
Nominal Commutative Narrowing

Daniella Santaguida Magalhães de Souza

Advisor: Dr. Daniele Nantes Sobrinho

Departamento de Matemática
Universidade de Brasília

Dissertation submitted in partial fulfillment of the requirements for the
degree of

Master in Mathematics

Brasília, June 07, 2022

Acknowledgements

I would like to thank some people who made this work possible and who play an essential
role in my life.

I start by thanking God, who has gifted me with an amazing family that supports and
encourages me at every stage of my life. To my father Anderson, thank you for being an
example and the biggest encourager of my academic life. To my mother Silvia, thank you for
being the solid base of this family and for always doing everything for us. To my brother
Thiago, thank you for being an inspiration in the computer science area and also as a person.

Thanks to my friends who kept me sane during the difficult days of research. In particular,
a thank you so much to my best friends: Maria Luiza, for making all the difference since
the first day of graduation when we met, you know I would not get here today without you,
forever “Chris and Greg”; and Fernanda, more than fifteen years of friendship and you are
certainly one of the people I admire the most for your dedication, focus and resilience, even
though you are in a totally different area. To you both, I am extremely grateful for everything.

To my boyfriend Lucas, there are no words to describe how much you supported me not
only throughout my Masters but throughout my life. You always believed in me, even when I
did not, and you never let me give up. I continue to learn a lot from you every day. Even
after hearing so many “narrowing” words you stayed. I love you and thank you.

All the professors I have had along the way have a space here in this gratitude. But one of
them in particular plays a significant role in my academic life. From the first Calculus I class
until the orientation, you continue to be my inspiration and example of a woman researcher.
Thank you very much, Professor Daniele Nantes. This achievement is dedicated to you.

Finally, I would like to thank the Master’s examining board, Professors Maurício Ayala-
Rincón and Daniel Ventura, for all the comments and suggestions that definitely enhanced
this work. And a special thanks to Professor Maribel Fernández for her collaboration.

Resumo

Modelagem e raciocínio equacional são onipresentes na Matemática e na Ciência da Com-
putação. Técnicas de reescrita têm sido aplicadas com sucesso para formalizar e implementar
inferência automatizada em estruturas matemáticas dedutivas. Apresentar teorias equacionais
por meio da reescrita dá origem a um mecanismo para decidir a redução equacional da
teoria sempre que o sistema de reescrita for terminante e confluente, ou seja, sempre que for
convergente. Resolver problemas equacionais é um passo adiante que requer mais esforço
do que apenas usar reescrita. De fato, “estreitar” problemas equacionais é uma técnica
bem conhecida que adiciona à reescrita o poder necessário para buscar soluções; em outras
palavras, adiciona o poder de buscar instâncias das variáveis que ocorrem em um problema
equacional que “unifica” as equações.

Por sua vez, a lógica nominal foi desenvolvida para contornar as inconveniências apresen-
tadas quando as variáveis são instanciadas. A abordagem nominal usa átomos nominais em
vez de variáveis para evitar a necessidade de renomeação de variáveis ao lidar com equações
na abordagem notacional padrão. A sintaxe nominal também inclui permutações de átomos
para distinguir algebricamente os átomos evitando colisões e capturas destes.

Neste trabalho, estudamos a reescrita nominal módulo comutatividade. Desenvolvemos o
método estreitamento nominal comutativo (nominal commutative narrowing) para lidar com
o problema de unificação nominal módulo teorias equacionais que incluem comutatividade,
o qual não é finitário dependendo da representação das soluções.

Abstract

Equational modelling and reasoning are ubiquitous in Mathematics and Computer Science.
Rewriting techniques have been applied successfully to formalize and implement automated
inference in mathematical deductive frameworks. Presenting equational theories by rewriting
gives rise to a mechanism to decide the equational reduct of the theory whenever the rewriting
system is terminating and confluent, i.e., whenever it is convergent. Solving equational
problems is a step further that requires more effort than just rewriting. Indeed, “narrowing”
equational problems is a well-known technique that adds to rewriting the required power
to search for solutions; in other words, it adds the power to search for instantiations of the
variables occurring in an equational problem that “unify” the equations.

On its side, the nominal logic has been developed to contour inconveniences presented
when variables are instantiated. The nominal approach uses nominal atoms instead of
variables to avoid the requirement of variable renaming when dealing with equations in
the standard notational approach. The nominal syntax also includes atom permutations to
algebraically distinguish atoms avoiding atom collisions and captures.

In this work, we study nominal rewriting modulo commutativity. We develop nominal
commutative narrowing to deal with the problem of nominal unification modulo equational
theories that include commutativity, which is not finitary depending on the representation of
solutions.

Table of contents

Introduction 1

1 Background 7
1.1 Nominal Syntax . 7
1.2 Rules for Freshness and α-equivalence . 10
1.3 Nominal Unification . 12
1.4 α-equivalence modulo C . 15

1.4.1 Nominal Commutative Unification 20

2 Nominal Narrowing 25
2.1 Nominal Rewriting and Nominal Equality 25

2.1.1 Nominal Algebra Equality and Closed Nominal Rewriting 26
2.2 Nominal Narrowing . 28

2.2.1 The nominal Lifting Theorem . 30
2.3 Nominal Narrowing and Nominal Unification 32

3 Nominal Commutative Narrowing 35
3.1 Basic Definitions . 35
3.2 Nominal Lifting Theorem modulo C . 40

4 Conclusion and Future Work 47
4.1 Work in progress . 48

4.1.1 Nominal C-narrowing for Nominal R∪C-unification 48
4.2 Future Work . 50

References 51

Appendix A First Order Results 55

xii Table of contents

Appendix B Nominal Results and Examples 65
B.1 Nominal Confluence . 65
B.2 Commutative . 78

B.2.1 Nominal C-overlappings and complete sets of C-critical pairs 79

Introduction

The E-unification problem is about solving first-order term equations modulo an equational
theory E, that is, given an equational theory E and a unification problem {s ≈? t}, we want to
find a substitution θ such that sθ ≈E tθ , for some s and t first-order terms. E-unification is a
fundamental tool in logic programming and type assignment systems, and applications may
be found at the use of paramodulation, a development of resolution, in automatic theorem
proving as well as the computation of complete sets of critical pairs in the Knuth and Bendix
completion procedure [25, 17].

Given an equational theory that has an equivalent confluent and terminating term rewrite
system (TRS), Fay described a complete unification algorithm for it [11, 17] in the late 70’s.
The method is based on using the narrowing process by Lankford in 1975 [18]. Narrowing
was first mentioned by Slagle in 1974 [21], and Fay gave the first description of the narrowing
technique used as a general E-unification procedure in the presence of a term rewrite system
in 1978 [11].

Narrowing a term is about finding a substitution, which is the minimal instantiation of
the term, such that we are able to apply one rewrite step right after. If we aim to solve an
equation {s ≈? t} in an equational theory, that corresponds to a convergent TRS, we may
construct all the possible narrowing derivations, iteratively, from the initial terms s and t until
we get a new equation {s′ ≈? t ′} such that s′ and t ′ are syntactically equal and therefore the
equation can be trivially solved. Hence the composition of the most general unifier with all
the substitutions computed in the narrowing derivations yields an E-unifier of {s ≈? t}, see
[23, 25].

However, in general this procedure does not terminate. The search procedure may contain
various narrowing sequences starting from {s ≈? t}, and the more rules in the TRS, the
more options for the narrowing sequences. In order to avoid useless computations and to
give sufficient conditions for termination, Hullot improved Fay’s algorithm [15]. Now, new
problems have to be treated: there are several equational theories whose axioms cannot
be oriented without loosing the property of finite termination, which is the case of the

2 Introduction

commutativity axiom, and even though we apply Hullot’s algorithm into a convergent set of
rules, it does not always terminate.

This limitation of dealing with commutative operators and axioms was circumvented by
not using C as a rewrite rule, but taking it into account when applying another rule. This
way, we build commutativity into the rewrite process. The main idea is to decompose a set of
axioms into a set E of troublesome identities, like C, and a set R of rewrite rules, with the
purpose of generating a new rewrite relation →R/E, defined on equivalence classes of terms:

[s]≈E
→R/E [t]≈E

iff ∃ s′, t ′ . s ≈E s′ →R t ′ ≈E t.

However, if we want to make a one-step reduction from [s]≈E
with relation to →R/E, we

would need to investigate the entire equivalence class modulo ≈E of s. Although, this would
ask for all E-equivalence classes to be finite, which is the case for commutativity, but it is not
the case for the theory I= {x⊕0 ≈ x}, for instance, [a]≈I

= {a,a⊕0,(a⊕0)⊕0,((a⊕0)⊕
0)⊕0, . . .}, where a and 0 are constants and ⊕ is a binary function symbol.

In this work we chose to follow the approach by Jouannaud et. al. [17], which is a
generalization of Peterson and Stickel’s work [20], and define another relation →R,E:

s →R,E t iff ∃ (l → r) ∈ R,s ≡ C[s′],θ . s′ ≈E lθ ∧ t = C[rθ],

which means that each rewrite step involves matching modulo ≈E. This allows to avoiding
investigating the whole E-equivalence class prior to applying rewriting steps modulo E, and
is decidable as long as E-unification is decidable and has a complete set of E-unifiers.

We are interested in extending the above mentioned results to the nominal framework.

Nominal techniques. The nominal syntax [14] emerged to deal with languages that have
binders, such as the First Order Logic language, which has existential (∃) and universal
(∀) quantifiers that bind variables in their scope, e.g. ∀x.Q(x), for some unary predicate Q;
λ -calculus, which has the (λ) abstraction binding variables, as in λx.xy; or the π-calculus
with the restriction (ν) quantifier, that binds name channels in a process (say P), as in νx.P.
The nominal language is more expressive than all languages above, and its binder ([_]), also
called abstraction, binds atoms, as in [a] f (a,X) for a binary function symbol f , and can
be “instantiated” to express abstractions in λ -calculus, of quantified first-order formulas, or
processes in the π-calculus: one just need to adapt its signature.

Thus, in the nominal syntax, we have two different kinds of objects: atoms (a,b, . . .),
that can be abstracted by a binder operator, and unknowns (X ,Y, . . .), undefined variables
that cannot be abstracted. In addition to the latter, a term may contain function symbols

Introduction 3

(f ,g, . . .), which are term constructors. That said, in the given examples, ∀, P and f are
function symbols whilst a is an abstracted atom.

In the nominal setting, equality is established as an α-equivalence relation and we write
s ≈α t to denote that s is equal, modulo renaming of bound atoms, to t. For instance,
λx.xy ≈α λ z.zy but λx.xy ̸≈α λy.yy in the λ -calculus. Even thought λx.xy and λ z.zy are
syntactically different, they may be considered the “same term”, that is, they are in the same
α-equivalence class, we just need to choose one representative of the class.

Building upon this scenario, the Nominal Unification [24] is developed, which is the
problem of solving equations modulo α-equivalence between two nominal terms (s ≈?

α t),
and later extended to Nominal E-Unification, when E is one of the theories A, C and AC

[1, 2, 7], which is also the subject of this work, but restricted to the theory C and following
the narrowing approach.

Nominal E-unification via nominal narrowing was already investigated when E can be
presented by a convergent nominal rewrite system [6]. In this work, we are interested in
giving another step towards a more general development, treating the case in which E cannot
be oriented as a convergent nominal rewrite system, and one has to deal with nominal
rewriting/narrowing modulo some identities, thus extending the works by [17, 25, 10]. In
particular, we will provide new developments for the particular theory of commutativity,
which already gives some insight about the intricate extensions and properties that need to be
addressed when dealing with more complex theories.

Objective. In this dissertation we investigate how nominal equational narrowing works
and also its connection to rewriting modulo an equational theory E. In particular, for
concrete developments, we study how the theory of commutativity behaves inside the
nominal framework and how it influences the narrowing method. We call this study Nominal
Commutative Narrowing.

We would like to stress that the objective of this dissertation is not to repeat proofs of the
established results, so instead, we present the results that are fundamental for our develop-
ments and illustrate them by means of examples, remarks and more detailed explanations.
The focus here is to give intuition of existing constructions and build up on them, with the
aim to achieve new developments.

Contribution. The contributions of the work done in this dissertation consist of the detailed
presentation of concepts and results about the development of nominal narrowing that were
initially established in [6] and [12]. Furthermore we present some unpublished contributions:

4 Introduction

1. We extend Lemma 22 of [12] (here Lemma 1.4) to consider the commutative theory,
using the relation ≈α,C, i.e., α-equivalence modulo commutativity.

2. We define nominal C-narrowing relation, written as⇝R,C.

3. We extend the definitions and concepts regarding rewriting modulo C to the nominal
framework. For instance, we have nominal versions of the relations →R,C and →R/C

as described earlier in this introduction.

4. We present a version of the Lifting Theorem 2.2 taking into account commutativity:

• we provide a mapping from nominal C-narrowing sequences to nominal rewriting
modulo C sequences, provided that some conditions of freshness constraints are
given (Theorem 3.1).

• we also provide a naive approach to the reverse mapping, from nominal rewriting
modulo C to nominal C-narrowing (Theorem 3.2)., provided that a notion of
C-coherence (Definition 3.6) is given for nominal frameworks. The relation is
necessary for relating →R/C and →R,C, but this has to be further investigated.

Organization. This work is organized in the following way:

• Chapter 1: Background. This chapter contains the definitions and properties of
the nominal syntax that are necessary for the understanding and development of this
work. In Section 1.1, we present the grammar of nominal terms, as well as basic
definitions such as signature, permutations and substitutions. Section 1.2 presents the
rules for freshness and α-equivalence, and we show them in examples of derivations.
In Section 1.3 we recall the concepts of nominal unification: problems, simplification
rules, solutions, as well as the formal definitions of nominal unification and nominal
matching problems, concluding with the definition of most general unifier and also
exhibiting some interesting examples of nominal unification problems. In Section 1.4
we present extensions of the concept of α-equivalence to α-equivalence modulo C,
adding commutativity into the equational reasoning. We also show the adaptations of
the system of derivation rules using ≈α,C and check how it works in an example. Later,
we extend Lemma 22 from [12] considering the commutative theory (Lemma 1.4).
Finally, in Subsection 1.4.1 we add commutativity into nominal unification problems,
bringing format of solutions via the use of triples of the form (∆,θ ,Pr) together with
the algorithm rules for nominal C-unification, complementing with examples.

Introduction 5

• Chapter 2: Nominal Narrowing. We present the definitions and results regard-
ing nominal narrowing. In Section 2.1, we recall definitions given by [6] such as
judgements, equational theory, rewrite theory, nominal rewriting, with properties of
confluence and equivariance; and we also present the concepts of nominal algebra
equality and closed nominal rewriting in Subsection 2.1.1. In Section 2.2, we present
our definition of nominal narrowing and some examples, together with the definition
of normalized substitution with the aim of presenting the Nominal Lifting Theorem, in
Subsection 2.2.1, with an example of the theorem in action. Finally, in Section 2.3,
we explain that for a closed nominal equational theory, we can prove soundness and
completeness of the nominal narrowing process for nominal unification.

• Chapter 3: Nominal Commutative Narrowing. This chapter focuses on showing
all requirements to extend the lifting result for narrowing modulo C, i.e., to establish
the correspondence between nominal C-narrowing and nominal rewriting modulo C.
In Section 3.1, we define equational nominal rewrite system, where we split a theory
T into a set R of rules and a set E of equations. We also bring some definitions from
Jouannaud et. al [17] in order to present our definition of nominal rewriting modulo
C, together with C-confluence and C-termination, and at last but not least nominal
narrowing modulo C. Section 3.2 presents our extension of the Lifting Theorem 2.2,
making a correspondence between the relations⇝R,C and →R,C. First from⇝R,C to
→R,C we managed to provide the complete proof; the other direction though, →R,C

to ⇝R,C, requires an extra property, called C-coherence, that is fundamental for C-
confluence and this needs to be further investigated. We provided some proof sketches.

• Chapter 4: Conclusion and Future Work. We conclude the work with the main
considerations of the development of this dissertation and we also propose some tasks
for future work.

Chapter 1

Background

This chapter contains standard definitions, notations and basic results about nominal tech-
niques that are necessary for the understanding of this work. Section 1.4 contains our first
contribution: in Lemma 1.4, we prove an extension of a result that relates α-equivalence
derivations with normalized freshness constraints (Lemma 22, in [12]), but taking into
account the relation ≈α,C. Subsection 1.4.1 contains established results in the context of
nominal reasoning modulo commutativity: we present the rule-based algorithm for nominal
C-unification as well as some properties and examples. More details can be found in [1]. The
notations are mostly consistent with [6, 12].

1.1 Nominal Syntax

A nominal signature Σ is a set of function symbols f ,g, . . ., each with a fixed arity n ≥ 0. Fix
countably infinite sets X of term variables X ,Y,Z, . . . and A of atoms a,b,c,d, Variables
represent meta-level unknowns and atoms represent object-level variable symbols. We assume
that Σ, X and A are pairwise disjoint. As usual, we will write a ≡ a and X ≡ X to denote
syntactic identity of atoms and unknowns. We will omit the explicit signature Σ and the arity
of its function symbols when it is clear from the context.

A swapping is a pair of atoms, written (a b), that maps a to b, b to a and all other atoms c
to themselves. Although (a b) and (b a) are different swappings, they make the same action
over terms. A permutation π is a bijection on atoms, with finite domain. We call Id the
identity permutation. Also, π ◦π

′ denotes functional composition of permutations and π
−1

denotes the inverse of π . We call a pair of a permutation π and a variable X a moderated
variable, written π ·X , and we say that π is suspended on X .

8 Background

Definition 1.1. (Nominal term) Nominal terms are generated inductively by the grammar

t ::= a | π ·X | [a]t | f (t1, . . . , tn).

Terms are called, respectively, atoms, suspensions, abstractions and function applications.
Notice that X is not a term, but Id ·X is. We abbreviate Id ·X as X when there is no ambiguity.
We also write t ≡ t to denote syntactic identity of terms.

We write V (t) for the set of variables occurring in t and A(t) for the set of atoms
mentioned in t. Terms without variables are called ground terms, that is, V (t) = /0, but
they may still contain atoms. Abstractions like [a]t mean that a is bound in t (scope of [a]).
Occurrences of a are said to be abstracted if they occur in the scope of t, and are called free
otherwise.

When convenient we will write f (t)n to denote f (t1, . . . , tn).

Example 1.1. The following are all examples of nominal terms when we consider the
signature Σ = {app : 2,lam : 1,add : 2,succ : 1,let : 2,map : 2, f : 1,nil : 0}:

app(lam([a]a),X) add(succ(X),Y) (a b) ·X let([a]a,b) map f nil

A position C is defined as a pair (s,_) of a term and a distinguished variable _ ∈ X that
occurs exactly once in s. We write C[s′] for C[_ 7→ s′] and if s ≡ C[s′], we say that s′ is a
subterm of s with position C. The root position will be denoted by C= [_].

Definition 1.2. (Permutation action) A permutation action of π on a term t is defined by
induction on the term structure

π ·a = π(a) π · (π ′ ·X) = (π ◦π
′) ·X

π · [a]t = [π ·a](π · t) π · f (t1, . . . , tn) = f (π · t1, . . . ,π · tn).

Example 1.2. By the definition above, and adding the function symbol {h : 3} to Σ from
Example 1.1,

(a b)(c d) ·
(
lam([a]lam([d]h(c,b,X)))

)
≡ lam([b]lam([c]h(d,a,(a b)(c d) ·X))).

Definition 1.3. (Meta-action of a permutation) The meta-action of π on t, written tπ , is
defined by

aπ = π(a) (θ ·X)π = θ
π ·X

([a]t)π = [aπ]tπ f (t1 . . . , tn)π = f (tπ
1 , . . . , t

π
n),

1.1 Nominal Syntax 9

where Idπ = Id and ((a b) ·θ)π = (π(a) π(b)) ·θ π .
The meta-action of permutations affects only atoms in terms [5]. It does not suspend on

variables, as permutation action does.

Definition 1.4. (Substitution) A substitution θ is a mapping from a finite set of variables to
terms. The substitution action tθ is defined as follows

aθ = a (π ·X)θ = π · (Xθ)

([a]t)θ = [a](tθ) f (t1, . . . , tn)θ = f (t1θ , . . . , tnθ).

The domain of a substitution θ is written as dom(θ), and the image is denoted as Im(θ).
Therefore, if X ̸∈ dom(θ) then Xθ = X . Also if we restrict the domain to a certain set V of
variables, where the substitution will map X to Xθ , if X ∈V , and to X , otherwise, then we
call θ |V the restriction of θ to V .

The composition of two substitutions θ1 and θ2 will be written as θ1θ2.

Note that substitution does not avoid capture of free atoms.

Lemma 1.1. Substitution and permutation commute, that is, π · (tθ) = (π · t)θ .

Proof. The proof is by induction on the structure of t.
Base Case.

• If t ≡ a: the result is trivial since the substitution does not affect atoms;

• If t ≡ π
′ ·X :

π · ((π ′ ·X)θ) = π · (π ′ · (Xθ))

= (π ◦π
′) · (Xθ)

= ((π ◦π
′) ·X)θ

= (π · (π ′ ·X))θ ;

Inductive Step.

• If t ≡ [a]t ′:
π · (([a]t ′)θ) = π · ([a](t ′θ))

= [π ·a](π · (t ′θ))
IH
= [π ·a]((π · t ′)θ)
= ([π ·a](π · t ′))θ
= (π · ([a]t ′))θ ;

10 Background

• If t ≡ f (t1, . . . , tn):

π · (f (t1, . . . , tn)θ) = π · (f (t1θ , . . . , tnθ))

= f (π · (t1θ), . . . ,π · (tnθ))
IH
= f ((π · t1)θ , . . . ,(π · tn)θ)
= f (π · t1, . . . ,π · tn)θ
= (π · f (t1, . . . , tn))θ .

