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Abstract

In this work, we consider two problems. In the first chapter, we establish the existence

of a positive solution to the nonlinear Schrödinger equation

−∆u+ V (x)u = f(u), u ∈ D1,2(RN), N ≥ 3, (℘1)

with potential V which is invariant under a group action G ⊂ O(N), where O(N) is the

group of orthogonal transformations, and decays to zero at infinity, with an appropriate

rate, approaching zero mass type limit scalar field equation, and the nonlinearity f , under

very mild assumptions, is asymptotically linear or superlinear and subcritical at infinity,

not satisfying any monotonicity condition. We deal with both finite group actions and

infinite group actions.

In the second chapter, we study the existence of a positive solution for a nonlinear

Schrödinger equation

−∆u+ V (x)u = f(u), u ∈ H1(RN), N ≥ 3, (℘2)

where the potential V is a positive function, invariant under a group action G ⊂ O(N),

which decays to a constant positive potential V∞ at infinity. As in the first problem, the

nonlinearity f , under very mild assumptions, is asymptotically linear or superlinear and

subcritical at infinity, not satisfying any monotonicity condition.

In both problems the existence of solution is established in situations where the equa-

tion does not have a ground state solution, via a composition of two translated solitons

and its projection on the so called Pohozaev manifold. However, at the end of each chap-

ter, we justify that the method applied is also valid for any finite composition of these

solitons.

Key-Words: Nonlinear Schrödinger equation, positive solution, Pohozaev manifold,

group action, symmetry.
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Resumo

Neste trabalho, consideramos dois problemas. No primeiro capítulo, estabelecemos a

existência de uma solução positiva para a equação não linear de Schrödinger

−∆u+ V (x)u = f(u), u ∈ D1,2(RN), N ≥ 3, (℘1)

com potencial V que é invariante sob uma ação de grupo G ⊂ O(N), onde O(N) é o grupo

de transformações ortogonais, e decai para zero no infinito, com uma taxa apropriada,

aproximando-se da equação de campo escalar limite do tipo massa zero; e a não linearidade

f , sob suposições muito suaves, é assintoticamente linear ou superlinear e subcrítica no

infinito, não satisfazendo nenhuma condição de monotonicidade. Nós lidamos tanto com

ações de grupos finitos quanto com ações de grupos infinitos.

No segundo capítulo, estudamos a existência de uma solução positiva para uma equa-

ção não linear de Schrödinger

−∆u+ V (x)u = f(u), u ∈ H1(RN), N ≥ 3, (℘2)

onde o potencial V é uma função positiva, invariante sob uma ação de grupo G ⊂ O(N),

que decai para um potencial constante positivo V∞ no infinito. Como no primeiro pro-

blema, a não linearidade f , sob suposições muito suaves, é assintoticamente linear ou

superlinear e subcrítica no infinito, não satisfazendo nenhuma condição de monotonici-

dade.

Em ambos os problemas a existência de solução da equação é estabelecida em situações

onde o nível mínimo de energia não pode ser obtido, usando a composição de dois sólitons

transladados e sua projeção na chamada variedade de Pohozaev. No entanto, ao final

de cada capítulo, justificamos que o método aplicado também é válido para qualquer

composição finita desses sólitons.

Palavras-Chaves: Equação não linear de Schrödinger, solução, variedade de Poho-

zaev, ação de grupo, simetria.
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Introduction

In this work, we are interested in the existence of positive bound state solutions for
two classes of nonlinear Schrödinger equations:

−∆u+ V (x)u = f(u), u ∈ D1,2(RN), N ≥ 3, (℘1)

with potential V vanishing at infinity, possibly changing sign, and an appropriate rate,
approaching zero mass type limit scalar field equation; and also

−∆u+ V (x)u = f(u), u ∈ H1(RN), N ≥ 3, (℘2)

where the potential V is a positive function which decays to a constant positive potential
V∞ at infinity, symmetric under some group action G. For both problems, the nonlinearity
f , under very mild assumptions, is asymptotically linear or superlinear and subcritical at
infinity, f(s)/s, s > 0, not satisfying any monotonicity condition. More precisely, we will
assume that V is invariant under a group action G ⊂ O(N), that is,

V (gx) = V (x), for all g ∈ G and all x ∈ RN ,

where O(N) is the group of orthogonal transformations from RN to RN . Symmetry plays
a basic role in variational problems. For example, H1(RN) is not compactly embedded in
L2(RN) because of the action of translations.

Let N ≥ 3 and 2∗ = 2N/(N − 2). The Hilbert space

D1,2(RN) := {u ∈ L2∗(RN) : ∇u ∈ L2(RN)}

will be used when V (x) → 0, as |x| → ∞ and the associated limit problem is −∆u = f(u).
Given a subgroup G of O(N), we denote by Gx := {gx : g ∈ G} the G-orbit of x and
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by #Gx its cardinality. We define the action of G on D1,2(RN) by

gu(x) := u(g−1x), for every u ∈ D1,2(RN), g ∈ G and x ∈ RN .

The action of a topological group G on a normed space X is a continuous map

G×X → X : [g, u] → gu

such that, given g1, g2 ∈ G and u ∈ X,

(i) u 7→ gu is linear; (ii) (g1g2)u = g1(g2u); (iii) id · u = u,

where id ∈ G is the identity element of G. The action is isometric if

∥gu∥ = ∥u∥.

We say that a group G acts effectively on SN−1 := {x ∈ RN : |x| = 1} if, for all x ∈ SN−1,
there exists g ∈ G such that gx ̸= x. This means that if G is a finite or infinite group, for
all x ∈ SN−1 the G-orbit of x satisfies #Gx ∈ [2,∞]. We define

ℓ(G) := min{#Gx : x ∈ SN−1}

and in this work we are going to consider only the cases for which ℓ(G) < +∞. Hirata in
[23] also considered the case ℓ(G) = +∞, but assuming the condition f(s)/s is increasing,
for s > 0 small enough.
We choose x0 ∈ SN−1 such that #{gx0 : g ∈ G} = ℓ(G) and define also

{e1, · · · , eℓ(G)} := {gx0 : g ∈ G}, (0.0.1)

dG := min
i ̸=j

|ei − ej| ∈ (0, 2]. (0.0.2)

The space of G-symmetric functions in D1,2(RN) is defined by

D1,2
G (RN) := {u ∈ D1,2(RN) : gu = u,∀g ∈ G}

= {u ∈ D1,2(RN) : u(g−1x) = u(x),∀g ∈ G,∀x ∈ RN}.

Similarly, we define the action of G ⊂ O(N) on H1(RN) and the space of G-symmetric
functions H1

G(RN) in H1(RN).
In our work, we will assume that G ⊂ O(N), where N ≥ 3 and ℓ(G) ≥ 2. Some
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examples are given.

• Taking R4 and G = Z5 × Z5, where Z5 is the cyclic group generated by the 5-th
root of the unity, we have ℓ(G) = 5 and dG = 1

2

√
10− 2

√
5.

• Observe that, when G = {Id,−Id}, we have ℓ(G) = 2 and dG = 2.

• Take R4 and G = Z2 ×Z3. Then, ℓ(G) = 2 and dG = 2. Notice that x1 = (1, 0, 0, 0)

is such that #Gx1 = 2, whereas x2 = (0, 0, 1, 0) has #Gx2 = 3.

0.1 Some known results

Bartsch-Willem in [8] considered the caseG = O(N), that is, the potential V is radially
symmetric and they showed that the corresponding functional satisfies the Palais-Smale
condition and they proved the existence of a radially symmetric solution of (℘2).

Bartsch-Wang in [7], for the more general group action G ⊂ O(N), where G is an
infinite group, proved that the subspace of G-symmetric functions H1

G(RN) in H1(RN)

can be compactly embedded into Lp(RN), for 2 < p < 2∗, under assumption

#{gx : g ∈ G} = ∞ for all x ∈ SN−1.

Furthermore, under the global Ambrosetti-Rabinowitz condition, they proved that pro-
blem (℘2) has a positive solution.

Hirata in [22] showed the existence of a positive solution of (℘2), under V a constant
potential and f , without Ambrosetti-Rabinowitz condition, but the monotonicity condi-
tion f(s)/s, for s > 0 increasing, restricted to a finite group G. In a subsequent paper,
Hirata in [23] addressed the problem with a symmetric variable potential V with group
action G ⊂ O(N), dealing with both finite and infinite group actions. The existence of a
positive solution was shown for a wide class of nonlinearities f , still assuming that f(s)/s
is increasing, for s > 0 small enough.

Our goal in the first chapter is to find a positive bound state to the problem (℘1),
trying to loosen the assumptions found in the literature, either in the potential or in the
nonlinearity [2,4,5,10,25]. We avoid, for instance, to apply the spectral theory approach
or the so called Nehari manifold constrained approach. Our purpose is to prove the
existence of a positive bound state solution to the problem (℘1), when a ground state
solution cannot be obtained, with potential V which decays exponentially at infinity to
zero and the nonlinearity f does not satisfy any monotonicity condition, i. e. the function
s 7→ f(s)/s is not increasing for s > 0. Here, we assume that the potential V is invariant
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under a group action G ⊂ O(N) and prove that problem (℘1) has a positive solution,
applying the symmetric mountain pass theorem of Ambrosetti-Rabinowitz [3], based on
the results obtained by Jun Hirata in [22,23]. The method applied, assuming for simplicity
G = O(N −1)×Z2 ⊂ O(N), where Z2 := {id,−id}, and ℓ(G) = 2, allows to combine two
copies of translated positive soliton solutions of the limit problem at infinity, projecting
their sum onto the so called Pohozaev manifold, in order to construct a convenient path in
the mountain pass theorem with G symmetric functions. This was based on the important
papers by Clapp and Maia [16,17].

This new approach allows us to tackle a model problem like

−∆u+
1

(1 + |x|)k
u =

2u11 − 4
√
2u9 + 4u7

u10 + 1
, u > 0, u ∈ D1,2(R3),

where k > 2 and f(s) := (2s11 − 4
√
2s9 + 4s7)/(s10 + 1) is asymptotically linear at

infinity, but is such that f(s)/s is not increasing for s > 0, for instance. Likewise,
f(s) = s7(1 − sin(s))/(1 + s4), for s > 0, in R3 is super linear and subcritical at infinity
and satisfies mild hypotheses but no monotonicity condition on f(s)/s.
The seminal works of Bahri and Li [6] and Cerami and Passaseo [14] presented construc-
tions of bound state solutions, whenever the minimal action of the associated functional
is not attained. They succeeded by building a convex combination of two soliton positive
solutions of a limit problem (bumps) and projecting on the sphere of radius one in an
Lp space, for a pure power nonlinearity f(s) = sp−1, with 2 < p < 2∗. Their method
was applied in many works that followed and in different scenarios, but it would de hard
to list them all; we would refer to [15] and references therein. More recently, a similar
approach was developed to construct bound state solutions by using projections of convex
combinations of two positive bumps on the Nehari manifold, see [16, 19, 26, 30] and their
references. The limitation, in this case, is having to assume some monotonicity on f(s)/s.

In a fundamental paper [17], when the nonlinearity f is subcritical at infinity and
supercritical near the origin, and the potential V vanishes at infinity, under a suitable
decay assumption on the potential, Clapp and Maia showed that the problem (℘1) has a
positive bound state.

This first chapter is organized as follows: Section 2 is devoted to presenting the vari-
ational setup and the properties of the associated Pohozaev manifold. In Section 3 we
study the behaviour of constrained minimizing sequences of the operator associated with
problem (℘1). Tight estimates of interactions of two translated and dilated copies of a
positive solution of the autonomous problem are obtained in Section 4. Finally, these
estimates are applied in the proof of the main result of existence of a positive solution
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stated in main theorem.
In the second chapter, our purpose is to prove the existence of a positive bound state

solution to the problem (℘2), with potential V which decays exponentially at infinity
to V∞ > 0 and the nonlinearity f does not satisfy any monotonicity condition and,
furthermore, the function s 7→ f(s)/s is not increasing for s > 0 sufficiently small. We
also assume that the potential V is invariant under a group action G ⊂ O(N), with
G = O(N − 1)× Z2 ⊂ O(N), where Z2 := {id,−id}, and ℓ(G) = 2, from simplicity and,
the method applied is also combining two copies of translated positive soliton solutions of
the limit problem at infinity, projecting their sum onto the so called Pohozaev manifold.
The approach used for equations of type (℘2) can be applied to the following model
problem

−∆u+ V (x)u = f(u), u ∈ H1(RN),

where V (x) := 1 + Ae−k|x|, A, k ∈ R, A > 0 sufficiently small, k > 2 and f(s) :=

(2s9 − 2s8 + 5s7)/(s8 + 1) is asymptotically linear such that f(s)/s is not increasing for
s > 0, for instance.

The primary works dealing with the existence of solutions for equations of type (℘2)
via variational methods are due to Benci and Cerami in [9] in exterior domains and Bahri
and Lions in [5] in unbounded domains. Using a different approach, Évéquoz and Weth
in [19], Clapp and Maia in [16] and Maia and Pellacci in [30] showed the existence of a
positive solution to the problem (℘2), for general non-homogeneous nonlinearities, either
superlinear or asymptotically linear at infinity in an exterior domain.

In a recent paper, Jaroslaw Mederski in [32] studied the following problem

−∆u = g(u), u ∈ H1(RN), N ≥ 3, (℘)

with a nonlinearity g under the general hypotheses due to Berestycki and Lions in [10],
and proved the existence and multiplicity of nonradial solutions to the problem (℘). More
precisely, Mederski found at least one nonradial solution for any N ≥ 4 and, in addition,
for N ̸= 5, he showed the existence of infinitely many different nonradial solutions. These
results represent an important improvement to problem (℘), because they were established
for the first time. Furthermore, these results give a partial positive answer to a problem
which had been open for more than thirty years.

The second chapter is organized as follows: Section 2 is devoted to presenting some
properties of the Pohozaev manifold associated to the problem (℘2) and preliminary re-
sults. In Section 3, we study the behaviour of constrained minimizing sequences of the
operator associated to the problem (℘2). In Section 4, we obtain the estimates of inter-
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actions of two translated copies of a positive solution of the autonomous problem and,
finally, these estimates are applied in the proof of the main result of existence of a positive
solution stated in main theorem.

0.2 Our results

Motivated by important papers of Clapp and Maia [16,17] and Hirata [22,23], for both
problems (℘1) and (℘2), we will assume that there exists a subgroup G of O(N) that acts
effectively on SN−1, where G will be considered as already mentioned, and the potential
V is G-invariant.
Let S be the best constant of Gagliardo-Nirenberg-Sobolev inequality

S

(∫
RN

|u|2∗dx
)2/2∗

≤
∫
RN

|∇u|2dx. (0.2.1)

To consider problem (℘1), we will assume the following conditions on the potential V :

(V1) V ∈ C2(RN), V (gx) = V (x) for all g ∈ G and
∫
RN

|V −|N/2 < SN/2, where V −(x) :=

min{0, V (x)};

(V2) There exist constants A0, A1 > 0 and k ∈ R, k > max{2, N − 2} such that

|V (x)| ≤ A0(1 + |x|)−k and |∇V (x) · x| ≤ A1(1 + |x|)−k, for all x ∈ RN ;

(V3)
∫
RN

|W+|N/2 <

(
S

2

)N/2

, where W+(x) := max{0,∇V (x) · x};

(V4) xH(x)x∈LN/2(RN) and lim
|x|→∞

xH(x)x=0, where H denotes the Hessian matrix of

V .

Moreover, considering F (s) =
∫ s

0
f(t)dt, we will assume the following hypotheses on the

function f :

(f1) f ∈ C1([0,∞)) ∩ C3((0,∞)), f(s) ≥ 0 for all s > 0;

(f2) There exists a constant A2 > 0 such that

∣∣f (i)(s)
∣∣ ≤ A2|s|2

∗−(i+1),

where f (−1) := F and f (i) is the i-th derivative of f , i = 0, 1, 2, 3;
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(f3) lim
s→0+

f(s)

s2∗−1
= lim

s→+∞

f(s)

s2∗−1
= 0 and lim

s→+∞

f(s)

s
≥ ℓ > 0;

(f4) Setting Q(s) :=
1

2
f(s)s− F (s), there is a constant D ≥ 1 such that Q(s) ≤ DQ(t),

for all s ∈ [0, t], t > 0, and lim
s→+∞

Q(s) = +∞.

Our main result in the first chapter is the following

Theorem 1. Assume that (V1)–(V4) and (f1)–(f4) hold true. Then, problem (℘1) has a
positive solution ū ∈ D1,2(RN) which satisfies

ū(gx) = ū(x), for all g ∈ G and all x ∈ RN .

To consider problem (℘2), we will assume the following conditions on the potential V :

(Ṽ1) V ∈ C2(RN), V (gx) = V (x) for all g ∈ G, inf
x∈RN

V (x) > 0 and lim
|x|→∞

V (x) = V∞ > 0;

(Ṽ2) There exist constants A0 > 0 and k > dG
√
V∞ such that V (x) ≤ V∞+A0 exp(−k|x|),

for all x ∈ RN ;

(Ṽ3) ∇V (x) · x ∈ LN/2(RN), lim
|x|→∞

∇V (x) · x = 0 and
∫
RN

|W+|N/2 <

(
S

2

)N/2

, where

W+(x) := max{0,∇V (x) · x};

(Ṽ4) lim
|x|→∞

xH(x)x = 0, where H denotes the Hessian matrix of V .

Moreover, considering F (s) =
∫ s

0
f(t)dt, we will assume the following hypotheses on the

function f :

(f̃1) f ∈ C1([0,∞)) ∩ C3((0,∞)) and f(s) ≥ 0 for all s > 0;

(f̃2) There exist A1 > 0 and 1 < p1 ≤ p2 < (N + 2)/(N − 2) = 2∗ − 1 and

|f (i)(s)| ≤ A1(|s|p1−i + |s|p2−i),

where f (−1) := F and f (i) is the i-th derivative of f , i = 0, 1, 2, 3;

(f̃3) lim
s→+∞

f(s)

s
≥ ℓ > V∞ > 0;

(f̃4) Setting Q(s) :=
1

2
f(s)s− F (s), there is a constant D ≥ 1 such that Q(s) ≤ DQ(t),

for all s ∈ [0, t], t > 0, and lim
s→+∞

Q(s) = +∞.

The main result of the second chapter is the following
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Theorem 2. Assume that (Ṽ1)–(Ṽ4) and (f̃1)–(f̃4) hold true. Then, problem (℘2) has a
positive solution ū ∈ H1(RN) which satisfies

ū(gx) = ū(x), for all g ∈ G and all x ∈ RN .

There are several delicate issues in dealing with the zero mass case, where the potential
is vanishing at infinity. Already the variational formulation requires some care, because
the energy space D1,2(RN) is only embedded in L2∗(RN). Equations of the type (℘1),
where the potential V is invariant under a group action G ⊂ O(N) and that decays
to zero at infinity, is are not common in the literature. However, there are some very
important works, considering equations of the type (℘2), the positive mass case, in which
the potential V is invariant under a group action G ⊂ O(N) and tends to a positive
constant at infinity, for example, [7, 8, 22, 23]. Different from these fundamental roles,
which inspire us to develop our work, to prove Theorems 1 and 2, we will not consider
either the global Ambrosetti-Rabinowitz condition or the monotonicity f(s)/s increasing,
for s > 0 sufficiently small.



Chapter

1
Schrödinger equations with potentials

vanishing at infinity

1.1 Introduction

This chapter deals with the existence of a positive solution for the problem

−∆u+ V (x)u = f(u), u ∈ D1,2(RN), N ≥ 3, (P )

with a potential V vanishing at infinity, possibly changing sign, and a nonlinearity f under
very mild hypotheses, asymptotically linear or superlinear and subcritical at infinity, not
satisfying any monotonicity condition. The existence of a solution to this problem is
established in situations where a ground state solution is not attained.
We will assume that the potential V is invariant under a group action G ⊂ O(N) and we
try to find a positive solution in the space of G-symmetric functions

D1,2
G (RN) := {u ∈ D1,2(RN) : u(gx) = u(x),∀g ∈ G,∀x ∈ RN}.

We will consider the case that G ⊂ O(N) is closed subgroup with the following property:
for any x ∈ SN−1, there exists g ∈ G such that gx ̸= x. This means that G acts effectively
on SN−1, that is, G satisfies

#{gy : g ∈ G} ∈ [2,∞], for all y ∈ SN−1, (1.1.1)
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where #{· · · } denotes the cardinal number of sets and SN−1 := {x ∈ RN : |x| = 1}. We
will define

ℓ(G) := min{#Gx : x ∈ SN−1}.

We observe that in this work we are going to consider only the case ℓ(G) finite and

ℓ(G) ∈ [2,∞).

In fact, for simplicity, our study is focused in the case ℓ(G) = 2, but could clearly be
extended to finite ℓ(G) > 2.
Let S be the best constant of Gagliardo-Nirenberg-Sobolev inequality (0.2.1).
Throughout Chapter 1, we will consider the potential V under assumptions (V1)–(V4)
and the nonlinearity f under assumptions (f1)–(f4).

Note that F (0) = 0 and by (f1), F (s) ≥ 0 for s > 0.
Under assumptions (f1)–(f3), the limit problem at infinity

−∆u = f(u), u ∈ D1,2(RN), (P0)

has a ground state solution w which is positive, radially symmetric and decreasing in the
radial direction, see [10] and [31].
Flucher in [20, Theorem 6.5] and more recently Vétois in [35] have shown that under (f1)
and (f2) there exist constants A4, A5, A6 > 0 such that

A4(1 + |x|)−(N−2) ≤ w(x) ≤ A5(1 + |x|)−(N−2), (1.1.2)

|∇w(x)| ≤ A6(1 + |x|)−(N−1). (1.1.3)

A radial solution with decay (1.1.2) is called a fast decay solution of equation (P0).
By virtue of G-invariant property, we do not need the uniqueness of positive solution

for the limit problem (P0). Since D1,2(RN) is not compactly embedded into L2∗(RN),
then the mountain pass minimax value for corresponding functional may not be attained.
However, as we are assuming that the potential V and the function f are invariant under
the group action G, we will show that the symmetric mountain pass minimax value for
functional restricted to the subspace D1,2

G (RN) is attained.
Now we can restate our main result of existence of a solution in this chapter.

Theorem 1.1.1. Assume that (V1)–(V4), (f1)–(f4) hold true. Then, problem (P ) has a
positive solution u ∈ D1,2

G (RN).
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Remark 1.1.2. The condition (V2) implies that V ∈ LN/2(RN) and ∇V (x)·x ∈ LN/2(RN),
for all x ∈ RN . Moreover,

V (x) → 0, ∇V (x) · x→ 0, as |x| → ∞, (1.1.4)

Note that a model potential V , defined by V (x) := (1+|x|)−k, with k > max{2, N−2},
satisfies the assumptions (V1)–(V4).

Also note that assumptions (f1) and (f2) imply that f ′(0) = 0 and extends f ′ contin-
uously to 0. Furthermore, L’Hôpital’s rule and (f3) give that

lim
s→0+

f(s)

s2∗−1
= lim

s→0+

f ′(s)

s2∗−2
= 0 (1.1.5)

and
lim

s→+∞

f(s)

s2∗−1
= lim

s→+∞

f ′(s)

s2∗−2
= 0. (1.1.6)

On the other hand, hypotheses (f1), (f2) and (f3) imply that

lim
s→0+

F (s)

s2∗
= lim

s→+∞

F (s)

s2∗
= 0. (1.1.7)

1.2 Pohozaev manifold and variational setting

The well know identity obtained by Pohozaev in [33] has since then been very useful
as a constraint in the study of scalar field equations. We will take it as a fundamental tool
for our approach. Its version for non-autonomous problems is based in the work of De
Figueiredo, Lions and Nussbaum [18] which we state here for the sake of completeness.

Proposition 1.2.1. Let u ∈ D1,2(RN) \ {0} be a solution of problem −∆u = g(x, u),
x ∈ Ω, u(x) = 0, x ∈ ∂Ω, where Ω ⊂ RN is a regular domain in RN and g ∈ C(Ω×R,R).
If G(x, u) =

∫ u

0
g(x, s)ds is such that G(·, u(·)) and xiGxi

(·, u(·)) are in L1(Ω), then u

satisfies

N

∫
Ω

G(x, u)dx+
N∑
i=1

∫
Ω

xiGxi
(x, u)dx− N − 2

2

∫
Ω

|∇u|2dx =
1

2

∫
∂Ω

|∇u|2x · η(x)dSx,

where η denotes the unitary exterior normal vector to boundary ∂Ω and dSx represents
the area element (N − 1)-dimensional of ∂Ω. Moreover, if Ω = RN , then

N − 2

2

∫
RN

|∇u|2dx = N

∫
RN

G(x, u)dx+
N∑
i=1

∫
RN

xiGxi
(x, u)dx. (1.2.1)
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Proof. We have

∆u(∇u · x) = div(∇u(∇u · x))− |∇u|2 −∇
(
|∇u|2

2

)
· x

= div

(
∇u(∇u · x)− x

|∇u|2

2

)
+
N − 2

2
|∇u|2. (1.2.2)

On the other hand, we also have that

g(x, u)(∇u · x) = div(xG(x, u))−NG(x, u)−
N∑
i=1

xiGxi
(x, u). (1.2.3)

Therefore, multiplying the equation −∆u = g(x, u) by ∇u · x, it follows from (1.2.2) and
(1.2.3) that

div

(
xG(x, u) +∇u(∇u · x)− x

|∇u|2

2

)
= NG(x, u) +

N∑
i=1

xiGxi
(x, u)− N − 2

2
|∇u|2.

Thus, by the Divergence Theorem, we have∫
∂Ω

(
xG(x, u) +∇ux · ∇u− x

|∇u|2

2

)
· η(x)dSx

=

∫
Ω

div

(
xG(x, u) +∇u(∇u · x)− x

|∇u|2

2

)
dx

=

∫
Ω

(
NG(x, u) +

N∑
i=1

xiGxi
(x, u)− N − 2

2
|∇u|2

)
dx.

Since u ≡ 0 on ∂Ω and so G(x, u) = G(x, 0) = 0, we have ∇u = (∇u · η)η. Hence, it
follows that, on ∂Ω,(

∇u(∇u · x)− x
|∇u|2

2

)
· η =

[
(∇u · η)η(∇u · x)− x

|∇u|2

2

]
· η

=

[
(∇u · η)(∇u · x)η − x

|∇u|2

2

]
· η

= (∇u · η)((∇u · η)η) · x− |∇u|2

2
x · η

= (∇u · η)2x · η − |∇u|2

2
x · η

= |∇u|2x · η − |∇u|2

2
x · η =

|∇u|2

2
x · η,
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and so we conclude that

N

∫
Ω

G(x, u)dx+
N∑
i=1

∫
Ω

xiGxi
(x, u)dx− N − 2

2

∫
Ω

|∇u|2dx =
1

2

∫
∂Ω

|∇u|2x · η(x)dSx.

Now let us consider Ω = RN . Since |∇u| ∈ L2(RN), we have∫
RN

|∇u|2dx =

∫ ∞

0

∫
∂Br(0)

|∇u(r, θ)|2dSrr
N−1dr

=

∫ ∞

0

rN−2

∫
∂Br(0)

|∇u(r, θ)|2rdSrdr < +∞.

We will show that there exists a sequence of reals numbers (rn) such that, as n→ ∞,

rn → +∞, rn

∫
∂Brn (0)

|∇u(rn, θ)|2dSrn → 0. (1.2.4)

Suppose, by contradiction, that there is no such sequence satisfying (1.2.4). Then, there
exists a constant α > 0 such that

lim inf
r→+∞

r

∫
∂Br(0)

|∇u(r, θ)|2dSr ≥ α > 0.

Thus, we have

ξ(r) := r

∫
∂Br(0)

|∇u(r, θ)|2dSr ≥ α > 0

and so ∫
RN

|∇u|2dx =

∫ ∞

0

rN−2ξ(r)dr ≥
∫ ∞

0

αrN−2dr = +∞,

which is a contradiction, using that |∇u| ∈ L2(RN). So there is a sequence of reals
numbers (rn) that satisfies (1.2.4) and, furthermore, as n→ ∞, we have:∫

Brn (0)

|∇u|2dx→
∫
RN

|∇u|2dx,
∫
Brn (0)

G(x, u)dx→
∫
RN

G(x, u)dx

and
N∑
i=1

∫
Brn (0)

xiGxi
(x, u)dx→

N∑
i=1

∫
RN

xiGxi
(x, u)dx,

and so we get (1.2.1).
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In the case of problem (P ), by (1.2.1), we have the following Pohozaev identity

N − 2

2

∫
RN

|∇u|2dx = N

∫
RN

(
F (u)− V (x)

u2

2

)
dx− 1

2

∫
RN

∇V (x) · xu2dx. (1.2.5)

Associated with problem (P ), we define the functional IV : D1,2
G (RN) → R by

IV (u) =
1

2

∫
RN

(
|∇u|2 + V (x)u2

)
dx−

∫
RN

F (u)dx.

Let us define the functional JV : D1,2
G (RN) → R by

JV (u) =
N − 2

2

∫
RN

|∇u|2dx+ N

2

∫
RN

(
∇V (x) · x

N
+ V (x)

)
u2dx−N

∫
RN

F (u)dx,

and define the Pohozaev manifold associated to the problem (P ) by

PG
V := {u ∈ D1,2

G (RN) \ {0} : JV (u) = 0}.

Let us also consider the Pohozaev manifold P0 associated to the limit problem (P0). We
have

P0 := {u ∈ D1,2(RN) \ {0} : J0(u) = 0},

where
J0(u) :=

N − 2

2

∫
RN

|∇u|2dx−N

∫
RN

F (u)dx.

We recall that solutions of (P0) are critical points of the functional I0 : D1,2(RN) → R,

I0(u) :=
1

2

∫
RN

|∇u|2dx−
∫
RN

F (u)dx, u ∈ D1,2(RN).

We also recall that w is a ground state solution of the limit problem (P0) if

I0(w) = m0 := inf{I0(u) : u ∈ D1,2(RN) \ {0} is a solution of (P0)}. (1.2.6)

We will denote
p0 = inf

u∈P0

I0(u). (1.2.7)

It was shown in [31] that m0 = p0, under more general hypotheses, which contains ours
as a particular case.

We define f(s) := −f(−s) for s < 0. Then, by condition (f1), we have f ∈ C1(R)
and it is an odd function. Note that, if u is a positive solution of problem (P ) for this
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new function, it is also a solution of (P ) for the original function f . Hereafter, we shall
consider this extension, and establish the existence of a positive solution for (P ).

Recall the space of G-symmetric functions in D1,2(RN)⊂ L2∗(RN), with its standard
scalar product and norm

⟨u, v⟩ :=
∫
RN

∇u · ∇v dx, ∥u∥ :=

∫
RN

|∇u|2dx. (1.2.8)

Since f ∈ C1(R) and f satisfies (f1)–(f3), a classical result of Berestycki and Lions
establishes the existence of a ground state solution w ∈ C2(RN) to problem (P0), which
is positive, radially symmetric and decreasing in the radial direction, see [10, Theorem 4].

Let us denote ∥·∥q the Lq(RN)-norm, for all q ∈ [1,∞) and C, Ci are positive constants
which may vary from line to line. Given u, v ∈ D1,2

G (RN), let us define

⟨u, v⟩V :=

∫
RN

(∇u · ∇v + V (x)uv)dx, ∥u∥2V :=

∫
RN

(
|∇u|2 + V (x)u2

)
dx. (1.2.9)

By assumptions (V1) and (V2), we can see that the expressions in (1.2.9) are well defined
and, using the Sobolev inequality, we conclude that ∥ · ∥V is a norm in D1,2

G (RN) which is
equivalent to the standard one. Indeed, for all u ∈ D1,2

G (RN) \ {0}, using (V1), Gagliardo-
Nirenberg-Sobolev inequality (0.2.1) and Hölder inequality, there exists a constant C1 > 0

such that

∥u∥2V =

∫
RN

(
|∇u|2 + V (x)u2

)
dx

≥
∫
RN

|∇u|2dx−
(∫

RN

|V −(x)|N/2dx

)2/N (∫
RN

|u|2∗dx
)2/2∗

≥ C1

∫
RN

|∇u|2dx = C1∥u∥. (1.2.10)

On the other hand, by condition (V2), it follows that V ∈ LN/2(RN), and so using (0.2.1)
and Hölder inequality, there exists a constant C2 > 0 such that

∥u∥2V =

∫
RN

(
|∇u|2 + V (x)u2

)
dx

≤
∫
RN

|∇u|2dx+
(∫

RN

|V (x)|N/2dx

)2/N (∫
RN

|u|2∗dx
)2/2∗

≤
∫
RN

|∇u|2dx+
∥V ∥N/2

S

∫
RN

|∇u|2dx

≤ C2

∫
RN

|∇u|2dx = C2∥u∥. (1.2.11)
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Hence, from (1.2.10) and (1.2.11), we conclude the statement.

