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Abstract

We establish some sufficient conditions for the profinite and pro-
p completions of an abstract group G of type FPm (resp of finite
cohomological dimension, of finite Euler characteristics) to be of type
FPm over the field Fp for a fixed natural prime p (resp. of finite
cohomological p-dimension, of finite Euler p-characteristics).

We apply our methods for orientable Poincaré duality groups G of
dimension 3 and show that the pro-p completion Ĝp of G is a pro-p
Poincaré duality group of dimension 3 if and only if every subgroup of
finite index in Ĝp has deficiency 0 and Ĝp is infinite. Furthermore if
Ĝp is infinite but not a Poincaré duality pro-p group then either there
is a subgroup of finite index in Ĝp of arbitrary large deficiency or Ĝp is
virtually Zp. Finally we show that if every normal subgroup of finite
index in G has finite abelianization and the profinite completion Ĝ
of G has an infinite Sylow p-subgroup then Ĝ is a profinite Poincaré
duality group of dimension 3 at the prime p.
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Introduction

In this paper we study a relation between cohomology and homology of
a group G and continuous cohomology and homology of its profinite and
pro-p completions. The importance of such a study was observed by J.-
P. Serre, who introduced the notion of a good group [17]. A group G is

good if for every i ≥ 1 the natural map G → Ĝ induces an isomorphism
H i(Ĝ, M) → H i(G,M) between the cohomology H i(G,M) of G with coeffi-

cients in any finite G-module M and the (continuous) cohomology H i(Ĝ,M)

of the profinite completion Ĝ of G. In addition we say that G is p-good if for
the pro-p completion Ĝp the natural map G → Ĝp induces an isomorphism

H i(Ĝp,M) → H i(G,M) for any finite p-primary G-module M and any i ≥ 1.
Generally it is hard to check which groups are good. It is known that free

groups, surface groups and a succession of extensions of finitely generated free
groups are good [17, Chapter 1 §2.6 Exercise 2) (b)]. Recently it was proved
that Bianchi groups are good [9]. However the answer to the classical question
whether the mapping class groups are good is not known. Arithmetic groups
that do not have the congruence subgroup property are not good. One of the
main results of this paper (Theorem A) states that an orientable Poincaré

duality group G of dimension 3 whose pro-p completion Ĝp is infinite and all

open subgroups of Ĝp have deficiency 0 is always p-good.

Our methods apply to quite general class of completions ĜC = lim←−G/U of

an abstract group G, where the inverse limit is taken over a directed set C of
normal subgroups of finite index in G. In section 2 we discuss some sufficient
conditions for several important homological invariants of G (the homological
type FPm, the Euler characteristics, the cohomological dimension) to be

preserved in the completion ĜC. Our sufficient conditions involve the inverse
limits lim←−Hi(U,Fp) over U ∈ C.

Our main applications are for the class of Poincaré duality groups of
dimension 3, but many results hold beyond this class of groups. We have
tried to state the results in their most general forms and treat profinite and
pro-p completions (Theorem 3.2 and Theorem 4.1), still the results seem to
be stronger when pro-p completions are studied. In section 3 we require that
G is a group of cohomological dimension 3, and for every subgroup U of
finite index H3(U,Fp) ' Fp for a fixed prime p, or in some results it will be
sufficient that H3(U,Fp) ' Fp or 0. In both sections 3 and 4 it is assumed
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that the profinite completion of G has infinite Sylow p-subgroup or the pro-p
completion of G is infinite depending on whether we study profinite or pro-p
completions. But we do not require that G is a residually finite group or a
residually finite p-group.

We discuss in the preliminaries profinite Poincaré duality group at a prime
p together with other important properties as Euler p-characteristics and defi-
ciency. Our main results for pro-p completions of orientable Poincaré duality
groups of dimension 3 are the following theorems established in section 4.2.

Theorem A Let G be an orientable Poincaré duality group of dimen-
sion 3. Assume that its pro-p completion Ĝp is infinite. Then the following
conditions are equivalent :

a) the homomorphism ϕU : H2(U,Fp) → H2(Ûp,Fp) induced by the homo-

morphism U → Ûp is an isomorphism for all normal subgroups U of p-power

index in G, where Ûp is the pro-p completion of U , H2(U,Fp) is the abstract

and H2(Ûp,Fp) the profinite homology;

b) Ĝp is an orientable pro-p Poincaré duality group of dimension 3;

c) every open subgroup of Ĝp has deficiency 0;
d) G is a p-good group.

Theorem B Let G be an orientable Poincaré duality group of dimension
3 and Ĝp be the pro-p completion of G. Then exactly one of the following
conditions holds :

a) Ĝp is finite;

b) Ĝp is an orientable pro-p Poincaré duality group of dim 3;
c) there is no upper bound on the deficiency of the subgroups of finite

index in Ĝp;

d) Ĝp is infinite and the minimal upper bound on the deficiency of the

subgroups of finite index in Ĝp is one. In this case Ĝp is virtually Zp.

Remark. If G is non-orientable but p = 2 then Theorem B still holds if
we delete the condition orientable in b).

The case of non-orientable Poincaré duality groups G looks much harder
than the orientable case for p odd. The following example shows that for p
odd the pro-p completion Ĝp of G can be Zp × Zp , so a Poincaré duality
group of dimension 2, e.g. G = H×Z, where H is the non-orientable Poincaré
duality group of dimension 2 with a presentation 〈x, y | yxy−1 = x−1〉. This
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shows that Theorem B does not hold for non-orientable Poincaré duality
groups of dimension 3.

We show in Corollary 4.2 that if G is an orientable Poincaré duality group
of dimension 3 with all subgroups of p-power index having finite abelianisa-
tions then the pro-p completion Ĝp is a pro-p Poincaré duality group of
dimension 3. This generalizes Reznikov’s statement about the pro-p comple-
tions of those 3-dimensional cocompact hyperbolic lattices which contradict
Thurston conjecture [16]. In contrast to Reznikov’s treatment our proofs are
homological and much simpler.

Corollary 4.2 is generalized for profinite completions (a case not discussed
by Reznikov) in Theorem C. Little is known for the profinite completion
of abstract orientable Poincaré duality groups of dimension 3. By [10] the
fundamental group of a Haken 3-manifold is residually finite. The group G
from Theorem C cannot be the fundamental group of such a manifold.

Theorem C Let G be an orientable Poincaré duality group of dimension
3. Assume that for a fixed prime p the profinite completion Ĝ has an infinite
Sylow p-subgroup and that every normal subgroup U of finite index in G has
finite abelianization. Then Ĝ is an orientable profinite Poincaré duality group
of dimension 3 at p.

In section 5 we discuss more corollaries. Except for Proposition 5.1 from
section 5 we do not suppose that G is finitely presented. It is an open question
whether there is an abstract Poincaré duality group of dimension 3 that is
not finitely presented. But for any n ≥ 4 there is a Poincaré duality group
of dimension n that is not finitely presented [5].

Throughout this paper p always denotes a fixed prime number. If not
otherwise stated Ext and Tor are the functors of abstract modules (even

if applied to completed group rings). For a group G we denote by Ĝp, Ĝ

and ĜC the pro-p completion, the profinite completion and the inverse limit
lim←−G/U over U ∈ C. If not stated otherwise all modules considered are right

modules.
Remark. The authors have just learnt that by using different methods

Th. Weigel has found an independent proof of Corollary 4.2 and as well of
Theorem C under the additional hypothesis that the pro-p completion of G
is infinite. We thank him for sending his preprint [21].
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1 Preliminaries

1.1 Type FPm for abstract and profinite modules

We recall the notion of type FPm for modules and groups. Let G be an
abstract group and B a Z[G]-module. For 0 ≤ m ≤ ∞ we say that B is of
type FPm if there exists a projective Z[G]-resolution of B

R : . . . → Ri → Ri−1 → . . . → R0 → B → 0

with all Ri finitely generated for i ≤ m. One says that G is of type FPm if
the trivial Z[G]-module Z is of type FPm.

Now let G be a profinite group and B a profinite Zp[[G]]-module (resp.
Fp[[G]]-module). One says that B is of type FPm over Zp (resp. Fp) if there
exists a profinite projective Zp[[G]]-resolution (resp. Fp[[G]]-resolution) of B

R : . . . → Ri → Ri−1 → . . . → R0 → B → 0

with all Ri finitely generated for i ≤ m. One says that G is of homological
type FPm over Zp (resp. Fp) if the trivial Zp[[G]]-module Zp (resp. the trivial
Fp[[G]]-module Fp) is of type FPm.