1.2 Rules for Freshness and α-equivalence

Whenever we are talking about nominal terms and how we relate them, we need to understand
first the notions of freshness (denoted by the predicate #) and α-equivalence (denoted by the
predicate ≈α):

• Intuitively, a#t means that a does not occur free in t (read “a fresh in t”).

• Intuitively, s ≈α t means that s and t are α-equivalent, that is, they are the same term
written with a different choice of bound names.

• α-equivalence is defined using swappings and freshness.

Here a#t and s ≈α t represent constraints. The inference rules defining freshness and
α-equivalence are given in Figure 1.1 and Figure 1.2. A freshness context is a set of freshness
constraints of the form a#X , and usually denoted by ∆ and ∇.

We call a freshness constraint a#s reduced when it is of the form a#a or a#X . If there are
no constraints of the form a#a in these contexts, we call them consistent. Also, a freshness
judgement is a tuple of the form ∆ ⊢ a#t and an α-equivalence judgement is a tuple of the
form ∆ ⊢ s ≈α t. We will write ∆ ⊢ (φ1, . . . ,φn) for the judgements ∆ ⊢ φ1, . . . , ∆ ⊢ φn.

In Figure 1.2 we use the difference set of two permutations ds(π,π ′) := {n | π · n ̸=
π
′ · n}. So ds(π,π ′)#X represents the set of constraints {n#X | n ∈ ds(π,π ′)}. For ex-

ample, if π = (a b)(c d) and π
′ = (c b), then ds(π,π ′) = {a,b,c,d}, and ds(π,π ′)#X =

{a#X ,b#X ,c#X ,d#X}.

Remark 1.1. The rule (≈α [ab]) in Figure 1.2 is equivalent to a rule with premises ∆ ⊢
(b a) · s ≈α t and ∆ ⊢ b#s.

Example 1.3. We can derive ∆ ⊢ a# f ([a]X ,(a b) ·Y) with ∆ = {b#Y} and observing that
(a b)−1 ·a ≡ (b a) ·a ≡ b:

1.2 Rules for Freshness and α-equivalence 11

Fig. 1.1 Rules for #

Fig. 1.2 Rules for ≈α

(# a[a])
∆ ⊢ a#[a]X

b#Y ∈ ∆ (# var)
∆ ⊢ a#(a b) ·Y

(# app).
∆ ⊢ a# f ([a]X ,(a b) ·Y)

With ∆
′ = {a#X} we can deduce ∆

′ ⊢ a#h([b]X ,c):

a#X ∈ ∆
′

(# var)
∆
′ ⊢ a#X (# a[b])

∆
′ ⊢ a#[b]X

(# atom)
∆
′ ⊢ a#c

(# app).
∆
′ ⊢ a#h([b]X ,c)

Also we can derive ∇ ⊢ lam([d]app(lam([d]X),c))≈α lam([d]app(lam([c]X),c)) with
∇ = {c#X ,d#X}, noting that π := (c d) and ds(π,Id) = {c,d}:

ds(Id,(d c)) = {c,d#X} ∈ ∇
(≈α var)

∇ ⊢ X ≈α (d c) ·X
d#X ∈ ∇ (# var)
∇ ⊢ d#X

(≈α [dc])
∇ ⊢ [d]X ≈α [c]X

(≈α app)
∇ ⊢ lam([d]X)≈α lam([c]X)

(≈α atom)
∇ ⊢ c ≈α c

(≈α app)
∇ ⊢ app(lam([d]X),c)≈α app(lam([c]X),c)

(≈α [dd])
∇ ⊢ [d]app(lam([d]X),c)≈α [d]app(lam([c]X),c)

(≈α app).
∇ ⊢ lam([d]app(lam([d]X),c))≈α lam([d]app(lam([c]X),c))

12 Background

1.3 Nominal Unification

Unification is a mechanism used to find out if two terms can be equal using a proper
substitution. In the nominal syntax, the notion of syntactic equality is replaced by α-equality,
therefore Nominal Unification uses this notion intrinsically. In order to understand this
method, we recall some definitions from [24].

Definition 1.5. (Problem) A problem Pr is a set of constraints and we write ∆ ⊢ Pr when for
all P ∈ Pr there is a derivation proof using the rules in Figures 1.1 and 1.2, taking elements
of the context ∆ as assumptions. ∆ ⊢ Pr is read as “∆ entails Pr”. If ∆ entails P because
P ∈ ∆, we say the derivation is trivial.

Here we bring an algorithm based on simplification rules acting on problems, since the
rules for freshness and for α-equivalence give us terms above the line simpler than the terms
below.

Definition 1.6. (Simplification rules) Here are the simplification rules for problems:

a#b,Pr =⇒ Pr
a# f (t1, · · · , tn),Pr =⇒ a#t1, · · · ,a#tn,Pr

a#[b]t,Pr =⇒ a#t,Pr
a#[a]t,Pr =⇒ Pr

a#π ·X ,Pr =⇒ π
−1 ·a#X ,Pr π ̸= Id

a ≈α a,Pr =⇒ Pr
f (s1, · · · ,sn)≈α f (t1, · · · , tn),Pr =⇒ s1 ≈α t1, · · · ,sn ≈α tn,Pr

[a]s ≈α [a]t,Pr =⇒ s ≈α t,Pr
[a]s ≈α [b]t,Pr =⇒ s ≈α (a b) · t,a#t,Pr

π ·X ≈α π
′ ·X ,Pr =⇒ ds(π,π ′)#X ,Pr

Fig. 1.3 Simplification Rules

When a problem Pr′ is obtained from another problem Pr using one of these simplification
rules, we write Pr =⇒ Pr′. For the transitive and reflexive closure of =⇒, we use the notation
∗

=⇒.
If we manage to reduce a set of constraints to the empty set, then the problem holds.

Otherwise, we need to take this set of reduced constraints as assumptions to derive them.

Example 1.4. Because the simplification rules make the reverse role of the derivation rules,
from Example 1.3 we conclude the following:

a# f ([a]X ,(a b) ·Y) ∗
=⇒ b#Y a#h([b]X ,c) ∗

=⇒ a#X

1.3 Nominal Unification 13

lam([d]app(lam([d]X),c))≈α lam([d]app(lam([c]X),c)) ∗
=⇒ c#X ,d#X

We bring some important results from Fernández and Gabbay’s paper [12]. The proofs
will be omitted and can be found in their work.

Lemma 1.2. The relation =⇒ is confluent and strongly normalizing.

Proof. The proof can be found in [12], Lemma 11.

Let ⟨Pr⟩n f denote the normal form of the problem Pr, that is, Pr =⇒∗ Pr′ = ⟨Pr⟩n f and
there is no Pr′′ such that Pr′ =⇒ Pr′′.

Lemma 1.3. Consider Pr and Pr′ problems.

(1) ⟨Pr∪Pr′⟩n f = ⟨Pr⟩n f ∪⟨Pr′⟩n f . If Pr ⊆ Pr′ then ⟨Pr⟩n f ⊆ ⟨Pr′⟩n f .

(2) Assume Pr ∗
=⇒ Pr′. Then Γ ⊢ Pr if and only if Γ ⊢ Pr′.

(3) Γ ⊢ Pr if and only if Γ ⊢ ⟨Pr⟩n f .

Proof. The proof can be found in [12], Corollary 12 and Lemma 15.

We can also enrich the simplification rules with the instantiating rules, in order to solve
unification problems, which we will define ahead.

Instantiating rules:

π ·X ?≈? t,Pr X 7→π−1·t
=⇒ Pr[X 7→ π

−1 · t] (X ̸∈V (t))

t ?≈? π ·X ,Pr X 7→π−1·t
=⇒ Pr[X 7→ π

−1 · t] (X ̸∈V (t))

Fig. 1.4 Instantiating Rules

These rules are also called occurs check.
Now back to the definitions.

Definition 1.7. (Solution) A solution for a problem Pr is a pair (∆,θ) such that ∆ entails
Prθ , where Prθ denotes the substitution θ applied to terms in Pr.

An unification problem Pr is a problem as defined in Definition 1.5 but replacing α-
equality constraints s ≈α t by unification constraints s ?≈? t. Now, in order to solve nominal
unification problems, it is necessary to look into the freshness contexts of each term. So we
define term-in-context as a pair ∆ ⊢ s of a freshness context and a term.

14 Background

Definition 1.8. (Nominal unification problem) An unification problem (in context) is a
pair (∇ ⊢ l) ?≈? (∆ ⊢ s). Here ∆,∇ are freshness contexts and l,s are nominal terms. The
solution to this unification problem, if it exists, is a pair (∆′,θ) that solves the problem
Pr = {∆,∇, l ≈α s}, that is,

1. ∆
′ ⊢ ∆θ ;

2. ∆
′ ⊢ ∇θ ;

3. ∆
′ ⊢ lθ ≈α sθ .

Sometimes we will be interested in solving a “simpler” nominal unification problem in
which the substitution applies to only one side.

Definition 1.9. (Nominal matching problem) A nominal matching problem is a pair of terms-
in-context (∇ ⊢ l) ?≈ (∆ ⊢ s) where V (∇ ⊢ l)∩V (∆ ⊢ s) = /0. A solution to this problem is a
substitution θ such that ∆ ⊢ ∇θ and ∆ ⊢ lθ ≈α s and dom(θ)⊆V (∇ ⊢ l).

Example 1.5. The solution to the unification problem (/0 ⊢ [a][b]X) ?≈? (/0 ⊢ [b][a]Y) is the
pair (/0, [X 7→ (a b) ·Y]):

(/0 ⊢ [a][b]X) ?≈? (/0 ⊢ [b][a]Y) =⇒ { /0, /0, [b]X ?≈? (a b) · ([a]Y), a#[a]Y}
=⇒ { /0, /0, [b]X ?≈? [b](a b) ·Y}
=⇒ { /0, /0,X ?≈? (a b) ·Y}

X 7→(a b)·Y
=⇒ /0.

Example 1.6. On the other hand, a unification problem may not have a solution. See for
example (/0 ⊢ lam([a](lam([b]app(X ,b))))) ?≈? (/0 ⊢ lam([b](lam([a]app(a,X))))):

lam([a](lam([b]app(X ,b)))) ?≈? lam([b](lam([a]app(a,X)))) =⇒2

=⇒2 {lam([b]app(X ,b)) ?≈? (a b) ·
(
lam([a]app(a,X))

)
, a#lam([a]app(a,X))}

=⇒{lam([b]app(X ,b)) ?≈? lam([b]app(b,(a b) ·X))}
=⇒2 {app(X ,b) ?≈? app(b,(a b) ·X)}
=⇒{X ?≈? b, b ?≈? (a b) ·X}
X 7→b
=⇒{b ?≈? (a b) ·b}= {b ?≈? a} ̸=⇒ (no solution).

Example 1.7. Let Σ = {∀,∃,¬,∧,∨} be the signature for first-order logic. For this example
we are not considering initially that disjunction (∨) and conjunction (∧) are commutative
operators, this property will be treat later. Consider the following unification problem

(a#P ⊢ (∀[a]Q)∨P) ?≈? (c#P0 ⊢ (∀[b]Q0)∨ (b c) ·P0).

1.4 α-equivalence modulo C 15

Its solution is a pair (∆′,θ) that is a solution to the problem

S = {a#P,c#P0,(∀[a]Q)∨P ?≈? (∀[b]Q0)∨ (b c) ·P0}.

{a#P,c#P0,(∀[a]Q)∨P ?≈? (∀[b]Q0)∨ (b c) ·P0} =⇒
=⇒{a#P,c#P0, (∀[a]Q) ?≈? (∀[b]Q0) , P ?≈? (b c) ·P0}
P7→(b c)·P0

=⇒ {a#(b c) ·P0,c#P0, (∀[a]Q) ?≈? (∀[b]Q0)}
=⇒{a#P0,c#P0, [a]Q ?≈? [b]Q0}
=⇒{a#P0,c#P0, Q ?≈? (a b) ·Q0, a#Q0}
Q7→(a b)·Q0

=⇒ {a#P0,c#P0,a#Q0}

Therefore the solution is (∆′,θ) = ({a#P0,c#P0,a#Q0}, [P 7→ (b c) ·P0,Q 7→ (a b) ·Q0]).

We call a context consistent if it is a set of consistent reduced freshness constraints.

Definition 1.10. (More general solution) Let ∆1, ∆2 be consistent contexts and θ1, θ2

substitutions. We write (∆1,θ1)≤ (∆2,θ2) whenever there exists some θ
′ such that: ∀X ,∆2 ⊢

Xθ1θ
′ ≈α Xθ2 and ∆2 ⊢ ∆1θ

′. Here the relation ≤ is a partial order.
A principal solution or most general unifier, mgu(Pr), is a least solution according to ≤.

Example 1.8 (Cont. Example 1.5). Notice that ({c#Z}, [X 7→ f ((a b) ·Z),Y 7→ f (Z)]) is
also a solution for the problem (/0 ⊢ [a][b]X) ?≈? (/0 ⊢ [b][a]Y), but it is not a most general
one. In fact, [X 7→ f ((a b) ·Z),Y 7→ f (Z)] = [X 7→ (a b) ·Y][Y 7→ f (Z)]. Therefore, we can
write (/0, [X 7→ (a b) ·Y])≤ ({c#Z}, [X 7→ f ((a b) ·Z),Y 7→ f (Z)]).

1.4 α-equivalence modulo C

In this work, we want to see what happens when we add commutativity in the equational
reasoning. We start by adjusting the notation of α-equivalence in the rules in Figure 1.2.

For α-equivalence modulo commutativity, denoted by ≈α,C, we have the same rules for
≈α (Figure 1.2), where we replace ≈α for ≈α,C, and also replace the rule (≈α app) by the
rules in Figure 1.5. This means that in our signature will appear some function symbols
which are commutative, and denoted by f ∈ C, i.e., Σ = Σ

′∪C, where the function symbols
in Σ

′ are uninterpreted, i.e., they do not satisfy an equational theory.

Example 1.9. Let f ̸∈ C and g ∈ C be function symbols of Σ. Considering ∆ = {a#X ,b#X},
we can deduce ∆ ⊢ g(f ((a b) ·X ,a),b)≈α,C g(b, f (X ,a)):

16 Background

Fig. 1.5 Additional rules for ≈α,C

ds((a b),Id) = {a,b#X} ∈ ∆
(≈α,C var)

∆ ⊢ (a b) ·X ≈α,C X
(≈α,C atom)

∆ ⊢ a ≈α,C a
(≈α,C app)

∆ ⊢ f ((a b) ·X ,a)≈α,C f (X ,a)
(≈α,C atom)

∆ ⊢ b ≈α,C b
(≈α,C C).

∆ ⊢ g(f ((a b) ·X ,a),b)≈α,C g(b, f (X ,a))

Notice that the application of g changes the order of the arguments, due to commutativity.
Here the term on the left of the ≈α,C, g(f ((a b) ·X ,a),b), has atom b in the second argument
and the term on the right, g(b, f (X ,a)), has atom b in the first argument.

Definition 1.11. Similarly to Definition 1.5, we define a problem Pr to be now a set of
constraints of the form a#X and s ≈α,C t, and we write ∆ ⊢ Pr when for all P ∈ Pr there is a
derivation proof using the rules in Figures 1.1 and 1.2 (replacing ≈α for ≈α,C and the rule
(≈α app) by the rules in Figure 1.5), taking elements of the context ∆ as assumptions.

We now extend a lemma presented in [12] to consider the commutative theory, i.e., we
use the relation ≈α,C. Here, ∆θ consists of the set of constraints {a#Xθ | a#X ∈ ∆} and
⟨∆θ⟩n f consists of the freshness context obtained after applying the rules of Figure 1.3 in
∆θ , since commutativity does not interfere with freshness constraints.

Lemma 1.4. (Compatibility of ⊢ by substitutions) Suppose ∆ and ∆θ are consistent.

1. If ∆ ⊢ a#t then ⟨∆θ⟩n f ⊢ a#(tθ).

2. If ∆ ⊢ s ≈α,C t then ⟨∆θ⟩n f ⊢ (sθ)≈α,C (tθ).

3. If ∆ ⊢ Pr then ⟨∆θ⟩n f ⊢ Prθ .

Proof. We work by induction on the derivation of ∆ ⊢ a#t or ∆ ⊢ s ≈α,C t.

1. We consider all rules in Figure 1.1, by analyzing the last rule applied in ∆ ⊢ a#t.

• Suppose the derivation concludes with (# atom). Then we have the trivial deriva-
tion

1.4 α-equivalence modulo C 17

(# atom)
∆ ⊢ a#b

Notice that applying the rule (# atom) again and that a#bθ ≡ a#b we have

(# atom)⟨∆θ⟩n f ⊢ a#b

and the result follows.

• Suppose the derivation concludes with (# var), thus ∆ ⊢ a#π ·X , and conse-
quently, π

−1 · a#X ∈ ∆. Therefore, π
−1 · a#Xθ ∈ ∆θ . By Lemma 1.3 we have

⟨∆θ ∪{π
−1 ·a#Xθ}⟩n f = ⟨∆θ⟩n f ∪⟨{π

−1 ·a#Xθ}⟩n f . Since {π
−1 ·a#Xθ}⊆∆θ ,

one has ⟨{π
−1 ·a#Xθ}⟩n f ⊆ ⟨∆θ⟩n f . Thus, ⟨∆θ⟩n f ⊢ ⟨{π

−1 ·a#Xθ}⟩n f . From
Lemma 1.3 ⟨∆θ⟩n f ⊢ π

−1 ·a#Xθ .

• Suppose the derivation concludes with (# a[a]). Then we have the trivial derivation

(# a[a])
∆ ⊢ a#[a]t

Notice that applying the rule (# a[a]) again and that [a](tθ)≡ ([a]t)θ we have

(# a[a])
⟨∆θ⟩n f ⊢ a#[a](tθ)

• Suppose the derivation concludes with (# a[b]). Then t = [b]t ′ and there exists a
derivation Π such that

Π

∆ ⊢ a#t ′ (# a[b])
∆ ⊢ a#[b]t ′

By the induction hypothesis, there exists a derivation Π
′ of ⟨∆θ⟩n f ⊢ a#t ′θ . Now

we can apply (# a[b]) again and obtain

Π
′

⟨∆θ⟩n f ⊢ a#t ′θ
(# a[b])

⟨∆θ⟩n f ⊢ a#[b](t ′θ)

Observing that [b](t ′θ)≡ ([b]t ′)θ = tθ , the result follows.

• Suppose the derivation concludes with (# app), that is, t = f (t1, . . . , tn) and
∆ ⊢ a# f (t1, . . . , tn). Thus, there exist derivations Π1, . . . ,Πn such that

Π1
∆ ⊢ a#t1 · · ·

Πn

∆ ⊢ a#tn (# app)
∆ ⊢ a# f (t1, . . . , tn)

By the induction hypothesis, there exist derivations Π
′
1, . . . ,Π

′
n for ⟨∆θ⟩n f ⊢

a#(t1θ), · · · , ⟨∆θ⟩n f ⊢ a#(tnθ), respectively. Now we can apply the rule (# app)
again and obtain

18 Background

Π
′
1

⟨∆θ⟩n f ⊢ a#(t1θ) · · ·
Π

′
n

⟨∆θ⟩n f ⊢ a#(tnθ)
(# app)

⟨∆θ⟩n f ⊢ a# f (t1θ , . . . , tnθ)

Since f (t1θ , . . . , tnθ)≡ f (t1, . . . , tn)θ , we obtain ⟨∆θ⟩n f ⊢ a# f (t1, . . . , tn)θ , and
the result follows.

2. We consider all rules in Figure 1.2 and Figure 1.5, by analyzing the last rule applied in
∆ ⊢ s ≈α,C t.

• Suppose the derivation concludes with (≈α,C atom). Then we have the trivial
derivation

(≈α,C atom)
∆ ⊢ a ≈α,C a

Notice that applying the rule (≈α,C atom) again and that aθ ≈α,C aθ ≡ a ≈α,C a
we have

(≈α,C atom)
⟨∆θ⟩n f ⊢ a ≈α,C a

and the result follows.

• Suppose the derivation concludes with (≈α,C var), thus ∆ ⊢ π · X ≈α,C π
′ ·

X , and consequently, ds(π,π ′)#X ∈ ∆. Therefore, for all a ∈ ds(π,π ′), we
have that a#Xθ ∈ ∆θ . By Lemma 1.3 we have ⟨∆θ ∪{a#Xθ}⟩n f = ⟨∆θ⟩n f ∪
⟨{a#Xθ}⟩n f . Since {a#Xθ} ⊆ ∆θ , one has ⟨{a#Xθ}⟩n f ⊆ ⟨∆θ⟩n f . Thereby,
⟨∆θ⟩n f ⊢ ⟨{a#Xθ}⟩n f , for all a ∈ ds(π,π ′). From Lemma 1.3 ⟨∆θ⟩n f ⊢ a#Xθ ,
and consequently a#Xθ ∈ ⟨∆θ⟩n f , for all a ∈ ds(π,π ′). Applying the rule (≈α,C

var) again the result follows.

• Suppose the derivation concludes with (≈α,C [aa]). Then s = [a]s′, t = [a]t ′ and
there exists a derivation Π such that

Π

∆ ⊢ s′ ≈α,C t ′
(≈α,C [aa])

∆ ⊢ [a]s′ ≈α,C [a]t ′

By the induction hypothesis, there exists a derivation Π
′ of ⟨∆θ⟩n f ⊢ s′θ ≈α,C t ′θ .

