∗), we have

c̃ := inf
Br

Iλ,a ≤M < 0. (3.3.20)

Now, considering Iλ,a restricted to Br, we can apply the Ekeland variational principle,
see [35], to obtain uϵ ∈ Br such that

Iλ,a(uϵ) < inf
Br

Iλ,a + ϵ and Iλ,a(uϵ) < Iλ,a(u) + ϵ∥u− uϵ∥, u ̸= uϵ. (3.3.21)

Since
inf
Br

Iλ,a < 0 < α ≤ inf
∂Br

Iλ,a,

we can consider ϵ > 0 such that

0 < ϵ < inf
∂Br

Iλ,a − inf
Br

Iλ,a.

For this choice of ϵ, one has

Iλ,a(uϵ) ≤ inf
Br

Iλ,a + ϵ < inf
∂Br

Iλ,a,

which implies that uϵ ∈ Br. Let v ∈ X and take δ > 0 small enough such that uδ =
uϵ + δv ∈ Br. From (3.3.21) we get

Iλ,a(uϵ + δv)− Iλ,a(uϵ) + δ∥v∥ ≥ 0.

Thus we have

−ϵ∥v∥ ≤ lim sup
δ↓0

Iλ,a(uϵ + δv)− Iλ,a(uϵ)

δ
≤ I0λ,a(uϵ; v).
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From
I0λ,a(u; v) = max

µ∈∂Iλ,a(u)
⟨µ, v⟩ , u, v ∈ X,

we get
−ϵ∥v∥ ≤ I0λ,a(uϵ; v) = max

ω∈∂Iλ,a(uϵ)
⟨ω, v⟩ , for all v ∈ X

and interchanging v with −v, we obtain

−ϵ∥v∥ ≤ max
ω∈∂Iλ,a(uϵ)

⟨ω,−v⟩ = − min
ω∈∂Iλ,a(uϵ)

⟨ω, v⟩ , for all v ∈ X.

Hence,
min

ω∈∂Iλ,a(uϵ)
⟨ω, v⟩ ≤ ϵ∥v∥, v ∈ X,

which gives
sup
∥v∥=1

min
ω∈∂Iλ,a(uϵ)

⟨ω, v⟩ ≤ ϵ.

Finally, by Ky Fan’s Min-max theorem [23, Proposition 1.8] , we get

min
ω∈∂Iλ,a(uϵ)

sup
∥v∥=1

⟨ω, v⟩ ≤ ϵ.

This together with (3.3.21) gives that there exists (un) ⊂ Br such that

Iλ,a(un) → c̃ and mIλ,a(un) := min
ω∈∂Iλ,a(un)

∥ω∥X∗ → 0 as n→ ∞.

3.4 Proof of Theorem 3.1.1

In this section we will use the previous results to prove Theorem 3.1.1.

Proof of Theorem 3.1.1: First solution (Mountain Pass):

Let λ∗, a∗ and c = c(a) be as in Lemma 3.3.3. For each a ∈ (0, a∗) and λ ∈ (0, λ∗),
combining Lemma 3.3.1 and Lemma 3.3.3 with the Mountain pass theorem, see Theorem
3.2.2, we obtain u1 = u1(a) ∈ X with Iλ,a(u1) = c > 0 and 0 ∈ ∂Iλ,a(u1). Hence, there
exists ρ1 ∈ L2∗

K (RN ) such that∫
RN

K(x)∇u1∇φdx = λ

∫
RN

K(x)h(x)φdx+

∫
RN

K(x)ρ1φdx, for all φ ∈ X, (3.4.1)

where ρ1 ∈ f̂H(u1) with f̂H(s) given in (3.2.6). Therefore, by Lemma 3.2.5 we conclude
that u1 is a solution of (3.1.2) in the sense of (3.1.4). Note that the proof of i) of Theorem
3.1.1 was given (3.2.7). Now we will show ii) and iii).

Assume by contradiction that meas({u1 = a}) > 0. By using the Morrey-Stampacchia’s
Theorem, we have that −div(K(x)∇u1(x)) = 0 a.e. in {u1 = a}. Then, by (3.4.1) and
Remark 2,

−λK(x)h(x) ∈ K(x)f̂(a) = [0,K(x)a2
∗−1] a.e in {u1 = a},

which is a contradiction. Therefore, meas({u1 = a}) = 0, which proves ii).
Now we shall prove that meas({u1 > a}) > 0 for all a ∈ (0, a∗). Suppose, by contradic-

tion, that u1(x) ≤ a a.e in RN . Then, using u1 as a test function in (3.4.1), we obtain

∥u1∥2 =
∫
{u1=a}

K(x)ρ1u1 dx+ λ

∫
RN

K(x)h(x)u1 dx,

55



and as a consequence, from ii) and c = Iλ,a(u1) we have

0 < c =
1

2
∥u1∥2 − λ

∫
RN

K(x)h(x)u1 dx = −λ
2

∫
RN

K(x)h(x)u1dx < 0,

which is a contradiction.