The following simple lemma will be used many times in this paper.

Lemma 1.1. Let p be a prime number, R the ring Zp or Fp and H a profinite
group. Then

a) every finitely generated abstract projective R[[H]]-module P is a profi-
nite projective R[[H]]-module under the same action of R[[H]];

b) if the abstract trivial R[[H]]-module R is of type FPm then the profinite
group H is of type FPm over R;

c) if the abstract trivial Zp[[H]]-module Zp has a projective resolution P
of finite length m such that all projective modules are finitely generated then
the cohomological p-dimension cdp(H) ≤ m.

d) if the abstract trivial R[[H]]-module R has type FPm then for any fi-
nite discrete R[[H]]-module M and i ≤ m− 1 there is a natural isomorphism
between the functor of abstract modules ExtiR[[H]](R, M) and the Galois co-

homology H i(H, M);
e) if the abstract trivial R[[H]]-module R has type FPm then for any

profinite left R[[H]]-module N and i ≤ m− 1 there is a natural isomorphism

between the functor of abstract modules Tor
R[[H]]
i (R,N) and the profinite ho-

mology Hi(H,N).
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Proof. a) There is a finitely generated abstract free R[[H]]-module F such
that P is a direct summand of F as an abstract module i.e. F = P ⊕ P ′.
Note that F is also a profinite R[[H]]-module because it is a finite direct sum
of copies of R[[H]]. By [22, Lemma 7.2.2] every abstract homomorphism
between profinite finitely generated R[[H]]-modules is continuous. Then the
map ϕ : F → F , that is identity on P and zero on P ′, is continuous. In
particular Im(ϕ) = P is a profinite R[[H]]-module and a direct summand of
the free profinite R[[H]]-module F , hence P is a profinite projective R[[H]]-
module.

b) By part a) the m-th skeleton of any projective resolution of R as an
abstract R[[H]]-module with finitely generated modules in dimensions ≤ m
has only continuous maps, hence the profinite group H is of type FPm over
R.

c) By part a) the modules in the complex P are profinite Zp[[H]]-modules.
By [22, Lemma 7.2.2] the homomorphisms of P are continuous, hence P is
a projective profinite resolution of Zp as a profinite Zp[[H]]-module. The
cohomological p-dimension cdp(H) is at most the length of P as the proof
of [15, Prop. 7.1.4] shows that in [15, Prop. 7.1.4(e)] every appearance of Fp

can be substituted by Zp.
d),e) Let P be a projective resolution of the trivial abstract R[[H]]-module

R with finitely generated projective modules in dimension ≤ m. By a) and
b) the m-skeleton P(m) of P is a partial profinite resolution of the triv-
ial profinite R[[H]]-module R and can be used to calculate Hi(H, N) and

H i(H,M) for i ≤ m− 1. In particular Tor
R[[H]]
i (R,N) ' Hi(P ⊗R[[H]] N) '

Hi(P⊗̂R[[H]]N) ' Hi(H, N) for i ≤ m−1, where the middle isomorphism fol-
lows from the fact that the abstract ⊗R[[H]] and complete ⊗̂R[[H]] tensor prod-
ucts are naturally isomorphic if applied to profinite modules such that at least
one of them is finitely generated. As before by [22, Lemma 7.2.2] the set of
abstract R[[H]]-module homomorphisms from any finitely generated profinite
R[[H]]-module (in particular Pi for i ≤ m) to M is the set of all continuous
module homomorphisms. Then ExtiR[[H]](R, M) ' H i(HomR[[H]](P ,M)) '
H i(H,M) for i ≤ m− 1.

1.2 Abstract and profinite Poincaré duality groups

There are two (equivalent) ways to define an abstract Poincaré duality group.
In this paper we will mainly use Farrell’s approach [7] i.e. G is a Poincaré

6



duality group of dimension n if G is a group of type FP∞, of cohomological
dimension cd(G) = n and Hk(G,Z[G]) = ExtkZ[G](Z,Z[G]) = 0 for k 6= n and

Z for k = n. If the G-action on Hn(G,Z[G]) is the trivial one, G is called ori-
entable. Otherwise G is non-orientable and G acts on Hn(G,Z[G]) via multi-
plication with ±1. Equivalently the condition on Ext∗(G,Z[G]) can be sub-
stituted with the existence of an isomorphism H i(G,M) ' Hn−i(G,D⊗ZM)
for all G-modules M and all i, where the dualizing module D is Hn(G,Z[G])
[4, Ch. 8,Prop. 10.1].

There are two definitions of a profinite Poincaré duality group H at a
prime p of dimension n [19], [14, 3.4.6]. The definitions differ at the point
whether H should be of type FP∞ over Zp. Still we do not know an example
that satisfies the conditions of [14, 3.4.6] and is not of type FP∞. In this
paper we adopt the approach of [19].

In [19] the profinite duality groups H at p of dimension n are defined
as groups of cohomological p-dimension cdp(H) = n, of type FP∞ over
Zp (in [19] groups of type FP∞ over Zp are called of type p-FP∞) and
Hk(H,Zp[[H]]) = ExtkZp[[H]](Zp,Zp[[H]]) is 0 for k 6= n and for k = n is

p-torsion free. If in addition Hn(H,Zp[[H]]) ' Zp, H is called a Poincaré
duality group at p of dimension n. Furthermore if the action of H on
Hn(H,Zp[[H]]) is trivial H is called an orientable Poincaré duality group
at p, otherwise it is non-orientable.

1.3 Euler characteristics and deficiency

For a finitely presented pro-p group H the deficiency def(H) is defined as

| X̃ | − | R̃ |, where 〈X̃ | R̃〉 is a minimal presentation of H i.e. X̃ is a

minimal set of generators and R̃ is a minimal set of relations for H such that
R̃ is a subset of a free pro-p group with basis X̃. Note that the cardinality
of X̃ and R̃ is dimFpH

1(H,Fp) = dimFpH1(H,Fp) and dimFpH
2(H,Fp) =

dimFpH2(H,Fp) respectively. Thus def(H) =

dimFpH
1(H,Fp)− dimFpH

2(H,Fp) = dimFpH1(H,Fp)− dimFpH2(H,Fp).

Furthermore if f : F → H is an epimorphism of pro-p groups such that F
is a free pro-p group of finite rank then def(H) is the rank of F minus the
minimal number of generators of Ker(f) as a closed normal subgroup of F .

Let G be an abstract group of finite cohomological dimension and of type
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FP∞. The Euler characteristics χ(G) is defined by

χ(G) =
∑

i

(−1)irkZTor
Z[G]
i (Z,Z) =

∑
i

(−1)irankZHi(G,Z)

(cf. [4, Ch. IX, Sec. 6], where it is defined for the more general class of groups
of finite cohomological type). Furthermore if

R : 0 → Rm
∂m−→Rm−1

∂m−1−→ . . .
∂1−→R0

∂0−→Z→ 0

is a projective resolution of Z as an abstract Z[G]-module of finite length and
with all projective modules Ri finitely generated then

χ(G) =
∑

i

(−1)irkZ(Ri ⊗Z[G] Z).

Since every Ri is finitely generated projective module, there is a free fi-
nitely generated Z[G]-module Fi such that Ri is a direct summand of Fi.
In particular Ri ⊗Z[G] Z is a direct summand of the finite rank free abelian
group Fi ⊗Z[G] Z, hence Ri ⊗Z[G] Z is itself finite rank abelian group and
rkZ(Ri ⊗Z[G] Z) = dimFp(Ri ⊗Z[G] Fp) = dimFpHomZ[G](Ri,Fp). Then

χ(G) =
∑

i

(−1)idimFp(Ri ⊗Z[G] Fp) =

∑
i

(−1)idimFpHi(G,Fp) =
∑

i

(−1)idimFpH
i(G,Fp).

If U is a subgroup of finite index in G by [4, Thm. 6.3, Ch. 9] χ(U) = (G :
U)χ(G).

Let G be an abstract Poincaré duality group of odd dimension n, hence
H i(G,Fp) ' Hn−i(G,D⊗ZFp), where D is the dualizing module Hn(G,Z[G]) '
Z. It is easy to see that χ(G) = 0. Indeed for an abstract orientable Poincaré
duality group G0 (hence Fp ' Hn(G0,Z[G0])⊗Z Fp) of odd dimension n

2χ(G0) =
∑

i

((−1)idimFpHi(G0,Fp) + (−1)n−idimFpH
n−i(G0,Fp)) = 0.

