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Abstract

A limit group is a finitely generated subgroup of a residually free group.
We prove the result announced in the tittle.
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1 Introduction
A group G is conjugacy separable if whenever x an y are non-conjugate elements
of G, there exists some finite quotient of G in which the images of x and y are
non-conjugate. The notion of the conjugacy separability owes its importance to
the fact, first pointed out by Mal’cev [M-58], that the conjugacy problem has a
positive solution in finitely presented conjugacy separable groups.

The objective of this paper is to prove the conjugacy separability for limit
groups, i.e., finitely generated residually free groups.

Theorem 1.1. A limit group is conjugacy separable.

Limit groups play a key role in the solution of the Tarski problems ( [K-M-06],
[K-M-05], [K-M1-05], [S1]-[S6]) that asked whether the theories of free groups
of different ranks > 2 are the same and whether this theory is decidable.

Kharlampovich and Myasnikov have studied limit groups extensively under
the name fully residually free groups (see [K-M-98] and [K-M2-98]). Remeslen-
nikov [R-89] had previously referred to them as ∃-free groups, reflecting the fact

* Both authors were supported by CNPq.
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that these groups have the same existential theory as a free group, or ω-residually
free groups.

The Lyndon group plays a very important role in algebraic geometry over
groups (see [K-M-98] and [K-M2-98]). It was proved in [K-M2-98]) that a finitely
generated group is fully residually free (i.e. a limit group) if and only if it is
isomorphic to a subgroup of the Lyndon group. It was proved by Lioutikova [L]
that the Lyndon group is conjugacy separable. We give a different proof of this in
the paper.

Combined with observation of Mal’cev [M-58] our theorem gives a new proof
for the fact that a conjugacy problem admits positive solution for limit groups (cf.
[K-M-R-S-2004]).

Our proof is based on the results of the paper [R-S-Z-98], where it was proved
that certain residual properties and, in particular, the conjugacy separability, are
preserved by free products with cyclic amalgamations. Bass-Serre theory of groups
acting on trees and its profinite version are also explored.

2 Preliminaries
The profinite topology on a group G is the topology where the collection of all
finite index normal subgroups of G serves as a fundamental system of neighbor-
hoods of the identity element 1 ∈ G, turning G into a topological group. Note
that for a subgroup H of G, the profinite topology of H can be stronger than the
topology induced by the profinite topology of G.

The completion Ĝ of G with respect to this topology is called the profinite
completion of G and can be expressed as an inverse limit

Ĝ = lim←−
N

G/N

of all finite quotients of G. Thus Ĝ is a profinite group. Moreover, there exists a
natural homomorphism ι : G −→ Ĝ that sends g 7→ (gN); ι is a monomorphism
when G is residually finite. If S is a subset of Ĝ, we denote by S its closure in Ĝ.
The profinite topology on G is induced by the topology of Ĝ.

The next proposition expresses the conjugacy separability property of G in
terms of its profinite topology and we shall use it freely in the paper.

Proposition 2.1. Let G be a group, then the following conditions are equivalent:

(i) G is conjugacy separable;
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(ii) for each x ∈ G, the conjugacy class of xG of x is closed in the profinite
topology. In particular G is residually finite;

(iii) G is residually finite and for each pair of elements x, y ∈ G such that
y = xγ , for some γ ∈ Ĝ, there exists g ∈ G such that y = xg.

Our main tool are the results in [R-S-Z-98]. To explain these results define
the class X ′ to be the class of groups obtained by forming successfully free prod-
ucts with cyclic amalgamation starting from free by finite or polycyclic by finite
groups. One of the main result in [R-S-Z-98] is the following

Theorem 2.2 (R-S-Z-98). Any group G ∈ X ′ has the following properties:

(i) G is conjugacy separable;

(ii) G is quasi-potent, i.e. each cyclic subgroup H of G contains a finite index
subgroup K whose every subgroup of finite index is of the form H ∩N for
some normal subgroup N of finite index in G;

(iii) the product AB of cyclic subgroups A and B of G is closed in the profinite
topology of G;

(iv) every cyclic subgroup of G is conjugacy distinguished, i.e. ∪g∈GHg is
closed in the profinite topology of G.