Remark 1.2.2. Throughout this chapter, to denote an inner product or norm in the
space D1,2(RN), we will use the same notations adopted for the subspace of G-symmetric
functions in D1,2

G (RN).

Consider the following problem in the space of G-symmetric functions D1,2
G (RN), for

N ≥ 3,
−∆u+ V (x)u = f(u), u ∈ D1,2

G (RN). (PG)

We will show that solutions of (PG) are also solutions of (P ). Indeed, suppose that
u0 ∈ D1,2

G (RN) is a weak solution of problem (PG), that is, u0 is a critical point of the
restricted functional IV restricted to D1,2

G (RN), and so

I ′V (u0)v = 0, for all v ∈ D1,2
G (RN).

Set (
D1,2

G (RN)
)⊥

:= {u ∈ D1,2(RN) : ⟨u, φ⟩V = 0, for all φ ∈ D1,2
G (RN)}.

To show that u0 is a critical point of the functional IV in D1,2(RN), it suffices to show that
I ′V (u0)ṽ = 0, for all ṽ ∈

(
D1,2

G (RN)
)⊥

, and this is a consequence of the following lemma,
which holds for all u ∈ D1,2

G (RN), not only critical points of IV .

Lemma 1.2.3. Assume that (V1)–(V2) and (f1)–(f3) hold true. Then,

I ′V (u)ṽ = 0, for any u ∈ D1,2
G (RN) and ṽ ∈

(
D1,2

G (RN)
)⊥
.

Proof. Let u ∈ D1,2
G (RN) and h : RN → R defined by h(x) = f(u(x)), for all x ∈ RN . So,

we have

h(gx) = f(u(gx)) = f(u(x)) = h(x), for any g ∈ G and x ∈ RN . (1.2.12)

Consider the following linear problem{
−∆v + V (x)v = h(x), in RN ,

v ∈ D1,2(RN).
(1.2.13)

By Riesz representation theorem, we can find the unique solution v0 ∈ D1,2(RN) to the
auxiliary problem (1.2.13). By (1.2.12) and V (gx) = V (x), v0(g(·)) satisfies

−∆v0(gx) + V (x)v0(gx) = h(gx) = h(x)
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for any g ∈ G and x ∈ RN . It follows from the uniqueness of solutions that v0 = v0 ◦ g
and so v0 ∈ D1,2

G (RN). Thus, for any ṽ ∈
(
D1,2

G (RN)
)⊥

, we get

I ′V (u)ṽ = ⟨u, ṽ⟩V −
∫
RN

f(u(x))ṽ(x)dx = −
∫
RN

h(x)ṽ(x)dx

= −⟨v0, ṽ⟩V = 0,

which proves the lemma.

1.3 Auxiliary lemmas for bounded sequences

In what follows, to find solutions to the problem (P ), we will try to find solutions to
the problem (PG), that is, let us try to find critical points of the functional IV .

Next lemma presents a new variant of Lions’ lemma in D1,2(RN), which was proved
by Mederski in [31, Lemma 1.5].

Lemma 1.3.1. Suppose that (un) ⊂ D1,2(RN) is bounded and for some r > 0,

lim
n→∞

sup
y ∈RN

∫
B(y,r)

|un|2dx = 0. (1.3.1)

Then, limn→∞
∫
RN Ψ(un)dx = 0, for any continuous function Ψ : R → [0,∞) satisfying

lim
s→0

Ψ(s)

|s|2∗
= lim

|s|→∞

Ψ(s)

|s|2∗
= 0. (1.3.2)

Proof. Let ε > 0 and 2 < q < 2∗, given arbitrarily, and suppose that Ψ : R → [0,∞) is
a continuous function satisfying (1.3.2). Then, we find δ,M ∈ R with 0 < δ < M and
Cε > 0 such that

(i) Ψ(s) ≤ ε|s|2∗ , for |s| ≤ δ;

(ii) Ψ(s) ≤ ε|s|2∗ , for |s| > M ;

(iii) Ψ(s) ≤ Cε|s|q, for |s| ∈ (δ,M ].

Hence, in the view of Lions’ lemma we get

lim sup
n→∞

∫
RN

Ψ(un)dx ≤ ε lim sup
n→∞

∫
RN

(
|un|2 + |un|2

∗)
dx.

Since (un) is bounded in L2(RN) and L2∗(RN), we may take the limit ε→ 0 and conclude
the proof.
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Recall that a sequence (un) in D1,2
G (RN) is said to be a (PS)d-sequence for IV with

d ∈ R if IV (un) → d and ∇IV (un) → 0 in (D1,2
G (RN)′. A sequence (un) in D1,2

G (RN) is
said to be a Cerami sequence for IV at level d ∈ R, denoted by (Ce)d, if IV (un) → d and
∥∇IV (un)∥(D1,2

G (RN ))
′(1 + ∥un∥V ) → 0.

Lemma 1.3.2. Assume that (f1)–(f4) hold true and let (un) in D1,2
G (RN) be a Cerami

sequence for IV at level d ∈ R. Then, (un) has a bounded subsequence.

Proof. Suppose, by contradiction, that (un) ⊂ D1,2
G (RN) has no bounded subsequence.

Then, we can assume that un ̸= 0 for all n ∈ N and ∥un∥V → +∞. Let us define
ũn := un/∥un∥V for all n ∈ N. Thus, (ũn) is a bounded sequence and ∥ũn∥V = 1. Hence,
up to a subsequence, it holds ũn ⇀ ũ in D1,2

G (RN). Thus, one of the two cases occurs:

Case 1: lim sup
n→∞

sup
y ∈RN

∫
B1(y)

|ũn|2dx > 0;

Case 2: lim sup
n→∞

sup
y ∈RN

∫
B1(y)

|ũn|2dx = 0.

First, let us suppose that Case 2 occurs, and let L > 1 be an arbitrary constant. In
particular, we have

lim sup
n→∞

sup
y ∈RN

∫
B1(y)

∣∣∣∣ L

∥un∥V
un

∣∣∣∣2 dx = L2 lim sup
n→∞

sup
y ∈RN

∫
B1(y)

|ũn|2dx = 0.

By hypotheses (f1)–(f3) and using that f(s) = −f(−s) for s < 0, we have F (s) ≥ 0 for
all s ∈ R. Moreover, we have

lim
s→0

F (s)

|s|2∗
= lim

|s|→∞

F (s)

|s|2∗
= 0.

So, applying Lemma 1.3.1, we obtain

lim
n→∞

∫
RN

F (Lũn) = lim
n→∞

∫
RN

F

(
L

∥un∥V
un

)
dx = 0.

Hence,

IV

(
L

∥un∥V
un

)
=
L2

2
−
∫
RN

F

(
L

∥un∥V
un

)
dx ≥ L2

4

for n sufficiently large. Since ∥un∥V → +∞, then L
∥un∥V

∈ (0, 1), for n sufficiently large.
So, there exists n1 ∈ N such that

max
t∈[0,1]

IV (tun) ≥ IV

(
L

∥un∥V
un

)
≥ L2

4
,
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for all n ≥ n1. Let tn ∈ [0, 1] be such that IV (tnun) := max
t∈[0,1]

IV (tun). Thus,

IV (tnun) ≥
L2

4
, (1.3.3)

for all n ≥ n1. Since tn ≤ 1, using (f4) and the fact that f(s) = −f(−s) for s < 0, we
obtain

IV (tnun) = IV (tnun)−
1

2
I ′V (tnun)(tnun) + on(1)

=

∫
RN

(
1

2
f(tnun)(tnun)− F (tnun)

)
dx+ on(1)

≤ D

∫
RN

(
1

2
f(un)un − F (un)

)
dx+ on(1)

= D

(
IV (un)−

1

2
I ′V (un)un

)
+ on(1)

= Dd+ on(1).

So, there exists n2 ∈ N such that

IV (tnun) ≤ 2Dd, (1.3.4)

for all n ≥ n2. Taking n0 := max{n1, n2}, it follows from (1.3.3) and (1.3.4) that

L2

4
≤ IV (tnun) ≤ 2Dd,

for all n ≥ n0. Taking L > 3
√
Dd, we come to a contradiction.

Now suppose that Case 1 occurs, that is, there exists δ > 0 such that

lim sup
n→∞

sup
y ∈RN

∫
B1(y)

|ũn|2dx = δ.

If (yn) ⊂ RN is a sequence such that |yn| → ∞ and
∫
B1(yn)

|ũn|2dx > δ/2, whereas
ũn(·+ yn)⇀ ũ, we obtain ∫

B1(0)

|ũn(x+ yn)|2 >
δ

2
,

and so ∫
B1(0)

|ũ(x)|2dx ≥ δ

2
,

showing that ũ ̸= 0. Thus, there exists a subset of positive Lebesgue measure Ω ⊂ B1(0)
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such that

0 < |ũ(x)| = lim
n→∞

|ũn(x+ yn)| = lim
n→∞

|un(x+ yn)|
∥un∥V

, ∀x ∈ Ω.

Since ∥un∥V → +∞, it follows that

|un(x+ yn)| → +∞, ∀x ∈ Ω.

Then, using the hypothesis (f4) and Fatou lemma, we obtain

lim inf
n→∞

∫
RN

[
1

2
f(un(x+ yn))un(x+ yn)− F (un(x+ yn))

]
dx

≥ lim inf
n→∞

∫
Ω

[
1

2
f(un(x+ yn))un(x+ yn)− F (un(x+ yn))

]
dx

≥
∫
Ω

lim inf
n→∞

[
1

2
f(un(x+ yn))un(x+ yn)− F (un(x+ yn))

]
dx

= +∞.

On the other hand, we have

|I ′V (un)un| ≤ ∥I ′V (un)∥(D1,2
G (RN ))

′∥un∥V ≤ ∥I ′V (un)∥(D1,2
G (RN ))

′ (1 + ∥un∥V ) → 0,

and so, I ′V (un)un = on(1). Therefore, for n sufficiently large, we have∫
RN

[
1

2
f(un(x+ yn))un(x+ yn)− F (un(x+ yn))

]
dx = IV (un)−

1

2
I ′V (un)un ≤ d+ 1,

which gives a contradiction.
If (yn) is bounded, then there exists R > 1 such that |yn| ≤ R for all n ∈ N and∫

B2R(0)

|ũn(x+ yn)|2dx ≥
∫
B1(0)

|ũn(x+ yn)|2dx >
δ

2
.

Since ũn(·+ yn) → ũ in B2R(0), it follows that∫
B1(0)

|ũ(x)|2dx ≥ δ

2
.

Similarly to the previous case, there exists Ω1 ⊂ B1(0), with |Ω1| > 0 such that

lim
n→∞

|un(x+ yn)|
∥un∥V

= lim
n→∞

|ũn(x+ yn)| = |ũ(x)| ≠ 0, ∀x ∈ Ω1.
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The argument follows as in the previous case where |yn| → +∞ and we arrive at a
contradiction. Therefore, neither Case 1 nor Case 2 can occur and lemma is proved.

For future purposes, we need a version of Brezis-Lieb lemma [12] for D1,2(RN) found
in [31], Lemma A.1.

Lemma 1.3.3. Suppose that (un) ⊂ D1,2(RN) is bounded and un(x) → u0(x) for a.e.
x ∈ RN . Then

lim
n→∞

(∫
RN

Ψ(un) dx−
∫
RN

Ψ(un − u0) dx

)
=

∫
RN

Ψ(u0) dx (1.3.5)

for any function Ψ : R → R of class C1 such that Ψ(0) = 0 and |Ψ′(s)| ≤ C|s|2∗−1 for
any s ∈ R and some constant C > 0.

Proof. Observe that∫
RN

[Ψ(un)−Ψ(un − u0)]dx =

∫
RN

∫ 1

0

− d

ds
Ψ(un − su0)dsdx

=

∫
RN

∫ 1

0

Ψ′(un − su0)u0 dsdx.

So, by Vitali’s convergence theorem, where we have to

|Ψ′(un − su0)| ≤ C|un − su0|2
∗−1 ≤ Cγ(|un|2

∗−1 + |u0|2
∗−1).

Let
fn := |Ψ′(un − su0)||u0| ≤ C(|un|2

∗−1|u0|+ |u0|2
∗−1|u0|) =: gn,

note that
fn(x) → |Ψ′(ũ0 − su0)||u0| := f(x), as n→ +∞

and
gn(x) → C(|ũ0|2

∗−1|u0|+ |u0|2
∗
) := g(x), as n→ +∞.

Where |fn| ≤ |gn| a.e. in RN and ∥gn − g∥L1(RN ) → 0, as n→ +∞. Then ∥fn − f ||L1 → 0



1.3 Auxiliary lemmas for bounded sequences 22

and |f | ≤ |g| a.e RN . Thus, we get

lim
n→∞

∫
RN

[Ψ(un)−Ψ(un − u0)]dx = lim
n→∞

∫
RN

∫ 1

0

Ψ′(un − su0)u0 dsdx

=

∫ 1

0

∫
RN

Ψ′(u0 − su0)u0 dxds

=

∫
RN

∫ 1

0

− d

ds
Ψ(u0 − su0)dsdx

=

∫
RN

Ψ(u0)dx−Ψ(0) =

∫
RN

Ψ(u0)dx.

The following lemma, combined with assumptions (f1) and (f2), provides the inter-
polation and boundedness properties that are needed to prove the next results. Its proof
can be found in [17, Proposition 3.1]. Let 2 < p < 2∗ < q, in the next results.

Lemma 1.3.4. Let α, β > 0 and h ∈ C0(RN). Assume that α
β
≤ p

q
and β ≤ q, and that

there exists M > 0 such that

|h(s)| ≤M min{|s|α, |s|β} for every s ∈ R.

Then, for every r ∈
[
q
β
, p
α

]
, the map D1,2(RN) → Lr(RN) given by u 7→ h(u) is well

defined, continuous and bounded.

Also, before proving the result, we will need the following versions of Brezis-Lieb
lemma.

Lemma 1.3.5. Assume that (V1)–(V2) and (f1)–(f3) hold true. Let (un) be a bounded
sequence in D1,2

G (RN) such that un(x) → u(x) for a.e. x ∈ RN . Then, the following
statements hold true:

(a) ∥un∥2V = ∥un − u∥2 + ∥u∥2V + on(1);

(b)
∫
RN

|f(un)− f(u)||φ|dx = on(1), for every φ ∈ C∞
0 (RN);

(c)
∫
RN

F (un)dx−
∫
RN

F (un − u)dx =

∫
RN

F (u)dx+ on(1);

(d) f(un)− f(un − u) → f(u) in
(
D1,2

G (RN)
)′
.
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Proof. Since (un) ⊂ D1,2
G (RN), it follows that un(gx) = un(x) for any g ∈ G and x ∈ RN .

Thus, as un(x) → u(x) for a.e. x ∈ RN , we have

u(gx) = lim
n→∞

un(gx) = lim
n→∞

un(x) = u(x) a.e. x ∈ RN ,

which shows that u ∈ D1,2
G (RN).

Next, for each n ∈ N, define vn := un − u. So, we have a sequence (vn) such that
vn ⇀ 0 in D1,2

G (RN).
(a) Since un ⇀ u in D1,2

G (RN), it follows that ⟨un, u⟩V → ⟨u, u⟩V = ∥u∥2V . So, we have

∥vn∥2V = ∥un − u∥2V = ⟨un − u, un − u⟩V
= ⟨un, un⟩V − ⟨un, u⟩V − ⟨u, un⟩V + ⟨u, u⟩V
= ∥un∥2V − 2⟨un, u⟩V + ∥u∥2V = ∥un∥2V + ∥u∥2V + on(1). (1.3.6)

On the other hand, assumption (V2) implies that V ∈ LN/2(RN)∩Lθ(RN) for any θ > N/2.
Hence η := 2θ/(θ − 1) < 2∗, and it follows that vn → 0 in Lη

loc(RN). Moreover, given
ε > 0, we may fix R > 1 sufficiently large such that∫

RN\BR(0)

|V (x)|N/2dx ≤ εN/2.

Thus, using Hölder inequality with conjugate exponents θ and θ/(θ − 1) and also N/2

and 2∗/2, we get∫
RN

|V (x)||vn|2dx =

∫
BR(0)

|V (x)||vn|2dx+
∫
RN\BR(0)

|V (x)||vn|2dx

≤
(∫

BR(0)

|V (x)|θdx
)1

θ
(∫

BR(0)

(
v2n
) θ

θ−1 dx

)θ−1
θ

+

(∫
RN\BR(0)

|V (x)|
N
2 dx

) 2
N
(∫

RN\BR(0)

(
v2n
) 2∗

2 dx

)2
2∗

≤
(∫

RN

|V (x)|θdx
)1

θ
(∫

BR(0)

|vn|ηdx
)2

η

+

(∫
RN\BR(0)

|V (x)|
N
2 dx

) 2
N
(∫

RN

|vn|2
∗
dx

)2
2∗

= ∥V ∥θ∥vn∥2Lη(BR(0)) + ∥V ∥LN/2(RN\BR(0))∥vn∥22∗ .

Since (vn) is bounded because (un) is bounded in D1,2
G (RN), vn → 0 in Lη

loc(RN) and
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D1,2
G (RN) is continuously embedded into L2∗(RN), there exists C1 > 0 such that∫

RN

|V (x)||vn|2dx ≤ on(1) + C1ε,

and so, there exists C > 0 such that∫
RN

|V (x)||vn|2dx ≤ Cε,

for n ∈ N large enough. Therefore, it follows from the last inequality that

∥vn∥2V =

∫
RN

|∇vn|2dx+
∫
RN

V (x)v2ndx

= ∥vn∥2 +
∫
RN

V (x)v2ndx = ∥vn∥2 + on(1). (1.3.7)

Substituting (1.3.7) in (1.3.6), it follows that

∥un∥2V = ∥vn∥2 + ∥u∥2V + on(1),

proving item (a).
(b) By hypothesis (f2), we have

|f ′(s)| ≤ A2|s|2
∗−2, ∀ s ∈ R.

By the mean value theorem, there exists ξ ∈ (0, 1) such that

|f(un)− f(u)| = |f ′(u+ ξ(un − u))||un − u|

≤ A2|u+ ξ(un − u)|2∗−2 |un − u|

≤ A2(|u|+ |un − u|)2
∗−2 |un − u|.

Note that

(|u|+ |un − u|)2∗−2 ≤ (2max{|u|, |un − u|})2∗−2 ≤ 22
∗−2
(
|u|2∗−2 + |un − u|2∗−2

)
,

and so

|f(un)− f(u)| ≤ A2(|u|+ |un − u|)2
∗−2 |un − u|

≤ C1

(
|u|2∗−2 + |un − u|2∗−2

)
|un − u|

= C1

(
|u|2∗−2|un − u|+ |un − u|2∗−1

)
. (1.3.8)
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Next, we fix δ ∈
(
0, 1

N−2

)
and consider q1 := 2∗ − δ and q2 := (2∗ − δ)/(1 − δ). Thus,

using Hölder inequality with conjugate exponents (2∗ − δ)/(2∗ − 1) and (2∗ − δ)/(1− δ),
for any φ ∈ C∞

0 (RN), we obtain∫
RN

|un − u|2∗−1|φ|dx =

∫
supp(φ)

|un − u|2∗−1|φ|dx

≤
(∫

supp(φ)

(
|un − u|2∗−1

) 2∗−δ
2∗−1 dx

)2∗−1
2∗−δ

(∫
supp(φ)

|φ|
2∗−δ
1−δ dx

) 1−δ
2∗−δ

=

(∫
supp(φ)

|un − u|q1dx
)2∗−1

q1

(∫
supp(φ)

|φ|q2dx
) 1

q2

≤ C∥φ∥∞
(∫

supp(φ)

|un − u|q1dx
)2∗−1

q1

.

As (un) is bounded and, passing to a subsequence, un ⇀ u in D1,2
G (RN) and un → u

strongly in Lq1
loc(RN), it follows that∫

RN

|un − u|2∗−1|φ|dx = on(1), ∀φ ∈ C∞
0 (RN). (1.3.9)

On the other hand, for any φ ∈ C∞
0 (RN), we obtain∫

RN

|u|2∗−2|un − u||φ|dx =

∫
supp(φ)

|u|2∗−2|un − u||φ|dx

≤
(∫

supp(φ)

(
|u|2∗−2

) 2∗
2∗−2 dx

)2∗−2
2∗
(∫

supp(φ)

(|un − u||φ|)
2∗
2 dx

) 2
2∗

=

(∫
supp(φ)

|u|2∗dx
)2∗−2

2∗
(∫

supp(φ)

(|un − u||φ|)
2∗
2 dx

) 2
2∗

,

and so, using Hölder inequality with conjugate exponents 2(2∗−δ)
2∗

and 2(2∗−δ)
2∗−2δ

, we get

(∫
supp(φ)

(|un − u||φ|)
2∗
2 dx

) 2
2∗

≤
(∫

supp(φ)

|un − u|q1dx
) 1

q1

(∫
supp(φ)

|φ|q3dx
) 1

q3

≤ C∥φ∥∞
(∫

supp(φ)

|un − u|q1dx
) 1

q1

,
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where q1 := 2∗ − δ and q3 := 2∗(2∗−δ)
2∗−2δ

. As un → u strongly in Lq1
loc(RN), it follows that

(∫
supp(φ)

(|un − u||φ|)
2∗
2 dx

) 2
2∗

= on(1),

and thus, ∫
RN

|u|2∗−2|un − u||φ|dx = on(1), ∀φ ∈ C∞
0 (RN). (1.3.10)

It follows from (1.3.8), (1.3.9) and (1.3.10) that∫
RN

|f(un)− f(u)||φ|dx = on(1), ∀φ ∈ C∞
0 (RN),

which proves item (b).
(c) Since (un) is bounded in D1,2

G (RN) and un(x) → u(x) for a.e. x ∈ RN , applying Lemma
1.3.3 with Ψ = F , (see [31, Lemma A.1]), we get

lim
n→∞

(∫
RN

F (un)dx−
∫
RN

F (un − u)dx

)
=

∫
RN

F (u)dx,

which proves item (c).
(d) Hypothesis (f2) and the fact that f(s) = −f(−s), for s < 0, imply that |f(s)| ≤
A2|s|2

∗−1 for all s ∈ R. Thus, arguing as in (b), see (1.3.8), we obtain

|f(un)− f(un − u)| ≤ C1

(
|un − u|2∗−2|u|+ |u|2∗−1

)
,

and so

|f(un)− f(un − u)− f(u)| ≤ |f(un)− f(un − u)|+ |f(u)|

≤ C1

(
|un − u|2∗−2|u|+ |u|2∗−1

)
+ A2|u|2

∗−1

= C1|un − u|2∗−2|u|+ (C1 + A2)|u|2
∗−1.

Let φ ∈ D1,2
G (RN) and R > 0 be. Since (vn) is bounded in D1,2

G (RN), where vn := un − u,
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and D1,2
G (RN) is continuously embedded into L2∗(RN), we have∫

|x|>R

|f(un)− f(un − u)− f(u)||φ|dx

≤ C1

∫
|x|>R

|un − u|2∗−2|u||φ|dx+ (C1 + A2)

∫
|x|>R

|u|2∗−1|φ|dx

≤ C1

(∫
|x|>R

|un − u|2∗dx
)2∗−2

2∗
(∫

|x|>R

|u|2∗/2|φ|2∗/2dx
)2/2∗

+ (C1 + A2)

(∫
|x|>R

|u|2∗dx
)2∗−1

2∗
(∫

|x|>R

|φ|2∗dx
)1/2∗

≤ C1∥un − u∥2∗−2
2∗

(∫
|x|>R

|u|2∗dx
)1/2∗ (∫

|x|>R

|φ|2∗dx
)1/2∗

+ (C1 + A2)∥φ∥2∗
(∫

|x|>R

|u|2∗dx
)2∗−1

2∗

≤ C∥φ∥V

[(∫
|x|>R

|u|2∗dx
)1/2∗

+

(∫
|x|>R

|u|2∗dx
)2∗−1

2∗
]
.

Thus, given ε > 0, we may choose R > 1 sufficiently large such that∫
|x|>R

|f(un)− f(un − u)− f(u)||φ|dx ≤ ε∥φ∥V . (1.3.11)

On the other hand, as f ∈ C1, by (1.1.5) and (1.1.6), for any ε > 0 and 2 < p < 2∗ < q,
we find 0 < δ < M and Cε > 0 such that, for i = 0, 1,

|f (i)(s)| < ε|s|2∗−(i+1), for 0 < |s| < δ or |s| > M

and
|f (i)(s)| < Cε min

{
|s|p−(i+1), |s|q−(i+1)

}
, for δ ≤ |s| ≤M.

Hence,
|f (i)(s)| ≤ ε|s|2∗−(i+1) + Cε min

{
|s|p−(i+1), |s|q−(i+1)

}
, ∀ s ∈ R.

Consider hε : R → R defined by

hε(s) = Cε min
{
|s|p−2, |s|q−2

}
.
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Note that, for any 2 < p < 2∗ < q, we have

2∗p

2∗p− 2∗ − p
≤ 2∗p

2∗p− 2∗ − 2∗
=

2∗p

2∗(p− 2)
=

p

p− 2
,

2∗q

2∗q − 2∗ − q
≥ 2∗q

2∗q − 2∗ − 2∗
=

2∗q

2∗(q − 2)
=

q

q − 2

and
2∗q

2∗q − 2∗ − q
<

2∗p

2∗p− 2∗ − p
.

Hence,
q

q − 2
≤ 2∗q

2∗q − 2∗ − q
<

2∗p

2∗p− 2∗ − p
≤ p

p− 2
,

It follows from Lemma 1.3.4 with α = p− 2 and β = q− 2 that, for every r ∈
[

q
q−2

, p
p−2

]
,

the map D1,2(RN) → Lr(RN) given by v 7→ hε(v) is well defined, continuous and bounded.
In particular, for r = 2∗p

2∗p−2∗−p
, it follows that hε(|u|+ |un − u|) is bounded in Lr(RN). So

by the mean value theorem, there exists ξ ∈ (0, 1) such that

|f(un)− f(u)| = |f ′(u+ ξ(un − u))||un − u|

≤ ε(|u|+ |un − u|)2∗−2|un − u|+ hε(|u|+ |un − u|)|un − u|.

Thus, given φ ∈ D1,2
G (RN) and R > 0, we have∫

|x|≤R

|f(un)− f(u)||φ|dx ≤ ε

∫
|x|≤R

(|u|+ |un − u|)2
∗−2 |un − u||φ|dx

+

∫
|x|≤R

hε(|u|+ |un − u|)|un − u||φ|dx.

Observe that, by Hölder inequality, we get

ε

∫
|x|≤R

(|u|+ |un − u|)2
∗−2 |un − u||φ|dx ≤ ε∥|u|+ |un − u|∥2∗−2

2∗ ∥un − u∥2∗∥φ∥2∗

and as D1,2
G (RN) is continuously embedded into L2∗(RN), there exists C > 0 such that

ε

∫
|x|≤R

(|u|+ |un − u|)2
∗−2 |un − u||φ|dx ≤ εC. (1.3.12)

Using successively Hölder inequality with conjugate exponents p and p/(p− 1) or 2∗(p−
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1)/p) and 2∗(p− 1)/(2∗(p− 1)− p), for any φ ∈ D1,2
G (RN), we obtain∫

|x|≤R

hε(|u|+ |un − u|)|un − u||φ|dx

≤
(∫

|x|≤R

(hε(|u|+ |un − u|)|φ|)
p

p−1dx

)p−1
p
(∫

|x|≤R

|un − u|pdx
)1

p

≤
(∫

|x|≤R

(hε(|u|+ |un − u|))rdx
)1

r
(∫

|x|≤R

|φ|2∗dx
) 1

2∗
(∫

|x|≤R

|un − u|pdx
)1

p

= ∥hε(|u|+ |un − u|)∥r∥φ∥2∗
(∫

|x|≤R

|un − u|pdx
)1

p

.

Since (un) is bounded and, passing to a subsequence, un ⇀ u in D1,2
G (RN), un → u

strongly in Lp
loc(RN) and D1,2

G (RN) is continuously embedded into L2∗(RN), there exists
C > 0 such that∫

|x|≤R

hε(|u|+ |un − u|)|un − u||φ|dx ≤ C∥φ∥V
(∫

|x|≤R

|un − u|pdx
)1

p

= on(1). (1.3.13)

It follows from (1.3.12) and (1.3.13) that∫
|x|≤R

|f(un)− f(u)||φ|dx ≤ εC, (1.3.14)

for n ∈ N sufficiently large. Moreover, we have again

|f(|un − u|)| ≤ ε|un − u|2∗−1 + Cε min
{
|un − u|p−1, |un − u|q−1

}
= ε|un − u|2∗−1 + Cε min

{
|un − u|p−2, |un − u|q−2

}
|un − u|

= ε|un − u|2∗−1 + hε(|un − u|)|un − u|,

and so, for any φ ∈ D1,2
G (RN) and R > 0, arguing as before, we get∫

|x|≤R

|f(un − u)||φ|dx ≤ ε

∫
|x|≤R

|un − u|2∗−1|φ|dx+
∫
|x|≤R

hε(|un − u|)|un − u||φ|dx

≤ ε∥un − u∥2∗−1
2∗ ∥φ∥2∗ + ∥hε(|un − u|)∥r∥φ∥2∗

(∫
|x|≤R

|un − u|pdx
)1

p

.

From Lemma 1.3.4 again, it follows that hε(|un−u|) is bounded in Lr(RN) and, moreover,
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un → u strongly in Lp
loc(RN) and D1,2

G (RN) is continuously embedded into L2∗(RN). Hence,∫
|x|≤R

|f(un − u)||φ|dx ≤ εC, (1.3.15)

for n ∈ N sufficiently large. From (1.3.14) and (1.3.15), we obtain∫
|x|≤R

|f(un)− f(un − u)− f(u)||φ|dx

≤
∫
|x|≤R

|f(un)− f(u)||φ|dx+
∫
|x|≤R

|f(un − u)||φ|dx

≤ εC (1.3.16)

for n ∈ N sufficiently large. Therefore, from (1.3.11) and (1.3.16), given ε > 0 and
φ ∈ D1,2

G (RN), there exists C > 0 such that∣∣∣∣∫
RN

[f(un)− f(un − u)− f(u)]φdx

∣∣∣∣ ≤ εC

for n ∈ N sufficiently large, which proves item (d).

Next, we will present the standard result about the splitting of bounded (PS) se-
quences. The proof follows closely the proof of [17, Lemma 3.9] using Lemmas 1.3.3 and
1.3.1 either for Ψ(u) = F (u) or Ψ(u) = f(u)u, u ∈ D1,2

G (RN), wherever convenient.

Lemma 1.3.6 (Splitting). Assume that (V1)–(V2) and (f1)–(f3) hold true. Let c ∈ R
and (un) be a bounded sequence in D1,2

G (RN) such that

IV (un) → c and ∇IV (un) → 0 in
(
D1,2

G (RN)
)′
.

Replacing (un) by a subsequence, if necessary, there exist a solution ū ∈ D1,2
G (RN) of

problem (PG), a number k ∈ N ∪ {0}, k sequences (yjn) ⊂ RN , 1 ≤ j ≤ k and k nontrivial
solutions w1, · · · , wk of the limit problem (P0), satisfying:

(i) un ⇀ ū weakly in D1,2
G (RN);

(ii) for any i, j = 1, · · · , k, |yjn| → ∞ and |yjn − yin| → ∞, if i ̸= j;

(iii) un − ū−
k∑

j=1

wj(· − yjn) → 0 in D1,2(RN);

(iv) c = IV (ū) +
k∑

j=1

I0(w
j),
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for k ∈ N. In the case k = 0, the above holds without wj, (yjn).

