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We describe SeCaV, a sequent calculus verifier for first-order logic in Isabelle/HOL, and the SeCaV
Unshortener, an online tool that expands succinct derivations into the full SeCaV syntax. We lever-
age the power of Isabelle/HOL as a proof checker for our SeCaV derivations and outline how the
design of our rules makes this predictable. The interactive features of Isabelle/HOL make our system
transparent. For instance, the user can simply click on a side condition to see its exact definition.
Our formalized soundness and completeness proofs pertain exactly to the calculus as exposed to the
user and not just to some model of our tool. Users can also write their derivations in the SeCaV
Unshortener, which provides a lighter syntax, and expand them for later verification. We have used
both tools in our teaching.

1 Introduction

Classical first-order logic plays an important role in mathematical logic and often occupies a central part
in textbooks and courses on the subject. The sequent calculus is used to exemplify formal deduction
and to show theoretical results in proof theory. It is instructive to write out concrete derivations in the
calculus to get a feel for the rules and the method of reasoning. While such derivations can be done
with pen and paper and checked for mistakes by human eyes, we argue that there is benefit in computer
assistance.

To this end, we introduce SeCaV, a sequent calculus verifier built on top of Isabelle/HOL. SeCaV
presents everything within the same unified system: the syntax of formulas, the proof rules, their side
conditions, and the way derivations are written. Moreover, it provides immediate feedback to the user
on the correctness of their derivations. In combination, this empowers the users when learning to write
derivations and gives them an independence that is harder to achieve without computer assistance. We
recall Nipkow [12] on the analogy between proof assistants and video games and especially the benefits
of immediate feedback:

This is in contrast to the usual system of homework that is graded by a teaching assistant and
returned a week later, long after the student struggled with it, and at a time when the course
has moved on. This delay significantly reduces the impact that any feedback scribbled on
the homework may have.

In this paper we include the teaching and learning aspects only as background motivation, since
this is a system description and we have discussed the teaching and learning aspects elsewhere [7, 8].
Our main focus is on the definition of the system itself and especially the benefits of building it on
top of Isabelle/HOL. While many tools are implemented independently and perhaps modeled in a proof
assistant, we aim to show the benefits of working entirely within Isabelle/HOL.

A completely novel development is the SeCaV Unshortener, a web application that allows experi-
enced users to forgo immediate feedback and in return write more succinct derivations. Such a derivation
is automatically expanded into the full SeCaV syntax which can then be verified for correctness.
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Figure 1: The SeCaV Unshortener generating the example in Figure 6.

The SeCaV Unshortener, shown in Figure 1, allows proofs to be written in a much more compact
syntax, cf. Section 5.

We used the SeCaV system in our BSc course “Logical Systems and Logic Programming” in the
fall of 2020. 71 students took the 2-hour exam where the exercises in SeCaV were worth 20% of the
grade. We also used the SeCaV system in our MSc course “Automated Reasoning” in the spring of 2021,
mainly in order to bridge the gap between our micro provers for propositional logic and our Natural
Deduction Assistant (NaDeA), cf. Section 2. Here, the students were also introduced to the recent SeCaV
Unshortener. 34 students took the 2-hour exam where the exercises in SeCaV were worth 25% of the
grade.

The SeCaV system is available online (tested with Isabelle2020 and Isabelle2021):

https://github.com/logic-tools/secav

The two relevant files are SeCaV.thy, which defines the sequent calculus and proves soundness, and
Sequent_Calculus_Verifier.thy, which builds on our existing work [9] to prove completeness,
cf. Section 4.

The SeCaV Unshortener 1.0 is available online (tested with the Chrome, Edge, Firefox and Safari
browsers):

https://secav.compute.dtu.dk/

Version 1.0 is fully functional and has an online tutorial with examples. The online tutorial can be used
to learn how to actually use the SeCaV system, while the present paper is a description of the system.

We continue by discussing existing work (Section 2) before introducing our system via a number
of examples (Section 3). We then introduce SeCaV formally, explain our design considerations, outline
the soundness and completeness results, and emphasize the benefits of the Isabelle/HOL integration
(Section 4). Next, we give an overview of the SeCaV Unshortener (Section 5) before concluding with
thoughts about future work (Section 6).

https://github.com/logic-tools/secav
https://secav.compute.dtu.dk/
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2 Related Work

There are many tools for sequent calculus, both online and offline. We shall see that, while SeCaV defines
one logic and one calculus, the transparency of the system makes the idea of extending or deviating from
the system tangible. We have previously explored how proof assistants in general make the different
layers and elements of logic visceral [8].