(v) for any pair of cyclic subgroups C1 and C2 of G, one has C1 ∩ C2 = 1 if
and only if C1 ∩ C2 = 1, where X denotes the closure of a subset X in Ĝ.

(vi) for any element g of infinite order in G and every γ ∈ Ĝ such that γ〈g〉γ−1 =
〈g〉, one has γgγ−1 = g or γgγ−1 = g−1.

To each free amalgamated product G = G1 ∗C G2 one can associate a standard
tree S(G), constructed as follows: the vertex set is V (S(G)) = G/G1∪G/G2, the
edge set is E(S(G)) = G/H , and the initial and terminal vertex of an edge gH
are respectively gG1 and gG2. The group G acts naturally on S(G). Similarly for
a profinite amalgamated free product Ĝ = Ĝ1q bH Ĝ2 one can associate a profinite
standard tree S(Ĝ) whose vertex set V (S(Ĝ)) = Ĝ/Ĝ1 ∪ Ĝ/Ĝ2, the edge set
is E(S(Ĝ)) = Ĝ/Ĥ , and the initial and terminal vertex of an edge gĤ are gĜ1

and gĜ2 respectively ( see [Z-M-89]). The sets V (S(Ĝ)), E(S(Ĝ)) are profinite
spaces (i.e, they are compact Hausdorff totally disconnected topological spaces),
and the natural action of Ĝ on S(Ĝ) is continuous.
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The profinite topology on G = G1 ∗C G2 is called efficient if G is residually
finite, the profinite topology on G induces the full profinite topology on G1, G2

and C, and these subgroups are closed in the profinite topology of G. Note that
if the profinite topology on G is efficient, then by the universal property for the
profinite amalgamated free product, the profinite completion Ĝ of G is the profi-
nite amalgamated free product Ĝ = Ĝ1 q bC Ĝ2 of the profinite completions of the
factors.

The following remark allows to use the profinite version of the Bass-Serre
theory of groups acting on trees.

Remark 2.3. If G belongs to the class X ′, then the properties (ii) and (iv) in
Theorem 2.2 imply that the profinite topology on G is efficient (see Lemma 2.1 in
[R-Z-96]). The efficience of the profinite topology on G implies in turn that S(G)

embeds naturally in S(Ĝ). This follows from the fact that G/Gi embeds in Ĝ/Ĝi

because Gi are closed in G for i = 1, 2. Moreover, S(G) is dense in S(Ĝ).

3 Proofs
We apply Theorem 2.2 to give another proof of conjugacy separability of the Lyn-
don group. The construction of the Lyndon group can be given as follows (see
[M-R-96], Theorem 8): Let F be a free group and put Y1 = F . For i > 1, define
the class Yi to consist of all groups that are free products Gi = Gi−1 ∗C A of a
group Gi−1 ∈ Yi−1 and a free abelian group A of finite rank amalgamating maxi-
mal cyclic subgroup of Gi−1 with a subgroup of A generated by a generater of A
(this construction is known as an extension of the centralizer). Let Y =

⋃
n∈N Yn.

Clearly, the groups of Y constitute an inductive system with respect to inclusions.
The Lyndon group L is defined to be the inductive limit L = lim−→ G∈YG.

The class Y is a subclass of X ′ and so as an immediate consequence of Theo-
rem 2.2 we have the following

Proposition 3.1. Each group from Y enjoys the properties (i)-(iv) of Theorem 2.2.
In particular, every group of Y is conjugacy separable.

Theorem 3.2. The Lyndon group is conjugacy separable.