Second solution(Local Minimization):

To prove the existence of the second solution, we observe that by Lemma 3.3.1 and
Lemma 3.3.4, we can conclude that there is a function u2 = u2(a) ∈ Br such that, for all
a ∈ (0, a∗) and λ ∈ (0, λ∗),

Iλ,a(u2) = c̃ ≤M < 0 and 0 ∈ ∂Iλ,a(u2). (3.4.2)

Thus, u2 is nontrivial critical point de Iλ,a. To verify that u2 also satisfies i), ii) and u2 ≥ 0
a.e in RN we use the same arguments used for u1. Moreover, we claim that, reducing a∗
if necessary, we have meas({u2 > a}) > 0, for all a ∈ (0, a∗). In fact, otherwise for each
a∗ = 1/n there exists u2(an) =: un ∈ X with 0 ≤ un(x) ≤ 1/n, for all n ∈ N. This and ii)
imply that un satisfies

− div(K(x)∇un) = λK(x)h(x) in RN . (3.4.3)

Hence, ∫
RN

K(x)∇un+1∇φ =

∫
RN

K(x)∇un∇φ, for all φ ∈ X.

Setting φ = (un+1 − un) we obtain

∥(un+1 − un)∥2 =
∫
RN

K(x)|∇(un+1 − un)|2 = 0,

then un+1 = un for all n ∈ N. Moreover, by (3.4.3), Hölder inequality and the embedding
properties of X, we have

∥un∥2 ≤ λ∥h∥K,θ∥un∥K,2∗ ≤ λC∥h∥K,θ∥un∥,

hence, ∥un∥ ≤ λC∥h∥K,θ for all n ∈ N. In particular, by this and (3.4.3) we get

sup
n∈N

λ

∫
RN

h(x)K(x)un ≤ (λC∥h∥K,θ)
2.

Since un(x) → 0 a.e in RN , then the Monotone convergence theorem and once more
(3.4.3), imply that

∥un∥2 = λ

∫
RN

K(x)h(x)un → 0.

Thus, we have c̃n = Iλ,a(un) → 0 as n → ∞, which is impossible by (3.4.2). Hence, the
claim is proved and iii) holds for u2.

Finally, we will show the last part of the theorem. Let uin := ui(an), i = 1, 2, be the
solutions of (3.1.2), where = u1(an) and u2(an) was obtained by Mountain pass theorem
and Ekeland variational principle, respectively. Since H(s − a∗)s2

∗−1 ≤ H(s − a)s2
∗−1 ≤

(s+)
2∗−1, for all s ∈ R, we get

Iλ,0(u) ≤ Iλ,a(u) ≤ Iλ,a∗(u) for all u ∈ X, a ∈ [0, a∗), (3.4.4)
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so, we conclude that c(0) ≤ c(an) ≤ c(a∗), where c(a) is the minimax level associated with
Iλ,a.

Arguing as in the proof of Lemma 3.3.1, we obtain a constant C1 > 0 such that

λC1

θ
∥h∥K,θ∥u1n∥+ c(an) + 1 + ∥u1n∥ ≥ 1

N
∥u1n∥2 + on(1),

then, (u1n) is bounded in X. Hence, passing to a subsequence if necessary, we obtain
u1n ⇀ v1 in X, u1n → v1 in Ls

K(RN )

u1n(x) → v1(x) a.e in RN

|u1n(x)| ≤ φs(x) for some φs ∈ Ls
K(RN ), s ∈ [2, 2∗).

(3.4.5)

Passing to the limit as n→ ∞ in (3.4.1), by using ii), (3.4.5), v1(x) ≥ 0 and H(u1n(x)−
an)(u

1
n(x))

2∗−1 → (v1(x))
2∗−1
+ a.e. in RN , we conclude that v1 satisfies∫

RN

K(x)∇v∇φdx = λ

∫
RN

K(x)h(x)φdx+

∫
RN

K(x)v2
∗−1φdx, for all φ ∈ X. (3.4.6)

We claim that v1 ̸= 0. In fact, note that as u1n ≥ 0 we have

0 ≤ Iλ,an(u
1
n)− Iλ,0(u

1
n) =

1

2∗

∫
RN

K(x)(u1n)
2∗dx−

∫
RN

K(x)FH(u1n)dx

=

∫
RN

K(x)

∫ u1
n

0

[
(s+)

2∗−1 −H(s− an)s
2∗−1

]
dsdx

=
1

2∗

∫
{u1

n≤an}
K(x)(u1n)

2∗dx

≤ a∗
2∗

∫
RN

K(x)(u1n)
2∗−1χ{u1

n≤an}dx→ 0 as n→ ∞,

where χ{u1
n≤an} is the characteristic function of set {u1n ≤ an}.