The web application Logitext (http://logitext.mit.edu) allows users to derive a sequent by
clicking the connective they want to apply a rule to. As such, the rules are almost hidden away from the
user who simply sees the appearance of new sub-derivations. Sequoia [13] allows users to input their own
rules in a LATEX format and build derivations from them. It also checks certain meta-theoretical properties
of the stated calculus. The online application was unavailable at the time of writing. The Carnap.io

site [10] allows users to specify their own logic as well as proof system, but in Haskell, which is then
compiled to a web application. The offline Sequent Calculus Trainer [6] guides the user away from dead
ends by alerting them if the current sequent is determined to be unprovable. AXolotl [4, 5] is an Android
app that supports sequent calculus derivations in a classical notation. It is designed to facilitate self-study.
Unlike SeCaV, none of these tools provide any formal guarantees of their correctness. Each of them is a
bespoke application in a regular programming language.

The Incredible Proof Machine [2, 3] is “an interactive visual theorem prover which represents proofs
as port graphs.” It distinguishes itself by having a model of this proof representation formalized in
Isabelle/HOL and shown to be as strong as natural deduction. Unlike SeCaV, the formalized metatheo-
retical results only apply to a model of the system.

Our Natural Deduction Assistant (NaDeA) [17] presents natural deduction in a more traditional style.
Its metatheory is formalized in Isabelle/HOL and the web application supports exporting proofs that can
be verified in Isabelle/HOL, alleviating the problem of potential bugs in the online tool.

Our Students’ Proof Assistant [14] exists entirely inside Isabelle/HOL, where it defines a proof as-
sistant within the proof assistant. This helps make proof assistants and their design concrete, but makes
the proving experience less natural than using the outer proof assistant directly as done in SeCaV.

Finally, we mention our micro provers for propositional logic [16] whose formalized soundness and
completeness results take up only a few dozen lines of Isabelle/HOL. They are based on sequent calculus
and can work as a first example in a course, before the full power of first-order logic and SeCaV is
introduced.

3 Examples

We use a simple programming-like syntax for formulas in SeCaV and abbreviate it further in the SeCaV
Unshortener.

Figure 2 gives an example derivation of the formula p(a,b)∨¬p(a,b). The formula is stated on
line 3 as the sole member of the one-sided sequent spanning lines 2–4. Recall that such a sequent is
understood as a disjunction of formulas. On line 3, the disjunction ∨ is written using the constructor Dis
applied to two arguments separated by a space. For predicates, the constructor Pre takes a list of terms
as arguments. Here we use Fun 0 [] and Fun 1 [], two function symbols taking no arguments, to represent
the constants informally called a and b. We make this syntax precise in Section 4.

The first rule application in Figure 2 occurs on line 7. We apply the AlphaDis rule backwards, stating
that our goal follows from the sequent listed on lines 9–10. This sequent fits the shape of our Basic axiom
since it starts with a formula that also occurs negated. Lines 14–15 finish the derivation based on this.

http://logitext.mit.edu
Carnap.io
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lemma 〈 `̀1

[2

Dis (Pre 0 [Fun 0 [], Fun 1 []]) (Neg (Pre 0 [Fun 0 [], Fun 1 []]))3

]4

〉5

proof −6

from AlphaDis have ?thesis if 〈 `̀7

[8

Pre 0 [Fun 0 [], Fun 1 []],9

Neg (Pre 0 [Fun 0 [], Fun 1 []])10

]11

〉12

using that by simp13

with Basic show ?thesis14

by simp15

qed16

Figure 2: A sample SeCaV derivation in Isabelle/HOL.

Dis p[a, b] (Neg p[a, b])1

2

AlphaDis3

p[a, b]4

Neg p[a, b]5

Basic6

Figure 3: The sample SeCaV derivation in Figure 2 written in the syntax of the SeCaV Unshortener.

In the above we focused on the things essential to a human reader: the goal, the rules and their
resulting sequents. The remaining lines and keywords are for the benefit of Isabelle/HOL: they fit our
derivations into the Isar syntax [18] giving us all the verification benefits of Isabelle/HOL. If a rule is
applied wrong, the editor tells us!

Our calculus is designed such that this boilerplate is predictable. With the exception of two rules that
require clarification when more than one variable is in play, we have yet to encounter a rule application
that cannot be justified by Isabelle/HOL’s simplifier. This predictability means that we can write down
only the essential parts of the derivation and then generate the boilerplate with the SeCaV Unshortener.
Figure 3 contains an example of this, namely the same derivation as Figure 2. It starts with the goal
formula on line 1, then the first rule application on line 3, the resulting sequent spans lines 4–5 and finally
line 6 finishes the derivation. In fact, the SeCaV Unshortener produced the Isabelle/HOL code in Figure 2
automatically from this representation. For brevity, we will generally favor the short representation.