Now we can apply (≈α,C [aa]) again and obtain

Π
′

⟨∆θ⟩n f ⊢ s′θ ≈α,C t ′θ
(≈α,C [aa])

⟨∆θ⟩n f ⊢ [a](s′θ)≈α,C [a](t ′θ)

1.4 α-equivalence modulo C 19

Observing that [a](s′θ)≡ ([a]s′)θ = sθ and [a](t ′θ)≡ ([a]t ′)θ = tθ , the result
follows.

• Suppose the derivation concludes with (≈α,C [ab]). So s = [a]s′, t = [b]t ′ and
there exist derivations Π1 and Π2 such that

Π1

∆ ⊢ s′ ≈α,C (a b) · t ′
Π2

∆ ⊢ a#t ′
(≈α,C [ab])

∆ ⊢ [a]s′ ≈α,C [b]t ′

By the induction hypothesis, there exists a derivation Π
′
1 of ⟨∆θ⟩n f ⊢ s′θ ≈α,C

(a b) · t ′θ and by the first part of this Lemma there exists a derivation Π
′
2 of

⟨∆θ⟩n f ⊢ a#t ′θ . Now we can apply (≈α,C [ab]) again and obtain

Π
′
1

⟨∆θ⟩n f ⊢ s′θ ≈α,C (a b) · t ′θ
Π

′
2

⟨∆θ⟩n f ⊢ a#t ′θ
(≈α,C [ab])

⟨∆θ⟩n f ⊢ [a](s′θ)≈α,C [b](t ′θ)

Observing that [a](s′θ) ≡ ([a]s′)θ = s and [b](t ′θ) ≡ ([b]t ′)θ = t, and using
Lemma 1.1, i.e., ((a b) · t ′)θ ≡ (a b) · (t ′θ), the result follows.

• Suppose the derivation concludes with (≈α,C app). Then s = f (s1, . . . ,sn), t =
f (t1, . . . , tn) and there exist derivations Π1, . . . , Πn of ∆ ⊢ s1 ≈α,C t1, · · · , ∆ ⊢
sn ≈α,C tn, respectively, such that

Π1
∆ ⊢ s1 ≈α,C t1 · · ·

Πn

∆ ⊢ sn ≈α,C tn , f ̸∈ C (≈α,C app)
∆ ⊢ f (s1, . . . ,sn)≈α,C f (t1, . . . , tn)

By the induction hypothesis, there exist Π
′
1, . . . , Π

′
n for ⟨∆θ⟩n f ⊢ s1θ ≈α,C t1θ ,

· · · , ⟨∆θ⟩n f ⊢ snθ ≈α,C tnθ , respectively. Now we can apply the rule (≈α,C app)
again and obtain

Π
′
1

⟨∆θ⟩n f ⊢ s1θ ≈α,C t1θ · · ·
Π

′
n

⟨∆θ⟩n f ⊢ snθ ≈α,C tnθ
, f ̸∈ C (≈α,C app)

⟨∆θ⟩n f ⊢ f (s1θ , . . . ,snθ)≈α,C f (t1θ , . . . , tnθ)

Observing that f (s1θ , . . . ,snθ) ≡ f (s1, . . . ,sn)θ = sθ and also f (t1θ , . . . , tnθ)

≡ f (t1, . . . , tn)θ = tθ , the result follows.

• Suppose the derivation concludes with (≈α,C C). Then s = f (s0,s1), t = f (t0, t1)
and there exist derivations Π1 and Π2 of ∆ ⊢ s0 ≈α,C ti and ∆ ⊢ s1 ≈α,C t(i+1)mod2,
respectively, i = 0,1, such that

20 Background

Π1
∆ ⊢ s0 ≈α,C ti

Π2
∆ ⊢ s1 ≈α,C t(i+1)mod2 , i = 0,1 (≈α,C C)

∆ ⊢ f (s0,s1)≈α,C f (t0, t1)

By the induction hypothesis, there exist derivations Π
′
1 and Π

′
2 for ⟨∆θ⟩n f ⊢

s0θ ≈α,C tiθ and ⟨∆θ⟩n f ⊢ s1θ ≈α,C t(i+1)mod2θ , respectively. Now we can apply
the rule (≈α,C C) again and obtain

Π
′
1

⟨∆θ⟩n f ⊢ s0θ ≈α,C tiθ
Π

′
2

⟨∆θ⟩n f ⊢ s1θ ≈α,C t(i+1)mod2θ
, i = 0,1 (≈α,C C)

⟨∆θ⟩n f ⊢ f (s0θ ,s1θ)≈α,C f (t0θ , t1θ)

Observing that f (s0θ ,s1θ)≡ f (s0,s1)θ = s and f (t0θ , t1θ)≡ f (t0, t1)θ = t, the
result follows.

3. Since Pr is a set of freshness or α,C-equivalence constraints, by items (1) and (2), the
result follows.

Notice that by Lemma 1.2 the relation =⇒ is terminating, which guarantees the existence
of ⟨Pr⟩n f .

1.4.1 Nominal Commutative Unification

A nominal unification problem has a unique most general unifier. Nonetheless, adding at
least one commutative operator into the signature, say +, can generate infinite independent
solutions, as it was shown in [1].

In this section, we will briefly present the approach proposed by Ayala-Rincón et. al. [2]:
we will present the new set of inference rules that will transform a nominal C-unification
problem into a triple of the form (∆,δ ,Pr), composed of a set of freshness constraints, a
substitution and a family of problems consisting exclusively of fixed point equations of
the form π ·X ?≈? X . This approach provides a finite representation to the complete set of
C-unifiers. The related proofs are omitted, since they are out of the scope of this work. We
will just present the main notions, rules, results and some examples.

Example 1.10. Consider the problem Pr = { /0,{[a][b]X ≈α,C [b][a]X}}. Using the standard
unification algorithm given by the simplification and instantiating rules, in Definition 1.6, we
get the solution ({a#X ,b#X},Id) to the reduced problem { /0,{X ≈α,C (a b) ·X}}, that is the
Id substitution is a solution whenever a and b do not occur in any instance of X . However,
this is not the only solution.

1.4 α-equivalence modulo C 21

In fact, a and b may occur in X and we still have a solution. Notice that (/0, [X 7→ a+b])
is a solution for Pr when + ∈ C: X [X 7→ a+b] = a+b ≈α,C b+a = ((a b) ·X)[X 7→ a+b].
Other solutions can be found, such as [X 7→ (a+b)+(a+b)], [X 7→ [e](a+b)],

That said, we need to build a new algorithm for nominal C-unification. This new method
will act over triples of the form (∆,θ ,Pr), where θ is a substitution. For a given unification
problem (∆,Pr), we associate the triple (∆,Id,Pr). We will denote the triples by P,Q,S, · · · .

With these new information, it is necessary to adapt the definitions and notations from
the previous section.

Definition 1.12. (C-solution) A C-solution for a triple P = (∆,δ ,Pr) is a pair (∆′,θ) where
the following conditions are satisfied:

1. ∆
′ ⊢ ∆θ ;

2. ∆
′ ⊢ a#tθ , if a#t ∈ Pr;

3. ∆
′ ⊢ sθ ≈α,C tθ , if s ≈α,C t ∈ Pr;

4. there is a substitution θ
′ such that ∆

′ ⊢ δθ
′ ≈α,C θ .

If there is no (∆′,θ) then we say that the problem P is unsolvable. Also UC(P) denotes the
set of all C-solutions of the triple P .

Definition 1.13. (Nominal C-unification problem) A nominal C-unification problem (in

context) is a pair (∇ ⊢ l) ?
C≈? (∆ ⊢ s). The pair (∆′,θ) is an C-solution, or C-unifier, of

(∇ ⊢ l) ?
C≈? (∆ ⊢ s) iff (∆′,θ) is a C-solution of the triple P = ({∇,∆},Id,{l ≈α,C s}), that

is, conditions (1)-(4) of Definition 1.12 are satisfied.

UC(∇ ⊢ l,∆ ⊢ s) denotes the set of all C-solutions of (∇ ⊢ l) ?
C
≈? (∆ ⊢ s). If ∇ and ∆ are

empty we write UC(l,s) for the set of C-unifiers of l and s.

Definition 1.14 (More general C-solution and complete set of C-solutions). Consider (∆1,θ1)

and (∆2,θ2) solutions in UC(P). We say that (∆1,θ1) is more general than (∆2,θ2), written
(∆1,θ1)≤C (∆2,θ2), if there exists a substitution θ

′ such that ∆2 ⊢ θ1θ
′ ≈α,C θ2 and ∆2 ⊢

∆1θ
′.
The ordering ≤C is the extension of ≤ with respect to C, and we write ≤V for the

restriction of ≤ to a set V of variables.
A subset V ∈ UC(P) is said to be a complete set of C-solutions of P if for all (∆1,θ1) ∈

UC(P), there exists (∆2,θ2) ∈ V such that (∆2,θ2)≤C (∆1,θ1).

22 Background

Fig. 1.6 Rules for #

Fig. 1.7 Rules for ≈α,C

Finally, we now present the transformation rules used in the new algorithm: see Figure 1.6
and Figure 1.7, where ⊎ denotes disjoint union.

Note that (≈α,C C) is the only rule in Figure 1.7 that generates branches. Because fC is a
commutative operator, either s0 ≈α,C t0 and s1 ≈α,C t1 or s0 ≈α,C t1 and s1 ≈α,C t0.

To solve a nominal C-unification problem (∇,Pr) we build the derivation tree for =⇒
with root labelled with (∇,Id,Pr), and then apply the rules in Figures 1.6 and 1.7, as long as
possible. This provides an algorithm for nominal C-unification that is terminating, sound,
complete and yields a finite representation for the complete set of C-unifiers for (∇,Pr). The
proofs of these results are omitted and can be found in [2].

In the following examples, we will use the notation ?≈? over ?
C≈? , in order to avoid

cluster, since commutativity is clear in these cases.

1.4 α-equivalence modulo C 23

Example 1.11. Let + and × be commutative operators (infix notation) of Σ. The problem
P = (/0,{(a+X)×Y ?≈? Z × (W +b)}) has two solutions.

(/0,Id,{(a+X)×Y ?≈? Z × (W +b)})

(/0,Id,{(a+X) ?≈? Z,Y ?≈? (W +b)}) (/0,Id,{(a+X) ?≈? (W +b),Y ?≈? Z})

(/0,θ = [Y 7→W +b,Z 7→ a+X], /0) = P1 (/0,θ ′ = [Y 7→ Z],{(a+X) ?≈? (W +b)})

(/0,θ ′,{a ?≈? W,X ?≈? b}) (/0,θ ′,{a ?≈? b,X ?≈? W})

(/0,θ ′′ = θ
′[W 7→ a,X 7→ b], /0) = P2 no solution

(≈α,C C) (≈α,C C)

(≈α,C inst)(2×) (≈α,C inst)

(≈α,C C) (≈α,C C)

(≈α,C inst)(2×)

24 Background

Example 1.12. Consider ∗ a commutative operator (infix notation) of the signature Σ and
consider the problem Q= (/0,{[c](a b) ·X ∗Y ?≈? [d](a c) ·X ∗Y}):

(/0,Id,{[c](a b) ·X ∗Y ?≈? [d](a c) ·X ∗Y})

(/0,Id,{(a b) ·X ∗Y ?≈? (c d)◦ ((a c) ·X ∗Y), c#((a c) ·X ∗Y))

(/0,Id,{(a b) ·X ?≈? (c d)◦ (a c) ·X ,

Y ?≈? (c d) ·Y, c#((a c) ·X ∗Y)})
(/0,Id,{(a b) ·X ?≈? (c d) ·Y,

Y ?≈? (c d)◦ (a c) ·X , c#((a c) ·X ∗Y)})

(/0,Id,{((a c)◦ (c d))◦ (a b) ·X ?≈? X ,

(c d)−1 ·Y ?≈? Y, c#((a c) ·X ∗Y)})
(/0,θ ,{Y ?≈? ((c d)◦ (a c))◦ ((a b)◦ (c d)) ·Y,

c#((a c)◦ ((a b)◦ (c d)) ·Y ∗Y)})

(/0,Id,{((a c)◦ (c d))◦ (a b) ·X ?≈? X ,

(c d) ·Y ?≈? Y, c#(a c) ·X , c#Y})
(/0,θ ,{((c d)◦ (a b))◦ ((a c)◦ (c d)) ·Y ?≈? Y,

c#((a c)◦ ((a b)◦ (c d)) ·Y ∗Y)})

({a#X ,c#Y},Id,
{((a c)◦ (c d))◦ (a b) ·X ?≈? X ,

(c d) ·Y ?≈? Y}) =Q1

(/0,θ ,{((c d)◦ (a b))◦ ((a c)◦ (c d)) ·Y ?≈? Y,
c#(a c)◦ ((a b)◦ (c d)) ·Y, c#Y})

Q2 = ({b#Y,c#Y},θ ,
{((c d)◦ (a b))◦ ((a c)◦ (c d)) ·Y ?≈? Y})

(≈α,C [ab])

(≈α,C C) (≈α,C C)

(≈α,C inv)(2×) (≈α,C inst)

(# app) (≈α,C inv)

(# var)(2×) (# app)

(# var)(2×)

Notice that Q1 and Q2 are the two resulting fixed point problems, and the substitution in
the right branch is θ = [X 7→ (a b)◦ (c d) ·Y].

Chapter 2

Nominal Narrowing

Given an equational theory E, the problem of solving term equations modulo E is called
E-unification. Narrowing is a well-known technique that provides a complete unification
procedure for E-unification, when the theory is represented by a convergent rewrite sys-
tem [10, 15].

In this chapter we will see how narrowing behaves in the nominal syntax. In order
to do that, in Section 2.1 we present the basic notions for nominal rewriting and nominal
equality, together with closed nominal rewriting. In Section 2.2 we present the nominal
narrowing relation and its closed definition, and in Subsection 2.2.1 we present one of the
most important result of nominal narrowing: the Lifting Theorem (Theorem 2.2). Lastly,
in Section 2.3 we show that the process of nominal narrowing is sound and complete for
nominal unification, if we consider a closed equational theory.

2.1 Nominal Rewriting and Nominal Equality

Below we recall the definition of nominal rewriting and nominal equational reasoning. Basic
notions used in this section were taken from [5, 6, 12, 13].

A rewrite judgement (resp. equality judgement) is a tuple ∆ ⊢ s → t (resp. ∆ ⊢ s = t) of a
freshness context ∆ and two nominal terms s and t. An equational theory E= (Σ,Ax) is a
pair of a signature Σ and a possibly infinite set of equality judgements Ax in Σ, called axioms.
A rewrite theory R = (Σ,Rw), or a nominal rewrite system (NRS), is a pair of a signature
Σ and a possibly infinite set of rewrite judgements Rw in Σ, called rewrite rules. Σ may be
omitted, and we will identify E with Ax and R with Rw when the signature is clear from the
context.

26 Nominal Narrowing

Definition 2.1. (Nominal rewriting) The one-step rewrite relation ∆ ⊢ s R→[C,R,θ ,π] t is the
least relation such that for any R = (∇ ⊢ l → r) ∈ R, position C, term s′, permutation π , and
substitution θ ,

s ≡ C[s′] ∆ ⊢
(
∇θ ,s′ ≈α π · (lθ),C[π · (rθ)]≈α t

)
∆ ⊢ s R→[C,R,θ ,π] t

Subindices may be omitted if they are clear from context, writing simply ∆ ⊢ s R→ t, or
∆ ⊢ s →R t. The rewrite relation ∆ ⊢ s →∗

R t (sometimes written ∆ ⊢R s → t) is the reflexive
transitive closure of the one-step rewrite relation, that is, the least relation that includes the
one-step relation and such that:

• for all ∆,s,s′ we have ∆ ⊢ s →∗
R s′ if ∆ ⊢ s ≈α s′;

• for all ∆,s, t,u we have that ∆ ⊢ s →∗
R t and ∆ ⊢ t →∗

R u implies ∆ ⊢ s →∗
R u.

Example 2.1. Consider the signature Σ = {add,mult,succ,0}, with arities 2, 2, 1 and 0,
respectively. Let R = (Σ,Rw) be the NRS (specifying the natural numbers with addition,
multiplication, successor and zero) with the following rewrite rules:

Rw =

R1 : /0 ⊢ add(X ,0)→ X
R2 : /0 ⊢ add(X ,succ(Y))→ succ(add(X ,Y))
R3 : /0 ⊢ mult(X ,0)→ 0
R4 : /0 ⊢ mult(X ,succ(Y))→ add(mult(X ,Y),X).

By definition, and taking θ = [X 7→ add(X ′,Y ′),Y 7→ mult(X ′,Z′)], we have

/0 ⊢ succ(mult(add(X ′,Y ′),succ(mult(X ′,Z′))))
R→[1,R4,θ ,Id] succ(add(mult(add(X

′,Y ′),mult(X ′,Z′)),add(X ′,Y ′))).

When a term-in-context ∆ ⊢ s does not rewrite, that is, there is no t such that ∆ ⊢ s →R t
we call it a normal form. Also, a rewrite theory R is convergent if the rewrite relation is
terminating and confluent.

Definition 2.2. (Confluence) A NRS is confluent when for all ∆, s, t and t ′ such that ∆⊢ s→∗ t
and ∆ ⊢ s →∗ t ′, there exists u such that ∆ ⊢ t →∗ u and ∆ ⊢ t ′ →∗ u.

2.1.1 Nominal Algebra Equality and Closed Nominal Rewriting

In general, nominal rewriting is not complete for equational reasoning. As we will see
below, nominal algebra includes some extra freshness context Γ, which does not match with

2.1 Nominal Rewriting and Nominal Equality 27

the rewriting reasoning. The notions and results presented here are consistent with [13].
However, the proofs are out of the scope of this work and are omitted.

Definition 2.3. (Nominal equality) A nominal algebra equality ∆ ⊢E s = t is the least transi-
tive reflexive symmetric relation such that for any (∇ ⊢ l = r) ∈ E, position C, permutation π ,
substitution θ , and fresh context Γ (so if a#X ∈ Γ then a is not mentioned in ∆,s, t),

∆,Γ ⊢
(
∇θ , s ≈α C[π · (lθ)], C[π · (rθ)]≈α t

)
.

∆ ⊢E s = t

Given an equational theory E and a rewrite theory R, we say R is a presentation of E if:

∆ ⊢ s = t ∈ E⇔ (∇ ⊢ s → t ∈ R ∨ ∇ ⊢ t → s ∈ R).

We write ∆ ⊢R s ↔ t for the symmetric closure of ∆ ⊢R s → t.

Proposition 2.1 (Soundness). Suppose R is a presentation of E. Then ∆ ⊢R s ↔ t implies
∆ ⊢E s = t.

Proof. The proof can be found in [13], at Proposition 4.2.

Lemma 2.1. Suppose R is a presentation of E. It is not necessarily the case that ∆ ⊢E s = t
implies ∆ ⊢R s ↔ t.

Proof. Take R= {a#X ⊢ X → f (X)}. Then ⊢E X = f (X) but ̸⊢R X ↔ f (X).

Theorem 2.1 (Quasi-Completeness). Suppose R is a presentation of E. Then ∆ ⊢E s = t
implies that there exists some fresh Γ such that ∆,Γ ⊢R s ↔ t.

Proof. The proof can be found in [13], at Theorem 4.4.

As already shown in the work [13], closed nominal rewriting is complete for equational
reasoning with closed axioms. Intuitively, in closed terms there are no occurrences of free
atoms and closed axioms are identities between closed terms. Also, closed axioms do not
allow abstracted atoms to become free.

Definition 2.4. (Freshened variant) If t is a term, we say that t Nis a freshened variant of t
when t Nhas the same structure of t, except that the atoms and unknowns have been replaced
by ‘fresh’ ones. Similarly, if ∇ is a freshness context then ∇

Nwill denote a freshened variant
of ∇, that is, if a#X ∈ ∇ then a N#X N∈ ∇

Nwhere a Nand X Nare chosen fresh.
We may extend this to other syntax, like equality and rewrite judgements.

28 Nominal Narrowing

Example 2.2. We have that [a N][b N]X N is a freshened variant of [a][b]X . Also a N#X N is a
freshened variant of a#X , and /0 ⊢ f ([a N]X N)→ [a N]X Nis a freshened variant of /0 ⊢ f ([a]X)→
[a]X .

Note that neither [a N][a N]X Nnor [a N][b N]X are freshened variants of [a][b]X : the first one
because we are identifying different atoms with the same fresh name, and the second one
because we did not freshened the unknown X .

Definition 2.5. (Closed term, rule and axioms) A term-in-context ∇ ⊢ l is closed if there
exists a solution for the matching problem (∇ N⊢ l N) ?≈ (∇,A(l N)#V (∇, l) ⊢ l). A rule
R = (∇ ⊢ l → r) and an axiom Ax = (∇ ⊢ l = r) are called closed when ∇ ⊢ (l,r) is closed.

Definition 2.6. (Closed nominal rewriting) The one-step closed nominal rewriting ∆ ⊢ s →c
R t

is the least relation such that for any R = (∇ ⊢ l → r) ∈ R and term-in-context ∆ ⊢ s, there
exists some R Na freshened variant of R (that is, fresh for R,∆,s, t), a position C, a term s′, a
permutation π , and a substitution θ ,

s ≡ C[s′] ∆,A(R N)#V (∆,s, t) ⊢
(
∇

N
θ ,s′ ≈α π · (l N

θ),C[π · (r N
θ)]≈α t

)
∆ ⊢ s →c

R t

The closed-rewrite relation ∆ ⊢R s →c t is the reflexive transitive closure of the one-step
relation.