Proof. Since (un) ⊂ D1,2
G (RN) is a (PS)c-sequence for IV restricted to D1,2

G (RN) , it follows
from Lemma 1.2.3 that I ′V (un)ṽ = 0 for any ṽ ∈

(
D1,2

G (RN)
)⊥

, and so (un) is also (PS)c-
sequence for IV defined in the whole space D1,2(RN). As (un) is bounded, passing to a
subsequence, we get ū ∈ D1,2(RN) such that un ⇀ ū in D1,2(RN) and un(x) → ū(x) for
a.e. x ∈ RN . Let us show that ū ∈ D1,2

G (RN). In fact, as (un) ⊂ D1,2
G (RN), we have

un(gx) = un(x) for any g ∈ G and x ∈ RN , and so

ū(gx) = lim
n→∞

un(gx) = lim
n→∞

un(x) = ū(x) a.e. x ∈ RN ,

which shows that ū ∈ D1,2
G (RN). It follows from weak convergence and Lemma 1.3.5(b)

that, for any φ ∈ C∞
0 (RN), we have

on(1) = I ′V (un)φ =

∫
RN

(∇un∇φ+ V (x)unφ)dx−
∫
RN

f(un)φdx

=

∫
RN

(∇ū∇φ+ V (x)ūφ)dx−
∫
RN

f(ū)φdx+ on(1)

= I ′V (ū)φ+ on(1),

which shows that I ′V (ū)φ = 0, and so, as C∞
0 (RN) is dense in D1,2(RN), it follows that

I ′V (ū)v = 0 for any v ∈ D1,2(RN). Since ū ∈ D1,2
G (RN) and I ′V (ū)ṽ = 0 for any ṽ ∈(

D1,2
G (RN)

)⊥
, we conclude that ū is a critical point of functional IV restricted to D1,2

G (RN).
For each n ∈ N, define un,1 := un− ū. Thus, we have a sequence (un,1) such that un,1 ⇀ 0

in D1,2
G (RN). By Lemma 1.3.5 the following statements hold:

(a) ∥un∥2V = ∥un,1∥2 + ∥ū∥2V + on(1);

(b)
∫
RN

|f(un)− f(ū)||φ|dx = on(1), for every φ ∈ C∞
0 (RN);

(c)
∫
RN

F (un)dx−
∫
RN

F (un,1)dx =

∫
RN

F (ū)dx+ on(1);

(d) f(un)− f(un,1) → f(ū) in
(
D1,2

G (RN)
)′

.
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Therefore, it follows from (a) and (c) that

IV (un)− I0(un,1)− IV (ū) =
1

2
∥un∥2V −

∫
RN

F (un)dx−
1

2
∥un,1∥2 +

∫
RN

F (un,1)dx

− 1

2
∥ū∥2V +

∫
RN

F (ū)dx

=
1

2

[
∥un∥2V − ∥un,1∥2 − ∥ū∥2V

]
−
∫
RN

[F (un)− F (un,1)− F (ū)]dx

= on(1),

and thus,
IV (un) = IV (ū) + I0(un,1) + on(1). (1.3.17)

Next, we will show that ∇IV (un,1) → 0 in
(
D1,2

G (RN)
)′

. Indeed, by hypothesis, ∇IV (un) →
0 in

(
D1,2

G (RN)
)′

and so it follows that ∇IV (un)v → 0, for any v ∈ D1,2
G (RN). So, we have

on(1) = ∇IV (un)v = ∇IV (un,1 + ū)v

=

∫
RN

(∇un,1∇v + V (x)un,1v)dx+

∫
RN

(∇ū∇v + V (x)ūv)dx

−
∫
RN

f(un,1 + ū)vdx

= ∇IV (un,1)v +
∫
RN

f(un,1)vdx+∇IV (ū)v +
∫
RN

f(ū)vdx

−
∫
RN

f(un)vdx

= ∇IV (un,1)v +∇IV (ū)v −
∫
RN

[f(un)− f(un,1)− f(ū)]vdx.

The fact that ∇IV (ū) = 0 and item (d) imply that

∇IV (un,1)v = on(1), for all v ∈ D1,2
G (RN),

which shows that, as n → ∞, ∇IV (un,1) → 0 in
(
D1,2

G (RN)
)′

. If un,1 → 0 strongly in
D1,2

G (RN), the proof is completed. So, assume that it does not. Then, as ∇IV (un,1)un,1 →
0, after passing to a subsequence, there exists a constant C1 > 0 such that

0 < C1 ≤ ∥un,1∥2V =

∫
RN

f(un,1)un,1dx+ on(1).

Therefore, applying Lemma 1.3.1 with Ψ(s) = f(s)s, there exist δ > 0 and a sequence
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(y1n) in RN such that ∫
B1(yn)

|un,1(x)|2dx > δ. (1.3.18)

Let us consider a sequence (v1n) defined by

v1n := un,1(·+ y1n).

Since (un,1) is bounded in D1,2
G (RN), then (v1n) is bounded in D1,2(RN), and so we have,

up to a subsequence, 
v1n ⇀ w1, weakly in D1,2(RN),

v1n → w1, strongly in L2
loc(RN),

v1n(x) → w1(x), a.e. x ∈ RN .

Since v1n → w1 in L2(B1(0)) and∫
B1(0)

∣∣v1n(x)∣∣2 dx =

∫
B1(0)

∣∣un,1(x+ y1n)
∣∣2dx > δ,

it follows that ∫
B1(0)

|w1(x)|2dx ≥ δ,

and so w1 ̸= 0. The fact that un,1 ⇀ 0 weakly in D1,2
G (RN) implies that (y1n) is unbounded

and, passing to a subsequence, we may assume that |y1n| → ∞.
So, about the sequence (un,1) the following statements hold:

(a1) ∥un∥2V = ∥un,1∥2 + ∥ū∥2V + on(1);

(b1) IV (un) = IV (ū) + I0(un,1) + on(1);

(c1) ∇IV (un,1) → 0 in
(
D1,2

G (RN)
)′

.

Next, we shall show that w1 is a nontrivial solution of the limit problem (P0). As (un,1) ⊂
D1,2

G (RN), by Lemma 1.2.3, we have I ′V (un,1)ṽ = 0 for any ṽ ∈
(
D1,2

G (RN)
)⊥

, and so
I ′V (un,1) → 0 in

(
D1,2(RN)

)′. Moreover, assumption (V2) implies that V ∈ LN/2(RN) ∩
Lθ(RN) for every θ > N/2. So, taking θ > N/2, as η := 2θ/(θ − 1) < 2∗, it follows that
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un,1 → 0 in Lη
loc(RN). Thus, given φ ∈ C∞

0 (RN), we get∫
RN

|V (x)||un,1||φ| dx =

∫
supp(φ)

|V (x)||un,1||φ| dx

≤
(∫

supp(φ)

|V (x)|θdx
)1/θ (∫

supp(φ)

(|un,1||φ|)
θ

θ−1dx

)θ−1
θ

≤ ∥V ∥θ
(∫

supp(φ)

|un,1|
2θ
θ−1dx

)θ−1
2θ
(∫

supp(φ)

|φ|
2θ
θ−1dx

)θ−1
2θ

= ∥V ∥θ
(∫

supp(φ)

|un,1|ηdx
)1

η
(∫

supp(φ)

|φ|ηdx
)1

η

≤ C∥V ∥θ∥φ∥∞
(∫

supp(φ)

|un,1|ηdx
)1

η

= on(1), (1.3.19)

and so,

on(1) = I ′V (un,1)φ

=

∫
RN

(∇un,1∇φ+ V (x)un,1φ)dx−
∫
RN

f(un,1)φdx

=

∫
RN

∇un,1∇φdx−
∫
RN

f(un,1)φdx+

∫
RN

V (x)un,1φdx

= I ′0(un,1)φ+

∫
RN

V (x)un,1φdx

= I ′0(un,1)φ+ on(1).

Hence,
I ′0(un,1)φ = on(1), for all φ ∈ C∞

0 (RN), (1.3.20)

which shows that, as n → ∞, I ′0(un,1) → 0 in
(
D1,2(RN)

)′. For any ε > 0, there exists
n0 ∈ N such that n ≥ n0 implies that

sup
∥φ∥V ≤1

|I ′0(un,1)φ| < ε, ∀φ ∈ C∞
0 (RN).

Given φ ∈ C∞
0 (RN), we define φ1

n := φ(· − y1n). Thus,

sup
∥φ∥V ≤1

|I ′0(v1n)φ| = sup
∥φ∥V ≤1

|I ′0(un,1(·+ y1n))φ| = sup
∥φ(·−y1n)∥V ≤1

|I ′0(un,1)φ(· − y1n)|

= sup
∥φ1

n∥V ≤1

|I ′0(un,1)φ1
n| ≤ sup

∥ϕ∥V ≤1

|I ′0(un,1)ϕ| < ε, ϕ ∈ C∞
0 (RN),

for n ∈ N sufficiently large. So, for any φ ∈ C∞
0 (RN), since v1n ⇀ w1 weakly in D1,2(RN),
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we get ∫
RN

[
∇v1n∇φ+ V (x)v1nφ

]
dx =

∫
RN

[
∇w1∇φ+ V (x)w1φ

]
dx+ on(1)

and arguing as in (1.3.19), as v1n → w1 in Lη
loc(RN), we obtain∫

RN

V (x)v1nφdx =

∫
RN

V (x)w1φdx+ on(1).

Moreover, using the same ideas applied in Lemma 1.3.5(b), we can conclude that∫
RN

f(v1n)φdx =

∫
RN

f(w1)φdx+ on(1).

Therefore, for any φ ∈ C∞
0 (RN)

on(1) = I ′0(v
1
n)φ =

∫
RN

∇v1n∇φdx−
∫
RN

f(v1n)φdx

=

∫
RN

[
∇v1n∇φ+ V (x)v1nφ

]
dx−

∫
RN

V (x)v1nφdx−
∫
RN

f(v1n)φdx

=

∫
RN

[
∇w1∇φ+ V (x)w1φ

]
dx−

∫
RN

V (x)w1φdx−
∫
RN

f(w1)φdx+ on(1)

=

∫
RN

∇w1∇φdx−
∫
RN

f(w1)φdx+ on(1)

= I ′0(w
1)φ+ on(1),

which shows that I ′0(w1)φ = 0, and so, w1 is a nontrivial solution of the limit problem
(P0).

Let us define now
un,2 := un,1 − w1(· − y1n).

So, as before, we have

(a2) ∥un∥2V = ∥un,2∥2 + ∥ū∥2V + ∥w1∥2 + on(1);

(b2) IV (un) = IV (ū) + I0(un,2) + I0(w
1) + on(1);

(c2) I ′0(un,2) → 0 in
(
D1,2(RN)

)′.
The verification of these items follows the same argument used previously in the analogous
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items for the sequence (un,1), with the necessary adaptations. Indeed, using (a1), we have

∥un,2∥2 = ⟨un,1 − w1(· − y1n), un,1 − w1(· − y1n)⟩

= ∥un,1∥2 + ∥w1(· − y1n)∥2 − 2⟨un,1, w1(· − y1n)⟩

= on(1) + ∥un∥2V − ∥ū∥2V + ∥w1(· − y1n)∥2

− 2⟨un,1, w1(· − y1n)⟩. (1.3.21)

Making a change of variables, we obtain

∥w1(· − y1n)∥2 =

∫
RN

|∇w1(x− y1n)|2dx

=

∫
RN

|∇w1(x)|2dx = ∥w1∥2. (1.3.22)

Moreover, for any φ ∈ C∞
0 (RN), we have∫

RN

∇v1n∇φdx =

∫
RN

[
∇v1n∇φ+ V (x)v1nφ

]
dx−

∫
RN

V (x)v1nφdx

=

∫
RN

[
∇w1∇φ+ V (x)w1φ

]
dx−

∫
RN

V (x)w1φdx+ on(1)

=

∫
RN

∇w1∇φdx+ on(1)

and so as C∞
0 (RN) is dense in D1,2(RN), it follows that

⟨un,1, w1(· − y1n)⟩ =
∫
RN

∇un,1(x)∇w1(x− y1n)dx

=

∫
RN

∇un,1(x+ y1n)∇w1(x)dx

=

∫
RN

∇v1n(x)∇w1(x)dx

= ∥w1∥2 + on(1). (1.3.23)

Substituting (1.3.22) and (1.3.23) in (1.3.21), we obtain

∥un∥2V = ∥un,2∥2 + ∥ū∥2V + ∥w1∥2 + on(1),

proving (a2).
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Using the previous results obtained in (a2) and (c), we have

IV (un)− IV (ū)− I0(un,2)− I0(w
1)

=
1

2
∥un∥2V −

∫
RN

F (un)dx−
1

2
∥ū∥2V +

∫
RN

F (ū)dx

− 1

2
∥un,2∥2 +

∫
RN

F (un)dx−
1

2
∥w1∥2 +

∫
RN

F (w1)dx

=
1

2

[
∥un∥2V − ∥ū∥2V − ∥un,2∥2 − ∥w1∥2

]
−
∫
RN

[F (un)− F (un,1)− F (ū)]dx

−
∫
RN

[F (un,1)− F (un,2)]dx+

∫
RN

F (w1)dx

= on(1)−
∫
RN

[
F (un,1(x+ y1n))− F (un,2(x+ y1n))

]
dx+

∫
RN

F (w1)dx

= on(1)−
∫
RN

[
F (un,1(x+ y1n))− F (un,2(x+ y1n))− F (w1(x))

]
dx

= on(1)−
∫
RN

[
F (v1n)− F (v1n − w1))− F (w1)

]
dx.

Applying Lemma 1.3.3 with Ψ = F again, (see [31, Lemma A.1]), changing un by v1n and
u0 by w1, we conclude that∫

RN

[
F (v1n)− F (v1n − w1))− F (w1)

]
dx = on(1),

and so
IV (un) = IV (ū) + I0(un,2) + I0(w

1) + on(1),

which proves (b2).
Next, we will show that I ′0(un,2) → 0 in

(
D1,2(RN)

)′. The fact that ∇IV (un,1) → 0

in
(
D1,2

G (RN)
)′

implies that, by Lemma 1.2.3, I ′V (un,1) → 0 in
(
D1,2(RN)

)′, and so
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I ′V (un,1)φ→ 0, for any φ ∈ C∞
0 (RN). On the other hand, as I ′0(w1) = 0, we have

I ′V (un,1)φ = I ′V (un,2 + w1(· − yn))φ

=

∫
RN

(∇un,2(x)∇φ(x) + V (x)un,2(x)φ(x))dx

+

∫
RN

(
∇w1(x− y1n)∇φ(x) + V (x)w1(x− y1n)φ(x)

)
dx

−
∫
RN

f(un,2(x) + w1(x− y1n))φ(x)dx

= I ′V (un,2)φ+

∫
RN

f(un,2(x))φ(x)dx

+

∫
RN

(
∇w1(x)∇φ(x+ y1n) + V (x+ yn)w

1(x)φ(x+ y1n)
)
dx

−
∫
RN

f(un,1(x))φ(x)dx

= I ′V (un,2)φ+

∫
RN

f(un,2(x))φ(x)dx

+

∫
RN

∇w1(x)∇φ(x+ y1n)dx+

∫
RN

V (x+ y1n)w
1(x)φ(x+ y1n)dx

−
∫
RN

f(un,1(x))φ(x)dx

= I ′V (un,2)φ+

∫
RN

f(un,2(x))φ(x)dx

+ I ′0(w
1)φ(·+ yn) +

∫
RN

f(w1(x))φ(x+ y1n)dx

+

∫
RN

V (x+ y1n)w
1(x)φ(x+ y1n)dx−

∫
RN

f(un,1(x))φ(x)dx

= I ′V (un,2)φ+

∫
RN

V (x+ y1n)w
1(x)φ(x+ y1n)dx

−
∫
RN

[
f(un,1(x+ y1n))− f(un,2(x+ y1n))− f(w1(x))

]
φ(x+ y1n)dx.

Using (V2) and applying Lebesgue dominated convergence theorem, it follows that∫
RN

V (x+ y1n)w
1(x)φ(x+ y1n)dx = on(1).
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Next we will show that∫
RN

[
f(un,1(x+ y1n))− f(un,2(x+ y1n))− f(w1(x))

]
φ(x+ y1n)dx

=

∫
RN

[
f(v1n)− f(v1n − w1)− f(w1)

]
φ(x+ y1n)dx = on(1).

Indeed, by hypothesis (f2), we have |f(s)| ≤ A2|s|2
∗−1 for all s ∈ R. Thus, arguing as in

(1.3.8), we obtain

|f(v1n)− f(v1n − w1)| ≤ C1

(
|v1n − w1|2∗−2|w1|+ |w1|2∗−1

)
,

and so

|f(v1n)− f(v1n − w1)− f(w1)| ≤ |f(v1n)− f(v1n − w1)|+ |f(w1)|

≤ C1

(
|v1n − w1|2∗−2|w1|+ |w1|2∗−1

)
+ A2|w1|2∗−1

= C1|v1n − w1|2∗−2|w1|+ (C1 + A2)|w1|2∗−1.

Let R > 1 be. Since (v1n) is bounded in D1,2(RN) and D1,2(RN) is continuously embedded
into L2∗(RN), we have∫

|x|>R

|f(v1n)− f(v1n − w1)− f(w1)||φ(x+ yn)|dx

≤ C1

∫
|x|>R

|v1n − w1|2∗−2|w1||φ(x+ y1n)|dx+ (C1 + A2)

∫
|x|>R

|w1|2∗−1|φ(x+ y1n)|dx

≤ C1

(∫
|x|>R

|v1n − w1|2∗dx
)2∗−2

2∗
(∫

|x|>R

|w1|2∗/2|φ(x+ y1n)|2
∗/2dx

)2/2∗

+ (C1 + A2)

(∫
|x|>R

|w1|2∗dx
)2∗−1

2∗
(∫

|x|>R

|φ(x+ y1n)|2
∗
dx

)1/2∗

≤ C1∥v1n − w1∥2∗−2
2∗

(∫
|x|>R

|w1|2∗dx
)1/2∗ (∫

|x|>R

|φ(x+ y1n)|2
∗
dx

)1/2∗

+ (C1 + A2)∥φ∥2∗
(∫

|x|>R

|w1|2∗dx
)2∗−1

2∗

≤ C∥φ∥V

[(∫
|x|>R

|w1|2∗dx
)1/2∗

+

(∫
|x|>R

|w1|2∗dx
)2∗−1

2∗
]
.
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Thus, given ε > 0, we may choose R > 1 sufficiently large such that∫
|x|>R

|f(v1n)− f(v1n − w1)− f(w1)||φ(x+ y1n)|dx ≤ ε∥φ∥V . (1.3.24)

On the other hand, from (1.3.8) and hypotheses (f1) and (f2), we get

|f(un)− f(un − u)− f(u)| ≤ |f(un)− f(u)|+ |f(un − u)|

≤ C1

(
|u|2∗−2|un − u|+ |un − u|2∗−1

)
+ A2|un − u|2∗−1

= C1|u|2
∗−2|un − u|+ (C1 + A2)|un − u|2∗−1,

and so∫
|x|≤R

|f(un)− f(un − u)− f(u)||φ|dx

≤ C1

∫
|x|≤R

|u|2∗−2|un − u||φ|dx+ (C1 + A2)

∫
|x|≤R

|un − u|2∗−1|φ|dx.

We fix δ ∈
(
0, 1

N−2

)
and consider q1 := 2∗ − δ and q2 := (2∗ − δ)/(1− δ). Thus,

∫
|x|≤R

|un − u|2∗−1|φ|dx ≤
(∫

|x|≤R

(
|un − u|2∗−1

) 2∗−δ
2∗−1 dx

)2∗−1
2∗−δ

(∫
|x|≤R

|φ|
2∗−δ
1−δ dx

) 1−δ
2∗−δ

=

(∫
|x|≤R

|un − u|q1dx
)2∗−1

q1

(∫
|x|≤R

|φ|q2dx
) 1

q2

≤ C∥φ∥∞
(∫

|x|≤R

|un − u|q1dx
)2∗−1

q1

.

As un → u strongly in Lq1
loc(RN), it follows that∫

|x|≤R

|un − u|2∗−1|φ|dx = on(1), ∀φ ∈ C∞
0 (RN). (1.3.25)

Moreover, for any φ ∈ C∞
0 (RN), we have

∫
|x|≤R

|u|2∗−2|un − u||φ|dx =

(∫
|x|≤R

(
|u|2∗−2

) 2∗
2∗−2 dx

)2∗−2
2∗
(∫

|x|≤R

(|un − u||φ|)
2∗
2 dx

) 2
2∗

=

(∫
|x|≤R

|u|2∗dx
)2∗−2

2∗
(∫

|x|≤R

(|un − u||φ|)
2∗
2 dx

) 2
2∗

,



1.3 Auxiliary lemmas for bounded sequences 41

and, using Hölder inequality with conjugate exponents 2(2∗−δ)
2∗

and 2(2∗−δ)
2∗−2δ

, we get

(∫
|x|≤R

(|un − u||φ|)
2∗
2 dx

) 2
2∗

≤
(∫

|x|≤R

|un − u|q1dx
) 1

q1

(∫
|x|≤R

|φ|q3dx
) 1

q3

≤ C∥φ∥∞
(∫

|x|≤R

|un − u|q1dx
) 1

q1

,

where q1 := 2∗ − δ and q3 := 2∗(2∗−δ)
2∗−2δ

. As un → u strongly in Lq1
loc(RN), it follows that

(∫
|x|≤R

(|un − u||φ|)
2∗
2 dx

) 2
2∗

= on(1),

and thus, ∫
|x|≤R

|u|2∗−2|un − u||φ|dx = on(1), ∀φ ∈ C∞
0 (RN). (1.3.26)

It follows from (1.3.25) and (1.3.26) that∫
|x|≤R

|f(un)− f(un − u)− f(u)||φ|dx = on(1). (1.3.27)

From (1.3.24) and (1.3.27), we conclude that∫
RN

|f(un)− f(un − u)− f(u)||φ|dx = on(1),

Therefore,
I ′V (un,1)φ = I ′V (un,2)φ+ on(1), for all φ ∈ C∞

0 (RN),

which shows that, as n → ∞, I ′V (un,2) → 0 in
(
D1,2(RN)

)′. Furthermore, arguing as in
(1.3.19), as un,2 → 0 in Lη

loc(RN), we obtain∫
RN

|V (x)||un,2||φ| dx = on(1),
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and thus,

on(1) = I ′V (un,2)φ =

∫
RN

(∇un,2∇φ+ V (x)un,2φ)dx−
∫
RN

f(un,2)φdx

=

∫
RN

∇un,2∇φdx−
∫
RN

f(un,2)φdx+

∫
RN

V (x)un,2φdx

= I ′0(un,2)φ+

∫
RN

V (x)un,2φdx

= I ′0(un,2)φ+ on(1).

Therefore,
I ′0(un,2)φ = on(1), for all φ ∈ C∞

0 (RN),

and so, as n→ ∞, I ′0(un,2) → 0 in
(
D1,2(RN)

)′, proving (c2).
Thus, if ∥un,2∥ → 0 as n → ∞, we have completed the proof. Otherwise, if un,2 ⇀ 0

in D1,2(RN) and does not converge strongly to zero, we take un,3 := un,2 −w2(· − y2n) and
repeat the argument. Hence, we obtain

IV (un) = IV (ū) + I0(w
1) + I0(w

2) + on(1).

Continuing this way, we get a sequence of points (yjn) ⊂ RN such that |yjn| → ∞,
|yjn − yin| → ∞ if i ̸= j and sequences of functions un,j := un,j−1 − wj−1(· − yj−1

n ), j ≥ 2,
such that

un,j(·+ yjn)⇀ wj in D1,2(RN),

where wj is a nontrivial solution of the limit problem (P0). Since I0(wj) ≥ m0 = p0 and
IV (un) → c, there exists a positive integer k such that

IV (un) = IV (ū) +
k∑

j=1

I0(w
j) + on(1),

and the proof of lemma is complete.

Remark 1.3.7. Note that if u ̸≡ 0 is a solution of (PG) then u ∈ PG
V and the following

statement holds

N

∫
RN

F (u)dx =
N − 2

2

∫
RN

|∇u|2dx+ N

2

∫
RN

(
∇V (x) · x

N
+ V (x)

)
u2dx.
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Then, using Hölder inequality and hypothesis (V3), we have that IV (u) > 0. Indeed,

IV (u) =
1

2

∫
RN

(
|∇u|2 + V (x)u2

)
dx−

∫
RN

F (u)dx

=
1

2

∫
RN

(
|∇u|2 + V (x)u2

)
dx

− N − 2

2N

∫
RN

|∇u|2dx− 1

2

∫
RN

(
∇V (x) · x

N
+ V (x)

)
u2dx

=
1

N

∫
RN

|∇u|2dx− 1

2N

∫
RN

∇V (x) · xu2dx

≥ 1

N

∫
RN

|∇u|2dx− 1

2N

(∫
RN

∣∣W+(x)
∣∣N/2

dx

)2/N(∫
RN

∣∣u2∣∣2∗/2 dx)2/2∗

≥ 1

N

∫
RN

|∇u|2dx− S

4N

(∫
RN

|u|2
∗
dx

)2/2∗

≥ 3

4N

∫
RN

|∇u|2dx > 0.

The next corollary is a fundamental result in order to prove strong convergence of
(PS)c-sequences.

Corollary 1.3.8. Assume that (V1)–(V3) and (f1)–(f4) hold true. Let (un) ⊂ D1,2
G (RN)

be a bounded (PS)c-sequence for IV . If 0 < c < ℓ(G)p0, where p0 is given in (1.2.7), then
the functional IV has a nontrivial critical point ū ∈ D1,2

G (RN) such that IV (ū) = c.

Proof. By Lemma 1.3.6, passing to a subsequence, we get a solution ū ∈ D1,2
G (RN) of

problem (PG) such that un ⇀ ū weakly in D1,2
G (RN). Next, let us show that un → ū

strongly in D1,2
G (RN). Suppose that un ̸→ ū. Applying Lemma 1.3.6 again, replacing

(un) by a subsequence, if necessary, there exist an integer k ≥ 1, k nontrivial solutions
w1, · · · , wk of the limit problem (P0) and k sequences (yjn) ⊂ RN , 1 ≤ j ≤ k such that
|yjn| → ∞ and

un − ū−
k∑

j=1

wj(· − yjn) → 0 in D1,2(RN), (1.3.28)

c = IV (ū) +
k∑

j=1

I0(w
j). (1.3.29)

Then, up to a subsequence, we have

zjn :=
yjn∣∣yjn∣∣ ∈ SN−1, for j = 1, · · · , k

and as (zjn) is bounded in RN and SN−1 is closed, there exists zj∞ ∈ SN−1 such that
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zjn → zj∞, as n→ +∞. We claim that the set {zj∞ : j = 1, · · · , k} is G-symmetric. Indeed,
for any integer j ∈ {1, · · · , k} and g ∈ G, as un, ū ∈ D1,2

G (RN), we have un(gx) = un(x)

and ū(gx) = ū(x) for all x ∈ RN . In particular, un(gx) = un(x) and ū(gx) = ū(x) for all
x ∈ B1(y

j
n). By (1.3.28) and (1.5.1) with R = 1,

lim inf
n→∞

∫
B1(y

j
n)

|∇un(x)−∇ū(x)|2dx = lim inf
n→∞

∫
B1(y

j
n)

∣∣∣∣∣
k∑

i=1

∇wi(x− yin)

∣∣∣∣∣
2

dx ≥ α > 0,

and so, we also get

lim inf
n→∞

∫
B1(y

j
n)

|∇un(gx)−∇ū(gx)|2dx > 0.

Let us show that, given j ∈ {1, . . . , k}, there exists an integer ℓ ∈ {1, . . . , k} such that
{gyjn − yℓn}∞n=1 is bounded. Otherwise, for any ℓ ∈ {1, . . . , k} and j and g ∈ G fixed,
{gyjn − yℓn}∞n=1 is not bounded. So, there exists a subsequence of ni ∈ N, for simplicity
still denoted by n, such that |gyjn − yℓn| → ∞, as n→ ∞, for all ℓ ∈ {1, . . . , k}. Hence,

0 < α < lim inf
n→∞

∫
B1(y

j
n)

|∇un(x)−∇ū(x)|2 dx

= lim inf
n→∞

∫
B1(0)

∣∣∇un(x+ yjn)−∇ū(x+ yjn)
∣∣2 dx

= lim inf
n→∞

∫
B1(0)

∣∣∇un(g(x+ yjn))−∇ū(g(x+ yjn))
∣∣2 dx

= lim inf
n→∞

∫
B1(0)

∣∣∣∣∣∇
k∑

i=1

wi(g(x+ yjn)− yin)

∣∣∣∣∣
2

dx

= lim inf
n→∞

∫
B1(0)

∣∣∣∣∣
k∑

i=1

∇wi(gx+ gyjn − yin)

∣∣∣∣∣
2

dx

= 0,

since the domain of integration is the ball B1(0) and |ξin| = |gyjn−yin| → +∞, as n→ +∞
and |∇wi| ∈ L2(RN), for 1 ≤ i ≤ k, and this gives us a contradiction. Therefore, there
exists ℓ ∈ {1, . . . , k} such that {gyjn − yℓn}∞n=1 is bounded. So, there exists a constant
M > 0 such that

|gyjn − yℓn| ≤M, ∀n ∈ RN .
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In order to conclude the claim, using |yjn| → +∞, as n→ +∞, then from above

1

|yjn|
|gyjn − yℓn| ≤

M

|yjn|
→ 0, n→ +∞.

This yields,

gzj∞ = lim
n→∞

g

(
yjn
|yjn|

)
= lim

n→∞

1

|yjn|
gyjn = lim

n→∞

yℓn
|yjn|

= lim
n→∞

|yℓn|
|yjn|

yℓn
|yℓn|

= zℓ∞, (1.3.30)

if we prove that limn→∞ |yℓn|/|yjn| = 1. In fact,

1

|yℓn|
|gyjn − yℓn| ≤

M

|yℓn|
→ 0, as n→ ∞.

So, |gyjn/|yℓn| − yℓn/|yℓn|| → 0 and hence

1 = lim
n→∞

∣∣∣∣ yℓn|yℓn|

∣∣∣∣ = lim
n→∞

∣∣∣∣g yjn|yℓn|

∣∣∣∣ = lim
n→∞

∣∣∣∣yjnyℓn
∣∣∣∣ .

Therefore by (1.3.30), {zj∞ : j = 1, . . . , k} is G-symmetric, and so if we denote #Gx :=

#{gx : g ∈ G},

ℓ(G) = min{#Gx : x ∈ SN−1} ≤ min{#Gzj∞ : 1 ≤ j ≤ k} ≤ #{zℓ∞ : 1 ≤ ℓ ≤ k} ≤ k.

Since I0(wj) ≥ m0 = p0 for j = 1, · · · , k, we obtain from (1.3.29) and inequality above

c ≥ IV (ū) + kp0 ≥ IV (ū) + ℓ(G)p0. (1.3.31)

As IV (0) = 0 and ū is a solution of problem (PG), by Remark 1.3.7, IV (ū) ≥ 0. It follows
from (1.3.31) that

c ≥ IV (ū) + ℓ(G)p0 ≥ ℓ(G)p0,

which is a contradiction with the hypothesis that c < ℓ(G)p0. Therefore, un → ū strongly
in D1,2

G (RN). Since (un) converges strongly to ū and IV is continuous, it follows that
IV (ū) = c > 0, so ū ̸= 0 and the proof of corollary is complete.

1.4 Existence of a positive solution

We will need the following result of [17, Lemma 4.1] and we refer to that for the proof.
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Lemma 1.4.1. (a) If y0, y ∈ RN , y0 ̸= y, and α and β are positive constants such that
α + β > N , then there exists C1 = C1(α, β, |y − y0|) > 0 such that∫

RN

dx

(1 + |x−Ry0|)α(1 + |x−Ry|)β
≤ C1R

−µ

for all R ≥ 1, where µ := min{α, β, α + β −N}.

(b) If y0, y ∈ RN \ {0}, and θ and γ are positive constants such that θ + 2γ > N , then
there exists C2 = C2(θ, γ, |y0|, |y|) > 0 such that∫

RN

dx

(1 + |x|)θ(1 + |x−Ry0|)γ(1 + |x−Ry|)γ
≤ C2R

−τ ,

for all R ≥ 1, where τ := min{θ, 2γ, θ + 2γ −N}.

Proof. (a): Performing a suitable translation, we may assume that y = −y0. Let 2ρ :=

|y − y0| > 0. In the following, C will denote different positive constants which depend on
α, β and ρ. If |x−Ry0| ≤ ρR, then |x−Ry| ≥ ρR. Hence∫

BρR(Ry0)

dx

(1 + |x−Ry0|)α(1 + |x−Ry|)β
≤
∫
BρR(Ry0)

dx

(1 + |x−Ry0|)α(ρR)β

= CR−β

∫
BρR(0)

dx

(1 + |x|)α
≤ C

[
R−β +RN−(α+β)

]
≤ CR−µ.

Similarly,∫
BρR(Ry)

dx

(1 + |x−Ry0|)α(1 + |x−Ry|)β
≤ C

[
R−α +RN−(α+β)

]
≤ CR−µ.

