Groups of units of integral group rings commensurable with direct products of free-by-free groups *

Eric Jespers Antonio Pita Ángel del Río Manuel Ruiz Pavel Zalesski

Abstract

We classify the finite groups G such that the group of units of the integral group ring $\mathbb{Z} G$ has a subgroup of finite index which is a direct product of free-by-free groups.

The investigations on the unit group $\mathbb{Z} G^{*}$ of the integral group ring $\mathbb{Z} G$ of a finite group G have a long history and go back to work of Higman [11]. One of the fundamental problems that attracts a lot of attention is Research Problem 17 posed by Sehgal in [30]: find presentations of $\mathbb{Z} G^{*}$ for some finite groups G. For many finite groups G a finite set of generic generators of a subgroup of finite index in $\mathbb{Z} G^{*}$ has been obtained, but there is no general result known on determining the relations among these generators. This work was initiated by Bass and Milnor [2] and then continued by Kleinert [18], Ritter and Sehgal [28], and Jespers and Leal [14]. For a survey on the above mentioned results, we refer to Sehgal's book [30] and to [13].

An alternative approach to that of finding presentations is the one suggested by Kleinert in [19]. Recall that a generic unit group of A is a subgroup of finite index in the group of reduced norm 1 elements of an order in A. Then according to Kleinert "a unit theorem for a finite dimensional simple rational algebra A consists of the definition, in purely group theoretical terms, of a class of groups $\mathcal{C}(A)$ such that almost all generic unit groups of A are members of $\mathcal{C}(A)$ ". This approach has an obvious generalization to finite dimensional semi-simple rational algebras, such as the rational group algebra $\mathbb{Q} G$ of a finite group G and its orders, for example $\mathbb{Z} G$. This kind of unit theorem has been obtained for integral group rings $\mathbb{Z} G$ of some restricted classes of finite groups G. We give a brief history on the descriptions obtained so far. Higman in [11] showed that if G is a finite abelian group then $\mathbb{Z} G^{*}=L \times(\pm G)$, where L is a free abelian group of rank depending on the cardinality of G and the order of the elements of G. This result heavily depends on Dirichlet's Unit Theorem. He also showed that if G is non-abelian then $\mathbb{Z} G^{*}$ is finite if and only if G is a Hamiltonian 2-group and in this case $\mathbb{Z} G^{*}= \pm G$. The finite groups G such that $\mathbb{Z} G^{*}$ is virtually free and non-abelian (there are only four) were classified in [12]. This last result was motivated by a previous theorem of Hartley and Pickel [10] which states that $\mathbb{Z} G^{*}$ is either abelian, finite or has a non-abelian free subgroup. Finally, the finite groups G such that $\mathbb{Z} G^{*}$ is virtually a direct product of free groups (there are infinitely many) were classified in a series of papers by Jespers, Leal and del Río $[16,17,21]$. Thus the finite groups G for which a unit theorem, in the sense of Kleinert, is known for $\mathbb{Z} G^{*}$ are those for which the class of groups considered are either finite groups, abelian groups, free groups or direct products of free groups. As far as we know, all the finite groups G for which the structure of $\mathbb{Z} G^{*}$ is known up to commensurability are covered by these results.

[^0]The aim of this paper is to obtain a group theoretical description of $\mathbb{Z} G^{*}$ for a larger family of finite groups G than the family of groups mentioned in the previous paragraph. We do this by connecting the study of $\mathbb{Z} G^{*}$ with the better known structure of the Bianchi groups. The inspiration came from some examples in [5] and [26]. In the second reference some presentations of $\mathbb{Z} G^{*}$ are obtained for two groups of order 16 for which $\mathbb{Z} G^{*}$ is commensurable with the Picard group $\mathrm{PSL}_{2}(\mathbb{Z}[i])$. These two groups belong to a class of finite groups, called groups of Kleinian type, for which geometrical methods are applicable to obtain presentations of groups of finite index (implementation of the method however is usually difficult). Our main theorem (Theorem 1) shows that the class \mathcal{C} containing the generic groups of $\mathbb{Z} G^{*}$ for G of Kleinian type is formed by the direct products of free-by-free groups, and in fact this property characterizes the groups of Kleinian type. Furthermore, we classify the finite groups of Kleinian type as the groups which are epimorphic images of some specific groups. This classification is the most involving part of the paper. In order to state this result we first fix some terminology.

Recall that a group H is said to be free-by-free if H contains a normal subgroup N so that both N and H / N are free groups. Note that the trivial and infinite cyclic group are free groups, and thus free groups and finitely generated abelian groups are direct products of free-by-free groups.

For a ring R we denote by R^{*} the group of invertible elements of R and by $Z(R)$ its centre. In case R is an order in a simple finite dimensional rational algebra A we denote by R^{1} the group consisting of the elements of reduced norm 1 in R. (By an order we always mean a \mathbb{Z}-order; see [30] for a definition.)

Two subgroups H_{1} and H_{2} of a group H are said to be commensurable when their intersection has finite index in both H_{1} and H_{2}. Often the group H is clear from the context and hence will not be specifically mentioned. For instance, the statement $" \mathbb{Z} G^{*}$ is commensurable with a direct product of free-by-free groups" means that $\mathbb{Z} G^{*}$ is commensurable with some subgroup of $\mathbb{Q} G^{*}$ which decomposes in a direct product of free-by-free groups. Similarly, if R is an order in a simple finite dimensional rational algebra A, then the statement " R^{1} is commensurable with a free-by-free group" means that R^{1} is commensurable with a subgroup of A^{*} with the mentioned property.

A finite group G is said to be of Kleinian type if every non-commutative simple quotient A of the rational group algebra $\mathbb{Q} G$ has an embedding $\psi: A \rightarrow M_{2}(\mathbb{C})$ such that $\psi\left(R^{1}\right)$ is a discrete subgroup of $\mathrm{SL}_{2}(\mathbb{C})$ for some (every) order R in A.

It turns out that if G is a finite group of Kleinian type then it is metabelian. Hence to state our classification of the groups of Kleinian type it is convenient to introduce some notation for presentations of such groups. The cyclic group of order n is usually denoted by C_{n}. To emphasize that $a \in C_{n}$ is a generator of the group, we write C_{n} either as $\langle a\rangle$ or $\langle a\rangle_{n}$. Recall that a group G is metabelian if G has an abelian normal subgroup N such that $A=G / N$ is abelian. We simply denote this information as $G=N: A$. To give a concrete presentation of G we will write N and A as direct products of cyclic groups and give the necessary extra information on the relations between these generators. By \bar{x} we denote the coset $x N$. For example, the dihedral group of order $2 n$ and the quaternion group of order $4 n$ can be described as

$$
\begin{aligned}
& D_{2 n}=\langle a\rangle_{n}:\langle\bar{b}\rangle_{2}, \quad b^{2}=1, a^{b}=a^{-1} \\
& Q_{4 n}=\langle a\rangle_{2 n}:\langle\bar{b}\rangle_{2}, \quad a^{b}=a^{-1}, b^{2}=a^{n}
\end{aligned}
$$

If N has a complement in G then A can be identify with this complement and we write $G=N \rtimes A$. For example, the dihedral group also can be given by $D_{2 n}=\langle a\rangle_{n} \rtimes\langle b\rangle_{2}$ with $a^{b}=a^{-1}$.

We are now in a position to formulate the main result.

Theorem 1 For a finite group G the following statements are equivalent.
(A) $\mathbb{Z} G^{*}$ is commensurable with a direct product of free-by-free groups.
(B) For every simple quotient A of $\mathbb{Q} G$ and some (every) order R in A, R^{1} is commensurable with a free-by-free group.
(C) For every simple quotient A of $\mathbb{Q} G$ and some (every) order R in A, R^{1} has virtual cohomological dimension at most 2.
(D) G is of Kleinian type.
(E) Every simple quotient of $\mathbb{Q} G$ is either a field, a totally definite quaternion algebra or $M_{2}(K)$, where K is either $\mathbb{Q}, \mathbb{Q}(i), \mathbb{Q}(\sqrt{-2})$ or $\mathbb{Q}(\sqrt{-3})$.
(F) G is either abelian or an epimorphic image of $A \times H$, where A is abelian and one of the following conditions holds:

1. A has exponent 6 and H is one of the following groups:

- $\mathcal{W}=\left(\langle t\rangle_{2} \times\left\langle x^{2}\right\rangle_{2} \times\left\langle y^{2}\right\rangle_{2}\right):\left(\langle\bar{x}\rangle_{2} \times\langle\bar{y}\rangle_{2}\right)$, with $t=(y, x)$ and $Z(\mathcal{W})=\left\langle x^{2}, y^{2}, t\right\rangle$.
- $\mathcal{W}_{1 n}=\left(\prod_{i=1}^{n}\left\langle t_{i}\right\rangle_{2} \times \prod_{i=1}^{n}\left\langle y_{i}\right\rangle_{2}\right) \rtimes\langle x\rangle_{4}$, with $t_{i}=\left(y_{i}, x\right)$ and $Z\left(\mathcal{W}_{1 n}\right)=\left\langle t_{1}, \ldots, t_{n}, x^{2}\right\rangle$.
- $\mathcal{W}_{2 n}=\left(\prod_{i=1}^{n}\left\langle y_{i}\right\rangle_{4}\right) \rtimes\langle x\rangle_{4}$, with $t_{i}=\left(y_{i}, x\right)=y_{i}^{2}$ and $Z\left(\mathcal{W}_{2 n}\right)=\left\langle t_{1}, \ldots, t_{n}, x^{2}\right\rangle$.

2. A has exponent 4 and H is one of the following groups:

- $\mathcal{V}=\left(\langle t\rangle_{2} \times\left\langle x^{2}\right\rangle_{4} \times\left\langle y^{2}\right\rangle_{4}\right):\left(\langle\bar{x}\rangle_{2} \times\langle\bar{y}\rangle_{2}\right)$, with $t=(y, x)$ and $Z(\mathcal{W})=\left\langle x^{2}, y^{2}, t\right\rangle$.
- $\mathcal{V}_{1 n}=\left(\prod_{i=1}^{n}\left\langle t_{i}\right\rangle_{2} \times \prod_{i=1}^{n}\left\langle y_{i}\right\rangle_{4}\right) \rtimes\langle x\rangle_{8}$, with $t_{i}=\left(y_{i}, x\right)$ and $Z\left(\mathcal{V}_{1 n}\right)=\left\langle t_{1}, \ldots, t_{n}, y_{1}^{2}, \ldots, y_{n}, x^{2}\right\rangle$.
- $\mathcal{V}_{2 n}=\left(\prod_{i=1}^{n}\left\langle y_{i}\right\rangle_{8}\right) \rtimes\langle x\rangle_{8}$, with $t_{i}=\left(y_{i}, x\right)=y_{i}^{4}$ and $Z\left(\mathcal{V}_{2 n}\right)=\left\langle t_{i}, x^{2}\right\rangle$.
- $\mathcal{U}_{1}=\left(\prod_{1 \leq i<j \leq 3}\left\langle t_{i j}\right\rangle_{2} \times \prod_{k=1}^{3}\left\langle y_{k}^{2}\right\rangle_{2}\right):\left(\prod_{k=1}^{3}\left\langle\overline{y_{k}}\right\rangle_{2}\right)$, with $t_{i j}=\left(y_{j}, y_{i}\right)$ and $Z\left(\mathcal{U}_{1}\right)=$ $\left\langle t_{12}, t_{13}, t_{23}, y_{1}^{2}, y_{2}^{2}, y_{3}^{2}\right\rangle$
- $\mathcal{U}_{2}=\left(\left\langle t_{23}\right\rangle_{2} \times\left\langle y_{1}^{2}\right\rangle_{2} \times\left\langle y_{2}^{2}\right\rangle_{4} \times\left\langle y_{3}^{2}\right\rangle_{4}\right):\left(\prod_{k=1}^{3}\left\langle\overline{y_{k}}\right\rangle_{2}\right)$, with $t_{i j}=\left(y_{j}, y_{i}\right), y_{2}^{4}=t_{12}, y_{3}^{4}=$ t_{13} and $Z\left(\mathcal{U}_{2}\right)=\left\langle t_{12}, t_{13}, t_{23}, y_{1}^{2}, y_{2}^{2}, y_{3}^{2}\right\rangle$.

3. A has exponent 2 and H is one of the following groups:

- $\mathcal{T}=\left(\langle t\rangle_{4} \times\langle y\rangle_{8}\right):\langle\bar{x}\rangle_{2}$, with $t=(y, x)$ and $x^{2}=t^{2}=(x, t)$.
- $\mathcal{T}_{1 n}=\left(\prod_{i=1}^{n}\left\langle t_{i}\right\rangle_{4} \times \prod_{i=1}^{n}\left\langle y_{i}\right\rangle_{4}\right) \rtimes\langle x\rangle_{8}$, with $t_{i}=\left(y_{i}, x\right),\left(t_{i}, x\right)=t_{i}^{2}$ and $Z\left(\mathcal{T}_{1 n}\right)=$ $\left\langle t_{1}^{2}, \ldots, t_{n}^{2}, x^{2}\right\rangle$.
- $\mathcal{T}_{2 n}=\left(\prod_{i=1}^{n}\left\langle y_{i}\right\rangle_{8}\right) \rtimes\langle x\rangle_{4}$, with $t_{i}=\left(y_{i}, x\right)=y_{i}^{-2}$ and $Z\left(\mathcal{T}_{2 n}\right)=\left\langle t_{1}^{2}, \ldots, t_{n}^{2}, x^{2}\right\rangle$.
- $\mathcal{T}_{3 n}=\left(\prod_{i=2}^{n}\left\langle t_{i}\right\rangle_{4} \times\left\langle y_{1}^{2} t_{1}\right\rangle_{2} \times\left\langle y_{1}\right\rangle_{8} \times \prod_{i=2}^{n}\left\langle y_{i}\right\rangle_{4}\right):\langle\bar{x}\rangle_{2}$, with $t_{i}=\left(y_{i}, x\right),\left(t_{i}, x\right)=t_{i}^{2}$, $x^{2}=t_{1}^{2}$, and $Z\left(\mathcal{T}_{3 n}\right)=\left\langle t_{1}^{2}, \ldots, t_{n}^{2}, x^{2}\right\rangle$.

4. $H=M \rtimes P=(M \times Q):\langle\bar{u}\rangle_{2}$, where M is an elementary abelian 3-group, $P=Q:\langle\bar{u}\rangle_{2}$, $m^{u}=m^{-1}$ for every $m \in M$, and one of the following conditions holds:

- A has exponent 4 and $P=C_{8}$.
- A has exponent $6, P=\mathcal{W}_{1 n}$ and $Q=\left\langle y_{1}, \ldots, y_{n}, t_{1}, \ldots, t_{n}, x^{2}\right\rangle$.
- A has exponent $2, P=\mathcal{W}_{21}$ and $Q=\left\langle y_{1}^{2}, x\right\rangle$.

According to [31], a group G is called good if the homomorphism of cohomology groups $H^{n}(\widehat{G}, M) \longrightarrow H^{n}(G, M)$ induced by the natural homomorphism $G \longrightarrow \widehat{G}$ of G to its profinite completion \widehat{G} is an isomorphism for every finite G-module M.

Theorem 1 yields that for a finite group G of Kleinian type the non-commutative simple components of $\mathbb{Q} G$ that are not totally definite quaternion algebras are of the form $M_{2}(\mathbb{Q}(\sqrt{-d}))$ with $d=0,1,2$ or 3 . On the other hand the groups of units of an order in a number field and in a totally definite quaternion algebra are commensurable with a free abelian group. Therefore, since the group of units of two orders in $\mathbb{Q} G$ are commensurable, Theorem 1 implies that $\mathbb{Z} G^{*}$ is commensurable with a direct product of a free abelian group and groups of the form $\mathrm{SL}_{2}(\mathbb{Z}[\sqrt{-d}])$ with $d=0,1,2$ or 3 . Note that $\mathrm{SL}_{2}(\mathbb{Z}[\sqrt{-d}])$ and the Bianchi group $\mathrm{PSL}_{2}(\mathbb{Z}[\sqrt{-d}])$ are abstractly commensurable (i.e. they have isomorphic subgroups of finite index). Recently it was shown that the Bianchi groups are good. Obviously, the class of good groups is closed under finite direct products and abstract commensurability [9]. Hence the following property follows at once.

Corollary 2 If G is a finite group of Kleinian type then the group of units of its integral group ring $\mathbb{Z} G$ is good.

In particular, this corollary says that the virtual cohomological dimension of the profinite completion of $Z G^{*}$ coincides with the virtual cohomological dimension of $Z G^{*}$ and so the profinite completion of $Z G^{*}$ is virtually torsion free.

The outline of the paper is as follows. In Section 1 we introduce the basic notation used throughout the paper. In Section 2 we show that conditions (A) and (B) are equivalent. In Section 3 we prove (B) implies (C) (which is obvious), (C) implies (D) (by first classifying the simple algebras of Kleinian type and the finite dimensional simple algebras A for which R^{1} has virtual cohomological dimension at most 2 for an order R in A) and (E) implies (B) (by using known facts about Euclidean Bianchi groups). Section 4 is dedicated to prove (F) implies (E). At this point one has shown that all the groups satisfying condition (F) are of Kleinian type. The most involved part of the proof is to show that (D) implies (F), that is showing that condition (F) exhausts the class of groups of Kleinian type. This is proved for nilpotent groups in Section 5 and for non-nilpotent groups in Section 6.

In a preliminary version of the proof of (D) implies (F) we used previous results from [17, 26]. We thank Jairo Gonçalves for attracting our attention to an old result of Amitsur which classifies the finite groups that have all its irreducible complex characters of degree 1 or 2 . This result has been very helpful in reducing earlier given arguments and in making the proof of (D) implies (F) independent of $[17,26]$.

1 Preliminaries

We introduce the basic notation and the main tools used in the paper. The Euler function is denoted by φ. For a positive integer n, let ξ_{n} denote a complex primitive root of unity.

Let G be a group. For $x, y \in G$, we put $x^{y}=y^{-1} x y$ and $(x, y)=x y x^{-1} y^{-1}$. We recall the following well known formulas: $(a b, c)=(b, c)^{a^{-1}}(a, c)$ and $(a, b c)=(a, b)(a, c)^{b^{-1}}$. The centre and derived subgroup of G are denoted by $Z(G)$ and G^{\prime} respectively. The notation $H \leq G$ means that H is a subgroup of G and if H is a normal subgroup of G then we write $H \unlhd G$. The normalizer of $H \leq G$ in G is denoted by $N_{G}(H)$. If $N \unlhd G$ then we will use the usual bar notation for the natural images of the elements and subsets of G in G / N, that is \bar{x} denotes the coset $x N$ of $x \in G$ and if
$X \subseteq G$ then \bar{X} denotes $\{\bar{x} \mid x \in X\}$. A semidirect product associated to an action of a group H on a group N is denoted by $N \rtimes H$.

We say that a group virtually satisfies a group theoretical condition if it has a subgroup of finite index satisfying the given condition. For example, G is virtually abelian if and only if G has an abelian subgroup of finite index. Notice that if a class of groups satisfying a property \mathcal{P} is closed under subgroups of finite index then a group G is commensurable with a group satisfying \mathcal{P} if and only if it virtually satisfies \mathcal{P}. Moreover, in this case, G is commensurable with a group which is a direct product of groups satisfying \mathcal{P} if and only if it is virtually a direct product of groups satisfying \mathcal{P}. This, of course, applies to the class of free-by-free groups.

As well as the groups described in statement (F) of Theorem 1, the following metabelian groups will be relevant.

$$
\begin{array}{lll}
D_{2^{n+2}}^{+} & =\langle a\rangle_{2^{n+1}} \rtimes\langle b\rangle_{2}, & a^{b}=a^{2^{n}+1} \\
D_{2^{n+2}}^{-} & =\langle a\rangle_{2^{n+1}} \rtimes\langle b\rangle_{2}, & a^{b}=a^{2^{n}-1} \\
\mathcal{D}^{-} & =\left(\langle c\rangle_{4} \times\langle a\rangle_{2}\right) \rtimes\langle b\rangle_{2}, & Z(\mathcal{D})=\langle c\rangle,(b, a)=c^{2} \\
\mathcal{D}^{+} & =\left(\langle c\rangle_{4} \times\langle a\rangle_{4}\right) \rtimes\langle b\rangle_{2}, & Z\left(\mathcal{D}^{+}\right)=\langle c\rangle, \quad(b, a)=c a^{2}
\end{array}
$$

Recall that if G is a non-abelian group of order 2^{n+2} having a cyclic subgroup of index 2 then G is isomorphic to either the dihedral group $D_{2^{n+2}}$, the quaternion group $Q_{2^{n+2}}$ or one of the two semi-dihedral groups $D_{2^{n+2}}^{+}$or $D_{2^{n+2}}^{-}$.

If K is a field and a and b are two non zero elements of K then $\left(\frac{a, b}{K}\right)$ denotes the quaternion K-algebra defined by a and b, that is, the K-algebra given by the following presentation:

$$
\left(\frac{a, b}{K}\right)=K\left[i, j \mid i^{2}=a, j^{2}=b, j i=-i j\right] .
$$

In case $a=b=-1$, then the previous algebra is also denoted $\mathbb{H}(K)$. It is well known that $\left(\frac{a, b}{K}\right)$ is split, that is, it is isomorphic to $M_{2}(K)$, if and only if the equation $a X^{2}+b Y^{2}=Z^{2}$ has a solution different from $X=Y=Z=0$.

Let A be a finite dimensional semi-simple rational algebra and R an order in A. Then R^{*} is commensurable with the group of units of every order in A (see for example [30, Lemma 4.6]). Assume that, furthermore, A is simple and let K be the centre of A. Then R^{*} is commensurable with $Z(R)^{*} \times R^{1}$, where R^{1} denotes the group of elements of reduced norm 1 of R. Moreover $\mathbb{R} \otimes_{\mathbb{Q}} K \cong \mathbb{R}^{r} \oplus \mathbb{C}^{s}$, where r is the number of embeddings of K in \mathbb{R} and s is the number of pairs of non real embeddings of K in \mathbb{C}. These embeddings in \mathbb{R} and pairs of embeddings in \mathbb{C} correspond to infinite places of K (i.e. equivalence classes of archimedean valuations of K). If d is the degree of A then $\mathbb{R} \otimes_{\mathbb{Q}} A \cong M_{d}(\mathbb{R})^{r_{1}} \oplus M_{d / 2}(\mathbb{H}(\mathbb{R}))^{r_{2}} \oplus M_{d}(\mathbb{C})^{s}$, where r_{2} is the number of infinite places at which A is ramified and $r=r_{1}+r_{2}$. Every embedding σ of K in \mathbb{C} induces an embedding $\bar{\sigma}: A \rightarrow M_{d}(\mathbb{C})$ that maps R^{1} into $\mathrm{SL}_{d}(\mathbb{C})$.

A totally definite quaternion algebra is a quaternion algebra A over a totally real number field K which is ramified at every infinite place, that is, $\sigma(K) \otimes_{K} A \cong \mathbb{H}(\mathbb{R})$ for every embedding $\sigma: K \rightarrow \mathbb{R}$; or equivalently $A=\left(\frac{a, b}{K}\right)$ with $\sigma(a), \sigma(b)<0$ for every field homomorphism $\sigma: K \rightarrow \mathbb{R}$.