Example 2.3. Consider the following rewrite theory for the λ -calculus:

⊢ app(lam([a]X),X ′) → sub([a]X ,X ′) (β)

⊢ sub([a]a,X) → X
a#Y ⊢ sub([a]Y,X) → Y

⊢ sub([a]app(X ,X ′),Y) → app(sub([a]X ,Y),sub([a]X ′,Y))
b#Y ⊢ sub([a]lam([b]X),Y) → lam([b]sub([a]X ,Y))

All the rewrite rules above are closed.

Example 2.4. Consider the rule R ≡ /0 ⊢ [a] f (a,X)→ a. This rule is not closed because
there is no solution to (/0 ⊢ [a′] f (a′,X ′)) ?≈ (a′#X ′ ⊢ a).

2.2 Nominal Narrowing

Building up on the previous sections, we can present the nominal narrowing relation, i.e.,
the narrowing relation for nominal terms. An interesting remark to be made is that nominal

2.2 Nominal Narrowing 29

narrowing is a generalization of nominal rewriting, where instead of solving a matching
problem we solve a unification problem.

This extension was proposed in [6] where it was also shown that closed nominal narrowing
provides a sound and complete procedure for nominal unification modulo a theory E that can
be presented by a convergent nominal rewrite system.

From now on in this work we will consider R as a convergent theory, equivalent to a set
of identities E, with the aim of guaranteeing the existence of a complete set of E-unifiers of
equations, which we will use the narrowing method.

Definition 2.7. (Nominal narrowing) The one-step (∆ ⊢ s)⇝[C,R,θ ,π] (∆
′ ⊢ t) nominal nar-

rowing relation is the least relation such that for any R = (∇ ⊢ l → r) ∈ R, position C, term
s′, permutation π , and substitution θ ,

s ≡ C[s′] ∆
′ ⊢

(
∇θ , ∆θ , s′θ ≈α π · (lθ), (C[π · r])θ ≈α t

)
.

(∆ ⊢ s)⇝[C,R,θ ,π] (∆
′ ⊢ t)

In order to find θ and π above, we need to solve the nominal unification problem
(∆ ⊢ s′) ?≈? (∇ ⊢ l). We may omit subindices if they are clear from the context.

The nominal narrowing relation (∆ ⊢ s)⇝∗
R (∆′ ⊢ t) is the reflexive transitive closure of

the one-step nominal narrowing relation, that is, the least relation that includes the one-step
nominal narrowing relation and such that:

• for all ∆,s,s′ we have (∆ ⊢ s)⇝∗
R (∆ ⊢ s′) if ∆ ⊢ s ≈α s′;

• for all ∆,∆′,∆′′,s, t,u we have that (∆⊢ s)⇝∗
R (∆

′ ⊢ t) and (∆′ ⊢ t)⇝∗
R (∆

′′ ⊢ u) implies
(∆ ⊢ s)⇝∗

R (∆′′ ⊢ u).

Example 2.5. Consider the signature for the first-order logic Σ = {∀,∃,¬,∧,∨} and let R be
the theory over Σ consisting of the following rules:

a#P ⊢ P∧∀[a]Q →∀[a](P∧Q)

a#P ⊢ (∀[a]Q)∧P →∀[a](Q∧P)
a#P ⊢ P∨∀[a]Q →∀[a](P∨Q)

a#P ⊢ (∀[a]Q)∨P →∀[a](Q∨P)
a#P ⊢ P∧∃[a]Q →∃[a](P∧Q)

a#P ⊢ (∃[a]Q)∧P →∃[a](Q∧P)
a#P ⊢ P∨∃[a]Q →∃[a](P∨Q)

a#P ⊢ (∃[a]Q)∨P →∃[a](Q∨P)
⊢ ¬(∃[a]Q)→∀[a]¬Q
⊢ ¬(∀[a]Q)→∃[a]¬Q

30 Nominal Narrowing

Let’s take the rule R = (a#P ⊢ (∀[a]Q)∨P →∀[a](Q∨P)) and show one nominal nar-
rowing step from the term s ≡ (c#P0 ⊢ S∧ ((∀[b]Q0)∨ (b c) ·P0)) using this rule.

• ∆ = {c#P0} and ∇ = {a#P};

• s = S∧ ((∀[b]Q0)∨ (b c) ·P0)≡ C[(∀[b]Q0)∨ (b c) ·P0]≡ C[s′];

• We need to find the solution to the nominal unification problem (∆ ⊢ s′) ?≈? (∇ ⊢ l).
That is, a solution (∆′,θ) which is a solution to the problem

{a#P,c#P0,(∀[a]Q)∨P ?≈? (∀[b]Q0)∨ (b c) ·P0};

• A solution is (∆′,θ) = ({a#P0,c#P0,a#Q0}, [P 7→ (b c) ·P0,Q 7→ (a b) ·Q0]) (cf. Ex-
ample 1.7);

• A solution to a unification problem already give us ∆
′ ⊢ (∇θ ,∆θ ,s′θ ≈α π · (lθ)) if

we fix π = Id;

• C[π · r] = C[r] = S∧ (∀[a](Q∨P));

• (C[π · r])θ = (S∧ (∀[a](Q∨P)))[P 7→ (b c) ·P0,Q 7→ (a b) ·Q0] = S∧ (∀[a]((a b) ·
Q0 ∨ (b c) ·P0)) = t.

Therefore, we have (∆ ⊢ s)⇝[C,R,θ ,Id] (∆
′ ⊢ t):

(c#P0 ⊢ S∧ ((∀[b]Q0)∨ (b c) ·P0))⇝ (a#P0,c#P0,a#Q0 ⊢ S∧ (∀[a]((a b) ·Q0∨ (b c) ·P0))).

Definition 2.8. (Normalized substitution) A substitution θ is normalized in ∆ with relation
to a rewrite theory R if for every X we have that ∆ ⊢ Xθ is a normal formal in R.

2.2.1 The nominal Lifting Theorem

In this section we will present the nominal version of the Lifting Theorem which establishes
the correspondence between nominal narrowing and nominal rewriting. This result was first
presented in [6] and extends the first-order case presented by Hullot in [15]. One important
difference is the use of freshness contexts both for rules and terms, since nominal terms may
come with freshness conditions.

Theorem 2.2 (Lifting). Let R= {∇i ⊢ li → ri} be a convergent rewrite theory. Let ∆0 ⊢ s0 be
a nominal term-in-context and V0 a finite set of variables containing V =V (∆0,s0). Let η be

2.2 Nominal Narrowing 31

∆ ⊢ sη = t0 // . . . ti // ti+1 // . . . // tn

∆0 ⊢ s0

η0

OO

// . . . (∆i ⊢ si) //

ηi

OO

(∆i+1 ⊢ si+1)

ηi+1

OO

// . . . // (∆n ⊢ sn)

ηn

OO

Fig. 2.1 Corresponding Rewriting and Narrowing Steps

a substitution with dom(η)⊆V0 and satisfying ∆0, that is, there exists ∆ such that ∆ ⊢ ∆0η .
Assume moreover that η is normalized in ∆.

Consider a rewrite derivation:

∆ ⊢ s0η = t0 →[C0,R0] · · · →[Cn−1,Rn−1] tn (*)

There exist an associated nominal narrowing derivation:

(∆0 ⊢ s0)⇝[C′0,R0,θ0] · · ·⇝[C′n−1,Rn−1,θn−1] (∆n ⊢ sn) (**)

for each i, 0 ≤ i ≤ n, a substitution ηi and a finite set of variables Vi ⊇V (si) such that:

1. dom(ηi)⊆Vi,

2. ηi is normalized in ∆,

3. ∆ ⊢ η |V ≈α σiηi|V ,

4. ∆ ⊢ siηi ≈α ti,

5. ∆ ⊢ ∆iηi

where σ0 = Id and σi+1 = σiθi.
Conversely, to each nominal narrowing derivation of the form (∗∗) and every η such that

(∆n,σn)≤V (∆,η) and ∆ ⊢ siηi ≈α ti we can associate a nominal rewriting derivation of the
form (∗).

Proof. The proof is illustrated by Figure 2.1 and it can be found in [6], at Theorem 12.

Example 2.6. Consider the term s0 = S∧ ((∀Q1)∨ (b c) ·P0) with the context ∆0 = {c#P0}.
Using the same rules from Example 2.5, we may found the narrowing step

(c#P0 ⊢ S∧ (∀Q1 ∨ (b c) ·P0))⇝ (c#P0,a#P0 ⊢ S∧ (∀[a](Q∨ (b c) ·P0))),

32 Nominal Narrowing

where ∆1 = {c#P0,a#P0} and s1 = S∧ (∀[a](Q∨ (b c) ·P0)) and θ = [P 7→ (b c) ·P0,Q1 7→
[a]Q] the narrowing substitution.

∆ ⊢ t0 = S∧ (∀[a]Q∨ (b c) · ((b c)−1 ·P)) // t1 = S∧∀[a](Q∨P)

c#P0 ⊢ S∧ (∀Q1 ∨ (b c) ·P0)

η0=[Q1 7→[a]Q, P0 7→(b c)−1·P]
OO

// c#P0,a#P0 ⊢ S∧ (∀[a](Q∨ (b c) ·P0))

η1=[P0 7→(b c)−1·P]

OO

Fig. 2.2 The “lifted” example

Let η = [Q1 7→ [a]Q, P0 7→ (b c)−1 ·P] be a normalized substitution with dom(η) =

{Q1,P0} ⊆V0 = {S,P0,Q1}=V (∆0,s0).
Observe that when ∆ = {c#(b c) ·P,a#P} we have the conditions of the nominal lifting

theorem:

• (∆0,σ0) = ({c#P0},Id)≤V (∆,η);

• (∆1,σ1) = ({c#P0,a#P0},θ)≤V (∆,η);

• ∆ ⊢ s0η0 = s0η ≈α S∧ ((∀[a]Q)∨ (b c) · ((b c)−1 ·P)) = t0;

• ∆ ⊢ s1η1 = S∧ (∀[a](Q∨ (b c) ·P0))[P0 7→ (b c)−1 ·P]≈α S∧∀[a](Q∨P) = t1

Thus, we can associate a nominal rewriting derivation to the nominal narrowing we already
have, see Figure 2.2.

2.3 Nominal Narrowing and Nominal Unification

Considering a closed nominal equational theory E, presented by a convergent set R of closed
rules, we can state the soundness and completeness properties of the nominal narrowing
procedure for nominal unification. Notice that we only have a complete procedure for
nominal unification if the relation is closed.

Definition 2.9. (Closed nominal narrowing) The one-step closed nominal narrowing (∆ ⊢
s)⇝c

R (∆′ ⊢ t) is the least relation such that for any R = (∇ ⊢ l → r) and a term-in-context
∆ ⊢ s, there exist R Na freshened variant of R, a position C, a term s′, a permutation π and a
substitution θ ,

s ≡ C[s′] ∆
′,A(R N)#V (∆,s, t) ⊢

(
∇

N
θ ,∆θ ,s′θ ≈α π · (l N

θ),C[π · (r N
θ)]≈α t

)
(∆ ⊢ s)⇝c

R (∆′ ⊢ t)

2.3 Nominal Narrowing and Nominal Unification 33

The closed narrowing relation (∆ ⊢ s)⇝c
R · · ·⇝c

R (∆′ ⊢ t) is the reflexive transitive
closure of the one-step closed narrowing.

Remark 2.1. A “closed lifting” theorem can be stated by replacing nominal rewriting (nar-
rowing) for closed rewriting (narrowing). The proof is similar.

In order to find a solution for the unification problem (∆ ⊢ s) ?
E≈? (∇ ⊢ t), the approach

used in [6] was to apply closed narrowing on ∆ ⊢ s and ∇ ⊢ t in parallel, that is, they narrow
a single term u = (s, t) under ∆,∇.

Lemma 2.2. (Soundness) Let ∆ ⊢ s and ∇ ⊢ t be two nominal terms-in-context and

∆,∇ ⊢ (s, t) = u0⇝
c · · ·⇝c

∆n ⊢ un = (sn, tn)

a closed narrowing derivation such that ∆n,sn ≈α tn has a solution, say (Γ,θ).

Then (Γ,ρθ) is an E-solution of the problem {∆,∇,s ?
E≈? t}, where ρ is the composition

of substitutions along the narrowing derivation.

Proof. The proof can be found in [6], at Lemma 14.

Below, ≤E is the restriction of ≤ with respect to an equational theory E.

Lemma 2.3. (Completeness) Let ∆ ⊢ s and ∇ ⊢ t be two nominal terms-in-context, such

that the problem (∆ ⊢ s) ?
E
≈? (∇ ⊢ t) has an E-solution, (∆′,ρ), and let V be a finite set of

variables containing V (∆,∇,s, t).
Then there exists a closed narrowing derivation:

∇,∆ ⊢ u = (s, t)⇝c · · ·⇝c
Γn ⊢ (sn, tn),

such that Γn,sn ≈α tn has a solution. Let (Γ,µ) = mgu(Γn,sn ≈α tn), and θn the composition
of narrowing substitutions. Then, (Γ,θnµ)≤V

E (∆′,ρ).
Moreover, we are allowed to restrict our attention to⇝c-derivations such that: ∀i,0 ≤

i ≤ n, θi|V is normalized.

Proof. The proof can be found in [6], at Lemma 15.

Remember that our main goal in this dissertation is not to re-prove these results above,
but to extend them to the case when we are dealing with a commutative theory, as we will
see in the next chapter.

Chapter 3

Nominal Commutative Narrowing

In this chapter we present the main contributions of this work. We start by extending the
nominal rewriting relation to take into account an equational theory E that cannot be oriented
as a terminating rule. We recall some results in first-order equational rewriting to motivate
further developments in nominal rewriting modulo commutativity. After that, we present our
definition of nominal C-narrowing and prove the results that relate nominal C-narrowing to
nominal rewriting modulo C: the proof of one direction of this correspondence is presented
fully in Theorem 3.1, the other direction though, requires an extra property called C-coherence
(Definition 3.6), and we present a naive version of the result in Theorem 3.2, but this has to
be further investigated. We make comparisons between the nominal versions of these results
and also their first-order counterpart, as presented by Jouannaud et. al. in [17].

We illustrate our results and new developments with new examples.

3.1 Basic Definitions

Consider a signature Σ = ΣE∪Σ0, where ΣE consists of the function symbols satisfying an
equational theory E and Σ0 is a set of uninterpreted function symbols, and assuming we
have a theory T= (ΣE∪Σ0,Ax) where Ax is a set of axioms that can be split into a set R of
rules and a set E of equations, we obtain what we call an equational term rewriting system
(ETRS), denoted R∪E (for more details see Appendix A). We will extend basic rewriting
notions such as C-confluence and C-termination (following [17]) to the nominal framework,
and the notations are consistent with [12, 6]. Thus, we will present novel definitions such as
Equational Nominal Rewriting Systems (ENRS) and other expected related notions, such as
rewriting modulo C following the definitions and notations from [17]. Formally,

36 Nominal Commutative Narrowing

We start by extending the definition of Equational Term Rewriting Systems (ETRS) to
the nominal terms with respect to the theory C. Below, [t]≈C

, denotes the equivalence class
of the nominal term t modulo C, i.e., [t]≈C

= {t ′ | t ′ ≈α,C t}.

Definition 3.1. (Equational nominal rewrite system) Let C be set of identities for commuta-
tivity and R a set of nominal rewrite rules. A nominal term-in-context ∆ ⊢ s, reduces with
respect to R/C, when its equivalence class modulo C reduces via →R/C as below.

∆ ⊢ ([s]≈C
→R/C [t]≈C

) iff there exist s′, t ′ such that ∆ ⊢ (s ≈α,C s′ →R t ′ ≈α,C t).

That said, we call R/E an equational nominal rewrite system (ENRS). In particular, R/C is a
commutative nominal rewrite system.

Remark 3.1. For a general theory E, in the first-order case, one has to consider that
E-congruence classes may be infinite, and then the first-order counterpart of →R/E

may not be decidable. To address this problem, a relation →R,E which deals with
E-matching:

Notice that the R,E-reducibility is decidable if the E-matching is decidable. And
Jouannaud et. al. [17] assume the existence of a finite and complete E-unification
algorithm, which is a sufficient condition for that decidability.

Here however, one needs to remember that we are dealing with α,E-congruence classes
and they are always infinite due to availability of names for α-renaming. But the pure ≈α

relation is decidable (just use the rules in Figure 1.1 and Figure 1.2), but if put together with
an equational theory E with infinite congruence classes, the same problem of indecidability
of the nominal →R/E is inherited. Thus, we will follow a similar approach and define a
new relation →R,E that deals with nominal E-matching instead of inspecting the whole
α,E-congruence class of a term.

In this work, we are interested on the commutative equational theory, therefore, the next
notions and results will be restricted to C. It is a fact that C-congruence classes are finite,
given a term t with commutative function symbols, there exists only finite t ′ such that t ≈C t ′.
Also, when we generalize the relation ≈C to ≈α,C the α,C-congruence classes become

3.1 Basic Definitions 37

infinite, but the relation is still decidable [4]. Next, we will introduce the relation →R,C, and
use nominal C-matching [3] to follow existing strategies.

Definition 3.2. (Nominal rewriting modulo C) The one-step rewrite modulo C relation
∆ ⊢ s →R,C t is the least relation such that for any R = (∇ ⊢ l → r) ∈ R, position C, term s′,
permutation π , and substitution θ ,

s ≡ C[s′] ∆ ⊢
(
∇θ , s′ ≈α,C π · (lθ), C[π · (rθ)]≈α,C t

)
∆ ⊢ s →R,C t

The rewrite modulo C relation ∆ ⊢ s →∗
R,C t is the reflexive transitive closure of the

one-step rewrite modulo C relation, that is, the least relation that includes the one-step rewrite
modulo C relation and such that:

• for all ∆,s,s′ we have ∆ ⊢ s →∗
R,C s′ if ∆ ⊢ s ≈α,C s′;

• for all ∆,s, t,u we have that ∆ ⊢ s →∗
R,C t and ∆ ⊢ t →∗

R,C u implies ∆ ⊢ s →∗
R,C u.

Example 3.1. Notice that the rules in Example 2.5 have two copies for dealing with the
commutativity of disjunction and conjunction. If we work now with the set of identities
C= { ⊢ P∨Q ≈ Q∨P, ⊢ P∧Q ≈ Q∧P}, we can write the NRS as

a#P ⊢ P∧∀[a]Q →∀[a](P∧Q)

a#P ⊢ P∨∀[a]Q →∀[a](P∨Q)

a#P ⊢ P∧∃[a]Q →∃[a](P∧Q)

a#P ⊢ P∨∃[a]Q →∃[a](P∨Q)

⊢ ¬(∃[a]Q)→∀[a]¬Q
⊢ ¬(∀[a]Q)→∃[a]¬Q

We will show that we have the one-step rewrite modulo C: a#P′ ⊢ S′∨(P′∨∃[a]Q′)→R,C

S′∨ (∃[a](Q′∨P′)) with the rule a#P ⊢ P∨∃[a]Q →∃[a](P∨Q). Indeed,

• ∆ = {a#P′} and ∇ = {a#P};

• s = S′∨ (P′∨∃[a]Q′)≡ C[P′∨∃[a]Q′]≡ C[s′];

If we fix π = Id and θ = [P 7→ P′,Q 7→ Q′] we have:

• ∆ = a#P′ ⊢ a#P′ = (a#P)[P 7→ P′,Q 7→ Q′] = ∇θ ;

• s′ = P′∨∃[a]Q′ ≈α,C (P∨∃[a]Q)[P 7→ P′,Q 7→ Q′] = lθ = π · (lθ);

38 Nominal Commutative Narrowing

• C[π · (rθ)] = C[rθ] = C[(∃[a](P ∨ Q))[P 7→ P′,Q 7→ Q′]] = C[∃[a](P′ ∨ Q′)] = S′ ∨
(∃[a](P′∨Q′))≈α,C t

Thus, a#P′ ⊢ S′∨ (P′∨∃[a]Q′)→R,C S′∨ (∃[a](Q′∨P′)).
Observe that since ∨ is a commutative symbol, we could reduce the initial term to other

three possible terms, because we have two occurrences of the disjunction and thus we can
“permute” the subterms inside the rewriting modulo C.

Remark 3.2. It is important to notice that nominal C-unification is not finitary when one uses
freshness constraints and substitutions for representing solutions [2], but what causes infinite
set of C-unifiers does not appear in nominal C-matching [3]. We will come back to this issue
later on.

Definition 3.3. (C-confluence and C-termination) If ∆ ⊢ s →∗
R,C t and ∆ ⊢ s →∗

R,C t ′, then
we say a nominal rewrite system R is C-confluent when there exists a term u such that
∆ ⊢ t →∗

R,C u and ∆ ⊢ t ′ →∗
R,C u. Also, R is said to be C-terminating if there is no infinite

rewrite modulo C sequence. A NRS R is called C-convergent if it is C-confluent and C-
terminating.

Remark 3.3. Following the approach by Jouannaud et. al. [17], E-confluence is
a consequence of relating →R/E and →R,E, which relies on a property called E-
coherence:

t1 R,E
// t3

∗
R/E

// t4
∗

R/E
// t5

t2

≈E

R,E
// t6

∗
R/E

// t7

≈E

O�

O�

We would like to stress the abuse of notation above, since t3 →∗
R/E t4, for instance,

should be written [t3]≈E
→∗

R/E [t4]≈E
, and is acting as an abbreviation for t3 ≈E t ′3 →R

t ′4 ≈E t4.

For more details, see Jouannaud et. al. [17].