Let

H+ := {z ∈ RN : |z −Ry| ≥ |z −Ry0|} and H− := {z ∈ RN : |z −Ry| ≤ |z −Ry0|}.

Setting x = Rz we obtain∫
H+∖BρR(Ry0)

dx

(1 + |x−Ry0|)α(1 + |x−Ry|)β
≤
∫
H+∖BρR(Ry0)

dx

(1 + |x−Ry0|)α+β

=

∫
H+∖Bρ(y0)

RNdz

(1 +R|z − y0|)α+β
=

∫
H+∖Bρ(0)

RNdz

(1 +R|z|)α+β
≤ CRN−(α+β) ≤ CR−µ.

Similarly, ∫
H−∖BρR(Ry)

dx

(1 + |x−Ry0|)α(1 + |x−Ry|)β
≤ CR−µ.
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Since RN ∖ [BρR(Ry0) ∪BρR(Ry)] = [H+ ∖BρR(Ry0)] ∪ [H− ∖BρR(Ry)], the previous
estimates yield (a).
(b): From Hölder’s inequality and inequality (a), we obtain∫

RN

dx

(1 + |x|)θ(1 + |x−Ry0|)γ(1 + |x−Ry|)γ

≤
(∫

RN

dx

(1 + |x|)θ(1 + |x−Ry0|)2γ

)1/2(∫
RN

dx

(1 + |x|)θ(1 + |x−Ry|)2γ

)1/2

≤ C2R
−τ ,

as claimed.

In this section we will prove our main result. Its proof requires some important
estimates and the previous lemmata.

In what follows, for simplicity, we will consider G = O(N − 1) × Z2 ⊂ O(N), where
Z2 := {id,−id}, and ℓ(G) = 2. That is, for all g ∈ G, we have

g(x1, · · · , xN−1, xN) = (g1(x1, · · · , xN−1),±xN),

where g1 ∈ O(N − 1). Moreover, we will consider y = (0, · · · , 0, 1) ∈ RN and w a
ground state solution of the limit problem (P0), which is positive, radially symmetric and
decreasing in the radial direction, such that I0(w) = m0. Observe that, for any g ∈ G

and x ∈ RN , we have w(gx) = w(|gx|) = w(|x|) = w(x) which shows that w ∈ D1,2
G (RN).

We will construct a positive solution of (PG) exploiting the interaction of two trans-
lated bumps. Let us denote Br(x0) := {x ∈ RN : |x− x0| ≤ r}. For y = (0, · · · , 0, 1) and
R > 0, we define

wR
− := w(· −Ry), wR

+ := w(·+Ry). (1.4.1)

In the next lemmas we study the interaction of powers of these two translated solitons.

Lemma 1.4.2. Let ᾱ and β̄ be constants such that 2ᾱ > 2∗ and β̄ ≥ 1. Then, for any
R ≥ 1, there exist constants C3 = C3(N, ᾱ, β̄) > 0 and C4 = C4(N, ᾱ, β̄) > 0 such that∫

RN

(
wR

−
)ᾱ (

wR
+

)β̄ ≤ C3R
−(N−2), (1.4.2)

and ∫
RN

(
wR

+

)ᾱ (
wR

−
)β̄ ≤ C4R

−(N−2). (1.4.3)
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Proof. By definitions in (1.4.1) and inequalities in (1.1.2), there exists C > 0 such that∫
RN

(
wR

−
)ᾱ(

wR
+

)β̄
dx =

∫
RN

(w(x−Ry))ᾱ (w(x+Ry))β̄ dx

≤ C

∫
RN

(1 + |x−Ry|)−ᾱ(N−2) (1 + |x+Ry|)−β̄(N−2) dx.

Since ᾱ > 2∗/2 and β̄ ≥ 1, then ᾱ(N − 2) > N and β̄(N − 2) ≥ N − 2. Therefore,
we can apply Lemma 1.4.1(a) with α = ᾱ(N − 2) and β = β̄(N − 2), in which µ :=

min{α, β, α + β −N} ≥ N − 2, to obtain C3 > 0 such that∫
RN

(
wR

−
)ᾱ (

wR
+

)β̄
dx ≤ C3R

−(N−2).

Similarly, there exists C4 > 0 such that∫
RN

(
wR

+

)ᾱ (
wR

−
)β̄
dx ≤ C4R

−(N−2).

Next, let us define

εR :=

∫
RN

f
(
wR

+

)
wR

− dx =

∫
RN

f
(
wR

−
)
wR

+ dx (1.4.4)

and we will obtain some estimates for εR.

Lemma 1.4.3. Assume that (f1)–(f2) hold true. Then, for any R ≥ 1, there exists a
constant C > 0 such that

εR ≤ CR−(N−2). (1.4.5)

Proof. Using hypotheses (f1) and (f2), we have

εR =

∫
RN

f
(
wR

+

)
wR

− dx ≤ A2

∫
RN

(
wR

+

)2∗−1
wR

− dx.

Since 2∗ − 1 > 2∗/2, applying Lemma 1.4.2 with ᾱ = 2∗ − 1 and β̄ = 1, for any R ≥ 1,
there exists C > 0 such that

εR ≤ CR−(N−2).

Now observe that, since w is the positive radial ground state solution of the limit
problem (P0), it follows that

∫
RN |∇w|2dx =

∫
RN f(w)wdx. Then, there exists x0 ∈ RN
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such that f(w(x0)) > 0. By continuity of function f , we can get r0 = r0(f, w) > 0 (which
depends only on f and w) such that f(w(x)) ≥ f(w(x0))/2, for all x ∈ Br0(x0).

Lemma 1.4.4. Assume that (f1)–(f2) hold true. Then, for any R ≥ 1, there exists a
constant C > 0 such that

εR ≥ CR−(N−2). (1.4.6)

Proof. In the above considerations, since x0 and r0 are constants independent of R, we
can assume without loss of generality that x0 = 0 and r0 = 1. So it follows that f(w(z)) ≥
f(w(0))/2, for all z ∈ B1(0). Thus, for any R ≥ 1, a change of variables z = x− Ry and
(1.1.2) yield

εR =

∫
RN

f(w(x−Ry))w(x+Ry)dx =

∫
RN

f(w(z))w(z + 2Ry)dz

≥
∫
B1(0)

f(w(z))w(z + 2Ry)dz ≥
∫
B1(0)

f(w(0))

2
w(z + 2Ry)dz

≥ C

∫
B1(0)

(1 + |z + 2Ry|)−(N−2)dz ≥ CR−(N−2),

which proves the lemma.

The next lemma presents the order of interaction between the gradients of two trans-
lated solitons.

Lemma 1.4.5. For any R ≥ 1, there exists a constant C > 0 such that∫
RN

∣∣∇wR
− · ∇wR

+

∣∣ dx ≤ CR−(N−2). (1.4.7)

Proof. Observe that, taking the derivatives and using (1.1.3), we obtain∫
RN

∣∣∇wR
− · ∇wR

+

∣∣ dx =

∫
RN

|∇w(x−Ry) · ∇w(x+Ry)| dx

≤ C

∫
RN

(1 + |x−Ry|)−(N−1) (1 + |x+Ry|)−(N−1) dx

= C

∫
RN

(1 + |x|)−(N−1) (1 + |x+ 2Ry|)−(N−1) dx.
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Since |2Ry| = 2R, if |x+ 2Ry| ≤ R, then |x| ≥ R. Hence∫
BR(−2Ry)

(1 + |x|)−(N−1)(1 + |x+ 2Ry|)−(N−1)dx

≤
∫
BR(−2Ry)

R−(N−1)(1 + |x+ 2Ry|)−(N−1)dx

= R−(N−1)

∫
BR(0)

(1 + |x|)−(N−1)dx ≤ CR−(N−2).

Similarly, we have∫
BR(0)

(1 + |x|)−(N−1)(1 + |x+ 2Ry|)−(N−1)dx ≤ CR−(N−2).

Let

H+ := {x ∈ RN : |x+ 2Ry| ≥ |x|} and H− := {x ∈ RN : |x+ 2Ry| ≤ |x|}.

Setting x = 2Rz, we obtain∫
H+∖BR(−2Ry)

(1 + |x|)−(N−1)(1 + |x+ 2Ry|)−(N−1)dx

≤
∫
H+∖BR(−2Ry)

(1 + |x|)−2(N−1) dx

=

∫
H+∖B1/2(−y)

2 (1 + 2R|z|)−2(N−1)RNdz

≤ CR−2(N−1)RN

∫
H+∖B1/2(−y)

|z|−2(N−1)dz

≤ CR−(N−2).

Similarly, we have∫
H−∖BR(0)

(1 + |x|)−(N−1)(1 + |x+ 2Ry|)−(N−1)dx ≤ CR−(N−2).

Since RN ∖ [BR(−2Ry) ∪BR(0)] = [H+ ∖BR(−2Ry)] ∪ [H− ∖BR(0)], by previous esti-
mates, we obtain C > 0 such that∫

RN

∣∣∇wR
− · ∇wR

+

∣∣ dx ≤ CR−(N−2).



1.4 Existence of a positive solution 51

We will need the following estimates adapted from a result in [1, Lemma 2.2].

Lemma 1.4.6. Assume that (f1)–(f2) hold true. Then, there exists σ ∈ (1/2, 1] with
the following property: for any given C5 ≥ 1 there is a constant C6 > 0 such that the
inequalities

|f(u+ v)− f(u)− f(v)| ≤ C6|uv|σ

and
|F (u+ v)− F (u)− F (v)− f(u)v − f(v)u| ≤ C6|uv|2σ

hold true for all u, v ∈ R, with |u|, |v| ≤ C5.

Proof. Hypothesis (f2) implies that there exists a constant C > 0 such that
∣∣f (i)(s)

∣∣ ≤
C|s|2∗−(i+1), for i = 1, 2, 3, and |s| ≤ C5. Set q := 2∗ − 1 and σ := min {2∗/4, 1} =

min {N/(2(N − 2)), 1} ∈ (1/2, 1]. The proof of the inequalities follows by simple calcula-
tions. Indeed, given u, v > 0, there exists a constant C = C(σ,C5) > 0 such that

|f(u+ v)− f(u)− f(v)| =

∣∣∣∣∫ u

0

∫ r+v

r

f ′′(s) ds dr

∣∣∣∣ ≤ C1

∫ u

0

∫ r+v

r

sq−2 ds dr

≤ C2 [(u+ v)q − uq − vq] ≤ C(uv)σ ,

|F (u+ v)− F (u)− F (v)− f(u)v − f(v)u| =
∣∣∣∣∫ u

0

∫ v

0

∫ r

0

∫ s+t

t

f ′′′(z) dz dt dr ds

∣∣∣∣
≤ C1

∫ u

0

∫ v

0

∫ r

0

∫ s+t

t

zq−3 dz dt dr ds

≤ C3

[
(u+ v)q+1 − uq+1 − vq+1 − (q + 1)uqv − (q + 1)vqu

]
≤ C(uv)2σ .

Let us define the sum of the two translated solitons

UR := wR
− + wR

+, (1.4.8)

and present some of its properties and estimates. Next, we will show that UR ∈ D1,2
G (RN).

Indeed, as w is radially symmetric and G = O(N − 1)×Z2, given g ∈ G and x ∈ RN , we
must consider two situations:

(i) g(x1, · · · , xN−1, xN) = (g1(x1, · · · , xN−1), xN), where g1 ∈ O(N − 1);

(ii) g(x1, · · · , xN−1, xN) = (g1(x1, · · · , xN−1),−xN), where g1 ∈ O(N − 1).
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If g(x1, · · · , xN−1, xN) = (g1(x1, · · · , xN−1), xN), then

UR(gx) = wR
−(gx) + wR

+(gx) = w(gx−Ry) + w(gx+Ry)

= w(g1(x1, · · · , xN−1), xN −R) + w(g1(x1, · · · , xN−1), xN +R)

= w(x1, · · · , xN−1, xN −R) + w(x1, · · · , xN−1, xN +R)

= w(x−Ry) + w(x+Ry) = wR
−(x) + wR

+(x) = UR(x).

If g(x1, · · · , xN−1, xN) = (g1(x1, · · · , xN−1),−xN), then

UR(gx) = wR
−(gx) + wR

+(gx) = w(gx−Ry) + w(gx+Ry)

= w(g1(x1, · · · , xN−1),−xN −R) + w(g1(x1, · · · , xN−1),−xN +R)

= w(x1, · · · , xN−1, xN +R) + w(x1, · · · , xN−1, xN −R)

= w(x+Ry) + w(x−Ry) = wR
+(x) + wR

−(x) = UR(x).

Therefore, we conclude that UR ∈ D1,2
G (RN).

Corollary 1.4.7. Assume that (f1)–(f2) hold true. Then, it holds∫
RN

∣∣F (UR)− F (wR
−)− F (wR

+)− f(wR
−)w

R
+ − f(wR

+)w
R
−
∣∣ dx = o(εR). (1.4.9)

Proof. Set w− := wR
−, w+ := wR

+ and U := UR. By Lemma 1.4.6, since w−, w+ and U are
bounded uniformly in R, there exist constants C > 0 and σ ∈ (1/2, 1] such that∫

RN

|F (U)− F (w−)− F (w+)− f(w−)w+ − f(w+)w−| dx ≤ C

∫
RN

(w−w+)
2σ dx.

Let us consider two cases: if N ≥ 4, then σ := min {2∗/4, 1} = 2∗/4 = N/(2(N − 2)).
Thus, using (1.1.2) and Lemma 1.4.1(a) with α = β = 2σ(N − 2) = N and µ :=

min {2σ(N − 2), 4σ(N − 2)−N} = N > N − 2 , we obtain∫
RN

(w−w+)
2σ dx ≤ C

∫
RN

(1 + |x−Ry|)−2σ(N−2) (1 + |x+Ry|)−2σ(N−2) dx

≤ CR−µ.

By Lemmas 1.4.3 and 1.4.4, it follows that∫
RN

|F (U)− F (w−)− F (w+)− f(w−)w+ − f(w+)w−| dx = o(εR).
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The case N = 3 is a little more delicate since σ = 1 and µ = 1, which gives∫
RN

(w−w+)
2σdx ≤ CR−1 = O(εR).

However, using hypothesis (f1) for i = 3 in the proof of Lemma 1.4.6, in fact we can
obtain C > 0 such that

|F (U)− F (w−)− F (w+)− f(w−)w+ − f(w+)w−| ≤ C
[
w4

−w
2
+ + w3

−w
3
+ + w2

−w
4
+

]
,

and so, again using (1.1.2) and Lemma 1.4.1(a), we get∫
RN

|F (U)− F (w−)− F (w+)− f(w−)w+ − f(w+)w−| dx ≤ CR−2 = o(εR),

which yields (1.4.9), and the proof is complete.

Lemma 1.4.8. Assume that (V1)–(V2) and (f1)–(f3) hold true. Then, the following
statements hold:

(a)
∫
RN

|∇UR|2dx = 2

∫
RN

|∇w|2dx+ oR(1);

(b)
∫
RN

F (UR)dx = 2

∫
RN

F (w)dx+ oR(1),

where oR(1) → 0 as R → +∞.

Proof. Set w− := wR
−, w+ := wR

+ and U := UR. Thus, we have∫
RN

|∇U |2dx =

∫
RN

|∇w− +∇w+|2dx

=

∫
RN

|∇w−|2dx+ 2

∫
RN

∇w− · ∇w+ dx+

∫
RN

|∇w+|2dx

=

∫
RN

|∇w|2dx+ 2

∫
RN

∇w− · ∇w+ dx+

∫
RN

|∇w|2dx

= 2

∫
RN

|∇w|2dx+ 2

∫
RN

∇w− · ∇w+ dx.

By Lemma 1.4.5, there exists C > 0 such that∫
RN

|∇w− · ∇w+| dx ≤ CR−(N−2),
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proving item (a). We also have∫
RN

F (U)dx− 2

∫
RN

F (w)dx =

∫
RN

F (U)dx−
∫
RN

F (w−)dx−
∫
RN

F (w+)dx

=

∫
RN

[F (U)− F (w−)− F (w+)− f(w−)w+ − f(w+)w−] dx

+

∫
RN

[f(w−)w+ + f(w+)w−] dx.

By definition (1.4.4) and inequalities (1.4.5) and (1.4.6), it follows that∫
RN

[f(w−)w+ + f(w+)w−] dx = 2εR = oR(1)

and, by Corollary 1.4.7,∫
RN

|F (U)− F (w−)− F (w+)− f(w−)w+ − f(w+)w−| dx = o(εR) = oR(1),

which proves item (b), concluding the proof of the lemma.

Lemma 1.4.9. Assume that (V1)–(V4) and (f1)–(f3) hold true. Then, there exists R0 ≥
1 such that for any R ≥ R0, there exists a unique positive constant s := SR such that

UR
( ·
s

)
∈ PG

V ,

where UR is given as in (1.4.8). Moreover, there exist σ0 ∈ (0, 1/2) and S0 > 1 such that
SR ∈ (σ0, S0) for any R ≥ R0. In addition, SR is a continuous function of the variable
R.

Proof. Denote, w− := wR
− = w(· −Ry), w+ := wR

+ = w(·+Ry) and U := UR = wR
− +wR

+.
Let ξV : (0,+∞) → R be defined by

ξV (s) := IV (U(·/s)) =
sN−2

2

∫
RN

|∇U |2dx+ sN

2

∫
RN

V (sx)U2dx− sN
∫
RN

F (U)dx.

Then, U(·/s) ∈ PG
V if and only if ξ′V (s) = 0, where

ξ′V (s) =
N − 2

2
sN−3

∫
RN

|∇U |2dx

+NsN−3

[
s2
(
1

2

∫
RN

(
∇V (sx) · (sx)

N
+ V (sx)

)
U2dx−

∫
RN

F (U)dx

)]
.
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Since s > 0, we have ξ′V (s) = 0 if and only if

N − 2

2

∫
RN

|∇U |2dx = Ns2
[∫

RN

F (U)dx− 1

2

∫
RN

(
∇V (sx) · (sx)

N
+ V (sx)

)
U2dx

]
.

Observe that∫
RN

U2dx =

∫
RN

(w+ + w−)
2 dx ≤ 2

∫
RN

[
(w+)

2 + (w−)
2 ]dx = 4

∫
RN

w2dx,

which gives that ∥U∥2 is bounded uniformly for any R ≥ 1. Since
∫
RN |∇w|2dx > 0, using

(V2) and Lemma 1.4.8, there exists R1 > 1, sufficiently large, and σ0 ∈ (0, 1/2) sufficiently
small such that

N − 2

2

∫
RN

|∇U |2dx−Ns2
[∫

RN

F (U)dx− 1

2

∫
RN

(
∇V (sx) · (sx)

N
+ V (sx)

)
U2dx

]
> 0,

and so it holds ξ′V (s) > 0, for every s ∈ (0, σ0] and R ≥ R1.
Now let us define a function ψV : (σ0,+∞) → R by

ψV (s) = s2
[∫

RN

F (U)dx− 1

2

∫
RN

(
∇V (sx) · (sx)

N
+ V (sx)

)
U2dx

]
.

Note that

ψ′
V (s) = 2s

[∫
RN

F (U)dx− 1

2

∫
RN

V (sx)U2dx

]
− s

2

[
(N + 3)

∫
RN

∇V (sx) · (sx)
N

U2dx+

∫
RN

(sx)H(sx)(sx)

N
U2dx

]
.

Observe that

(1 + |sx|)−k ≤

{
σ−k
0 (1 + |x|)−k, if σ0 < s ≤ 1

(1 + |x|)−k, if 1 ≤ s.

Therefore, using the hypothesis (V2), we obtain constants C1, C2 > 0 such that∫
RN

|V (sx)|U2dx ≤ C1

∫
RN

(1 + |x|)−k [w− + w+]
2 dx,

∫
RN

|∇V (sx) · (sx)|U2dx ≤ C2

∫
RN

(1 + |x|)−k [w− + w+]
2 dx,

for every s > σ0. Thus, using the inequalities in (1.1.2) and applying Lemma 1.4.1(b), we
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obtain ∫
RN

|V (sx)|U2dx = oR(1),

∫
RN

|∇V (sx) · (sx)|U2dx = oR(1), (1.4.10)

where oR(1) → 0 as R → +∞. Furthermore, note that∫
RN

|(sx)H(sx)(sx)|U2dx ≤ 2

∫
RN

|(sx)H(sx)(sx)|
[
(w−)

2 + (w+)
2] dx.

Let us prove that
∫
RN |(sx)H(sx)(sx)|(w−)

2 dx = oR(1). Indeed, let ε > 0 be given
arbitrarily. Since ∥w∥2 > 0, using the hypothesis (V4), we can take ρ̃ > 0 sufficiently
large such that if s > σ0 and |x| ≥ ρ̃/σ0, then

|(sx)H(sx)(sx)| < ε

4∥w∥22
.

So, for all s > σ0, we have∫
|x|≥ρ̃/σ0

|(sx)H(sx)(sx)|(w−)
2 dx ≤ ε

4∥w∥22

∫
RN

(w−)
2 dx ≤ ε

4∥w∥22

∫
RN

w2dx ≤ ε

4
.

(1.4.11)
On the other hand, as lim

|x|→∞
|(x)H(x)(x)| = 0, there exists a constant C3 > 0 such that

|(sx)H(sx)(sx)| ≤ C3, for every s > σ0 and |x| ≤ ρ̃/σ0.

Thus, using (1.1.2), for every s > σ0 and R > 2ρ̃/σ0, we obtain∫
|x|≤ρ̃/σ0

|(sx)H(sx)(sx)|(w−)
2 dx ≤ C3

∫
|x|≤ρ̃/σ0

(w(x−Ry))2 dx

≤ C

∫
|x|≤ρ̃/σ0

(1 + |x−Ry|)−(N−2) dx ≤ C

∫
|x|≤ρ̃/σ0

(|Ry| − |x|)−(N−2)dx

≤ C

(
R− R

2

)−(N−2)

≤ CR−(N−2). (1.4.12)

Therefore, inequalities (1.4.11) and (1.4.12) give that∫
RN

|(sx)H(sx)(sx)|(w−)
2 dx ≤ ε

4
+ CR−(N−2), (1.4.13)

for every s > σ0. By an analogous procedure, there exists C > 0 such that∫
RN

|(sx)H(sx)(sx)|(w+)
2 dx ≤ ε

4
+ CR−(N−2), (1.4.14)
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for every s > σ0. From (1.4.13) and (1.4.14), we obtain∫
RN

|(sx)H(sx)(sx)|U2dx ≤ 2

∫
RN

|(sx)H(sx)(sx)|
[
(w−)

2 + (w+)
2] dx

≤ ε+ CR−(N−2), (1.4.15)

for every s > σ0. Since ε > 0 was taken arbitrarily, it follows from (1.4.15) that∫
RN

|(sx)H(sx)(sx)|U2dx = oR(1). (1.4.16)

Thus, knowing that
∫
RN F (w)dx > 0, using the hypotheses (V2), (V4), Lemma 1.4.8(b),

(1.4.10) and (1.4.16), there exists R1 ≥ 1 sufficiently large such that

ψ′
V (s) = 2s

[∫
RN

F (U)dx− 1

2

∫
RN

V (sx)U2dx

]
− s

2

[
(N + 3)

∫
RN

∇V (sx) · (sx)
N

U2dx+

∫
RN

(sx)H(sx)(sx)

N
U2dx

]
> 0,

for every s > σ0 and R ≥ R1 sufficiently large. This means that ψV (s) is increasing for
s > σ0 and R taken sufficiently large. This implies that the term in the brackets for
ξ′V (s) is decreasing for s > σ0, and goes to −∞ as s→ +∞. Therefore, there is a unique
s = SR > σ0 such that ξ′V (s) = 0, i.e. UR(·/s) ∈ PG

V . Furthermore, again by Lemma
1.4.8(b) and (1.1.4) there exist R2 ≥ 1, sufficiently large, and S0 > 1 such that ξ′V (s) < 0,
for all s > S0 and R ≥ R2. Taking R0 = max{R1, R2} the result follows. Finally, from
the uniform estimates for U , ∇U and F (U) with respect to R ≥ R0, the continuity of SR

in this variable is clear, and the proof is complete.

From here on, consider SR as obtained in Lemma 1.4.9.

Lemma 1.4.10. Assume that (V1)–(V4) and (f1)–(f3) hold true. Then, it holds that

lim
R→+∞

SR = 1.

Proof. By Lemma 1.4.9, there exist constants R0 ≥ 1, S0 > 1 and σ0 ∈ (0, 1/2) such that
SR ∈ (σ0, S0) for anyR ≥ R0. Denoting w− := wR

− = w(·−Ry) and w+ := wR
+ = w(·+Ry),
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we have

J0 (w− + w+) =
N − 2

2

∫
RN

|∇w− +∇w+|2 −N

∫
RN

F (w− + w+)

=

[
N − 2

2

∫
RN

|∇w|2 −N

∫
RN

F (w)

]
+

[
N − 2

2

∫
RN

|∇w|2 −N

∫
RN

F (w)

]
+(N − 2)

∫
RN

∇w− · ∇w+ −N

∫
RN

[F (w− + w+)− F (w−)− F (w+)] .

Since J0(w) = 0, it follows that

J0 (w− + w+) = (N − 2)

∫
RN

∇w− · ∇w+ −N

∫
RN

[F (w− + w+)− F (w−)− F (w+)] .

(1.4.17)
Lemma 1.4.5 yields ∫

RN

|∇w− · ∇w+| ≤ CR−(N−2). (1.4.18)

On the other hand, using definition (1.4.4) and its estimates and Corollary 1.4.7, we get∫
RN

|F (w− + w+)− F (w−)− F (w+)|

≤
∫
RN

|F (w− + w+)− F (w−)− F (w+)− f(w−)w+ − f(w+)w−|

+

∫
RN

|f(w−)w+ + f(w+)w−|

= o(εR) + 2εR ≤ CR−(N−2). (1.4.19)

Therefore, by inequalities (1.4.17), (1.4.18) and (1.4.19), there exists C > 0 such that

|J0 (w− + w+)| ≤ CR−(N−2), (1.4.20)

and so, J0 (w− + w+) → 0 as R → ∞. Then, using hypothesis (V2), we obtain

JV
(
UR
)
= J0 (w− + w+) +

N

2

∫
RN

(
∇V (x) · x

N
+ V (x)

)
(w− + w+)

2dx

≤ J0 (w− + w+) + C

∫
RN

(1 + |x|)−k (w− + w+)
2dx, (1.4.21)

and again using (1.1.2) and Lemma 1.4.1(b) the last integral above is bounded by CR−(N−2).
From (1.4.20) and (1.4.21), we get

∣∣JV (UR
)∣∣ ≤ CR−(N−2).
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Therefore, JV
(
UR
)
= oR(1), where oR(1) → 0 as R → ∞, which implies that

lim
R→+∞

SR → 1,

by uniqueness of SR and continuity with respect to R. This proves the lemma.

Lemma 1.4.11. Assume that (V1)–(V2) hold true and take S0 > 1 and 0 < σ0 < 1/2.
Then, there exists a constant τ > N − 2 such that

sN
∫
RN

|V (sx)|
[(
wR

−
)2

+
(
wR

+

)2]
dx ≤ CR−τ ,

for every s ∈ (σ0, S0) and R ≥ 1.

Proof. Denote, as before, w− := wR
−y = w(· −Ry) and w+ := wR

+y = w(·+Ry). Thus, by
hypothesis (V2) and decay estimates (1.1.2), we have

sN
∫
RN

|V (sx)|
[
(w−)

2 + (w+)
2]dx = sN

∫
RN

|V (sx)|(w−)
2dx+ sN

∫
RN

|V (sx)|(w+)
2dx

≤ CSN
0

{∫
RN

dx

(1 + |sx|)k(1 + |x−Ry|)2(N−2)
+

∫
RN

dx

(1 + |sx|)k(1 + |x+Ry|)2(N−2)

}
,

for every s ∈ (σ0, S0) and R ≥ 1. Since 0 < σ0 < 1/2 and |sx| ≥ σ0|x|, then by Lemma
1.4.1(b), we obtain∫

RN

dx

(1 + |sx|)k(1 + |x−Ry|)2(N−2)
≤
∫
RN

dx

(1 + σ0|x|)k(1 + |x−Ry|)2(N−2)

≤ σ−k
0

∫
RN

dx

(1 + |x|)k(1 + |x−Ry|)2(N−2)
≤ CR−τ ,

where τ = min {k, 2(N − 2), k + 2(N − 2)−N} > N − 2. Similarly,∫
RN

dx

(1 + |sx|)k(1 + |x+Ry|)2(N−2)
≤ CR−τ ,

and so, the lemma is proved.

Proposition 1.4.12. Assume that (V1)–(V4), (f1)–(f3) hold true. Then, there exist
L > 2 large enough and R4 ≥ 1 such that

IV

(
UR
( ·
s

))
< 2I0(w) = 2p0, for all s ∈ (0, L] and all R ≥ R4 (1.4.22)

and
IV

(
UR
( ·
L

))
< 0, for all R ≥ R4. (1.4.23)
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Proof. By Lemma 1.4.9, there exist constants R0 ≥ 1, σ0 ∈ (0, 1/2) and S0 > 1 such that
SR ∈ (σ0, S0) for every R ≥ R0. Thus, changing the variables sz = x and, for simplicity,
denoting w− := wR

− and w+ := wR
+, we have

IV

(
UR
( ·
s

))
=
sN−2

2

[∫
RN

|∇w−|2dz − 2s2
∫
RN

F (w−)dz

]
+
sN−2

2

[∫
RN

|∇w+|2dz − 2s2
∫
RN

F (w+)dz

]
+
sN

2

∫
RN

V (sz)[w− + w+]
2dz + sN−2

∫
RN

∇w− · ∇w+ dz

− sN
∫
RN

[F (w− + w+)− F (w−)− F (w+)− f(w−)w+ − f(w+)w−] dz

− sN
∫
RN

[f(w−)w+ + f(w+)w−] dz

≤ I0

(
w
( ·
s

))
+ I0

(
w
( ·
s

))
+ sN

∫
RN

|V (sz)|
[
(w−)

2 + (w+)
2
]
dz

+ sN
∫
RN

|F (w− + w+)− F (w−)− F (w+)− f(w−)w+ − f(w+)w−| dz

+ sN−2

∫
RN

[
∇w− · ∇w+ − s2f(w−)w+ − s2f(w+)w−

]
dz

= 2I0

(
w
( ·
s

))
+ sN

∫
RN

|V (sz)|
[
(w−)

2 + (w+)
2
]
dz

+ sN
∫
RN

|F (w− + w+)− F (w−)− F (w+)− f(w−)w+ − f(w+)w−| dz

+ sN−2

∫
RN

[
∇w− · ∇w+ − s2f(w−)w+ − s2f(w+)w−

]
dz.

Since p0 = I0(w) = maxt>0 I0
(
w
( ·
t

))
> 0, it follows that

I0

(
w
( ·
s

))
≤ p0, for all s ∈ (0,∞).

Let us set

(I1) := sN
∫
RN

|V (sz)|
[
(w−)

2 + (w+)
2
]
dz,

(I2) := sN
∫
RN

|F (w− + w+)− F (w−)− F (w+)− f(w−)w+ − f(w+)w−| dz,

(I3) := sN−2

∫
RN

[
∇w− · ∇w+ − s2f(w−)w+ − s2f(w+)w−

]
dz.

To show (1.4.22) and (1.4.23), we will estimate (I1), (I2) and (I3). Take L > 2 large
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enough. By Lemma 1.4.11, we obtain

(I1) ≤ CR−τ ,

where τ > N − 2 for all N ≥ 3, and hence, (I1) = o(εR), for every s ∈ (0, L] and R ≥ 1.
Moreover, Corollary 1.4.7 yields

(I2) = o(εR),

for all N ≥ 3, for every s ∈ (0, L] and R ≥ 1.
Using the fact that w is a solution of (P0), we also have∫

RN

∇w− · ∇w+ dz =

∫
RN

f(w−)w+ dz =

∫
RN

f(w+)w− dz,

and so ∫
RN

∇w+ · ∇w− dz =
1

2

∫
RN

[f(w−)w+ + f(w+)w−] dz.