3.1 Instantiating Quantifiers

Consider the additional example in Figure 4, which contains a derivation of:

(∀x.∀y. p(x,y))→ p(a,a)
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Imp (Uni (Uni (p[1, 0]))) p[a, a]1

2

AlphaImp3

Neg (Uni (Uni p[1, 0]))4

p[a, a]5

GammaUni[a]6

Neg (Uni p[a, 0])7

p[a, a]8

GammaUni9

Neg p[a, a]10

p[a, a]11

Ext12

p[a, a]13

Neg p[a, a]14

Basic15

Figure 4: SeCaV Unshortener example with instantiation of quantifiers.

We write the formulas using de Bruijn indices to match the Isabelle/HOL formalization. In the
example, the variable 1 is bound by the outermost quantifier and 0 by the innermost. The rule application
on line 3 is propositional and straightforward: the implication holds if either the antecedent does not
or the consequent does. Consider instead line 6 where several things occur. First, the GammaUni rule
allows us to derive a negated, universally quantified formula from an example. Applied backwards, we
can insert any term for the bound variable while eliminating the quantifier. We do so, replacing the bound
variable with the term a. Second, the notation [a] becomes a hint to Isabelle/HOL that a is the term used
to replace the bound variable. This ensures that the simplifier can verify the correctness and is necessary
when more than one variable occurs in the term (we omit it on line 9). Line 12 applies the Ext rule that
rearranges the sequent such that the Basic rule applies on line 15. We insist that the entire sequent is
written down after each rule application so it is possible to read each application without referring back
to previous ones.

3.2 Branching Derivations

As a final example consider the longer Figure 5, which includes branching rules. Lines 1–24 proceed
using rules similar to those we have already seen. We cover them in detail in Section 4. Line 25 applies
the BetaImp rule, which relies on two sub-derivations. The first sequent that needs to be derived is given
on lines 26–28 and the second sequent on lines 30–32, with a plus symbol (+) separating the two. The
application of Basic on line 33 closes the first branch and the rest of the derivation concerns only the
second one.

The order of the two branches is not important for the Isabelle/HOL verification and the subsequent
rules can be applied to either of the branches or even both at the same time. For the sake of human-
readability, however, we suggest working on the first branch.

Figure 5 displays another feature of our calculus that is worth pointing out. On line 37, the Ext rule is
used not just to rearrange the sequent, but also to drop a formula that was only necessary on one branch.
As such, it can be used to tidy up sequents during a derivation.



6 SeCaV: A Sequent Calculus Verifier in Isabelle/HOL

Imp (Uni (Imp p[0] q[0])) (Imp (Exi p[0]) (Exi q[0]))1

2

AlphaImp3

Neg (Uni (Imp p[0] q[0]))4

Imp (Exi p[0]) (Exi q[0])5

Ext6

Imp (Exi p[0]) (Exi q[0])7

Neg (Uni (Imp p[0] q[0]))8

AlphaImp9

Neg (Exi p[0])10

Exi q[0]11

Neg (Uni (Imp p[0] q[0]))12

DeltaExi13

Neg p[a]14

Exi q[0]15

Neg (Uni (Imp p[0] q[0]))16

Ext17

Neg (Uni (Imp p[0] q[0]))18

Neg p[a]19

Exi q[0]20

GammaUni21

Neg (Imp p[a] q[a])22

Neg p[a]23

Exi q[0]24

BetaImp25

p[a]26

Neg p[a]27

Exi q[0]28

+29

Neg q[a]30

Neg p[a]31

Exi q[0]32

Basic33

Neg q[a]34

Neg p[a]35

Exi q[0]36

Ext37

Exi q[0]38

Neg q[a]39

GammaExi40

q[a]41

Neg q[a]42

Basic43

Figure 5: SeCaV Unshortener example with a branching derivation.
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Figure 6: A compressed SeCaV derivation in the Isabelle/jEdit editor. The bottom panel shows the rule
under the cursor. The system automatically instantiates each variable (?p, ?q, ?z) appropriately.

4 SeCaV

Figure 6 shows a SeCaV derivation as it appears in the Isabelle/jEdit editor. For brevity, we have removed
a number of line breaks. The SeCaV Unshortener allows the same proof to be written in a much more
compact syntax, cf. Figure 1.

In this section we formally describe the SeCaV system: its syntax and semantics, proof rules,
metatheory and Isabelle/HOL integration.