Since G has a subgroup G0 of index ≤ 2 which is an orientable Poincaré
duality group, one has 0 = χ(G0) = (G : G0)χ(G) and therefore χ(G) = 0.
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For a profinite group H of finite p-cohomological dimension cdp(H) and
type FP∞ over Zp we define the Euler characteristics of H at p as

χp(H) =
∑

i

(−1)irkZpHi(H,Zp) =
∑

i

(−1)irkZpTor
Zp[[H]]
i (Zp,Zp).

Then for a finite length profinite projective resolution S of a Zp[[H]]-module
Zp whose all projective modules are finitely generated

χp(H) =
∑

i

(−1)irkZp(Si ⊗Zp[[H]] Zp).

As in the abstract case rkZp(Si ⊗Zp[[H]] Zp) = dimFp(Si ⊗Zp[[H]] Fp), hence

χp(H) =
∑

i

(−1)idimFp(Si ⊗Zp[[H]] Fp) =

∑
i

(−1)idimFpTor
Zp[[H]]
i (Zp,Fp) =

∑
i

(−1)idimFpHi(H,Fp).

If H is a pro-p group the Euler characteristics χ(H) is defined as χp(H).

2 Completions of abstract groups of type FPm

Let G be an abstract group of homological type FPm over the ring Z for
some m ≥ 1, in particular G is finitely generated. Then there is a projective
resolution of the trivial right Z[G]-module Z

R : . . .−→Ri
∂i−→Ri−1−→ . . .

∂1−→R0
∂0−→Z→ 0

with all Ri finitely generated for i ≤ m. Let C be a set of normal subgroups
U of finite index in G such that C is directed in the sense that if U1, U2 ∈ C
there is U3 ∈ C with U3 ⊆ U1 ∩U2. We define ĜC as the inverse limit of G/U

and Fp[[ĜC]] as the inverse limit of Fp[G/U ], when U runs through C. For
U ∈ C define RU = R⊗Z[U ] Fp, thus RU is a complex (in general not exact)
of projective Fp[G/U ]-modules and {RU}U∈C is a surjective inverse system
of complexes via the surjective maps G/U1 → G/U2 for the groups U1 ⊆ U2

of C. Note that

H0(RU) = 0 and Hi(RU) ' Tor
Z[U ]
i (Z,Fp) ' Hi(U,Fp) for i ≥ 1.
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As G is of type FPm every subgroup of finite index in G is of type FPm, in
particular every U ∈ C is of type FPm. This implies that Hj(U,Fp) is finite
for every j ≤ m.

Let R̂ be the inverse limit of the inverse system of complexes {RU}U∈C.
Observe that

R̂(m) ' R(m) ⊗Z[G] Fp[[ĜC]], (1)

where upper index (m) denotes the m-skeleton of the complex (i.e. all mod-
ules and homomorphisms up to dimension m). In dimension -1 the above iso-

morphism follows from the fact that ĜC is topologically finitely generated, say
by x1, . . . , xd, hence the augmentation ideal of Fp[[ĜC]] as an abstract right

Fp[[ĜC]]-module is
∑

1≤i≤d(xi−1)Fp[[ĜC]], hence R̂−1 = Fp ' Z⊗Z[G]Fp[[ĜC]].

Denote by {∂̂i}i≥0 and {R̂i}i≥0 the differentials and the modules of R̂.
By [20, Thm. 3.5.8] for every i there is an exact sequence

0 → lim
←−
U∈C

1Hi+1(RU) → Hi(R̂) → lim
←−
U∈C

Hi(RU) → 0.

Since G is finitely generated the set of all normal subgroups of finite index
in G is countable, so we can replace C by a totally ordered countable cofinal
subset without changing the inverse limits above. By [20, Exer. 3.5.2] or the
main result of [8] lim←−

1 of a tower (i.e. an inverse system indexed by totally

ordered countable set) of finite dimensional vector spaces over a fixed field is
0. Applying this for the finite dimensional vector spaces Hi+1(RU) over Fp

lim
←−
U∈C

1Hi+1(RU) = 0 for i ≤ m− 1.

Note we have proved the following lemma.

Lemma 2.1. There is an isomorphism of abstract Fp[[ĜC]]-modules

H0(R̂) = 0 and Hi(R̂) ' lim
←−
U∈C

Hi(RU) ' lim
←−
U∈C

Hi(U,Fp) for 1 ≤ i ≤ m− 1,

where the G/U-action on Hi(U,Fp) induced by conjugation induces a ĜC-
action on lim←−Hi(U,Fp).

Theorem 2.2. Suppose that G is an abstract group of type FPm for some
m ≥ 2, C is a directed set of normal subgroups U of finite index in G. Suppose
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further that the inverse limit lim←−Hi(U,Fp) over U ∈ C is of homological type

FPm−1−i as an abstract Fp[[ĜC]]-module for all 1 ≤ i ≤ m − 1. Then the

trivial abstract Fp[[ĜC]]-module Fp is of type FPm.

Proof. We need only the dimension shifting argument from [1, Prop. 1.4].
More precisely suppose that 0 → V ′ → V → V ′′ → 0 is a short exact
sequence of modules

a) if V is of type FP∞ and s ≥ 1 then V ′′ is of type FPs if and only if V ′

is of type FPs−1;
b) if V ′ and V ′′ are of type FPs for some s ≥ 0 then V is of type FPs.

From now on all modules considered in this proof are abstract Fp[[ĜC]]-
modules. Consider the short exact sequences of modules

0 → Ker(∂̂j) → R̂j → Im(∂̂j) → 0 (2)

and
0 → Im(∂̂j) → Ker(∂̂j−1) → Hj−1(R̂) → 0 (3)

We prove by inverse induction on i that Im(∂̂i) is of type FPm−i for all

0 ≤ i ≤ m, the case i = m is obvious as R̂m is FP0 (i.e. finitely generated).

As Im(∂̂0) = Fp the case i = 0 is exactly what we want to prove.

Suppose Im(∂̂i) is of type FPm−i for some 1 ≤ i ≤ m. By Lemma 2.1

lim←−Hi−1(U,Fp) ' Hi−1(R̂) and by assumption lim←−Hi−1(U,Fp) is of type

FPm−i. By b) applied to the short exact sequence (3) for j = i, Ker(∂̂i−1)

is of type FPm−i. Note that R̂j is an abstract finitely generated projective

Fp[[ĜC]]-module for every j ≤ m, hence R̂j is FP∞. Applying a) to the short

exact sequence (2) for j = i − 1 we get that Im(∂̂i−1) is of type FPm−i+1.
This completes the inductive step.

Corollary 2.3. Under the assumptions of Theorem 2.2 the profinite group
ĜC is of homological type FPm over the ring Fp.

Proof. It follows directly from Theorem 2.2 and Lemma 1.1 b).

Theorem 2.4. Suppose that G is an abstract group of type FPm, C a directed
set of normal subgroups U of finite index in G and i0 a fixed positive integer
such that 1 ≤ i0 ≤ m − 1. Suppose further that for a fixed prime p and for
all i ∈ {1, . . . , m− 1} \ {i0}

lim
←−
U∈C

Hi(U,Fp) = 0.
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Then the following conditions are equivalent :
a) lim←−Hi0(U,Fp) as an abstract Fp[[ĜC]]-module is of homological type

FPm−1−i0;

b) the trivial abstract Fp[[ĜC]]-module Fp is of type FPm;

c) ĜC as a profinite group is of type FPm over Fp.

Proof. c) implies b) is obvious and b) implies c) is Lemma 1.1 b). All modules

considered in the rest of the proof are abstract Fp[[ĜC]]-modules. By Lemma

2.1 Hi(R̂) = 0 for i ∈ {1, . . . ,m−1}\{i0}, in particular we have the following
exact complexes of modules

0 → Ker(∂̂i0)
α1−→R̂i0

b∂i0−→R̂i0−1

b∂i0−1−→ . . . → R̂0

b∂0−→Fp → 0 (4)

and if i0 6= m− 1

0 → Im(∂̂m) = Ker(∂̂m−1)
α2−→R̂m−1

b∂m−1−→ . . . → R̂i0+1
β−→Im(∂̂i0+1) → 0 (5)

where α1, α2 are the inclusion maps, the map β is induced by ∂̂i0+1. Apply-
ing the dimension shifting argument [1, Prop. 1.4] (part (a) of the proof of
Theorem 2.2) for the short exact sequences corresponding to the complexes

(4) and (5) we get that Ker(∂̂i) is FPm−1−i if and only if Im(∂̂i) is FPm−i.