Thus,

(I3) = sN−2

∫
RN

[
∇w− · ∇w+ − s2f(w−)w+ − s2f(w+)w−

]
dz

=

(
1

2
− s2

)
sN−2

∫
RN

[f(w−)w+ + f(w+)w−] dz

=
(
1− 2s2

)
sN−2 εR,

where εR =
∫
RN f(w−)w+ dz =

∫
RN f(w+)w− dz. So, there exist 0 < δ < 1/4 and C0 > 0

such that
(I3) =

(
1− 2s2

)
sN−2 εR ≤ −C0 εR, (1.4.24)

for every s ∈ [1− δ, 1 + δ]. Therefore, by previous estimates, there exists R1 ≥ 1 suffi-
ciently large such that

IV

(
UR
( ·
s

))
≤ 2I0

(
w
( ·
s

))
+ (I1) + (I2) + (I3) ≤ 2p0 − C0 εR + o(εR) < 2p0, (1.4.25)

for every s ∈ [1− δ, 1 + δ] and R ≥ R1.
Next, let us show that there exists R2 ≥ 1 such that

IV

(
UR
( ·
s

))
< 2p0 for all s ∈ (0, 1− δ) ∪ (1 + δ, L] and all R ≥ R2.

Note that hypothesis (V2), the pointwise limit limR→∞ UR(x) = 0 and Lebesgue domi-
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nated convergence theorem imply that

sN
∫
RN

|V (sz)|
[
(w+)

2 + (w−)
2
]
dz → 0, as R → +∞, (1.4.26)

uniformly in s ∈ (0, L]. Also, by Corollary 1.4.7,

sN
∫
RN

|F (w+ + w−)− F (w+)− F (w−)− f(w+)w− − f(w−)w+| dz → 0 (1.4.27)

as R → +∞, uniformly in s ∈ (0, L]. Furthermore, applying Lemmas 1.4.3, 1.4.4 and
1.4.5, we may conclude that

sN−2

∫
RN

[
∇w+ · ∇w− − s2f(w+)w− − s2f(w−)w+

]
dz → 0 (1.4.28)

as R → +∞, uniformly in s ∈ (0, L]. Hence, it follows from (1.4.26), (1.4.27) and (1.4.28)
that ∣∣∣IV (UR

( ·
s

))
− 2I0

(
w
( ·
s

))∣∣∣→ 0 as R → +∞, (1.4.29)

uniformly in s ∈ (0, L]. From (1.4.29) and recalling that the map t 7→ I0
(
w
( ·
t

))
is

strictly increasing in (0, 1] and strictly decreasing in [1,∞) and I0(w) = p0, it follows that
I0
(
w
( ·
t

))
< I0(w) for all t ̸= 1, and so there exists R2 ≥ R1 such that

IV

(
UR
( ·
s

))
< 2p0, for all s ∈ (0, 1− δ) ∪ (1 + δ, L] and all R ≥ R2. (1.4.30)

Thus, from (1.4.25) and (1.4.30), we conclude that

IV

(
UR
( ·
s

))
< 2p0, for all s ∈ (0, L] and all R ≥ R2. (1.4.31)

Finally, we will prove that (1.4.23) occurs. We claim that I0
(
w
( ·
L

))
< 0. Indeed, as w is

a solution of problem (P0), it follows that∫
RN

F (w)dx =
N − 2

2N

∫
RN

|∇w|2dx > 0,

and so, for L > 2 large enough, we obtain

I0

(
w
( ·
L

))
=
LN−2

2

[∫
RN

|∇w|2dx− 2L2

∫
RN

F (w)dx

]
< 0. (1.4.32)
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Thus, using the fact that I0
(
w
( ·
L

))
< 0 and (1.4.29), there exists R3 ≥ 1 such that

IV

(
UR
( ·
L

))
< I0

(
w
( ·
L

))
< 0, for all R ≥ R3. (1.4.33)

Therefore, taking R4 := max{R2, R3}, we get from (1.4.31) and (1.4.33) that

IV

(
UR
( ·
s

))
< 2p0, for all s ∈ (0, L] and all R ≥ R4

and
IV

(
UR
( ·
L

))
< 0, for all R ≥ R4,

concluding the proof of the proposition.

Lemma 1.4.13. Assume that (f1)–(f3) hold true and let w be a ground state solution to
(P0), which is positive, radially symmetric and decreasing in the radial direction. Then,
there exists a path γ0 ∈ C

(
[0, 1],D1,2

G (RN)
)
, with γ0(0) = 0 and I0(γ0(1)) < 0, such that

w ∈ γ0([0, 1]), max
t∈[0,1]

I0(γ0(t)) = I0(w) = m0.

Proof. By hypothesis, for any g ∈ G and x ∈ RN , we have w(gx) = w(|gx|) = w(|x|) =
w(x), and so w ∈ D1,2

G (RN). Moreover, w is a ground state solution to (P0), which is
positive, radially symmetric and decreasing in the radial direction. Then, we can define
a continuous path α : [0,∞) → D1,2

G (RN), putting α(t) := w(·/t) for t > 0 and α(0) := 0.
Thus, by construction, it follows that I0(α(0)) = 0 and, for every t > 0, we have

I0(α(t)) = I0 (w (·/t)) = tN−2

2

∫
RN

|∇w|2dx− tN
∫
RN

F (w)dx.

Therefore, deriving the above expression, we obtain

d

dt
I0(α(t)) =

N − 2

2
tN−3

∫
RN

|∇w|2dx−NtN−1

∫
RN

F (w)dx

= tN−3

[
N − 2

2

∫
RN

|∇w|2dx−Nt2
∫
RN

F (w) dx

]
.

Since w is a solution to (P0), then w satisfies the Pohozaev identity

N − 2

2

∫
RN

|∇w|2dx = N

∫
RN

F (w)dx,
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and thus,
d

dt
I0(α(t)) = NtN−3

(
1− t2

)∫
RN

F (w)dx.

Since NtN−3
∫
RN F (w)dx > 0, for every t > 0, it follows that the map t 7→ I0(α(t)) reaches

the maximum value at t = 1. Choosing T > 0 sufficiently large, we have

max
0≤t≤T

I0(α(t)) = I0(α(1)) = I0(w) = m0 and I0(α(T )) < 0.

Considering the path γ0 : [0, 1] → D1,2
G (RN), defined by γ0(t) := α(tT ), the result follows.

Lemma 1.4.14. Assume that (V1)–(V2) and (f1)–(f3) hold true. Then, the functional
IV satisfies the geometrical properties of the mountain pass theorem.

Proof. Observe that IV (0) = 0. Moreover, using the hypothesis (f1) and the continuity
of the embedding D1,2

G (RN) into L2∗(RN), we get

IV (u) =
1

2
∥u∥2V −

∫
RN

F (u)dx ≥ 1

2
∥u∥2V − A2∥u∥2

∗

2∗

≥ 1

2
∥u∥2V − C1A2∥u∥2

∗

V =

[
1

2
− C1A2∥u∥2

∗−2
V

]
∥u∥2V .

Since 2∗−2 > 0, taking ϱ̂ := min

{
1,
(

1
4C1 A2

)1/(2∗−2)
}
> 0, we have: if u ∈ D1,2

G (RN) \ {0},

with ∥u∥V = ϱ̂, then

IV (u) ≥
[
1

2
− C1A2∥u∥2

∗−2
V

]
∥u∥2V ≥ ∥u∥2V

4
=
ϱ̂2

4
> 0.

On the other hand, if w is a ground state solution to (P0), positive, radially symmetric
and decreasing in the radial direction, then for any g ∈ G and x ∈ RN , we have w(gx) =
w(|gx|) = w(|x|) = w(x), and so w ∈ D1,2

G (RN). Moreover, from Lemma 1.4.13, for L > 1

sufficiently large, there exists a path γ : [0, L] → D1,2
G (RN) defined by γ(0) = 0 and

γ(t) = w(·/t), for t ∈ (0, L]. We may observe that γ satisfies

γ(0) = 0, γ(1) = w, I0(γ(L)) < 0, (1.4.34)

I0(γ(t)) < I0(w), for all t ̸= 1. (1.4.35)

Fix L > 2 sufficiently large such that (1.4.34) holds. Arguing as in Proposition 1.4.12,
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see expression (1.4.29), it follows that∣∣∣IV (UR
( ·
t

))
− 2I0

(
w
( ·
t

))∣∣∣→ 0 as R → +∞,

uniformly in t ∈ (0, L]. Using the fact that I0
(
w
( ·
L

))
= I0(γ(L)) < 0, we conclude that

IV

(
UR
( ·
L

))
< 0,

for R ≥ 1 sufficiently large. Therefore, the functional IV satisfies the geometrical proper-
ties of the mountain pass theorem, concluding the proof.

Proof of Theorem 1.1.1. Let us apply the mountain pass theorem of Ambrosetti-
Rabinowitz [3]. We define a mountain pass level for IV on D1,2

G (RN) by

cV := inf
γ ∈ΓV

max
0≤ t≤ 1

IV (γ(t)), ΓV :=
{
γ ∈ C([0, 1],D1,2

G (RN)) : γ(0) = 0, IV (γ(1)) < 0
}
.

Since IV satisfies the geometrical properties of the mountain pass theorem, then cV > 0

and there exists a Cerami sequence (un) ⊂ D1,2
G (RN) for IV at level cV . By Lemma 1.3.2,

(un) has a bounded subsequence that we will denote by (un). From (1.4.32), we may
choose L > 2 such that I0

(
w
( ·
L

))
< 0. Next, consider the following path:

γ(t) =

{
UR
( ·
Lt

)
, if t ∈ (0, 1],

0, if t = 0.

Note that γ ∈ ΓV and, also by Proposition 1.4.12, we may choose R ≥ 1 sufficiently large
such that

IV (γ(t)) < 2p0, for all t ∈ [0, 1],

and so cV < 2p0. On the other hand, recalling that cV > 0 and ℓ(G)p0 ≥ 2p0, from
Corollary 1.3.8, there exists ū ∈ D1,2

G (RN) \ {0} such that un → ū strongly in D1,2
G (RN),

i.e. ū is a nontrivial critical point of IV such that IV (ū) = cV . Therefore, it follows that ū
is a nontrivial solution of problem (PG). Using the maximum principle we conclude that
ū is positive, proving the theorem.

□

Remark 1.4.15. Assuming that the potential V is invariant under a group action G ⊂
O(N), with ℓ(G) ∈ (2,∞) and dG ∈ (0, 2], under assumptions (V1)–(V4) and (f1)–(f3),
we may prove that Theorem 1.1.1 also holds.
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Remark 1.4.16. Assuming that the potential V is invariant under a group action G ⊂
O(N), with ℓ(G) ∈ (2,∞) and dG ∈ (0, 2], under assumptions (V1)–(V4) and (f1)–(f3),
we may prove that Theorem 1.1.1 also holds.

To prove this, we took as basis two important papers by Hirata [22, p. 182–190]
and [23, p. 3180–3188]. We define

UR :=

ℓ(G)∑
j=1

w(· −Rej), (1.4.36)

where e1, . . . , eℓ(G) ∈ SN−1 and dG ∈ (0, 2], as in (0.0.1) and (0.0.2). Moreover, for
i, j = 1, . . . , ℓ(G), we denote

εR :=

∫
RN

f(w(x−Rei))w(x−Rej)dx =

∫
RN

f(w(x−Rej))w(x−Rei)dx. (1.4.37)

Following the same ideas applied when we assume that ℓ(G) = 2, we can prove that there
exist L > 2 large enough and R4 ≥ 1 such that

IV

(
UR
( ·
s

))
< ℓ(G)I0(w) = ℓ(G)p0, for all s ∈ (0, L] and all R ≥ R4

and
IV

(
UR
( ·
L

))
< 0, for all R ≥ R4.

From the above inequalities and as IV satisfies the geometrical properties of the mountain
pass theorem, the result follows by Lemma 1.3.2 and Corollary 1.3.8, using that

0 < cV < ℓ(G)p0.

1.5 Appendix

Lemma 1.5.1. Under the assumptions of Lemma 1.3.5, for any integer j ∈ {1, . . . , k},
there exist R and α positive constants such that, for n sufficiently large,

∫
BR(yjn)

∣∣∣∣∣
k∑

i=1

∇wi(x− yin)

∣∣∣∣∣
2

dx ≥ α > 0, (1.5.1)

where wi is a nontrivial solution of (P0) and, as n → ∞, |yin| → ∞ and |yin − yjn| → ∞
if i ̸= j.
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Proof. For 1 ≤ i ≤ k, wi ∈ H1(RN) is a nontrivial function, so there is αi > 0 such that∫
RN

∣∣∇wi(x)
∣∣2dx > 2αi > 0.

We may choose Ri > 0 sufficiently large such that∫
BRi

(0)

∣∣∇wi(x)
∣∣2dx ≥ 2αi > 0.

Take R = max{R1, . . . , Rk} and α = min{α1, . . . , αk}, and a fixed j ∈ {1, . . . , k}. Then,

∫
BR(yjn)

∣∣∣∣∣
k∑

i=1

∇wi(x− yin)

∣∣∣∣∣
2

dx ≥
∫
BRj

(yjn)

∣∣∇wj(x− yjn)
∣∣2 − ∣∣∣∣∣

k∑
i ̸=j

∇wi(x− yin)

∣∣∣∣∣
2
dx

=

∫
BRj

(0)

∣∣∇wj(z)
∣∣2 dz − ∫

BRj
(yjn)

∣∣∣∣∣
k∑

i ̸=j

∇wi(x− yin)

∣∣∣∣∣
2

dx

≥ 2αj −
∫
BRj

(0)

∣∣∣∣∣
k∑

i ̸=j

∇wi(x− (yin − yjn))

∣∣∣∣∣
2

dx

≥ 2αj − C

∫
BRj

(0)

k∑
i ̸=j

∣∣∇wi(x− (yin − yjn))
∣∣2dx

= 2αj − C
k∑

i ̸=j

∫
BRj

(0)

∣∣∇wi(x− (yin − yjn))
∣∣2dx. (1.5.2)

Since |yin − yjn| → ∞ as n→ ∞, if i ̸= j, it follows that∫
BR(0)

∣∣∇wi(x− (yin − yjn))
∣∣2 dx = on(1),

for 1 ≤ i ≤ k, i ̸= j. Thus, (1.5.2) ≥ αj ≥ α > 0 for n sufficiently large, that is,

2αj − C
k∑

i ̸=j

∫
BRj

(0)

∣∣∇wi(x− (yin − yjn))
∣∣2dx ≥ αj ≥ α > 0,

and this proves (1.5.1).



Chapter

2
Nonlinear Schrödinger equations with

general nonlinearities

2.1 Introduction

Our goal in this chapter is to show the existence of a positive bound state solution for
the problem

−∆u+ V (x)u = f(u), u ∈ H1(RN), N ≥ 3, (P )

where the potential V is a positive function and the nonlinearity f , under very mild as-
sumptions, is asymptotically linear or superlinear and subcritical at infinity, not satisfying
any monotonicity condition. The existence of a solution to this problem is established in
situations where a ground state solution is not attained.
We will assume that the potential V is invariant under a group action G ⊂ O(N) and we
try to find a positive solution in the space of G-symmetric functions

H1
G(RN) := {u ∈ H1(RN) : u(gx) = u(x), ∀g ∈ G,∀x ∈ RN}.

As in the first chapter, we will consider the case that G ⊂ O(N) is closed subgroup with
the following property: for any x ∈ SN−1, there exists g ∈ G such that gx ̸= x. This
means that G acts effectively on SN−1, that is, G satisfies

#{gy : g ∈ G} ∈ [2,∞], for all y ∈ SN−1,
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where #{· · · } denotes the cardinal number of sets and SN−1 := {x ∈ RN : |x| = 1}. We
will define

ℓ(G) := min{#Gx : x ∈ SN−1}.

We also observe that in this work we are going to consider only the case ℓ(G) finite and

ℓ(G) ∈ [2,∞).

In fact, for simplicity, our study is focused in the case ℓ(G) = 2, but could clearly be
extended to finite ℓ(G) > 2.
Let S be the best constant that satisfies Gagliardo-Nirenberg-Sobolev inequality (0.2.1).

Throughout Chapter 2, we will consider the potential V under assumptions (Ṽ1)–(Ṽ4)
and the nonlinearity f under assumptions (f̃1)–(f̃4).

Observe that F (0) = 0 and by (f̃1), F (s) ≥ 0 for s > 0.
Under assumptions (f̃1)–(f̃3), the classical result of Berestycki and Lions [10, Theorem
1] establishes the existence of a ground state solution w ∈ C2(RN) to the limit problem
at infinity

−∆u+ V∞u = f(u), u ∈ H1(RN), (P∞)

where w is positive, radially symmetric and decreasing in the radial direction, see also [4]
and [32]. It is well known, see [21], which there exist constants A5, A6 > 0 such that

A5(1 + |x|)−
N−1

2 e−
√
V∞|x| ≤

∣∣Diw(x)
∣∣ ≤ A6(1 + |x|)−

N−1
2 e−

√
V∞|x|, i = 0, 1. (2.1.1)

As in first chapter, by virtue of G-invariant property, we do not need the uniqueness of
positive solution for the limit problem (P∞). Since H1(RN) is not compactly embedded
into Lpi+1(RN), for i = 1, 2, then the mountain pass minimax value for corresponding
functional may not be attained. However, as we are assuming that the potential V and
the function f are invariant under finite effective group action G, we will show that
the mountain pass minimax value for functional restricted to the subspace H1

G(RN) is
attained.
Now we can restate our main result of existence of a solution in Chapter 2.

Theorem 2.1.1. Assume that (Ṽ1)–(Ṽ4) and (f̃1)–(f̃4) hold true. Then, problem (P )
has a positive solution u ∈ H1

G(RN).

Assumptions (f̃1)–(f̃2) imply that, for all ε > 0, there exists a constant Cε > 0 such
that

|F (s)| ≤ ε

2
s2 + Cε|s|2

∗
. (2.1.2)
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Hypotheses (Ṽ1), (Ṽ3) and (Ṽ4) imply that, for all x ∈ RN , there exist constantsA2, A3, A4 ∈
R such that

|V (x)− V∞| ≤ A2, |∇V (x) · x| ≤ A3, |xH(x)x| ≤ A4. (2.1.3)

2.2 Pohozaev manifold structure and preliminary results

Associated with problem (P ), we define the functional IV : H1
G(RN) → R by

IV (u) =
1

2

∫
RN

(
|∇u|2 + V (x)u2

)
dx−

∫
RN

F (u)dx

Let us define the functional JV : H1
G(RN) → R by

JV (u) =
N − 2

2

∫
RN

|∇u|2dx+ N

2

∫
RN

(
∇V (x) · x

N
+ V (x)

)
u2dx−N

∫
RN

F (u)dx,

and define the Pohozaev manifold associated to the problem (P ) by

PG
V := {u ∈ H1

G(RN) \ {0} : JV (u) = 0}.

Likewise the Pohozaev manifold P∞ associated to the limit problem (P∞). Set

P∞ := {u ∈ H1(RN) \ {0} : J∞(u) = 0},

where
J∞(u) :=

N − 2

2

∫
RN

|∇u|2dx−N

∫
RN

(
F (u)− V∞

u2

2

)
dx.

We recall that solutions of (P∞) are critical points of the functional

I∞(u) :=
1

2

∫
RN

(
|∇u|2 + V∞u

2
)
dx−

∫
RN

F (u)dx, u ∈ H1(RN).

We also recall that w is a ground state solution of the limit problem (P∞) if

I∞(w) = m := inf{I∞(u) : u ∈ H1(RN) \ {0} is a solution of (P∞)}. (2.2.1)

We will denote
p∞ = inf

u∈P∞
I∞(u). (2.2.2)
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Next lemma was inspired by [24] and [28]. The arguments used to prove its can be found
there.

Lemma 2.2.1. Assume that (f̃1)–(f̃3) hold true. Then, m = p∞.

Proof. To prove this lemma, we follow the same ideas found in [28, Lemma 2.4]. Consider

S∞ :=

{
u ∈ H1(RN) :

∫
RN

G∞(u)dx = 1

}
,

where G∞(u) := F (u)− V∞
2
u2, and let Φ : S∞ → P∞ be defined by

Φ(u)(x) := u

(
x

tu

)
, tu :=

(
N − 2

2N

∫
RN

|∇u|2dx
)1/2

=

(
N − 2

2N

)1/2

∥∇u∥2.

Observe that Φ establishes a bijective correspondence between S∞ and P∞. Moreover,
for every u ∈ S∞, we have

I∞(Φ(u)) =
tN−2
u

2

∫
RN

|∇u|2dx− tNu

∫
RN

G∞(u)dx

= tN−2
u

[
1

2

∫
RN

|∇u|2dx− t2u

]
=

(
N − 2

2N

)N−2
2

∥∇u∥N−2
2

[
1

2
∥∇u∥22 −

N − 2

2N
∥∇u∥22

]
=

1

N

(
N − 2

2N

)N−2
2

∥∇u∥N2 ,

and so

p∞ = inf
u∈P∞

I∞(u) = inf
u∈S∞

I∞(Φ(u)) = inf
u∈S∞

1

N

(
N − 2

2N

)N−2
2

∥∇u∥N2 = m,

since the infimum is achieved and the corresponding value equals the least energy level m.
This can be proved by performing calculations similar to those of [13, Lemma 1(i)].

We define f(s) := −f(−s) for s < 0. So, it follows from hypotheses (f̃1) and (f̃2) that
f ∈ C1(R) and it is an odd function. Note that, if u is a positive solution of problem (P )
for this new function, it is also a solution of (P ) for the original function f . Hereafter, we
shall consider this extension, and establish the existence of a positive solution for (P ).
Since f ∈ C1(R) and f satisfies (f̃1)–(f̃3), a classical result of Berestycki and Lions
establishes the existence of a ground state solution w ∈ C2(RN) to problem (P∞), which
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is positive, radially symmetric and decreasing in the radial direction, see [10, Theorem 4].
Next we will consider the space of G-symmetric functions in H1(RN) ⊂ Lp(RN), for
2 ≤ p ≤ 2∗, with its scalar product and norm

⟨u, v⟩V :=

∫
RN

(∇u · ∇v + V (x)uv)dx, ∥u∥2V :=

∫
RN

(
|∇u|2 + V (x)u2

)
dx. (2.2.3)

Let us denote ∥ · ∥q the Lq(RN)-norm, for all q ∈ [1,∞) and C, Ci are positive constants
which may vary from line to line. By assumptions (Ṽ1) and (Ṽ2), we can see that the
expressions in (2.2.3) are well defined and that ∥ · ∥V is a norm in H1

G(RN), which is
equivalent to the standard one. We will write

⟨u, v⟩ :=
∫
RN

(∇u · ∇v + V∞uv)dx, ∥u∥2 :=
∫
RN

(
|∇u|2 + V∞u

2
)
dx.

Remark 2.2.2. Throughout this chapter, to denote an inner product or norm in the
space H1(RN), we will use the same notations adopted for the subspace of functions
G-symmetric H1

G(RN).

Consider the following problem in the space of G-symmetric functions H1
G(RN), for

N ≥ 3,
−∆u+ V (x)u = f(u), u ∈ H1

G(RN). (PG)

We claim that solutions of (PG) are also solutions of (P ). Indeed, note that the action of G
on H1(RN) is isometric and, furthermore, we can easily see that the functional IV defined
in the whole space H1(RN) satisfies IV (gu) = IV (u), for all g ∈ G and all u ∈ H1(RN).
So, by the principle of symmetric criticality (see [36, Theorem 1.28]), it follows that if
u0 is a weak solution of problem (PG), that is, if u0 is a critical point of the restricted
functional IV , restricted to H1

G(RN), then u0 is a critical point of IV in the whole space
H1(RN). In fact, to show that u0 is a critical point of the functional IV in H1(RN), it
suffices to show that IV (u0)ṽ = 0, for all ṽ ∈

(
H1

G(RN)
)⊥, and this is a consequence of

the following lemma, which holds for all u ∈ H1
G(RN), not only critical points of IV .

Lemma 2.2.3. Assume that (Ṽ1)–(Ṽ2) and (f̃1)–(f̃3) hold true. Then,

I ′V (u)ṽ = 0, for any u ∈ H1
G(RN) and ṽ ∈

(
H1

G(RN)
)⊥
.

Proof. To prove this lemma, just follow the same ideas used to prove Lemma 1.2.3, substi-
tuting D1,2(RN) by H1(RN).
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2.3 Bounded Palais-Smale sequences

Recall that a sequence (un) in H1
G(RN) is said to be a (PS)d-sequence for IV , with

d ∈ R, if IV (un) → d and I ′V (un) → 0 in H−1
G (RN). A sequence (un) in H1

G(RN) is said
to be a Cerami sequence for IV at level d ∈ R, denoted by (Ce)d, if IV (un) → d and
∥I ′V (un)∥H−1

G (RN )(1 + ∥un∥V ) → 0.

Lemma 2.3.1. Assume that (f̃1)–(f̃4) hold true and let (un) in H1
G(RN) be a Cerami

sequence for IV at level d ∈ R. Then, (un) has a bounded subsequence.

Proof. Suppose, by contradiction, that (un) has no bounded subsequence. Then, we can
assume that un ̸= 0 for all n ∈ N and ∥un∥V → +∞. Let us define ũn := un/∥un∥V for all
n ∈ N. Thus, (ũn) is a bounded sequence and ∥ũn∥V = 1. Hence, up to a subsequence, it
holds ũn ⇀ ũ in H1

G(RN). Therefore, one of the two cases occurs:

Case 1: lim sup
n→∞

sup
y ∈RN

∫
B1(y)

|ũn|2dx > 0;

Case 2: lim sup
n→∞

sup
y ∈RN

∫
B1(y)

|ũn|2dx = 0.

First, let us suppose that Case 2 occurs, and let L > 1 be an arbitrary constant. Then,
we have,

IV

(
L

∥un∥V
un

)
=
L2

2
−
∫
RN

F

(
L

∥un∥V
un

)
dx.

So, using hypothesis (f̃2), we obtain∫
RN

F

(
L

∥un∥V
un

)
dx ≤ A1L

p1+1

∫
RN

|ũn|p1+1dx+ A1L
p2+1

∫
RN

|ũn|p2+1dx.

Since 1 < p1 ≤ p2 < 2∗ − 1, it follows from Lions’ lemma [29] that∫
RN

|ũn|p1+1dx→ 0 and
∫
RN

|ũn|p2+1dx→ 0,

and so
lim
n→∞

∫
RN

F (Lũn) = lim
n→∞

∫
RN

F

(
L

∥un∥V
un

)
dx = 0.

By hypothesis (f̃1) and using that f(s) = −f(−s) for s < 0, we have F (s) ≥ 0 for all
s ∈ R. Hence,

IV

(
L

∥un∥V
un

)
=
L2

2
−
∫
RN

F

(
L

∥un∥V
un

)
dx ≥ L2

4



2.3 Bounded Palais-Smale sequences 74

for n sufficiently large. Since ∥un∥V → +∞, then L
∥un∥V

∈ (0, 1), for n sufficiently large.
So, there exists n1 ∈ N such that

max
t∈[0,1]

IV (tun) ≥ IV

(
L

∥un∥V
un

)
≥ L2

4
,

for all n ≥ n1. Let tn ∈ [0, 1] be such that IV (tnun) := max
t∈[0,1]

IV (tun). Thus,

IV (tnun) ≥
L2

4
, (2.3.1)

for all n ≥ n1. Since tn ≤ 1, using (f̃4) and the fact that f(s) = −f(−s) for s < 0, we
obtain

IV (tnun) = IV (tnun)−
1

2
I ′V (tnun)(tnun) + on(1)

=

∫
RN

(
1

2
f(tnun)(tnun)− F (tnun)

)
dx+ on(1)

≤ D

∫
RN

(
1

2
f(un)un − F (un)

)
dx+ on(1)

= D

(
IV (un)−

1

2
I ′V (un)un

)
+ on(1)

= Dd+ on(1).

So, there exists n2 ∈ N such that

IV (tnun) ≤ 2Dd, (2.3.2)

for all n ≥ n2. Taking n0 := max{n1, n2}, it follows from (2.3.1) and (2.3.2) that

L2

4
≤ IV (tnun) ≤ 2Dd,

for all n ≥ n0. Taking L > 3
√
Dd, we come to a contradiction.

Now suppose that Case 1 occurs, that is, there exists δ > 0 such that

lim sup
n→∞

sup
y ∈RN

∫
B1(y)

|ũn|2dx = δ.

If (yn) ⊂ RN is a sequence such that |yn| → ∞ and
∫
B1(yn)

|ũn|2dx > δ/2, whereas that
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ũn(·+ yn)⇀ ũ, we obtain ∫
B1(0)

|ũn(x+ yn)|2 >
δ

2
,

and so ∫
B1(0)

|ũ(x)|2dx ≥ δ

2
,

showing that ũ ̸= 0. Thus, there exists a subset of positive Lebesgue measure Ω ⊂ B1(0)

such that

0 < |ũ(x)| = lim
n→∞

|ũn(x+ yn)| = lim
n→∞

|un(x+ yn)|
∥un∥V

, ∀x ∈ Ω.

Since ∥un∥V → +∞, it follows that

|un(x+ yn)| → +∞, ∀x ∈ Ω.

Then, using the hypothesis (f̃4) and Fatou lemma, we obtain

lim inf
n→∞

∫
RN

[
1

2
f(un(x+ yn))un(x+ yn)− F (un(x+ yn))

]
dx

≥ lim inf
n→∞

∫
Ω

[
1

2
f(un(x+ yn))un(x+ yn)− F (un(x+ yn))

]
dx

≥
∫
Ω

lim inf
n→∞

[
1

2
f(un(x+ yn))un(x+ yn)− F (un(x+ yn))

]
dx

= +∞.

On the other hand, we have

|I ′V (un)un| ≤ ∥I ′V (un)∥H−1
G (RN )∥un∥V ≤ ∥I ′V (un)∥H−1

G (RN ) (1 + ∥un∥V ) → 0,

and so, I ′V (un)un = on(1). Therefore, for n sufficiently large, we have∫
RN

[
1

2
f(un(x+ yn))un(x+ yn)− F (un(x+ yn))

]
dx = IV (un)−

1

2
I ′V (un)un ≤ d+ 1,

which gives a contradiction.
If (yn) is bounded, then there exists R > 1 such that |yn| ≤ R for all n ∈ N and∫

B2R(0)

|ũn(x+ yn)|2dx ≥
∫
B1(0)

|ũn(x+ yn)|2dx >
δ

2
.
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Since ũn(·+ yn) → ũ in B2R(0), it follows that∫
B1(0)

|ũ(x)|2dx ≥ δ

2
.

Similarly to the previous case, there exists Ω1 ⊂ B1(0), with |Ω1| > 0 such that

lim
n→∞

|un(x+ yn)|
∥un∥V

= lim
n→∞

|ũn(x+ yn)| = |ũ(x)| ≠ 0, ∀x ∈ Ω1.

The argument follows as in the previous case where |yn| → +∞ and we arrive at a
contradiction. Therefore, neither Case 1 nor Case 2 can occur and lemma is proved.

Next, let us present the standard result about the splitting of bounded (PS) sequences.
This lemma is a version of the concentration compactness of P.L. Lions [29] and found
in [34]. Before proving the result, we will need the following versions of Brezis-Lieb lemma.
The proof of this lemma is similar to the proof of Lemma 1.3.5, but unlike Chapter 1, here
we will only use the assumptions and the fact that H1

G(RN) is continuously embedded
into Lpi+1(RN), i = 1, 2.

Lemma 2.3.2. Assume that (Ṽ1)–(Ṽ3) and (f̃1)–(f̃3) hold true. Let (un) be a bounded
sequence in H1

G(RN) such that un(x) → u(x) for a.e. x ∈ RN . Then, the following
statements hold true:

(a) ∥un∥2V = ∥un − u∥2 + ∥u∥2V + on(1);

(b)
∫
RN

|f(un)− f(u)||φ|dx = on(1), for every φ ∈ C∞
0 (RN);

(c)
∫
RN

F (un)dx−
∫
RN

F (un − u)dx =

∫
RN

F (u)dx+ on(1);

(d) f(un)− f(un − u) → f(u) in H−1
G (RN).

Proof. Since (un) ⊂ H1
G(RN), it follows that un(gx) = un(x) for any g ∈ G and x ∈ RN .

Thus, as un(x) → u(x) for a.e. x ∈ RN , we have

u(gx) = lim
n→∞

un(gx) = lim
n→∞

un(x) = u(x) for a.e. x ∈ RN ,

which shows that u ∈ H1
G(RN).

Next, for each n ∈ N, define vn := un − u. Thus, as un is bounded and un(x) → u(x)

for a.e. x ∈ RN , then (vn) is bounded and, up to a subsequence, vn ⇀ 0 in H1
G(RN).
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(a) As un ⇀ u in H1
G(RN), it follows that ⟨un, u⟩V → ⟨u, u⟩V = ∥u∥2V . Hence, we have

∥vn∥2V = ∥un − u∥2V = ⟨un − u, un − u⟩V
= ⟨un, un⟩V − ⟨un, u⟩V − ⟨u, un⟩V + ⟨u, u⟩V
= ∥un∥2V − 2⟨un, u⟩V + ∥u∥2V
= ∥un∥2V − ∥u∥2V + on(1). (2.3.3)

On the other hand, we have

∥vn∥2V =

∫
RN

(
|∇vn|2 + V (x)v2n

)
dx

=

∫
RN

(
|∇vn|2 + V∞v

2
n

)
dx+

∫
RN

[V (x)− V∞] v2ndx

= ∥vn∥2 +
∫
RN

[V (x)− V∞] v2ndx.