4.1 Syntax and Semantics

The syntax of terms and formulas in SeCaV is formally defined by the following two Isabelle/HOL
datatype declarations:

datatype tm = Fun nat 〈 tm list 〉 | Var nat
datatype fm = Pre nat 〈 tm list 〉 | Imp fm fm | Dis fm fm | Con fm fm | Exi fm | Uni fm | Neg fm

Terms are either functions identified by a natural number and applied to a list of terms, or de Bruijn
indices. Formulas are either predicates, also identified by a natural number and applied to a list of terms,
a connective applied to an appropriate number of formulas, or a quantifier. The embedding of SeCaV
into Isabelle/HOL means that we do not need to write a parser for this syntax. As seen in Figure 6 we
can write down a formula immediately. We use a simple programming-like syntax here, but it is also
possible to define a more regular infix syntax with various precedences and associativity.

To formalize metatheory, like the soundness and completeness of our proof system, it is essential to
assign a meaning to our formulas. We can do this because of our deep embedding of the syntax as a
datatype. While we could also use Isabelle as the generic proof assistant it is, define our logic in that
style and still have it check our proofs, doing so would prevent us from formalizing our metatheory, and
we would not even be able to prove soundness.
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The following functions interpret terms and formulas into Isabelle/HOL’s higher-order logic, given a
variable assignment e, a function denotation f and a predicate denotation g:

primrec semantics-term and semantics-list where
〈 semantics-term e f (Var n) = e n 〉 |
〈 semantics-term e f (Fun i l) = f i (semantics-list e f l) 〉 |
〈 semantics-list e f [] = [] 〉 |
〈 semantics-list e f (t # l) = semantics-term e f t # semantics-list e f l 〉

primrec semantics where
〈 semantics e f g (Pre i l) = g i (semantics-list e f l) 〉 |
〈 semantics e f g (Imp p q) = (semantics e f g p −→ semantics e f g q) 〉 |
〈 semantics e f g (Dis p q) = (semantics e f g p ∨ semantics e f g q) 〉 |
〈 semantics e f g (Con p q) = (semantics e f g p ∧ semantics e f g q) 〉 |
〈 semantics e f g (Exi p) = (∃x. semantics (shift e 0 x) f g p) 〉 |
〈 semantics e f g (Uni p) = (∀x. semantics (shift e 0 x) f g p) 〉 |
〈 semantics e f g (Neg p) = (¬ semantics e f g p) 〉

The two quantifier clauses make the interpretation of de Bruijn indices explicit. When interpreting a
quantifier, the function shift adjusts the variable assignment e so index 0 points at the newly quantified
variable. Its general definition is:

definition 〈 shift e v x ≡ λn. if n < v then e n else if n = v then x else e (n − 1) 〉

This use matches the intuition that variable 0 is bound by the “nearest” quantifier. Similarly, the
existing indices are shifted by one since they appear one scope further out.

4.2 Substitution

While on the topic of de Bruijn indices we now cover how substitution is formalized, as we need it to
specify our proof rules. We include the definitions of such helper functions to make our presentation self-
contained. Our substitution function on formulas, sub, is designed to be used whenever we instantiate
a quantifier. The application sub v s p substitutes variable v for the term s in formula p. During this
substitution, we ensure that no variable in s gets bound by a quantifier in p. We define the function by
structural recursion:

primrec sub where
〈 sub v s (Pre i l) = Pre i (sub-list v s l) 〉 |
〈 sub v s (Imp p q) = Imp (sub v s p) (sub v s q) 〉 |
〈 sub v s (Dis p q) = Dis (sub v s p) (sub v s q) 〉 |
〈 sub v s (Con p q) = Con (sub v s p) (sub v s q) 〉 |
〈 sub v s (Exi p) = Exi (sub (v + 1) (inc-term s) p) 〉 |
〈 sub v s (Uni p) = Uni (sub (v + 1) (inc-term s) p) 〉 |
〈 sub v s (Neg p) = Neg (sub v s p) 〉

Only the predicate and quantifier cases are interesting; the rest simply apply the substitution to the
sub-formulas. In the predicate case we use the function sub-list to apply the substitution across the list
of argument terms. It is defined mutually with sub-term:

primrec sub-term and sub-list where
〈 sub-term v s (Var n) = (if n < v then Var n else if n = v then s else Var (n − 1)) 〉 |
〈 sub-term v s (Fun i l) = Fun i (sub-list v s l) 〉 |
〈 sub-list v s [] = [] 〉 |
〈 sub-list v s (t # l) = sub-term v s t # sub-list v s l 〉
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Basic
AlphaDis
AlphaImp
AlphaCon
BetaCon
BetaImp
BetaDis
GammaExi
GammaUni
DeltaUni
DeltaExi
NegNeg
Ext

