# On virtually projective groups

To A. E. Zalesskii on the occasion of his 65-th birthday

By P. A. Zalesskii\*) at Brasília

**Abstract.** It is proved that the quotient  $G/\langle tor(G) \rangle$  of a virtually projective profinite group G modulo its normal subgroup generated by all torsion of G is projective.

### **0.** Introduction

Let G be a virtually free group. Then by results of Karras, Magnus, Solitar, Cohen and Scott  $G = \pi_1(\mathscr{G}, \Gamma)$  is the fundamental group of a graph of finite groups  $(\mathscr{G}, \Gamma)$ . By the central result of Bass-Serre's theory of groups acting on trees this is equivalent to the fact that G acts on a tree S with finite vertex stabilizers such that  $S/G = \Gamma$ . Let tor(G) be the set of all nontrivial torsion elements of G. Since every torsion element must fix a vertex of S, it follows that the group  $\langle tor(G) \rangle$  is generated by the stabilizers of vertices of S and therefore  $S/\langle tor(G) \rangle$  is a tree on which  $G/\langle tor(G) \rangle$  acts freely. Thus  $G/\langle tor(G) \rangle = \pi_1(\Gamma)$  is the fundamental group of the graph  $\Gamma$  and hence is free.

It was proved recently in [HZ] that a finitely generated virtually free pro-*p* group is the fundamental pro-*p* group of a finite graph of finite *p*-groups. Unfortunately, this result does not hold in the infinitely generated case. However, there is still hope that a virtually free pro-*p* group acts on a pro-*p* tree with finite vertex stabilizers, because in the pro-*p* case this is a weaker property than to be the fundamental group of a graph of finite *p*-groups. Moreover, it is shown in [HZ] that  $G/\langle tor(G) \rangle$  is free pro-*p*, when *G* is second countable that would be the consequence of this conjecture if proved in this case.

The situation in the profinite case is more complicated. A virtually free profinite group does not act in general on a profinite tree and so does not have a structure similar to a discrete virtually free group. An example is the semidirect product  $\hat{\mathbb{Z}} \rtimes C_2$ , where  $C_2$  inverts elements of the 2 component  $\mathbb{Z}_2$  of  $\hat{\mathbb{Z}}$  and fixes the elements of *p* components  $\mathbb{Z}_p$  for all other primes *p*.

<sup>\*)</sup> Supported by CNPq.

The objective of the present paper is to show that nevertheless one can obtain quite reasonable information on  $G/\langle \operatorname{tor}(G) \rangle$  of the virtually free profinite group G. In fact, our result is even more general.

**Theorem.** Let G be a virtually projective profinite group. Then  $G/\langle tor(G) \rangle$  is projective.

In the case  $\langle \operatorname{tor}(G) \rangle = 1$  (i.e. when G is torsion free) the result is due to Serre [S]. Note that free groups, free pro-p groups and projective groups are exactly groups of cohomological dimension 1 in the categories of groups, pro-p groups and profinite groups, respectively. Therefore one could ask as a possible generalization of the theorem above whether for a group G of finite virtual cohomological dimension n one has  $\operatorname{cd}(G/\langle \operatorname{tor}(G) \rangle) \leq n$ . In Section 3 we give an example of a group of virtual cohomological dimension 2 whose quotient  $G/\langle \operatorname{tor}(G) \rangle$  is even not torsion free, and so has infinite cohomological dimension. This shows that the situation with groups of (virtual) cohomological dimension 1 is rather special.

The structure of the paper is as follows. In Section 1 the ideas of [RHZ] and [HZ] are used to complete the result in the pro-*p* case. The main result is proved in Section 2.

In Section 3 besides the example mentioned above we also give an example of a semidirect product  $F \rtimes C_2$  of a free pro-2 group F of uncountable rank and a group of order 2 that does not satisfy the Dyer-Scott type decomposition

$$G=\coprod_{x\in X}(H_x\times C_2)\amalg H,$$

where  $H_x$  and H are free pro-2 groups. When F is of countable rank the Dyer-Scott decomposition holds (see Theorem 1.2 below).

The necessary material on profinite groups (like a notion of a free profinite group on a topological space) can be found in [RZ] and [W]. The definition of a free pro-*p* product which is used in the paper can be found in [NSW], Chapter IV, S3, or in [M]. We shall use frequently Serre's result from [S] that states that a virtually projective torsion free profinite group is projective.

**Notation.** All groups in the paper are profinite, homomorphisms are continuous and subgroups are closed. By p will be denoted usually a prime number. For a pro-p group G we denote the Frattini subgroup of G by  $\Phi(G)$ . tor(G) means the subset of torsion elements of G and  $x^g$  stands for  $x^{-1}gx$ . For a profinite space  $X = \lim_{i \to \infty} X_i$ ,  $|X_i| < \infty$  and a profinite ring R we denote by  $[\![RX]\!] = \lim_{i \to \infty} [RX_i]$  a free profinite module over the space X.