Hence, Iλ,an(u
1
n) = Iλ,0(u

1
n) + on(1). Similarly, Iλ,an(u) = Iλ,0(u) + on(1) for all u ∈ X.

Then, it follows that

c(an) = c(0) + on(1) and Iλ,0(u
1
n) = c(0) + on(1). (3.4.7)

Now, note that by (3.3.17) and (3.4.7), for all λ ∈ (0, λ∗), we have

c(0) ≤ 1

N
S
N/2
K − cKβλ

2N
N+2 , (3.4.8)

where β ∈ (1, 3/2). So, using the fact that u1n is the solution of (3.1.2), (3.4.8) and same
argument of the proof of Lemma 3.3.1, we conclude that u1n → v1 in X. Since Iλ,a(u

1
n) =

c(an) ≥ α we have 2α ≤ ∥u1n∥2 and so 2α ≤ ∥v1∥2 because α is independent of a, see i) of
Lemma 3.3.2. Hence, the claim is proved.

Now, since (u2n) ⊂ Br and r is is independent of a, we have, up to a subsequence,
u2n ⇀ v2 in X. It is clear that v2 is a solution of (3.4.6).

To see that v2 ̸= 0 it is sufficient to use a similar argument as above combined with the
fact that by (3.3.20) and (3.4.4),

c̃(0) ≤ c̃(an) ≤M < 0, for all n ∈ N, λ ∈ (0, λ∗),

where c̃(a) := inf
Br

Iλ,a with a ∈ [0, a∗). This conclude the proof of Theorem 3.1.1.

57



Appendix A: Genus Theory

This section is dedicated to recalling some basic facts on Krasnoselskii genus theory as well
as its demonstrations, which we use in the proof of Theorem 1.3.1. More informations on
this subject may be found in [57].

Let E be a real Banach space. Let us denote by A the class off all closed subsets
A ⊂ E \ {0} that are symmetric with respect to the origin, that is, u ∈ A implies −u ∈ A.

Let Ω ⊂ RN be a bounded open set, f ∈ C1(Ω,RN ). Recall that f ′(x) ∈ L(RN ,RN )
and hence f ′(x) can be represented by an N ×N matrix. Let S be the set of critical points
of f . In order to make this section clearer, we recall the definition of topological degree.

Definition 3.4.1. Let f : Ω → RN be a function in C1(Ω,RN ) and b /∈ f(S) ∪ f(∂Ω).
Then we define the degree of f in Ω with respect to b as

deg(f,Ω, b) =

{
0, if f−1(b) = ∅,∑

x∈f−1(b) sgn(det f
′(x)), otherwise .

(3.4.9)

The function sgn denotes the sing, i.e., +1 if positive and −1 if negative. In [56] the
reader can find many properties about deg as well as their demonstrations.

Definition 3.4.2. Let A ∈ A. The Krasnoselskii genus γ(A) of A is defined as being the
least positive integer k such that there is an odd mapping ϕ ∈ C(A,Rk) such that ϕ(x) ̸= 0
for all x ∈ A. When such number does not exist we set γ(A) = ∞. Furthermore, by
definition, γ(∅) = 0.

Proposition 3.4.1. Let E = RN and ∂Ω be the boundary of an open, symmetric and
bounded subset Ω ⊂ RN such that 0 ∈ Ω. Then γ(∂Ω) = N .

Proof. Trivially, γ(∂Ω) ≤ N. (Choose h = id.) Let γ(∂Ω) = k and let h ∈ C0
(
RN ;Rk

)
be

an odd map such that h(∂Ω) ̸⊃ 0. We may consider Rk ⊂ RN . But then the topological
degree of h : RN → Rk ⊂ RN on Ω with respect to 0 is well-defined (see [55, Definition
1.2.3]). In fact, since h is odd, by the Borsuk-Ulam theorem (see [55, Theorem 1.4.1]) we
have

deg(h,Ω, 0) = 1

Hence by continuity of the degree also

deg(h,Ω, y) = 1 ̸= 0

for y ∈ RN close to 0 and thus, by the solution property of the degree, h covers a
neighborhood of the origin in RN ; see Deimling [1; Theorem 1.3.1]. But then k = N , as
claimed.
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Corollary 3.4.2. γ(SN−1) = N .