inductive sequent-calculus (〈 `̀ - 〉 0) where
〈 `̀ p # z 〉 if 〈member (Neg p) z 〉 |
〈 `̀ Dis p q # z 〉 if 〈 `̀ p # q # z 〉 |
〈 `̀ Imp p q # z 〉 if 〈 `̀ Neg p # q # z 〉 |
〈 `̀ Neg (Con p q) # z 〉 if 〈 `̀ Neg p # Neg q # z 〉 |
〈 `̀ Con p q # z 〉 if 〈 `̀ p # z 〉 and 〈 `̀ q # z 〉 |
〈 `̀ Neg (Imp p q) # z 〉 if 〈 `̀ p # z 〉 and 〈 `̀ Neg q # z 〉 |
〈 `̀ Neg (Dis p q) # z 〉 if 〈 `̀ Neg p # z 〉 and 〈 `̀ Neg q # z 〉 |
〈 `̀ Exi p # z 〉 if 〈 `̀ sub 0 t p # z 〉 |
〈 `̀ Neg (Uni p) # z 〉 if 〈 `̀ Neg (sub 0 t p) # z 〉 |
〈 `̀ Uni p # z 〉 if 〈 `̀ sub 0 (Fun i []) p # z 〉 and 〈 news i (p # z) 〉 |
〈 `̀ Neg (Exi p) # z 〉 if 〈 `̀ Neg (sub 0 (Fun i []) p) # z 〉 and 〈 news i (p # z) 〉 |
〈 `̀ Neg (Neg p) # z 〉 if 〈 `̀ p # z 〉 |
〈 `̀ y 〉 if 〈 `̀ z 〉 and 〈 ext y z 〉

Figure 7: SeCaV proof rules in Isabelle/HOL with associated names inserted manually to the left.

There are two cases for sub-term. At variables we leave smaller variables alone, substitute those
matching the target index v, and decrement larger variables to account for the instantiated quantifier
whose scope is now gone. At function symbols, we simply apply the substitution across the arguments.

Returning to sub, in the quantifier cases we increment v to account for the quantifier whose scope we
are now under. For the same reason, we use the function inc-term to increment the variables in s. It is
defined mutually with inc-list:

primrec inc-term and inc-list where
〈 inc-term (Var n) = Var (n + 1) 〉 |
〈 inc-term (Fun i l) = Fun i (inc-list l) 〉 |
〈 inc-list [] = [] 〉 |
〈 inc-list (t # l) = inc-term t # inc-list l 〉

4.3 Proof System

Our sequent calculus is one-sided system like System G by Ben-Ari [1], which inspired it. While two-
sided systems have a certain elegance, a one-sided system has a couple of advantages. First, it can
be explained and understood as simply meta-notation for a disjunction between formulas. Second, it
can be formalized as a single list of formulas, in turn reducing the syntactic burden of writing down
a sequent. Consider the SeCaV Unshortener syntax in e.g. Figure 4. Rule applications and sequents
alternate throughout the derivation, with no need for a special symbol to distinguish a left- and right-
hand side of the sequent.

Figure 7 contains our proof rules. We use Smullyan’s uniform notation [15] for the names, designat-
ing whether they branch (β ) or not (α) and whether the quantifiers can be built from any term (γ) or only
a fresh witness (δ ). Notice that each rule is actually a schema: the symbols p and q etc. are not concrete
formulas but metavariables that can be instantiated with any type-correct value.

4.3.1 Proof Rules

As mentioned our sequents are lists of formulas, which means that they are ordered. In Isabelle/HOL,
the symbol # separates the head and tail of a list. All our rules except Ext use this notation to replace the
head of the list.
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Figure 7 begins with the only axiom, Basic, which states that a sequent with some formula p at the
head and Neg p somewhere in the tail can be derived. That is, we can derive the sequent `̀ p # z, if we
can demonstrate that Neg p is a member of z, i.e. member (Neg p) z. The function member is defined in
SeCaV as a simple primitive recursive function on lists for users to inspect (or even run):

primrec member where
〈member p [] = False 〉 |
〈member p (q # z) = (if p = q then True else member p z) 〉

Since a sequent is understood as a disjunction, those of the Basic shape are clearly valid. To derive
a sequent that contains both some p and a corresponding Neg p but not necessarily in the order dictated
by Basic, the final rule in Figure 7, Ext, can be used. As we have seen in Section 3, it allows one to
rearrange the formulas of a sequent or to drop formulas. It should be read as follows: if we can derive a
sequent z and the sequent y is an extension of z, then we are allowed to derive y itself. The function ext
builds on member to check that the formulas in y constitute a superset of those in z:

primrec ext where
〈 ext y [] = True 〉 |
〈 ext y (p # z) = (if member p y then ext y z else False) 〉

Alpha Rules After Basic follow three α-rules that rely on just one sub-derivation. The AlphaDis rule
moves the connective from the object language into the metalanguage, simply removing the connective
and adding the two disjuncts to the sequent. To show that an implication Imp p q holds, we can either
falsify the antecedent, Neg p, or show the conclusion, q, so the rule AlphaImp replaces an implication
with exactly those formulas. Finally, AlphaCon states that to show Neg (Con p q) we can falsify either
p or q. The pen-ultimate rule NegNeg also relies on just one sub-derivation, so we include it here. It
introduces a double negation.