In particular since Im(∂̂m) is FP0 (i.e. finitely generated)

Im(∂̂i0+1) is of type FPm−i0−1 (6)

(note the latter holds even for i0 = m− 1) and

Fp is of type FPm if and only if Ker(∂̂i0) is of type FPm−i0−1. (7)

By (6) and dimension shifting (this time we use both (a) and (b) from

the proof of Theorem 2.2) for the short exact sequence 0 → Im(∂̂i0+1) →
Ker(∂̂i0) → Hi0(R̂) → 0

Ker(∂̂i0) is of type FPm−i0−1 if and only if Hi0(R̂) is of type FPm−i0−1.
(8)

By (7) and (8) the items a) and b) are equivalent.
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Theorem 2.5. Suppose that G is an abstract group of type FP∞ and finite
cohomological dimension, C a directed set of normal subgroups U of finite
index in G. Suppose further that for a fixed prime p and for all i ≥ 1

lim
←−
U∈C

Hi(U,Fp) = 0

Then for all m ≥ 1 and i ≥ 1

Tor
Z[G]
i (Z, (Z/pmZ)[[ĜC]]) = 0 and Tor

Z[G]
i (Z,Zp[[ĜC]]) = 0.

In particular ĜC is of type FP∞ over Zp.

Proof. Let R be a projective resolution of Z as an abstract Z[G]-module such
that R has finite length and all projective modules are finitely generated.
By Lemma 2.1 0 = Hi(R̂) ' TorZ[G](Z,Fp[[ĜC]]) for i ≥ 1, where by (1)

R̂ ' R⊗Z[G] Fp[[ĜC]].
The long exact sequence in homology for the short exact sequence of ab-

stract Z[G]-modules 0 → (Z/pm−1Z)[[ĜC]] → (Z/pmZ)[[ĜC]] → Fp[[ĜC]] → 0

implies that if Tor
Z[G]
i (Z, (Z/pm−1Z)[[ĜC]]) = 0 for all i ≥ 1 then Tor

Z[G]
i (Z,

(Z/pmZ)[[ĜC]]) = 0 for all i ≥ 1. It follows that for every m the complex

P(m) := R⊗Z[G] (Z/pmZ)[[ĜC]] is exact.
Let P be the inverse limit of the tower of exact complexes {P(m)}m≥1. By

[20, Thm. 3.5.8] the complex P is exact and by construction P ' R ⊗Z[G]

Zp[[ĜC]]. Then 0 = Hi(P) = Tor
Z[G]
i (Z,Zp[[ĜC]]) for all i ≥ 1 and P is

a profinite projective resolution of the trivial profinite Zp[[ĜC]]-module Zp

with all projective modules finitely generated, hence ĜC is of type FP∞ over
Zp.

Theorem 2.6. Suppose G is an abstract group of finite cohomological di-
mension cd(G) = m and type FP∞. Let i0 be a positive integer such that
1 ≤ i0 ≤ m, p a fixed prime number and C a directed set of normal subgroups
U of finite index in G. Suppose further that for all i ∈ {1, . . . , m} \ {i0}

lim
←−
U∈C

Hi(U,Fp) = 0.

Then
a) the inverse limit Vi0 := lim←−Hi0(U,Fp) over U ∈ C has a finite projective

dimension as an abstract Fp[[ĜC]]-module if and only if the profinite group

ĜC is of finite cohomological p-dimension;
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b) if Vi0 = 0 then the profinite group ĜC is of finite cohomological p-

dimension cdp(ĜC) ≤ cd(G), of type FP∞ over Fp and its Euler p-characteristics

χp(ĜC) = χ(G).

Proof. Let R be a projective resolution

R : 0 → Rm → Rm−1 → . . . → R0 → Z→ 0

with all Ri finitely generated for i ≤ m. Let R̂ the complex obtained from the
inverse limit procedure at the beginning of section 2 i.e. R̂ ' R⊗Z[G]Fp[[ĜC]].
To prove a) we note that if there is an exact complex of abstract Fp[[ĜC]]-
modules

0 → W ′ → Qj → Qj−1 → . . . → Q0 → W ′′ → 0

with Qi projective for 0 ≤ i ≤ j then W ′′ has finite projective dimension if
and only if W ′ has finite projective dimension. One can see it by breaking
the complex into short exact sequences and using [14, Prop. 5.2.11] sta-

ting that a Fp[[ĜC]]-module M has projective dimension n if and only if

Tor
Fp[[ bGC ]]
n+1 (M, N) = 0 for every simple N (or similarly with Ext).
This applied in the special case i0 = m for the exact complex of abstract

Fp[[ĜC]]-modules

0 → Ker(∂m) → R̂m

b∂m−→R̂m−1 → . . . → R̂0 → Fp → 0

plus the fact that by Lemma 2.1, Vi0 ' Hi0(R̂) = Ker(∂m), shows that a)
holds for i0 = m.

Now suppose that i0 ≤ m− 1. Then the above argument applied for the
exact complex

0 → Ker(∂̂i0) → R̂i0

b∂i0−→ . . . → R̂0 → Fp → 0

shows that Fp has finite projective dimension as an abstract Fp[[ĜC]]-module

if and only if Ker(∂̂i0) has finite projective dimension. Since Hi(R) is the
inverse limit lim←−Hi(U,Fp) over U ∈ C and lim←−Hi(U,Fp) = 0 for all i > i0, the

module Im(∂̂i0+1) has a projective resolution as an abstract Fp[[ĜC]]-module

0 → R̂m

b∂m−→R̂m−1−→ . . .−→R̂i0+1

b∂i0+1−→Im(∂̂i0+1) → 0,

hence Im(∂̂i0+1) has finite projective dimension. Finally consider the short

exact sequence of Fp[[ĜC]]-modules 0 → Im(∂̂i0+1) → Ker(∂̂i0) → Hi0(R̂) →

14



0. Then Ker(∂̂i0) has finite projective dimension if and only if Hi0(R̂) has

finite projective dimension. Finally by Lemma 2.1 Hi0(R̂) ' Vi0 . This
completes the proof of part a).

If Vi0 = 0 by Theorem 2.5 the complex S = R⊗Z[G]Zp[[ĜC]] is a projective

resolution of Zp as an abstract Zp[[ĜC]]-module of finite length and all pro-

jective modules finitely generated. Then by Lemma 1.1c) cdp(ĜC) ≤ cd(G)
and

χp(ĜC) =
∑

i

(−1)irkZp(Si ⊗Zp[[ bGC ]] Zp) =
∑

i

(−1)irkZp(Ri ⊗Z[G] Zp) =

∑
i

(−1)irkZp(Ri ⊗Z[G] Z⊗Z Zp) =
∑

i

(−1)irkZ(Ri ⊗Z[G] Z) = χ(G).

The following corollary follows from Theorem 2.6 b) and Theorem 2.5.

Corollary 2.7. Suppose G is an abstract group of finite cohomological dimen-
sion cd(G) = m and type FP∞. Let C be a directed set of normal subgroups
U of finite index in G. Suppose further that for a fixed prime p and for all
1 ≤ i ≤ m

lim
←−
U∈C

Hi(U,Fp) = 0.

Then the profinite group ĜC is of finite cohomological p-dimension cdp(ĜC) ≤
m, is of type FP∞ over Fp and over Zp and its Euler p-characteristics

χp(ĜC) = χ(G).

Remark Corollary 2.7 can be also deduced from in [17, Complements, p.15]
using the Lyndon-Hoschild-Serre spectral sequence.

3 Groups of cohomological dimension 3

3.1 Pro-C completions

In this subsection we study pro-C completions of groups of cohomological di-
mension 3 with some additional properties, where C is a class of finite groups
closed for subgroups, quotients and extensions. In this case our directed set
C is a set of subgroups of G that defines the pro-C topology on G. One of the
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frequent additional property is the infinity of a Sylow p-subgroup for every
p. It is worth to observe that the profinite completion of a finitely generated
linear group has an infinite Sylow p-subgroup for every p. This follows from
the Lubotzky’s Alternative see p. 390 in [13].