The genus has the following properties:

Proposition 3.4.3. Let A,A1, A2 ∈ A, h ∈ C0(E;E) an odd map. Then the following
hold:

(i) γ(A) ≥ 0, γ(A) = 0 ⇔ A = ∅

(ii) A1 ⊂ A2 ⇒ γ (A1) ≤ γ (A2).

(iii) γ (A1 ∪A2) ≤ γ (A1) + γ (A2)

(iv) γ(A) ≤ γ(h(A)).

(v) If A ∈ A is compact and 0 /∈ A, then γ(A) < ∞ and there is a neighborhood V of A
in E such that V̄ ∈ A and γ(A) = γ(V̄ ).

That is, γ is a definite, monotone, sub-additive, supervariant and ”continuous” map γ :
A → N0 ∪ {∞}

Remark 3. It is easy to see that if A is a finite collection of antipodal pairs ui,−ui (ui ̸= 0),
then γ(A) = 1

Let I be a functional of class C1 on a closed symmetric C1,1-submanifold M of a
Banach space E and satisfies the (P.S) condition. Moreover, suppose that I is even, that
is, I(u) = I(−u) for all u. Also let A be as above. Then for any k ≤ γ(M) ≤ ∞ by (iv) in
the previous proposition, the family

Fk = {A ∈ A;A ⊂M,γ(A) ≥ k}

is invariant under any odd and continuous map and non-empty. Hence, for any k ≤
γ(M), if

βk = inf
A∈Fk

sup
u∈A

I(u)

is finite, then βk is a critical value of I.

Proposition 3.4.4. Suppose for some k, l there holds

−∞ < βk = βk+1 = . . . = βk+l−1 = β <∞

Then γ (Kβ) ≥ l. By observation 3, in particular, if l > 1,Kβ is infinite.

In consequence, we have

Proposition 3.4.5. If B ∈ A, 0 /∈ B and γ(B) ≥ 2, then B has infinitely many points.

The reader interested in the demonstrations of these propositions can consult, for ex-
ample, [56, 69]
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Appendix B: Some Classical
Results

This section is devoted to recall some classical results that were used throughout this work.
As this section is just for viewing the results, we will not give any demonstrations.

Theorem 3.4.6. (Dominated convergence theorem, Lebesgue). Let (fn) be a sequence of
functions in L1 that satisfy

(a) fn(x) → f(x) a.e on Ω,

(b) there is a function g ∈ L1 such that for all n, |fn(x)| ≤ g(x) a.e on Ω.

Then f ∈ L1 and ∥fn − f∥ → 0.

Proof. See [41, p.54].

Theorem 3.4.7. (Fatou’s lemma). Let (fn) be a sequence of functions in L1 that satisfy

(a) for all n, fn ≥ 0 a.e,

(b) supn
∫
fn <∞.

For almost all x ∈ Ω we set f(x) = lim infn→∞ fn(x) ≤ +∞. Then f ∈ L1 and∫
fdx ≤ lim inf

n→∞

∫
fndx.

Proof. See [41, p. 52].

Theorem 3.4.8. (Hölder’s inequality). Assume that f ∈ Lp and g ∈ Lp′ with 1 ≤ p ≤ ∞.
Then fg ∈ L1 and ∫

|fg|dx ≤
(∫

|f |pdx
)1/p(∫

|g|p′dx
)1/p′

.

Proof. See [41, p. 182].

Theorem 3.4.9. Let (fn) be a sequence in Lp and let f ∈ Lp be such that ∥fn − f∥p → 0.
Then, there exist a subsequence (fnk

) and a function h ∈ Lp such that

(a) fnk
(x) → f(x) a.e on Ω,

(b) |fnk
(x)| ≤ h(x) ∀ k ∈ N, a.e on Ω.

Proof. See [41].

The following theorem gives a useful embedding result for Lp spaces over domains with
finite measure. This result was used when we applied Moser’s iteration.
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Theorem 3.4.10. Suppose volΩ =
∫
Ω 1 dx < ∞ and 1 ≤ p ≤ q ≤ ∞. If u ∈ Lq(Ω), then

u ∈ Lp(Ω) and

∥u∥p ≤ (vol Ω)(1/p−1/q) ∥u∥q.

Hence Lq(Ω) ↪→ Lp(Ω). If u ∈ L∞(Ω), then

lim
p→∞

∥u∥p = ∥u∥∞.

Finally, if u ∈ Lp(Ω) for 1 ≤ p <∞ and if there is a constant C such that for all p

∥u∥p ≤ C,

then
u ∈ L∞(Ω) and ∥u∥ ≤ C.

Proof. See [1, Theorem 2.8].
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