3.1 Basic Definitions 39

Definition 3.4. (Normalized substitution w.r.t →R,C) A substitution θ is normalized in ∆

with relation to →R,C if ∆ ⊢ Xθ is a R,C-normal form in R for every X . A substitution θ

satisfies the freshness context ∆ if there exists a freshness context ∇ such that ∇ ⊢ a#Xθ for
each a#X ∈ ∆. The minimal such ∇ is ⟨∆θ⟩n f .

Now we define the nominal narrowing relation modulo C, extending previous works, and
illustrate it with two examples.

Definition 3.5. (Nominal narrowing modulo C) The one-step narrowing modulo C relation
(∆ ⊢ s)⇝R,C (∆′ ⊢ t) is the least relation such that for any R = (∇ ⊢ l → r) ∈ R, position C,
term s′, permutation π , and substitution θ ,

s ≡ C[s′] ∆
′ ⊢

(
∇θ , ∆θ , s′θ ≈α,C π · (lθ), (C[π · r])θ ≈α,C t

)
.

(∆ ⊢ s)⇝R,C (∆′ ⊢ t)

Notice that the permutation and substitution above are found by solving the C-unification

problem (∇ ⊢ l) ?
C
≈? (∆ ⊢ s′).

The nominal narrowing modulo C relation (∆ ⊢ s)⇝∗
R,C (∆′ ⊢ t) is the reflexive transitive

closure of the one-step nominal narrowing modulo C relation, that is, the least relation that
includes the one-step nominal narrowing modulo C relation and such that:

• for all ∆,s,s′ we have (∆ ⊢ s)⇝∗
R,C (∆ ⊢ s′) if ∆ ⊢ s ≈α,C s′;

• for all ∆,∆′,∆′′,s, t,u we have that (∆ ⊢ s)⇝∗
R,C (∆′ ⊢ t) and (∆′ ⊢ t)⇝∗

R,C (∆′′ ⊢ u)
implies (∆ ⊢ s)⇝∗

R,C (∆′′ ⊢ u).

We now return to Remark 3.2: nominal C-narrowing is defined on nominal C-unification,
which is not finitary when we use pairs (∆′,θ) of freshness contexts and substitutions
for representing solutions. This implies that our nominal C-narrowing trees are infinitely
branching.

Example 3.2. In Example 2.5 we made a narrowing step:

(c#P0 ⊢ S∧((∀[b]Q0)∨(b c) ·P0))⇝R (a#P0,c#P0,a#Q0 ⊢ S∧(∀[a]((a b) ·Q0∨(b c) ·P0))).

Now considering the commutativity of ∨, we have

(C[π · r])θ = S∧ (∀[a]((a b) ·Q0 ∨ (b c) ·P0))≈α,C S∧ (∀[a]((b c) ·P0)∨ (a b) ·Q0).

In that way we can make now a narrowing modulo C step:

(c#P0 ⊢ S∧ ((∀[b]Q0)∨ (b c) ·P0))⇝R,C (a#P0,c#P0,a#Q0 ⊢ S∧ (∀[a]((b c) ·P0)∨ (a b) ·Q0)).

40 Nominal Commutative Narrowing

3.2 Nominal Lifting Theorem modulo C

Through this section we assume R to be a nominal rewriting system that is C-convergent.
Similarly to Section 2.2.1 we want to establish correspondence between nominal C-narrowing
and nominal C-rewriting. We will do that via an extension of the Nominal Lifting Theorem
(cf. Theorem 2.2) for the extended relations⇝R,C and →R,C.

From nominal C-narrowing to C-rewriting

We start proving a correctness result: one step of narrowing⇝R,C maps to one step of →R,C.

Lemma 3.1. (⇝R,C to →R,C) Let (∆0 ⊢ s0)⇝R,C (∆1 ⊢ s1). Then, for any substitution ρ

that satisfies ∆0, i.e., there exists ∆ such that ∆ ⊢ ∆0ρ , the following holds

∆ ⊢ (s0θ)ρ →R,C s1ρ

where θ is the substitution applied in the narrowing step. In particular, ∆ will be ⟨∆0ρ⟩n f .

Proof. First, we start by extending the remark made by [17]: s0⇝
θ
R,E s1 implies s0θ →R,E s1

to the nominal syntax and the commutative case.

• (∆0 ⊢ s0)⇝
θ
R,C (∆1 ⊢ s1) implies ∆0 ⊢ (s0θ)→R,C s1.

Indeed, suppose we have (∆0 ⊢ s0)⇝
θ
R,C (∆1 ⊢ s1). The narrowing step guarantees

that for any substitution θ

– s0 ≡ C[s′0];

– ∆1 ⊢
(
∇θ , ∆0θ , s′0θ ≈α,C π · (lθ), (C[π · r])θ ≈α,C s1

)
.

By the definition of rewrite modulo C, if s0θ ≡ Cθ [s′0θ], and if ∆0 ⊢ (∇θ
′,s′0θ ≈α,C π ·

(lθ ′),Cθ [π ·(rθ
′)]≈α,C s1), then ∆0 ⊢ s0θ →R,C s1. We just need to fix the substitution

θ used in the narrowing step as θ
′, and the result follows.

Since ∆0 ⊢ s0θ →R,C s1, by Lemma 1.4 we have

• (s0θ)ρ ≡ Cθ [s′0θ]ρ = Cθ [(s′0θ)ρ]

• ∆0 ⊢ ∇θ implies ⟨∆0ρ⟩n f ⊢ ∇θρ

• ∆0 ⊢ s′0θ ≈α,C π · (lθ) implies ⟨∆0ρ⟩n f ⊢ s′0θρ ≈α,C (π · (lθ))ρ = π · (lθρ)

• ∆0 ⊢ Cθ [π ·(rθ)]≈α,C s′1 implies ⟨∆0ρ⟩n f ⊢ Cθ [π ·(rθρ)] = (Cθ [π ·(rθ)]ρ)≈α,C s1ρ

3.2 Nominal Lifting Theorem modulo C 41

which implies that ⟨∆0ρ⟩n f ⊢ (s0θ)ρ →R,C s1ρ .

Now we can prove that this correctness result is preserved for finite sequences of narrow-
ing steps.

Theorem 3.1. (⇝∗
R,C to →∗

R,C) Let (∆0 ⊢ s0)⇝
∗
R,C (∆n ⊢ sn) a nominal narrowing derivation.

Let ρ be a substitution satisfying ∆0, i.e., there exists ∆ such that ∆ ⊢ ∆0ρ .
Then, there exists a rewriting derivation

∆ ⊢ s0ρ0 →∗
R,C snρ

such that ∆ ⊢ ∆iρi+1 and ρi = θi . . .θn−1ρ , for all 0 ≤ i < n. In other words,

∆ ⊢ (s0θ)ρ →∗
R,C snρ

where θ is the composition of the successive R,C-narrowing substitutions.

Proof. By induction on the length n of the narrowing derivation (∆0 ⊢ s0)⇝
n−1
R,C (∆n ⊢ sn),

using the previous Lemma.

• Base Case: For n = 1, we have by assumption that ρ0 = θ0ρ and ∆ ⊢ ∆0ρ0. The result
follows directly from Lemma 3.1:

∆ ⊢ s0ρ0 = (s0θ0)ρ →R,C s1ρ.

• Induction Step: Assume that the result holds for i, that is (∆0 ⊢ s0)⇝
i+1
R,C (∆i ⊢ si)

implies that there exists a rewriting derivation ∆ ⊢ s0ρ0 →i+1
R,C siρi. Figure 3.1 illustrates

this setting.

We want to show that ∆ ⊢ s0ρ0 →i+2
R,C si+1ρi+1, in other words,

∆ ⊢ s0θ0 . . .θi−1θiρi+1 →i+2
R,C si+1ρi+1.

Consider the narrowing step (∆i ⊢ si)⇝
θi (∆i+1 ⊢ si+1). By the Lemma 3.1, for any

substitution, let’s name it ρi+1, that satisfies ∆i there exists ∆ that satisfies ∆iρi+1, and
we have

∆ ⊢ (siθi)ρi+1 →R,C si+1ρi+1.

By the induction hypothesis, we already have

∆ ⊢ s0θ0 . . .θi−1ρi →i+1
R,C siρi

42 Nominal Commutative Narrowing

(∆0 ⊢ s0)
θ0 // (∆1 ⊢ s1)

∗ // (∆i ⊢ si)
θi // (∆i+1 ⊢ si+1)

∗ // . . .
θn // (∆n ⊢ sn)

∆ ⊢ s0ρ0
��
ρ0

// s1ρ1
��

ρ1

∗ // siρi //
��

ρi

si+1ρi+1
��

ρi+1

∗ // . . . // snρn
��

ρn

Fig. 3.1 Corresponding Narrowing to Rewriting Derivations

and if we fix ρi = θiρi+1, we get:

∆ ⊢ s0θ0 . . .θi−1θiρi+1 →i+1
R,C siθiρi+1 →R,C si+1ρi+1,

and the theorem is proved.

Notice that ρi is R,C-normalized if ρ0 is R,C-normalized.

With Lemma 3.1 and Theorem 3.1 we have extended the converse part of the Nominal
Lifting Theorem (Section 2.2.1, Theorem 2.2), from the previous chapter, to the nominal
rewriting/narrowing modulo C.

From nominal C-rewriting to C-narrowing

As expected, the completeness proof is based on the converse construction of the correctness
proof, i.e., we want to prove that to each finite sequence of →R,C steps corresponds a sequence
of⇝R,C steps.

Lemma 3.2. (→R,C to⇝R,C) Let R= {∇i ⊢ li → ri} be a C-convergent NRS. Let ∆0 ⊢ s0 be
a nominal term in context and V0 a finite set of variables containing V =V (∆0,s0). Let ρ0 be
a R,C-normalized substitution with dom(ρ0)⊆V that satisfies ∆0 with ∆ and

∆ ⊢ s0ρ0 = t0 →R,C t1.

Then, there exist a nominal commutative narrowing step

(∆0 ⊢ s0)⇝R,C (∆1 ⊢ s1)

a substitution θ , a finite set of variables V1 ⊇V (s0) and a R,C-normalized substitution ρ1

such that

• ∆ ⊢ s1ρ1 ≈α,C t1;

3.2 Nominal Lifting Theorem modulo C 43

• dom(ρ1)⊆V1;

• ∆ ⊢ ρ0|V ≈α,C θρ1|V .

Proof. Consider that ∆ ⊢ t0 →[C0,R0],C t1, where R0 = ∇0 ⊢ l0 → r0 ∈ R. That means that for
some position C0[_] we have t0 ≡ C0[t ′0] and ∆ ⊢ ∇0θ , π · (l0θ) ≈α,C t ′0, C0[π · (r0θ)] ≈α,C

t1 (*). Also, dom(θ)∩V0 = /0, since V (R0)∩V (∆, t0) = /0, because R0 is a variable renamed
rule with respect to t0 = s0ρ0.

It follows from the fact that ρ0 is normalized in ∆, that ∆ ⊢ s0ρ0 ≈α,C t0 and ∆ ⊢ ∆0ρ0

that there exists a non-variable position C′0 such that s0 ≡ C′0[s
′
0] and ∆ ⊢ s′0ρ0 ≈α,C t ′0 ≈α,C

π · (l0θ).
Now consider η = ρ0 ∪θ (**). Then we may write ∆ ⊢ s′0η ≈α,C π · (l0η). Note that

(∆,η) is a solution for the unification problem (∆0 ⊢ s′0) ?≈? (∇0 ⊢ π · l0) :

• ∆ ⊢ ∆0η : from the hypothesis we already have ∆ ⊢ ∆0ρ0 and θ does not affect ∆0 since
dom(θ) =V (R0).

• ∆ ⊢ ∇0η .

• ∆ ⊢ s′0η ≈α,C π · (l0η).

Let’s take one solution (∆1,θ) from the complete set of solutions of (∆0 ⊢ s′0) ?≈? (∇0 ⊢
π · l0), i.e., from UC(∆0 ⊢ s′0,∇0 ⊢ π · l0). Then, ∆1 ⊢ ∆0θ ,∇0θ ,s′0θ ≈α,C π · (l0θ). Let
s1 be a nominal term such that ∆1 ⊢ C′0[π · r0]θ ≈α,C s1. With these conditions, we get
(∆0 ⊢ s0)⇝[C0,R0,θ],C (∆1 ⊢ s1).

Since (∆1,θ) ∈ UC(∆0 ⊢ s′0,∇0 ⊢ π · l0) is one least unifier of (∆0 ⊢ s′0) ?≈? (∇0 ⊢ π · l0),
in other words (∆1,θ) ≤ (∆,η), thus there exists a substitution ρ

′ such that for all X ,
∆ ⊢ Xθρ

′ ≈α,C Xη and ∆ ⊢ ∆1ρ
′.

It remains to show the side conditions:

• ∆ ⊢ s1ρ1 ≈α,C t1: On the one hand we have ∆ ⊢ s1ρ1 ≈α,C (C′0[π · r0]θ)ρ1 ≈α,C

(C′0[π · r0]θ)ρ
′ ≈α,C C′0θρ

′[π · r0θρ
′]≈α,C C′0η [π · r0η]. Since (**), we have C′0η [π ·

r0η] ≈α,C C′0ρ0[π · r0ρ0] ≈α,C C0[π · r0ρ0]. On the other hand, ∆ ⊢ t1
(∗)

≈α,C C0[π ·
r0θ]≈α,C C0[π · r0η]≈α,C C0[π · r0ρ0].

• dom(ρ1)⊆V1: Let V1 = (V0 ∪Im(ρ0))−dom(ρ0) and let ρ1 be such that ∆ ⊢ ρ1 ≈α,C

ρ
′|V1 , with this α,C-equivalence, the result follows.

• ∆ ⊢ ρ0|V ≈α,C θρ1|V : We already have that ∆ ⊢ ρ0 ≈α,C (θρ1)|V0 . We just need to
apply the restriction to V in both sides and the result follows.

44 Nominal Commutative Narrowing

Remark 3.4. The generalization of the previous lemma to finite sequences of nominal
rewrite steps is a bit more problematic. It was proven, for a general theory E, in the
first-order case by Jouannaud et. al. [17], following an inductive proof, and with the
conditions E-coherence for →R,E and E-confluence, to guarantee that relations →R/E

and →R,E coincide, see below.

More details about the relations between →R/E and →R,E and the property of E-
coherence can be found in Appendix A.

With that in mind, we propose a new definition for C-coherence in the nominal framework,
that “extends” the one for first-order, but only considers the commutative theory.

Definition 3.6 (Nominal C-Coherence). The relation ∆ ⊢ _ →R,C _ is called C-coherent iff
for all t1, t2, t3, t4 such that ∆ ⊢ t1 ≈α,C t2 and ∆ ⊢ t1 →R,C t3 →∗

R/C t4, there exist t5, t6, t7 such
that ∆ ⊢ t4 →∗

R/C t5, t2 →R,C t6 →∗
R/C t7 and ∆ ⊢ t5 ≈C t7, for some ∆. The idea of nominal

C-coherence is similar to the one in first-order (cf. Remark 3.1) and illustrated below: dashed

3.2 Nominal Lifting Theorem modulo C 45

lines represent existentially quantified reductions.

∆ ⊢ t1 R,C
// t3

∗
R/C

// t4
∗

R/C
// t5

∆ ⊢ t2

≈α,C

R,C
// t6

∗
R/C

// t7

≈α,C

O�

O�

Below we present a naive version of Proposition 3 in Remark 3.4 and a draft of the proof:
the exact conditions on the freshness contexts have to be further investigated due to our naive
version of nominal C-coherence.

Theorem 3.2 (Naive version of Proposition 3 in [17]). Let R∪C be an ENRS such that R is
C-confluent and C-terminating and →R,C is C-coherent. Let V0 be a finite set of variables
containing V =V (∆0,s0). Then, for any R,C-derivation

∆ ⊢ t0 = s0ρ0 →∗
R,C t0↓

to any of its R,C-normal forms, say t0↓, where dom(ρ0) ⊆ V (s0) ⊆ V0 and ρ0 is a R,C-
normalized substitution that satisfies ∆0 with ∆, there exist a R,C-narrowing derivation

(∆0 ⊢ s0)⇝
∗
R,C (∆n ⊢ sn),

for each i, 0 ≤ i < n, with the composition of substitutions θ , and a R,C-normalized substitu-
tion ρn such that ∆ ⊢ snρn ≈α,C t0↓ and ∆ ⊢ ρ0|V ≈α,C θρn|V .

Proof Sketch. By induction on the number of steps k applied in the derivation ∆ ⊢ t0 =

s0ρ0 →∗
R,C t0↓.

• Base Case: For k = 1, by hypothesis we have ∆ ⊢ s0ρ0 = t0 →R,C t1 = t0↓. Since ρ0 is
normalized in ∆, the result follows directly from Lemma 3.2: (∆0 ⊢ s0)⇝

θ0
R,C (∆1 ⊢ s1),

with ∆ ⊢ s1ρ1 ≈α,C t1 = t0↓ and ∆ ⊢ ρ0|V ≈α,C θ0ρ1|V .

• Induction Step: Assume that the result holds for k−1. Then, we have

∆ ⊢ t0 = s0ρ0 →
{k−1}
R,C tk−1 →R,C t0↓,

for some tk−1. By the induction hypothesis, there exist a R,C-narrowing derivation

(∆0 ⊢ s0)⇝
{k−1}
R,C (∆k−1 ⊢ sk−1),

46 Nominal Commutative Narrowing

with the composition of substitutions θ0θ1 . . .θk−2 and a R,C-normalized substitution
ρk−1 such that ∆ ⊢ sk−1ρk−1 ≈α,C tk−1 and ∆ ⊢ ρ0|V ≈α,C θ0θ1 . . .θk−2ρk−1|V .

Now using Lemma 3.2 over the rewrite step ∆ ⊢ tk−1 →R,C t0↓ we get that

(∆k−1 ⊢ sk−1)⇝
θk−1
R,C (∆k ⊢ sk),

with ∆ ⊢ skρk ≈α,C tk = t0↓, where ρk is a R,C-normalized substitution, and ∆ ⊢
ρk−1|V ≈α,C θk−1ρk|V .

Therefore, we obtained the R,C-narrowing derivation of k steps

(∆0 ⊢ s0)⇝
θ0θ1...θk−2
R,C (∆k−1 ⊢ sk−1)⇝

θk−1
R,C (∆k ⊢ sk),

with ∆ ⊢ skρk ≈α,C t0↓ and

∆ ⊢ ρ0|V ≈α,C θ0θ1 . . .θk−2ρk−1|V ≈α,C θ0θ1 . . .θk−2θk−1ρk|V ,

thus, the result follows.

∆ ⊢ t0
{k−1}
R,C

// tk−1 R,C
// t0↓

(∆0 ⊢ s0)

ρ0

OO

k−1
R,C

// (∆k−1 ⊢ sk−1)

ρk−1

OO

θk−1

R,C
// (∆k ⊢ sk)

ρk

OO

Fig. 3.2 Draft of the inductive step of the proof

Corollary 3.1. (C-Lifting Theorem) Nominal lifting modulo C is a consequence of Theo-
rem 3.1 and Theorem 3.2.

The contributions of this dissertation end here, and next we present some new directions
for future work.

Chapter 4

Conclusion and Future Work

In this dissertation we have extended definitions and notations of the works [6, 12] to the
nominal framework with commutativity. Initially, we presented the syntax of nominal
terms and their properties, in order to, in a second moment, deal with nominal unification
modulo commutativity. Once we defined α-equivalence modulo C, we were able to extend
Lemma 22 from [12] that guarantees that the derivability of judgements are preserved under
substitutions, taking into account the commutativity theory. We have also shown the approach
for nominal C-unification made by Ayala-Rincón et.al. [1], using triples of the form (∆,θ ,Pr)
for solutions of C-unification problems, which is an alternative finitary representation of
solutions, that can be taken into account in further developments of this work.

With basic results defined, we introduced the concepts and results that we would like to
extend to the commutative equational theory, such as nominal rewriting, nominal narrowing
and the nominal Lifting Theorem (Theorem 2.2).

Finally, taking advantage of everything that has been done so far, we started extending
the results by Jouannaud et.al. [17], such as first-order rewriting and narrowing modulo C to
the nominal framework, and also standard results that are necessary for proving the Lifting
Theorem modulo commutativity. We proposed definitions for nominal R,C-rewriting and
R,C-narrowing, proved some properties and illustrated with examples. We observed that due
to the fact that nominal C-unification based on freshness constraints only is not finitary, then
our nominal C-narrowing tree is not finitary.

What we presented here is just the beginning of a long hard work. Below we present our
work-in-progress and what remains as future work.

48 Conclusion and Future Work

4.1 Work in progress

4.1.1 Nominal C-narrowing for Nominal R∪C-unification

In order to use nominal C-narrowing as a procedure for nominal R∪C-unification, thus
extending the results in Section 2.3, we will “apply” the narrowing relation in two terms in
parallel, and for that we will follow the same strategy as before, and use a “new” function
symbol h, that is h ̸∈ Σ, and s and t represent the initial two terms that are to be unified
modulo C.

Theorem 4.1 (Soundness without closedness). Let ∆ ⊢ s and ∇ ⊢ t be two nominal terms-
in-context and ∆,∇ ⊢ h(s, t) = u0⇝

∗
R,C ∆n ⊢ un = h(sn, tn) a R,C-narrowing derivation such

that {∆n,sn ?
C≈? tn} has a solution, say (Γ,ρ). Then (Γ,ρ0) is an C-solution of the problem

∆,∇,s ?
C≈? t, where ρ0 = θρ and θ is the composition of substitutions along the narrowing

derivation.