For U ∈ C denote by ÛC the inverse limit of U/V over those V in C that

are subgroups of U . Denote by Hi(ÛC,Fp) the continuous ith homology of

the profinite group ÛC with coefficients in Fp (i.e. calculated using projective

resolution of Zp in the category of profinite Zp[[ÛC]]-modules). Note that if

ĜC has an infinite Sylow p-subgroup then C contains Fp, and hence C contains
any finite p-group.

Proposition 3.1. Let p be a fixed prime, G an abstract group of cohomo-
logical dimension 3 and type FP∞. Furthermore for every U ∈ C either
H3(U,Fp) ' Fp or H3(U,Fp) = 0 . Assume that the profinite group ĜC has
an infinite Sylow p-subgroup. Then for any projective resolution R of Z as
an abstract Z[G]-module such that R has finite length 3 and finitely generated
projective modules one has

Hi(R̂) = 0 for i = 1 and i = 3

for the completed complex R̂ ' R⊗Z[G] Fp[[G]].

Proof. Since U is finitely generated (because G is), [U,U ]Up has finite index

in U , so by in [15, Prop. 3.3.2 (d)] U/[U,U ]Up ' ÛC/[ÛC, ÛC]Û
p
C . Hence the

homomorphism U → ÛC induces an isomorphism of Fp-vector spaces

H1(U,Fp) ' U/[U,U ]Up ' ÛC/[ÛC, ÛC]Û
p
C ' H1(ÛC,Fp).

As the continuous homology commutes with inverse limits (see Proposition
6.5.7 in [15]) we get that

lim
←−
U∈C

H1(ÛC,Fp) ' H1(lim←−
U∈C

ÛC,Fp) = 0 since lim
←−
U∈C

ÛC = ∩U∈C ÛC = 1.

In particular, by Lemma 2.1

H1(R̂) ' lim
←−
U∈C

H1(U,Fp) = 0.

16



As H3(U,Fp) ' Fp or 0, the inverse limit lim←−H3(U,Fp) is either Fp or 0.

Again using Lemma 2.1

H3(R̂) ' lim
←−
U∈C

H3(U,Fp) = 0 or Fp.

In this paragraph we state a homological version of [17, Sec. 3.3, Lemma 4].
Consider two normal subgroups U1 ⊆ U2 of finite index in G such that the
order of U2/U1 is divisible by p, then the map

CorU2
U1
◦ResU1

U2
: H3(U2,Fp) → H3(U2,Fp) is zero

since it is the multiplication by |U2/U1|. Here ResU1
U2

: H3(U2,Fp) → H3(U1,Fp)
is the restriction map, called transfer map in [20, Lemma 6.7.17]. By [20,
6.3.9] the restriction map is the composition H3(U2,Fp) → H3(U2, IndU2

U1
(Fp))

' H3(U1,Fp), where the last isomorphism is the one given by the Shapiro
lemma. As U2 has cohomological dimension 3 the long exact sequence in
homology for the short exact sequence

0 → Fp → IndU2
U1

(Fp) → IndU2
U1

(Fp)/Fp → 0

gives an exact sequence

H4(U2, IndU2
U1

(Fp)/Fp) = 0 → H3(U2,Fp) → H3(U2, IndU2
U1

(Fp)) → . . . .

In particular the map H3(U2,Fp) → H3(U2, IndU2
U1

(Fp)) is injective and the

restriction map ResU1
U2

is injective.

Suppose that CorU2
U1
6= 0. As H3(Ui,Fp) is either Fp or zero, H3(U1,Fp) '

Fp ' H3(U2,Fp) and the injectivity of ResU1
U2

implies that ResU1
U2

is an isomor-

phism. Finally since CorU2
U1
◦ResU1

U2
= 0 we obtain CorU2

U1
= 0, a contradiction.

Hence CorU2
U1

= 0.

As ĜC has an infinite Sylow p-subgroup infinitely many of the corestriction
maps in the inverse limit used to calculate lim←−H3(U,Fp) ' H3(R̂) are zero,

hence H3(R̂) = 0.

Theorem 3.2. Suppose the hypothesis of the preceding proposition hold and
the homomorphism

ϕU : H2(U,Fp) → H2(ÛC,Fp)
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induced by the canonical homomorphism U → ÛC is an isomorphism for all
U ∈ C. Then

a) Tor
Z[G]
i (Z,Fp[[ĜC]]) = 0 for all i ≥ 1, the canonical map G → ĜC

induces an isomorphism Hi(G,Fp) ' Hi(ĜC,Fp) for all i and χp(ĜC) = χ(G);

b) the profinite group ĜC is of type FP∞ over Fp and over Zp and has

cohomological p-dimension cdp(ĜC) ≤ 3, in particular ĜC does not have p-

torsion. If H3(G,Fp) ' Fp then cdp(ĜC) = 3;

c) Tor
Z[G]
i (Z,Zp[[ĜC]]) = 0 for all i ≥ 1.

Proof. Let R be a projective resolution of Z as a Z[G]-module

R : 0 → R3 → R2 → R1 → R0 → Z→ 0

with finitely generated projective modules and R̂ ' R⊗Z[G] Fp[[ĜC]] by (1).

As the homomorphism ϕU : H2(U,Fp) → H2(ÛC,Fp) is an isomorphism for
all U ∈ C and by Lemma 2.1

H2(R̂) ' lim
←−
U∈C

H2(U,Fp) ' lim
←−
U∈C

H2(ÛC,Fp) ' H2(lim←−
U∈C

ÛC,Fp) = 0.

Combining this with Proposition 3.1 we have 0 = Hi(R̂) ' Tor
Z[G]
i (Z,Fp[[ĜC]])

for 1 ≤ i ≤ 3, hence R̂ is a finite length projective resolution of Fp over

Fp[[ĜC]] with all modules finitely generated and R⊗Z[G] Fp ' R̂ ⊗Fp[[ bGC ]] Fp.

By Corollary 2.7 the profinite group ĜC is of type FP∞ over Zp and over

Fp and cdp(ĜC) ≤ 3. Note that if F is a projective resolution with all pro-

jectives finitely generated of the trivial abstract Zp[[ĜC]]-module Zp then

F ⊗Zp[[ bGC ]] Fp[[ĜC]] is a projective resolution of the trivial abstract Fp[[ĜC]]-

module Fp. Therefore, Tor
Fp[[ bGC ]]
i (Fp,Fp) ' Tor

Zp[[ bGC ]]
i (Zp,Fp). Hence

Hi(G,Fp) ' Hi(R⊗Z[G] Fp) ' Hi(R̂ ⊗Fp[[ bGC ]] Fp) '

Tor
Fp[[ bGC ]]
i (Fp,Fp) ' Tor

Zp[[ bGC ]]
i (Zp,Fp) ' Hi(ĜC,Fp)

and (a) is proved.

To finish the proof of item (b) we observe that H3(ĜC,Fp) ' H3(G,Fp) '
Fp 6= 0 gives cdp(Ĝ) = 3. Finally Theorem 2.5 completes the proof of item
(c).
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3.2 More on pro-p completions

We shall need the pro-p version of a well-known result for discrete groups.

Lemma 3.3. Let G be a finitely presented pro-p group and H be an open
subgroup of G. Then

def(H)− 1 ≥ (G : H)(def(G)− 1).

Proof. Denote by d(G) the minimal number of topological generators of G.
Let f : F −→ G be an epimorphism of a free pro-p group F of rank d(G) onto
G. Put U = f−1(H). Then U is free pro-p and d(U) = (F : U)(d(F )− 1)+1
(see [15, Thm 3.6.2]). Denote by r(G) and r(H) the minimal number of
generators of ker(f) as a normal subgroup in F and in U respectively. Hence

def(H) = d(U)− r(H)

= (F : U)(d(F )− 1) + 1− r(H)

≥ (F : U)(d(F )− 1) + 1− (F : U)r(G)

= (F : U)(def(G)− 1) + 1

as needed.

Lemma 3.4. Let G be an abstract finitely generated group of cohomological
dimension 3 and Euler characteristics 0 with a subgroup U of G of p-power
index such that H3(U,Fp) ' Fp. Then for the pro-p completion Ûp of U the
dimension (over Fp) of the kernel of the surjective map

ϕU : H2(U,Fp) → H2(Ûp,Fp)

is def(Ûp), where

def(Ûp) = dimFpH1(Ûp,Fp)− dimFpH2(Ûp,Fp)

is the deficiency of Ûp.