The simple algebra A is said to be of Kleinian type if there is an embedding $\psi: A \rightarrow M_{2}(\mathbb{C})$ such that $\psi\left(R^{1}\right)$ is a discrete subgroup of $\mathrm{SL}_{2}(\mathbb{C})$ for some (any) order R in A, or equivalently if A is either a number field or A is a quaternion algebra and $\bar{\sigma}\left(R^{1}\right)$ is a discrete subgroup of $\mathrm{SL}_{2}(\mathbb{C})$ for some embedding of K in \mathbb{C}. More generally, an algebra of Kleinian type [26] is by definition a direct sum of simple algebras of Kleinian type. So, a finite group G is of Kleinian type if and only if the rational group algebra $\mathbb{Q} G$ is of Kleinian type.

2 Equivalence of (A) and (B)

The equivalence between (A) and (B) is a direct consequence of the following more general theorem.

Theorem 2.1 Let $A=\prod_{i=1}^{n} A_{i}$ be a finite dimensional rational algebra such that A_{i} is simple for every i. Let R be an order in A and for every i let R_{i} be an order in A_{i}. Then R^{*} is virtually a direct product of free-by-free groups if and only if R_{i}^{1} is virtually free-by-free for every i.

A group G is said to be virtually indecomposable if every subgroup of finite index of G is indecomposable as a direct product of two infinite groups. (Note that the terminology should not be confused with "having an indecomposable subgroup of finite index".)

To prove Theorem 2.1 we need the following lemma.

Lemma 2.2 If C is a free-by-free group which is virtually indecomposable and not virtually abelian then $Z(C)=1$.

Proof. Suppose C is a free-by-free group. Then we may write $C=N \rtimes F$, with N and F free groups. We first prove that $Z(C) \subseteq N$. Suppose the contrary. Then it follows that $Z(F) \neq 1$ and thus F is cyclic. Therefore $\langle Z(C), N\rangle$ has finite index in C. As C is not virtually abelian, N is non-abelian, hence $\langle Z(C), N\rangle=Z(C) \times N$, contradicting the virtual indecomposability of C. So, indeed, $Z(C) \subseteq N$. If $Z(C) \neq 1$ then N is cyclic and $Z(C) \times F$ has finite index in C, again a contradiction.

Proof of Theorem 2.1. Since R and $\prod_{i=1}^{n} R_{i}$ are two orders in A and R_{i}^{*} is commensurable with $Z\left(R_{i}\right)^{*} \times R_{i}^{1}$ for each i, one has that R^{*} and $\prod_{i=1}^{n} Z\left(R_{i}\right)^{*} \times R_{i}^{1}$ are commensurable. The sufficiency of the conditions is now clear.

Conversely, assume that the direct product $T=\prod_{x \in X} T_{x}$ is a subgroup of finite index of R^{*}, where every T_{x} is a non trivial free-by-free group. Since the virtual cohomological dimension of R^{*} is finite, X is finite and we can assume without loss of generality that every T_{x} is virtually indecomposable and either T_{x} is cyclic or is not virtually abelian. For every $x \in X$ let $\pi_{x}: T \rightarrow T_{x}$ denote the projection and let $Y=\left\{y \in X \mid T_{y}\right.$ is not abelian $\}$. For every i let $S_{i}=R_{i}^{1} \cap T$ and $Z_{i}=Z\left(R_{i}\right)^{*} \cap T$. Then S_{i} is a torsion free subgroup of finite index in R_{i}^{1}, Z_{i} is a torsion-free subgroup of finite index in $Z\left(R_{i}\right)^{*}, S_{i} \cap Z\left(R_{i}\right)^{*}=1$ and $S=\prod_{i} Z_{i} \times S_{i}$ is a subgroup of finite index in T, because $R_{i}^{1} \cap Z\left(R_{i}\right)$ is finite, $\left\langle Z\left(R_{i}\right)^{*}, R_{i}^{1}\right\rangle$ has finite index in R_{i}^{*} and T is a torsion-free subgroup of finite index in R^{*}.

We claim that if $\pi_{z}\left(S_{j}\right)$ is not abelian (and hence infinite) and $H=\left(\prod_{i \neq j} S_{i}\right) \times\left(\prod_{i} Z_{i}\right)$ then $\pi_{z}(H)=1$. Indeed, $C=\pi_{z}(S)$ is a subgroup of finite index in T_{z} and therefore C satisfies the hypothesis of Lemma 2.2. Thus $\pi_{z}\left(S_{j}\right) \cap \pi_{z}(H) \subseteq Z(C)=1$, because $\left(S_{j}, H\right)=1$. Then $C=\pi_{z}\left(S_{j}\right) \times \pi_{z}(H)$ and from the virtual indecomposability of C one deduces that $\pi_{z}(H)=1$. This finishes the proof of the claim.

We have to show that each R_{i}^{1} is virtually free-by-free or equivalently that so is S_{i}. By [20, Theorem 1], S_{i} is virtually indecomposable. So either S_{i} is virtually cyclic, and we are done, or S_{i} is non-abelian. Assume that S_{i} is non-abelian. Hence there is $y \in Y$ such that $\pi_{y}\left(S_{i}\right)$ is non-abelian. Assume that $x \in X_{i}=\left\{x \in X \mid \pi_{x}\left(S_{i}\right) \neq 1\right\}$. Then $\pi_{x}\left(S_{i}\right)$ has finite index in T_{x}, for otherwise T_{x} is not cyclic and so there is at least one j such that $\pi_{x}\left(S_{j}\right)$ is non-abelian that gives, by the claim, $\pi_{x}\left(S_{i}\right)=1$, a contradiction. Therefore S_{i} is a subgroup of finite index in $\prod_{x \in X_{i}} T_{x}$. As S_{i} is virtually indecomposable, $\left|X_{i}\right|=1$ and therefore S_{i} is virtually free-by-free as wanted.

3 (B) implies (C), (C) implies (D), and (E) implies (B)

It is well known that the virtual cohomological dimension of a free-by-free group is at most 2 and so (B) implies (C) is obvious.
(E) implies (B) is a direct consequence of the following lemma in which we collect known or recently established facts on the structure of the group of reduced norm one elements of an order in some simple rational algebras.

Lemma 3.1 Let A be a simple finite dimensional rational algebra and R an order in A.

1. R^{1} is finite if and only if A is a field or a totally definite quaternion algebra.
2. R^{1} is virtually free non-abelian if and only if $A=M_{2}(\mathbb{Q})$.
3. If $A=M_{2}(\mathbb{Q}(\sqrt{-d}))$ with $d=1,2,3,7$ or 11 then R^{1} is commensurable with a free-by-free group.

Proof. See e.g. [30, Lemma 21.3] for 1 and [19] for 2.
3. Let O_{d} be the ring of integers of $\mathbb{Q}(\sqrt{-d})$. Then R^{1} is commensurable with $\mathrm{SL}_{2}\left(O_{d}\right)$. So it is enough to show that $\mathrm{SL}_{2}\left(O_{d}\right)$ is virtually free-by-free. This is well known for $d=3$, because $\mathrm{PSL}_{3}\left(O_{d}\right)$ has a subgroup of index 12 isomorphic to the figure eight knot group, a free-by-infinite cyclic group (see for example [23, page 137]). That $\mathrm{SL}_{2}\left(O_{d}\right)$ is virtually free-by-free for $d=1,2,7$ or 11 has been proved in Lemmas 4.2 and 4.3 of [33].

In order to prove (C) implies (D) we classify in Proposition 3.2 the simple algebras of Kleinian type (correcting Proposition 3.1 in [26] where one possibility was missed by an error in the proof) and in Proposition 3.3 we classify the simple algebras A for which R^{1} has virtual cohomological dimension at most 2 for an order R in A. Then (C) implies (D) follows at once from these two propositions.

Proposition 3.2 A finite dimensional rational simple algebra A is of Kleinian type if and only if it is either a number field or a quaternion algebra which is not ramified at at most one infinite place.

In particular, if A is non-commutative and of Kleinian type then the centre K of A has at most one pair of complex non-real embeddings and hence the order of every primitive root of unity in K is a divisor of 4 or 6 .

Proof. Let R be an order in A and K the centre of A. Assume first that A is either a field or a quaternion algebra which is not ramified at at most one infinite place. If A is a field or a totally definite quaternion algebra then R^{1} is finite by Lemma 3.1 and so A is of Kleinian type. If K is totally real then A is of Kleinian type by a theorem of Borel and Harish-Chandra [3] (see [22]). Otherwise K has exactly one pair of complex embeddings and A is ramified at all the real embeddings of K. Thus A is of Kleinian type by [7, Theorem 10.1.2].

Conversely, assume that A is of Kleinian type. Then A is either a number field or a quaternion algebra. In the remainder of the proof we assume that A is a quaternion algebra.

Let $\sigma_{1}, \ldots, \sigma_{n}$ be the set of representatives up to conjugation of the embeddings of K in \mathbb{C}. Each σ_{i} gives rise to an embedding $\overline{\sigma_{i}}: A \rightarrow A_{i}$ where $A_{i}=M_{2}(\mathbb{C})$ if σ_{i} is not real, $A_{i}=M_{2}(\mathbb{R})$ if σ_{i} is real and not ramified and $A_{i}=\mathbb{H}(\mathbb{R})$ otherwise. We consider A_{i} embedded in $M_{2}(\mathbb{C})$ in the obvious way. Then $\sigma_{i}\left(R^{1}\right) \subseteq S L_{2}(\mathbb{C})$. Let R be an order in A. Then $\overline{\sigma_{i}}\left(R^{1}\right)$ is a discrete subgroup of $\mathrm{SL}_{2}(\mathbb{C})$ for some i, because by assumption A is of Kleinian type. We may assume that
$i=1$. Assume that σ_{l} is either a non real embedding or a non ramified real embedding and let $f: A \rightarrow \prod_{j \neq k} A_{j}$ be the map given by $f(x)=\left(\overline{\sigma_{j}}(x)\right)_{j \neq k}$. Then, by the Strong Approximation Theorem (see [27, Theorem 7.12] or [32, Theorem 4.3]), $f\left(R^{1}\right)$ is dense in $\prod_{j \neq k} A_{j}^{1}$ and therefore $k=1$. This shows that A ramifies at at least $n-1$ places. Hence the result follows.

Proposition 3.3 Let A be a simple finite dimensional rational algebra and R an order in A. Let $\operatorname{vcd}\left(R^{1}\right)$ denote the virtual cohomological dimension of R^{1}. The following conditions hold.

1. $\operatorname{vcd}\left(R^{1}\right)=0$ if and only if A is a field or a totally definite quaternion algebra.
2. $\operatorname{vcd}\left(R^{1}\right)=1$ if and only if $A=M_{2}(\mathbb{Q})$.
3. $\operatorname{vcd}\left(R^{1}\right)=2$ if and only if $A=M_{2}(K)$ with K an imaginary quadratic extension of the rationals or A is a quaternion algebra over a totally real number field which is not ramified at exactly one infinite place.

Proof. Let $K=Z(A), r$ the number of embeddings of K in \mathbb{R}, s the number of of non-real embeddings of K in \mathbb{C}, r_{1} the number of real embeddings of K at which A is ramified and $r_{2}=r-r_{1}$ the number of real embeddings of K at which A is not ramified. Set $A=M_{n}(D)$ where D is a division ring of degree d. Notice that if d is odd then $r_{1}=0$.

The sufficiency of the respective conditions easily can be checked using the following formula for the virtual cohomological dimension of R^{1} that can be deduced from the formulae on pages 220 and 222 and in Theorem 4 of [19]:

$$
\begin{align*}
\operatorname{vcd}\left(R^{1}\right) & =r_{2} \frac{(n d+2)(n d-1)}{2}+r_{1} \frac{(n d-2)(n d+1)}{2}+s\left(n^{2} d^{2}-1\right)-n+1 \tag{1}\\
& =r_{2} n d+r \frac{(n d-2)(n d+1)}{2}+s\left(n^{2} d^{2}-1\right)-n+1
\end{align*}
$$

Conversely, assume that A is not a field and $\operatorname{vcd}\left(R^{1}\right) \leq 2$. By (1) one has

$$
\begin{equation*}
r_{2} n d+r \frac{(n d-2)(n d+1)}{2}+s\left(n^{2} d^{2}-1\right) \leq n+1 \tag{2}
\end{equation*}
$$

Since A is not a field, $n d \geq 2$ and therefore the three summands on the left hand side of (2) are non-negative, which implies that each summand at most $n+1$. Hence, since $n d+1 \geq n+1$, we get that $s(n d-1)(n d+1)=s\left(n^{2} d^{2}-1\right) \leq n+1$ and thus it follows that either $s=0$ or $d=s=1$ and $n=2$. In the latter case $r_{1}=0$ and since $s\left(n^{2} d^{2}-1\right)=n+1$, one has that $r_{2} n d=0$ so that $r_{2}=0$. Thus $A=M_{2}(K)$ where K is an imaginary quadratic extension of \mathbb{Q}.

Assume now that $s=0$, that is, K is totally real. Now we use $r_{2} n d \leq n+1$ to deduce that either (a) $r_{2}=0$, (b) $r_{2}=d=1$ or (c) $n=r_{2}=1$ and $d=2$. We deal with each case separately.
(a) If $r_{2}=0$ then $r=r_{1} \neq 0$, that is A is ramified at every infinite place of K. This implies that d is even. Furthermore

$$
\frac{(n d-2)(n d+1)}{2} \leq r \frac{(n d-2)(n d+1)}{2} \leq n+1
$$

and therefore $(n d-2)(n d+1) \leq 2 n+2$. Thus $n d(n d-1) \leq 2 n+4$ and so $n(d(n d-1)-2) \leq 4$. If $n \geq 2$ then $n(d(n d-1)-2) \geq 2(2 \cdot 3-2)=8$. Thus $n=1$, that is $A=D$ is a division ring. Further $d(d-1) \leq 6$ and thus $d=2$, because d is even. We conclude that A is a totally definite quaternion algebra.
(b) Assume that $r_{2}=d=1$. Then $r_{1}=0$, that is, $K=\mathbb{Q}$ and $r_{2} n d=n$, so that $\frac{(n-2)(n+1)}{2} \leq 1$ and one deduces that $n=2$. Thus $A=M_{2}(\mathbb{Q})$.
(c) Finally if $n=r_{2}=1$ and $d=2$ then A is a quaternion algebra over a totally real number field which is not ramified at exactly one infinite place.

The following corollary is an immediate consequence of Propositions 3.2 and 3.3. Of course it yields at once that (C) implies (D).

Corollary 3.4 Let A be a finite dimensional simple rational algebra and R an order in A. If the virtual cohomological dimension of R^{1} is at most 2 then A is of Kleinian type.

Remark 3.5 By Proposition 3.2 there are six types of simple algebras of Kleinian type: (1) number fields; (2) totally definite quaternion algebras; (3) $M_{2}(\mathbb{Q})$; (4) $M_{2}(K)$, where K is an imaginary quadratic extension of the rationals; (5) quaternion division algebras over totally real number fields which are not ramified at exactly one infinite place; and (6) quaternion division algebras with exactly one pair of complex (non-real) embeddings which are ramified at all the real places.

Proposition 3.3 shows that the first five types correspond to the simple finite dimensional rational algebras A such that $\operatorname{vcd}\left(R^{1}\right) \leq 2$ for some (any) order R in A. In the sixth case $\operatorname{vcd}\left(R^{1}\right)=3$ (by (3.1)).
"(D) implies (E)" of Theorem 1 (which will be proved in sections 4, 5 and 6) shows that if A is a simple component of $\mathbb{Q} G$ for G a finite group of Kleinian type then A is of one of the first four types of simple Kleinian algebras.

4 (F) implies (E)

To prove that (F) implies (E) we need to compute the simple components of $\mathbb{Q} G$, for G a finite group satisfying (F). This we will do using a method introduced in [24].

Let G be a finite group. For a subgroup H of G we set $\widehat{H}=\frac{1}{|H|} \sum_{h \in H} h$, an idempotent element in $\mathbb{Q} G$. If $g \in G$ then put $\widehat{g}=\widehat{\langle g\rangle}$. A strong Shoda pair of G is a pair (K, H) of subgroups of G such that $H \unlhd K \unlhd G, K / H$ is cyclic and K / H is maximal abelian in $N_{G}(H) / H$. (The definition in [24] is more general but for our purposes we do not need such a generality.) If $K=H$ (and hence $K=G)$, then let $\varepsilon(K, K)=\widehat{K}$; otherwise, let $\varepsilon(K, H)=\prod_{L \in M}(\widehat{H}-\widehat{L})$, where M is the set of minimal elements in the set of subgroups of K containing H properly. Finally, let $e(G, K, H)$ denote the sum of the different G-conjugates of $\varepsilon(K, H)$.

Let R be a ring and let G be a group. If $\rho \in \operatorname{Aut}(R)$ and $r \in R$ then we denote $\rho(r)$ as r^{ρ}. Recall from [25] that a crossed product of G over R with action $\sigma: G \rightarrow \operatorname{Aut}(R)$ and twisting $\tau: G \times G \rightarrow R^{*}$ is an associative ring $R * G=R *_{\tau}^{\sigma} G$ which contains R as a subring and a set of units $\left\{u_{g} \mid g \in G\right\}$ of $R * G$ such that $R * G=\oplus_{g \in G} u_{g} R$ (a free right R-module) and the product in $R * G$ is given by:

$$
\left(u_{g} r\right)\left(u_{h} s\right)=u_{g h} \tau(g, h) r^{\sigma(h)} s, \quad(g, h \in G, r, s \in R)
$$

Proposition 4.1 [24] Let G be a finite group.

1. Assume that (K, H) is a strong Shoda pair of G. Let $N=N_{G}(H), k=[K: H]$ and $n=[G: N]$. The following properties hold.
(a) $e=e(G, K, H)$ is a primitive central idempotent of $\mathbb{Q} G$.
(b) $\mathbb{Q} G e$ is isomorphic with $M_{n}\left(\mathbb{Q}\left(\xi_{k}\right) *_{\tau}^{\sigma} N / K\right)$, an $n \times n$-matrix ring over a crossed product of N / K over the cyclotomic field $\mathbb{Q}\left(\xi_{k}\right)$, with defining action and twisting given as follows: Let x be a generator of K / H and let $\gamma: N / K \rightarrow N / H$ be a left inverse of the natural epimorphism $N / H \rightarrow N / K$. Then

$$
\begin{aligned}
& \xi_{k}^{\sigma(a)}=\xi_{k}^{i}, \text { if } x^{\gamma(a)}=x^{i} \\
& \tau(a, b)=\xi_{k}^{j}, \\
& \text { if } \gamma(a b)^{-1} \gamma(a) \gamma(b)=x^{j}
\end{aligned}
$$

for $a, b \in N / K$ and integers i and j.
(c) The simple algebra $\mathbb{Q} G e ~ h a s ~ d e g r e e ~[G: K] . ~$
(d) The kernel of the natural group homomorphism $G \rightarrow G e$ is $\operatorname{Core}_{G}(H)=\bigcap_{g \in G} H^{g}$.
2. If G is metabelian then every primitive central idempotent of $\mathbb{Q} G$ is of the form $e(G, K, H)$ for some strong Shoda pair (K, H) of G.

Proof. Let θ be a linear character of K with kernel H. Then the induced character $\chi=\theta^{G}$ is irreducible and $e=e(G, K, H)$ is the unique primitive central idempotent of $\mathbb{Q} G$ such that $\chi(e) \neq 0$ [24]. This proves $1(\mathrm{a})$. The proofs of $1(\mathrm{~b})$ and 2 can be found in $[24]$ and $1(\mathrm{c})$ is a direct consequence of 1 (b).

To prove $1(\mathrm{~d})$ note that the kernel of $g \mapsto g e$ coincides with the kernel of χ. Since $H \unlhd K \unlhd G$, this kernel is $\left\{k \in K: \theta\left(g k g^{-1}\right)=1\right.$, for all $\left.g \in G\right\}=\bigcap_{g \in G}\left\{k \in K: \theta\left(g k g^{-1}\right)=1\right.$, for all $g \in$ $G\}=\bigcap_{g \in G} H^{g}=\operatorname{Core}_{G}(H)$.

The following isomorphisms can be found in [6, p. 161-163], [30, Lemma 20.4] and [15]. (This can also can be verified using Proposition 4.1.)

$$
\begin{align*}
& \mathbb{Q} C_{n} \cong \oplus_{d \mid n} \mathbb{Q}\left(\xi_{d}\right) \\
& \mathbb{Q} D_{2 n} \cong \mathbb{Q}\left(D_{2 n} / D_{2 n}^{\prime}\right) \oplus \oplus_{d \mid n, 2<d} M_{2}\left(\mathbb{Q}\left(\xi_{d}+\xi_{d}^{-1}\right)\right) \\
& \mathbb{Q} Q_{2^{n}} \cong \mathbb{Q} D_{2^{n-1}} \oplus \mathbb{H}\left(\mathbb{Q}\left(\xi_{22^{n-1}}+\xi_{2^{n-1}}^{-1}\right)\right) \\
& \mathbb{Q} D_{16}^{-} \cong 4 \mathbb{Q} \oplus M_{2}(\mathbb{Q}) \oplus M_{2}(\mathbb{Q}(\sqrt{-2})) \tag{3}\\
& \mathbb{Q} D_{16}^{+} \cong 4 \mathbb{Q} \oplus 2 \mathbb{Q}(i) \oplus M_{2}(\mathbb{Q}(i)) \\
& \mathbb{Q} \mathcal{D} \cong 8 \mathbb{Q} \oplus M_{2}(\mathbb{Q}(i)) \\
& \mathbb{Q} \mathcal{D}^{+} \cong 4 \mathbb{Q} \oplus 2 \mathbb{Q}(i) \oplus 2 M_{2}(\mathbb{Q}) \oplus 2 M_{2}(\mathbb{Q}(i))
\end{align*}
$$

Next we prove three reduction lemmas.
Lemma 4.2 1. The class of algebras of Kleinian type is closed under epimorphic images and semi-simple subalgebras.
2. The class of finite groups of Kleinian type is closed under subgroups and epimorphic images.
3. The class of finite groups satisfying condition (E) of Theorem 1 is closed under subgroups and epimorphic images.

Proof. 1. Obviously the class of algebras of Kleinian type is closed under epimorphic images.
Let A be an algebra of Kleinian type and B a semi-simple subalgebra of A. If B_{1} is a simple quotient of B then B_{1} is isomorphic to a subalgebra of a simple quotient of A. In order to prove that B is an algebra of Kleinian type we thus may assume that A and B are simple and B is not a field. Since A is of Kleinian type and B is non-abelian, it is clear that A and B are quaternion algebras and that there is an order R in A and an embedding $\sigma: A \rightarrow M_{2}(\mathbb{C})$ such that $\sigma\left(R^{1}\right)$ is
a discrete subgroup of $\mathrm{SL}_{2}(\mathbb{C})$. Then $S=R \cap B$ is an order in B and $\sigma\left(S^{1}\right) \subseteq \sigma\left(R^{1}\right)$ is a discrete subgroup of $\mathrm{SL}_{2}(\mathbb{C})$. This finishes the proof of 1 .
2. This is a direct consequence of 1 .
3. This can be proved imitating the proof of 1 and 2 and noticing that if A and B are as above (B non-commutative and simple) then $Z(B) \subseteq Z(A)$.