Beta Rules After the first α-rules follow three β -rules that make the derivation branch. A conjunction
only holds if both conjuncts do, so the BetaCon rule adds each to separate sub-derivations. The BetaImp
rule works on a negated implication, Neg (Imp p q), and states that we must both prove p and falsify q.
Finally, BetaDis replaces Neg (Dis p q) with both Neg p and Neg q on separate branches, as both p and q
must be falsified for their disjunction to be falsified.

Gamma Rules The γ-rules apply to formulas that are effectively existentially quantified. Such for-
mulas can be built from any witnessing term. The next rule exemplifies this: GammaExi derives the
sequent Exi p # z from sub 0 t p # z. In the sub-derivation, we have the formula p with its outermost
variable instantiated with the term t using the sub function. This term, t, witnesses the existence so in the
conclusion we quantify over the variable, giving Exi p, instead of substituting it.

The GammaUni rule applies when the head of the sequent is Neg (Uni p) for some formula p. In the
sub-derivation, the head is replaced by Neg (sub 0 t p) since falsifying p instantiated with any term t is
enough to falsify Uni p.

Delta Rules The two δ -rules apply to formulas that are effectively universally quantified. To prove a
universal quantifier, we cannot abstract over just any term like with δ -rules. Instead, the term must be
arbitrary, i.e. new to the sequent as formalized below, so that any other term could stand in its place.
Sometimes this is called fresh rather than new.
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The DeltaUni rule allows the derivation of Uni p # z if we can derive sub 0 (Fun i []) p # z where
the name i does not occur in either p or z, as checked by news i (p # z). The DeltaExi rule is similar
but applies when the head of the sequent is Neg (Exi p). We define newness similarly to the other side
conditions. The function new defines what it means for a function symbol c to be new to a formula:
primrec new where
〈 new c (Pre i l) = new-list c l 〉 |
〈 new c (Imp p q) = (if new c p then new c q else False) 〉 |
〈 new c (Dis p q) = (if new c p then new c q else False) 〉 |
〈 new c (Con p q) = (if new c p then new c q else False) 〉 |
〈 new c (Exi p) = new c p 〉 |
〈 new c (Uni p) = new c p 〉 |
〈 new c (Neg p) = new c p 〉

Only the predicate case is interesting; the rest simply consider sub-formulas. The function new-list
checks whether c is new to a list of terms. It is defined mutually with new-term:
primrec new-term and new-list where
〈 new-term c (Var n) = True 〉 |
〈 new-term c (Fun i l) = (if i = c then False else new-list c l) 〉 |
〈 new-list c [] = True 〉 |
〈 new-list c (t # l) = (if new-term c t then new-list c l else False) 〉

If the term is a variable then the function symbol c is obviously new. Otherwise the term is a function
application and we check whether the two function symbols coincide. If they do, c is not new, but even
if they do not, c still has to be new to the arguments of the function, which we check with new-list.

The entry point to these functions is news, which checks whether the function symbol c is new to the
given sequent:
primrec news where
〈 news c [] = True 〉 |
〈 news c (p # z) = (if new c p then news c z else False) 〉

4.3.2 Rule Design

After seeing how the proof rules work, we want to point out several choices in their design.
While sequents are often unordered (cf. Ben-Ari [1], Nipkow and Michaelis [11]) ours do have an

order. Where Ben-Ari underlines the formula in a sequent that the next rule applies to, our rules always
work on the first one. This simplification has several benefits: (i) it makes the formalization simpler
to state and the success of the verification easier to predict, (ii) it reduces the notational burden in the
SeCaV Unshortener syntax and (iii) it provides a straight-forward recipe for new users to get started:
“simply look at the first formula and see if any rules apply.” Of course, the recipe in (iii) may result in
derivations that are longer than necessary and because of our γ-rules the recipe may even be insufficient
for more advanced formulas, but such formulas are also out of reach if the user starts out overwhelmed
and never gets going. The simplification forces us to include a structural rule like Ext. This is the price
of separating concerns, but as we have seen, Ext can also, for instance, be used to drop formulas on
branches that do not need them.