Proof. Let a, b be elements of the Lyndon group L which are conjugate in L̂.
Then there exists Gi ∈ Yi such that a, b ∈ Gi. We claim that there exists an
epimorphism f of L onto Gi such that f|Gi

is id.
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First note that for any group Gj = Gj−1 ∗C A from Yj there is an epimorphism
fj : Gj −→ Gj−1 constructed as follows: choose a direct complement to C in A
and send it to 1; send the elements of Gj−1 identically to Gj−1 and extend this map
to a homomorphism fj by the universal property for amalgamated free products.
Put fji = fi+1fi+2 · · · fj−1fj for j > i. By the universal property of a direct limit
there exists f : L −→ Gi that extends fji for all j > i. Note that ϕif = id, where
ϕi : Gi −→ L is the natural embedding.

Extend f to f̂ : L̂ −→ Ĝi. Since a and b are conjugate in the completion of
the Lyndon group, their images in Gi conjugate in Ĝi. Then, by Proposition 3.1,
they are conjugate in Gi as needed.

Lemma 3.3. Let G be a limit group and H a cyclic subgroup of G. Then NG(H) =
CG(H).

Proof. Pick n ∈ NG(H) \ H . By Lemma 1 in [B-62] a 2-generated residually
free group is either free or abelian, hence so is the subgroup 〈n,H〉. Since the
normalizer of every cyclic subgroup of a free group coincides with the centralizer,
the result follow.

Since a limit group G is a finitely generated subgroup of the Lyndon group
L (see Theorem 4 in [K-M2-98]), there exists n such that G embeds in some
Gn ∈ Yn.

Proposition 3.4. Let G be a limit group and H a cyclic subgroup of G. Then
N bG(H̄) = C bG(H̄).

Proof. Since G is a subgroup of the group Gn it suffices to prove the proposition
assuming that G = Gn. Let h be a generator of H and γ ∈ N bG(H̄). Then
by Proposition 3.1 and Theorem 2.2 either γ centralizers h or hγ = h−1. Since
G = Gn is conjugacy separable (see Proposition 3.1 again) there exists g ∈ G
with hg = h−1 contradicting the preceding lemma.

Lemma 3.5. Let G ∈ Yn and g be an element of G. Then

(a) 〈g〉 ∩ 〈g〉x 6= 1 implies 〈g〉 = 〈g〉x for any x ∈ Ĝ.

(b) CG(〈g〉) = CḠ(〈g〉)
Proof. We use induction on n. Without loss of generality we may assume that 〈g〉
is maximal cyclic.
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Let n = 1. Then G is free. Consider its action on its Cayley graph Γ(G) and
the action of Ĝ on its Cayley graph Γ(Ĝ). We think of Γ(G) as a dense subgraph
of Γ(Ĝ).

Put Z = 〈g〉. By Proposition 3.4 in [S-77] there exists the infinite straight
line Tg on which g acts. The intersection Ẑ ∩ Ẑx is non-trivial and acts on Tg ∩
x−1Tg and since Tg have no nontrivial infinite closed subgraphs (see Lemma 4.4
in [R-S-Z-98]) Tg = x−1Tg. It follows that x acts on Tg. Let H be a closed
subgroup of Ĝ leaving Tg invariant. Then H/Z̄ acts freely on a circuit Tz/Z̄.
Thus H is the profinite fundamental group of a circuit T z/H = (Tz/Z̄)/(H/Z̄)

and so is procyclic. Since 〈g〉, 〈g〉x are subgroup of H by Lemma 2.2 in [R-Z-96]
〈g〉 = 〈g〉x. This proves (a).

Since Tg is the unique minimal g-invariant subtree of S(Ĝ) (cf. [R-Z-96],
Lemma 2.2), C bG(g) acts naturally on Tg and so is contained in H . But Tg/H =
Tg/(G ∩ H) because for h ∈ H and m,hm ∈ Γ(G) one has obligatory that
h ∈ G ∩H . Hence H = H ∩G. Since Z is maximal abelian Z = H ∩G and so
H = C bG(g) = Z̄ = Ẑ and x ∈ Ẑ follows.