Proof. From the previous Theorem 3.1 using ρ = ρn, we can associate the R,C-narrowing
derivation with the following R,C-rewriting derivation:

Γ ⊢ u0ρ0 = v0 →R,C v1 →R,C · · · →R,C vn = h(vs
n,v

t
n),

see Figure 4.1. Remember that h makes a role of cartesian product, and since u0ρ0 =

h(s, t)ρ0 = h(sρ0, tρ0) it follows that we can write two R,C-rewriting derivations starting on
sρ0 and tρ0, that is, Γ ⊢ sρ0 →∗

R,C vs
n and Γ ⊢ tρ0 →∗

R,C vt
n.

Moreover, from Theorem 3.1 we get that Γ ⊢ vs
n ≈α,C snρn and Γ ⊢ vt

n ≈α,C tnρn. Also,

by hypothesis, (Γ,ρn) is a solution for {∆n,sn ?
C≈? tn}, thus Γ ⊢C snρn = tnρn and therefore

Γ ⊢C vs
n = vt

n.
Thus, we get the following result:

Γ ⊢C sρ0 = sθρ = sθ0 . . .θn−1ρ = vs
n = vt

n = tθ0 . . .θn−1ρ = tθρ = tρ0.

Therefore, Γ ⊢C sθρ = tθρ and hence (Γ,θρ) is a C-solution for ∆,∇,s ?
C≈? t.

For soundness we do not need narrowing derivations to be closed, but we can still add
this condition to the hypothesis without loss of generality. The only need for closedness is to
construct a complete set of R∪E-unifiers. Thus, we state the theorem with closedness, and
the proof is analogous to the proof of the previous theorem.

4.1 Work in progress 49

∆,∇ ⊢ h(s, t) = u0 // ∆1 ⊢ u1
∗// ∆n ⊢ un = h(sn, tn)

Γ ⊢ u0ρ0 = v0
��
ρ0

// v1
��

ρ1

∗ // vn = h(vs
n,v

t
n)

��
ρn

Fig. 4.1 Schema of the proof of Soundness

Remark 4.1 (Soundness with closedness). Let ∆ ⊢ s and ∇ ⊢ t be two nominal terms-in-
context and ∆,∇ ⊢ h(s, t) = u0⇝

c
R,C · · ·⇝c

R,C ∆n ⊢ un = h(sn, tn) a closed R,C-narrowing

derivation such that {∆n,sn ?
C≈? tn} has a solution, say (Γ,ρ). Then (Γ,ρ0) is a C-solution of

the problem ∆,∇,s ?
C≈? t, where ρ0 = θρ and θ is the composition of substitutions along the

narrowing derivation.

Proof. Future work.

The following result is still not stable, since it depends on Theorem 3.2. Assuming this
last one is correct, we propose a draft of the proof of the following lemma.

Remark 4.2 (Naive Completeness). Let ∆ ⊢ s and ∇ ⊢ t be two nominal terms-in-context

such that the problem (∆ ⊢ s) ?
C
≈? (∇ ⊢ t) has a C-solution, (∆′,ρ), and let V be a finite

set of variables containing V (∆,∇,s, t). Then, there exists a closed narrowing derivation:

∇,∆ ⊢ u = (s, t)⇝c
R,C · · ·⇝c

R,C Γn ⊢ (sn, tn), such that {Γn,sn ?
C≈? tn} has a solution. Let

(Γ,µ) = mgu(Γn,sn ≈α,C tn), and θ the composition of the narrowing substitutions. Then,
(Γ,θ µ)≤V

C (∆′,ρ). Moreover, we are allowed to restrict our attention to⇝c
R,C-derivations

such that: ∀i, 0 ≤ i < n, θi|V and θ are normalized.

Proof Sketch. By definition of C-solution, we have ∆
′ ⊢C ∆ρ,∇ρ,sρ ≈α,C tρ . Let’s take

η ≈α,C ρ↓, that is, the normal form substitution of ρ in ∆
′: ∆

′ ⊢ Xη ≈α,C (Xρ)↓. Thus,
we can write ∆

′ ⊢C ∆η ,∇η ,sη ≈α,C tη , because the rules are closed. Since C is a closed
nominal theory presented by a convergent rewrite system R, and since closed rewriting is
complete for equational reasoning in this case, sη and tη have the same normal form in ∆

′,
and we will call it r. Thus,

∆
′ ⊢ uη = h(sη , tη) = t ′0 →c

R,C · · · →c
R,C t ′n = h(r,r).

By Theorem 3.2 there exists a corresponding narrowing derivation ending with Γn ⊢
h(sn, tn) such that: ∆

′ ⊢ h(snηn, tnηn) ≈α,C t ′n = h(r,r) and ∆
′ ⊢ Γnηn. Thus, (∆′,ηn) is a

solution of {Γn,sn ?
C≈? tn}.

50 Conclusion and Future Work

The hypothesis gives us that (Γ,µ) is the least unifier, so it follows that (Γ,µ)≤ (∆′,ηn)

and there exists δ such that ∀X , ∆
′ ⊢Xµδ ≈α,C Xηn and ∆

′ ⊢ Γδ . Therefore, by Theorem 3.2,
∆
′ ⊢ (θ µδ |V ≈α,C θηn|V ≈α,C η |V) and ∆

′ ⊢C η |V = ρ|V that is, (Γ,θ µ)≤V
C (∆′,ρ).

4.2 Future Work

We observe that the approach taken in [1] where solutions for C-unification problems are rep-
resented by triples containing fixed-point equations could give a finite number of narrowing
branches. Another approach could be the use of fixed-point constraints [8] that also gives a
complete set of C-unifiers for a nominal C-unification problem. These two approaches need
to be taken into account in nominal versions of our definitions of nominal C-narrowing and
rewriting, and in related results. Both approaches will be investigated later.

We still need to check the lifting theorem modulo C for closed rewriting to deal with
nominal rewrite systems modulo C that are complete presentations of equational theories.
Then, we need to investigate if our statements and proof sketches for completeness results
are accurate.

Another future work would be to extend the proposition that relates →R,C with →R/C

to the nominal framework. In first-order this result is as Proposition 1 in Remark 3.3. It
would also be interesting to prove a version of the Critical Pair Lemma for nominal rewriting
modulo C. The first order version can be found in Appendix A, Theorem A.1.

References

[1] Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., and Nantes-Sobrinho, D.
(2017a). Nominal C-unification. CoRR, abs/1709.05384.

[2] Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., and Nantes-Sobrinho, D.
(2017b). On solving nominal fixpoint equations. In Dixon, C. and Finger, M., editors,
Frontiers of Combining Systems - 11th International Symposium, FroCoS 2017, Brasília,
Brazil, September 27-29, 2017, Proceedings, volume 10483 of Lecture Notes in Computer
Science, pages 209–226. Springer.

[3] Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., and Nantes-Sobrinho,
D. (2018a). A formalisation of nominal C-matching through unification with protected
variables. In Accattoli, B. and Olarte, C., editors, Proceedings of the 13th Workshop
on Logical and Semantic Frameworks with Applications, LSFA 2018, Fortaleza, Brazil,
September 26-28, 2018, volume 344 of Electronic Notes in Theoretical Computer Science,
pages 47–65. Elsevier.

[4] Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., Nantes-Sobrinho, D., and
Oliveira, A. C. R. (2019). A formalisation of nominal α-equivalence with A, C, and AC
function symbols. Theor. Comput. Sci., 781:3–23.

[5] Ayala-Rincón, M., Fernández, M., Gabbay, M. J., and Oliveira, A. C. R. (2015). Check-
ing overlaps of nominal rewriting rules. In Benevides, M. R. F. and Thiemann, R., editors,
Proceedings of the Tenth Workshop on Logical and Semantic Frameworks, with Applica-
tions, LSFA 2015, Natal, Brazil, August 31 - September 1, 2015, volume 323 of Electronic
Notes in Theoretical Computer Science, pages 39–56. Elsevier.

[6] Ayala-Rincón, M., Fernández, M., and Nantes-Sobrinho, D. (2016). Nominal narrow-
ing. In Kesner, D. and Pientka, B., editors, 1st International Conference on Formal
Structures for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Por-
tugal, volume 52 of LIPIcs, pages 11:1–11:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik.

[7] Ayala-Rincón, M., Fernández, M., and Nantes-Sobrinho, D. (2018b). Fixed-point
constraints for nominal equational unification. In Kirchner, H., editor, 3rd International
Conference on Formal Structures for Computation and Deduction, FSCD 2018, July
9-12, 2018, Oxford, UK, volume 108 of LIPIcs, pages 7:1–7:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

[8] Ayala-Rincón, M., Fernández, M., and Nantes-Sobrinho, D. (2020). On nominal syntax
and permutation fixed points. Log. Methods Comput. Sci., 16(1).

52 References

[9] Baader, F. and Nipkow, T. (1998). Term rewriting and all that. Cambridge University
Press.

[10] Escobar, S., Meseguer, J., and Sasse, R. (2008). Variant narrowing and equational
unification. In Rosu, G., editor, Proceedings of the Seventh International Workshop on
Rewriting Logic and its Applications, WRLA 2008, Budapest, Hungary, March 29-30,
2008, volume 238 of Electronic Notes in Theoretical Computer Science, pages 103–119.
Elsevier.

[11] Fay, M. (1978). First-order Unification in an Equational Theory. University of
California, Santa Cruz.

[12] Fernández, M. and Gabbay, M. (2007). Nominal rewriting. Inf. Comput., 205(6):917–
965.

[13] Fernández, M. and Gabbay, M. J. (2010). Closed nominal rewriting and efficiently
computable nominal algebra equality. In Crary, K. and Miculan, M., editors, Proceedings
5th International Workshop on Logical Frameworks and Meta-languages: Theory and
Practice, LFMTP 2010, Edinburgh, UK, 14th July 2010, volume 34 of EPTCS, pages
37–51.

[14] Gabbay, M. and Pitts, A. M. (2002). A new approach to abstract syntax with variable
binding. Formal Aspects Comput., 13(3-5):341–363.

[15] Hullot, J. (1980). Canonical forms and unification. In Bibel, W. and Kowalski, R. A.,
editors, 5th Conference on Automated Deduction, Les Arcs, France, July 8-11, 1980,
Proceedings, volume 87 of Lecture Notes in Computer Science, pages 318–334. Springer.

[16] Jouannaud, J. (1983). Confluent and coherent equational term rewriting systems:
Application to proofs in abstract data types. In Ausiello, G. and Protasi, M., editors,
CAAP’83, Trees in Algebra and Programming, 8th Colloquium, L’Aquila, Italy, March 9-
11, 1983, Proceedings, volume 159 of Lecture Notes in Computer Science, pages 269–283.
Springer.

[17] Jouannaud, J., Kirchner, C., and Kirchner, H. (1983). Incremental construction of
unification algorithms in equational theories. In Díaz, J., editor, Automata, Languages
and Programming, 10th Colloquium, Barcelona, Spain, July 18-22, 1983, Proceedings,
volume 154 of Lecture Notes in Computer Science, pages 361–373. Springer.

[18] Lankford, D. S. (1975). Canonical inference. Report ATP-32, Departments of Mathe-
matics and Computer Sciences, University of Texas at Austin.

[19] Newman, M. H. A. (1942). On theories with a combinatorial definition of "equivalence".
Annals of Mathematics, 43(2):223–243.

[20] Peterson, G. E. and Stickel, M. E. (1981). Complete sets of reductions for some
equational theories. J. ACM, 28(2):233–264.

[21] Slagle, J. R. (1974). Automated theorem-proving for theories with simplifiers commu-
tativity, and associativity. J. ACM, 21(4):622–642.

References 53

[22] Suzuki, T., Kikuchi, K., Aoto, T., and Toyama, Y. (2015). Confluence of orthogo-
nal nominal rewriting systems revisited. In Fernández, M., editor, 26th International
Conference on Rewriting Techniques and Applications, RTA 2015, June 29 to July 1,
2015, Warsaw, Poland, volume 36 of LIPIcs, pages 301–317. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik.

[23] Terese (2003). Term rewriting systems, volume 55 of Cambridge tracts in theoretical
computer science. Cambridge University Press.

[24] Urban, C., Pitts, A. M., and Gabbay, M. (2004). Nominal unification. Theor. Comput.
Sci., 323(1-3):473–497.

[25] Viola, E. (2001). E-unifiability via narrowing. In Restivo, A., Rocca, S. R. D., and
Roversi, L., editors, Theoretical Computer Science, 7th Italian Conference, ICTCS 2001,
Torino, Italy, October 4-6, 2001, Proceedings, volume 2202 of Lecture Notes in Computer
Science, pages 426–438. Springer.

Appendix A

First Order Results

A rewrite rule (or reduction rule) for a signature Σ is defined by [23] as a pair (l,r) of terms,
written as l → r, which the left-hand side l is not a variable and V (r)⊆V (l). A term rewrite
system (TRS) is a pair R = (Σ,R) of a signature Σ and a set of rewrite rules R for Σ. The
one-step rewrite relation s →R t is defined whenever we have a substitution θ such that
C[lθ]→R C[rθ] for some R ∈ R.

Intuitively, narrowing a term consists of applying a minimal substitution to this term and
then make a rewrite step [15].

Definition A.1. The one-step narrowing relation s⇝[C,R,θ] t is the least relation such that
for any R = {l → r} ∈ R, position C, term s′ and substitution θ ,

s ≡ C[s′] s′θ = lθ (C[r])θ = t,
where θ = mgu(l,s′).s⇝[C,R,θ] t

We may omit subindices if they are clear from the context. If we want to explicit the
substitution used in the narrowing step, we may write s⇝θ t.

Example A.1. A simple example of a narrowing step can be seen as follows. Let Σ =

{ f : 2,g : 1} be the signature over the sets X and A, and consider the rewrite system
R= {R : g(Z)→ a}.

Taking θ = {Z → Y}, we say that f (X ,g(Y))⇝[2,R,θ] f (X ,a).

Considering R a convergent term rewrite system, i.e., confluent and terminating, that is
equivalent to the set of identities E, the narrowing process can be applied iteratively to an
equation until find another equation whose terms are syntactically unifiable. The composition
of this generated mgu with all substitutions used in the narrowing sequence yields an E-unifier
of the initial equation [9].

56 First Order Results

One of the main problems of commutativity is that it cannot be oriented into a terminating
rewrite rule, and therefore we cannot have a terminating system. An useful way out is to
build the commutativity into the rewrite process [9]. In other words, we take into account the
commutativity when applying a rewrite rule.

Considering a signature Σ= ΣE∪Σ0, where ΣE consists of the function symbols satisfying
an equational theory E and Σ0 is a set of uninterpreted function symbols, and assuming we
have a theory T= (ΣE∪Σ0,Ax) where Ax is a set of axioms that can be split into a set R of
rules and a set E of equations, following the definitions and notations from [17], we obtain
what we call an equational term rewriting system (ETRS), denoted R∪E. Formally,

Definition A.2. (Relation →R/E) Given a theory T= (Σ,Ax) = (ΣE∪Σ0,R∪E), we denote
as →R/E the relation ≈E · →R, which is defined on E-equivalence classes of terms, i.e.,

[s]≈E
→R/E [t]≈E

iff there exist s′, t ′ such that s ≈E s′ →R t ′ ≈E t.

To make a clear distinction between atoms (a,b,c, . . .) and constants (a,b,c, . . .) we will
use a different font for the later.

Example A.2. Consider the theory T= { f (h(a),b)≈ a, f (b,X)≈ X ,h(X)≈ X , f (X ,Y)≈
f (Y,X)}, with a,b constants. We will decompose T in R∪C where

• R= { f (h(a),b)→ a, f (b,X)→ X ,h(X)→ X}; and

• C= { f (X ,Y)≈ f (Y,X)}.

The following is a R/C-reduction step example:

f (b,h(a))→R/C a because f (b,h(a))≈C f (h(a),b)→R a≈C a.

As expected, the notions of overlappings and critical pairs have to be extended to deal
with an equational theory E.

Definition A.3. (E-overlap of terms and rules)

• We say a term s E-overlaps a term t at position C, say t ≡ C[t ′], with a complete set S
of E-overlappings iff S is a complete set of E-unifiers of s and t ′.

57

t tθ

t ′ t ′θ ≈E sθ

• Given two rules l1 → r1 and l2 → r2 such that V (l1)∩V (l2) = /0 and l1 E-overlaps l2 at
position C, say l2 ≡ C[l′2], with a complete set S of E-overlappings, then the set

{⟨u1,u2⟩ | u1 = r2θ , u2 = Cθ [r1θ], ∀θ ∈ S}

is called a complete set of E-critical pairs of the rule l1 → r1 on the rule l2 → r2 at
position C.

– Let CSECP(R) be the complete set of non trivial E-critical pairs1 for all l1 → r1

and l2 → r2 belonging both to R;

– Let CSECP(R/E) be the complete set of non trivial E-critical pairs for all l1 → r1

in R together with all l2 → r2 such that l2 ≈ r2 or r2 ≈ l2 belongs to E.

Since in this work we are interested in the commutative theory C, we will mostly be
analysing the sets CSCCP(R) and CSCCP(R/C).

Recall that we use disjunctions of reduced problems when applying (≈α,C C), because
since f is a commutative function symbol, we need to consider both of the possible pairs
generated by its arguments, that is:

{ f (s0,s1) ?
C≈? f (t0, t1)}=⇒{s0 ?

C≈? t0,s1 ?
C≈? t1}∨{s0 ?

C≈? t1,s1 ?
C≈? t0}

Example A.3 (Cont. Example A.2). Let’s analyze the complete set of C-critical pairs of R,
CSCCP(R).

R=

l1 → r1 : f (h(a),b)→ a

l2 → r2 : f (b,X)→ X
l3 → r3 : h(X)→ X

Since we are in a restricted nominal version of the nominal C-unification, we will use in
this example, and in following ones, the same notation from Definition 1.13.

1that means E-critical pairs such that u1 ̸= u2.

58 First Order Results

1) The following table summarizes where li C-overlaps l1, for i = 1,2,3:

C [_] renamed l1 l2 l3
[_] f (h(a),b) ⊘ ⟨a,h(a)⟩ ⊥

f ([_],b) h(a) ⊥ ⊥ ⟨a, f (a,b)⟩
f (h(a), [_]) b ⊥ ⊥ ⊥
f (h([_]),b) a ⊥ ⊥ ⊥

The fourth column gives the complete set of C-critical pairs of the rule l2 → r2 and
l1 → r1 in position of l1 given by column 1.

For instance,

a. l2 ?
C≈? l1:

{ f (b,X) ?
C≈? f (h(a),b)} =⇒ {b ?

C≈? h(a),X ?
C≈? b}∨{X ?

C≈? h(a),b ?
C≈? b}

=⇒ ⊥∨{X ?
C≈? h(a)}

∴ θ = [X 7→ h(a)]

Thus, l2 C-overlaps with l1 in position C= [_] with set S = {θ}, where θ is the
only C-unifier of l2 and l1 in this case.

The C-critical pair of the rule l2 → r2 with the rule l1 → r1 at position C= [_] is
⟨r1θ ,Cθ [r2θ]⟩= ⟨a,h(a)⟩.

l1θ

a= r1θ Cθ [r2θ] = h(a)

l1 → r1 l2 → r2

Notice they are joinable since h(a)→ a via rule l3 → r3.

b. l3 ?
C≈? l′1 = h(a):

{h(X) ?
C
≈? h(a)} =⇒ {X ?

C
≈? a}

∴ θ = [X 7→ a]

Thus, l3 C-overlaps with l′1 = h(a) at position C = f ([_],b) with set S = {θ},
where θ is the only C-unifier of l3 and h(a) in this case.

59

The C-critical pair of the rule l3 → r3 with the rule l1 → r1 at position C= f ([_],b)
is ⟨r1θ ,Cθ [r3θ]⟩= ⟨a, f (a,b)⟩.

l1θ

a= r1θ Cθ [r3θ] = f (a,b)

l1 → r1 l3 → r3

Notice that a and f (a,b) are joinable, since f is a commutative function symbol, that
is f (a,b)≈C f (b,a), and this last term reduces via rule l2 → r2 to a.

For the other cases we get a clash ⊥, because we can not unify terms with two different
function symbols. Also, ⊘ means that we do not need to unify a term with a copy of
itself.

2) li C-overlaps l2, for i = 1,2,3:

C [_] l1 renamed l2 l3
[_] f (b,X) ⟨h(a),a⟩ ⊘ ⊥

f ([_],X) b ⊥ ⊥ ⊥

The reasoning is the same:

a. l1 ?
C
≈? l2:

{ f (h(a),b) ?
C≈? f (b,X)} =⇒ {h(a) ?

C≈? b,b ?
C≈? X}∨{h(a) ?

C≈? X ,b ?
C≈? b}

=⇒ ⊥∨{X ?
C≈? h(a)}

∴ θ = [X 7→ h(a)]

Thus, l1 C-overlaps with l2 at position C= [_] with set S = {θ}, where θ is the
only C-unifier of l1 and l2 in this case.

The C-critical pair of the rule l1 → r1 with the rule l2 → r2 at position C= [_] is
⟨r2θ ,Cθ [r1θ]⟩= ⟨h(a),a⟩.

l2θ

h(a) = r2θ Cθ [r1θ] = a

l2 → r2 l1 → r1

60 First Order Results

3) li C-overlaps l3, for i = 1,2,3:

C [_] l1 l2 renamed l3
[_] h(X) ⊥ ⊥ ⊘

Thus, CSCCP(R) = {⟨a,h(a)⟩,⟨a, f (a,b)⟩,⟨h(a),a⟩}.

Example A.4 (Cont. Example A.2). Now let’s analyze the complete set CSCCP(R/C) of
C-critical pairs of R/C.

Since f (X ,Y)≈ f (Y,X) is in C, we consider the new rule l4 → r4 : f (X ,Y)→ f (Y,X),
and now we will look for non-trivial C-critical pairs of each of the other three rules with
l4 → r4.