For a finite group G we denote by $\mathcal{C}(G)$ the set of isomorphism classes of noncommutative simple quotients of $\mathbb{Q} G$. For simplicity we often represent $\mathcal{C}(G)$ by listing a set of representatives of its elements. For example, $\mathcal{C}\left(D_{16}^{+}\right)=\left\{M_{2}(\mathbb{Q}(i))\right\}$ and $\mathcal{C}\left(D_{16}^{-}\right)=\left\{M_{2}(\mathbb{Q}), M_{2}(\mathbb{Q}(\sqrt{-2}))\right\}$ (see (3)).

Lemma 4.3 Let G be a finite group and A an abelian subgroup of G such that every subgroup of A is normal in G. Let $\mathcal{H}=\left\{H \mid H\right.$ is a subgroup of A with A / H cyclic and $\left.G^{\prime} \nsubseteq H\right\}$. Then $\mathcal{C}(G)=\cup_{H \in \mathcal{H}} \mathcal{C}(G / H)$.

Proof. Let H be a subgroup of A. By assumption, $H \unlhd G$ and thus $\mathbb{Q} G=\mathbb{Q} G \widehat{H} \oplus \mathbb{Q} G(1-\widehat{H}) \cong$ $\mathbb{Q}(G / H) \oplus \mathbb{Q} G(1-\widehat{H})$. It follows that $\mathcal{C}(G) \supseteq \cup_{H \in \mathcal{H}} \mathcal{C}(\bar{G} / H)$. It is well known (and can be proved using Proposition 4.1) that the primitive central idempotents of $\mathbb{Q} A$ are the elements of the form $\varepsilon(A, H)$, where H runs through the set $\overline{\mathcal{H}}=\{H \leq A \mid A / H$ is cyclic $\}$. Notice that each $\varepsilon(A, H)$ is central in $\mathbb{Q} G$ because H and A are normal in G. Thus $\{\varepsilon(A, H) \mid H \in \overline{\mathcal{H}}\}$ is a complete set of orthogonal central idempotents of $\mathbb{Q} G$ which are primitive central in $\mathbb{Q} A$ but not necessarily in $\mathbb{Q} G$. If f is a primitive central idempotent of $\mathbb{Q} G$ then there is $H \in \overline{\mathcal{H}}$ such that $f \varepsilon(A, H)=f$ and $f \varepsilon(A, K)=0$ for each $H \neq K \in \overline{\mathcal{H}}$. Then $f \in \mathbb{Q} G \varepsilon(A, H)$ and hence $f \in \mathbb{Q} G \hat{H} \cong \mathbb{Q}(G / H)$. Therefore $\mathbb{Q} G f$ is a simple epimorphic image of $\mathbb{Q}(G / H)$. If $\mathbb{Q} G f$ is non-commutative then G / H is non-abelian and thus $H \in \mathcal{H}$ and $\mathbb{Q} G f \in \mathcal{C}(G / H)$.

Lemma 4.4 Let A be a finite abelian group of exponent d and G an arbitrary group.

1. If $d \mid 2$ then $\mathcal{C}(A \times G)=\mathcal{C}(G)$.
2. If $d \mid 4$ and $\mathcal{C}(G) \subseteq\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}),\left(\frac{-1,-3}{\mathbb{Q}}\right), M_{2}(\mathbb{Q}(i))\right\}$ then $\mathcal{C}(A \times G) \subseteq \mathcal{C}(G) \cup\left\{M_{2}(\mathbb{Q}(i))\right\}$.
3. If $d \mid 6$ and $\mathcal{C}(G) \subseteq\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}),\left(\frac{-1,-3}{\mathbb{Q}}\right), M_{2}\left(\mathbb{Q}\left(\xi_{3}\right)\right)\right\}$ then $\mathcal{C}(A \times G) \subseteq \mathcal{C}(G) \cup\left\{M_{2}\left(\mathbb{Q}\left(\xi_{3}\right)\right)\right\}$.

Proof. Recall that if G_{1} and G_{2} are two groups then $\mathbb{Q}\left(G_{1} \times G_{2}\right) \cong \mathbb{Q} G_{1} \otimes_{\mathbb{Q}} \mathbb{Q} G_{2}$. Because of the first isomorphism in (3), this implies, in particular, that the simple quotients of $\mathbb{Q} A$ are of the form $\mathbb{Q}\left(\xi_{k}\right)$, for k a divisor of d. It then also follows that the elements of $\mathcal{C}(A \times H)$ are represented by the simple quotients of the algebras of the form $\mathbb{Q}\left(\xi_{k}\right) \otimes_{\mathbb{Q}} B$ for $k \mid d$ and $B \in \mathcal{C}(H)$. Hence, if $d=2$ each $\mathbb{Q}\left(\xi_{k}\right)=\mathbb{Q}$ and thus we obtain that $\mathcal{C}(A \times G)=\mathcal{C}(G)$. If $d \mid 4$ then $\mathbb{Q} A$ is isomorphic to a direct product of copies of \mathbb{Q} and $\mathbb{Q}(i)$ and thus if, moreover, $\mathcal{C}(G) \subseteq\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}),\left(\frac{-1,-3}{\mathbb{Q}}\right), M_{2}(\mathbb{Q}(i))\right\}$ then $\mathcal{C}(A \times G)$ is formed by elements of $\mathcal{C}(G)$ and simple quotients of $\mathbb{Q}(i) \otimes_{\mathbb{Q}} M_{2}(\mathbb{Q}) \cong M_{2}(\mathbb{Q}(i))$, $\mathbb{Q}(i) \otimes_{\mathbb{Q}} \mathbb{H}(\mathbb{Q}) \cong M_{2}(\mathbb{Q}(i)), \mathbb{Q}(i) \otimes_{\mathbb{Q}}\left(\frac{-1,-3}{\mathbb{Q}}\right) \cong M_{2}(\mathbb{Q}(i))$ and $\mathbb{Q}(i) \otimes_{\mathbb{Q}} M_{2}(\mathbb{Q}(i)) \cong 2 M_{2}(\mathbb{Q}(i))$. This proves 1 and 2. To prove 3 one argues similarly using that if $d \mid 6$ then every simple quotient of $\mathbb{Q} A$ is isomorphic to either \mathbb{Q} or $\mathbb{Q}\left(\xi_{3}\right)$ and $\mathbb{Q}\left(\xi_{3}\right) \otimes_{\mathbb{Q}} M_{2}(\mathbb{Q}) \cong \mathbb{Q}\left(\xi_{3}\right) \otimes_{\mathbb{Q}} \mathbb{H}(\mathbb{Q}) \cong \mathbb{Q}\left(\xi_{3}\right) \otimes_{\mathbb{Q}}\left(\frac{-1,-3}{\mathbb{Q}}\right) \cong$ $M_{2}\left(\mathbb{Q}\left(\xi_{3}\right)\right)$.

Now we compute $\mathcal{C}(G)$ for some of the groups G listed in (F) of Theorem 1.

Lemma 4.5 1. $\mathcal{C}\left(\mathcal{W}_{1 n}\right)=\left\{M_{2}(\mathbb{Q})\right\}$.
2. $\mathcal{C}(\mathcal{W})=\mathcal{C}\left(\mathcal{W}_{2 n}\right)=\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q})\right\}$.
3. $\mathcal{C}(\mathcal{V}), \mathcal{C}\left(\mathcal{V}_{1 n}\right), \mathcal{C}\left(\mathcal{V}_{2 n}\right), \mathcal{C}\left(\mathcal{U}_{1}\right), \mathcal{C}\left(\mathcal{U}_{2}\right), \mathcal{C}\left(\mathcal{T}_{1 n}\right) \subseteq\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}), M_{2}(\mathbb{Q}(i))\right\}$.
4. $\mathcal{C}(\mathcal{T}), \mathcal{C}\left(\mathcal{T}_{2 n}\right), \mathcal{C}\left(\mathcal{T}_{3 n}\right) \subseteq\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}), M_{2}(\mathbb{Q}(i)), \mathbb{H}(\mathbb{Q}(\sqrt{2})), M_{2}(\mathbb{Q}(\sqrt{-2}))\right\}$.
5. Let $G=M \rtimes P$ be a semidirect product, where M is a non trivial elementary abelian 3-group. Suppose the centralizer $Q=\mathrm{C}_{P}(M)$ of M in P has index 2 in P and $m^{p}=m^{-1}$ for every $p \in P \backslash Q$.
(a) If $P=\langle x\rangle$ is cyclic of order 2^{n} then $\mathcal{C}(G)=\mathcal{C}\left(G /\left\langle x^{2}\right\rangle\right) \cup\left\{\left(\frac{\xi_{2 n-1},-3}{\mathbb{Q}\left(\xi_{2^{n-1}}\right)}\right)\right\}$. In particular, if $P=C_{8}$ then $\mathcal{C}(G)=\left\{M_{2}(\mathbb{Q}),\left(\frac{-1,-3}{\mathbb{Q}}\right), M_{2}(\mathbb{Q}(i))\right\}$.
(b) If $P=\mathcal{W}_{1 n}$ and $Q=\left\langle y_{1}, \ldots, y_{n}, t_{1}, \ldots, t_{n}, x^{2}\right\rangle$ then $\mathcal{C}(G)=\left\{M_{2}(\mathbb{Q}),\left(\frac{-1,-3}{\mathbb{Q}}\right), M_{2}\left(\mathbb{Q}\left(\xi_{3}\right)\right)\right\}$.
(c) If $P=\mathcal{W}_{21}$ and $Q=\left\langle y_{1}^{2}, x\right\rangle$ then $\mathcal{C}(G)=\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}(\sqrt{3})), M_{2}(\mathbb{Q}(i)), M_{2}\left(\mathbb{Q}\left(\xi_{3}\right)\right)\right\}$.

Proof. We use the notation and presentation of the groups as given in part (F) of Theorem 1. For the groups $\mathcal{W}_{11}, \mathcal{V}_{11}$ and \mathcal{T}_{11} we put $y=y_{1}$ and $t=t_{1}$.

Throughout the proof we will use Lemma 4.3, Lemma 4.4 and (3). For several of the groups G mentioned in the statement of the lemma, we will identify a group A satisfying the conditions of Lemma 4.3. By \mathcal{H} we then denote the set (depending on A) considered in Lemma 4.3. So that $\mathcal{C}(G)=\cup_{H \in \mathcal{H}} \mathcal{C}(G / H)$.

1 and 2. For \mathcal{W}_{11}, let $A=\left\langle x^{2}, t\right\rangle=Z\left(\mathcal{W}_{11}\right)$. If $H \in \mathcal{H}$ then $H=\left\langle x^{2}\right\rangle$ or $\left\langle t x^{2}\right\rangle$ and hence $\mathcal{W}_{11} / H \cong D_{8}$. Thus $\mathcal{C}\left(\mathcal{W}_{11}\right)=\left\{M_{2}(\mathbb{Q})\right\}$.

For \mathcal{W}, let $A=Z(\mathcal{W})=\left\langle x^{2}, y^{2}, t\right\rangle$. If $H \in \mathcal{H}$, then \mathcal{W} / H is a non-abelian group of order 8 and thus it is isomorphic to D_{8} or Q_{8}. Hence $\mathcal{C}(\mathcal{W}) \subseteq\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q})\right\}$. The converse inclusion is clear, because D_{8} and Q_{8} are epimorphic images of \mathcal{W}.

Since \mathcal{W}_{21} is an epimorphic image of \mathcal{W}, and D_{8} and Q_{8} are epimorphic images of \mathcal{W}_{21}, one has that $\mathcal{C}\left(\mathcal{W}_{21}\right)=\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q})\right\}$.

For $G=\mathcal{W}_{m n}$ with $m=1$ or 2 and $n \geq 2$, consider $A=G^{\prime}=\left\langle t_{1}, \ldots, t_{n}\right\rangle$. Then, using the relations $y^{2}=(y, x)^{m-1}$ for every $y \in\left\langle y_{1}, \ldots, y_{n}\right\rangle$, one deduces that $G / H \cong C_{2}^{n-1} \times \mathcal{W}_{m 1}$ for every $H \in \mathcal{H}$ and thus $\mathcal{C}\left(\mathcal{W}_{m n}\right)=\mathcal{C}\left(\mathcal{W}_{m 1}\right)$.
3. For \mathcal{V}, take $A=Z(\mathcal{V})=\left\langle x^{2}, y^{2},(y, x)\right\rangle$ and let $H \in \mathcal{H}$. If $[A: H]=2$ then \mathcal{V} / H has order 8 and then $\mathcal{C}(\mathcal{V} / H)$ is either $\left\{M_{2}(\mathbb{Q})\right\}$ or $\{\mathbb{H}(\mathbb{Q})\}$. Otherwise A / H is cyclic of order 4 and therefore $x^{4} \notin H$ or $y^{4} \notin H$. Thus \mathcal{V} / H is a group of order 16 , exponent 8 and with commutator subgroup of order 2 . This implies that $\mathcal{V} / H \cong D_{16}^{+}$and $\mathcal{C}(\mathcal{V} / H)=\left\{M_{2}(\mathbb{Q}(i))\right\}$. Thus $\mathcal{C}(\mathcal{V}) \subseteq\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}), M_{2}(\mathbb{Q}(i))\right\}$.

For $G=\mathcal{T}_{11}$, we need a different argument. Consider $K=\left\langle t, y, x^{2}\right\rangle$, an abelian subgroup of index 2 in G, and the following eight subgroups of K :

$$
\begin{array}{llll}
H_{1}=\left\langle y, x^{2}\right\rangle, & H_{2}=\left\langle y, x^{2} t^{2}\right\rangle, & H_{3}=\left\langle y, t x^{2}\right\rangle, & H_{4}=\left\langle y, t x^{-2}\right\rangle \\
H_{5}=\left\langle y t^{2}, x^{2}\right\rangle, & H_{6}=\left\langle y t^{2}, x^{2} t^{2}\right\rangle, & H_{7}=\left\langle y t^{2}, t x^{2}\right\rangle, & H_{8}=\left\langle y t^{2}, t x^{-2}\right\rangle
\end{array}
$$

A straightforward calculation shows that $K=N_{G}\left(H_{i}\right)$ and K / H_{i} is cyclic (generated by the class of t) of order 4 for every i, so that $\left(K, H_{i}\right)$ is a strong Shoda pair of G for every i. By Proposition 4.1, each $e_{i}=e\left(G, K, H_{i}\right)=\varepsilon\left(K, H_{i}\right)+\varepsilon\left(K, H_{i}^{x}\right)$ is a primitive central idempotent of $\mathbb{Q} G\left(1-\widehat{t^{2}}\right)$ and $\mathbb{Q} G e_{i} \cong M_{2}(\mathbb{Q}(i))$. Furthermore the 16 subgroups of the form H_{i} and H_{i}^{x} are pairwise different.

This implies that the 8 primitive central idempotents e_{i} are pairwise different and hence $\mathbb{Q} G=$ $\mathbb{Q} G \widehat{t^{2}} \oplus \oplus_{i=1}^{8} \mathbb{Q} e_{i} \cong \mathbb{Q}\left(G /\left\langle t^{2}\right\rangle\right) \oplus 8 M_{2}(\mathbb{Q}(i))$. Since $G /\left\langle t^{2}\right\rangle$ is an epimorphic image of \mathcal{V}, one concludes that $\mathcal{C}\left(\mathcal{T}_{11}\right) \subseteq\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}), M_{2}(\mathbb{Q}(i))\right\}$. Actually $\mathcal{C}(\mathcal{V})=\mathcal{C}\left(\mathcal{T}_{11}\right)=\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}), M_{2}(\mathbb{Q}(i))\right\}$ because \mathcal{W} is an epimorphic image of \mathcal{T}_{11} and \mathcal{V}.

For $G=\mathcal{V}_{1 n}, \mathcal{V}_{2 n}, \mathcal{U}_{1}, \mathcal{U}_{2}$ or $\mathcal{T}_{1 n}$, we consider $A=G^{\prime}$ and let $H \in \mathcal{H}$. If $G=\mathcal{T}_{1 n}$ then G / H is an epimorphic image of $C_{4}^{n-1} \times \mathcal{T}_{11}$, and otherwise G / H is an epimorphic image of $C_{2}^{k} \times \mathcal{V}$ for some k. We conclude that $\mathcal{C}(G) \subseteq\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}), M_{2}(\mathbb{Q}(i))\right\}$.
4. For $G=\mathcal{T}$, take $A=Z(G)=\left\langle t^{2}, t y^{2}\right\rangle$. Let $H \in \mathcal{H}$. If either $t^{2} \in H$ or $y^{4} \in H$ then G / H is an epimorphic image of either \mathcal{V} or \mathcal{T}_{11} and so $\mathcal{C}(G / H) \subseteq\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}), M_{2}(\mathbb{Q}(i))\right\}$. Otherwise, that is, if $t^{2}, y^{4} \notin H$, then $t^{2} y^{4} \in H$ and hence $H=\left\langle t y^{2}\right\rangle$ or $H=\left\langle t^{-1} y^{2}\right\rangle$. Then G / H is isomorphic to either Q_{16} or D_{16}^{-}and $\mathcal{C}(G / H) \subseteq\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}(\sqrt{2})), M_{2}(\mathbb{Q}(\sqrt{-2}))\right\}$. We conclude that $\mathcal{C}(\mathcal{T}) \subseteq\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}), M_{2}(\mathbb{Q}(i)), \mathbb{H}(\mathbb{Q}(\sqrt{2})), M_{2}(\mathbb{Q}(\sqrt{-2}))\right\}$.

For \mathcal{T}_{21}, take $A=Z\left(\mathcal{T}_{21}\right)=\left\langle t^{2}, x^{2}\right\rangle$ and $H \in \mathcal{H}$. If $t^{2} \in H$ or $t^{2} x^{2} \in H$ then G / H is an epimorphic image of \mathcal{V} or \mathcal{T}. Otherwise, $H=\left\langle x^{2}\right\rangle$ and hence $G / H=D_{16}^{-}$. So $\mathcal{C}\left(\mathcal{T}_{21}\right) \subseteq$ $\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}), M_{2}(\mathbb{Q}(i)), \mathbb{H}(\mathbb{Q}(\sqrt{2})), M_{2}(\mathbb{Q}(\sqrt{-2}))\right\}$.

For $G=\mathcal{T}_{2 n}$, taking $A=G^{\prime}$ and having in mind that $(y, x) y^{2}=1$ for every $y \in\left\langle y_{1}, \ldots, y_{n}\right\rangle$, one deduces that G / H is an epimorphic image of $T_{21} \times C_{2}^{n-1}$ for every $H \in \mathcal{H}$. Hence, by the previous paragraph, $\mathcal{C}\left(\mathcal{T}_{2 n}\right)=\mathcal{C}\left(\mathcal{T}_{21}\right)$.

Finally, for $G=\mathcal{T}_{3 n}$, take $A=G^{\prime}$ and let $H \in \mathcal{H}$. If $t_{1}^{2} \in H$ then G / H is an epimorphic image of $\mathcal{T}_{3 n} /\left\langle t_{1}^{2}\right\rangle$ which in turn is an isomorphic image of $\mathcal{V}_{1 n}$ and thus $\mathcal{C}(G / H) \subseteq\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}), M_{2}(\mathbb{Q}(i))\right\}$. Otherwise, the image $\overline{t_{i}}$ in G / H of each t_{i} belongs to $\left\langle\overline{t_{1}}\right\rangle$. Furthermore, $\overline{t_{1}}$ has order 4 and $\overline{t_{i}}$ has order at most 2 , for $i \geq 2$. Thus $\overline{t_{i}} \in\left\langle t_{1}^{2}\right\rangle$. For $i \geq 2$, let z_{i} be the natural image of y_{i} in G / H if $t_{i}=1$ and the natural image of $y_{1}^{2} y_{i}$, otherwise. Then $Z=\left\langle z_{2}, \ldots, z_{n}\right\rangle$ is central in G / H of exponent at most 2 and G / H is an epimorphic image of $\mathcal{T} \times Z$. Thus $\mathcal{C}(G / H) \subseteq \mathcal{C}(\mathcal{T})$.
5. Let $G=M \rtimes P$ be as in statement 5. Applying Lemma 4.3, with $A=M$, we may assume, without loss of generality, that M is cyclic of order 3 , generated by m, say.
(a) Assume $P=\langle x\rangle$ is cyclic of order 2^{n}. Then $\left(K=\left\langle m, x^{2}\right\rangle, 1\right)$ is a strong Shoda pair of G and so $e=e(G, K, 1)$ is a primitive central idempotent of $\mathbb{Q} G$. Applying Proposition 4.1 one has $\mathbb{Q} G e=\mathbb{Q}(\xi)\left[u \mid u^{2}=\xi^{3}, u^{-1} \xi u=\xi^{s}\right]$, where $\xi=\xi_{3 \cdot 2^{n-1}}$ and s is an integer such that $s \equiv-1 \bmod 3$ and $s \equiv 1 \bmod 2^{n-1}$. Let $\omega=\xi^{2^{n-1}}$, a third root of unity. Then $j^{2}=-3$ and $j u=-u j$, where $j=1+2 \omega$. This shows that $\mathbb{Q} G e \cong\left(\frac{\xi_{2 n-1},-3}{\mathbb{Q}\left(\xi_{2} n-1\right)}\right)$. Since $e+\left(1-\widehat{G^{\prime}}\right) \widehat{x^{2}}=1-\widehat{G^{\prime}}$, one concludes that $\mathcal{C}(G)=\mathcal{C}\left(G /\left\langle x^{2}\right\rangle\right) \cup\{\mathbb{Q} G e\}$.