Suppose now n > 1 and for n − 1 the proposition holds. Recall that G =
Gn−1 ∗C A, where Gn−1 ∈ Yn−1, A is free abelian of finite rank and C is infinite
cyclic. Let S(G) and S(Ĝ) be the trees associated with decompositions of G and
Ĝ. Since the profinite topology on G is efficient, S(G) is embedded in S(Ĝ) (see
Remark 2.3).

Claim 1. Let g ∈ Ĉ. Then C bG(g) = Â.

By Corollary 2.7 in [R-Z-96] combined with Proposition 3.4

C bG(g) = N bG(〈g〉) = N bGn−1
(〈g〉)q bC N bA(〈g〉) = C bGn−1

(g)q bC C bA(g).

By the induction hypothesis C bGn−1
(g) = CGn−1(g) = Ĉ. So C bG(g) = Ĉ q bC

Â = Â as required.

Claim 2.

• If g ∈ Gn−1 \ AGn−1 . Then CĜ(g) ∩ Ĝe = 1, for all e ∈ E(S(Ĝ)).

• If g ∈ A, then CĜ(g) = Â.

Suppose first that g ∈ Gn−1 \ AGn−1 . Let 1 6= z ∈ CĜ(g) ∩ Ĝe. Since g ∈ Gn−1,
g stabilizes a vertex v.
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By Proposition 2.8 in [Z-M-89] g = gz stabilizes the geodesic [v, x−1v]. If
v = z−1v it follows that z ∈ Ĝn−1 and so the result follows from the fact
that C is conjugacy distinguished in Gn−1. Otherwise, since ∅ 6= E[v, z−1v] =

E(S(Ĝ)) ∩ [v, z−1v] is compact, by Proposition 2.15 in [Z-M-89] there exist an
edge e ∈ [v, z−1v] whose vertex is v. It follows that g stabilizes e. Since C is con-
jugugacy distinguished in Ĝn−1, g is conjugate to an element of C contradicting
the hypothesis.

Suppose now that g ∈ A. Let h ∈ Ĝ with [h, g] = 1 and w a vertex whose
stabilizer is equal to A. Then gw = w and ghw = hw so by Theorem 2.8 in
[Z-M-89] g stabilizes the geodesic [w, hw]. If w = hw, then h ∈ Â and there is
nothing to prove. Otherwise, as before there exist the edge e in [w, hw] that have
w as a vertex. Then conjugating g if necessary we may assume that g ∈ Ĝe = Ĉ,
and by Claim 1 CĜ(g) = Â. The claim is proved.

Case 1 (non-hyperbolic). g stabilizes a vertex v.
(a) Put Z = 〈g〉. If x centralizes Z there is nothing to prove. Without loss of

generality may assume that g ∈ Gn−1 ∪ A.
Let v be a vertex stabilized by Gn−1 or A. If v = xv, then x ∈ Gn−1 or x ∈ A,

so by induction hypothesis the result follows. Suppose v 6= xv. Then by Theorem
2.8 in [Z-M-89] Z stabilizes a geodesic [v, xv] in S(Ĝ). Hence Z stabilize an edge
and so is conjugate in Ĝ to a subgroup of Ĉ. Since C is conjugacy distinguished
(see Proposition 3.1 and Theorem 2.2) Z is conjugate in G to a subgroup of C
and hence is conjugate of C since is maximal cyclic. Thus we may assume that
Z = C.

Since C ∩ Cx and (C ∩ Cx)x are subgroups of Cx, by Lemma 2.4 (ii) in
[R-Z-96] they are equal, and so C ∩ Cx is normalized by x. Then by Claim 1
x ∈ Â, and so Cx = C.