1) li C-overlaps l4, for i = 1,2,3:

C [_] l1 l2 l3
[_] f (X ,Y) ⟨ f (b,h(a)),a⟩ ⟨ f (X ,b),X⟩ ⊥

a. l1 ?
C≈? l4:

{ f (h(a),b) ?
C≈? f (X ,Y)} =⇒ {h(a) ?

C≈? X ,b ?
C≈? Y} ∨

∨ {h(a) ?
C≈? Y,b ?

C≈? X}
∴ θ = [X 7→ h(a),Y 7→ b] ∪

∪ θ
′ = [Y 7→ h(a),X 7→ b]

Thus, l1 C-overlaps with l4 at position C= [_] with set S = {θ ,θ ′}, where θ and
θ
′ are both C-unifiers of l1 and l4 in this case.

The C-critical pairs of the rule l1 → r1 with the rule l4 → r4 at position C= [_]
are ⟨r4θ ,Cθ [r1θ]⟩= ⟨ f (b,h(a)),a⟩ and ⟨r4θ

′,Cθ
′[r1θ

′]⟩= ⟨ f (h(a),b),a⟩

l4θ

f (b,h(a)) = r4θ Cθ [r1θ] = a

l4 → r4 l1 → r1

l4θ
′

f (h(a),b) = r4θ
′ Cθ

′[r1θ
′] = a

l4 → r4 l1 → r1

61

b. l2 ?
C
≈? l4:

{ f (b,X) ?
C
≈? f (X ′,Y ′)} =⇒ {b ?

C
≈? X ′,X ?

C
≈? Y ′}∨{b ?

C≈? Y ′,X ?
C≈? X ′}

∴ θ = [X ′ 7→ b,Y ′ 7→ X] ∪
∪ θ

′ = [Y ′ 7→ b,X ′ 7→ X]

Thus, l2 C-overlaps with l4 at position C= [_] with set S = {θ ,θ ′}, where θ and
θ
′ are both C-unifiers of l2 and l4 in this case.

The C-critical pairs of the rule l2 → r2 with the rule l4 → r4 at position C= [_]
are ⟨r4θ ,Cθ [r2θ]⟩= ⟨ f (X ,b),X⟩ and ⟨r4θ

′,Cθ
′[r2θ

′]⟩= ⟨ f (b,X),X⟩.

l4θ

f (X ,b) = r4θ Cθ [r2θ] = X

l4 → r4 l2 → r2

l4θ
′

f (b,X) = r4θ
′ Cθ

′[r2θ
′] = X

l4 → r4 l2 → r2

Thus, CSCCP(R/C) = {⟨ f (b,h(a)),a⟩,⟨ f (h(a),b),a⟩,⟨ f (X ,b),X⟩,⟨ f (b,X),X⟩}.

Now we can continue with the extension of other standard notations such as termination
and confluence modulo an equational theory E:

We say that R is E-terminating or E-noetherian iff →R/E is terminating. Also, R is said
to be E-confluent iff for all terms t, t1, t2 such that t →∗

R/E t1 and t →∗
R/E t2, there exist t ′1, t

′
2

such that t1 →∗
R/E t ′1, t2 →∗

R/E t ′2 and t ′1 ≈E t ′2. In the following we will consider such notions
to the commutative theory, thus we will be interested on the cases of C-termination and
C-confluence.

Example A.5 (Cont. Example A.3). We now analyze the property of termination of R =

{ f (h(a),b)→ a, f (b,X)→ X ,h(X)→ X} and C= { f (X ,Y)≈ f (Y,X)}.

• R is C-terminating: It is easy to see the termination using an embedding into (N,>),
which is known to terminate, checking that the length of the terms decrease in each
R/C-reduction.

More details about termination can be found in [9].

The problem with R/E is that, in general, R/E-reducibility is not decidable, because
E-congruence classes may be infinite [17]. This is not the case for C, but for instance if we
consider the theory E= {X +0 ≈ 0}, the E-congruence class of an arbitrary term t would be
[t]E = {t, t +0, t +0+0, t +0+0+0, . . .}.

With that in mind, we see a need to refine this relation. A solution was given by [20]:

62 First Order Results

Definition A.4. (Relation →R,E) A new relation →R,E is defined as following

s →R,E t :⇔∃(l → r) ∈ R,s ≡ C[s′],θ . s′ ≈E lθ ∧ t = C[rθ].

That way we can involve matching modulo ≈E in each rewrite step, as noted in [23]. When-
ever we cannot reduce a term t w.r.t →R,E we say that t in its R,E-normal form, t↓. We call
θ a R,E-normalized substitution iff for all X ∈ dom(θ), Xθ is R,E-irreducible.

With the aim of proving the completeness of →R,E with relation to →R/E we need the
relation →R,E to be E-coherent:

The following result establishes necessary conditions for E-confluence and E-coherence
of an ETRS:

Theorem A.1. (Theorem 2 in [16]) Let R be an ETRS such that:

1. R is E-noetherian;

2. ≈E is decidable and for all (l ≈ r) ∈ E, V (l) =V (r);

3. A complete and finite unification algorithm exists for the theory E.

Then R is E-confluent and →R,E is E-coherent if:

• any E-critical pair ⟨u1,u2⟩ of CSECP(R) satisfies u1↓ ≈E u2↓ (we will say that u1 and
u2 are E-joinable);

• any E-critical pair ⟨u1 = r′θ ,u2⟩ of CSECP(R/E) satisfies u1 →R,E u′1 at some occur-
rence of r′ and u′1↓ ≈E u2 ↓.

The following example illustrates the Theorem A.1 at work:

Example A.6 (Cont. Example A.3). We now analyze the property of C-confluence of R=

{ f (h(a),b)→ a, f (b,X)→ X ,h(X)→ X} and C= { f (X ,Y)≈ f (Y,X)}, and C-coherence
of R,C. Since R is C-terminating, ≈C is decidable, V (l) = V (r) for all l → r ∈ R, we just
need to check the last two conditions

• All C-critical pairs of CSCCP(R) are C-joinable:

Since CSCCP(R) = {⟨a,h(a)⟩,⟨a, f (a,b)⟩,⟨h(a),a⟩}, let’s check that the terms of
each of these pairs are C-joinable:

– ⟨a,h(a)⟩: We have h(a)→R/C a using the third rule, and the terms are C-joinable;

– ⟨h(a),a⟩: Analogue to the item above;

63

– ⟨a, f (a,b)⟩: We have f (a,b)→R/C a because f (a,b)≈C f (b,a)→R a using the
second rule, and the terms are C-joinable.

• All C-critical pairs ⟨u1 = r′θ ,u2⟩ of CSCCP(R/C) satisfy that u1 →R,C u′1 at some
occurrence of r′ and u′1↓ and that u2↓ are C-joinable:

We found CSCCP(R/C) = {⟨ f (b,h(a)),a⟩,⟨ f (h(a),b),a⟩,⟨ f (X ,b),X⟩,⟨ f (b,X),X⟩},
from Example A.4. Let’s check that u′1↓ and u2↓ are C-joinable, for each C-critical
pair:

– ⟨ f (b,h(a)),a⟩: First, we have u1 = f (b,h(a)) = r4θ →R,C f (b,h(a)) = u′1, with
r4 = f (Y,X) and θ = [Y 7→ b,X 7→ h(a)], because

f (b,h(a))≈C l4θ = f (X ,Y)θ = f (h(a),b).

Since f (b,h(a))→R2 h(a)→R3 a, we obtain u′1↓= a, and as u2↓= a↓= a, the
result follows;

– ⟨ f (X ,b),X⟩: Initially, we have u1 = f (X ,b) = r4θ →R,C f (X ,b) = u′1, where
r4 = f (Y ′,X ′) and θ = [Y ′ 7→ X ,X ′ 7→ b], because

f (X ,b)≈C l4θ = f (X ′,Y ′)θ = f (b,X).

Since f (X ,b)≈C f (b,X)→R2 X , we obtain that u′1↓= X↓, and clearly u2↓= X↓.
Thus, the result follows;

– For ⟨ f (h(a),b),a⟩ and ⟨ f (b,X),a⟩ the C-joinability is direct because both f (b,X)

and f (h(a),b) reduces to a.

An interesting property of E-coherence is that R/E-reducibility coincides with R,E-
reducibility, that is, we can compute R/E-normal forms using R,E-reductions. This result is
due to Jouannaud et. al. with the following proposition:

Proposition A.1. (Proposition 1 in [17]) Assume R is E-confluent and E-noetherian. Then
R,E- and R/E- normal forms of any term t are E-equal if and only if →R,E is E-coherent.

Proof. The proof of this result is out of the scope of this dissertation, and a proof can be
found in [16].

Appendix B

Nominal Results and Examples

In this appendix we present nominal known results as confluence, overlaps and critical pairs,
in order to understand some examples.

B.1 Nominal Confluence

Notice that atoms a and b stand for object-variables and their names should not matter when
specifying a rewrite rule, in the same way that the choice of the names X and Y for the
meta-level variables in Example 2.1 were not relevant. Since atoms are not affected by
substitution action, we consider renaming of atoms in rewrite rules.

Call R(a b) the rule obtained by swapping a and b throughout R. A set of rewrite rules
is called equivariant when it is closed under (−)(a b) for all atoms a and b. We use this
technicality because atoms are not affected by substitution actions, but they can be swapped.

Definition B.1. (Equivariance closure) The equivariant closure of a set Rw of rewrite rules
is the closure of Rw by the meta-action of permutations, that is, it is the set of all permutative
variants of rules in Rw. We denote eq-closure(Rw) for the equivariant closure of Rw.

Notice that the equivariant closure of the NRS in Example 2.1 is the set of rules itself,
i.e., eq-closure(Rw) = Rw, since there are no atoms in these rules.

Example B.1. Consider the NRS with the single rule R ≡ /0 ⊢ f (b)→ a. In order to find the
eq-closure(Rw), we need to analyze all the permutative variants of R ∈ Rw, they are R(a b),
R(a c) and R(b c), where c is an arbitrary new atom.

R1 = R(a b) = /0 ⊢ f (a)→ b

R2 = R(a c) = /0 ⊢ f (b)→ c

66 Nominal Results and Examples

R3 = R(b c) = /0 ⊢ f (c)→ a

Therefore, eq-closure(Rw) = {R,R1,R2,R3}.

A weaker property is known as local confluence, which is defined as “joinability of
peaks”, as we will see in the next definition.

Definition B.2. (Peak and local confluence) Let R be an equivariant rewrite system, and let
∆, s, t1 and t2 such that ∆ ⊢ s → t1 and ∆ ⊢ s → t2. This pair will be denoted as ∆ ⊢ s → t1, t2
and called a peak. If there is such a peak, then we call a NRS locally confluent when there
exists a term u such that ∆ ⊢ t1 →∗ u and ∆ ⊢ t2 →∗ u. We say such a peak is joinable.

Here is an important remark made by [5, 12] to clarify resolve any doubt between
equivariance and permuted variants of a set of rewrite rules.

Remark B.1. Since the definition of the rewriting relation generated by a rewrite theory
R= (Σ,Rw) takes into account permuted variant of rules (via the use of the permutation π

in the one-step rewrite relation, see Definition 2.1), it is not necessary to include permuted
variant of rules in Rw. For convenience, in the rest of this work we assume that for any
R ∈ Rw, if R and Rπ are both in Rw then π = Id; in other words, Rw does not contain
permuted variants of the same rule.

With nominal rules the nominal rewrite relation is generated by the equivariant closure of
a set of rules. Thus, in order to find overlaps and critical pairs, we must consider permuted
variant of rules, and use nominal unification instead of first-order unification [5, 12].

Definition B.3. (Overlaps and critical pairs) Suppose

1. R1 = ∇1 ⊢ l1 → r1 and R2 = ∇2 ⊢ l2 → r2 are copies of two rules in eq-closure(Rw)
such that V (R1)∩V (R2) = /01;

2. l1 ≡ C[l′1] such that {∇1,∇2, l′1 ?≈? l2} has a principal solution (Γ,θ), so that Γ ⊢
l′1θ ≈α l2θ and Γ ⊢ ∇iθ for i = 1,2.

We say R1 overlaps with R2, and we call then the pair of terms-in-context Γ ⊢ ⟨r1θ ,Cθ [r2θ]⟩
a critical pair. We say the critical pair is trivial if C= [_] and R1, R2 are copies of the same
rule, or if l′1 is a variable.

Γ ⊢ l1θ

Γ ⊢ r1θ Γ ⊢ Cθ [r2θ]

R1 R2

1R1 and R2 could be copies of the same rule.

B.1 Nominal Confluence 67

Example B.2. Consider the set of rules

Rw =

∇1 ⊢ l1 → r1 : /0 ⊢ f (h(a),b)→ a
∇2 ⊢ l2 → r2 : /0 ⊢ f (b,X)→ X
∇3 ⊢ l3 → r3 : a#X ⊢ h(X)→ X

where a,b are atoms and f ,h are function symbols.

1. R1 = /0 ⊢ f (h(a),b)→ a and Rπ
3 = a′#X ′ ⊢ h(X ′)→ X ′, with π = (a a′) and a′ a new

atom, are copies of two rules in eq-closure(Rw) such that V (R1)∩V (Rπ
3) = /0;

2. If f (h(a),b)≡ C[h(a)], let’s check if { /0,a′#X ′,h(a) ?≈? h(X ′)} has a principal solution
(Γ,θ):

{ /0,a′#X ′,h(a) ?≈? h(X ′)} =⇒ { /0,a′#X ′,a ?≈? X ′}
X ′ 7→a
=⇒ { /0,a′#a}= { }
∴ (Γ,θ) = (/0, [X ′ 7→ a])

Since /0⊢ (a′#X ′)θ holds, the pair (Γ,θ) is indeed a solution for the unification problem
{ /0,a′#X ′,h(a) ?≈? h(X ′)}.

Thus, l1 overlaps with lπ
3 at position C= f ([_],b) with θ = [X ′ 7→ a].

The critical pair is ⊢ ⟨r1θ ,Cθ [rπ
3 θ]⟩= ⟨a, f (a,b)⟩.

/0 ⊢ l1θ

/0 ⊢ a = r1θ /0 ⊢ Cθ [rπ
3 θ] = f (a,b)

l1 → r1 lπ
3 → rπ

3

Definition B.4. (Permutative overlaps and critical pairs) Let R1 = ∇1 ⊢ l1 → r1 and R2 =

∇2 ⊢ l2 → r2 be copies of two rewrite rules in eq-closure(Rw) such that there is an overlap.
If R2 is a copy of Rπ

1 , we say that the overlap is permutative. A permutative overlap at
the root position is called root-permutative. We call an overlap that is not trivial and not
root-permutative proper. The same terminology is used to classify critical pairs.

A permutative overlap is an indication that there exists a critical pair generated by a rule
an one of its permuted variants.

Example B.3. (Cont. Example B.2) Consider the same set of rules from the previous
example.

68 Nominal Results and Examples

1. R3 = a#X ′ ⊢ h(X ′)→ X ′ and Rπ
3 = a′#Y ⊢ h(Y)→Y are copies of two rewrite rules in

eq-closure(Rw), with π = (a a′) and a′ a new atom, such that V (R3)∩V (Rπ
3) = /0.

2. If we consider the root position of h(X ′), that is h(X ′) ≡ C[h(X ′)], let’s check if
{a#X ′,a′#Y,h(X ′) ?≈? h(Y)} has a principal solution (Γ,θ):

{a#X ′,a′#Y,h(X ′) ?≈? h(Y)} =⇒ {a#X ′,a′#Y,X ′
?≈? Y}

X ′ 7→Y
=⇒ {a#Y,a′#Y}
∴ (Γ,θ) = ({a#Y,a′#Y}, [X ′ 7→ Y])

Since a#Y,a′#Y ⊢ (a#X ′)θ and a#Y,a′#Y ⊢ (a′#Y)θ , the pair (Γ,θ) is indeed a solution
for {a#X ′,a′#Y,h(X ′) ?≈? h(Y)}.

Thus, l3 overlaps with lπ
3 at position C= [_] with θ = [X ′ 7→ Y].

The critical pair is a#Y,a′#Y ⊢ ⟨r3θ ,Cθ [rπ
3 θ]⟩= ⟨Y,Y ⟩.

Γ ⊢ l3θ

Γ ⊢ Y = r3θ Γ ⊢ Cθ [rπ
3 θ] = Y

l3 → r3 lπ
3 → rπ

3

Observe that Rπ
3 is a copy of permuted R3. According to Definition B.4, the overlap

is permutative. Even more, since the overlap occurs at the root position, the overlap is
root-permutative. Therefore, a#Y,a′#Y ⊢ ⟨Y,Y ⟩ is a root-permutative critical pair.

Example B.4. (Cont. Example B.3) Let’s see an example of a proper critical pair. Consider
the same set of rules from Example B.2.

1. Rπ
1 = f (h(c),d)→ c and R3 = h(X ′)→ X ′, with π = (a c)(b d) and c,d new atoms,

are copies of two rules in eq-closure(Rw) such that V (Rπ
1)∩V (R3) = /0.

2. If f (h(c),d)≡ C[h(c)], let’s check if { /0,a#X ′,h(c) ?≈? h(X ′)} has a principal solution
(Γ,θ):

{ /0,a#X ′,h(c) ?≈? h(X ′)} =⇒ { /0,a#X ′,c ?≈? X ′}
X ′ 7→c
=⇒ { /0,a#c}= { }
∴ (Γ,θ) = (/0, [X ′ 7→ c])

Since we have /0 ⊢ /0θ and /0 ⊢ (a#X ′)θ = a#c, we get that (Γ,θ) is indeed a solution
for { /0,a#X ′,h(c) ?≈? h(X ′)}.

B.1 Nominal Confluence 69

Thus, lπ
1 overlaps with l3 at position C= f ([_],d) with θ = [X ′ 7→ c].

The critical pair is ⊢ ⟨rπ
1 θ ,Cθ [r3θ]⟩= ⟨c, f (c,d)⟩.

/0 ⊢ lπ
1 θ

/0 ⊢ c = rπ
1 θ /0 ⊢ Cθ [r3θ] = f (c,d)

lπ
1 → rπ

1 l3 → r3

Since this critical pair is neither trivial, nor root-permutative, Definition B.4 gives us that
/0 ⊢ ⟨c, f (c,d)⟩ is a proper critical pair.

Lemma B.1. It is not necessarily the case that trivial critical pairs are joinable.

Proof. We give a counterexample. Consider the rules

R1 ≡ /0 ⊢ f (b)→ a and R2 ≡ a#X ⊢ X → [a]X .

They have a trivial critical pair ⊢ ⟨a, [a] f (b)⟩.

⊢ f (b)

⊢ a ⊢ [a] f (b)

R1 R2

It is clear that these terms are not joinable.

Observe that overlaps at the root between variable-renamed versions of first-order rules
can be discarded, because they generate equal terms. Meanwhile, in nominal rewriting we
must also consider overlaps at the root between permuted variants of rules. The following
example shows that they do not necessarily produce the same result:

Example B.5. Consider R = (⊢ f (X)→ f ([a]X)) a rule of R. There is an overlap at the
root between this rule and its variant R(a b) = (⊢ f (X)→ f ([b]X)). It generates the critical
pair ⊢ ⟨ f ([a]X), f ([b]X)⟩. As we can see, the terms f ([a]X) and f ([b]X) are not necessarily
α-equivalent. Therefore, R is not confluent.

70 Nominal Results and Examples

⊢ f (a)

⊢ f ([a]a) ⊢ f ([b]a)

[_],R, [X 7→ a],Id [_],R, [X 7→ a],(a b)

̸≈α

Another property that will be important is called ‘uniformity’ which means than an atom
that does not occur free in a term cannot become free after the application of an ‘uniform’
rule. Formally,

Definition B.5. (Uniformity) A rule R is called uniform when for all ∆, s and t such that
∆ ⊢ s →R t we have ∆,⟨a#s⟩n f ⊢ a#t for any a such that ⟨a#s⟩n f is consistent.

To check uniformity of R = l → r it is enough to check that l and r satisfy the condition
of the definition above. Intuitively, if a is not free in l then a is not free in r.

Example B.6. Consider the NRS

R= { /0 ⊢ f (h(a),b)→ a, /0 ⊢ f (b,X)→ X , a#X ⊢ h(X)→ X},

where a,b are atoms and f ,h are function symbols.
By definition, R is uniform, since all of its rules are uniform. In fact:

• For the first two rules, the result follows trivially, since they have an empty context.

• For the last rule, it holds that a#X ,⟨c#h(X)⟩n f ⊢ c#X for any c such that ⟨c#h(X)⟩n f is
consistent.

Remark B.2. In [12], at Theorem 62, a version of the critical pair lemma was considered:
"If all non-trivial critical pairs of a uniform nominal rewrite system are joinable, then it is
locally confluent". However, it was observed in another work [5], as we defined a different
kind of critical pair, the permutative one, joinability of proper critical pairs is insufficient for
local confluence, even for a uniform theory, see for example the rule in Example B.5, which
is uniform.

Fortunately, an additional condition allows us to prove that uniform theories with joinable
proper critical pairs are locally confluent. Let’s state the definition of α-stability from [22].

Definition B.6. (α-stability) A rewrite rule R=∇ ⊢ l → r is α-stable when, for all ∆,π,θ ,θ ′,

∆ ⊢ (∇θ , ∇
π

θ
′, lθ ≈α lπ

θ
′) implies ∆ ⊢ rθ ≈α rπ

θ
′.

We say a rewrite theory R= (Σ,Rw) is α-stable if every rule in Rw is α-stable.