As (vn) is bounded in H1
G(RN) and vn(x) → 0 for a.e. x ∈ RN , there exists M > 0 such

that ∥vn∥2 ≤ M for all n ∈ N and, up to a subsequence, vn → 0 in L2
loc(RN). Moreover,

by (Ṽ1), we have V (x) → V∞ as |x| → +∞. Thus, given ε > 0 there exists R ≥ 1 such
that if |x| ≥ R then |V (x)− V∞| < ε/M2. Hence,∫

RN\BR(0)

|V (x)− V∞|v2ndx ≤ ε

M2

∫
RN\BR(0)

v2ndx ≤ ε.

Thus, by (2.1.3), it follows that∫
BR(0)

|V (x)− V∞|v2ndx ≤ A2

∫
BR(0)

v2ndx = on(1).

Since ε > 0 is arbitrary, we conclude that

∥vn∥2V = ∥vn∥2 + on(1). (2.3.4)

Substituting (2.3.4) in (2.3.3), it follows that

∥un∥2V = ∥vn∥2 + ∥u∥2V + on(1),

proving item (a).
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(b) By hypothesis (f̃2) and the fact that f(s) = −f(−s), for s < 0, we have

|f ′(s)| ≤ A1

(
|s|p1−1 + |s|p2−1

)
, ∀ s ∈ R.

By the mean value theorem, there exists ξ ∈ (0, 1) such that

|f(un)− f(u)| = |f ′(u+ ξ(un − u))||un − u|

≤ A1

(
|u+ ξ(un − u)|p1−1 + |u+ ξ(un − u)|p2−1

)
|un − u|

≤ A1

[
(|u|+ |un − u|)p1−1 + (|u|+ |un − u|)p2−1

]
|un − u|.

Observe that for i = 1, 2, we have

(|u|+ |un − u|)pi−1 ≤ (2max{|u|, |un − u|})pi−1 ≤ 2pi−1
(
|u|pi−1 + |un − u|pi−1

)
,

and so

|f(un)− f(u)| ≤ A1

[
(|u|+ |un − u|)p1−1 + (|u|+ |un − u|)p2−1

]
|un − u| (2.3.5)

≤ C1

[(
|u|p1−1 + |un − u|p1−1

)
+
(
|u|p2−1 + |un − u|p2−1

)]
|un − u|

= C1

[(
|u|p1−1|un − u|+ |un − u|p1

)
+
(
|u|p2−1|un − u|+ |un − u|p2

)]
.

Since (un) is bounded in H1
G(RN) and, passing to a subsequence, un ⇀ u and un → u

strongly in Lpi+1
loc (RN), i = 1, 2, for every φ ∈ C∞

0 (RN) and i = 1, 2, we obtain

∫
RN

|u|pi−1|un − u||φ|dx ≤
(∫

RN

(
|u|pi−1

) pi+1

pi−1 dx

)pi−1

pi+1
(∫

RN

(|un − u||φ|)
pi+1

2 dx

) 2
pi+1

=

(∫
RN

|u|pi+1dx

)pi−1

pi+1
(∫

supp(φ)

(|un − u||φ|)
pi+1

2 dx

) 2
pi+1

≤ ∥u∥pi−1
pi+1∥φ∥pi+1

(∫
supp(φ)

|un − u|pi+1dx

) 1
pi+1

≤ C∥φ∥V
(∫

supp(φ)

|un − u|pi+1dx

) 1
pi+1

= on(1).
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On the other hand, we have∫
RN

|un − u|pi |φ|dx =

∫
supp(φ)

|un − u|pi |φ|dx

≤
(∫

supp(φ)

(|un − u|pi)
pi+1

pi dx

) pi
pi+1

(∫
supp(φ)

|φ|pi+1dx

) 1
pi+1

≤ C∥φ∥V
(∫

supp(φ)

|un − u|pi+1dx

) pi
pi+1

= on(1).

Therefore, we conclude that∫
RN

|f(un)− f(u)||φ|dx = on(1), for every φ ∈ C∞
0 (RN),

which proves item (b).
(c) By hypothesis (f̃2), we have |F (u)| ≤ A1(|u|p1+1 + |u|p2+1). Thus, arguing as in (2.3.5)
and using (f̃2), we obtain

|F (un)− F (vn)| = |F (u+ vn)− F (vn)|

≤ A1[(|vn|+ |u|)p1 + (|vn|+ |u|)p2 ]|u| ≤ C1[(|vn|p1 + |u|p1) + (|vn|p2 + |u|p2)]|u|

= C1

[(
|vn|p1|u|+ |u|p1+1

)
+
(
|vn|p2|u|+ |u|p2+1

)]
,

and so

|F (un)− F (vn)− F (u)| ≤ |F (un)− F (vn)|+ |F (u)|

≤ C1

[(
|vn|p1|u|+ |u|p1+1

)
+
(
|vn|p2|u|+ |u|p2+1

)]
+ A1

(
|u|p1+1 + |u|p2+1

)
= C1(|vn|p1|u|+ |vn|p2|u|) + (C1 + A1)

(
|u|p1+1 + |u|p2+1

)
.

Since (vn) is bounded in H1
G(RN) and H1

G(RN) is continuously embedded into Lpi+1(RN),
i = 1, 2, there exists a constant Mi > 0 such that

(∫
|x|>R

|vn|pi+1dx

) pi
pi+1

≤Mi.
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So, given ε > 0, we may choose R > 1 sufficiently large such that∫
|x|>R

|F (un)− F (vn)− F (u)|dx ≤
∫
|x|>R

|F (un)− F (vn)|dx+
∫
|x|>R

|F (u)|dx

≤ C1

[∫
|x|>R

|vn|p1|u|dx+
∫
|x|>R

|vn|p2|u|dx
]

+ (C1 + A1)

[∫
|x|>R

|u|p1+1dx+

∫
|x|>R

|u|p2+1dx

]
≤ C1

(∫
|x|>R

|vn|p1+1dx

) p1
p1+1

(∫
|x|>R

|u|p1+1dx

) 1
p1+1

+ C1

(∫
|x|>R

|vn|p2+1dx

) p2
p2+1

(∫
|x|>R

|u|p2+1dx

) 1
p2+1

+ (C1 + A1)

[∫
|x|>R

|u|p1+1dx+

∫
|x|>R

|u|p2+1dx

]
≤ C1

[
M1

(∫
|x|>R

|u|p1+1dx

) 1
p1+1

+M2

(∫
|x|>R

|u|p2+1dx

) 1
p2+1

]

+ (C1 + A1)

[∫
|x|>R

|u|p1+1dx+

∫
|x|>R

|u|p2+1dx

]
< ε.

On the other hand, using assumption that (vn) is bounded and vn(x) → 0 for a.e. x ∈ RN
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again, passing to a subsequence, vn → 0 strongly in Lpi+1
loc (RN), and so∫

|x|≤R

|F (un)− F (vn)− F (u)|dx ≤
∫
|x|≤R

|F (un)− F (u)|dx+
∫
|x|≤R

|F (vn)|dx

≤ C2

[∫
|x|≤R

|u|p1|vn|dx+
∫
|x|≤R

|u|p2|vn|dx
]

+ (C2 + A1)

[∫
|x|≤R

|vn|p1+1dx+

∫
|x|≤R

|vn|p2+1dx

]
≤ C2

(∫
|x|≤R

|u|p1+1dx

) p1
p1+1

(∫
|x|≤R

|vn|p1+1dx

) 1
p1+1

+ C2

(∫
|x|≤R

|u|p2+1dx

) p2
p2+1

(∫
|x|≤R

|vn|p2+1dx

) 1
p2+1

+ (C2 + A1)

[∫
|x|≤R

|vn|p1+1dx+

∫
|x|≤R

|vn|p2+1dx

]
≤ C2

[
∥u∥p1p1+1

(∫
|x|≤R

|vn|p1+1dx

) 1
p1+1

+ ∥u∥p2p2+1

(∫
|x|≤R

|vn|p2+1dx

) 1
p2+1

]

+ (C2 + A1)

[∫
|x|≤R

|vn|p1+1dx+

∫
|x|≤R

|vn|p2+1dx

]
< ε,

if n ∈ N is large enough, which proves item (c).
(d) Again, by hypothesis (f̃2) and the fact that f(s) = −f(−s), for s < 0, arguing as in
(b), see (2.3.5), we obtain

|f(un)− f(un − u)| ≤ C1

[(
|un − u|p1−1|u|+ |u|p1

)
+
(
|un − u|p2−1|u|+ |u|p2

)]
,

and so,

|f(un)− f(un − u)− f(u)| ≤ |f(un)− f(un − u)|+ |f(u)|

≤ C1

[(
|un − u|p1−1|u|+ |u|p1

)
+
(
|un − u|p2−1|u|+ |u|p2

)]
+ A1(|u|p1 + |u|p2)

= C1

(
|un − u|p1−1|u|+ |un − u|p2−1|u|

)
+ (C1 + A1)(|u|p1 + |u|p2) .
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Let φ ∈ H1
G(RN) and R > 0 be. Then,∫

|x|>R

|f(un)− f(un − u)− f(u)||φ|dx

≤ C1

(∫
|x|>R

|un − u|p1−1|u||φ|dx+
∫
|x|>R

|un − u|p2−1|u||φ|dx
)

+ (C1 + A1)

(∫
|x|>R

|u|p1|φ|dx+
∫
|x|>R

|u|p2|φ|dx
)
.

Since (vn) is bounded in H1
G(RN), where vn := un − u, and H1

G(RN) is continuously
embedded into Lpi+1(RN), i = 1, 2, we have

∫
|x|>R

|un − u|pi−1|u||φ|dx ≤
(∫

|x|>R

(
|un − u|pi−1|u|

) p1+1
pi dx

) pi
pi+1

(∫
|x|>R

|φ|pi+1dx

) 1
pi+1

≤

[(∫
|x|>R

|un − u|pi+1dx

) pi−1

pi

(∫
|x|>R

|u|pi+1dx

) 1
pi

] pi
pi+1 (∫

|x|>R

|φ|pi+1dx

) 1
pi+1

=

(∫
|x|>R

|un − u|pi+1dx

) pi−1

pi+1
(∫

|x|>R

|u|pi+1dx

) 1
pi+1

(∫
|x|>R

|φ|pi+1dx

) 1
pi+1

≤ ∥un − u∥pi−1
pi+1∥φ∥pi+1

(∫
|x|>R

|u|pi+1dx

) 1
pi+1

≤ C∥φ∥V
(∫

|x|>R

|u|pi+1dx

) 1
pi+1

.

Moreover, we have

∫
|x|>R

|u|pi |φ|dx ≤
(∫

|x|>R

|u|pi+1|dx
) pi

pi+1
(∫

|x|>R

|φ|pi+1|dx
) 1

pi+1

≤ C∥φ∥V
(∫

|x|>R

|u|pi+1|dx
) pi

pi+1

.

Thus, given ε > 0, we may choose R > 1 sufficiently large such that∫
|x|>R

|f(un)− f(un − u)− f(u)||φ|dx ≤ ε

2
∥φ∥V . (2.3.6)
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On the other hand, from (2.3.5) and hypothesis (f̃2), we get

|f(un)− f(un − u)− f(u)| ≤ |f(un)− f(u)|+ |f(un − u)|

≤ C1

[(
|u|p1−1|un − u|+ |un − u|p1

)
+
(
|u|p2−1|un − u|+ |un − u|p2

)]
+ A1(|un − u|p1 + |un − u|p2)

= C1

(
|u|p1−1|un − u|+ |u|p2−1|un − u|

)
+ (C1 + A1)(|un − u|p1 + |un − u|p2) ,

and so, we have

∫
|x|≤R

|u|pi−1|un − u||φ|dx ≤
(∫

|x|≤R

(
|u|pi−1|un − u|

) p1+1
pi dx

) pi
pi+1

(∫
|x|≤R

|φ|pi+1dx

) 1
pi+1

≤

[(∫
|x|≤R

|u|pi+1dx

) pi−1

pi

(∫
|x|≤R

|un − u|pi+1dx

) 1
pi

] pi
pi+1 (∫

|x|≤R

|φ|pi+1dx

) 1
pi+1

=

(∫
|x|≤R

|u|pi+1dx

) pi−1

pi+1
(∫

|x|≤R

|un − u|pi+1dx

) 1
pi+1

(∫
|x|≤R

|φ|pi+1dx

) 1
pi+1

≤ ∥u∥pi−1
pi+1∥φ∥pi+1

(∫
|x|≤R

|un − u|pi+1dx

) 1
pi+1

≤ C∥φ∥V
(∫

|x|≤R

|u|pi+1dx

) 1
pi+1

and we also have∫
|x|≤R

|un − u|pi |φ|dx ≤
(∫

|x|≤R

|un − u|pi+1|dx
) pi

pi+1
(∫

|x|≤R

|φ|pi+1|dx
) 1

pi+1

≤ C∥φ∥V
(∫

|x|≤R

|un − u|pi+1|dx
) pi

pi+1

.

Hence, as un → u strongly in Lpi+1
loc (RN), i = 1, 2, we obtain∫

|x|≤R

|f(un)− f(un − u)− f(u)||φ|dx ≤ ε

2
∥φ∥V , (2.3.7)

for n ∈ N sufficiently large. Therefore, from (2.3.6) and (2.3.7), given ε > 0 and φ ∈
H1

G(RN), it follows that∣∣∣∣∫
RN

[f(un)− f(un − u)− f(u)]φdx

∣∣∣∣ ≤ ε∥φ∥V ,
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for n ∈ N sufficiently large, which proves item (d).

Lemma 2.3.3 (Splitting). Assume that (Ṽ1)–(Ṽ3) and (f̃1)–(f̃3) hold true. Let c ∈ R
and (un) be a bounded sequence in H1

G(RN) such that

IV (un) → c and I ′V (un) → 0 inH−1
G (RN).

Then, passing (un) to a subsequence, if necessary, there exist a solution ū ∈ H1
G(RN) of

problem (PG), a number k ∈ N ∪ {0}, k sequences (yjn) ⊂ RN , 1 ≤ j ≤ k and k nontrivial
solutions w1, · · · , wk of the limit problem (P∞), satisfying:

(i) un ⇀ ū weakly in H1
G(RN);

(ii) for any i, j = 1, · · · , k, |yjn| → ∞ and |yjn − yin| → ∞, if i ̸= j;

(iii) un − ū−
k∑

j=1

wj(· − yjn) → 0 in H1(RN);

(iv) c = IV (ū) +
k∑

j=1

I∞(wj),

for k ∈ N. In the case k = 0, the above holds without wj, (yjn).

The proof of this lemma is entirely analogous to the proof of Lemma 1.3.6, but unlike
Chapter 1, where we used Lemma 1.3.1 if strong convergence does not occur, here we will
use Lions’ Lemma and follow the same ideas, and so on we get the result.

Proof. Since (un) ⊂ H1
G(RN) is a (PS)c-sequence for IV restricted to H1

G(RN), it follows
from Lemma 2.2.3 that I ′V (un)ṽ = 0 for any ṽ ∈

(
H1

G(RN)
)⊥, and so (un) is also (PS)c-

sequence for IV defined in the whole space H1(RN). As (un) is bounded, passing to a
subsequence, we get ū ∈ H1(RN) such that un ⇀ ū in H1(RN) and un(x) → ū(x) for
a.e. x ∈ RN . Let us show that ū ∈ H1

G(RN). In fact, as (un) ⊂ H1
G(RN), we have

un(gx) = un(x) for any g ∈ G and x ∈ RN , and so

ū(gx) = lim
n→∞

un(gx) = lim
n→∞

un(x) = ū(x) a.e. x ∈ RN ,

which shows that ū ∈ H1
G(RN). It follows from weak convergence and Lemma 2.3.2(b)

that, for any φ ∈ C∞
0 (RN), we have

on(1) = I ′V (un)φ =

∫
RN

(∇un∇φ+ V (x)unφ)dx−
∫
RN

f(un)φdx

=

∫
RN

(∇ū∇φ+ V (x)ūφ)dx−
∫
RN

f(ū)φdx+ on(1)

= I ′V (ū)φ+ on(1),
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which shows that I ′V (ū)φ = 0, and so, as C∞
0 (RN) is dense in H1(RN), it follows that

I ′V (ū)v = 0 for any v ∈ H1(RN). Since ū ∈ H1
G(RN) and I ′V (ū)ṽ = 0 for any ṽ ∈(

H1
G(RN)

)⊥, we conclude that ū is a critical point of functional IV restricted to H1
G(RN),

and so ū is a solution of problem (PG). Now, for each n ∈ N, we define un,1 := un − ū.
So, up to a subsequence, we have un,1 ⇀ 0 in H1

G(RN). We state that if

lim
n→∞

(
sup

y ∈RN

∫
B1(y)

|un,1|2dx

)
= 0, (2.3.8)

then un → ū in H1
G(RN), and so the lemma occurs for k = 0. In fact, we have

I ′V (un)un,1 =

∫
RN

(∇un∇un,1 + V (x)unun,1)dx−
∫
RN

f(un)un,1dx

=

∫
RN

(
|∇un,1|2 +∇ū∇un,1 + V (x)u2n,1 + V (x)ūun,1

)
dx−

∫
RN

f(un)un,1dx

= ∥un,1∥2V + ⟨ū, un,1⟩V −
∫
RN

f(un)un,1dx,

and thus, using that I ′V (ū)un,1 = 0, we obtain

∥un,1∥2V = I ′V (un)un,1 − ⟨ū, un,1⟩V +

∫
RN

f(un)un,1dx

= I ′V (un)un,1 −
∫
RN

f(ū)un,1dx+

∫
RN

f(un)un,1dx. (2.3.9)

Since (un) is bounded in H1
G(RN), it follows from definition of un,1 that (un,1) is a bounded

sequence. Thus, as I ′V (un) → 0 inH−1
G (RN), by hypothesis, it follows that I ′V (un)un,1 → 0.

By assumption (f̃2), Hölder inequality and by the continuity of the embedding of H1
G(RN)

into Lq(RN), q ∈ (2, 2∗), we have∣∣∣∣∫
RN

f(un)un,1dx

∣∣∣∣ ≤ ∫
RN

|f(un)||un,1|dx ≤ A1

∫
RN

(|un|p1 + |un|p2)|un,1|dx

≤ A1

[
∥un∥p1p1+1∥un,1∥p1+1 + ∥un∥p2p2+1∥un,1∥p2+1

]
≤ C[∥un∥p1V ∥un,1∥p1+1 + ∥un∥p2V ∥un,1∥p2+1] . (2.3.10)

So if (2.3.8) holds, as (un,1) is bounded, it follows from Lions’ lemma [29] that, as n→ ∞,
un,1 → 0 in Lq(RN), for all q ∈ (2, 2∗). Since 2 < p1 + 1 ≤ p2 + 1 < 2∗, we conclude that

∥un,1∥p1+1 → 0 and ∥un,1∥p2+1 → 0. (2.3.11)
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As (un) is bounded in H1
G(RN), it follows from (2.3.10) and (2.3.11) that∫

RN

f(un)un,1dx→ 0.

Similarly, we have ∫
RN

f(ū)un,1dx→ 0.

Therefore, doing n→ ∞ in (2.3.9), we conclude that

un,1 → 0, i.e. un → ū strongly in H1
G(RN),

which shows that the lemma occurs for k = 0.
Suppose now that there exists δ > 0 such that

lim
n→∞

(
sup

y ∈RN

∫
B1(y)

|un,1|2dx

)
= δ. (2.3.12)

We showed in Lemma 2.3.2 that the following statements hold:

(a) ∥un∥2V = ∥un,1∥2 + ∥ū∥2V + on(1);

(b)
∫
RN

|f(un)− f(ū)||φ|dx = on(1), for every φ ∈ C∞
0 (RN);

(c)
∫
RN

[F (un)− F (un,1)− F (ū)]dx = on(1);

(d) f(un)− f(un,1) → f(ū) in H−1
G (RN).

Therefore, it follows from (a) and (c) that

IV (un)− I∞(un,1)− IV (ū) =
1

2
∥un∥2V −

∫
RN

F (un)dx−
1

2
∥un,1∥2 +

∫
RN

F (un,1)dx

− 1

2
∥ū∥2V +

∫
RN

F (ū)dx

=
1

2

[
∥un∥2V − ∥un,1∥2 − ∥ū∥2V

]
−
∫
RN

[F (un)− F (un,1)− F (ū)]dx

= on(1),

and thus,
IV (un) = IV (ū) + I∞(un,1) + on(1). (2.3.13)
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Next, we will show that I ′V (un,1) → 0 in H−1
G (RN). Indeed, by hypothesis, I ′V (un) → 0 in

H−1
G (RN) and so it follows that I ′V (un)v → 0, for any v ∈ H1

G(RN). So, we have

on(1) = I ′V (un)v = I ′V (un,1 + ū)v

=

∫
RN

(∇un,1∇v + V (x)un,1v)dx+

∫
RN

(∇ū∇v + V (x)ūv)dx

−
∫
RN

f(un,1 + ū)vdx

= I ′V (un,1)v +

∫
RN

f(un,1)vdx+ I ′V (ū)v +

∫
RN

f(ū)vdx

−
∫
RN

f(un)vdx

= I ′V (un,1)v + I ′V (ū)v −
∫
RN

[f(un)− f(un,1)− f(ū)]vdx.

The fact that I ′V (ū) = 0 and item (d) imply that

I ′V (un,1)v = on(1), for all v ∈ H1
G(RN),

which shows that, as n → ∞, I ′V (un,1) → 0 in H−1
G (RN). Now observe that, by (2.3.12),

we obtain a sequence (y1n) ⊂ RN such that∫
B1(y1n)

|un,1(x)|2dx >
δ

2
. (2.3.14)

Consider a sequence (v1n) defined by

v1n := un,1(·+ y1n).

Since (un,1) is bounded in H1
G(RN), then (v1n) is bounded in H1(RN), and so we have, up

to a subsequence, 
v1n ⇀ w1, weakly in H1(RN),

v1n → w1, strongly in L2
loc(RN),

v1n(x) → w1(x), a.e. x ∈ RN .

Since v1n → w1 in L2
loc(RN) and∫
B1(0)

∣∣v1n(x)∣∣2 dx =

∫
B1(0)

∣∣un,1(x+ y1n)
∣∣2dx > δ/2,
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it follows that ∫
B1(0)

|w1(x)|2dx ≥ δ/2,

and so w1 ̸= 0. The fact that un,1 ⇀ 0 in H1
G(RN) implies that (y1n) is unbounded and,

passing to a subsequence, we may assume that |y1n| → ∞.
So, about the sequence (un,1) the following statements hold:

(a1) ∥un∥2V = ∥un,1∥2 + ∥ū∥2V + on(1);

(b1) IV (un) = IV (ū) + I∞(un,1) + on(1);

(c1) I ′V (un,1) → 0 in H−1
G (RN).

Next, we shall show that w1 is a nontrivial solution of the limit problem (P∞). So, as
(un,1) ⊂ H1

G(RN), by Lemma 2.2.3, we have I ′V (un,1)ṽ = 0 for any ṽ ∈
(
H1

G(RN)
)⊥, and

so I ′V (un,1) → 0 in H−1(RN). Moreover, given φ ∈ C∞
0 (RN), as un,1 → 0 in L2

loc(RN),
using (2.1.3) and Hölder inequality, we get∫

RN

|V (x)− V∞||un,1||φ| dx =

∫
supp(φ)

|V (x)− V∞||un,1||φ| dx

≤ A2

(∫
supp(φ)

|un,1|2dx
)1/2(∫

supp(φ)

|φ|2dx
)1/2

≤ C∥φ∥V
(∫

supp(φ)

|un,1|2dx
)1/2

= on(1), (2.3.15)

and so,

on(1) = I ′V (un,1)φ =

∫
RN

(∇un,1∇φ+ V (x)un,1φ)dx−
∫
RN

f(un,1)φdx

=

∫
RN

(∇un,1∇φ+ V∞un,1φ)dx−
∫
RN

f(un,1)φdx+

∫
RN

[V (x)− V∞]un,1φdx

= I ′∞(un,1)φ+

∫
RN

[V (x)− V∞]un,1φdx

= I ′∞(un,1)φ+ on(1).

Therefore,
I ′∞(un,1)φ = on(1), for all φ ∈ C∞

0 (RN),

and it implies that, as n→ ∞, I ′∞(un,1) → 0 in H−1(RN). So, for any ε > 0, there exists
n0 ∈ N such that n ≥ n0 implies that

∥I ′∞(un,1)∥H−1(RN ) = sup
∥φ∥≤1

|I ′∞(un,1)φ| < ε, φ ∈ C∞
0 (RN).
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Given φ ∈ C∞
0 (RN), we define φ1

n := φ(· − y1n). Thus,

sup
∥φ∥≤1

|I ′∞(v1n)φ| = sup
∥φ∥≤1

|I ′∞(un,1(·+ y1n))φ| = sup
∥φ(·−y1n)∥≤1

|I ′∞(un,1)φ(· − y1n)|

= sup
∥φ1

n∥≤1

|I ′∞(un,1)φ
1
n| ≤ sup

∥ϕ∥≤1

|I ′∞(un,1)ϕ| < ε, ϕ ∈ C∞
0 (RN),

for n ∈ N large enough. So, for any φ ∈ C∞
0 (RN), of weak convergence v1n ⇀ w1 in

H1(RN), we get∫
RN

[
∇v1n∇φ+ V (x)v1nφ

]
dx =

∫
RN

[
∇w1∇φ+ V (x)w1φ

]
dx+ on(1)

and arguing as in (2.3.15), as v1n → w1 in L2
loc(RN), we obtain∫

RN

[V (x)− V∞]v1nφdx =

∫
RN

[V (x)− V∞]w1φdx+ on(1).

Furthermore, using the same ideas applied in Lemma 2.3.2(b), it follows that∫
RN

f(v1n)φdx =

∫
RN

f(w1)φdx+ on(1).

Therefore, for any φ ∈ C∞
0 (RN), we have

on(1) = I ′∞(v1n)φ =

∫
RN

[
∇v1n∇φ+ V∞v

1
nφ
]
dx−

∫
RN

f(v1n)φdx

=

∫
RN

[
∇v1n∇φ+ V (x)v1nφ

]
dx−

∫
RN

f(v1n)φdx−
∫
RN

[V (x)− V∞]v1nφdx

=

∫
RN

[
∇w1∇φ+ V (x)w1φ

]
dx−

∫
RN

f(w1)φdx

−
∫
RN

[V (x)− V∞]w1φdx+ on(1)

=

∫
RN

[
∇w1∇φ+ V∞w

1φ
]
dx−

∫
RN

f(w1)φdx+ on(1)

= I ′∞(w1)φ+ on(1),

which shows that I ′∞(w1)φ = 0, and so, w1 is a nontrivial solution of the limit problem
(P∞).

Let us define now
un,2 := un,1 − w1(· − y1n).

So, as before, we have
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(a2) ∥un∥2V = ∥un,2∥2 + ∥ū∥2V + ∥w1∥2 + on(1);

(b2) IV (un) = IV (ū) + I∞(un,2) + I∞(w1) + on(1);

(c2) I ′∞(un,2) → 0 in H−1(RN).

The verification of these items follows the same argument used previously in the analogous
items for the sequence (un,1), with the necessary adaptations. Indeed, if follows from (a1)
that

∥un,2∥2 = ⟨un,1 − w1(· − y1n), un,1 − w1(· − y1n)⟩

= ∥un,1∥2 + ∥w1(· − y1n)∥2 − 2⟨un,1, w1(· − y1n)⟩

= on(1) + ∥un∥2V − ∥ū∥2V + ∥w1(· − y1n)∥2 − 2⟨un,1, w1(· − y1n)⟩. (2.3.16)

Making a change of variables, we obtain

∥w1(· − y1n)∥2 =

∫
RN

[
|∇w1(x− y1n)|2 + V∞(w1(x− y1n))

2
]
dx

=

∫
RN

[
|∇w1(x)|2 + V∞(w1(x))2

]
dx = ∥w1∥2. (2.3.17)

Moreover, we have 
v1n ⇀ w1, weakly in H1(RN),

v1n → w1, strongly in L2
loc(RN),

v1n(x) → w1(x), a.e. x ∈ RN .

Thus, for any φ ∈ C∞
0 (RN), using (2.1.3) and Hölder inequality, we obtain∫

RN

[
∇v1n∇φ+ V∞v

1
nφ
]
dx =

∫
RN

[
∇v1n∇φ+ V (x)v1nφ

]
dx−

∫
RN

[V (x)− V∞]v1nφdx

=

∫
RN

[
∇w1∇φ+ V (x)w1φ

]
dx

−
∫
RN

[V (x)− V∞]w1φdx+ on(1)

=

∫
RN

[
∇w1∇φ+ V∞w

1φ
]
dx+ on(1)

and so, as C∞
0 (RN) is dense in H1(RN), it follows that∫
RN

[
∇v1n∇u+ V∞v

1
nu
]
dx =

∫
RN

[
∇w1∇u+ V∞w

1u
]
dx+ on(1),
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for all u ∈ H1(RN). In particular, for u = w1, we get∫
RN

[
∇v1n∇w1 + V∞v

1
nw

1
]
dx =

∫
RN

[
|∇w1|2 + V∞(w1)2

]
dx+ on(1)

= ∥w1∥2 + on(1).

So, we have

⟨un,1, w1(· − y1n)⟩ =
∫
RN

[
∇un,1(x)∇w1(x− y1n) + V∞un,1(x)w

1(x− y1n)
]
dx

=

∫
RN

[
∇un,1(x+ y1n)∇w1(x) + V∞un,1(x+ y1n)w

1(x)
]
dx

=

∫
RN

[
∇v1n(x)∇w1(x) + V∞v

1
n(x)w

1(x)
]
dx

= ∥w1∥2 + on(1). (2.3.18)

Substituting (2.3.17) and (2.3.18) in (2.3.16), it follows that

∥un∥2V = ∥un,2∥2 + ∥ū∥2V + ∥w1∥2 + on(1),

proving (a2).
Using the previous results obtained in (a2) and (c), we have

IV (un)− IV (ū)− I∞(un,2)− I∞(w1)

=
1

2
∥un∥2V −

∫
RN

F (un)dx−
1

2
∥ū∥2V +

∫
RN

F (ū)dx

− 1

2
∥un,2∥2 +

∫
RN

F (un,2)dx−
1

2
∥w1∥2 +

∫
RN

F (w1)dx

=
1

2

[
∥un∥2V − ∥ū∥2V − ∥un,2∥2 − ∥w1∥2

]
−
∫
RN

[F (un)− F (un,1)− F (ū)]dx

−
∫
RN

[F (un,1)− F (un,2)]dx+

∫
RN

F (w1)dx

= on(1)−
∫
RN

[
F (un,1(x+ y1n))− F (un,2(x+ y1n))

]
dx+

∫
RN

F (w1)dx

= on(1)−
∫
RN

[
F (un,1(x+ y1n))− F (un,2(x+ y1n))− F (w1(x))

]
dx

= on(1)−
∫
RN

[
F (v1n)− F (v1n − w1))− F (w1)

]
dx.