Proof. We claim that ϕU is surjective. Indeed let F be a finite rank free
group with a normal subgroup R such that U ' F/R. Then by a p-version
of Schur multiplier formula H2(U,Fp) ' R∩ [F, F ]F p/[R, F ]Rp (this formula

follows easily from the exact sequence given in [4, Ch. 2,Prop. 5.4]). Let F̂

be the pro-p completion of F (i.e. F̂ is a free pro-p group of rank equal to
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the rank of F ) and R̄ be the closure of the image of R in F̂ via the canonical

map ρ : F → F̂ . Then H2(Ûp,Fp) ' R̄∩ [F̂ , F̂ ]F̂ p/[R̄, F̂ ]R̄p and the map ϕU

is induced by the map ρ.
Note that by [4, Thm. 6.3, Ch. 9] χ(U) = (G : U)χ(G) = 0 since χ(G) = 0

by the hypothesis of the lemma. Then

dimFpH2(U,Fp)− dimFpH1(U,Fp) = χ(U)− dimFpH0(U,Fp)

+dimFpH3(U,Fp) = χ(U) = 0,

dimFpH2(U,Fp) = dimFpH1(U,Fp) = dimFpU/[U,U ]Up = dimFpH1(Ûp,Fp)

and
dimFpKer(ϕU) = dimFpH2(U,Fp)− dimFpH2(Ûp,Fp) =

dimFpH1(Ûp,Fp)− dimFpH2(Ûp,Fp) = def(Ûp).

Corollary 3.5. Suppose the assumptions of the preceding lemma hold for
any subgroup U of p-power index in G. Then the following hold :

a) if U/[U,U ] is finite then ϕU is an isomorphism;

b) let V be a subgroup of p-power index in G such that the map ϕV is not an
isomorphism. Then for any proper subgroup W of p-power index in V the
map ϕW is not an isomorphism and def(Ŵp) ≥ def(V̂p).

Proof. a) By Lemma 3.4 def(Ûp) = dimFpKer(ϕU) ≥ 0. If def(Ûp) 6= 0

by [13, Lemma 16.4.3,p.370] Ûp cannot have finite abelianization, hence U

cannot have finite abelianization, a contradiction. Then def(Ûp) = 0 and ϕU

is an isomorphism.
b) By Lemma 3.3 def(Ŵp)− 1 ≥ (V̂p : Ŵp)(def(V̂p)− 1). Therefore,

def(Ŵp)− 1 ≥ (V̂p : Ŵp)(def(V̂p)− 1) ≥ 2(def(V̂p)− 1).

By Lemma 3.4 def(V̂p) = dimFpKer(ϕV ) ≥ 1. Hence

def(Ŵp)− def(V̂p) ≥ 2(def(V̂p)− 1) + 1− def(V̂p) = def(V̂p)− 1 ≥ 0

and again using Lemma 3.4

dimFpKer(ϕW ) = def(Ŵp) ≥ def(V̂p) = dimFpKer(ϕV ) > 0,

in particular Ker(ϕW ) 6= 0.
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Theorem 3.6. Let G be an abstract group of cohomological dimension 3 such
that H3(U,Fp) ' Fp for every normal subgroup U of p-power index in G.

Assume that the pro-p completion Ĝp is infinite and that the homomorphism

ϕU : H2(U,Fp) → H2(Ûp,Fp)

induced by the homomorphism U → Ûp is an isomorphism for all normal
subgroups U of p-power index in G. Then

a) Tor
Z[G]
i (Z,Fp[[Ĝp]]) = 0 and Tor

Z[G]
i (Z,Zp[[Ĝp]]) = 0 for all i ≥ 1,

Hi(G,Fp) ' Hi(Ĝp,Fp) for all i and χ(Ĝp) = χ(G);

b) the pro-p group Ĝp is of type FP∞ over Fp and over Zp and has coho-

mological dimension 3, in particular Ĝp is torsion-free.
c) G is a p-good group.

Proof. Parts a) and b) are specific cases of Theorem 3.2 applied for the set
C of all normal subgroups U of G of p-power index.

To prove c) consider

R : 0 → R3 → R2 → R1 → R0 → Z→ 0

a projective resolution of the trivial Z[G]-module Z with all modules finitely

generated. By part a) P = R⊗Z[G] Zp[[Ĝp]] is an exact complex. Note that
for any finite p-primary G-module M

HomZ[G](Rdel,M) ' HomZp[[ bGp]](Pdel,M),

hence

H i(G, M) ' H i(HomZ[G](Rdel,M)) ' H i(HomZp[[ bGp]](Pdel,M)) ' H i(Ĝp,M).

Corollary 3.7. Let G be an abstract group of cohomological dimension 3, of
type FP∞, of Euler characteristics χ(G) = 0 and such that H3(U,Fp) ' Fp

for every normal subgroup U of p-power index in G. Assume that Ĝp is
infinite and that every normal subgroup U of p-power index in G has finite
abelianization. Then G is a p-good group.

Proof. Follows from Corollary 3.5 a) and Theorem 3.6 c).

21



3.3 Goodness

Theorem 3.8. Let G be an abstract group of cohomological dimension 3, of
type FP∞, of Euler characteristics χ(G) = 0 and p a fixed prime number
such that H3(U,Fp) ' Fp for every normal subgroup U of a finite index in G.

Assume that the profinite completion Ĝ has an infinite Sylow p-subgroup and
that every normal subgroup U of a finite index in G has finite abelianization.

Then for every finite p-primary discrete G-module M the natural homo-
morphism G → Ĝ induces an isomorphism H i(Ĝ,M) → H i(G,M) for all
i.

Proof. We aim to prove that for the set C of all normal subgroups U of finite
index in G

lim
←−
U∈C

H2(U,Fp) = 0 (9)

Note that every U ∈ C satisfies the assumptions of Corollary 3.7 except
that the pro-p completion of U can be finite. By Corollary 3.5 a) the map

H2(U,Fp) → H2(Ûp,Fp), induced by the natural homomorphism U → Ûp,

is an isomorphism, where Ûp is the pro-p completion of U . Hence for all
U ∈ C and CU the set of all subgroups V of U of p-power index such that V
is normal in G

lim
←−

V ∈CU

H2(V,Fp) = 0.

Let
θ :

∏
U∈C

H2(U,Fp) →
∏
U∈C

(
∏

V ∈CU

H2(V,Fp))

be the injective homomorphism whose restriction on H2(U,Fp) is
∏

W∈C θW ,
where θW : H2(U,Fp) →

∏
V ∈CW

H2(V,Fp) is the natural inclusion of the
direct component H2(U,Fp) if U ∈ CW , and is zero otherwise. Note that θ
induces an injective homomorphism

θ∗ : lim
←−
U∈C

H2(U,Fp) →
∏
U∈C

lim
←−

V ∈CU

H2(V,Fp) =
∏

0 = 0

hence (9) holds.
Now (9) and Proposition 3.1 combined with Lemma 2.1 show that the

hypothesis of Theorem 2.5 are satisfied. Applying it for the set C of all
normal subgroups U of finite index in G, Tor

Z[G]
i (Z,Zp[[Ĝ]]) = 0 for all

i ≥ 1. Let R : 0 → R3 → R2 → R1 → R0 → Z → 0 be a projective
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resolution of the trivial Z[G]-module Z with all modules finitely generated.

Then P = R⊗Z[G] Zp[[Ĝ]] is an exact complex and for any finite p-primary
G-module M , HomZ[G](Rdel,M) ' HomZp[[ bG]](Pdel,M). Hence for all i

H i(G, M) ' H i(HomZ[G](Rdel,M)) ' H i(HomZp[[ bG]](Pdel,M)) ' H i(Ĝ,M),

the last isomorphism follows from [15, Remark 6.2.5].

Corollary 3.9. Let G be an abstract group of cohomological dimension 3, of
type FP∞, of Euler characteristics χ(G) = 0 and such that H3(U,Fp) ' Fp

for every normal subgroup U of a finite index in G and for all prime numbers
p. Assume that the profinite completion Ĝ has an infinite Sylow p-subgroup
for every prime p and that every normal subgroup U of a finite index in G
has finite abelianization. Then G is good.