In particular, if $n=1$ then $\mathcal{C}(G)=\left\{\left(\frac{1,-3}{\mathbb{Q}}\right)=M_{2}(\mathbb{Q})\right\}$, if $n=2$ then $\mathcal{C}(G)=\left\{M_{2}(\mathbb{Q}),\left(\frac{-1,-3}{\mathbb{Q}}\right)\right\}$ and if $n=3$ then $\mathcal{C}(G)=\left\{M_{2}(\mathbb{Q}),\left(\frac{-1,-3}{\mathbb{Q}}\right),\left(\frac{i,-3}{\mathbb{Q}(i)}\right)=M_{2}(\mathbb{Q}(i))\right\}$. The equality $M_{2}(\mathbb{Q}(i))=\left(\frac{i,-3}{\mathbb{Q}(i)}\right)$ holds because the equation $i X^{2}-3 Y^{2}=1$ has the solution $X=1+i$ and $Y=i$.
(b) Assume $P=\mathcal{W}_{1 n}$. Applying Lemma 4.3 with $A=P^{\prime}$, we may assume that $n=1$, because $G / H \cong C_{2}^{n-1} \times\left(M \rtimes \mathcal{W}_{11}\right)$ for every $H \in \mathcal{H}$. So suppose $P=\mathcal{W}_{11}$ and $Q=\left\langle x^{2}, y=y_{1}, t=t_{1}\right\rangle$. Let S be a simple quotient of $\mathbb{Q} G$. Put $T=G /\langle t\rangle$ and $e=(1-\widehat{m})(1-\widehat{t})$, a central idempotent of $\mathbb{Q} G$. Notice that $G /\langle m\rangle \cong P$ and $T \cong C_{2} \times\left(C_{3} \rtimes C_{4}\right)$. If S is a quotient of $\mathbb{Q} G(1-e)$ then S is a quotient of either $\mathbb{Q} G \widehat{m} \cong \mathbb{Q}(G /\langle m\rangle) \cong \mathbb{Q} P$ or $\mathbb{Q} G \widehat{t} \cong \mathbb{Q} T \cong \mathbb{Q}\left(C_{2} \times\left(C_{3} \rtimes C_{4}\right)\right)$. Then $S \cong M_{2}(\mathbb{Q})$ or $\left(\frac{-1,-3}{\mathbb{Q}}\right)$, by the previous paragraph and statement 1 . Otherwise, S is a quotient of $\mathbb{Q} G e$. Notice that $e=e\left(G, K, H_{1}\right)+e\left(G, K, H_{2}\right)$, where $K=\langle Q, m\rangle, H_{1}=\left\langle x^{2}, y\right\rangle$ and $H_{2}=\left\langle t x^{2}, y\right\rangle$ and $\left(K, H_{1}\right)$ and $\left(K, H_{2}\right)$ are two strong Shoda pairs of G. Clearly $\left[K: H_{1}\right]=\left[K: H_{2}\right]=6$ and $K=N_{G}\left(H_{1}\right)=N_{G}\left(H_{2}\right)$. Hence, because of Proposition 4.1, it follows that $\mathbb{Q} G e \cong 2 M_{2}(\mathbb{Q}(\sqrt{-3}))$, and therefore $S \cong M_{2}(\mathbb{Q}(\sqrt{-3}))$.
(c) Assume $P=\mathcal{W}_{12}$ and $Q=\left\langle x, y^{2}\right\rangle$. Let S be a simple quotient of $\mathbb{Q} G$. Again, put $T=G /\langle t\rangle$ and $e=(1-\widehat{m})(1-\widehat{t})$. Then $G /\langle m\rangle \cong P$ and $T \cong C_{4} \times\left(C_{3} \rtimes C_{2}\right)$. Thus, if S is a quotient of $\mathbb{Q} G(1-e)$ then S is a quotient of either $\mathbb{Q} G \widehat{m} \cong \mathbb{Q}(G /\langle m\rangle) \cong \mathbb{Q} P$ or $\mathbb{Q} G \widehat{t} \cong \mathbb{Q} T \cong \mathbb{Q}\left(C_{4} \times\left(C_{3} \rtimes C_{2}\right)\right)$. Then, as in the proof of $(\mathrm{b}), S$ is isomorphic to either $M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q})$ or $M_{2}(\mathbb{Q}(i))$. Otherwise, S is a quotient of $\mathbb{Q} G e$. In this case, $e=e\left(G, K, H_{1}\right)+e\left(G, K, H_{2}\right)$, where $K=\langle Q, m\rangle, H_{1}=\langle x\rangle, H_{2}=\left\langle x^{2} y^{2}\right\rangle$, and $\left(K, H_{1}\right)$ and $\left(K, H_{2}\right)$ are two strong Shoda pairs of G. Since $\left[K: H_{1}\right]=6$ and $K=N_{G}\left(H_{1}\right)$ we get that $\mathbb{Q} G e\left(G, K, H_{1}\right) \cong M_{2}(\mathbb{Q}(\sqrt{-3}))$, as desired. Because $N_{G}\left(H_{2}\right)=G$, we deduce from Proposition 4.1 that $\mathbb{Q} G e\left(G, K, H_{2}\right)$ is the simple algebra given by the following presentation: $S=\mathbb{Q}(\xi)\left[u \mid u^{2}=-1, u^{-1} \xi u=\xi^{-1}\right]$, with $\xi=\xi_{12}$. Let $i=\xi^{3}, j=u$ and $a=\xi+\xi^{-1} \in Z(S)$. Clearly $i^{2}=u^{2}=-1, a^{2}=3$ and $j i=-i j$. Therefore $S \cong \mathbb{H}(\mathbb{Q}(\sqrt{3}))$. Thus $S \cong M_{2}(\mathbb{Q}(\sqrt{-3}))$ or $\mathbb{H}(\mathbb{Q}(\sqrt{3}))$.

We are ready to prove (F) implies (E). So, let G be a finite group satisfying (F). By Lemma 4.2, to prove that G satisfies (E) one may assume that $G=A \times H$ for A and H satisfying one of the conditions 1-4 in (F). We have to show that the elements of $\mathcal{C}(G)$ either are totally definite quaternion algebras or are of the form $M_{2}(\mathbb{Q}(\sqrt{-d}))$ for $d=0,1,2$ or 3. Using Lemma 4.4 and Lemma 4.5, one obtains the following five statements, and hence the result follows. If either condition 1 or condition 2 holds then $\mathcal{C}(G) \subseteq\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}), M_{2}(\mathbb{Q}(i))\right\}$. If condition 3 holds then $\mathcal{C}(G) \subseteq\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}), M_{2}(\mathbb{Q}(i)), \mathbb{H}(\mathbb{Q}(\sqrt{2})), M_{2}(\mathbb{Q}(\sqrt{-2}))\right\}$. If condition 4 holds then $\mathcal{C}(G)$ is contained in either $\left\{M_{2}(\mathbb{Q}),\left(\frac{-1,-3}{\mathbb{Q}}\right), M_{2}(\mathbb{Q}(i))\right\},\left\{M_{2}(\mathbb{Q}),\left(\frac{-1,-3}{\mathbb{Q}}\right), M_{2}(\mathbb{Q}(\sqrt{-3}))\right\}$ or $\left\{M_{2}(\mathbb{Q}), \mathbb{H}(\mathbb{Q}(\sqrt{3})), M_{2}(Q(i)), M_{2}(\mathbb{Q}(\sqrt{-3}))\right\}$, depending on the respective cases.

5 (D) implies (F), for nilpotent groups

In the remainder of the paper we prove (D) implies (F), or equivalently we classify the groups of Kleinian type as the epimorphic images of the groups listed in (F). In this section we do this for finite groups that are nilpotent.

We start with two lemmas which provide information on the groups of Kleinian type.
Lemma 5.1 Let G be a finite non-abelian group of Kleinian type. The following properties hold.

1. Either $G / Z(G)$ is elementary abelian of order 8 or G has an abelian normal subgroup of index 2. In particular, G is metabelian and has a nilpotent subgroup of index at most 2.
2. Every primitive central idempotent of $\mathbb{Q} G$ is of the form $e=e(G, K, H)$ for some strong Shoda pair (K, H) of G. Moreover, for such a primitive central idempotent e one has
(a) $[G: K] \leq 2$;
(b) if H is not normal in G then $K=N_{G}(H)$ and $[K: H]$ divides 4 or 6 , and
(c) if $\mathbb{Q} G e$ is not a division ring then $[K: H]$ divides 8 or 12 and $\mathbb{Q} G e$ is isomorphic to $M_{2}(\mathbb{Q}(\sqrt{-d}))$ for $d=0,1,2$ or 3 .
3. If a dihedral group $D_{2 n}$ is an epimorphic image of a subgroup of G then n divides 4 or 6 .
4. $G=G_{3} \rtimes G_{2}$ where G_{3} is an elementary abelian 3-group (possibly trivial), G_{2} is a 2-group and the kernel of the action of G_{2} on G_{3} has index at most 2 in G_{2}.
5. The exponent of $Z(G)$ is a divisor of 4 or 6 .
6. $Z(G) \cap G^{\prime}=\left\{t \in G^{\prime} \mid t^{2}=1\right\}$. Furthermore, if $t \in G^{\prime}$ and $x \in G$ then either $t^{x}=t$ or $t^{x}=t^{-1}$. In particular, every subgroup of G^{\prime} is normal in G.

Proof. 1. Since every simple quotient of $\mathbb{Q} G$ has degree at most 2 (see the definition of groups and algebras of Kleinian type), the irreducible character degrees of G are 1 and 2. By [1] this implies that either $G / Z(G)$ is elementary abelian of order 8 or G has an abelian subgroup of index 2 . In the first case G is central-by-abelian, and hence nilpotent and metabelian. In the second case, obviously G is also metabelian and it has a nilpotent (in fact abelian) subgroup of index 2 .
2. That every primitive central idempotent of $\mathbb{Q} G$ is of the form $e=e(G, K, H)$ for some strong Shoda pair of G is a consequence of Proposition 4.1 and the fact that G is metabelian. Let $e=e(G, K, H)$ for (K, H) a strong Shoda pair of G.

The inequality $[G: K] \leq 2$ is a straightforward consequence of the fact that $[G: K]$ equals the degree of $\mathbb{Q} G e$ (Proposition 4.1). Let $k=[K: H]$. Since $K \leq N_{G}(H)$, we get that either $K=N_{G}(H)$ or $G=N_{G}(H)$. Therefore, if H is not normal in G then $K=N_{G}(H)$ and $\mathbb{Q} G e=$ $M_{2}\left(\mathbb{Q}\left(\xi_{k}\right)\right)$. By Proposition $3.2, \varphi(k)=\left[\mathbb{Q}\left(\xi_{k}\right): \mathbb{Q}\right] \leq 2$ and therefore k divides 4 or 6 . This proves (b) and it also proves (c) if H is not normal in G. If $\mathbb{Q} G e$ is not a division ring and H is normal in G then, by Proposition $4.1, \mathbb{Q} G e \cong M_{2}(F)$ where F is a subfield of index 2 in $\mathbb{Q}\left(\xi_{k}\right)$. Furthermore, Remark 3.5 implies that F is either \mathbb{Q} or an imaginary quadratic extension of \mathbb{Q}. Hence $\varphi(k)=2[F: \mathbb{Q}]$, a divisor of 4 . If $\varphi(k) \neq 4$ then k divides 4 or 6 and therefore $A=M_{2}(\mathbb{Q})$. Otherwise $k=5,8,10$ or 12 . If $5 \mid k$ then necessarily $F=\mathbb{Q}(\sqrt{5})$, a contradiction. Thus $k=8$ or 12 and therefore $A=M_{2}(\mathbb{Q}(\sqrt{-d}))$ for $d=1,2$ or 3 . This finishes the proof of 2 .
3. By (3), $\mathbb{Q} D_{2 n}$ has an epimorphic image isomorphic to $M_{2}\left(\mathbb{Q}\left(\xi_{n}+\xi_{n}^{-1}\right)\right)$. This algebra is of Kleinian type, by Lemma 4.2. Therefore $\mathbb{Q}\left(\xi_{n}+\xi_{n}^{-1}\right)=\mathbb{Q}$, by Remark 3.5 and this implies that n divides 4 or 6 .
4. Let E be the set of primitive central idempotents e of $\mathbb{Q} G$ such that $\mathbb{Q} G e$ is non-commutative. Let $e \in E$ and $z \in Z(G)$. By Proposition 3.2 the order of $z e$ divides 4 or 6 and thus the exponent of $Z(G)$ divides 12 .

By $1, G$ has a nilpotent subgroup of index at most 2 . Therefore, $G=G_{2^{\prime}} \rtimes G_{2}$, where $G_{2^{\prime}}$ is a nilpotent subgroup of odd order of G, G_{2} is a Sylow 2-subgroup of G and the kernel of the action of G_{2} on $G_{2^{\prime}}$ has index at most 2 in G_{2}. We have to show that $G_{2^{\prime}}$ is an elementary abelian 3 -group. We argue by contradiction. So, let $a \in G_{2^{\prime}}$ be of order q, where q is either 9 or $q>3$ and prime. Since the exponent of $Z(G)$ divides $12, a$ is not central in G and so there is $x \in G_{2}$ such that $a^{x} \neq a$. Put $b=a a^{x}$. Assume that $b=1$. Then $\langle a, x\rangle /\left\langle x^{2}\right\rangle \cong D_{2 q}$ and thus $D_{2 q}$ is of Kleinian type by Lemma 4.2, contradicting 3. Therefore b is a non-trivial central element of odd order. Hence b has order 3 and a has order 9. If $b \in\langle a\rangle$, then $b=a^{ \pm 3}$ and hence $a^{x}=a^{2}$ or $a^{x}=a^{-4}$. Then $a=a^{x^{2}}=a^{4}$ or $a=a^{x^{2}}=a^{7}$, a contradiction. Thus $\langle a, x\rangle /\left\langle x^{2}\right\rangle=\left(\langle a\rangle_{9} \times\langle b\rangle_{3}\right) \rtimes\langle x\rangle_{2}$, with $a^{x}=a^{-1} b$ and $b^{x}=b$. Then $\langle a, x\rangle /\left\langle b, x^{2}\right\rangle \cong D_{18}$, again a contradiction.
5. Since the exponent of $Z(G)$ divides 12 it is enough to show that $Z(G)$ does not have elements of order 12. By means of contradiction assume that $a \in Z(G)$ has order 12. Let $\varepsilon=\varepsilon(\langle a\rangle, 1)$ (see the notation introduced in Section 4). If $\varepsilon\left(1-\widehat{G^{\prime}}\right) \neq 0$ then there is a (necessarily injective) nonzero homomorphism $\mathbb{Q}\left(\xi_{12}\right) \cong \mathbb{Q}\langle a\rangle \varepsilon \rightarrow Z(A)$ for some non-commutative simple quotient A of $\mathbb{Q} G$. This implies that A has a central root of unity of order 12, contradicting Proposition 4.1. Thus $\varepsilon=\varepsilon \widehat{G^{\prime}}$. If $H=\langle a\rangle \cap G^{\prime}$ then $0 \neq \varepsilon=\varepsilon \widehat{G^{\prime}}=\varepsilon \widehat{H} \widehat{G^{\prime}}$. If $H \neq 1$ then $0 \neq \varepsilon \widehat{H}=\left(1-\widehat{a^{4}}\right)\left(1-\widehat{a^{6}}\right)=0$ because H contains either a^{4} or a^{6}. Thus $H=1$ and so $\varepsilon=\varepsilon \widehat{G^{\prime}}=\frac{1}{\left|G^{\prime}\right|} \varepsilon \sum_{g \in G^{\prime}} g$. Since all the elements of G with non-zero coefficient in ε belongs to $\langle a\rangle$, the last formula implies that $G^{\prime} \subseteq\langle a\rangle$. Thus $G^{\prime}=1$, contradicting the fact that G is non-abelian.
6. If $G / Z(G)$ is elementary abelian then $G^{\prime} \subseteq Z(G)$. It follows that, for $a, b \in G$ we get that
$b^{2} a=a b^{2}=b a t b=b^{2} a t^{2}$, where $t=(a, b)$. Then $t^{2}=1$ and the statement follows.
So assume that $G / Z(G)$ is not elementary abelian. From 1, we then have that G has an abelian subgroup N of index 2. Let $a \in G \backslash N$. Then $t^{x}=t$ if $x \in N$. If $x \in G \backslash N$ then $x=n a$ for some $n \in N$ and therefore $t^{x}=t^{a}$. Moreover $a^{2} \in Z(G)$ and then, for every $g \in G$, one has $1=\left(g, a^{2}\right)=(g, a)(g, a)^{a^{-1}}=(g, a)(g, a)^{a}$. Thus $(g, a)^{a}=(g, a)^{-1}$. On the other hand if $n, m \in$ N then $(n a, m a)=(n a, m)(n a, a)^{m^{-1}}=(a, m)^{n^{-1}}(n, m)\left((a, a)^{n^{-1}}(n, a)\right)^{m^{-1}}=(a, m)(n, a)=$ $(m, a)^{-1}(n, a)$. Thus if $t \in G^{\prime}$ then $t=\left(n_{1}, a\right)^{\alpha_{1}} \cdots\left(n_{k}, a\right)^{\alpha_{k}}$ for some $n_{i} \in N$ and $\alpha_{i} \in \mathbb{Z}$ and $t^{x}=\left(n_{1}, a\right)^{-\alpha_{1}} \cdots\left(n_{k}, a\right)^{-\alpha_{k}}=t^{-1}$. So we have shown that $t^{x}=t$ if $x \in N$ and $t^{x}=t^{-1}$ otherwise. Therefore $t \in Z(G)$ if and only if $t^{2}=1$.

Lemma 5.2 If G is a finite non-abelian 2-group of Kleinian type then the following properties hold.

1. The exponent of G is at most 8 .
2. G^{\prime} is abelian of exponent at most 4.
3. $\left\langle\left(G, G^{\prime}\right)\right\rangle=G^{\prime 2} \subseteq Z(G)$.
4. $G_{x}=\langle(x, g) \mid g \in G\rangle$ is a normal subgroup of G for all $x \in G$. Moreover, if $G^{\prime} \neq G_{x}$ then $x^{4} \in G_{x}$.
5. If $x, y \in G$ and $t=(y, x)$ then one of the following conditions holds:
(a) $(x, t)=1,\left(y, x^{2}\right)=t^{2}$ and $\left(y, t x^{2}\right)=1$ or
(b) $(x, t) \neq 1$ and $\left(y, x^{2}\right)=1$.

Proof. Let E be the set of primitive central idempotents e of $\mathbb{Q} G$ such that $\mathbb{Q} G e$ is noncommutative. It is well known that $1-\widehat{G^{\prime}}=\sum_{e \in E} e$ (see for example [4]). Notice that the coefficient of 1 in $g\left(1-\widehat{G^{\prime}}\right)$ is 0 , if $g \notin G^{\prime}$, and it is $-\frac{1}{\left|G^{\prime}\right|}$, if $1 \neq g \in G^{\prime}$. However the coefficient of 1 in $1-\widehat{G^{\prime}}$ is $1-\frac{1}{\left|G^{\prime}\right|}>0$ because, by assumption, G^{\prime} is non trivial. This shows that the natural group homomorphism $G \rightarrow G\left(1-\widehat{G^{\prime}}\right)$, mapping $g \in G$ onto $g\left(1-\widehat{G^{\prime}}\right)$, is injective, and hence so is the natural group homomorphism $f: G \rightarrow \prod_{e \in E} G e$.

1. We prove the statement by contradiction. So suppose G is a non-abelian 2-group of Kleinian type of minimal order such that the exponent of G is greater than 8 . Let $g \in G$ be of order 16 .

Then, there is $e \in E$ such that $g e$ has order 16 and, by the minimality of G, G is isomorphic to $G e$. By Proposition 4.1, there is a strong Shoda pair (K, H) of G such that $e=e(G, K, H)$, $[G: K]=2$ and $\operatorname{Core}_{G}(H)=1$. Then $A=\mathbb{Q} G e$ has a subfield isomorphic to $\mathbb{Q}\left(\xi_{16}\right)$. Since A is a quaternion algebra, the dimension of the centre of A is at least $\varphi(16) / 2=4$. Hence, by statement 2 of Proposition 5.1, A is a division algebra. It follows from statement (b) of Theorem 4.1 implies that $H \unlhd G$, that is, $H=\operatorname{Core}_{G}(H)=1$. Thus K is a cyclic subgroup of index 2 in G. Hence, as mentioned in the preliminaries, G is isomorphic to either $D_{2^{k+1}}, D_{2^{k+1}}^{+}, D_{2^{k+1}}^{-}$, or $Q_{2^{k+1}}$. Since A is a non-commutative division ring containing $\mathbb{Q}\left(\xi_{16}\right), G=Q_{2^{k+1}}$, one has that $k \geq 4$ (see (3)). Thus D_{16} is a quotient of G, in contradiction with statement 3 of Lemma 5.1.
2. That G^{\prime} is abelian is a consequence of statement 1 of Lemma 5.1. We prove by contradiction that G^{\prime} has exponent at most 4. So, assume that G is a non-abelian 2-group of Kleinian type of minimal order with a commutator $t=(y, x)$ of order greater than 4. By the minimality of the order of G, one has that $G=\langle x, y\rangle$. By statement 6 of Lemma 5.1, $t \in G^{\prime} \backslash Z(G)$. Hence $G / Z(G)$
is non-abelian and statement 1 of Lemma 5.1 implies that G has an abelian subgroup A of index 2 . Therefore, either $x \notin A$ or $y \notin A$. Since $(y x, x)=t$, one may assume that $x \notin A$ and $y \in A$. Then $x y \notin A$ and therefore $x^{2},(x y)^{2} \in Z(G)$. Furthermore, by statement 6 of Lemma 5.1, $t^{x}=t^{-1}$. Hence $(x y)^{2}=t^{-1} x^{2} y^{2}$ and thus $t^{-1} y^{2} \in Z(G)$. So, by statement 5 of Lemma 5.1, $t^{-4} y^{8}=1$. Thus $y^{8}=t^{4} \neq 1$, in a contradiction with 1 .
3. $G^{\prime 2} \subseteq Z(G)$ is a consequence of 2 and statement 6 of Lemma 5.1. Furthermore for $t \in G^{\prime}$, either $t^{2}=1$, or t has order 4 and $t \notin Z(G)$. Thus, again by statement 6 of Lemma 5.1, there is $x \in G$ such that $t^{x}=t^{-1}$, that is, $(x, t)=t^{2}$. Hence 3 follows.
4. That G_{x} is normal in G is a direct consequence of statement 6 in Lemma 5.1. Clearly, the natural image of x in G / G_{x} is central. Since G / G_{x} is a 2-group of Kleinian type, it follows from statement 5 of Lemma 5.1 that if G_{x} is properly contained in G^{\prime} then $x^{4} \in G_{x}$ as desired.
5. Let $x, y \in G$ and $t=(y, x)$. Clearly $\left(y, x^{2}\right)=(y, x)(y, x)^{x^{-1}}=t t^{x^{-1}}$. Because of statement 6 in Lemma 5.1, we also know that $t^{x^{-1}}=t$ or $t^{x^{-1}}=t^{-1}$. In the latter case we get that $\left(y, x^{2}\right)=1$ and so (b) holds. In the former case $(t, x)=1$ and $\left(y, x^{2}\right)=t^{2}$. If also $t^{y}=t$ then t is central in G, and thus, again by statement 6 in Lemma 5.1, $t^{2}=1$ and $(y, t)=t^{2}=1$. If, on the other hand, $t^{y} \neq t$, then, again by statement 6 in Lemma 5.1, $(y, t)=t^{2}$. So, in all cases we get that $\left(y, x^{2}\right)=t^{2}$. By part 2, we also know that $t^{4}=1$. Hence, $\left(y, t x^{2}\right)=(y, t)\left(y, x^{2}\right)^{t^{-1}}=(y, t) t^{2}=1$, as desired.

The next three lemmas contain information on two and three generated 2-groups with a commutator of order 4 .

Lemma 5.3 Let $G=\langle x, y\rangle$ be a non-abelian 2-group and suppose $t=(y, x)$ has order 4. If G is of Kleinian type then one of the following conditions holds.