Following the same ideas as Lemma 2.3.2(c), changing the space H1
G(RN) by H1(RN), un



2.3 Bounded Palais-Smale sequences 92

by v1n and u by w1, we conclude that∫
RN

[
F (v1n)− F (v1n − w1))− F (w1)

]
dx = on(1),

and so
IV (un) = IV (ū) + I∞(un,2) + I∞(w1) + on(1),

which proves (b2).
Next, we will show that I ′∞(un,2) → 0 in H−1(RN). The fact that I ′V (un,1) → 0 in
H−1

G (RN) implies that, by Lemma 2.2.3, I ′V (un,1) → 0 in H−1(RN), and so I ′V (un,1)φ→ 0,
for any φ ∈ C∞

0 (RN). On the other hand, as I ′∞(w1) = 0, we have

I ′V (un,1)φ = I ′V (un,2 + w1(· − y1n))φ

=

∫
RN

(∇un,2(x)∇φ(x) + V (x)un,2(x)φ(x))dx

+

∫
RN

(
∇w1(x− y1n)∇φ(x) + V (x)w1(x− y1n)φ(x)

)
dx

−
∫
RN

f(un,2(x) + w1(x− y1n))φ(x)dx

= I ′V (un,2)φ+

∫
RN

f(un,2(x))φ(x)dx

+

∫
RN

(
∇w1(x)∇φ(x+ y1n) + (x+ y1n)w

1(x)φ(x+ y1n)
)
dx

−
∫
RN

f(un,1(x))φ(x)dx

= I ′V (un,2)φ+

∫
RN

f(un,2(x))φ(x)dx

+

∫
RN

(
∇w1(x)∇φ(x+ y1n) + V∞w

1(x)φ(x+ y1n)
)
dx

+

∫
RN

[
V (x+ y1n)− V∞

]
w1(x)φ(x+ y1n)dx−

∫
RN

f(un,1(x))φ(x)dx

= I ′V (un,2)φ+

∫
RN

f(un,2(x))φ(x)dx

+ I ′∞(w1)φ(·+ y1n) +

∫
RN

f(w1(x))φ(x+ y1n)dx

+

∫
RN

[
V (x+ y1n)− V∞

]
w1(x)φ(x+ y1n)dx−

∫
RN

f(un,1(x))φ(x)dx

= I ′V (un,2)φ+

∫
RN

[
V (x+ y1n)− V∞

]
w1(x)φ(x+ y1n)dx

−
∫
RN

[
f(un,1(x+ y1n))− f(un,2(x+ y1n))− f(w1(x))

]
φ(x+ y1n)dx.
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Using (Ṽ1) and applying Lebesgue dominated convergence theorem, it follows that∫
RN

[
V (x+ y1n)− V∞

]
w1(x)φ(x+ y1n)dx = on(1)

and, following the same ideas as in Lemma 2.3.2(d), we have∫
RN

[
f(un,1(x+ y1n))− f(un,2(x+ y1n))− f(w1(x))

]
φ(x+ y1n)dx

=

∫
RN

[
f(v1n)− f(v1n − w1)− f(w1)

]
φ(x+ y1n)dx = on(1).

Hence,
I ′V (un,1)φ = I ′V (un,2)φ+ on(1), for all φ ∈ C∞

0 (RN),

which shows that, as n → ∞, I ′V (un,2) → 0 in H−1(RN). Furthermore, arguing as in
(2.3.15), we get ∫

RN

|V (x)− V∞||un,2||φ| dx = on(1),

and thus,

on(1) = I ′V (un,2)φ =

∫
RN

(∇un,2∇φ+ V (x)un,2φ)dx−
∫
RN

f(un,2)φdx

=

∫
RN

(∇un,2∇φ+ V∞un,2φ)dx−
∫
RN

f(un,2)φdx+

∫
RN

[V (x)− V∞]un,2φdx

= I ′∞(un,2)φ+

∫
RN

[V (x)− V∞]un,2φdx

= I ′∞(un,2)φ+ on(1).

Therefore,
I ′∞(un,2)φ = on(1), for all φ ∈ C∞

0 (RN),

and so, as n→ ∞, I ′∞(un,2) → 0 in H−1(RN), proving (c2).
Thus, if un,2 → 0 strongly in H1(RN), we have completed the proof. Otherwise, if

un,2 ⇀ 0 weakly in H1(RN) and does not converge strongly to zero, we take un,3 :=

un,2 − w2(· − y2n) and repeat the argument. Hence, we obtain

IV (un) = IV (ū) + I∞(w1) + I∞(w2) + on(1).

Continuing this way, we get a sequence of points (yjn) ⊂ RN such that |yjn| → ∞,
|yjn − yin| → ∞ if i ̸= j and sequences of functions un,j := un,j−1 − wj−1(· − yj−1

n ), j ≥ 2,
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such that
un,j(·+ yjn)⇀ wj in H1(RN),

where wj is a nontrivial solution of the limit problem (P∞). Since I∞(wj) ≥ m = p∞ and
IV (un) → c, there exists a positive integer k such that

IV (un) = IV (ū) +
k∑

j=1

I∞(wj) + on(1),

and the proof of lemma is complete.

Note that as in Remark 1.3.7 in Chapter 1, if u ̸≡ 0 is a solution of (PG) then u ∈ PG
V

and it holds IV (u) > 0.

Corollary 2.3.4. Assume that (Ṽ1)–(Ṽ3) and (f̃1)–(f̃4) hold true. Let (un) ⊂ H1
G(RN)

be a bounded (PS)c-sequence for IV restricted to H1
G(RN). If 0 < c < ℓ(G)p∞, where p∞

is given in (2.2.2), then the functional IV has a nontrivial critical point ū ∈ H1
G(RN) such

that IV (ū) = c.

Proof. To prove this corollary, just follow the same ideas applied in Corollary 1.3.8, sub-
stituting D1,2(RN) by H1(RN).

2.4 Existence of a critical point

In this section we will prove the main result of this chapter. Its proof requires some
important estimates and the previous lemmas.

In what follows, for simplicity, we will consider G = O(N − 1) × Z2 ⊂ O(N), where
Z2 := {id,−id}, ℓ(G) = 2 and dG = 2. That is, for all g ∈ G, we have

g(x1, · · · , xN−1, xN) = (g1(x1, · · · , xN−1),±xN),

where g1 ∈ O(N − 1). Moreover, we will denote y = (0, · · · , 0, 1) ∈ RN and w a ground
state solution of the limit problem (P∞), which is positive, radially symmetric and de-
creasing in the radial direction, such that I∞(w) = m. Observe that, for any g ∈ G and
x ∈ RN , we have w(gx) = w(|gx|) = w(|x|) = w(x) which shows that w ∈ H1

G(RN).
As in the first chapter, we will construct a positive solution of (PG) exploiting the

interaction of two translated bumps. Let us denote Br(x0) := {x ∈ RN : |x − x0| ≤ r}.
For any R > 0 and y = (0, · · · , 0, 1) ∈ RN , we define

wR
− := w(· −Ry), wR

+ := w(·+Ry). (2.4.1)
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In the next lemmas we study the interaction of powers of these two translated solitons.

Lemma 2.4.1. If µ2 > µ1 ≥ 0, then there exists C1 > 0 such that, for all x1, x2 ∈ RN ,∫
RN

e−µ1|x−x1|e−µ2|x−x2|dx ≤ C1e
−µ1|x1−x2|.

If µ2 > µ3 ≥ µ1 ≥ 0, then there exists C2 > 0 such that, for all x1, x2, x3 ∈ RN ,∫
RN

e−µ1|x−x1|e−µ2|x−x2|e−µ3|x−x3|dx ≤ C2e
−µ1

2
(|x1−x2|+|x1−x3|+|x2−x3|).

Proof. Note that

µ1|x1 − x2|+ (µ2 − µ1)|x− x2| ≤ µ1(|x− x1|+ |x− x2|) + (µ2 − µ1)|x− x2|

= µ1|x− x1|+ µ2|x− x2|.

Similarly, we also obtain the following inequalities

µ1|x1 − x3|+ (µ3 − µ1)|x− x3| ≤ µ1|x− x1|+ µ3|x− x3|

and
µ3|x3 − x2|+ (µ2 − µ3)|x− x2| ≤ µ3|x− x3|+ µ2|x− x2|.

Therefore, by first inequality, there exists C1 > 0 such that∫
RN

e−µ1|x−x1|e−µ2|x−x2|dx ≤
∫
RN

e−µ1|x1−x2|e−(µ2−µ1)|x−x2|dx ≤ C1e
−µ1|x1−x2|.

On the other hand, as µ2 > µ1 and µ3 ≥ µ1, it follows that

µ1(|x1 − x2|+ |x1 − x3|+ |x2 − x3|) + (µ2 − µ1)|x− x2|

≤ 2(µ1|x− x1|+ µ2|x− x2|+ µ3|x− x3|) ,

and so, there exists C2 > 0 such that∫
RN

e−µ1|x−x1|e−µ2|x−x2|e−µ3|x−x3|dx ≤
∫
RN

e−
µ1
2
(|x1−x2|+|x1−x3|+|x2−x3|)e−

(µ2−µ1)
2

|x−x2|dx

≤ C2e
−µ1

2
(|x1−x2|+|x1−x3|+|x2−x3|).

Lemma 2.4.2. Let 0 ≤ q1 < q2 < ∞. Then, for any R ≥ 1, there exist constants
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C1, C2 > 0 such that the following inequalities hold:∫
RN

(
wR

−
)q2 (

wR
+

)q1 ≤ C1R
−q1

N−1
2 e−2q1

√
V∞R (2.4.2)

and ∫
RN

(
wR

+

)q2 (
wR

−
)q1 ≤ C2R

−q1
N−1

2 e−2q1
√
V∞R. (2.4.3)

Proof. Note that, by making a change of variables and using (2.1.1), we obtain∫
RN

(
wR

−
)q2 (

wR
+

)q1
dx =

∫
RN

(w(x))q2 (w(x+ 2Ry))q1dx

≤ C

∫
RN

(1 + |x|)−q2
N−1

2 e−q2
√
V∞|x|(1 + |x+ 2Ry|)−q1

N−1
2 e−q1

√
V∞|x+2Ry|dx

≤ C

∫
BR(0)

e−q2
√
V∞|x|(1 + |x+ 2Ry|)−q1

N−1
2 e−q1

√
V∞|x+2Ry|dx

+ C

∫
RN\BR(0)

(1 + |x|)−q2
N−1

2 e−q2
√
V∞|x|e−q1

√
V∞|x+2Ry|dx

≤ CR−q1
N−1

2

∫
BR(0)

e−q2
√
V∞|x|e−q1

√
V∞|x+2Ry|dx

+ CR−q2
N−1

2

∫
RN\BR(0)

e−q2
√
V∞|x|e−q1

√
V∞|x+2Ry|dx

≤ CR−q1
N−1

2

∫
RN

e−q2
√
V∞|x|e−q1

√
V∞|x+2Ry|dx.

Therefore, by Lemma 2.4.1, there exists a constant C1 > 0 such that∫
RN

(
wR

−
)q2 (

wR
+

)q1 ≤ C1R
−q1

N−1
2 e−2q1

√
V∞R.

Similarly, we get a constant C2 > 0 such that∫
RN

(
wR

+

)q2 (
wR

−
)q1 ≤ C2R

−q1
N−1

2 e−2q1
√
V∞R.

Next, let us define

εR :=

∫
RN

f
(
wR

−
)
wR

+ dx =

∫
RN

f
(
wR

+

)
wR

− dx (2.4.4)

and we will obtain some estimates for εR.
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Lemma 2.4.3. Assume that (f̃1)–(f̃2) hold true. Then, for any R ≥ 1, there exists a
constant C3 > 0 such that

εR ≤ C3R
−N−1

2 e−2
√
V∞R. (2.4.5)

Proof. Using hypothesis (f̃2), we obtain

εR =

∫
RN

f
(
wR

+y

)
wR

−y dx

≤ A1

∫
RN

(
wR

+y

)p1
wR

−y dx+ A1

∫
RN

(
wR

+y

)p2
wR

−y dx.

Since 1 < p1 ≤ p2 < 2∗ − 1, applying Lemma 2.4.2 with q1 = 1 and q2 = p1 or p2, we find
C3 > 0 such that (2.4.5) holds true.

Note that −∆w(0)+V∞w(0) = f(w(0)), where w(0) is maximum point of the positive
radial ground state solution w of the limit problem (P∞). Hence, −∆w(0) ≥ 0 and so
f(w(0)) − V∞w(0) ≥ 0, or equivalently f(w(0))/w(0) ≥ V∞ > 0. Since the function
f(s)/s is continuous and f(w(0))/w(0) ≥ V∞ > 0, there exists r0 = r0(f, V∞, w) > 0

(which depends only on f , V∞ and w) such that f(w(x))/w(x) ≥ V∞/2 > 0 in the ball
Br0(0).

Lemma 2.4.4. Assume that (f̃1)–(f̃2) hold true. Then, for any R ≥ 1, there exists a
constant C4 > 0 such that

εR ≥ C4R
−N−1

2 e−2
√
V∞R. (2.4.6)

Proof. In the above considerations, since r0 is a constant independent of R and y, we can
assume without loss of generality that r0 = 1. So it follows that f(w(x))/w(x) ≥ V∞/2 > 0

in the ball B1(0). Then, by making a change of variables and using (2.1.1), for any R ≥ 1,
we obtain

εR =

∫
RN

f(w(x−Ry))w(x+Ry)dx =

∫
RN

f(w(z))w(z + 2Ry)dz

≥
∫
B1(0)

f(w(z))w(z + 2Ry)dz ≥
∫
B1(0)

V∞
2
w(z)w(z + 2Ry)dz

≥ C

∫
B1(0)

(1 + |z|)−
N−1

2 e−
√
V∞|z|(1 + |z + 2Ry|)−

N−1
2 e−

√
V∞|z+2Ry|dz

≥ C

∫
B1(0)

(1 + |z|)−
N−1

2 e−
√
V∞|z|(1 + |z + 2Ry|)−

N−1
2 e−

√
V∞|z|e−2

√
V∞Rdz

≥ C |B1(0)| e−2
√
V∞R−N−1

2 e−2
√
V∞R ≥ CR−N−1

2 e−2
√
V∞R.
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Therefore, for any R ≥ 1, there exists a constant C4 > 0 such that

εR ≥ C4R
−N−1

2 e−2
√
V∞R.

We will also need the estimates from [1, Lemma 2.2]. Let us define the sum of the two
translated solitons

UR := wR
+ + wR

−, (2.4.7)

and present some of its properties and estimates. Following the same ideas applied in the
first chapter, we can conclude that UR ∈ H1

G(RN).

Corollary 2.4.5. Assume that (f̃1)–(f̃2) hold true. Then, it holds∫
RN

∣∣F (UR)− F (wR
−)− F (wR

+)− f(wR
−)w

R
+ − f(wR

+)w
R
−
∣∣ dx = o(εR). (2.4.8)

Proof. Set w− := wR
−, w+ := wR

+ and U := UR. Using [1, Lemma 2.2], since w−, w+ and
U are bounded uniformly R, there exist constants C > 0 and σ ∈ (1/2, 1] such that∫

RN

|F (U)− F (w−)− F (w+)− f(w−)w+ − f(w+)w−| dx ≤ C

∫
RN

(w−w+)
2σ dx.

Note that, by (2.1.1), we obtain∫
RN

(w−w+)
2σdx =

∫
RN

(w(x−Ry))2σ(w(x+Ry))2σdx =

∫
RN

(w(x))2σ(w(x+ 2Ry))2σdx

≤ C

∫
RN

(1 + |x|)−σ(N−1)e−2σ
√
V∞|x|(1 + |x+ 2Ry|)−σ(N−1)e−2σ

√
V∞|x+2Ry|dx

≤ C

∫
BR(0)

e−2σ
√
V∞|x|(1 + |x+ 2Ry|)−σ(N−1)e−2σ

√
V∞|x+2Ry|dx

+C

∫
RN\BR(0)

(1 + |x|)−σ(N−1)e−2σ
√
V∞|x|e−2σ

√
V∞|x+2Ry|dx

≤ CR−σ(N−1)

∫
BR(0)

e−2σ
√
V∞|x|e−2σ

√
V∞|x+2Ry|dx

+CR−σ(N−1)

∫
RN\BR(0)

e−2σ
√
V∞|x|e−2σ

√
V∞|x+2Ry|dx

≤ CR−σ(N−1)

∫
RN

e−2σ
√
V∞|x|e−2σ

√
V∞|x+2Ry|dx

≤ CR−σ(N−1)

∫
RN

e−
√
V∞|x|e−2σ

√
V∞|x+2Ry|dx.
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Hence, it follows from Lemma 2.4.2, with q1 = 1 and q2 = 2σ > 1, that there exists a
constant C1 > 0 such that∫

RN

(w−w+)
2σdx ≤ C1R

−σ(N−1)e−2
√
V∞R < C1R

−N−1
2 e−2

√
V∞R,

which yields (2.4.8), proving the corollary.

Lemma 2.4.6. Assume that (Ṽ1)–(Ṽ2) and (f̃1)–(f̃3) hold true and let µ ∈ (0, 1) be.
Then, for any R ≥ 1 and y ∈ ∂B1(0), the following statements hold:∫

RN

∣∣∇wR
+y · ∇wR

−y

∣∣ dx ≤ C1R
−N−1

2 e−2µ
√
V∞R = oR(1) (2.4.9)

and ∫
RN

wR
+y · wR

−y dx ≤ C2R
−N−1

2 e−2µ
√
V∞R = oR(1), (2.4.10)

where oR(1) → 0 as R → +∞.

Proof. Note that, by making a change of variables and using (2.1.1), we obtain∫
RN

∣∣∇wR
+y · ∇wR

−y

∣∣ dx =

∫
RN

|∇w(x−Ry)∇w(x+Ry)| dx

≤ C

∫
RN

(1 + |x|)−
N−1

2 e−
√
V∞|x|(1 + |x+ 2Ry|)−

N−1
2 e−

√
V∞|x+2Ry|dx

≤ C

∫
BR(0)

e−
√
V∞|x|(1 + |x+ 2Ry|)−

N−1
2 e−

√
V∞|x+2Ry|dx

+ C

∫
RN\BR(0)

(1 + |x|)−
N−1

2 e−
√
V∞|x|e−

√
V∞|x+2Ry|dx

≤ CR−N−1
2

∫
BR(0)

e−
√
V∞|x|e−

√
V∞|x+2Ry|dx

+ CR−N−1
2

∫
RN\BR(0)

e−
√
V∞|x|e−

√
V∞|x+2Ry|dx

≤ CR−N−1
2

∫
RN

e−
√
V∞|x|e−

√
V∞|x+2Ry|dx.

Since µ ∈ (0, 1), it follows that∫
RN

∣∣∇wR
+y · ∇wR

−y

∣∣ dx ≤ CR−N−1
2

∫
RN

e−µ
√
V∞|x|e−

√
V∞|x+2Ry|dx,

and so, by Lemma 2.4.1, there exists a constant C1 > 0 such that∫
RN

∣∣∇wR
+y · ∇wR

−y

∣∣ dx ≤ C1R
−N−1

2 e−2µ
√
V∞R,



2.4 Existence of a critical point 100

which proves (2.4.9). Similarly, we show that (2.4.10) also holds true, and the proof of
the lemma is complete.

Lemma 2.4.7. Assume that (Ṽ1)–(Ṽ2) and (f̃1)–(f̃3) hold true. Then, the following
statements hold:

(a)
∫
RN

∣∣∇UR
∣∣2 dx = 2

∫
RN

|∇w|2dx+ oR(1);

(b)
∫
RN

(
UR
)2
dx = 2

∫
RN

w2dx+ oR(1);

(c)
∫
RN

F
(
UR
)
dx = 2

∫
RN

F (w)dx+ oR(1);

(d)
∫
RN

(
F
(
UR
)
− V∞

2

(
UR
)2)

dx =
2

2∗

∫
RN

|∇w|2dx+ oR(1),

where oR(1) → 0 as R → +∞.

Proof. Set w− := wR
−, w+ := wR

+ and U := UR. Then,∫
RN

|∇U |2dx =

∫
RN

|∇w|2dx+ 2

∫
RN

∇w− · ∇w+dx+

∫
RN

|∇w|2dx

= 2

∫
RN

|∇w|2dx+ 2

∫
RN

∇w− · ∇w+ dx.

By (2.4.9), we have ∫
RN

|∇w− · ∇w+| dx = oR(1),

proving item (a), and by (2.4.10), we have∫
RN

w−w+ dx = oR(1),

so this implies that∫
RN

U2dx =

∫
RN

w2dx+ 2

∫
RN

w−w+ dx+

∫
RN

w2dx = 2

∫
RN

w2dx+ oR(1),

proving item (b). We also have∫
RN

F (U)dx− 2

∫
RN

F (w)dx =

∫
RN

F (U)dx−
∫
RN

F (w−)dx−
∫
RN

F (w+)dx

=

∫
RN

[F (U)− F (w−)− F (w+)− f(w−)w+ − f(w+)w−]dx+

+

∫
RN

[f(w−)w+ + f(w+)w−]dx.
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By Corollary 2.4.5, it follows that∫
RN

|F (U)− F (w−)− F (w+)− f(w−)w+ − f(w+)w−| dx = oR(1). (2.4.11)

On the other hand, by definition (2.4.4) and Lemma 2.4.3, we also have∫
RN

[f(w−)w+ + f(w+)w−] dx = 2εR = oR(1), (2.4.12)

and so (c) follows. Now, we denote

G∞(u) := F (u)− V∞
2
u2. (2.4.13)

Thus, using (2.4.10), (2.4.11) and (2.4.12), we obtain∫
RN

G∞(U)dx =

∫
RN

(
F (w− + w+)−

V∞
2

(w− + w+)
2

)
dx

=

∫
RN

(
F (w−)−

V∞
2

(w−)
2

)
dx+

∫
RN

(
F (w+)−

V∞
2

(w+)
2

)
dx

+

∫
RN

[F (w− + w+)− F (w−)− F (w+)] dx−
∫
RN

V∞w−w+ dx

= 2

∫
RN

G∞(w)dx−
∫
RN

V∞w−w+ dx+

∫
RN

[f(w−)w+ + f(w+)w−] dx

+

∫
RN

[F (w− + w+)− F (w−)− F (w+)− f(w−)w+ − f(w+)w−] dx

= 2

∫
RN

G∞(w)dx+ oR(1).

Since w is a solution of problem (P∞), it follows that∫
RN

G∞(w)dx =

∫
RN

(
F (w)− V∞

2
w2

)
dx =

N − 2

2N

∫
RN

|∇w|2dx,

which proves (d), concluding the proof of lemma.

Lemma 2.4.8. Assume that (Ṽ1), (Ṽ3) and (Ṽ4) hold true and let a ≤ s ≤ b, for positive
numbers a and b. Then, the following statements hold:

(a)
∫
RN

|V (sx)− V∞|
(
UR
)2
dx = oR(1);

(b)
∫
RN

|∇V (sx) · (sx)|
(
UR
)2
dx = oR(1);
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(c)
∫
RN

|(sx)H(sx)(sx)|
(
UR
)2
dx = oR(1),

where oR(1) → 0 as R → +∞.

Proof. Let us prove only the item (a). The other items can be proved analogously. To
simplify the notation, let us consider w− := wR

−, w+ := wR
+ and U := UR.

Let ε > 0 be given arbitrarily. Since ∥w∥22 =
∫
RN

w2dx > 0, using the hypothesis (Ṽ1),

we get τ > 0 large enough and fixed such that

|V (sx)− V∞| < ε

4∥w∥22

for any a ≤ s ≤ b and |x| ≥ τ . Hence,∫
|x|≥τ

|V (sx)− V∞|(w−)
2dx ≤ ε

4∥w∥22

∫
|x|≥τ

(w−)
2dx ≤ ε

4∥w∥22

∫
RN

w2dx =
ε

4
. (2.4.14)

On the other hand, for any a ≤ s ≤ b and R > max{1, τ}, using (2.1.3) and (2.1.1), we
obtain∫

|x|≤τ

|V (sx)− V∞|(w−)
2dx ≤ A2

∫
|x|≤τ

(w−)
2dx

≤ C

∫
|x|≤τ

(1 + |x−Ry|)1−N e−2
√
V∞|x−Ry|dx ≤ C

∫
|x|≤τ

e−2
√
V∞|x−Ry|dx

≤ C

∫
|x|≤τ

e−2
√
V∞(|Ry|−|x|)dx ≤ Ce−2

√
V∞(R−τ) |Bτ (0)| ≤ Ce−

√
V∞R. (2.4.15)

So by (2.4.14) and (2.4.15), it follows that∫
RN

|V (sx)− V∞|(w−)
2dx ≤ ε

4
+ Ce−

√
V∞R,

Similarly, for any a ≤ s ≤ b and R > max{1, τ}, we get∫
RN

|V (sx)− V∞|(w+)
2dx ≤ ε

4
+ Ce−

√
V∞R,

Therefore, for any a ≤ s ≤ b and R > max{1, τ}, as

U2 = (w− + w+)
2 ≤ 2 (w−)

2 + 2 (w+)
2 ,

it follows that ∫
RN

|V (sx)− V∞|U2dx ≤ ε+ Ce−
√
V∞R.
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Since ε > 0 was taken arbitrarily, we conclude that∫
RN

|V (sx)− V∞|U2dx = oR(1)

which proves item (a). Using (Ṽ3) and (Ṽ4), proceeding as before, we can prove (b) and
(c), respectively.

Lemma 2.4.9. Assume that (Ṽ1)–(Ṽ4) and (f̃1)–(f̃3) hold true. Then, there exists R0 ≥
1 such that for any R ≥ R0, there exists a unique positive constant s := SR such that

UR
( ·
s

)
∈ PG

V ,

where UR is given as in (2.4.7). Moreover, there exist σ0 ∈ (0, 1/2) and S0 > 1 such that
SR ∈ (σ0, S0) for any R ≥ R0. In addition, SR is a continuous function of the variable
R.

Proof. Denote w− := wR
− = w(· − Ry), w+ := wR

+ = w(·+ Ry) and U := UR = wR
− + wR

+.
Let ξ : (0,+∞) → R be defined by

ξ(s) := IV (U(·/s)) =
sN−2

2

∫
RN

|∇U |2dx+ sN

2

∫
RN

V (sx)U2dx− sN
∫
RN

F (U)dx.

Thus, U(·/s) ∈ PG
V if and only if ξ′(s) = 0, where

ξ′(s) =
N − 2

2
sN−3

∫
RN

|∇U |2dx

+NsN−3

[
s2
(
1

2

∫
RN

(
∇V (sx) · (sx)

N
+ V (sx)

)
U2dx−

∫
RN

F (U)dx

)]
.

Since s > 0, we have ξ′(s) = 0 if and only if

N − 2

2

∫
RN

|∇U |2dx = Ns2
[∫

RN

F (U)dx− 1

2

∫
RN

(
∇V (sx) · (sx)

N
+ V (sx)

)
U2dx

]
.

Note that∫
RN

U2dx =

∫
RN

(w− + w+)
2 dx ≤ 2

∫
RN

[
(w−)

2 + (w+)
2] dx = 4

∫
RN

w2dx,

which shows that ∥U∥2 is bounded uniformly for any R ≥ 1. Since
∫
RN |∇w|2dx > 0,

using assumptions (Ṽ1) and (Ṽ3) and Lemma 2.4.7, there exist R1 ≥ 1 sufficiently large
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and σ0 ∈ (0, 1/2) sufficiently small such that

N − 2

2

∫
RN

|∇U |2dx > Ns2
[∫

RN

F (U)dx− 1

2

∫
RN

(
∇V (sx) · (sx)

N
+ V (sx)

)
U2dx

]
,

and so it holds ξ′(s) > 0, for every s ∈ (0, σ0] and R ≥ R1.
Now let us define a function φ : (σ0,+∞) → R by

φ(s) = s2
[∫

RN

F (U)dx− 1

2

∫
RN

(
∇V (sx) · (sx)

N
+ V (sx)

)
U2dx

]
.

Note that, denoting

G∞(U) := F (U)− V∞
2
U2,

as in (2.4.13), we obtain

φ′(s) = 2s

[∫
RN

G∞(U)dx− 1

2

∫
RN

[V (sx)− V∞]U2dx

]
− s

2

[
(N + 3)

∫
RN

(
∇V (sx) · (sx)

N

)
U2dx+

∫
RN

(
(sx)H(sx)(sx)

N

)
U2dx

]
and so

φ′(s) ≥ 2s

[∫
RN

G∞(U)dx− 1

2

∫
RN

|V (sx)− V∞|U2dx

]
(2.4.16)

− s

2

[
(N + 3)

∫
RN

∣∣∣∣∇V (sx) · (sx)
N

∣∣∣∣U2dx+

∫
RN

∣∣∣∣(sx)H(sx)(sx)

N

∣∣∣∣U2dx

]
.

By Lemma 2.4.7(d), there exists R2 ≥ 1 sufficiently large such that

2

∫
RN

G∞(U)dx ≥ 1

2∗

∫
RN

|∇w|2dx, (2.4.17)

for every R ≥ R2. The bounds given by (2.1.3), the pointwise limit limR→∞ UR(x) = 0

and Lebesgue dominated convergence theorem or applying Lemma 2.4.8 imply that∫
RN

|V (sx)− V∞|U2dx+
N + 3

2

∫
RN

∣∣∣∣∇V (sx) · (sx)
N

∣∣∣∣U2dx

+
1

2

∫
RN

∣∣∣∣(sx)H(sx)(sx)

N

∣∣∣∣U2dx = oR(1).
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Thus, since
∫
RN |∇w|2dx > 0, there exists R3 ≥ 1 sufficiently large such that∫

RN

|V (sx)− V∞|U2dx+
N + 3

2

∫
RN

∣∣∣∣∇V (sx) · (sx)
N

∣∣∣∣U2dx

+
1

2

∫
RN

∣∣∣∣(sx)H(sx)(sx)

N

∣∣∣∣U2dx ≤ 1

2 · 2∗

∫
RN

|∇w|2dx, (2.4.18)

for every s > σ0 and R ≥ R3. Therefore, taking R4 := max{R1, R2, R3} and substituting
(2.4.17) and (2.4.18) in (2.4.16), we obtain

φ′(s) ≥ s

[
1

2∗

∫
RN

|∇w|2dx− 1

2 · 2∗

∫
RN

|∇w|2dx
]
>

σ0
2 · 2∗

∫
RN

|∇w|2dx > 0,

for every s > σ0 and R ≥ R4. This means that φ(s) is increasing for s > σ0 and R taken
sufficiently large. This implies that the term in the brackets for ξ′(s) is decreasing for
s > σ0, and goes to −∞ as s→ +∞. Therefore, there is a unique s = SR > σ0 such that
ξ′(s) = 0, i.e. UR (·/s) ∈ PG

V . Furthermore, again by Lemma 2.4.7(c) and (2.1.3), there
exist R5 ≥ 1, sufficiently large, and S0 > 1 such that ξ′(s) < 0, for all s > S0 and R ≥ R5.
Taking R0 = max{R4, R5} the result follows. Finally, from the uniform estimates for U ,
∇U , F (U) and G∞(U) with respect to R ≥ R0, the continuity of SR in this variable is
clear, and the proof is complete.

From here on, let us consider SR as obtained in Lemma 2.4.9, 0 < σ0 < SR < S0.

Lemma 2.4.10. Assume that (Ṽ1)–(Ṽ4) and (f̃1)–(f̃3) hold true. Then, it holds that

lim
R→+∞

SR = 1. (2.4.19)

Proof. The proof follows the same ideas as Lemma 1.4.10, changing J0 by J∞. By Lemma
2.4.9, there exist constants R0 ≥ 1, S0 > 1 and σ0 ∈ (0, 1/2) such that SR ∈ (σ0, S0) for
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every R ≥ R0. Denoting w− := wR
− = w(· −Ry) and w+ := wR

+ = w(·+Ry), we have

J∞(w− + w+) =
N − 2

2

∫
RN

|∇w− +∇w+|2 dx+
N

2

∫
RN

V∞(w− + w+)
2 dx

−N

∫
RN

F (w− + w+) dx

=
N − 2

2

∫
RN

|∇w|2dx−N

∫
RN

(
F (w)− V∞

2
w2

)
dx

+
N − 2

2

∫
RN

|∇w|2dx−N

∫
RN

(
F (w)− V∞

2
w2

)
dx

+(N − 2)

∫
RN

∇w− · ∇w+ dx+N

∫
RN

V∞w−w+ dx

−N

∫
RN

[F (w− + w+)− F (w−)− F (w+)] dx.

Since J∞(w) = 0, it follows that

J∞(w− + w+) = (N − 2)

∫
RN

∇w− · ∇w+ dx+N

∫
RN

V∞w−w+ dx

−N

∫
RN

[F (w− + w+)− F (w−)− F (w+)] dx.

By (2.4.9) and (2.4.10), we obtain∫
RN

|∇w− · ∇w+| dx =

∫
RN

|∇w(x−Ry) · ∇w(x+Ry)|dx = oR(1)

and ∫
RN

w−w+ dx =

∫
RN

w(x−Ry)w(x+Ry)dx = oR(1),

where oR(1) → 0 as R → +∞. On the other hand, since w is solution of (P∞), applying
Corollary 2.4.5, and Lemmas 2.4.3 and 2.4.4, we obtain∫

RN

|F (w− + w+)− F (w−)− F (w+)| dx

≤
∫
RN

|F (w− + w+)− F (w−)− F (w+)− f(w−)w+ − f(w+)w−| dx

+

∫
RN

|f(w−)w+ + f(w+)w−| dx = oR(1).