Proof. If A is a finite discrete G-module then A is a direct sum of its
p-primary submodules A(p), hence we can apply Theorem 3.8 for M =

A(p). Then the natural homomorphism G → Ĝ induces an isomorphism

H i(Ĝ, A) → H i(G,A) for all i.

4 Poincaré duality groups of dimension 3

4.1 Pro-C completions

As in Subsection 3.1 in this subsection we are concerned with pro-C com-
pletions of groups of cohomological dimension 3, where C is a class of finite
groups closed for subgroups, quotients and extensions. So our directed set C
in this subsection is a set of normal subgroups of G that defines the pro-C
topology on G and so the pro-C completion ĜC = ĜC.

Suppose G is an abstract Poincaré duality group of dimension 3 i.e. a PD3

group. Thus G is an abstract group of cohomological dimension 3, of type
FP∞, of Euler characteristics χ(G) = 0. Note that every subgroup of finite
index in a PDn group is a PDn group [4, Ch. 8,Prop. 10.2]. Furthermore
if a PDn group G is not orientable ( i.e. the G-action on Hn(G,Z[G]) ' Z
is not trivial) then there is a subgroup of index 2 in G that is an orientable
PDn group.
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Theorem 4.1. Let G be an abstract Poincaré duality group of dimension 3
and p be a prime number. Suppose G is orientable if Z/2Z 6∈ C and that ĜC

has an infinite Sylow p-subgroup. Suppose also that the homomorphism

ϕU : H2(U,Fp) → H2(ÛC,Fp),

induced by the canonical homomorphism U → ÛC, is an isomorphism for all
U ∈ C. Then

a) χp(ĜC) = χ(G) = 0, ĜC is of type FP∞ over Zp and has cohomological

p-dimension 3, in particular ĜC does not have p-torsion.
b) ĜC is a profinite Poincaré duality group at the prime p. If G is ori-

entable then ĜC is orientable.

Proof. a) Every normal subgroup U of finite index in G is an abstract
Poincaré duality group of dimension 3. If U is orientable H3(U,Fp) '
H0(U,Fp) ' Fp. If U is not orientable H3(U,Fp) ' H0(U,D ⊗Z Fp) '
(D ⊗Z Fp)

U where D ' Z is the orientation module. Hence U acts non-
trivially on D and (D ⊗Z Fp)

U = 0 if p 6= 2, (D ⊗Z F2)
U = F2 if p = 2

. Then we can apply Theorem 3.2 to obtain that cdp(ĜC) ≤ 3 and all the

other statements except cdp(ĜC) = 3. It needs only to show this equality.
There is a subgroup G0 of index ≤ 2 in G such that G0 is an orientable

Poincaré duality group of dimension 3 and if G is orientable G0 = G. Since
C is extension closed and by assumption if G 6= G0 we have Z/2Z ∈ C and

[G : G0] = 2, the closure of G0 in ĜC coincides with (Ĝ0)C. Thus it suffices

to prove the result for G0 since cdp((Ĝ0)C) ≤ cdp(ĜC) ≤ 3. Let U0 ∈ C be
such that U0 ⊆ G0. As ϕU0 is an isomorphism, Theorem 3.2b) holds for G0,

hence cdp((Ĝ0)C) = 3.
b) Let G0 be as in the proof of part a). Let

R : 0 → R3 → R2 → R1 → R0 → Z→ 0

be a projective resolution of the trivial right Z[G0]-module Z with all mod-
ules finitely generated (it exists since G0 is of type FP∞). Then H i(S) =
H i(G0,Z[G0]) is 0 for i 6= 3 and Z for i = 3, where S = HomZ[G0](R,Z[G0])
is the dual complex, in particular S is a complex of left Z[G0]-modules. Then
the complex obtained from S by adding its unique non-trivial cohomology

T : 0 → S0 → S1 → S2 → S3 → H3(S) = Z→ 0
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can be viewed as a projective resolution of Z as a left Z[G0]-module. By Theo-

rem 3.2c) Tor
Z[G0]
i (Z,Zp[[(Ĝ0)C]]) = 0 and similarly Tor

Z[G0]
i (Zp[[(Ĝ0)C]],Z) =

0. Then

T̂ = Zp[[(Ĝ0)C]]⊗Z[G0] T : 0 → T 0 → T 1 → T 2 → T 3 → Zp → 0

is a projective resolution of the trivial abstract left Zp[[(Ĝ0)C]]-module Zp.

Deleting the term Zp of the above resolution we get the deleted complex T̂ del.
We claim that

T̂ del ' HomZp[[(cG0)C ]]
(Pdel,Zp[[(Ĝ0)C]]),

where P = R ⊗Z[G0] Zp[[(Ĝ0)C]] is an exact complex of right Zp[[(Ĝ0)C]]-
modules by Theorem 3.2c). Indeed T̂ del is obtained from the complex Rdel

of projective finitely generated Z[G0]-modules by applying first the functor

HomZ[G0]( ,Z[G0]) and then the functor Zp[[(Ĝ0)C]]⊗Z[G0]. The composite of

these functors is the same as the composite of the functor ⊗Z[G0]Zp[[(Ĝ0)C]]
and then HomZp[[(cG0)C ]]

( ,Zp[[(Ĝ0)C]]) if applied on a complex of finitely

generated, projective Z[G0]-modules. Hence

H i((Ĝ0)C,Zp[[(Ĝ0)C]]) = ExtiZp[[(cG0)C ]]
(Zp,Zp[[(Ĝ0)C]]) '

H i(HomZp[[(cG0)C ]]
(Pdel,Zp[[(Ĝ0)C]])) ' H i(T̂ del)

is 0 for i 6= 3 and is Zp otherwise. Note that (Ĝ0)C is a subgroup of finite index

in ĜC and by part a) of Theorem 4.1 ĜC is FP∞ over Zp and cdp(ĜC) < ∞.
Then we can apply [19, 4.2.9] to get

H i((Ĝ0)C,Zp[[(Ĝ0)C]]) ' H i(ĜC,Zp[[ĜC]]).

Then H∗(ĜC,Zp[[ĜC]]) is concentrated in dimension 3, where it is Zp. As

discussed in the preliminaries for a profinite group ĜC of type FP∞ over Zp

and of finite cohomological p-dimension this condition holds if and only if ĜC

is a profinite Poincaré duality group at p of dimension 3.
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4.1.1 Proof of Theorem C

Let C be the set of all normal subgroups U of finite index in G. The proof of
Theorem 4.1 does not need that ϕU is an isomorphism for every U ∈ C only
its corollary that

lim
←−
U∈C

H2(U,Fp) = 0

The last condition was proved in the proof of Theorem 3.8, where it was
denoted by (9). Then Theorem 4.1 completes the proof.

4.2 More on pro-p completions

4.2.1 Proof of Theorem A

a) implies b) is a particular case of Theorem 4.1.
b) implies c) follows from the fact that subgroups of finite index in ori-

entable Poincaré duality pro-p groups of dimension 3 are again orientable
Poincaré duality pro-p groups of dimension 3 [14, Exer. 1, p.174], [19, 4.4.1]
plus the fact that orientable Poincaré duality pro-p groups of dimension 3
have deficiency 0.

c) implies d) follows from Lemma 3.4 and Theorem 3.6 c).
d) implies a) Any subgroup U of p-power index in G is p-good, hence

def(Ûp) = −dimFpH
2(Ûp,Fp) + dimFpH

1(Ûp,Fp) =

−dimFpH
2(U,Fp) + dimFpH

1(U,Fp).

Furthermore as U is an orientable Poincaré duality group of dimension 3 we
have H i(U,Fp) ' H3−i(U,Fp), hence

dimFpH
2(U,Fp)− dimFpH

1(U,Fp) = dimFpH1(U,Fp)− dimFpH2(U,Fp)

+dimFpH3(U,Fp)− dimFpH0(U,Fp) = −χ(U) = 0.

Then by Lemma 3.4 ϕU is an isomorphism. This completes the proof.

Corollary 4.2. Let G be an orientable Poincaré duality group of dimension
3. Assume that the pro-p completion Ĝp is infinite and that every normal

subgroup U of p-power index in G has finite abelianization. Then Ĝp is an
orientable Poincaré duality pro-p group of dimension 3.