(b) Since g is conjugate to an element of Gn−1 ∪ A, we can assume that g
is in Gn−1 or A, say in Gn−1. Let g be an element of G and suppose that γ ∈
Ĝ = Ĝn−1 q bC Â satisfies γgγ−1 = g. If γ ∈ Ĝn−1 then the result follows
from the induction hypothesis. Otherwise, by Theorem 3.12 in [Z-M-89], g ∈
δĈδ−1 for some δ ∈ Ĝn−1. By Proposition 3.1 and Theorem 2.2 C is conjugacy
distinguished so g is conjugate in Gn−1 to an element of C, and therefore we may
assume that g ∈ C. By Corollary 2.7 in [R-Z-96] N bG(〈g〉) = N bGn−1

(〈g〉) q bC
N bA(〈g〉) and so by Proposition 3.4,

C bG(g) = N bG(〈g〉) = N bGn−1
(〈g〉)q bC N bA(〈g〉) = C bGn−1

(g)q bC C bA(g).

7



Since C bGn−1
(g) = CGn−1(g) by induction hypothesis, the result follows in this

case.

Case 2. g does not stabilize any vertex of S(G).
(b) By Proposition 3.4 in [S-77] there exists the infinite straight lines Tg on

which g acts. Since Tg is the unique minimal g-invariant subtree of S(Ĝ) (cf.
[R-Z-96], Lemma 2.2), C bG(g) acts naturally on Tg. Moreover, the kernel of this
action is trivial. Indeed, if not then by Case 1 (a) all edge stabilizers of Tg are equal
and so g normalizes an edge stabilizer Ĝe. But N bG(Ĝe) = C bG(Ĝe) by Lemma 3.4.
Therefore, by Case 1 (b) applied to a generated of Ge, so g ∈ Ĝe, contradicting to
g being hyperbolic.

We prove that Tg/C bG(g) = Tg/CG(g). Indeed, for e ∈ E(Tg) and z ∈ C bG(g)
suppose ze ∈ Tg. Translating e and conjugating g correspondingly we may as-
sume that e is the edge stabilized by C. Choose h ∈ G such that he = ze. Then
there exists ĉ ∈ Ĉ such that hĉ = z. Let e1 be the third edge of [e, ze] (the
geodesic [e, ze] has more then two edges since two adjacent edges in S(Ĝ) have
opposite orientation and therefore can not be translations of each other).

We show that if ĉ 6∈ C then ĉe1 6∈ S(G). Indeed, otherwise ĉĝe1 ∈ G for
some ĝe1 ∈ Ĝe1 and since by Proposition 3.1 G satisfies property (iii) of Theorem
2.2, CGe1 is closed in the profinite topology of G; therefore ĉĝe1 = cge1 for some
c ∈ C, ge1 ∈ Ge1 , so that c−1ĉ = ge1 ĝ

−1
e1

.
To arrive at contradiction we show that c−1ĉ = 1. Choose two edges from

[e, e1] that have the common vertex v whose stabilizer is a conjugate of Ĝn−1, say
e, e0. If 1 6= c−1ĉ ∈ ⋂

e∈[e,e1] Ĝe, then by Case 1 (a) Ĉ = Ĝe0 = Ĉgv for some

gv ∈ Ĝv. Hence gv ∈ N bG(Ĉ) = C bG(Ĉ) (see Proposition 3.4) and gv 6∈ Ĉ. Since
C is self centralized, this contradicts maximality of the abelian group Ĉ proved in
Case 1 (b). Therefore ĉ = c contradicting ĉ 6∈ C.

Now ĉe1 6∈ S(G) implies hĉe1 = ze1 6∈ S(G) because h leaves S(G) invariant
and so by Lemma 4.3 (iii) in [R-S-Z-98] hĉe = ze can not be in S(G) . This
contradiction shows that z ∈ G ∩ C bG(g) = CG(g) as required.

Since the action of C bG(g) on Tg is free and Tg/C bG(g) = Tg/CG(g) = Tg/CG(g)

we deduce C bG(g) = CG(g).