1. $(x, t)=(y, t)=t^{2},(x y, t)=1, Z(G)=\left\langle t^{2}, x^{2}, y^{2}\right\rangle$, and one of the following conditions holds:
(a) $t^{2}=x^{4} y^{4}$;
(b) $t^{2} \in\left\{x^{2}, y^{2}, x^{4} y^{2}, x^{2} y^{4}\right\}$;
(c) $x^{4}=y^{4}=1$ and $t^{2}=x^{2} y^{2}$.
2. $(x, t)=t^{2},(y, t)=1, Z(G)=\left\langle t^{2}, x^{2},(x y)^{2}\right\rangle=\left\langle t^{2}, x^{2}, t y^{2}\right\rangle$, and one of the following conditions holds:
(a) $y^{4}=1$;
(b) either $t y^{2} \in\left\{x^{2}, x^{-2}\right\}$ or $x^{2} \in\left\{t^{2}, y^{4}\right\}$;
(c) $x^{4}=1$ and $t=y^{-2}$.
$2^{\prime}(x, t)=1,(y, t)=t^{2}, Z(G)=\left\langle t^{2}, y^{2},(x y)^{2}\right\rangle=\left\langle t^{2}, x^{2}, t y^{2}\right\rangle$, and one of the following conditions holds:
(a) $x^{4}=1$;
(b) either $t^{-1} x^{2} \in\left\{y^{2}, y^{-2}\right\}$ or $y^{2} \in\left\{t^{2}, x^{4}\right\}$;
(c) $y^{4}=1$ and $t=x^{2}$.

Proof. Since by assumption, t has order 4 , statement 6 of Lemma 5.1 yields that t is not central, $t^{2} \in Z(G)$ and $\langle t\rangle$ is normal in G. Furthermore, $(x, t)=t^{2}$ or $(y, t)=t^{2}$. We deal with three mutually exclusive cases.
(1) First assume $(x, t)=(y, t)=t^{2}$. So $x t=t^{-1} x$ and $y t=t^{-1} y$. Hence $\left(y, x^{2}\right)=$ $(y, x)(y, x)^{x^{-1}}=t t^{x^{-1}}=1$. Similarly $\left(x, y^{2}\right)=1$. Therefore $\left\langle t^{2}, x^{2}, y^{2}\right\rangle \subseteq Z(G)$. Since $t \notin Z(G)$, and thus $t \notin\left\langle t^{2}, x^{2}, y^{2}\right\rangle$, it follows that $G /\left\langle t^{2}, x^{2}, y^{2}\right\rangle$ is a non-abelian group of order 8 . Hence we obtain that $Z(G)=\left\langle t^{2}, x^{2}, y^{2}\right\rangle$. Also $(x y, t)=1$ because $(x y, t)=(y, t)^{x^{-1}}(x, t)=\left(t^{2}\right)^{x^{-1}} t^{2}=1$.

Let $H=\left\langle x^{2}, y^{2}\right\rangle$, a central subgroup of G. Note that $(x y)^{2}=t^{3} x^{2} y^{2}$ and thus, in the group G / H, one has that $\bar{t}^{-1}=(\overline{x y})^{2}$ and $(\overline{x y})^{\bar{y}}=(\overline{x y})^{-1}$. By statement 1 of Lemma 5.2 we know that $(x y)^{8}=1$. Hence, there is an epimorphism $f: D_{16} \rightarrow G / H$ given by $f(a)=\overline{x y}$ and $f(b)=\bar{y}$, where $D_{16}=\langle a\rangle_{8} \rtimes\langle b\rangle_{2}$ is the dihedral group of order 16. Because of statement 3 in Lemma 5.1, D_{16} is not of Kleinian type. However, by Lemma 4.2,G/H is of Kleinian type. Hence, $\operatorname{ker} f \neq 1$ and therefore the order of G / H divides 8 . Thus

$$
\begin{equation*}
1 \neq t^{2} \in\left\langle x^{2}, y^{2}\right\rangle \tag{4}
\end{equation*}
$$

We consider three cases: (i) $x^{4} \neq 1$, (ii) $y^{4} \neq 1$ and (iii) $x^{4}=y^{4}=1$.
(i) Suppose $x^{4} \neq 1$. So, by statement 1 of Lemma $5.2, x^{4}$ has order 2 and, by the above, x^{2} is central in G. Then $e=\frac{1}{2}\left(1-t^{2}\right) \frac{1}{2}\left(1-x^{4}\right)$ is a nonzero central idempotent of $\mathbb{Q} G$. Clearly, the semi-simple \mathbb{Q}-algebra $A=\mathbb{Q} G e$ is contained in $\mathbb{Q} G(1-\widehat{t})$. The latter, and thus also A, is a direct sum of non-commutative simple algebras (see the beginning of the proof of Lemma 5.2).

Let $f=\widehat{x^{2} y^{2}} e$, a central idempotent of A. We claim that $f=0$. Because $\{x y, t x y\}$ is a full conjugacy class of G, we get that $z=(1+t) x y f$ and $i=x^{2} f$ are central elements of $A f$. Since $x^{4} e=-e, t^{2} e=-e, x^{2} y^{2} f=f$ and $e f=f$, we get that $i^{2}=-f$ and $z^{2}=(1+t)^{2}(x y)^{2} f=(1+2 t+$ $\left.t^{2}\right) t^{-1} x^{2} y^{2}=2 f$. If $f \neq 0$ then there exists a primitive central idempotent f_{1} of $A f$ such that $i^{2} f_{1}=-f_{1}$ and $z^{2} f_{1}=2 f_{1}$. Then $\mathbb{Q} G f_{1}$ is a non-commutative simple quotient of $\mathbb{Q} G$ having a central subfield isomorphic to $\mathbb{Q}(\sqrt{2}, i)=\mathbb{Q}\left(\xi_{8}\right)$, contradicting last statement of Proposition 3.2. Thus $f=0$ and this implies that $\left\langle x^{2} y^{2}\right\rangle \cup t^{2} x^{4}\left\langle x^{2} y^{2}\right\rangle=t^{2}\left\langle x^{2} y^{2}\right\rangle \cup x^{4}\left\langle x^{2} y^{2}\right\rangle$. Therefore

$$
\begin{equation*}
t^{2} \in\left\langle x^{2} y^{2}\right\rangle \text { or } x^{4} \in\left\langle x^{2} y^{2}\right\rangle \tag{5}
\end{equation*}
$$

If $x^{4}=y^{4}$ then $\left(x^{2} y^{2}\right)^{2}=x^{8}=1$, and it follows that $t^{2}=x^{2} y^{2}$ or $x^{2}=y^{2}$. In both situations the central elements $i=x^{2} e$ and $z=(1+t) x y e$ of A are such that $i^{2}=-e$ and $z^{2}=-2 e$. Hence A has a central subfield isomorphic with $\mathbb{Q}(i, \sqrt{-2})=\mathbb{Q}\left(\xi_{8}\right)$, again yielding a contradiction. Thus $x^{4} \neq y^{4}$. Since, by statement 1 of Lemma $5.2, x^{8}=y^{8}=1$, we obtain that $x^{2} y^{2}$ has order 4. As also both t and x^{2} have order $4,(5)$ then implies that either $t^{2}=x^{4} y^{4}$ or $y^{4}=1$. In the first case 1 (a) holds. In the second case $y^{4}=1$ and thus (4) implies that $t^{2} \in\left\{x^{4}, y^{2}, x^{4} y^{2}\right\}$. If $t^{2}=x^{4}$ then 1(a) holds, otherwise 1(b) holds.
(ii) Suppose $y^{4} \neq 1$. By symmetry with case (i), we also obtain that either 1 (a) or 1 (b) holds.
(iii) Suppose $x^{4}=y^{4}=1$. By (4), we clearly get that $x^{2} \neq 1$ or $y^{2} \neq 1$. If $y^{2} \in\left\langle x^{2}\right\rangle$ then, by (4), we obtain that $1 \neq t^{2} \in\left\langle x^{2}\right\rangle$ and thus $t^{2}=x^{2}$; hence $1(\mathrm{~b})$ holds. Similarly, if $x^{2} \in\left\langle y^{2}\right\rangle$ then $t^{2}=y^{2}$ and again $1(\mathrm{~b})$ holds. Otherwise $\left\langle x^{2}, y^{2}\right\rangle \cong C_{2} \times C_{2}$ and thus by (4) one of the following holds: $t^{2}=y^{2}, t^{2}=x^{2}$ or $t^{2}=x^{2} y^{2}$. Hence $1(\mathrm{~b})$ or $1(\mathrm{c})$ holds. This finishes the proof when $(x, t)=(y, t)=t^{2}$.
(2) Second assume that $(y, t)=1$. Hence, since t is not central, $(x, t)=t^{2}$. Set $x_{1}=x, y_{1}=y x$ and $t_{1}=\left(y_{1}, x_{1}\right)$. Then $t_{1}=t$ and $\left(x_{1}, t_{1}\right)=\left(y_{1}, t_{1}\right)=t_{1}^{2}$. Thus, by (1), x_{1} and y_{1} satisfy one of the conditions of (1). In particular $Z(G)=\left\langle t^{2}, x_{1}^{2}, y_{1}^{2}\right\rangle$. Notice that $y_{1}^{2}=t^{-1} x^{2} y^{2}$ and $y_{1}^{4}=t^{2} x^{4} y^{4}$. Then $Z(G)=\left\langle t^{2}, x_{1}^{2}, y_{1}^{2}\right\rangle=\left\langle t^{2}, x^{2},(x y)^{2}\right\rangle=\left\langle t^{2}, x^{2}, t y^{2}\right\rangle$.

Thus if x_{1} and y_{1} satisfy 1 (a) then $y^{4}=1$, that is, condition 2(a) holds.
Next assume that x_{1} and y_{1} satisfy $1(\mathrm{~b})$. If $t_{1}^{2}=x_{1}^{2}$ then $t^{2}=x^{2}$. If $t_{1}^{2}=y_{1}^{2}$ then $t=x^{-2} y^{-2}$. If $t_{1}^{2}=x_{1}^{4} y_{1}^{2}$ then $t=x^{2} y^{-2}$. If $t_{1}^{2}=x^{2} y_{1}^{4}$ then $x^{2}=y^{4}$. So always $2(\mathrm{~b})$ holds.

Finally assume that x_{1} and y_{1} satisfy 1 (c). Then $x^{4}=1$ and $t=y^{-2}$, that is 2(c) holds.
(3) Third assume that $(x, t)=1$ and therefore $(y, t)=t^{2}$. Setting $x_{1}=y$ and $y_{1}=x$, one has $t_{1}=\left(y_{1}, x_{1}\right)=t^{-1},\left(y_{1}, t_{1}\right)=1$ and $\left(x_{1}, t\right)=t_{1}^{2}$. Therefore x_{1}, y_{1} and t_{1} satisfy one of the conditions of 2 and this is equivalent with x, y and t satisfying one of the conditions of 2 '.

We will need the following remark.

Remark 5.4 It follows from the proof of Lemma 5.3 that if G is a non-abelian 2-group of Kleinian type with a commutator t of order 4 then there exist $x_{1}, y_{1}, x_{2}, y_{2}, x_{2}^{\prime}, y_{2}^{\prime} \in G$ with $t=\left(y_{1}, x_{1}\right)=$ $\left(y_{2}, x_{2}\right)=\left(y_{2}^{\prime}, x_{2}^{\prime}\right)$, and so that x_{1} and y_{1} satisfy condition $1, x_{2}$ and y_{2} satisfy condition 2 , and x_{2}^{\prime} and y_{2}^{\prime} satisfy condition 2^{\prime}. Moreover if x_{1} and y_{1} satisfy 1 (a) (respectively, $1(\mathrm{~b})$ or $1(\mathrm{c})$) then x_{2} and y_{2} satisfy $2(\mathrm{a})$ (respectively, $2(\mathrm{~b})$ or $2(\mathrm{c})$) and x_{2}^{\prime} and y_{2}^{\prime} satisfy $2^{\prime}(\mathrm{a})$ (respectively, $2^{\prime}(\mathrm{b})$ or $2^{\prime}(\mathrm{c})$).

Lemma 5.5 Let $G=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ be a non-abelian 2 -group such that $x_{2}^{4} \neq 1, x_{3} \in Z(G),\left(x_{1}, t\right)=$ $t^{2} \neq 1$ and $\left(x_{2}, t\right)=1$ with $t=\left(x_{2}, x_{1}\right)$. If G is of Kleinian type then $x_{3}^{2} \in Z\left(\left\langle x_{1}, x_{2}\right\rangle\right)^{2}$.

Proof. We argue by contradiction. So suppose $G=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ has minimal order among the possible counterexamples to the lemma. In particular $x_{3}^{2} \neq 1$. By statement 5 of Lemma 5.1, x_{3} has order 4. Let $G_{1}=\left\langle x_{1}, x_{2}\right\rangle$. By Lemma 5.3, $Z\left(G_{1}\right)=\left\langle x_{1}^{2}, t^{2}, t x_{2}^{2}\right\rangle$ and therefore $Z\left(G_{1}\right)^{2}=\left\langle x_{1}^{4}, t^{2} x_{2}^{4}\right\rangle$.

Suppose $z \in Z\left(G_{1}\right)$ is such that $1 \neq z, t^{2} \notin\langle z\rangle$ and $x_{2}^{4} \notin\langle z\rangle$. Then $G_{1}^{\prime} \cap\langle z\rangle=\langle t\rangle \cap\langle z\rangle=1$ and the minimality of the order of $|G|$ applied to the group $G /\langle z\rangle$ yields $x_{3}^{2} \in\left\langle z, Z\left(G_{1}\right)^{2}\right\rangle$.

If $t^{2} \neq x_{2}^{4}$ then $z=t^{3} x_{2}^{2}$ is a non trivial central element of order 4 so that $t^{2} \notin\langle z\rangle$ and $x_{2}^{4} \notin\langle z\rangle$. Hence, by the previous, x_{3}^{2} is an element of order 2 of the group $H=\left\langle t^{3} x_{2}^{2}, Z\left(G_{1}\right)^{2}\right\rangle$. Since $t^{3} x_{2}^{2} \in Z\left(G_{1}\right)$, one has that $H=Z\left(G_{1}\right)^{2} \cup t^{3} x_{2}^{2} Z\left(G_{1}\right)^{2}$. Then $x_{3}^{2}=t^{3} x_{2}^{2} w^{2}$ for some $w \in Z\left(G_{1}\right)$. So $1=x_{3}^{4}=\left(t^{3} x_{2}^{2}\right)^{2}=t^{2} x_{2}^{4} \neq 1$, a contradiction.

Thus we have that $t^{2}=x_{2}^{4} \neq 1$. Lemma 5.3 therefore implies that we have one of the following properties: (i) $x_{1}^{2}=t^{2}=x_{2}^{4}$ or $t=x_{1}^{ \pm 2} x_{2}^{-2}$ (this is case $2(\mathrm{~b})$), or (ii) $x_{1}^{4}=1$ and $t=x_{2}^{-2}$ (this is case $2(\mathrm{c})$). In both cases we have $x_{1}^{4}=1$ and therefore $Z\left(G_{1}\right)^{2}=1$. Thus, if $z \in Z\left(G_{1}\right)$ has order 2 and $z \neq t^{2}=x_{2}^{4}$ then, by the above argument, we have that $x_{3}^{2} \in\left\langle z, Z\left(G_{1}\right)^{2}\right\rangle=\langle z\rangle$; hence $x_{3}^{2}=z$. This shows that x_{3}^{2} is the unique central element of order 2 in $Z(G)$. Therefore $Z(G)$ is cyclic generated by $x_{3}, Z\left(G_{1}\right)=\left\langle t^{2}\right\rangle$ and $x_{3}^{3}=t^{2}$. Since $t x_{2}^{2}$ is central of order at most 2 we thus get that either $t x_{2}^{2}=1$ or $t x_{2}^{2}=t^{2}$, that is, $t=x_{2}^{ \pm 2}$.

Then $K=\left\langle x_{2}, x_{3}\right\rangle$ is an abelian subgroup of index 2 in G. Let $H=\left\langle t x_{3}^{-1}\right\rangle$. Clearly K / H is cyclic (generated by $\overline{x_{2}}$). Thus $K=N_{G}(H)$ and (K, H) is a strong Shoda pair of G. Using also statement 2 of Lemma 5.1, it follows that $[K: H] \leq 4$ and hence $t^{2}=x_{2}^{4} \in H=\left\{1, t x_{3}^{-1}\right\}$. Then $t=x_{3}^{-1} \in Z(G)$, a contradiction.

Lemma 5.6 Let $G=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ be a 2-group of Kleinian type with $G^{\prime}=\langle t\rangle$ of order 4. Let $t_{i j}=\left(x_{j}, x_{i}\right)$ with $1 \leq i<j \leq 3$. Assume that $t=t_{12},\left(x_{1}, t\right)=t^{2},\left(x_{2}, t\right)=1$ and $t_{23}=1$.

1. If $t_{13} \in\left\langle t^{2}\right\rangle$ then $x_{3}^{4}=1$. If, moreover, $x_{2}^{4} \neq 1$ then either $t_{13}=1$ and $x_{3}^{2} \in Z\left(\left\langle x_{1}, x_{2}\right\rangle\right)^{2}$ or $t_{13}=t^{2}$ and $x_{2}^{4} x_{3}^{2} \in Z\left(\left\langle x_{1}, x_{2}\right\rangle\right)^{2}$.
2. If $t_{13} \notin\left\langle t^{2}\right\rangle$ then $x_{3}^{4}=x_{2}^{4}$. If, moreover, $x_{2}^{4} \neq 1$ then either $t_{13}=t^{-1}$ and $x_{2}^{2} x_{3}^{2} \in Z\left(\left\langle x_{1}, x_{2}\right\rangle\right)^{2}$ or $t_{13}=t$ and $t^{2} x_{2}^{2} x_{3}^{2} \in Z\left(\left\langle x_{1}, x_{2}\right\rangle\right)^{2}$.

Proof. 1. Assume first that $t_{13} \in\left\langle t^{2}\right\rangle$. If $t_{13}=1$ then $x_{3} \in Z(G)$ and if $t_{13}=t^{2}$ then $x_{2}^{2} x_{3} \in Z(G)$. In both cases, because of statement 5 of Lemma 5.1 and statement 1 of Lemma 5.2, we obtain that $x_{3}^{4}=1$. The second statement is a consequence of Lemma 5.5, applied to $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ if $t_{13}=1$, and to $\left\langle x_{1}, x_{2}, x_{2}^{2} x_{3}\right\rangle$ if $t_{13}=t^{2}$.
2. Assume second that $t_{13} \notin\left\langle t^{2}\right\rangle$. Then $t_{13} \in\left\{t, t^{-1}\right\}$. If $t_{13}=t^{-1}$ then $x_{2} x_{3} \in Z(G)$ and hence $\left(x_{2} x_{3}\right)^{4}=x_{2}^{4} x_{3}^{4}=1$. So $x_{2}^{4}=x_{3}^{4}$. If, moreover, $x_{2}^{4} \neq 1$ then by Lemma 5.5 we have that $x_{2}^{2} x_{3}^{2} \in Z\left(\left\langle x_{1}, x_{2}\right\rangle\right)^{2}$. On the other hand if $t_{13}=t$ then $t x_{2} x_{3} \in Z(G)$ and hence $\left(t x_{2} x_{3}\right)^{4}=x_{2}^{4} x_{3}^{4}=1$. So $x_{2}^{4}=x_{3}^{4}$. If, moreover, $x_{2}^{4} \neq 1$, then again by Lemma 5.5, we have that $t^{2} x_{2}^{2} x_{3}^{2} \in Z\left(\left\langle x_{1}, x_{2}\right\rangle\right)^{2}$. This finishes the proof.

We need one more lemma before giving the proof of (D) implies (F) for nilpotent groups.
Lemma 5.7 Let G be a finite non-abelian 2-group of Kleinian type. Assume $G^{\prime} \subseteq Z(G)$ and $Z(G / T)$ has exponent 2 for every proper subgroup T of G^{\prime}. Then G is an epimorphic image of either $C_{2}^{n} \times \mathcal{W}, \mathcal{W}_{1 n}$ or $\mathcal{W}_{2 n}$ for some n.

Proof. Applying the assumptions for $T=1$ one deduces that $Z(G)$ and G^{\prime} have exponent 2. Then $G / Z(G)$ has exponent 2 and therefore G has exponent 4.

First, we prove that G has an abelian subgroup of index 2 . Otherwise, by statement 1 of Lemma 5.1, $G / Z(G)=\left\langle\overline{x_{1}}\right\rangle_{2} \times\left\langle\overline{x_{2}}\right\rangle_{2} \times\left\langle\overline{x_{3}}\right\rangle_{2}$ for some $x_{1}, x_{2}, x_{3} \in G$. Hence $G=\left\langle Z(G), x_{1}, x_{2}, x_{3}\right\rangle$ and $G^{\prime}=\left\langle t_{12}\right\rangle_{2} \times\left\langle t_{13}\right\rangle_{2} \times\left\langle t_{23}\right\rangle_{2}$, where $t_{i, j}=\left(x_{j}, x_{i}\right)$ for $1 \leq i<j \leq 3$. If $x \in G$ then $G_{x}=\langle(x, y)$: $y \in G\rangle$ is a proper subgroup of G^{\prime} and the image of x in G / G_{x} is central. Therefore $x^{2} \in G_{x}$, by assumption. In particular, $x_{1}^{2}=t_{12}^{\alpha_{2}} t_{13}^{\alpha_{3}}, x_{2}^{2}=t_{12}^{\beta_{1}} t_{23}^{\beta_{3}}$ and $x_{3}^{2}=t_{13}^{\gamma_{1}} t_{23}^{\gamma_{2}}$, for some $\alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{3}, \gamma_{1}$, $\gamma_{2} \in\{0,1\}$. Then $\left(x_{1} x_{2}\right)^{2}=t_{12}^{1+\alpha_{2}+\beta_{1}} t_{13}^{\alpha_{3}} t_{23}^{\beta_{3}} \in\left\langle t_{12}, t_{13} t_{23}\right\rangle,\left(x_{1} x_{3}\right)^{2}=t_{12}^{\alpha_{2}} t_{13}^{1+\alpha_{3}+\gamma_{1}} t_{23}^{\gamma_{2}} \in\left\langle t_{13}, t_{12} t_{23}\right\rangle$ and $\left(x_{2} x_{3}\right)^{2}=t_{12}^{\beta_{1}} t_{13}^{1} t_{23}^{1+\beta_{3}+\gamma_{2}} \in\left\langle t_{23}, t_{12} t_{13}\right\rangle$. This implies that the α 's, β 's and γ 's with the same subindex are equal, so $x_{1}^{2}=t_{12}^{a_{2} a_{13}}, x_{2}^{2}=t_{12}^{a_{1}} t_{23}^{a_{3}}$ and $x_{3}^{2}=t_{13}^{a_{1}} t_{23}^{a_{2}}$, for some $a_{1}, a_{2}, a_{3} \in\{0,1\}$. Applying once more the property to $x_{1} x_{2} x_{3}$ one obtains that

$$
t_{12}^{1+a_{1}+a_{2}} t_{13}^{1+a_{1}+a_{3}} t_{23}^{1+a_{2}+a_{3}}=t_{12} t_{13} t_{23} x_{1}^{2} x_{2}^{2} x_{3}^{2}=\left(x_{1} x_{2} x_{3}\right)^{2} \in\left\langle t_{12} t_{13}, t_{12} t_{23}\right\rangle
$$

and therefore $3+2 a_{1}+2 a_{2}+2 a_{3} \equiv 0 \bmod 2$, a contradiction.
Therefore $G=\left\langle x, y_{1}, \ldots, y_{n}\right\rangle$ where $Y=\left\langle y_{1}, \ldots, y_{n}\right\rangle$ is an abelian subgroup of index 2 in G. In particular $G^{\prime} \subseteq\left\langle y_{1}, \ldots, y_{n}\right\rangle$. If $y_{i}^{2}=1$ for every $i=1, \ldots, n$, then G is an epimorphic image of $\mathcal{W}_{1 n}$, as desired. Otherwise, we may assume without loss of generality that y_{1} has exponent 4 and so $\left(y_{1}, x\right) \neq 1$, because $Z(G)$ has exponent 2. If $\left|G^{\prime}\right|=2$ then $\left(y_{i}, x\right) \in\left\langle\left(y_{1}, x\right)\right\rangle$ and, replacing y_{i} by $y_{1} y_{i}$ if needed, one may assume that $y_{i} \in Z(G)$ for every $i \geq 2$. Then G is a quotient of $\mathcal{W} \times C_{2}^{n-1}$. Finally suppose that $\left|G^{\prime}\right|>2$. Then, for every $i \geq 2$, replacing y_{i} by $y_{1} y_{i}$ if needed, we may assume that y_{i} has order 4 . Then $G_{y_{i}}=\left\langle\left(y_{i}, x\right)\right\rangle$ is a proper subgroup of G^{\prime} and therefore $1 \neq y_{i}^{2} \in G_{y_{i}}=\left\langle\left(y_{i}, x\right)\right\rangle$ and so $y_{i}^{2}=\left(y_{i}, x\right)$. It follows that G is an epimorphic image of $\mathcal{W}_{2 n}$.