Another point is that our rules do not just add to the sequent, but always replace the head of it in
the sub-derivation(s). Even the γ-rules do this, even though we may want to instantiate such formulas
with several different terms (cf. Ben-Ari [1]). Again we separate concerns: to apply a γ-rule twice, first
duplicate the formula with Ext and then apply the rule. This makes such duplication deliberate instead
of an arbitrary feature of γ-rules that is sometimes useful and sometimes not.
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lemma 〈 `̀
[

GOAL
]
〉

proof −
from RULE1 have ?thesis if 〈 `̀
[

SUBGOAL1
...

SUBGOALN
]
〉

using that by simp
...

with Basic show ?thesis
by simp

qed

Figure 8: SeCaV derivation template.

Our last point relates to the benefit of specifying our system in Isabelle/HOL: every operation and
side condition is explicitly spelled out and computational. It may seem obvious what membership in
a sequent entails or what it means for a constant name to be new, but something like substitution is
notoriously tricky, no matter the representation. In our system, these things are implemented by simple
functional programs, accessible directly in the system. They are not opaque pieces of natural language
or hidden away in an implementation, but can be inspected by the user and even run on simple examples.

It speaks to the complexity of substitution that only rules that involve this operation can be hard to
verify: GammaUni and GammaExi. Otherwise, our definitions, like those of member and ext, play on
the strengths of the Isabelle/HOL simplifier: they are simple functional programs that can be checked by
rewriting. Similarly, by letting our rules work on the first formula in the sequent, it becomes a simple
problem to unify it with the current goal, solving the meta-variables to check if they match the stated
sub-derivation. These design choices make the system predictable to work with.

4.4 Writing Proofs

As alluded to in Section 3, derivations in SeCaV follow a common template, which we have sketched
in Figure 8. Users of the system only need to worry about filling in the GOAL and a number of RULE
applications with corresponding SUBGOALs. Those curious about Isabelle/HOL can investigate the
meaning of the remaining keywords if they want to. Since derivations are entirely textual, it is easy to
copy this template, or parts of it, from given examples or previous derivations.

In Figure 9 we see the error message obtained when AlphaDis is replaced by AlphaImp in Figure 2.
Isabelle/HOL will highlight the by keyword following the rule application, notifying the user that some-
thing is wrong. The error is then displayed in the output panel when placing the cursor over the highlight.
Line 1 in Figure 9 contains the rule being applied, lines 2–3 the stated subgoal and lines 4–5 the goal
itself. By inspection we see that since Imp and Dis do not match, the rule does not apply to produce the
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Failed to finish proof:

goal (1 subgoal):

1. (
∧

p q z. `̀ Neg p # q # z =⇒ `̀ Imp p q # z) =⇒1

`̀ [Pre 0 [Fun 0 [], Fun (Suc 0) []],2

Neg (Pre 0 [Fun 0 [], Fun (Suc 0) []])] =⇒3

`̀ [Dis (Pre 0 [Fun 0 [], Fun (Suc 0) []])4

(Neg (Pre 0 [Fun 0 [], Fun (Suc 0) []]))]5

Figure 9: Error message when AlphaDis is replaced by AlphaImp in Figure 2.

goal (the subgoal does not match either).
We obtain this error message completely for free by leveraging Isabelle/HOL as the platform for

specifying our system.
We also inherit the interactive features of Isabelle/HOL. Users can click a name and be taken to its

definition, e.g. that of sub if in doubt about substitution. Or when following the template, they can put
their cursor on an applied rule and see its definition in the output panel as in Figure 6. “This derivation
uses AlphaImp, how does that look again? Oh, right: `̀ Neg ?p # ?q # ?z =⇒ `̀ Imp ?p ?q # ?z.”

4.5 Soundness and Completeness

Having specified SeCaV in a proof assistant enables us to give certain guarantees about not just our
calculus but its implementation as well. The first and most obvious is soundness of the rules. If we can
derive a sequent, then for any interpretation, some formula in the sequent is satisfied:

theorem sound: 〈 `̀ z =⇒ ∃p ∈ set z. semantics e f g p 〉

See the formalization for the proof which works by induction over the rules and using a substitution
lemma. We immediately obtain that if a derivable sequent contains just one formula then that formula
must be valid:

corollary 〈 `̀ [p] =⇒ semantics e f g p 〉

We build the completeness proof on existing work in the Archive of Formal Proofs, namely the entry
“A Sequent Calculus for First-Order Logic” [9]. In less than a hundred lines of Isabelle/HOL, we relate
our syntax, semantics, side conditions and operations to an existing sequent calculus formalization and
show that derivations in that one (`) can be translated into ours (`̀ ) (cf. the formalization):

lemma sim: 〈 (` x) =⇒ (`̀ (map to-fm x)) 〉

From these components, completeness follows straightforwardly:

theorem complete-sound: 〈>> p =⇒ `̀ [p] 〉 〈 `̀ [q] =⇒ semantics e f g q 〉

The symbol >> abbreviates validity in the universe of Herbrand terms. Validity in just this universe
is enough to show the existence of a derivation (a slightly stronger completeness result than assuming
validity in all universes). The soundness result, conversely, implies validity in any universe, as e, f and g
can be picked at will.