(a) Put Z = 〈g〉. By Proposition 3.4 in [S-77] there exists the infinite straight
lines Tg on which g acts. The intersection Ẑ ∩ Ẑx is non-trivial it acts on Tg ∩
xTg and since Tg have no nontrivial infinite closed subgraphs (see Lemma 4.4 in
[R-S-Z-98]) Tg = xTg. It follows that x acts on Tg. Let H be the maximal closed

8



subgroup of Ĝ leaving Tg invariant. By Case 1 (a) applied to the stabilizer of
an edge in Tg, the kernel of the action of H on Tg is trivial. Indeed, if not then
by Case 1 (a) all edge stabilizers of Tg are equal and so g normalizes an edge
stabilizer Ĝe. But N bG(Ĝe) = C bG(Ĝe) by Lemma 3.4. Therefore, by Case 1 (b)
applied to a generate of Ge, you have g ∈ Ĝe, contradicting to g being hyperbolic.
Therefore, the H-stabilizers of vertices in Tg are of order at most 2 and since Ĝ is
torsion free, H acts freely on Tg. Then H/Z̄ acts freely on a circuit Tg/Z̄. Thus
H is the profinite fundamental group of a circuit T g/H = (Tg/Z̄)/(H/Z̄) and so
is procyclic. Therefore x centralize Z and the result follows.

In the next proposition we prove the conjugacy separability for a subgroup of
finite index of Gn ∈ Yn. We note that in general it is an open question whether a
subgroup of finite index of a conjugacy separable group is conjugacy separable.

Remark: The statement (b) of Lemma 3.5 is valid in fact for Limit group L.
Indeed, L is a subgroup of some Gn ∈ Yn. By Theorem 3.7 below there exist a
subgroup of finite index H in G that contain L such that L is semi direct factor of
H . Therefore it suffices to prove the result for H .

Since CH(g) = CG(g) ∩H and C bH(g) = C bG(g) ∩ Ĥ , then CH(g) is dense in
C bH(g) by Exercise 3 on page 9 in [W-1998].

Proposition 3.6. Let H be a finitely generated finite index subgroup of a group
G = Gn ∈ Yn. Then H is conjugacy separable.

Proof. Let h1, h2 ∈ H be elements such that h1 = hγ
2 , where γ ∈ Ĥ . We show

that h1 and h2 are conjugate in H .
By Proposition 3.1 Gn is conjugacy separable, so there exists g ∈ Gn such that

hg
1 = h2. Then δ := gγ ∈ C bG(h1). It follows that γ−1δ ∈ C bG(h1)Ĥ ∩ G. Since

H is of finite index in G the set CG(h1)H is closed in the profinite topology,
i.e. CG(h1)H ∩ G = CG(h1)H . By Lemma 3.5 CG(h1)H = C bG(h1)Ĥ , so
C bG(h1)Ĥ ∩ G = CG(h1)H and therefore g = ch for some c ∈ CG(h1), h ∈ H .
Hence hg

1 = hh
1 = h2 as needed.

Theorem 3.7 (W-2006). Let G be a limit group and H a finitely generated sub-
group of G. Then there exists a finite index subgroup K of G containing H and a
epimorphism ϕ : K → H , such that ϕ|H = id.

Theorem 3.8. A limit group is conjugacy separable.
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Proof. Let G be a limit group and h1, h2 ∈ G elements such that h1 = hγ
2 for

some γ ∈ Ĝ. We show that h1 and h2 are conjugate in G. Pick Gn such that
G ≤ Gn.

Since every finitely generated subgroup of a Lyndon group is a limit group,
Gn is a limit group. Then by Theorem 3.7 there exists a finite index subgroup U
of Gn and an epimorphism f : U −→ G such that f|G = id. By Proposition 3.6 U

is conjugacy separable, so h1 and h2 are conjugate in U . It follows that h
f(u)
1 = h2

as needed.
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