We are ready to prove (D) implies (F) for nilpotent groups. So let G be a non-abelian finite nilpotent group of Kleinian type. Hence by statements 4 and 5 of Lemma $5.1 G=G_{3} \times G_{2}$, where G_{3} is an elementary abelian 3 -group, G_{2} is a non-abelian 2-group and the exponent of $Z(G)=G_{3} \times Z\left(G_{2}\right)$ divides 4 or 6 .

We will deal separately with three cases. (1) $G_{3} \neq 1$, (2) $G_{3}=1$ and $G^{\prime} \subseteq Z(G)$ and (3) $G_{3}=1$ and $G^{\prime} \nsubseteq Z(G)$.
(1) Assume G_{3} is not trivial. We will show that G_{2} satisfies the hypothesis of Lemma 5.7. This implies that G_{2} is isomorphic to a quotient of either $\mathcal{W} \times C_{2}^{n}, \mathcal{W}_{1 n}$ or $\mathcal{W}_{2 n}$, for some n. Hence condition (F.1) of Theorem 1 holds.

If T is a proper subgroup of G_{2}^{\prime} then, since also G / T is of Kleinian type, the exponent of $Z(G / T)$ is 6 , by statement 5 of Lemma 5.1. Hence $Z\left(G_{2} / T\right)$ has exponent 2 , as desired.

Next we need to show that $G^{\prime} \subseteq Z(G)$. We prove this by contradiction. So assume that $G^{\prime} \nsubseteq Z(G)$. Then, by statement 6 of Lemma 5.1 and statement 4 of Lemma 5.2, there exist $x, y \in G_{2}$ such that $t=(y, x)$ has order 4. Because of Remark 5.4 one may assume without loss of generality that x and y satisfy condition 1 of Lemma 5.3. So $x^{2}, y^{2} \in Z\left(G_{2}\right)$ and therefore $x^{4}=y^{4}=1$. Since $t^{2} \neq 1$, case 1 (a) does not hold and so $t^{2} \in\left\{x^{2}, y^{2}, x^{2} y^{2}\right\}$. By symmetry one may assume that $t^{2}=x^{2}$ or $t^{2}=x^{2} y^{2}$. Notice that $(x y)^{2}=t^{-1} x^{2} y^{2}$ and therefore $x y$ has order 8 . Thus $H=\langle x, y\rangle$ is a non-abelian group of exponent 8 which is an epimorphic image of one of the following two groups:

$$
\begin{aligned}
& H_{1}=\left\langle a, b \mid a^{4}=b^{4}=1, t=(b, a), t^{a}=t^{b}=t^{-1}, t^{2}=a^{2}\right\rangle \\
& H_{2}=\left\langle a, b \mid a^{4}=b^{4}=1, t=(b, a), t^{a}=t^{b}=t^{-1}, t^{2}=a^{2} b^{2}\right\rangle
\end{aligned}
$$

On the other hand, $\mathbb{Q}\left(C_{3} \times Q_{16}\right)$ has an epimorphic image isomorphic to $\mathbb{Q}\left(\xi_{3}\right) \otimes_{\mathbb{Q}} \mathbb{H}(\mathbb{Q}(\sqrt{2})) \cong$ $M_{2}\left(\mathbb{Q}\left(\xi_{3}, \sqrt{2}\right)\right)$ and $\mathbb{Q}\left(C_{3} \times D_{16}^{-}\right)$has an epimorphic image isomorphic to $\mathbb{Q}\left(\xi_{3}\right) \otimes \mathbb{Q} M_{2}(\mathbb{Q}(\sqrt{-2})) \cong$ $M_{2}\left(\mathbb{Q}\left(\xi_{3}, \sqrt{-2}\right)\right)\left(\right.$ see (3)). Then, statement 2 of Lemma 5.1 implies that neither $C_{3} \times Q_{16}$ nor $C_{3} \times D_{16}^{-}$are of Kleinian type. Since $H_{1} /\left\langle a^{2} b^{2}\right\rangle \cong Q_{16}$ and $H_{2} /\left\langle b^{2}\right\rangle \cong D_{16}^{-}$, Lemma 4.2 implies that neither $C_{3} \times H_{1}$ nor $C_{3} \times H_{2}$ are of Kleinian type. Since $|H| \geq 16$ and $\left|H_{1}\right|=\left|H_{2}\right|=32$, we have that H is a non-abelian group of order 16 with an element of order 8 . This implies that H is isomorphic to either $D_{16}, D_{16}^{+}, D_{16}^{-}$or Q_{16}. However H is not isomorphic to D_{16} because the latter is not of Kleinian type, and it is also not isomorphic to D_{16}^{+}because the commutator of D_{16}^{+}has order 2. Moreover the same argument as above shows that H is not isomorphic to neither Q_{16} nor D_{16}^{-}. This yields in all cases a contradiction. So $G^{\prime} \subseteq Z(G)$ and this finishes the proof of (1).
(2) Assume that $G_{3}=1$ and $G^{\prime} \subseteq Z(G)$. We prove that G is isomorphic to a quotient of either $\mathcal{V} \times A, \mathcal{U}_{1} \times A, \mathcal{U}_{2} \times A, \mathcal{V}_{1 n}$ or $\mathcal{V}_{2 n}$, for an abelian group A of exponent 4. Hence condition (F.2) of Theorem 1 holds.

From statement 1 of Lemma 5.2 and statement 5 of Lemma 5.1, we know that the exponent of G divides 8 and the exponent of $Z(G)$ divides 4 . Moreover, the assumptions and statement 6 of Lemma 5.1 imply that G^{\prime} is of exponent 2 . Hence $g^{2} \in Z(G)$ for all $g \in G$.

If G does not contain an abelian subgroup of index 2 then, by statement 1 of Lemma 5.1, $G=$ $\left\langle Z(G), y_{1}, y_{2}, y_{3}\right\rangle$, and $G / Z(G)$ and $G^{\prime}=\left\langle t_{i j}=\left(y_{j}, y_{i}\right) \mid 1 \leq i<j \leq 3\right\rangle$ are both elementary abelian groups of order 8. By statement 4 of Lemma 5.2, it follows that there exist $\alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{3}, \gamma_{1}$ and γ_{2} in $\{0,1\}$ such that $y_{1}^{4}=t_{12}^{\alpha_{2}} t_{13}^{\alpha_{3}}, y_{2}^{4}=t_{12}^{\beta_{1}} t_{23}^{\beta_{3}}$ and $y_{3}^{4}=t_{13}^{\gamma_{1}} t_{23}^{\gamma_{2}}$. Applying again part 4 of Lemma 5.2, it follows that $\left(y_{1} y_{2}\right)^{4}=t_{12}^{\alpha_{2}+\beta_{1}} t_{13}^{\alpha_{3}} t_{23}^{\beta_{3}} \in\left\langle t_{12}, t_{13} t_{23}\right\rangle,\left(y_{1} y_{3}\right)^{4}=t_{12}^{\alpha_{2}} t_{13}^{\alpha_{3}+\gamma_{1}} t_{23}^{\gamma_{2}} \in\left\langle t_{13}, t_{12} t_{23}\right\rangle$ and $\left(y_{2} y_{3}\right)^{4}=t_{12}^{\beta_{1}} t_{13}^{\gamma_{1}} t_{23}^{\beta_{3}+\gamma_{2}} \in\left\langle t_{23}, t_{12} t_{13}\right\rangle$. Hence $\alpha_{3}=\beta_{3}, \alpha_{2}=\gamma_{2}$ and $\beta_{1}=\gamma_{1}$. To simplify notation, put $a_{1}=\beta_{1}, a_{2}=\alpha_{2}$ and $a_{3}=\alpha_{3}$. Then, once more applying statement 4 of Lemma 5.2, we get

$$
\begin{align*}
& \begin{array}{lll}
y_{1}^{4}=t_{12}^{a_{2}} t_{13}^{a_{3}} & \\
y_{2}^{4} & =t_{12}^{a_{1}} t_{23}^{3} & \text { and } \\
y_{3}^{4}=t_{13} t_{23} t_{23}^{a_{2}} &
\end{array} \tag{6}\\
& \begin{aligned}
\left(y_{1} y_{2}\right)^{4} & =t_{12}^{a_{1}+a_{2}} t_{13}^{a_{3}} t_{23}^{a_{3}} \\
\left(y_{1} y_{3}\right)^{4} & =t_{12}^{a_{2}} t_{13}^{a_{1}+a_{3}} t_{23}^{a_{2}} \\
\left(y_{2} y_{3}\right)^{4} & =t_{12}^{a_{1} t_{1} a_{1} t_{23} a_{2}+a_{3}} \\
\left(y_{1} y_{2} y_{3}\right)^{4} & =t_{12}^{a_{1}+a_{2}} t_{13}^{t_{13}+a_{3}} t_{23}^{a_{2}+a_{3}} .
\end{aligned}
\end{align*}
$$

Because each $a_{i} \in\{0,1\}$, we obtain that at least one of the seven elements in (6) is equal to 1 . Without loss of generality, we may assume that $y_{1}^{4}=1$, and hence $a_{2}=a_{3}=0$. Then $y_{2}^{4}=t_{12}^{a_{1}}$ and $y_{3}^{4}=t_{13}^{a_{1}}$. If $a_{1}=0$ then it follows that G is an epimorphic image of $\mathcal{U}_{1} \times C_{4}^{n}$ for some n. If $a_{1}=1$ then G is an epimorphic image of $\mathcal{U}_{2} \times C_{4}^{n}$ for some n.

We now consider the case that G has an abelian subgroup $\left\langle y_{1}, \ldots, y_{n}\right\rangle$ of index 2. Write $G=\left\langle x, y_{1}, \ldots, y_{n}\right\rangle$. If $y_{i}^{4}=1$ for every i, then G is an epimorphic image of $\mathcal{V}_{1 n}$. So assume that
some y_{i}, say y_{1}, has order 8 . In particular $\left(y_{1}, x\right) \neq 1$. As in the case where $G_{3} \neq 1$ and G_{2} has an abelian subgroup of index 2 , if $\left|G^{\prime}\right|=2$ then one may assume that y_{i} is central for every $i \geq 2$ and therefore $y_{i}^{4}=1$. This implies that G is an epimorphic image of $\mathcal{V} \times C_{4}^{n-1}$. Finally, assume that y_{1} has order 8 and $\left|G^{\prime}\right|>2$. Again following the same pattern as in the case of $G_{3} \neq 1$, replacing y_{i} by $y_{1} y_{i}$ one may assume that each y_{i} has order 8 and applying statement 4 of Lemma 5.2, one deduces that $y_{i}^{4}=\left(y_{i}, x\right)$ for every i. It follows that G is an epimorphic image of $\mathcal{V}_{2 n}$.
(3) Assume that $G_{3}=1$ and $G^{\prime} \nsubseteq Z(G)$. We prove that G is an epimorphic image of either $\mathcal{T} \times A, \mathcal{T}_{1 n}, \mathcal{T}_{2 n}$ or $\mathcal{T}_{3 n}$ for A an elementary abelian 2 -group.

By statement 1 of Lemma 5.2, the exponent of G divides 8. By statements 1 and 6 of Lemma 5.1, G has an abelian subgroup $Y=\left\langle y_{1}, \ldots, y_{n}\right\rangle$ of index 2 and G^{\prime} has exponent 4. Then $G=\langle Y, x\rangle$ for some $x \in G$ and $G^{\prime}=\left\langle t_{1}, \ldots, t_{n}\right\rangle$, where $t_{i}=\left(y_{i}, x\right)$ for $i=1, \ldots, n$. We may assume, without loss of generality, that t_{1} is of order 4 (and thus t_{1} is not central). Since $G^{\prime} \subseteq Y,\left(t_{i}, y_{j}\right)=1$ for all $1 \leq i, j \leq n$. If t_{j} is not central then, by Lemma 5.3, $\left(x, t_{j}\right)=t_{j}^{2}$. If t_{j} is central, and thus of order two, we also get that $\left(x, t_{j}\right)=1=t_{j}^{2}$. So, in all cases we have $\left(x, t_{j}\right)=t_{j}^{2}$.

We now show that we may assume that $\left\langle t_{1}\right\rangle \cap\left\langle t_{i}\right\rangle=1$ for every $i \geq 2$.
Because the order of t_{i} divides 4 , this is clear if $t_{i}^{2} \notin\left\langle t_{1}\right\rangle$. If $t_{i} \in\left\langle t_{1}\right\rangle$, say $t_{i}=t_{1}^{a}$ then we replace y_{i} by $y_{i}^{\prime}=y_{1}^{-a} y_{i}$ to make $\left(y_{i}^{\prime}, x\right)=1$, because $\left(y_{i}^{\prime}, x\right)=\left(y_{1}^{-a} y_{i}, x\right)=\left(y_{i}, x\right)^{y_{1}^{a}}\left(y_{1}^{-a}, x\right)=t_{i} t_{1}^{-a}=1$. In the remaining case $t_{i} \notin\left\langle t_{1}\right\rangle$ and $t_{i}^{2} \in\left\langle t_{1}^{2}\right\rangle$. Then either $t_{i}^{2}=1$ or $t_{i}^{2}=t_{1}^{2}$. If $t_{i}^{2}=1$ then the claim is clear. If $t_{i}^{2}=t_{1}^{2}$ then replacing y_{i} by $y_{i}^{\prime}=y_{1} y_{i}$ we obtain that $\left(y_{i}^{\prime}, x\right)=\left(y_{1} y_{i}, x\right)=t_{i}^{y_{1}^{-1}} t_{1}=t_{i} t_{1} \notin\left\langle t_{1}\right\rangle$ and $\left(y_{i}^{\prime}, x\right)^{2}=1$, which finishes the proof of the claim. So from now on we assume that for $i \geq 2$, $\left\langle t_{1}\right\rangle \cap\left\langle t_{i}\right\rangle=1$. Since the order of t_{i} divides 4 and the order of t_{1} is 4 , this implies that $\left\langle t_{i}\right\rangle \cap\left\langle t_{1} t_{i}\right\rangle=1$ for $i \geq 2$.

For $i=1, \ldots, n$ we put $F_{i}=\left\langle x, y_{1}, y_{i}\right\rangle$ and we prove three claims.
Claim 1: If $y_{1}^{4}=1$ then $y_{j}^{4}=1$ for every j (with $1 \leq j \leq n$).
Indeed, suppose $y_{1}^{4}=1$. If $t_{j}=1$ then y_{j} is central in G and thus, by statement 5 of Lemma 5.1, we get at once that $y_{j}^{4}=1$. So assume that $t_{j} \neq 1$. We now apply statement 4 of Lemma 5.2 to the group F_{j}. Since $\left\langle t_{1}\right\rangle \cap\left\langle t_{j}\right\rangle=1$, one has $\left(F_{j}\right)_{y_{j}}=\left\langle t_{j}\right\rangle \neq F_{j}^{\prime} \neq\left\langle y_{1} y_{j}\right\rangle=\left(F_{j}\right)_{y_{1} y_{j}}$ and hence $y_{j}^{4} \in\left\langle t_{j}\right\rangle$ and $y_{j}^{4}=\left(t_{1} t_{j}\right)^{4} \in\left\langle t_{1} t_{j}\right\rangle$. Thus $y_{j}^{4} \in\left\langle t_{j}\right\rangle \cap\left\langle t_{1} t_{j}\right\rangle=1$. This proves Claim 1 .

Claim 2: If $x^{4}=1$ and $t_{1}=y_{1}^{-2}$ then $t_{j}=y_{j}^{-2}$ for every j (with $1 \leq j \leq n$).
Indeed, suppose $x^{4}=1$ and $t_{1}=y_{1}^{-2}$. Let $Z=\left\langle x^{2}, t_{1}^{2}\right\rangle$. Then Z is a subgroup of $Z\left(F_{1}\right)$. Moreover $y_{1}^{-2}=t_{1} \notin Z\left(F_{1}\right)$ and $\left(x y_{1}^{i}, t_{1}\right)=t_{1}^{2} \neq 1$ for every i. This shows that $Z=Z\left(F_{1}\right)$. Hence $Z\left(F_{1}\right)^{2}=1$.

Let j be such that $2 \leq j \leq n$. Since $t_{1}^{2} \notin\left\langle t_{j}\right\rangle$ (because $\left\langle t_{1}\right\rangle \cap\left\langle t_{j}\right\rangle=1$ and t_{1} has order 4) we can apply Lemma 5.5 to the elements $x_{1}=\bar{x}, x_{2}=\overline{y_{1}}$ and $x_{3}=\overline{y_{j}}$ of the non-abelian Kleinian group $F_{j} /\left\langle t_{j}\right\rangle$ and deduce that ${\overline{y_{j}}}^{2} \in \bar{Z}^{2}=1$. Hence

$$
\begin{equation*}
y_{j}^{2} \in\left\langle t_{j}\right\rangle \tag{7}
\end{equation*}
$$

We now proceed by considering the possible orders of t_{j}. If $t_{j}=1$ then (7) implies that $y_{j}^{-2}=1=t_{j}$, as desired. If t_{j} has order 4 then, again because $\left\langle t_{1}\right\rangle \cap\left\langle t_{j}\right\rangle=1$, the second part of Lemma 5.6 is applicable to the group $F_{j} /\left\langle t_{1}^{-1} t_{j}\right\rangle$, for $x_{1}=\bar{x}, x_{2}=\overline{y_{1}}$ and $x_{3}=\overline{y_{j}}$. It follows that $\overline{t_{1}^{2} y_{1}^{2} y_{j}^{2}} \in \bar{Z}^{2}=1$. Hence $t_{1}^{2} y_{1}^{2} y_{j}^{2}=t_{1} y_{j}^{2} \in\left\langle t_{1}^{-1} t_{j}\right\rangle$. Combining this with (7), we obtain $y_{j}^{2} \in\left\langle t_{j}\right\rangle \cap t_{1}^{-1}\left\langle t_{1}^{-1} t_{j}\right\rangle=\left\{t_{j}^{-1}\right\}$, as desired. If t_{j} has order two then again (7) implies that either $y_{j}^{2}=t_{j}$ or $y_{j}^{2}=1$. The former is as desired. In the second case we can apply Lemma 5.5 to the non-abelian Kleinian group $F_{j} /\left\langle t_{1}^{2} t_{j}\right\rangle$ (note that $\overline{t_{1} y_{j}}$ is central in this group). It follows that $\left(\overline{t_{1} y_{j}}\right)^{2} \in \overline{Z^{2}}=1$ and thus $t_{1}^{2}=t_{1}^{2} y_{j}^{2} \in\left\langle t_{1}^{2} t_{j}\right\rangle$. Hence $t_{1}^{2}=t_{1}^{2} t_{j}$, a contradiction. This finishes the proof of Claim 2.

Claim 3: If G^{\prime} is not cyclic then $y_{i}^{4} \in\left\langle t_{i}\right\rangle$ for every i with $1 \leq i \leq n$. If, furthermore, $t_{i}^{2}=y_{i}^{4} \neq 1$ for some $i \geq 1$, then $x^{4}=1$.

Assume that G^{\prime} is not cyclic. Then $G_{y_{i}}=\left\langle t_{i}\right\rangle \neq G^{\prime}$, for each $i \geq 1$. Hence, by statement 4 of Lemma 5.2, $y_{i}^{4} \in\left\langle t_{i}\right\rangle$, as desired. Assume, furthermore, that $x^{4} \neq 1$ and $t_{i}^{2}=y_{i}^{4} \neq 1$ for some $i \geq 1$. By Lemma 5.3, $t_{i} y_{i}^{2}=x^{ \pm 2}$ and therefore $1=t_{i}^{2} y_{i}^{4}=x^{4}$, a contradiction. Hence the claim follows.

We now consider 3 cases.
Case 1. Suppose $y_{1}^{4}=1$.
Because of Claim 1 we obtain that $y_{j}^{4}=1$ for every j. Hence we conclude that G is a quotient of $\mathcal{T}_{1 n}$.

Case 2. Suppose $x^{4}=1$ and $t_{1}=y_{1}^{-2}$.
Because of Claim 2 we conclude that G is a quotient of $\mathcal{T}_{2 n}$.
Case 3. Suppose that neither Case 1 nor Case 2 hold.
Claim 4. One may assume that, for every $i \geq 1$, if $t_{i}^{2} \neq 1$ then one has $y_{i}^{4} \neq 1, t_{i} \neq y_{i}^{-2}$ and either $t_{i} y_{i}^{2}=x^{ \pm 2}$ or $x^{2} \in\left\{t_{i}^{2}, y_{i}^{4}\right\}$.

Suppose that $t_{i}^{2} \neq 1$. Then x and y_{i} satisfy condition 2 of Lemma 5.3 and hence one of the three cases (a), (b) or (c) of this statement holds. If $y_{i}^{4}=1$ then interchanging the roles of y_{1} and y_{i} one may assume that Case 1 holds. So one may assume that $y_{i}^{4} \neq 1$ and hence (a) does not hold. Suppose now that $t_{i}=y_{i}^{-2}$. If $x^{4} \neq 1$ then (c) does not hold and from (b) we get that $1=t_{i} y_{i}^{2}=x^{ \pm 2} \neq 1$, a contradiction. Thus in this case $x^{4}=1$ and interchanging again the roles of y_{1} and y_{i} one may assume that Case 2 holds. So one may assume that $y_{i}^{4} \neq 1$ and $t_{i} \neq y_{i}^{-2}$. Then neither (a) nor (c) holds. Thus (b) holds and this finishes the proof of Claim 4.