These aspects can be ignored when working with the system, but used to concretize discussions of
soundness and completeness in a course.
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Figure 10: The SeCaV Unshortener generating the example in Figure 6 — With a mistake.

4.6 Isabelle/HOL Integration

Next, we want to reiterate a few consequences of building our system on top of Isabelle/HOL.
In terms of infrastructure we are relieved from implementing a lot of work ourselves. By giving

two simple datatype declarations, in a syntax resembling BNF, we get to reuse Isabelle/HOL’s parser
when writing formulas in our object logic. The same reusability applies to the proof system, both in its
declarative specification using the inductive command and when writing concrete derivations. Given
the declaration in Figure 7, we inherit proof checking completely for free: Isabelle/HOL verifies the
correctness of derivations for us.

The use of Isabelle/HOL also means that we can reuse its mature graphical editor Isabelle/jEdit.
Besides regular editor features like undo, Isabelle/jEdit continually checks the correctness of what the
user enters. As seen, it produces decent errors that are displayed in the same window as the derivation
and where the offending rule application is highlighted directly in the derivation. Finally, all definitions
used by the system can be inspected by using the editor to look them up within the same interface.

5 SeCaV Unshortener

While the embedding of SeCaV into Isabelle/HOL makes it possible for users to get quick feedback on
their proofs and provides us with an editor for free, actually writing out the proofs in the Isabelle/HOL
syntax can becomes tedious for experienced users. To remedy this, we have introduced the SeCaV
Unshortener, shown in Figure 1 and Figure 10. It allows proofs to be written in a much more compact
syntax that resembles the style one might use when writing pen-and-paper proofs.

The SeCaV Unshortener is a web application whose main page consists of two panes. The first
pane is a text area in which the user can write proofs in the compact SeCaV Unshortener syntax. The
second pane contains the result of “unshortening” the proofs written in the first pane into the full SeCaV
syntax, ready to be copied into Isabelle/HOL for verification. For each proof, the SeCaV Unshortener
also generates a representation of the statement in usual logical syntax and a mapping from predicate and
function names to the natural numbers used in the full SeCaV syntax. The first of these is useful to detect
misunderstandings in the statement to be proved, while the latter is needed to relate the actual proof to
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the representation in usual logical syntax, and may also be used to quickly detect typos in names. The
second pane reacts to changes in the first pane in real time, and will contain an error message if a proof
is written using wrong syntax. Along the top of the main page is a link to a page containing extensive
help and a number of examples, an indication of the currently selected line and column in the first pane
(for use with error messages), and a button that copies the unshortened proof to the clipboard.

The SeCaV Unshortener provides a canonical formatting of proofs and a lighter, more readable
syntax at the expense of introducing another step in the proof procedure. The SeCaV Unshortener does
not actually verify the proofs entered into it. The proof must be copied into Isabelle/HOL for verification.
But in addition to unshortening proofs, the SeCaV Unshortener adds warnings when the proofs will most
likely be rejected by Isabelle/HOL.

The SeCaV Unshortener is implemented in PureScript using the Concur web UI framework with a
React backend. The application is compiled down to a few JavaScript, HTML, and CSS files, which can
be hosted on any web server or downloaded for local use.

6 Conclusion

We have introduced SeCaV, a sequent calculus verifier built on top of Isabelle/HOL, and explained the
syntax, semantics, and proof rules of the system. SeCaV is designed to be easy to learn and understand for
students, and is therefore implemented as a number of simple functional programs utilizing the interactive
Isabelle/jEdit editor to allow inspection of every part of the system. We have used Isabelle/HOL to prove
soundness and completeness of the SeCaV calculus exactly as users work with it.

We have also introduced the SeCaV Unshortener, a web application that allows users of SeCaV to
omit the boilerplate notation needed for the embedding in Isabelle/HOL. Future work includes exploring
how SeCaV and the SeCaV Unshortener can be integrated further, either by embedding the SeCaV
Unshortener into the Isabelle/jEdit editor or by integrating the verifier into the SeCaV Unshortener.
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