Hence,
|J∞(w− + w+)| = oR(1), (2.4.20)
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so this implies that J∞(w− + w+) → 0 as R → ∞.The bounds given by (2.1.3), the
pointwise limit limR→∞ UR(x) = 0 and Lebesgue dominated convergence theorem imply
that

1

2

∫
RN

|∇V (x) · x| (w− + w+)
2 dx+

N

2

∫
RN

|V (x)− V∞| (w− + w+)
2 dx = oR(1). (2.4.21)

Since

JV
(
UR
)
= JV (w− + w+)

= J∞(w− + w+) +
1

2

∫
RN

∇V (x) · x (w− + w+)
2dx+

N

2

∫
RN

[V (x)− V∞](w− + w+)
2dx,

it follows from (2.4.20) and (2.4.21) that

∣∣JV (UR
)∣∣ = oR(1).

Therefore, JV
(
UR
)
→ 0 as R → +∞, which implies that

lim
R→+∞

SR → 1,

by uniqueness of SR and continuity with respect to R. This proves the lemma.

The previous lemma states that we can choose ϵ > 0 sufficiently small and find R6 ≥ 1

such that k SR > 2
√
V∞, for any R ≥ R6, for k presented in hypothesis (Ṽ2).

The next lemma gives a precise estimate of the interaction between the potential term
V − V∞ and a translated copy of a ground state solution.

Lemma 2.4.11. Assume that (Ṽ1)–(Ṽ2) and (f̃1)–(f̃3) hold true and let s > 0 be such
that ks > 2

√
V∞. Then, for any R ≥ 1,∫

RN

[V (sx)− V∞]
(
wR

− + wR
+

)2
dx = o(εR),

where o(εR) → 0 as R → ∞.

Proof. First let us prove that there exists C > 0 such that∫
RN

[V (sx)− V∞]
(
wR

−
)2
dx ≤ CR−(N−1)e−2

√
V∞R. (2.4.22)
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Observe that, by hypothesis (Ṽ2) and (2.1.1), there exists a constant C > 0 such that∫
RN

[V (sx)− V∞]
(
wR

−
)2
dx ≤ C

∫
RN

e−ks|x|(1 + |x−Ry|)−(N−1)e−2
√
V∞|x−Ry| dx,

for any R ≥ 1. Thus, from the fact that ks > 2
√
V∞, we may fix ρ ∈ (0, 1) such that

ks > ks(1− ρ) > 2
√
V∞. So by Lemma 2.4.1, there exists C > 0 such that∫

RN∖BρR(Ry)

e−ks|x|(1 + |x−Ry|)−(N−1)e−2
√
V∞|x−Ry| dx ≤ CR−(N−1)e−2

√
V∞R. (2.4.23)

On the other hand, for all x ∈ BρR(0), it holds that

ks|x+Ry| ≥ ks(R|y| − |x|) ≥ ksR(1− ρ) > 2
√
V∞R.

Making a change of variables, we obtain∫
BρR(Ry)

e−ks|x|(1+ |x−Ry|)−(N−1)e−2
√
V∞|x−Ry| dx

=

∫
BρR(0)

e−ks|x+Ry|(1 + |x|)−(N−1)e−2
√
V∞|x| dx

≤ e−ksR(1−ρ)

∫
BρR(0)

(1 + |x|)−(N−1)dx ≤ CRe−ksR(1−ρ)

≤ CR−(N−1)e−2
√
V∞R. (2.4.24)

Hence, it follows from (2.4.23) and (2.4.24) that (2.4.22) occurs. Similarly, we get a
constant C > 0 such that∫

RN

[V (sx)− V∞]
(
wR

+

)2
dx ≤ CR−(N−1)e−2

√
V∞R. (2.4.25)

Now let us prove that there exists C > 0 such that∫
RN

[V (sx)− V∞]wR
−w

R
+ dx ≤ CR−(N−1)e−2

√
V∞R. (2.4.26)

Set Ω := RN ∖ [BρR(Ry) ∪BρR(−Ry)]. Using (V2) and (2.1.1), we get∫
Ω

[V (sx)− V∞]wR
−w

R
+dx ≤ A0

∫
Ω

e−ks|x|wR
−w

R
+dx

≤ C

∫
Ω

e−ks|x|(1 + |x−Ry|)−
N−1

2 e−
√
V∞|x−Ry|(1 + |x+Ry|)−

N−1
2 e−

√
V∞|x+Ry| dx,
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for any R ≥ 1. From the second inequality in Lemma 2.4.1, we obtain∫
Ω

e−ks|x|(1 + |x−Ry|)−
N−1

2 e−
√
V∞|x−Ry|(1 + |x+Ry|)−

N−1
2 e−

√
V∞|x+Ry| dx

≤ CR−(N−1)e−
1
2

√
V∞(R+R+2R) = CR−(N−1)e−2

√
V∞R.

The integrals on BρR(Ry) and BρR(−Ry) are estimated by the same argument of (2.4.24).
Note that these balls are disjoint. Thus, we conclude that (2.4.26) holds true. Therefore,
by (2.4.22), (2.4.25) and (2.4.26), the lemma is proved.

Proposition 2.4.12. Assume that (Ṽ1)–(Ṽ4) and (f̃1)–(f̃4) hold true. Then, there exist
L > 2 large enough and R4 ≥ 1 such that

IV

(
UR
( ·
s

))
< 2I∞(w) = 2p∞, for all s ∈ (0, L] and all R ≥ R4 (2.4.27)

and
IV

(
UR
( ·
L

))
< 0, for all R ≥ R4. (2.4.28)

Proof. By Lemma 2.4.9, there exist constants R0 ≥ 1, σ0 ∈ (0, 1/2) and S0 > 1 such
that SR ∈ (σ0, S0) for every R ≥ R0. So, changing the variables sz = x and denoting
w− := wR

− = w(· − Ry) and w+ := wR
+ = w(· + Ry), where y = (0, · · · , 0, 1) ∈ RN , we
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have

IV

(
UR
( ·
s

))
= sN−2

[
1

2

∫
RN

|∇w+|2dz − s2
∫
RN

(
F (w+)−

V∞
2

(w+)
2

)
dz

]
+ sN−2

[
1

2

∫
RN

|∇w−|2dz − s2
∫
RN

(
F (w−)−

V∞
2

(w−)
2

)
dz

]
+
sN

2

[∫
RN

[V (sz)− V∞]
[
(w+)

2 + (w−)
2
]
dz + 2

∫
RN

V (sz)w+w−dz

]
− sN

∫
RN

[F (w+ + w−)− F (w+)− F (w−)− f(w+)w− − f(w−)w+]dz

+ sN−2

∫
RN

[
∇w+ · ∇w− − s2f(w+)w− − s2f(w−)w+

]
dz

≤ I∞

(
w
( ·
s

))
+ I∞

(
w
( ·
s

))
+
sN

2

∫
RN

[V (sz)− V∞](w+ + w−)
2 dz

+ sN−2

∫
RN

[
∇w+ · ∇w− + s2V∞w+w− − s2f(w+)w− − s2f(w−)w+

]
dz

+ sN
∫
RN

|F (w+ + w−)− F (w+)− F (w−)− f(w+)w− − f(w−)w+|dz

≤ 2I∞

(
w
( ·
s

))
+
sN

2

∫
RN

[V (sz)− V∞](w+ + w−)
2 dz

+ sN−2

∫
RN

[
∇w+ · ∇w− + s2V∞w+w− − s2f(w+)w− − s2f(w−)w+

]
dz

+ sN
∫
RN

|F (w+ + w−)− F (w+)− F (w−)− f(w+)w− − f(w−)w+|dz.

Since p∞ = I∞(w) = maxt>0 I∞
(
w
( ·
t

))
> 0, then

I∞

(
w
( ·
s

))
≤ p∞, for all s ∈ (0,∞). (2.4.29)

Let us set

I1 :=
sN

2

∫
RN

[V (sz)− V∞](w+ + w−)
2 dz,

I2 := sN−2

∫
RN

[
∇w+ · ∇w− + s2V∞w+w− − s2f(w+)w− − s2f(w−)w+

]
dz,

I3 := sN
∫
RN

|F (w+ + w−)− F (w+)− F (w−)− f(w+)w− − f(w−)w+|dz.

To show (2.4.27) and (2.4.28), we will estimate I1, I2 and I3. Take L > 2 large enough.
By hypothesis (Ṽ2), we have k > 2

√
V∞ and so, there exists 0 < δ1 < 1/4 sufficiently
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small such that ks > 2
√
V∞, for all s ≥ 1− δ1. So, by Lemma 2.4.11, we obtain

I1 =
sN

2

∫
RN

[V (sz)− V∞] (w+ + w−)
2 dz = o(εR), (2.4.30)

for every s ∈ [1− δ1, L] and R ≥ 1, where o(εR) → 0 as R → +∞.
Using the fact that w is a solution of (P∞), we get∫

RN

∇w+ · ∇w− dz =

∫
RN

f(w+)w− dz −
∫
RN

V∞w+w− dz

=

∫
RN

f(w−)w+ dz −
∫
RN

V∞w−w+ dz,

and so

lim
s→1

∫
RN

[
∇w+ · ∇w− + s2V∞w+w− − s2

(
f(w+)w− + f(w−)w+

2

)]
dz

=

∫
RN

[
∇w+ · ∇w− + V∞w+w− −

(
f(w+)w− + f(w−)w+

2

)]
dz = 0,

for any R ≥ 1. Since
∫
RN [f(w+)w− + f(w−)w+] dz > 0, there exists 0 < δ2 < 1/4

sufficiently small such that

3s2

2

∫
RN

(
f(w+)w− + f(w−)w+

2

)
dz ≥

∫
RN

[
∇w+ · ∇w− + s2V∞w+w−

]
dz, (2.4.31)

for every s ∈ [1− δ2, 1 + δ2] and R ≥ 1.
From inequality (2.4.31), we obtain a constant C0 > 0 such that

I2 = sN−2

∫
RN

[
∇w+ · ∇w− + s2V∞w+w− − s2f(w+)w− − s2f(w−)w+

]
dz

≤ − sN

4

∫
RN

[f(w+)w− + f(w−)w+] dz = − sNεR
2

≤ −C0 εR, (2.4.32)

for every s ∈ [1− δ2, 1 + δ2] and R ≥ 1.
By Corollary 2.4.5, it follows that

I3 ≤ sN
∫
RN

|F (w+ + w−)− F (w+)− F (w−)− f(w+)w− − f(w−)w+| dz

= o(εR), (2.4.33)

for every s ∈ (0, L] and R ≥ 1. Hence, taking δ := min{δ1, δ2}, by previous estimates
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(2.4.29), (2.4.30), (2.4.32) and (2.4.33), there exists R1 ≥ 1 sufficiently large such that

IV

(
UR
( ·
s

))
≤ 2I∞

(
w
( ·
s

))
− C0 εR + o(εR) < 2p∞, (2.4.34)

for every s ∈ [1− δ, 1 + δ] and R ≥ R1.
Next, note that the first bound given by (2.1.3), the pointwise limit limR→∞ UR(x) = 0

and Lebesgue dominated convergence theorem imply that

sN

2

∫
RN

|V (sz)− V∞|(w+ + w−)
2 dz → 0, as R → +∞, (2.4.35)

uniformly in s ∈ (0, L]. Also, by Lemmas 2.4.3, 2.4.4 and 2.4.6, we have

sN−2

∫
RN

[
∇w+ · ∇w− + s2V∞w+w− − s2f(w+)w− − s2f(w−)w+

]
dz → 0 (2.4.36)

and, by Corollary 2.4.5,

sN
∫
RN

|F (w+ + w−)− F (w+)− F (w−)− f(w+)w− − f(w−)w+| dz → 0 (2.4.37)

as R → +∞, uniformly in s ∈ (0, L]. Hence, by (2.4.30), (2.4.32) and (2.4.33), applying
(2.4.35), (2.4.36) and (2.4.37), it holds∣∣∣IV (UR

( ·
s

))
− 2I∞

(
w
( ·
s

))∣∣∣→ 0 as R → +∞, (2.4.38)

uniformly in s ∈ (0, L]. From (2.4.38), and recalling that the map t 7→ I∞
(
w
( ·
t

))
is

strictly increasing in (0, 1] and strictly decreasing in [1,∞) and I∞(w) = p∞, it follows
that I∞

(
w
( ·
t

))
< I∞(w) for all t ̸= 1, and so there exists R2 ≥ R1 such that

IV

(
UR
( ·
s

))
< 2p∞, for all s ∈ (0, 1− δ) ∪ (1 + δ, L] and all R ≥ R2. (2.4.39)

Thus, from (2.4.34) and (2.4.39), we conclude that

IV

(
UR
( ·
s

))
< 2p∞, for all s ∈ (0, L] and all R ≥ R2. (2.4.40)

Finally, we will prove that (2.4.28) occurs. We claim that I∞
(
w
( ·
L

))
< 0. Indeed, as w is

a solution of problem (P∞), it follows that∫
RN

(
F (w)− V∞

2
w2

)
dx =

N − 2

2N

∫
RN

|∇w|2dx > 0,
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and so, for L > 2 large enough, we obtain

I∞

(
w
( ·
L

))
=
LN−2

2

[∫
RN

|∇w|2dx− 2L2

∫
RN

(
F (w)− V∞

2
w2

)
dx

]
=
LN−2

2

[∫
RN

|∇w|2dx− L2(N − 2)

N

∫
RN

|∇w|2dx
]
< 0. (2.4.41)

Thus, using that I∞
(
w
( ·
L

))
< 0 and (2.4.38), there exists R3 ≥ 1 such that

IV

(
UR
( ·
L

))
< I∞

(
w
( ·
L

))
< 0, for all R ≥ R3. (2.4.42)

Therefore, taking R4 := max{R2, R3}, we obtain from (2.4.40) and (2.4.42) that

IV

(
UR
( ·
s

))
< 2p∞, for all s ∈ (0, L] and all R ≥ R4

and
IV

(
UR
( ·
L

))
< 0, for all R ≥ R4,

concluding the proof of the proposition.

Lemma 2.4.13. Assume that (f̃1)–(f̃3) hold true and let w be a ground state solution of
(P∞), which is positive, radially symmetric and decreasing in the radial direction. Then,
there exists a path γ ∈ C

(
[0, 1], H1

G(RN)
)
, with γ(0) = 0 and I∞(γ(1)) < 0, such that

w ∈ γ([0, 1]), max
t∈[0,1]

I∞(γ(t)) = I∞(w) = m.

Proof. By hypothesis, for any g ∈ G and x ∈ RN , we have w(gx) = w(|gx|) = w(|x|) =
w(x), and so w ∈ H1

G(RN). Moreover, w is a ground state solution to (P∞), which is
positive, radially symmetric and decreasing in the radial direction. Then, we can define
a continuous path α : [0,∞) → H1

G(RN), putting α(t) := w(·/t) for t > 0 and α(0) := 0.
Thus, by construction, it follows that I∞(α(0)) = 0 and, for every t > 0, we have

I∞(α(t)) = I∞ (w (·/t)) = tN−2

2

∫
RN

|∇w|2dx− tN
∫
RN

G∞(w)dx,
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where G∞(w) := F (w)− V∞
w2

2
. Therefore, deriving the above expression, we obtain

d

dt
I∞(α(t)) =

N − 2

2
tN−3

∫
RN

|∇w|2dx−NtN−1

∫
RN

G∞(w)dx

= tN−3

[
N − 2

2

∫
RN

|∇w|2dx−Nt2
∫
RN

G∞(w) dx

]
.

Since w is a solution of (P∞), then w satisfies the Pohozaev identity

N − 2

2

∫
RN

|∇w|2dx = N

∫
RN

G∞(w)dx,

and thus,
d

dt
I∞(α(t)) = NtN−3

(
1− t2

)∫
RN

G∞(w)dx.

As NtN−3
∫
RN G∞(w)dx > 0, for every t > 0, it follows that the map t 7→ I∞(α(t)) reaches

the maximum value at t = 1. Choosing T > 0 sufficiently large, we have

max
0≤t≤T

I∞(α(t)) = I∞(α(1)) = I∞(w) = m and I∞(α(T )) < 0.

Considering the path γ : [0, 1] → H1
G(RN), defined by γ(t) := α(tT ), the result follows.

Lemma 2.4.14. Assume that (Ṽ1)–(Ṽ3) and (f̃1)–(f̃3) hold true. Then, the functional
IV satisfies the geometrical properties of the mountain pass theorem.

Proof. Note that IG(0) = 0. Moreover, for every u ∈ H1
G(RN), by (Ṽ1) and (2.1.2), taking

ε =
infx∈RN V (x)

2
, we get Cε > 0 such that

IV (u) =
1

2

∫
RN

(
|∇u|2 + V (x)u2

)
dx−

∫
RN

F (u)dx

≥ 1

2

∫
RN

(
|∇u|2 + V (x)u2

)
dx−

∫
RN

[ε
2
u2 + Cε|u|2

∗
]
dx

=
1

2

∫
RN

(
|∇u|2 + (V (x)− ε)u2

)
dx−

∫
RN

Cε|u|2
∗
dx

≥ 1

4
∥u∥2V − Cε∥u∥2

∗

2∗ .

By the continuity of the embedding H1
G(RN) into L2∗(RN), there exists a constant C1 > 0

such that
IV (u) ≥

1

4
∥u∥2V − C1∥u∥2

∗

V =

(
1

4
− C1∥u∥2

∗−2
V

)
∥u∥2V .
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Since 2∗ − 2 > 0, taking ϱ := min

{
1,
(

1
8C1

)1/(2∗−2)
}
> 0, we have: if u ∈ H1

G(RN) \ {0},

with ∥u∥V = ϱ, then

IV (u) ≥
(
1

4
− C1∥u∥2

∗−2
V

)
∥u∥2V ≥ ∥u∥2V

8
=
ϱ2

8
> 0.

On the other hand, if w is a ground state solution to (P∞), positive, radially symmetric
and decreasing in the radial direction, then for any g ∈ G and x ∈ RN , we have w(gx) =
w(|gx|) = w(|x|) = w(x), and so w ∈ H1

G(RN). Furthermore, using the same idea applied
by Jeanjean-Tanaka in [24], see also Lemma 2.4.13, take L > 2 large enough and define
γ : [0, L] → H1

G(RN) by γ(0) = 0 and γ(t) = w(·/t), for t ∈ (0, L]. We may observe that
γ is a path that satisfies

γ(0) = 0, γ(1) = w, I∞(γ(L)) < 0, (2.4.43)

I∞(γ(t)) < I∞(w), for all t ̸= 1. (2.4.44)

Fix L > 2 large enough such that (2.4.43) holds. Arguing as in Proposition 2.4.12, see
expression (2.4.38), it follows that∣∣∣IV (UR

( ·
t

))
− 2I∞

(
w
( ·
t

))∣∣∣→ 0 as R → +∞,

uniformly in t ∈ (0, L]. Using that I∞
(
w
( ·
L

))
= I∞(γ(L)) < 0, we conclude that

IV

(
UR
( ·
L

))
< 0,

for R ≥ 1 sufficiently large. Therefore, the functional IV satisfies the geometrical proper-
ties of the mountain pass theorem, concluding the proof.

Proof of Theorem 2.1.1. Let us apply the mountain pass theorem of Ambrosetti-
Rabinowitz [3]. We define a mountain pass level for IV on H1

G(RN) by

cV := inf
γ ∈ΓV

max
0≤ t≤ 1

IV (γ(t)), ΓV :=
{
γ ∈ C([0, 1], H1

G(RN)) : γ(0) = 0, IV (γ(1)) < 0
}
.

Since IV satisfies the geometrical properties of the mountain pass theorem, then cV > 0

and there exists a Cerami sequence (un) ⊂ H1
G(RN) for IV at level cV . By Lemma

2.3.1, (un) contains a bounded subsequence, still denoted by (un). As in the proof of
Proposition 2.4.12, more precisely, from (2.4.41), we may choose L > 2 large enough such
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that I∞
(
w
( ·
L

))
< 0. Next, consider the following path:

γ(t) =

{
UR
( ·
Lt

)
, if t ∈ (0, 1],

0, if t = 0.

Note that γ ∈ ΓV and, also by Proposition 2.4.12, we may choose R ≥ 1 sufficiently large
such that

IV (γ(t)) < 2p∞, for all t ∈ [0, 1],

and so cV < 2p∞. Hence, recalling that cV > 0 and ℓ(G)p∞ ≥ 2p∞, we have

0 < cV < 2p∞ ≤ ℓ(G)p∞.

From Corollary 2.3.4, there exists ū ∈ H1
G(RN)\{0} such that un → ū strongly inH1

G(RN),
i.e. ū is a nontrivial critical point of IV restricted to H1

G(RN) such that IV (ū) = cV .
Therefore, it follows that ū is a nontrivial solution of problem (PG). Using the maximum
principle we conclude that ū is positive, proving the theorem.

□

Note that as in Remark 1.4.16 in Chapter 1, assuming that the potential V is invariant
under a group action G ⊂ O(N) and under assumptions (Ṽ1)–(Ṽ4) and (f̃1)–(f̃4), we can
prove that Theorem 2.1.1 also holds, for ℓ(G) ∈ (2,∞) and dG ∈ (0, 2].

As before, to prove this, we took as basis the following papers by Hirata [22, p. 182–
190] and [23, p. 3180–3188]. Unlike Hirata’s work, we are not assuming that f(s)/s is
increasing and so, to prove the necessary estimates, we will use [1, Lemma 2.2]. We define

UR :=

ℓ(G)∑
j=1

w(· −Rej), (2.4.45)

where e1, . . . , eℓ(G) ∈ SN−1 and dG ∈ (0, 2], as in (0.0.1) and (0.0.2). Moreover, for
i, j = 1, . . . , ℓ(G), we denote

εR :=

ℓ(G)∑
i ̸=j

∫
RN

f(w(x−Rei))w(x−Rej)dx. (2.4.46)

Following the same ideas applied when we assume that ℓ(G) = 2 and dG = 2, we get
C1, C2 > 0 such that

C1R
−N−1

2 e−dG
√
V∞R ≤ εR ≤ C2R

−N−1
2 e−dG

√
V∞R.
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Take L > 2 large enough and note that

IV

(
UR
( ·
s

))
= IV

ℓ(G)∑
j=1

w
( ·
s
−Rej

)− I∞

ℓ(G)∑
j=1

w
( ·
s
−Rej

)
+ I∞

ℓ(G)∑
j=1

w
( ·
s
−Rej

)−
ℓ(G)∑
j=1

I∞

(
w
( ·
s
−Rej

))
+ ℓ(G)I∞

(
w
( ·
s

))
.

Set

(I) := IV

ℓ(G)∑
j=1

w
( ·
s
−Rej

)− I∞

ℓ(G)∑
j=1

w
( ·
s
−Rej

) ,

(II) := I∞

ℓ(G)∑
j=1

w
( ·
s
−Rej

)−
ℓ(G)∑
j=1

I∞

(
w
( ·
s
−Rej

))
.

Observe that

(I) = IV

ℓ(G)∑
j=1

w
( ·
s
−Rej

)− I∞

ℓ(G)∑
j=1

w
( ·
s
−Rej

)
=

1

2

∫
RN

[V (x)− V∞]

ℓ(G)∑
j=1

w
(x
s
−Rej

)2

dx

=
sN

2

∫
RN

[V (sz)− V∞]

ℓ(G)∑
j=1

w(z −Rej)

2

dz

≤ A0s
N

2

∫
RN

e−ks|z|

ℓ(G)∑
j=1

w(z −Rej)

2

dz

≤ A0s
N

2

∫
RN

e−ks|z|
ℓ(G)∑
j=1

C (w(z −Rej))
2 dz

≤ CsN
ℓ(G)∑
j=1

∫
RN

e−ks|z| (w(z −Rej))
2 dz

≤ CsN
ℓ(G)∑
j=1

∫
RN

e−ks|z| (1 + |z −Rej|)−N+1 e−2
√
V∞|z−Rej |dz.
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As k > dG
√
V∞, there exists 0 < δ1 < 1/4 such that ks > dG

√
V∞ for all s ≥ 1− δ1. So,

following the same ideas applied to prove (2.4.22), we arrive that

ℓ(G)∑
j=1

∫
RN

e−ks|z| (1 + |z −Rej|)−N+1 e−2
√
V∞|z−Rej |dz

≤
ℓ(G)∑
j=1

∫
RN

e−dG
√
V∞|z| (1 + |z −Rej|)−N+1 e−2

√
V∞|z−Rej |dz

≤ CR−(N+1)e−dG
√
V∞R, (2.4.47)

for all s ≥ 1− δ1. It follows from (2.4.47) that, for any s ≥ 1− δ1 and R ≥ 1,

(I) ≤ CR−(N+1)e−dG
√
V∞R = o(εR). (2.4.48)

Next, we will estimate (II). Denoting wj := w(· −Rej) for j = 1, . . . , ℓ(G), we have

(II) = I∞

ℓ(G)∑
j=1

w
( ·
s
−Rej

)−
ℓ(G)∑
j=1

I∞

(
w
( ·
s
−Rej

))

=
sN−2

2

∫
RN

∣∣∣∣∣∣
ℓ(G)∑
j=1

∇wj

∣∣∣∣∣∣
2

dx+
sN

2

∫
RN

V∞

ℓ(G)∑
j=1

wj

2

dx

− sN
∫
RN

F

ℓ(G)∑
j=1

wj

dx
− sN−2

2

ℓ(G)∑
j=1

∫
RN

|∇wj|2dx−
sN

2

ℓ(G)∑
j=1

∫
RN

V∞w
2
jdx

+ sN
ℓ(G)∑
j=1

∫
RN

F (wj)dx

=
sN−2

2

ℓ(G)∑
i ̸=j

∫
RN

[
∇wi∇wj + s2V∞wiwj

]
dx

− sN
∫
RN

F
ℓ(G)∑

j=1

wj

−
ℓ(G)∑
j=1

F (wj)−
ℓ(G)∑
i ̸=j

f(wi)wj

dx
− sN

∫
RN

ℓ(G)∑
i ̸=j

f(wi)wj dx.
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Note that (II) ≤ (II.1) + (II.2), where

(II.1) :=
sN−2

2

ℓ(G)∑
i ̸=j

∫
RN

[
∇wi∇wj + s2V∞wiwj − 2s2f(wi)wj

]
dx,

(II.2) := sN
∫
RN

∣∣∣∣∣∣F
ℓ(G)∑

j=1

wj

−
ℓ(G)∑
j=1

F (wj)−
ℓ(G)∑
i ̸=j

f(wi)wj

∣∣∣∣∣∣dx.
Using that w is a solution of (P∞), arguing as in the proof of Proposition 2.4.12, we obtain
constants 0 < δ2 < 1/4 and C0 > 0 such that

(II.1) =
sN−2

2

ℓ(G)∑
i ̸=j

∫
RN

[
∇wi∇wj + s2V∞wiwj − 2s2f(wi)wj

]
dx ≤ −C0 εR, (2.4.49)

for every s ∈ [1 − δ2, 1 + δ2] and R ≥ 1. On the other hand, using [1, Lemma 2.2], we
obtain α ∈ (1/2, 1] such that

∫
RN

∣∣∣∣∣∣F
ℓ(G)∑

j=1

wj

−
ℓ(G)∑
j=1

F (wj)−
ℓ(G)∑
i ̸=j

f(wi)wj

∣∣∣∣∣∣ ≤ C

∫
RN

ℓ(G)∑
i<j

|wiwj|2α +

ℓ(G)∑
i<j<l

|wiwjwl|2/3


Again, following the same ideas applied when we assume that ℓ(G) = 2 and dG = 2, for
i, j ∈ {1, . . . , ℓ(G)} with i ̸= j, since α > 1/2 we get∫

RN

(wiwj)
2α dx ≤ CR−α(N−1)e−dG

√
V∞ = o(εR). (2.4.50)

Next, we fix ρ ∈ (0, dG/3) and consider ϵ ∈ (0,
√
V∞) sufficiently small. Note that, for all

z ∈ BρR(0), for i, j ∈ {1, . . . , ℓ(G)} with i ̸= j, it holds

1 + |z +R(ei − ej)| ≥ 1 + dGR− ρR >
2

3
dGR. (2.4.51)

So, using (2.4.51), (2.1.1) and second inequality in Lemma 2.4.1, for i, j, l ∈ {1, . . . , ℓ(G)}
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with i < j < l, making a change of variables, we obtain∫
BρR(Rei)

|wiwjwl|2/3dx

≤ CR− 2
3
(N−1)

∫
BρR(0)

(1 + |z|)−
N−1

3 e−
2
3

√
V∞|z|e−

2
3

√
V∞|z+R(ei−ej)|e−

2
3

√
V∞|z+R(ei−el)|dz

≤ CR− 2
3
(N−1)

∫
BρR(0)

e−
2
3
(
√
V∞−ϵ)|z|e−

2
3
(
√
V∞−ϵ)|z+R(ei−ej)|e−

2
3

√
V∞|z+R(ei−el)|dz

≤ CR− 2
3
(N−1)e−

1
3
(
√
V∞−ϵ)(|ei−ej |+|ei−el|+|ej−el|)R

≤ CR− 2
3
(N−1)e−dG(

√
V∞−ϵ)R. (2.4.52)

Similarly, we obtain∫
BρR(Rej)

|wiwjwl|2/3dx ≤ CR− 2
3
(N−1)e−dG(

√
V∞−ϵ)R (2.4.53)

and ∫
BρR(Rel)

|wiwjwl|2/3dx ≤ CR− 2
3
(N−1)e−dG(

√
V∞−ϵ)R. (2.4.54)

Note that the balls BρR(Rei), BρR(Rej) and BρR(Rel) are two by two disjoint. So, taking
Ω := BρR(Rei)∪BρR(Rej)∪BρR(Rel), it follows from (2.4.52), (2.4.53) and (2.4.54) that∫

Ω

|wiwjwl|2/3dx ≤ CR− 2
3
(N−1)e−dG(

√
V∞−ϵ)R. (2.4.55)

On the other hand, using (2.1.1) and second inequality in Lemma 2.4.1 again, we obtain∫
RN\Ω

|wiwjwl|2/3dx

≤ CR−(N−1)

∫
RN\Ω

e−
2
3

√
V∞|x−Rei|e−

2
3

√
V∞|x−Rej |e−

2
3

√
V∞|x−Rel|dx

≤ CR−(N−1)

∫
RN\Ω

e−
2
3
(
√
V∞−ϵ)|x−Rei|e−

2
3
(
√
V∞−ϵ)|x−Rej |e−

2
3

√
V∞|x−Rel|dx

≤ CR−(N−1)e−
1
3
(
√
V∞−ϵ)(|ei−ej |+|ei−el|+|ej−el|)R

≤ CR−(N−1)e−dG(
√
V∞−ϵ)R. (2.4.56)

It follows from (2.4.55) and (2.4.56) that∫
RN

|wiwjwl|2/3dx ≤ CR− 2
3
(N−1)e−dG(

√
V∞−ϵ)R
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and so, making ϵ→ 0, we conclude that∫
RN

|wiwjwl|2/3dx ≤ CR− 2
3
(N−1)e−dG

√
V∞R = o(εR). (2.4.57)

Since the map t 7→ I∞
(
w
( ·
t

))
is strictly increasing in (0, 1] and strictly decreasing in [1,∞)

and I∞(w) = p∞, it follows that I∞
(
w
( ·
t

))
< p∞ for all t ̸= 1. So, taking δ := min{δ1, δ2},

from (2.4.48), (2.4.50) and (2.4.57), we get R1 ≥ 1 such that

IV

(
UR
( ·
s

))
≤ ℓ(G)I∞

(
w
( ·
s

))
+ o(εR)− C0 εR < ℓ(G)p∞, (2.4.58)

for every s ∈ [1 − δ, 1 + δ] and R ≥ R1. Again, arguing as in the proof of Proposition
2.4.12, we obtain R2, R3 ≥ 1 such that

IV

(
UR
( ·
s

))
< ℓ(G)p∞, for all s ∈ (0, 1− δ) ∪ (1 + δ, L] and all R ≥ R2 (2.4.59)

and
IV

(
UR
( ·
L

))
< I∞

(
w
( ·
L

))
< 0, for all R ≥ R3. (2.4.60)

Taking R4 := max{R1, R2, R3}, it follows from (2.4.58), (2.4.59) and (2.4.60) that

IV

(
UR
( ·
s

))
< ℓ(G)p∞, for all s ∈ (0, L] and all R ≥ R4

and
IV

(
UR
( ·
L

))
< 0, for all R ≥ R4.

From the above inequalities and as IV satisfies the geometrical properties of the mountain
pass theorem, the proof of the statement follows from Lemma 2.3.1 and Corollary 2.3.4.
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