Assume that G^{\prime} is cyclic. Thus $\left\langle t_{i}\right\rangle \subseteq\left\langle t_{1}\right\rangle$. Since we already know that $\left\langle t_{1}\right\rangle \cap\left\langle t_{i}\right\rangle=1$, for $i \geq 2$, this implies that $t_{i}=1$. Hence y_{i} is central for $i \geq 2$. By Lemma 5.5, we get that $y_{i}^{2}=z_{i}^{2}$ for some $z_{i} \in Z\left(F_{1}\right)$. Then, replacing y_{i} by $y_{i} z_{i}$, we may assume that $y_{i}^{2}=1$, for $i \geq 2$. Thus G is an epimorphic image of $F_{1} \times C_{2}^{n-1}$. We are going to show that F_{1} is an epimorphic image of \mathcal{T} and therefore G is an epimorphic image of $\mathcal{T} \times C_{2}^{n-1}$.

First assume that $x^{4} \neq 1$ and so, by Claim $4, t_{1} y_{i}^{2}=x^{ \pm 2}$. If $t_{1} y_{i}^{2}=x^{-2}$ then $\left(x y_{1}\right)^{2}=t_{1}^{-1} x^{2} y_{1}^{2}=$ $x^{4} y_{1}^{4}=t_{1}^{2}=\left(x y_{1}, t_{1}\right)$ and $t_{1}=\left(y_{1}, x y_{1}\right)$. Then replacing x by $x y_{1}$ one sees that F_{1} is an epimorphic image of \mathcal{T}. A similar computation shows that if $t_{1} y_{1}^{2}=x^{2}$ then replacing x by $x y_{1}^{-1}$ one deduces that F_{1} is an epimorphic image of \mathcal{T}. Second assume that $x^{4}=1$. By Claim 4, either $t_{1} y_{1}^{2}=x^{2}$, $x^{2}=y_{1}^{4}$ or $x^{2}=t_{1}^{2}$. If $x^{2}=t_{1}^{2}$ then H is clearly an epimorphic image of \mathcal{T}. If $x^{2}=y_{1}^{4}$ then $x \mapsto x y_{1}^{2}$ and $y \mapsto y_{1}$ induces an epimorphism $\mathcal{T} \rightarrow H$ and if $t_{1} y_{1}^{2}=x^{2}$ one gets an epimorphism $\mathcal{T} \rightarrow H$ given by $x \mapsto x y_{1}$ and $y \mapsto y_{1}$. This finishes the proof if G^{\prime} is cyclic.

Assume that G^{\prime} is not cyclic.
By Claim $3, y_{i}^{4} \in\left\langle t_{i}\right\rangle \cap Z(G)$ for every i. In particular, if $t_{i}^{2} \neq 1$ (for example for $i=1$), then $y_{i}^{4}=t_{i}^{2}$ (because by assumption $y_{i}^{4} \neq 1$ by Claim 4). Because of Claim 3 we then get that $x^{4}=1$. Moreover $Z\left(\left\langle x, y_{i}\right\rangle\right)=\left\langle x^{2}, t_{i}^{2}, t_{i} y_{i}^{2}\right\rangle$ (see Lemma 5.3) and so $Z\left(\left\langle x, y_{i}\right\rangle\right)^{2}=1$ for every i such that $t_{i}^{2} \neq 1$.

We claim that $y_{i}^{2} \in\left\langle t_{i}\right\rangle$ and $t_{i}^{2}=1$ for every $i \geq 2$. Clearly the image $\overline{y_{i}}$ of y_{i} in $H=F_{i} /\left\langle t_{i}\right\rangle$ is central. Because $\left\langle t_{i}\right\rangle \cap\left\langle t_{1}\right\rangle=1$ and $y_{1}^{4}=t_{1}^{2}$, Lemma 5.5 is applicable to the group H. Indeed, $H=\left\langle x_{1}=\bar{x}, x_{2}=\overline{y_{1}}, x_{3}=\overline{y_{i}}\right\rangle, x_{3} \in Z(H),\left(x_{1}, t\right)=x_{2}^{4}=t^{2} \neq 1$ and $\left(x_{2}, t\right)=1$, where $t=\left(x_{2}, x_{1}\right)=\overline{t_{1}}$, because $t_{1}^{2} \notin\left\langle t_{i}\right\rangle$. Therefore we get that $x_{3}^{2} \in Z\left(\left\langle x_{1}, x_{2}\right\rangle\right)^{2}=1$, or equivalently $y_{i}^{2} \in\left\langle t_{i}\right\rangle$, as desired. Assume now that $t_{i}^{2} \neq 1$. Then, by the previous paragraph, $y_{i}^{4}=t_{i}^{2}$ and hence $y_{i}^{2}=t_{i}$, (because the option $y_{i}^{2}=t_{i}^{-1}$ is excluded by Claim 4). The last part of Claim 4 now implies $x^{2}=t_{i}^{2}$. Interchanging the role of y_{1} and y_{i} in the above reasoning, we get that $t_{1}^{2}=x^{2}$. Hence $t_{1}^{2}=t_{i}^{2} \neq 1$, contradicting with $\left\langle t_{1}\right\rangle \cap\left\langle t_{i}\right\rangle=1$. This proves that $t_{i}^{2}=1$ and shows the claim.

Let $i \geq 2$. The natural image of $t_{1} y_{i}$ is central in the non-abelian Kleinian group $F_{i} /\left\langle t_{1}^{2} t_{i}\right\rangle$. Hence applying Lemma 5.5 to this group, we obtain that $\overline{t_{1}^{2} y_{i}^{2}} \in Z\left(\left\langle\bar{x}, \overline{y_{1}}\right\rangle\right)^{2}=1$. Consequently $t_{1}^{2} y_{i}^{2} \in\left\langle t_{1}^{2} t_{i}\right\rangle$. Thus $y_{i}^{2} \in\left\{1, t_{i}\right\} \cap\left\{t_{1}^{2}, t_{i}\right\}=\left\{t_{i}\right\}$, i.e. $y_{i}^{2}=t_{i}$. Moreover, Claim 4 implies that either $x^{2}=t_{1}^{2}$ or $t_{1} y_{1}^{2}=x^{2}$. In the first case, G is a quotient of $\mathcal{T}_{3 n}$. In the second case, setting $x^{\prime}=y_{1} x$ and $y_{1}^{\prime}=y_{1}$, one has $t_{1}^{\prime}=\left(y_{1}, y_{1} x\right)=t_{1}$ and $t_{i}^{\prime}=\left(y_{i}, y_{1} x\right)=t_{i}$. So $y_{i}^{2}=t_{i}^{\prime}$ for every $i \geq 2$ and $x^{\prime 2}=$ $y_{1} x y_{1} x=t_{1} x y_{1} t_{1} x y_{1}=t_{1} x t_{1} y_{1} x y_{1}=x y_{1} x y_{1}=x t_{1} x y_{1}^{2}=t_{1}^{3} x^{2} y_{1}^{2}=t_{1}^{3} t_{1} y_{1}^{2} y_{1}^{2}=y_{1}^{4}=t_{1}^{2}=\left(t_{1}^{\prime}\right)^{2}$. This implies that again G is a quotient of $\mathcal{T}_{3 n}$. It also finishes the proof of (D) implies (F) for nilpotent groups.

6 (D) implies (F), for non-nilpotent groups

In this section we prove that (D) implies (F) for finite groups that are not nilpotent.
Let G be a finite non-nilpotent group of Kleinian type. By statement 4 of Lemma 5.1, G is a semidirect product $G_{3} \rtimes G_{2}$ of an elementary abelian 3 -group G_{3} and a 2-group G_{2}. Moreover, since by assumption G is not nilpotent, statement 1 of Lemma 5.1 implies that G has an abelian subgroup $G_{3} \times N_{2}$ such that N_{2} has index 2 in G_{2}. Thus $G_{2}=N_{2} \cup N_{2} x$, for every $x \in G_{2} \backslash N_{2}$. Let $K=G_{3} \cap Z(G)$. Then $G_{3}=K \times M$, for some subgroup M of G_{3}. Note that M is not trivial because, by assumption, G is not nilpotent. For every $m \in M$, let $k_{m}=m m^{x}$ and $\widetilde{m}=k_{m} m$. Since x^{2} centralizes G_{3} and G_{3} is abelian, $k_{m} \in K$ and thus $\widetilde{m}^{x}=k_{m} m^{x}=k_{m}^{2} m^{-1}=\widetilde{m}^{-1}$. Furthermore $k_{m_{1} m_{2}}=m_{1} m_{2}\left(m_{1} m_{2}\right)^{x}=k_{m_{1}} k_{m_{2}}$ and hence $\widetilde{m_{1} m_{2}}=k_{m_{1} m_{2}} m_{1} m_{2}=k_{m_{1}} m_{1} k_{m_{2}} m_{2}=\widetilde{m_{1}} \widetilde{m_{2}}$. Hence $\widetilde{M}=\{\widetilde{m} \mid m \in M\}$ also is an elementary abelian 3-group and $G_{3}=K \times \widetilde{M}$. So, replacing M by \widetilde{M} we may assume that $\widetilde{M}=M, a^{x}=a$ if $a \in K$, and $a^{x}=a^{-1}$ if $a \in M$. Consequently, $G=K \times\left(M \rtimes G_{2}\right)=K \times\left(M \rtimes\left\langle N_{2}, x\right\rangle\right)$, where K and M are elementary abelian 3-groups, $G_{2}=\left\langle N_{2}, x\right\rangle=N_{2} \cup N_{2} x$ is a 2-group, $\left\langle N_{2}, M\right\rangle=N_{2} \times M$ is abelian and x acts on M by inversion. Notice that this group is completely determined by N_{2}, G_{2} and the ranks k and m of K and M respectively. To emphasize this information we use the following notation

$$
\begin{gather*}
G=G_{k, m, N_{2}, G_{2}}=K \times\left(M \rtimes G_{2}\right)=K \times\left(\left(M \times N_{2}\right):\langle\bar{u}\rangle_{2}\right), \\
\left(k \geq 0, m \geq 1, K=C_{3}^{k}, M=C_{3}^{m}, u^{2} \in N_{2} \text { and } w^{u}=w^{-1} \text { for } w \in M\right) \tag{8}
\end{gather*}
$$

Since Theorem 1 has already been proved for nilpotent groups, if G is of Kleinian type and G_{2} is non-abelian then $K \times G_{2}$ satisfies either condition (F.1), (F.2) or (F.3). In particular, if $K \neq 1$ and G_{2} is non-abelian, then $K \times G_{2}$ satisfies condition (F.1) and so the exponent of G_{2} is $4, G_{2}^{\prime} \subseteq Z\left(G_{2}\right)$ and the exponent of $Z\left(G_{2}\right)$ is 2 . In the following four lemmas we find more restrictions on k, m, N_{2} and G_{2}.

Lemma 6.1 If $G=G_{k, m, N_{2}, G_{2}}$ is of Kleinian type then the exponent of G_{2} divides 8. Furthermore, if $k \neq 0$ then the exponent of G_{2} divides 4 and the exponent of $G_{2} \cap Z(G)$ is 1 or 2 .

Proof. First we prove that the exponent of G_{2} divides 8. This is a consequence of part 1 of Lemma 5.2, if G_{2} is non-abelian. If G_{2} is abelian and $g \in G_{2}$ then $g^{2} \in N_{2}$ and therefore it is central. By statement 5 of Lemma 5.1 the order of g^{2} divides 4 and thus the order of g divides 8 .

Assume now that $k \neq 0$, or equivalently $K \neq 1$. If G_{2} is non-abelian then G_{2} has exponent 4 and $Z\left(G_{2}\right)$ has exponent 2 and so $G_{2} \cap Z(G)$ has exponent 1 or 2 as wanted. Otherwise, that is if G_{2} is abelian, $N_{2}=G_{2} \cap Z(G)$. Since K has a central element of order 3, the exponent of $Z(G)$ is either 3 or 6 and therefore the exponent of $G_{2} \cap Z(G)$ is either 1 or 2. Furthermore $g^{2} \in G_{2} \cap Z(G)$ for every $g \in G_{2}$ and so $g^{4}=1$.

Notice that if M_{1} is a maximal subgroup of M then $G /\left(K \times M_{1}\right) \cong G_{0,1, N_{2}, G_{2}}$. So to obtain restrictions on G_{2} and N_{2} one may assume without loss of generality that $k=0$ and $m=1$. This will be used in the proof of the next three lemmas.

Lemma 6.2 Assume that $G=G_{k, m_{, ~ N}, G_{2}}$ is of Kleinian type. If L is a normal subgroup of G_{2} contained in N_{2} such that $G_{2} / L \cong D_{8}$ and $a \in N_{2}$ then $a^{2} \in L$. In particular, if $G_{2}=D_{8}$ and a is an element of order 4 in G_{2} then $a \notin N_{2}$.

Proof. One may suppose that $k=0$ and $m=1$. Then $G / L \cong C_{3} \rtimes D_{8}$. If $a^{2} \notin L$ and $a \in N_{2}$ then $G / L=\langle c\rangle_{3} \rtimes\left(\langle\bar{a}\rangle_{4} \rtimes\langle b\rangle_{2}\right)=\langle c \bar{a}\rangle_{12} \rtimes\langle b\rangle_{2} \cong D_{24}$, contradicting statement 3 of Lemma 5.1.

Lemma 6.3 Assume that $G=G_{k, m, N_{2}, G_{2}}$ is of Kleinian type. Let L be a normal subgroup of G_{2} contained in N_{2}. Then G_{2} / L is not isomorphic to any of the groups $Q_{16}, D_{16}^{-}, D_{16}^{+}, \mathcal{D}, \mathcal{D}^{+}$.

In particular, if, moreover, G_{2} / L is non-abelian and has order 16 then G_{2} / L has exponent 4 and the exponent of $Z\left(G_{2} / L\right)$ is 2 .

Proof. We may assume that $k=0$ and $m=1$ and hence $H=G / L=G_{0,1, Q, P}=\langle w\rangle_{3} \rtimes P$, where $P=G_{2} / L$ and $Q=N_{2} / L$.

First assume that $P=Q_{16}=\left\langle a, b \mid a^{8}=b^{2} a^{4}=1, b a=a^{-1} b\right\rangle$ or $P=D_{16}^{-}=\langle a, b| a^{8}=b^{2}=$ $\left.1, b a=a^{3} b\right\rangle$. Then $P /\left\langle a^{4}\right\rangle \cong D_{8}$ and $a^{2} \notin\left\langle a^{4}\right\rangle$. By Lemma 6.2, $a \notin Q$. However $\left(\left\langle w, a^{2}\right\rangle, 1\right)$ is a strong Shoda pair of H and $\left[H:\left\langle w, a^{2}\right\rangle\right]=4$, contradicting statement 2(a) of Lemma 5.1.

Second assume that $P=D_{16}^{+}=\left\langle a, b \mid a^{8}=b^{2}=1, b a=a^{5} b\right\rangle$. If $b \in Q$ then $a \notin Q$ and $\left(A=\left\langle w, a^{2}, b\right\rangle, B=\langle b\rangle\right)$ is a strong Shoda pair of G with $[A: B]=12$ and B is not normal in G, contradicting statement $2(\mathrm{~b})$ of Lemma 5.1. On the other hand, if $b \notin Q$ then, interchanging generators if needed, we may assume that $a \in Q$ and hence $(A=\langle w, a\rangle, 1)$ is a strong Shoda pair of H. Let $e=e(H, A, 1)$, a primitive central idempotent of $\mathbb{Q} H$. Then $b^{2} e=e$ but $b e \neq \pm e$ (because be cannot be central in $\mathbb{Q} H e)$. Hence $\mathbb{Q} H e$ is split. Since $|A|=24$ we obtain a contradiction with statement 2(c) of Lemma 5.1.

Third, assume that $P=\mathcal{D}=\left\langle a, b, c \mid c a=a c, c b=b c, a^{2}=b^{2}=c^{4}=1, b a=c^{2} a b\right\rangle$. Since $a b$ is of order 4 and $\langle a, b\rangle=D_{8}$, Lemma 6.2 implies that $a b \notin Q$. It thus follows that either $a \notin Q$ or $b \notin Q$. By symmetry, we may assume that $a \notin Q$ and $b \in Q$. If $c \in Q$ then $(A=\langle w, c, b\rangle, B=\langle b\rangle)$ is a strong Shoda pair of $H,[A: B]=12$ and $\langle b\rangle$ is not normal in H, contradicting statement $2(\mathrm{~b})$ of Lemma 5.1. If $c \notin Q$ then $\left(A=\left\langle w, c^{2}, b\right\rangle, B=\langle b\rangle\right)$ is a strong Shoda pair of H such that $[H: A]=4$, again in contradiction with statement 2(b) of Lemma 5.1.

Fourth, assume that $P=\mathcal{D}^{+}=\left\langle a, b, c \mid c a=a c, c b=b c, a^{4}=b^{2}=c^{4}=1, b a=c a^{3} b\right\rangle$. Then $a^{2} c \in P^{\prime} \subseteq Q$ and $a^{2} \in Q$. Thus $c \in Q$. Moreover $P /\langle c\rangle \cong D_{8}$. By Lemma 6.2, $a \notin Q$. So ($A=\left\langle M, a^{2}, c\right\rangle, B=\left\langle a^{2}\right\rangle$) is a strong Shoda pair of H with $[H: A]=4$. This again yields a contradiction with statement $2(\mathrm{~b})$ of Lemma 5.1.

Now we prove the second statement. Assume that P is non-abelian and of order 16. By statement 3 of Lemma 5.1, P is not isomorphic to D_{16}. By the first part of the lemma, P is not isomorphic to any of the groups: $Q_{16}, D_{16}^{-}, D_{16}^{+}, D_{16}^{-}, \mathcal{D}$. The well known description of the non-abelian groups of order 16 yields that P is isomorphic to one of the groups: $Q_{8} \times C_{2}, D_{8} \times C_{2}$, \mathcal{W}_{21} or $\left\langle a, b \mid a^{4}=b^{4}=(a b)^{2}=\left(a^{2}, b\right)=1\right\rangle$. Hence the result follows.

Lemma 6.4 Let $G=G_{k, m, N_{2}, G_{2}}$ be a finite group of Kleinian type. If G_{2} is non-abelian then its exponent is $4, G_{2}^{\prime} \subseteq Z\left(G_{2}\right)$ and $Z\left(G_{2}\right)$ has exponent 2. In particular, $Q_{16}, D_{16}^{+}, D_{16}^{-}, \mathcal{D}$ and \mathcal{D}^{+} are not quotients of G_{2}.

Proof. Again we may assume that $G=G_{0,1, N_{2}, G_{2}}=\langle w\rangle_{3} \rtimes G_{2}$.
Claim 1. Let $x, y \in G_{2}$ with $t=(y, x) \neq 1$ and x of order 8 . Then t has order 4.
In order to prove this we may assume that $G_{2}=\langle x, y\rangle$ and argue by contradiction. So, suppose that t does not have order 4. By statement 6 of Lemma 5.1 and statement 2 of Lemma 5.2, $t \in Z(G)$ and t has order 2. Let $\mathcal{V}=\left(\langle s\rangle_{2} \times\left\langle y_{1}^{2}\right\rangle_{4} \times\left\langle y_{2}^{2}\right\rangle_{4}\right):\left(\left\langle\overline{y_{1}}\right\rangle_{2} \times\left\langle\overline{y_{2}}\right\rangle_{2}\right)$, with $s=\left(y_{2}, y_{1}\right)$ and $Z(\mathcal{V})=\left\langle s, y_{1}^{2}, y_{2}^{2}\right\rangle$ (this is the same group \mathcal{V} of Theorem 1 with generators renamed to avoid confusions with the elements t, x and y of G). Then, there is an epimorphism $\mathcal{V} \rightarrow G_{2}$ mapping y_{1} to x and y_{2} to y. Since $\mathcal{V} /\left\langle y_{2}^{2}, s y_{1}^{4}\right\rangle$ has order 16 and exponent $8, G_{2} /\left\langle y^{2}, t x^{4}\right\rangle$ has order at most 16 . However, if $\left|G_{2} /\left\langle y^{2}, t x^{4}\right\rangle\right|=16$ then $G_{2} /\left\langle y^{2}, t x^{4}\right\rangle \cong \mathcal{V} /\left\langle y_{2}^{2}, s y_{1}^{4}\right\rangle$ and hence $G_{2} /\left\langle y^{2}, t x^{4}\right\rangle$ has exponent 8, contradicting Lemma 6.3. This implies that $G_{2} /\left\langle y^{2}\right\rangle$ has order at most 16 and $G_{2} /\left\langle t x^{4}\right\rangle$ has order at most 32. Since the latter is non-abelian of exponent 8, it has order 32, by Lemma 6.3. This implies that $y^{2} \notin\langle x, t\rangle$. Indeed, for otherwise $\left|G_{2}\right| \leq 32$ and hence $\left|G_{2}\right|=\left|G_{2} /\left\langle t x^{4}\right\rangle\right|=32$. So $t=x^{4}$ and therefore $y^{2} \in\langle x\rangle$. Thus $\left|G_{2}\right|=16$, a contradiction. We thus obtain that $G_{2} /\left\langle y^{2}, t x^{4}\right\rangle$ has order 8 because we have seen that this group has order at most 8 and $G_{2} /\left\langle t x^{4}\right\rangle$ has order 32 . Moreover, since $\left|G_{2} /\left\langle y^{2}\right\rangle\right| \leq 16$, using again Lemma 6.3, the group $G_{2} /\left\langle y^{2}\right\rangle$ is either abelian or has exponent 4 and thus either $t \in\left\langle y^{2}\right\rangle$ or $x^{4} \in\left\langle y^{2}\right\rangle$. Since $y^{2} \notin\langle t, x\rangle$, either $t=y^{4}$ or $x^{4}=y^{4}$. So in both cases we get $x^{2} y^{2} \notin\left\langle t x^{4}\right\rangle$ and $x^{4} y^{4} \in\left\langle t x^{4}\right\rangle$. This implies that $G_{2} /\left\langle t x^{4}, x^{2} y^{2}\right\rangle$ has order 16 and exponent 8 , because $x^{4} \notin\left\langle t x^{4}\right\rangle \cup\left\langle t x^{4}\right\rangle x^{2} y^{2}=\left\langle t x^{4}, x^{2} y^{2}\right\rangle$. Lemma 6.3 therefore yields that $G_{2} /\left\langle t x^{4}, x^{2} y^{2}\right\rangle$ is abelian, that is, $t \in\left\langle t x^{4}, x^{2} y^{2}\right\rangle$. Since $t \notin\left\langle t x^{4}\right\rangle$ we conclude that $y^{2} \in\langle x, t\rangle$ a contradiction. This proves the claim.

Claim 2. If $x \in G_{2}$ has order 8 then $\left(x,\left(x, G_{2}\right)\right)=1$.
It is sufficient to show that if $y \in G_{2}$ and $t=(y, x) \neq 1$ then $(x, t)=1$. Assume the contrary, then by Lemma $5.3,(x, t)=t^{2} \neq 1$. Hence Claim 1 implies that both t and t^{2} have order 4 , a contradiction. This proves Claim 2.