Proof. Follows directly from Corollary 3.7 and Theorem A.
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Corollary 4.3. Let G be an orientable Poincaré duality group of dimension
3 and Ĝp be the pro-p completion of G. Assume that Ĝp is infinite. Then
one of the following holds :

a) Ĝp is a pro-p Poincaré duality group of dim 3;
b) there exists a normal subgroup V of p-power index in G such that

def(V̂p) ≥ 2. In this case V has Z × Z as a quotient and there is no upper

bound on the deficiency of the subgroups of finite index in Ĝp;
c) there exists a normal subgroup V of p-power index in G such that

def(V̂p) = 1. In this case V has Z as a quotient. If furthermore there is an

upper bound on the deficiency of the subgroups of finite index in Ĝp then the

minimal such upper bound is 1 and Ĝp is virtually Zp.

Proof. By Theorem A the case a) corresponds to the case when def(Ûp) = 0
for any normal subgroup U in G of p-power index.

If b) holds the proof of [13, Lemma 3, p.359] shows that the abelianization

of V̂p has as quotient Zdef(bVp)
p . By Lemma 3.3

def(A)− 1 ≥ (V̂p : A)(def(V̂p)− 1) ≥ (V̂p : A)

for A an open subgroup in V̂p, in particular there is no upper bound on the

deficiency of the subgroups of finite index in Ĝp.

Suppose that c) holds. Using again that the abelianization of V̂p has

Zdef(bVp)
p as a quotient we see that V̂p has a quotient isomorphic to Zp. Suppose

that there is an upper bound on the deficiency of the subgroups of finite index
in Ĝp, then case b) does not hold and the minimal upper bound is 1. By
Lemma 3.4 and Corollary 3.5b) the kernel of the map

ϕU : H2(U,Fp) → H2(Ûp,Fp)

is a Fp-vector space of dimension def(Ûp) = 1, where U is any normal sub-
group of G of p-power index such that U ⊆ V .

Let C be the class of all subgroups of G of p-power index. As the inverse
limit of H2(Ûp,Fp) over U ∈ C is 0 and inverse limit is a left exact functor, the
inverse limit of H2(U,Fp) is isomorphic to the inverse limit of the kernels of
ϕU . As Ker(ϕU) is a vector space over Fp of dimension at most 1 the inverse
limit lim←−H2(U,Fp) over U ∈ C is either Fp or 0. If it is 0 then by Lemma
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2.1, Theorem 2.5 and Proposition 3.1 the complex R̂ = R ⊗Z[G] Fp[[Ĝp]] is
exact, where

R : 0 → R3 → R2 → R1 → R0 → Z→ 0

is a projective resolution of the trivial Z[G]-module Z with all modules finitely

generated. Then the proof of Theorem 4.1b) implies that Ĝp is a pro-p
Poincaré group of dimension 3 (the condition that ϕU is an isomorphism
does not hold in our case but in the proof of Theorem 4.1 this condition was
used only to deduce that R̂ is exact in dimension 2). Then the subgroup Ûp

of finite index in Ĝp is again a pro-p orientable Poincaré duality group, hence
has deficiency 0 not 1, a contradiction. Thus

H2(R̂) ' lim←−H2(U,Fp) ' Fp

is the trivial Fp[[Ĝp]]-module (any continuous action of a pro-p group on Fp

is trivial). Furthermore by Proposition 3.1

H1(R̂) = 0 = H3(R̂).

Consider the dual complex S = HomZ[G](R,Z[G]), thus S is a complex of left
Z[G]-modules. As G is an orientable Poincaré duality group H i(S) = 0 for
i 6= 3 and H3(S) is the trivial Z[G]-module Z. Then the complex obtained
from S by adding its unique non-trivial cohomology

T : 0 → S0 → S1 → S2 → S3 → H3(S) = Z→ 0

can be viewed as a projective resolution of Z as a left Z[G]-module. By
the above paragraph applied to complexes of left modules instead of right
modules T̂ = Fp[[Ĝp]]⊗Z[G] T is not exact, otherwise using again the proof of

Theorem 4.1b) Ĝp is a pro-p Poincaré duality group, a contradiction. Then

T̂ has only one non-trivial homology group isomorphic to Fp that would be

in dimension 2 if Z was positioned in dimension -1 and T̂ was chain complex
not a cochain complex, so in our case it is the first cohomology

H1(T̂ ) ' Fp.

Observe that H1(T̂ ) =

Ker(Fp[[Ĝp]]⊗Z[G]S
1 → Fp[[Ĝp]])⊗Z[G]S

2)/Im(Fp[[Ĝp]]⊗Z[G]S
0 → Fp[[Ĝp]]⊗Z[G]S

1)
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' H1(Ĝp,Fp[[Ĝp]]).

The last isomorphism follows from the fact that the partial complex

R̂2 → R̂1 → R̂0 → Fp → 0

is exact, where R̂ = R ⊗Z[G] Fp[[Ĝp]] and as in the proof of Theorem 4.1b)

T̂ ' HomFp[[ bGp]](R̂,Fp[[Ĝp]]). Then

H1(Ĝp,Fp[[Ĝp]]) ' Fp

and by [12, Thm. 3] Ĝp is virtually Zp.

4.2.2 Proof of Theorem B

Theorem B follows from Corollary 4.3. The remark to Theorem B follows
from the fact that if G is non-orientable and p = 2 then G has a subgroup
U of index 2 that is orientable Poincaré duality group of dimension 3, the
pro-2 completion Û2 is a subgroup of index 2 in the pro-2 completion Ĝ2 and
Theorem B applies for the group U . It remains only to point out that if Û2 is a
pro-2 Poincaré duality group of dimension 3 then it is FP∞ over Z2, hence Ĝ2

is FP∞ over Z2. Finally by the pro-2 version of [17, Chapter 1 §2.6 Exercise
2) (c)] as G is an extension of U by C2, both U and C2 are 2-good and U is

FP∞ we deduce that G is 2-good. In particular H4(Ĝ2,F2) ' H4(G,F2) = 0,

hence cd(Ĝ2) ≤ 3. As in the last paragraph of the proof of Theorem 4.1b)

H i(Ĝ2,Z2[[Ĝ2]]) ' H i(Û2,Z2[[Û2]]) as profinite abelian groups. In particular

H∗(Ĝ2,Zp[[Ĝ2]]) is concentrated in dimension 3, where it is Zp, thus Ĝ2 is a
pro-2 Poincaré duality group.

5 More corollaries

Proposition 5.1. Let G be an abstract orientable finitely presented Poincaré
duality group of dimension 3. Suppose there exists a normal subgroup V of
p-power index in G such that def(V̂p) ≥ 2, where V̂p is the pro-p completion

of V . Then V contains a free subgroup of rank 2 and V̂p contains a closed
free pro-p subgroup of rank 2.
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Proof. Since V̂p has deficiency at least 2, it has a pro-p presentation with
d ≥ 2 generators and r relations such that r ≤ d−2, hence r ≤ d−2 < d2/4.

Then by the main result of [23] V̂p has a closed free pro-p subgroup of rank
2.

By Corollary 4.3b) Z×Z is a quotient of V . Assume that V does not have
a free subgroup of rank 2. Then by [3, Thm. D] there is a finitely generated
normal subgroup N of G such that G/N ' Z, hence by [11, Cor. 1.1] N
is a Poincaré duality group of dimension 2 (the version of [11, Cor. 1.1] for
fundamental groups of 3-manifolds can be found in [18]), hence a surface
group by [6]. As V does not contain a free subgroup of rank 2 the surface
group is Z× Z or Z o Z with action of Z on Z given by multiplication with
−1. Then V and its pro-p completion V̂p are soluble groups, a contradiction

with the fact that V̂p has a closed free pro-p subgroup of rank 2.

Proposition 5.2. Let G be an abstract orientable Poincaré duality group of
dimension 3 and Ĝp be the pro-p completion of G. Assume that the pro-p

completion Ĝp of G is infinite. Then one of the following or both hold :

a) Ĝp is a pro-p Poincaré duality group of dim 3;
b) G has a subgroup of p-power index that is an HNN- extension with

finitely generated base and associated subgroups. In general this HNN exten-
sion need not be ascending or descending.

Proof. If a) does not hold by Corollary 4.3 there is a normal subgroup V of
p-power index in G such that V maps surjectively to Z. As G is of type FP2

any subgroup of finite index is FP2, in particular this holds for V . By the
main result of [2] a group of type FP2 that maps surjectively to Z is an HNN
extension with finitely generated base and associated subgroups.
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