B.1 Nominal Confluence 71

Example B.7. (Cont. Example B.6) Let’s see that all of the rules in the NRS of Example B.6
are α-stable.

• /0 ⊢ f (h(a),b) → a is α-stable: for all ∆, π , θ , θ
′ such that ∆ ⊢ (f (h(a),b))θ ≈α

(f (h(a),b))π
θ
′, we will have ∆ ⊢ aθ ≈α aπ

θ
′ since substitutions do not act over

atoms and in this case π = Id in order to get a ≈α aπ .

• /0⊢ f (b,X)→X is α-stable: for all ∆, π , θ , θ
′ such that ∆⊢ f (b,Xθ)= (f (b,X))θ ≈α

(f (b,X))π
θ
′ = f (bπ ,Xπ

θ
′), we will have ∆ ⊢ Xθ ≈α Xπ

θ
′ since in this case we have

π = Id because we need b to be α-equivalent to bπ and therefore Xθ ≈α Xθ
′ holds

directly from hypothesis.

• a#X ⊢ h(X)→ X is α-stable: for all ∆, π , θ , θ
′ such that ∆ ⊢ h(Xθ) = (h(X))θ ≈α

(h(X))π
θ
′ = h(Xπ

θ
′), we will have ∆ ⊢ Xθ ≈α Xπ

θ
′ directly since permutations

actions do not act over variables.

Now we can give a new version for the Critical Pair Lemma:

Theorem B.1. (Critical Pair Lemma for uniform α-stable theories) Let R= (Σ,Rw) be an
uniform rewrite theory where all the rewrite rules in Rw are α-stable. If every proper critical
pair is joinable, then R is locally confluent.

Proof. The proof of this result is out of the scope of this work, but it can be found in [5],
Theorem 4.6.

Definition B.7. (Termination) A NRS is terminating if all the rewrite sequences are finite.

Now, with the previous definitions, and using Newman’s Lemma [19] we get the following
result of confluence:

Corollary B.1. Consider a NRS R.

1. If R is terminating, uniform, α-stable and proper critical pairs are joinable, then it is
confluent.

2. Under the same assumptions, normal forms are unique modulo ≈α .

The analysis of critical pairs in the next example, and in the following ones in this work,
will be made by means of tables. The first column shows the position by means of its context
C of a term li and the second column shows the subterm l′i given by the respective position to
the first column. The remaining columns will represent all the terms l j, renamed, of a set of
rules that we want to unify with li (and its non-variable subterms).

72 Nominal Results and Examples

• lπ
i stands for li with the meta-action of π ̸= Id, see Definition 1.3. Here we rename all

atoms in li.

• We write ⊘ to illustrate that the unification between li and a copy of itself does not
need to be made. In the first case, we do not need to unify l1 and a renamed l1.

• The symbol ⊥ means that we couldn’t unify the respective terms, or even if we could
the solution substitution θ did not respect Γ ⊢ ∇iθ , according to Definition B.3.

Example B.8. Consider the NRS

R=

∇1 ⊢ l1 → r1 : /0 ⊢ f (h(a),b)→ a
∇2 ⊢ l2 → r2 : /0 ⊢ f (b,X)→ X
∇3 ⊢ l3 → r3 : a#X ⊢ h(X)→ X

where a,b are atoms and f ,h are function symbols. Let’s analyze the critical pairs of R
and check if it is confluent.

1) R1 overlaps with Ri, for i = 1,2,3:

C [_] l1 lπ
1 l2 lπ

2 l3 lπ
3

[_] f (h(a),b) ⊘ ⊥ ⊥ ⊥ ⊥ ⊥
f ([_],b) h(a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊢ ⟨a, f (a,b)⟩

f (h(a), [_]) b ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
f (h([_]),b) a ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Below we present only the interesting cases.

a. l1 ?≈? lπ
1 : Remember l1 = f (h(a),b).

Notice that we need to analyze all possible meta-actions of π: (a b), (a a′). (b b′)
and (a a′)(b b′), where a′,b′ are new atoms.

Below we only show the case for π = (a a′)(b b′). But the other cases will also
result in ⊥.

{ /0, /0, f (h(a),b) ?≈? f (h(a′),b′)} =⇒ { /0, /0,h(a) ?≈? h(a′),b ?≈? b′}
=⇒ ⊥

By definition of α-equivalence, all atoms are different, that is, b ̸≈α b′.

B.1 Nominal Confluence 73

b. h(a) = l′1 ?≈? lπ
3 : Remember l1 = C[l′1], here C≡ f ([_],b), and l3 = h(X ′).

Here π = (a a′), with a′ a new name. Observe that lπ
3 = l3, but ∇

π
3 = a′#X ′.

This case was already made in Example B.2, and its critical pair is /0 ⊢ ⟨a, f (a,b)⟩.

c. l1 =? l2: Remember l1 = f (h(a),b) and l2 = f (b,X ′).

{ /0, /0, f (h(a),b) ?≈? f (b,X ′)} =⇒ { /0, /0,h(a) ?≈? b,b ?≈? X ′}
=⇒ ⊥

We get a ⊥, because we cannot unify an atom with a function symbol.

d. l1 =? lπ
2 : Remember l1 = f (h(a),b) and l2 = f (b,X ′).

Here π = (b b′) or π = (b a), with b′ a new atom. Either way, the result is the
same. We present the case π = (b b′).

{ /0, /0, f (h(a),b) ?≈? f (b′,X ′)} =⇒ { /0, /0,h(a) ?≈? b,b′ ?≈? X ′}
=⇒ ⊥

We get a ⊥, because we cannot unify an atom with a function symbol.

e. h(a) = l′1 =
? l3: Remember l1 = C[l′1], C≡ f ([_],b), l3 = h(X ′).

{ /0,a#X ′,h(a) ?≈? h(X ′)} =⇒ { /0,a#X ′,a ?≈? X ′}
X ′ 7→a
=⇒ { /0,a#a}
=⇒ ⊥

Applying the possible solution substitution in the constraint a#X ′ we get an
inconsistency, thus we get a ⊥.

All the remaining cases result in ⊥ because we try to unify two different function
symbols or a function symbol with an atom.

2) R2 overlaps with Ri, for i = 1,2,3:

The table obtained is the following. All the checks result in ⊥ or ⊘. The analysis is
similar to the previous.

C [_] l1 lπ
1 l2 lπ

2 l3 lπ
3

[_] f (b,X ′) ⊥ ⊥ ⊘ ⊥ ⊥ ⊥
f ([_],X ′) b ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

74 Nominal Results and Examples

a. l2 =? l1: Remember l2 = f (b,X ′) and l1 = f (h(a),b).

{ /0, /0, f (b,X ′) ?≈? f (h(a),b)} =⇒ { /0, /0,b ?≈? h(a),X ′
?≈? b}

=⇒ ⊥

An atom does not unify with a function symbol.

b. l2 =? lπ
1 : Remember l2 = f (b,X ′) and l1 = f (h(a),b).

Again, we need to check all the possibilities for π: (a b), (a a′), (b b′) and
(a a′)(b b′), with a′,b′ new names. We will only show π = (a b), but the result is
the same for all cases.

{ /0, /0, f (b,X ′) ?≈? f (h(b),a)} =⇒ { /0, /0,b ?≈? h(b),X ′
?≈? a}

=⇒ ⊥

An atom does not unify with a function symbol.

c. l2 =? lπ
2 : Remember l2 = f (b,X ′).

The only π we need to take into account is (b b′), where b′ is a new atom. Also
note that V (l2)∩V (lπ

2) = /0 is necessary, so we change the name of the unknown
in lπ

2 to X ′′.

{ /0, /0, f (b,X ′) ?≈? f (b′,X ′′)} =⇒ { /0, /0,b ?≈? b′,X ′
?≈? X ′′}

=⇒ ⊥

By definition of α-equivalence, all atoms are different, that is, b ̸≈α b′.

All the remaining cases result in ⊥ because we try to unify two different function
symbols or a function symbol with an atom.

3) R3 overlaps with Ri, for i = 1,2,3:

C [_] l1 lπ
1 l2 lπ

2 l3 lπ
3

[_] h(X ′) ⊥ ⊥ ⊥ ⊥ ⊘ a#Y,a′#Y ⊢ ⟨Y,Y ⟩

a. l3 ?≈? lπ
3 : Remember l3 = h(X ′).

We just need to check when π = (a a′), with a′ a new atom. Notice that the
condition V (l3)∩V (lπ

3) = /0 is necessary, so we change the name of the unknown
in lπ

3 to Y . Also note that we have ∇
π
3 = {a′#Y}.

This case was already made in Example B.3, and its critical pair is a#Y,a′#Y ⊢
⟨Y,Y ⟩.

B.1 Nominal Confluence 75

All the remaining cases result in ⊥ because we try to unify two different function
symbols.

4) Rπ
1 overlaps with Ri, for i = 1,2,3:

As seen earlier, π may be (a b), (a c), (b d) or (a c)(b d), with c,d new names. Of
course, with these conditions, we would need to build four different tables. As this
work is exhaustive, we will show only the most general case, π = (a c)(b d).

C [_] l1 lπ ′
1 l2 lπ ′

2 l3 lπ ′
3

[_] f (h(c),d) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
f ([_],d) h(c) ⊥ ⊥ ⊥ ⊥ ⊢ ⟨c, f (c,d)⟩ ⊢ ⟨c, f (c,d)⟩

f (h(c), [_]) d ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
f (h([_]),d) c ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

a. h(c) = l′π1 ?≈? l3: Remember lπ
1 = C[l′π1], here C≡ f ([_],d), and l3 = h(X ′).

Observe that ∇
π
1 = /0 and ∇3 = {a#X ′}.

This case was already made in Example B.4, and its critical pair is /0 ⊢ ⟨c, f (c,d)⟩.

b. h(c) = l′π1 ?≈? lπ ′
3 : Remember lπ

1 = C[l′π1], here C≡ f ([_],d), and l3 = h(X ′).

Here π
′ = (a c) or π

′ = (a a′), with a′ a new name.

* If π
′ = (a c):

{ /0,c#X ′,h(c) ?≈? h(X ′)} =⇒ { /0,c#X ′,c ?≈? X ′}
X ′ 7→c
=⇒ { /0,c#c}
=⇒ ⊥

* If π
′ = (a a′):

{ /0,a′#X ′,h(c) ?≈? h(X ′)} =⇒ { /0,a′#X ′,c ?≈? X ′}
X ′ 7→c
=⇒ { /0,a′#c}= { }
∴ (Γ,θ) = (/0, [X ′ 7→ c])

Since we have /0 ⊢ /0θ and /0 ⊢ (a#X ′)θ = a′#c, the pair (Γ,θ) is indeed a
solution for { /0,a′#X ′,h(c) ?≈? h(X ′)}.
Thus, lπ

1 overlaps with lπ ′
3 at position C= f ([_],d) with θ = [X ′ 7→ c].

The critical pair is ⊢ ⟨rπ
1 θ ,Cθ [rπ ′

3 θ]⟩= ⟨c, f (c,d)⟩.

76 Nominal Results and Examples

⊢ lπ
1 θ

⊢ c = rπ
1 θ ⊢ Cθ [r3θ] = f (c,d)

lπ
1 → rπ

1 lπ ′
3 → rπ ′

3

5) Rπ
2 overlaps with Ri, for i = 1,2,3: Here π might be (b a) or (b d), where d is a new

atom, consequently generating two tables. The table below shows the case where
π = (b d).

C [_] l1 lπ ′
1 l2 lπ ′

2 l3 lπ ′
3

[_] f (d,X) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
f ([_],X) d ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

6) Rπ
3 overlaps with Ri, for i = 1,2,3: Here we have (a b) or (a c), with c a new name, as

options for π . Again, we need to build two tables, but we are only going to show one,
when π = (a c).

C [_] l1 lπ ′
1 l2 lπ ′

2 l3 lπ ′
3

[_] h(X ′) ⊥ ⊥ ⊥ ⊥ c#Y,a#Y ⊢ ⟨Y,Y ⟩ c#Y,a′#Y ⊢ ⟨Y,Y ⟩

a. lπ
3 ?≈? l3: Remember l3 = h(X ′).

Notice that the condition V (lπ
3)∩V (l3) = /0 is necessary, so we change the name

of the unknown in l3 to Y . Also note that we have ∇
π
3 = {c#X ′} and ∇3 = {a#Y}.

{c#X ′,a#Y,h(X ′) ?≈? h(Y)} =⇒ {c#X ′,a#Y,X ′
?≈? Y}

X ′ 7→Y
=⇒ {c#Y,a#Y}
∴ (Γ,θ) = ({c#Y,a#Y}, [X ′ 7→ Y])

Since c#Y,a#Y ⊢ (c#X ′)θ and c#Y,a#Y ⊢ (a#Y)θ , the pair (Γ,θ) is indeed a
solution for {c#X ′,a#Y,h(X ′) ?≈? h(Y)}.

Thus, lπ
3 overlaps with l3 at position C= [_] with θ = [X ′ 7→ Y].

The critical pair is c#Y,a#Y ⊢ ⟨rπ
3 θ ,Cθ [r3θ]⟩= ⟨Y,Y ⟩.

B.1 Nominal Confluence 77

Γ ⊢ lπ
3 θ

Γ ⊢ Y = rπ
3 θ Γ ⊢ Cθ [r3θ] = Y

lπ
3 → rπ

3 l3 → r3

b. lπ
3 ?≈? lπ ′

3 : Remember l3 = h(X ′).

Observe we do not need to do the case π
′ = (a c), because we do not want to

unify a term with a copy of itself. Thus, π
′ = (a a′), where a′ is a new atom.

Again V (lπ
3)∩V (lπ ′

3) = /0 is necessary, so we change the name of the unknown in
lπ ′
3 to Y . Note that ∇

π
3 = c#X ′ and ∇

π ′
3 = a′#Y .

{c#X ′,a′#Y,h(X ′) ?≈? h(Y)} =⇒ {c#X ′,a′#Y,X ′
?≈? Y}

X ′ 7→Y
=⇒ {c#Y,a′#Y}
∴ (Γ,θ) = ({c#Y,a′#Y}, [X ′ 7→ Y])

Since c#Y,a′#Y ⊢ (c#X ′)θ and c#Y,a′#Y ⊢ (a′#Y)θ , the pair (Γ,θ) is indeed a
solution for {c#X ′,a′#Y,h(X ′) ?≈? h(Y)}.

Thus, lπ
3 overlaps with lπ ′

3 at position C= [_] with θ = [X ′ 7→ Y].

The critical pair is c#Y,a′#Y ⊢ ⟨rπ
3 θ ,Cθ [rπ ′

3 θ]⟩= ⟨Y,Y ⟩.

Γ ⊢ lπ
3 θ

Γ ⊢ Y = rπ
3 θ Γ ⊢ Cθ [rπ ′

3 θ] = Y

lπ
3 → rπ

3 lπ ′
3 → rπ ′

3

Therefore, the presented critical pairs of R are:

{ ⊢ ⟨a, f (a,b)⟩; a#Y,a′#Y ⊢ ⟨Y,Y ⟩; ⊢ ⟨c, f (c,d)⟩; c#Y,a#Y ⊢ ⟨Y,Y ⟩; c#Y,a′#Y ⊢ ⟨Y,Y ⟩}.

It is easy to see that R is terminating using an embedding into (N,>), which is known to
terminate, checking that the length of the terms decrease in each R-reduction. More details
about termination can be found in [9].

From Example B.6, R is uniform and, in Example B.7, we showed that the rules are
α-stable.

78 Nominal Results and Examples

Corollary B.1 gives us that R would be confluent if all the proper critical pairs are joinable.
But picking out the first critical pair found ⊢ ⟨a, f (a,b)⟩, we see it is proper and it is not
joinable. Indeed, we cannot reduce neither a nor f (a,b) using the three rules in R, hence
a̸ ↓ f (a,b).

Lastly, we conclude that R is not confluent.

B.2 Commutative

This example was used before we defined nominal rewriting modulo an equational theory, as
an attempt to identify the notions and results that needed to be extended.

Example B.9. Consider the nominal theory

T= { /0 ⊢ f (h(a),b)≈α a, /0 ⊢ f (b,X)≈α X , a#X ⊢ h(X)≈α X , /0 ⊢ f (X ,Y)≈α f (Y,X)},

where a,b are atoms and f ,h are function symbols. Similarly to the previous appendix, we
will decompose T in R∪C where

• R= { ⊢ f (h(a),b)→ a, ⊢ f (b,X)→ X , a#X ⊢ h(X)→ X};

• and C= { ⊢ f (X ,Y)≈α f (Y,X)}.

The idea is to analyze the equivariance, closedness and C-confluence of such R.

Equivariance We saw in Example B.8 that all rules were in eq-closure(Rw). Just to state
them all: let c,d be arbitrary atoms, we have

R(a b) = { ⊢ f (h(b),a)→ b, ⊢ f (a,X)→ X , b#X ⊢ h(X)→ X}

R(a c) = { ⊢ f (h(c),b)→ c, ⊢ f (b,X)→ X , c#X ⊢ h(X)→ X}

R(b d) = { ⊢ f (h(a),d)→ a, ⊢ f (d,X)→ X , a#X ⊢ h(X)→ X}

R(a c)(b d) = { ⊢ f (h(c),d)→ c, ⊢ f (d,X)→ X , c#X ⊢ h(X)→ X}

Closedness Notice that we have ⊢T h(X)≈ X and there is no rewriting path from h(X) to
X , i.e., ̸⊢R h(X)↔ X . Indeed, we only have h(X)→ X if we add the context a#X .

Observe that we need to be careful because we are in ≈α,C and we need the formal
definition of ↔R,C. Notice, however, that the problem is not with the equational theory
C but with the freshenss constraint.

B.2 Commutative 79

• Task 1: we need to extend the definition of → to →R,C.

• Task 2: also the definition of complete presentation needs to be extended
for T= R∪C.

These two extensions will be done in a naive way, in the next section.

Confluence Observe that R is the same NRS as from Example B.8, where it was not confluent
because the proper critical pairs were not joinable. But now, with commutativity we
check again the joinability of these proper critical pairs found.

• /0 ⊢ ⟨a, f (a,b)⟩: they are C-joinable.

l2θ

⊢ a ⊢ f (a,b)

⊢ f (b,a)

l2 → r2
≈C

• a#Y,a′#Y ⊢ ⟨Y,Y ⟩: trivially joinable.

• /0 ⊢ ⟨c, f (c,d)⟩: analogous to ⊢ ⟨a, f (a,b)⟩.

• c#Y,a#Y ⊢ ⟨Y,Y ⟩: trivially joinable.

• c#Y,a′#Y ⊢ ⟨Y,Y ⟩: trivially joinable.

• Task 3: define C-confluence, C-critical pairs and C-coherence of →R,C in
the nominal framework.

B.2.1 Nominal C-overlappings and complete sets of C-critical pairs

Next we extend the definitions of C-overlappings and C-critical pairs in the nominal
framework.

Definition B.8. (C-overlappings and C-critical pairs) We say a term-in-context ∆ ⊢ s
C-overlaps a term-in-context ∆

′ ⊢ t at position C, say t ≡ C[t ′], with a complete set S of
C-overlappings iff S is a complete set of C-unifiers of ∆ ⊢ s and ∆

′ ⊢ t ′.

80 Nominal Results and Examples

Given two rules ∇1 ⊢ l1 → r1 and ∇2 ⊢ l2 → r2 in eq-closure(Rw) such that we have
V (l1)∩V (l2) = /0 and ∇1 ⊢ l1 C-overlaps ∇2 ⊢ l2 at position C, say l2 ≡ C[l′2], with a
complete set S of C-overlappings, then the set

{Γ ⊢ ⟨u1,u2⟩ | u1 = r2θ , u2 = Cθ [r1θ], ∀θ ∈ S,Γ ⊢ l1θ ≈α,C l′2θ ,Γ ⊢ ∇1θ ,Γ ⊢ ∇2θ}

is called a complete set of C-critical pairs of the rule ∇1 ⊢ l1 → r1 on the rule ∇2 ⊢
l2 → r2 at position C.

• Let CSCCP(R) be the complete set of non trivial C-critical pairs2 for all ∇1 ⊢
l1 → r1 and ∇2 ⊢ l2 → r2 belonging both to R;

• Let CSCCP(R/C) be the complete set of non trivial C-critical pairs for all ∇1 ⊢
l1 → r1 in R together with all ∇2 ⊢ l2 → r2 such that ∇2 ⊢ l2 ≈α r2 or ∇2 ⊢ r2 ≈α l2
belongs to C.

2that means C-critical pairs such that ∆1 ⊢ u1 ̸= ∆2 ⊢ u2.

	Table of contents
	Introduction
	1 Background
	1.1 Nominal Syntax
	1.2 Rules for Freshness and [alpha]-equivalence
	1.3 Nominal Unification
	1.4 [alpha]-equivalence modulo [C]
	1.4.1 Nominal Commutative Unification

	2 Nominal Narrowing
	2.1 Nominal Rewriting and Nominal Equality
	2.1.1 Nominal Algebra Equality and Closed Nominal Rewriting

	2.2 Nominal Narrowing
	2.2.1 The nominal Lifting Theorem

	2.3 Nominal Narrowing and Nominal Unification

	3 Nominal Commutative Narrowing
	3.1 Basic Definitions
	3.2 Nominal Lifting Theorem modulo [C]

	4 Conclusion and Future Work
	4.1 Work in progress
	4.1.1 Nominal [C]-narrowing for Nominal [RUC]-unification

	4.2 Future Work

	References
	Appendix A First Order Results
	Appendix B Nominal Results and Examples
	B.1 Nominal Confluence
	B.2 Commutative
	B.2.1 Nominal [C]-overlappings and complete sets of [C]-critical pairs