We now first prove by contradiction that G_{2} has exponent 4. So assume $x \in G_{2}$ has order 8. Because of statement 5 of Lemma 5.1, we know that $x \notin Z\left(G_{2}\right)$. Let $y \in G_{2}$ be so that $t=(y, x) \neq 1$. As before, we may assume that $G_{2}=\langle x, y\rangle$. Because of Claim $1, t$ has order 4 and by the second claim $(x, t)=1$. By statement 6 of Lemma $5.1,\left\langle t^{2}\right\rangle$ is a normal subgroup of
 This implies that $t^{2}=x^{4}$. Since t is not central in $\langle x, y\rangle$ (as t has order 4), we get that $(y, t) \neq 1$ and $(y x, t)=(y x,(y x, x)) \neq 1$. Because of Claim 2 we obtain that $y^{4}=(y x)^{4}=1$. Moreover, by part $5(\mathrm{a})$ of Lemma $5.2,\left(x^{2}, y\right)=t^{2}$ and, by part $5(\mathrm{~b})$ of the same lemma, $\left(y^{2}, x\right)=1$. This implies that $y^{2}, t x^{2} \in Z\left(G_{2}\right)$. Since $t \notin Z\left(G_{2}\right)$, we thus have that $G_{2} /\left\langle y^{2}, t x^{2}\right\rangle$ is a non-abelian quotient of D_{16}. Since D_{16} is not of Kleinian type, $G_{2} /\left\langle y^{2}, t x^{2}\right\rangle$ has order 8 and, from $t^{2}=x^{4}$ and $y^{4}=1$, we have that G_{2} has order at most 32. By Lemma 6.3, it follows that G_{2} has order exactly 32. Therefore $\left\langle y^{2}, t x^{2}\right\rangle$ has order 4 and thus $\left\langle y^{2}\right\rangle \cap\left\langle t x^{2}\right\rangle=1$. Hence, both $G_{2} /\left\langle y^{2}\right\rangle$ and $G_{2} /\left\langle t x^{2}\right\rangle$ are non-abelian groups of order 16. Therefore, by Lemma 6.3, both have exponent 4. Thus $x^{4} \in\left\langle y^{2}\right\rangle \cap\left\langle t x^{2}\right\rangle=1$, a contradiction. This finishes the proof of the fact that the exponent of G is 4 .

We now prove that $G_{2}^{\prime} \subseteq Z\left(G_{2}\right)$. We argue by contradiction. So, because of statement 6 in Lemma 5.1, there exist $x, y \in G_{2}$ such that $t=(y, x)$ has order 4. One may assume without loss of generality that x and y satisfy condition 1 of Lemma 5.3 (see Remark 5.4), that is $(x, t)=(y, t)=t^{2}$ and $x^{2}, y^{2} \in Z(G)$. Then $1=(x y)^{4}=x t x y^{2} x t x y^{2}=t^{2}$, a contradiction.

It remains to show that $Z\left(G_{2}\right)$ has exponent 2. By means of contradiction assume that there exists $z \in Z\left(G_{2}\right)$ of order 4. Since G_{2} is not abelian, there exist $x, y \in G_{2}$ with $(x, y)=t \neq 1$. As before, one may assume that $G_{2}=\langle x, y, z\rangle$. Since t has order 2 and z has order $4, H=\left\langle t, z^{2}, x^{2}, y^{2}\right\rangle$ is an elementary abelian 2-subgroup of $Z(G)$ and so there is a subgroup L of index 2 in H which
contains $t z^{2}$ but does not contain t. We will use the bar notation for the natural images of the elements of G in G / L. If $x^{2} \in L$ we set $x_{1}=\bar{x}$, and otherwise we put $x_{1}=\overline{t x}$. Similarly, define $y_{1}=\bar{y}$ if $y^{2} \in L$, and $y_{1}=\overline{t y}$ otherwise. Then $G_{2} / L=\left\langle x_{1}, y_{1}, \bar{z}\right\rangle$ is a non-abelian epimorphic image of \mathcal{D} with a central element \bar{z} of order 4 . This yields a contradiction with Lemma 6.3, because $L \subseteq N_{2}$. This finishes the proof.

We are ready to finish the proof of Theorem 1 by proving that if G is a non-nilpotent group of Kleinian type then G satisfies condition (F.4). Recall that $G=G_{k, m, N_{2}, G_{2}}$ as in (8). Of course, G_{2} may be abelian or non-abelian.

Assume first that G_{2} is abelian. Then $Z(G)=K \times N_{2}$. Let u be an element of minimal order in $G_{2} \backslash N_{2}$. Then $G_{2}=L \times\langle u\rangle$ and $N_{2}=L \times\left\langle u^{2}\right\rangle$. Because of Lemma 6.1, the exponent of G_{2} divides 8 and, by statement 5 of Lemma 5.1, the exponent of $Z(G)$ divides 4 or 6 . We separately deal with the cases $K=1$ and $K \neq 1$. Assume that $K=1$. Then $G=L \times(M \rtimes\langle u\rangle)$ and the exponent of L divides 4. Therefore G is an epimorphic image of $A \times H$, where A is abelian of exponent 4 and H satisfies the first condition of (F.4). Assume now that $K \neq 1$, then the exponent of $Z(G)$ divides 6 and thus the order n of u divides 4 . Thus G is an epimorphic image of $A \times H_{1}$, with A abelian of exponent 6 and $H_{1}=M \rtimes C_{n}=G_{0, m,\left\langle u^{\rangle}\right\rangle,\langle u\rangle_{n}}$. Then H_{1} is an epimorphic image of $H=M \rtimes \mathcal{W}_{11}=G_{0, m,\left\langle y_{1}, t, u^{2}\right\rangle, \mathcal{W}_{11}}$. We conclude that G is an epimorphic image of $A \times H$, where A and H satisfy the second condition of (F.4).

Now suppose that G_{2} is not abelian. Notice that $Z\left(G_{2}\right) \subset N_{2}$ because N_{2} is abelian and $\left[G_{2}: N_{2}\right]=2$. By Lemma 6.4, G_{2} has exponent 4 and G_{2}^{\prime} has exponent 2. Furthermore, if T is a proper subgroup of G_{2}^{\prime} then $G / T \cong G_{k, m, N_{2} / T, G_{2} / T}$ and hence, again by Lemma 6.4, the exponent of $Z\left(G_{2} / T\right)$ is 2 . It thus follows from Lemma 5.7 that G_{2} is an epimorphic image of either $C_{2}^{n} \times \mathcal{W}$, $\mathcal{W}_{1 n}$ or $\mathcal{W}_{2 n}$ for some n.

Assume that G_{2} is an epimorphic image of $C_{2}^{n} \times \mathcal{W}$, but not of $\mathcal{W}_{i n}$ for $i=1,2$ and some n. This implies that $G_{2}=C_{2}^{r} \times \mathcal{W}$ for some r. Having in mind that $Z\left(G_{2}\right) \subseteq N_{2}$ one has that $G=A \times G_{0, m, Q, \mathcal{W}}$ for A an abelian group of exponent dividing 6 and Q and abelian subgroup of index 2 in \mathcal{W}. Let $L_{1}=\left\langle x^{2}, y^{2}\right\rangle, L_{2}=\left\langle x^{2},(x y)^{2}\right\rangle$ and $L_{3}=\left\langle y^{2},(x y)^{2}\right\rangle$. Then $L_{i} \subseteq Q$ and $\mathcal{W} / L_{i} \cong D_{8}$. Further the image of $x y$ (resp. $\left.y, x\right)$ in \mathcal{W} / L_{1} (resp. $\mathcal{W} / L_{2}, \mathcal{W} / L_{3}$) has order 4. Thus, $x y, x, y \notin Q$, contradicting the fact the $[\mathcal{W}: Q]=2$.

In the remainder of the proof we assume that G_{2} is an epimorphic image of $\mathcal{W}_{1 n}$ or $\mathcal{W}_{2 n}$. For simplicity the symbols used for the generators in the description of the groups $\mathcal{W}_{1 n}$ and $\mathcal{W}_{2 n}$, as given in part (F) of Theorem 1, also will be used for their images in G_{2}. So we write $G_{2}=$ $\left\langle x, y_{1}, \cdots, y_{n}, t_{1}=\left(y_{1}, x\right), \ldots, t_{n}=\left(y_{n}, x\right)\right\rangle$ with the respective relations. Then G_{2}^{\prime} is an elementary abelian 2-group and $G_{2}^{\prime}=\left\langle t_{1}, \ldots, t_{n}\right\rangle$. Assume that $\left|G_{2}^{\prime}\right|=2^{r}$. Then, by reordering the y_{i} 's, one may assume that $G_{2}^{\prime}=\left\langle t_{1}, \ldots, t_{r}\right\rangle$. Let $r<i \leq n$ and let $t_{i}=t_{1}^{\alpha_{1}} \cdots t_{r}^{\alpha_{r}}$, with $\alpha_{i}=0$ or 1 . Then $y_{i}^{\prime}=y_{i} y_{1}^{\alpha_{1}} \cdots y_{r}^{\alpha_{r}} \in Z\left(G_{2}\right) \subseteq N_{2}$, for $i>r$. Thus, replacing y_{i} by y_{i}^{\prime} for $i>r$ one has that $G_{2}=B \times P$, where $B=\left\langle y_{r+1}, \ldots, y_{n}\right\rangle$, an elementary abelian 2-group, and P an epimorphic image of $W_{1 r}$ or $W_{2 r}$ such that $P^{\prime}=\left\langle t_{1}\right\rangle_{2} \times \cdots \times\left\langle t_{r}\right\rangle_{2}$. Then the map $f: P^{\prime} \rightarrow\left\langle y_{1}, \ldots, y_{r}\right\rangle$ given by $f\left(t_{1}^{\alpha_{1}} \cdots t_{r}^{\alpha_{r}}\right)=y_{1}^{\alpha_{1}} \cdots y_{r}^{\alpha_{r}}\left(\alpha_{i}=0\right.$ or 1$)$ is well defined. Moreover $(x, f(s))=s$ and therefore $(x f(s))^{2}=s x^{2} f(s)^{2}$, for every $s \in P^{\prime}$.

Assume that P is a quotient of $\mathcal{W}_{1 r}$. Let $A_{1}=K \times B$, an abelian group of exponent dividing 6 . Then $G=A_{1} \times H_{1}$ where $H_{1}=G_{0, m, Q, P}$ where Q is an abelian subgroup of index 2 in P. We are going to show that G is an epimorphic image of $A \times H$ with A and H satisfying the second condition of (F.4). To this end, it is enough to show that one may assume that $y_{1}, \ldots, y_{r}, t_{1}, \ldots, t_{r}, x^{2} \in Q$. Obviously $t_{1}, \ldots, t_{r}, x^{2} \in Q$. Assume that $y_{i_{0}} \notin Q$. We separately deal with the cases $x^{2} \in\left\langle t_{i_{0}}\right\rangle$ and $x^{2} \notin\left\langle t_{i_{0}}\right\rangle$. If $x^{2} \notin\left\langle t_{i_{0}}\right\rangle$ then $K_{1}=\left\langle x, y_{i_{0}}\right\rangle /\left\langle x^{2}\right\rangle$ and $K_{2}=\left\langle x, y_{i_{0}}\right\rangle /\left\langle x^{2} t_{i_{0}}\right\rangle$ are isomorphic to D_{8}. Moreover \bar{x} has order 4 in K_{2} and $\overline{x y_{i_{0}}}$ has order 4 in K_{1}. Hence $x, x y_{i_{0}} \notin Q$, by Lemma 6.2,
and $y_{i_{0}} \notin Q$, yielding a contradiction. Suppose now that $x^{2} \in\left\langle t_{i_{0}}\right\rangle$. Then, replacing x by $x t_{i_{0}}$, if needed, one may assume that $x^{2}=1$. Then, for every $i=1, \ldots, r$, we have $\left\langle x, y_{i}\right\rangle \cong D_{8}$ and $x y_{i}$ has order 4. Therefore $x y_{i} \notin Q$, by Lemma 6.2. Since $y_{i_{0}} \notin Q$, one gets that $x \in Q$. For every $1 \neq y \in\left\langle y_{1}, \ldots, y_{r}\right\rangle$, the group $\langle x, y\rangle$ is not abelian. Then $y \notin Q$. That is $\left\langle y_{1}, \ldots, y_{r}\right\rangle \cap Q=1$ and hence $r=1$. Thus $P=\left\langle x, y_{1}\right\rangle \cong D_{8}$, with $x^{2}=1=y_{i}^{2}$ and $Q=\langle x, t\rangle$. Interchange the roles of x and y_{1} one may assume that $y_{1} \in Q$ as desired.

Finally assume that P is a quotient of $\mathcal{W}_{2 r}$, with $\left|P^{\prime}\right|=2^{r}$. Hence, $f(s)^{2}=s$ for every $s \in P^{\prime}$. We also assume that P is not an epimorphic image of $\mathcal{W}_{1 h}$ for any $h \geq 1$. We claim that if $r=1$ then the exponent of A_{1} divides 2 . Notice that P is non-abelian, \mathcal{W}_{21} has order 16 and D_{8} is an epimorphic image of \mathcal{W}_{11}. Then P is isomorphic to either \mathcal{W}_{21} or Q_{8}. This implies that $K \times H_{2}$ is an epimorphic image of G, where $H_{2}=G_{0,1,\langle a\rangle, Q_{8}}$ and a is an element of order 4 in Q_{8}. Then H_{2} has a cyclic subgroup K_{2} of index 2 and so $\left(K_{2}, 1\right)$ is a strong Shoda pair of $H_{2}=G_{0,1,\langle a\rangle, Q_{8}}$. Thus $e=e\left(H_{2}, K_{2}, 1\right)$ is a primitive central idempotent of $\mathbb{Q} H_{2}$ and, applying Proposition 4.1 , one has $\mathbb{Q} H_{2} e \cong \mathbb{H}(\mathbb{Q}(\sqrt{3}))$. Therefore, if $K \neq 1$ then $\mathbb{Q} G$ has a quotient isomorphic to $\mathbb{Q}\left(\xi_{3}\right) \otimes_{\mathbb{Q}} \mathbb{H}(\mathbb{Q}(\sqrt{3})) \simeq M_{2}\left(\xi_{3}, \sqrt{3}\right)$, contradicting statement 2 of Lemma 5.1. This proves the claim.

Now we separately deal with the cases $x^{2} \notin P^{\prime} \backslash\{1\}$ and $x^{2} \in P^{\prime} \backslash\{1\}$. In both cases we will show that $r=1$ and hence, by the above, $K=1$ and $G=B \times H_{1}$, where B is an elementary abelian 2group and $H_{1}=G_{0, m, Q, P}$ with Q is an abelian subgroup of index 2 in P. Then, in order to show that G is an epimorphic image of $A \times H$ with A and H satisfying the third condition of (F.4), it is enough to prove that one may assume that $x \in Q$. Suppose $x^{2} \notin P^{\prime} \backslash\{1\}$. Then $\langle x, f(s)\rangle /\left\langle x^{2}\right\rangle$ is isomorphic to D_{8}, for every $s \in P^{\prime} \backslash\{1\}$. By Lemma 6.2, $f(s) \notin Q$ because the natural image of $f(s)$ in $\langle x, f(s)\rangle /\left\langle x^{2}\right\rangle$ has order 4. This implies that $r=1$, because otherwise $y_{1}, y_{2}, y_{1} y_{2} \notin Q$, contradicting the fact that $[P: Q]=2$. Then, replacing x by $x y_{1}$ if needed, one may assume that $x \in Q$. Assume now that $x^{2} \in P^{\prime} \backslash\{1\}$. We claim that one may assume that $x^{2}=t_{1}$. If $x^{2} \notin\left\langle t_{2}, \ldots, t_{r}\right\rangle$ this is obtained by replacing y_{1} by $f\left(x^{2}\right)$. Otherwise $x^{2}=t_{2}^{\alpha_{2}} \cdots t_{r}^{\alpha_{r}}$, for some $\alpha_{1}, \ldots, \alpha_{r} \in\{0,1\}$ with $\alpha_{i}=1$ for some i. Then replacing $\left\{y_{1}, \ldots, y_{r}\right\}$ by $\left\{f\left(x^{2}\right), y_{1}, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{r}\right\}$ one obtains the desired conclusion. So we assume that $x^{2}=t_{1}$. Then $\overline{f(s)}$ has order 4 in $\langle x, f(s)\rangle /\left\langle x^{2}\right\rangle \simeq D_{8}$ for every $s \in P^{\prime} \backslash\left\langle t_{1}\right\rangle$ and therefore $\left(P^{\prime} \backslash\left\langle t_{1}\right\rangle\right) \cap Q=1$. This implies that $r \leq 2$. If $r=2$ then $y_{1} y_{2}, y_{2} \notin Q$ and therefore $y_{1} \in Q$. Replacing x by $x y_{2}$ if needed, one may assume that $x \in Q$. So $Q=\left\langle x, y_{1}, y_{2}^{2}\right\rangle$. Let $1 \neq m \in M$. Then $\left(U=\left\langle m, x, y_{2}^{2}\right\rangle,\left\langle y_{2}^{2}\right\rangle\right)$ is a strong Shoda pair of $H=\langle m, P\rangle$ and $[H: U]=4$, contradicting statement 2 of Lemma 5.1. Thus $r=1$ and $x^{2}=t_{1}=y_{1}^{2}$. Therefore $P \cong Q_{8}$ and either x or y_{1} does not belong to Q. By symmetry one may assume that $y_{1} \notin Q$ and, by replacing x by $x y_{1}$ if needed, one may assume that $x \in Q$. This finishes the proof of Theorem 1.

References

[1] S.A. Amitsur, Groups with representations of bounded degree II, Illinois J. Math. 5 (1961), 198-205.
[2] H. Bass, The Dirichlet Unit Theorem, Induced Characters and Whitehead Groups of Finite Groups, Toplogy 4 (1966), 391-410.
[3] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485-535.
[4] D.B. Coleman, Finite groups with isomorphic group algebras, Trans. Amer. Math. Soc. 105 (1962), 1-8.
[5] C. Corrales, E. Jespers, G. Leal and Á. del Río, Presentations of the unit group of an order in a non-split quaternion algebra, Adv. Math. 186 (2004), no. 2, 498-524.
[6] C.W. Curtis and I. Reiner, Methods of representation theory, Vol. 1. Interscience, New York 1981.
[7] J. Elstrodt, F. Grunewald and J. Mennicke, Groups Acting on Hyperbolic Space, Harmonic Annalysis and Number Theory, Springer, 1998.
[8] B. Fine, The Algebraic structure of the Bianchi Groups, Marcel Dekker, 1989.
[9] F. Grunewald, A. Jaikin-Zapirain and P.A. Zalesskii, Profinite completions of Kleinian groups, preprint.
[10] B. Hartley and P.F. Pickel, Free subgroups in the unit group of integral group rings, Canad. J. Math. 32 (1980), 1342-1352.
[11] G. Higman, Units in group rings, Ph.D. Thesis, Univsersity of Oxford, Oxford, 1940.
[12] E. Jespers, Free normal complements and the unit group in integral group rings, Proc. Amer. Math. Soc. 122 (1) (1994), 59-66.
[13] E. Jespers, Units in integral group rings: a survey, in "Methods in ring theory (Levico Terme, 1997), 141-169, Lect. Notes Pure Appl. Math. 198, New York, 1998.
[14] E. Jespers and G. Leal, Generators of large subgroups of the unit group of integral group rings, Manuscripta Math. 78 (1993), 303-315.
[15] E. Jespers and G. Leal, Degree 1 and 2 representations of nilpotent groups and applications to units of group rings, Manuscripta Math. 86 (1995), 479-498.
[16] E. Jespers, G. Leal and Á. del Río, Products of free groups in the unit group of integral group rings, J. Algebra 180 (1996), 22-40.
[17] E. Jespers and Á. del Río, A structure theorem for the unit group of the integral group ring of some finite groups, J. Reine Angew. Math. 521 (2000), 99-117.
[18] E. Kleinert, A theorem on units of integral group rings, J. Pure Appl. Algebra 49 (1987), no. 1-2, 161-171.
[19] E. Kleinert, Units of classical orders: a survey, L'Enseignement Mathématique 40 (1994), 205-248.
[20] E. Kleinert and Á. del Río, On the indecomposability of unit groups, Abh. Math. Sem. Univ. Hamburg 71 (2001), 291-295.
[21] G. Leal and Á. del Río, Products of free groups in the unit group of integral group rings, J. Algebra 191 (1997), 240-251.
[22] C. Maclachlan, Introduction to arithmetic Fuchsian groups, Proc. of Topics on Riemann surfaces and Fuchsian groups (Madrid, 1998), 29-41, London Math. Soc. Lecture Note Ser., 287, Cambridge Univ. Press, Cambridge, 2001.
[23] C. Maclachan and A. W. Reid, The Arithmetic of Hyperbolic 3-Manifolds, Springer, New York, 2002.
[24] A. Olivieri, Á. del Río and J.J. Simón, On monomial characters and central idempotents of rational group algebras, Communications in Algebra 32 (no. 4) (2004), 1531-1550.
[25] D. Passman, Infinite Crossed Products, Academic Press, 1989.
[26] A. Pita, Á. del Río and M. Ruiz, Group of units of integral group rings of Kleinian type, Trans. Amer. Math. Soc. 357 (2004), 3215-3237.
[27] V. Platonov and A. Rapinchuk, Algebraic groups and number theory, Academic Press, 1994.
[28] J. Ritter and S.K. Sehgal, Construction of units in integral group rings of finite nilpotent groups, Trans. Amer. Math. Soc. 324 (1991), 603-621.
[29] D.J.S. Robinson, A course in the theory of groups, Springer-Verlag, 1982.
[30] S.K. Sehgal, Units in integral group rings, Longman Scientific and Technical Essex, 1993.
[31] J.-P. Serre, Galois Cohomology, Springer-Verlag, 1997.
[32] M.F. Vignéras, Arithmétique des algèbres de quaternions, Lect. Notes Math. 800, Springer, Berlin Heidelberg New York, 1980.
[33] J.S. Wilson and P.A. Zalesski, Conjugacy separability of certain Bianchi groups and HNNextensions, Math. Proc. Cambridge Philos. Soc. 123 (1998), 227-242.
E. Jespers

Dep. Mathematics
Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussel, Belgium
efjesper@vub.ac.be
Manuel Ruiz
Dep. Métodos Cuantitativos e Informáticos Universidad Politécnica de Cartagena
Paseo Alfonso XIII, 50
30.203 Cartagena, Spain

Manuel.Ruiz@upct.es
A. Pita and A. del Río

Dep. Matemáticas
Universidad de Murcia
Campus de Espinardo
30100 Murcia, Spain
antopita@um.es, adelrio@fcu.um.es
P. Zalesski

Departamento de Matemática Universidade de Brasília
70.910-900 Brasilia-DF, Brasil
pz@mat.unb.br

[^0]: *Research partially supported by Onderzoeksraad of Vrije Universiteit Brussel, Fonds voor Wetenschappelijk Onderzoek (Belgium), D.G.I. of Spain, Fundación Séneca of Murcia, CNPq and FAPDF. AMS classification index: Primary 16U60, Secondary 11R27, 16A26.