## 1. The pro-*p* case

Denote by  $\mathbf{n}(G)$  the index of maximal free pro-*p* normal subgroup of *G*. The proof of the result in this case uses induction on  $\mathbf{n}(G)$ . We first formulate a theorem that gives the base of induction.

Let G be a pro-p group having an open free pro-p subgroup F. Then the set  $\mathcal{T}$  of all subgroups of order p is a profinite space, since it is a projective limit of corresponding finite discrete spaces of quotients G/U, where U runs through the all open normal subgroups of G which are contained in F. Moreover, G acts continuously on  $\mathcal{T}$  by conjugation.

The stabilizer  $G_T$  of  $T \in \mathcal{T}$  with respect to this action is just the centralizer  $G_T = C_G(T)$ . We denote by  $\varphi_G : \mathcal{T} \to \mathcal{T}/G$  the natural map. Then for  $t \in \mathcal{T}/G$  the preimage  $\varphi_G^{-1}(t)$  is the *G*-orbit. The next lemma is just a homological version of the result of Scheiderer from [Sch], Theorem 12.13.

**Lemma 1.1** ([HRZ], Lemma 5). For any  $n \ge 2$  the canonical homomorphism

$$\varphi_n: \bigoplus_{t \in \mathscr{T}/G} H_n(G, \llbracket \mathbb{F}_p \varphi_G^{-1}(t) \rrbracket) \to H_n(G, \mathbb{F}_p)$$

is a topological isomorphism.

Now we state a pro-*p* version of the Dyer-Scott theorem [DS] that was proved in [Sch1] for finitely generated case and in [HRZ] in the form below. Note that the result holds upon the condition of the existence of a continuous section  $\mathcal{T}/G \to \mathcal{T}$ . Proposition 3.3 shows that this condition is essential.

**Theorem 1.2** ([HRZ], Proposition 9). Let G be a pro-p group having free subgroup F of index p. Suppose there exists a continuous section  $\sigma : \mathcal{T}/G \to \mathcal{T}$ . Put  $T = \sigma(t)$  regarding as a subgroup of G. Then

$$G = \left( \coprod_{T \in \operatorname{im}(\sigma)} (T \times C_F(T)) \right) \amalg H,$$

is a free pro-p product over the profinite space  $\mathcal{T}/G$ , where H is a free pro-p subgroup of F.

We note that a section  $\sigma$  always exists if the action is free or if  $\mathcal{T}$  is second countable (see [RZ], Lemmas 5.6.5 and 5.6.7).

The next proposition is extracted from the proof of Proposition 13 in [HRZ].

**Proposition 1.3.** Let G be a pro-p group having a free pro-p subgroup F of index p. Then G embeds into a free pro-p product

(6) 
$$G_0 = (C_p \times H) \amalg H_0$$

where  $H, H_0$  are free pro-p groups and  $C_p$  is a group of order p.

*Proof.* If G is free pro-p, there is nothing to prove. So assume that G is not free prop; then by Serre's result the torsion  $tor(G) \neq \emptyset$ . Let  $\varphi : G \to G/F$  be the natural epimorphism. Choose a generator c of  $G/F \cong C_p$  and put  $C = tor(G) \cap \varphi^{-1}(c)$ . For  $T \in \mathcal{T}$  denote by  $c_T$  the unique element of  $C \cap T$ .

For the rest of the proof fix an arbitrary  $T_0 \in \mathcal{T}$  and write  $c_0 = c_{T_0}$ . The set

(2) 
$$c_0^{-1}C \subset F$$

is naturally homeomorphic to the pointed boolean space  $(\mathcal{T}, T_0)$ . This way, in the sequel,  $(\mathcal{T}, T_0)$  will appear as an indexing profinite space. Let  $F(\mathcal{T}, T_0)$  be a free pro-*p* group over the pointed space  $(\mathcal{T}, T_0)$ . We shall denote by  $z_T$  the image of a point  $T \in \mathcal{T}$  under the natural injection  $\mathcal{T} \to F(\mathcal{T}, T_0)$ . Form the free pro-*p* product

(3) 
$$F_0 = F(\mathscr{T}, T_0) \amalg F.$$

Observe that  $c_0^{-1}c_T \in F$  for every  $T \in \mathscr{T}$ . Define an automorphism  $\alpha_0 \in \operatorname{Aut}(F_0)$  by putting

(4) 
$$\alpha_0(z_T) = c_0^{-1} c_T z_T, \quad T \in \mathscr{T},$$
$$\alpha_0(f) = c_0^{-1} f c_0, \quad f \in F.$$

We check that  $\alpha_0$  has order p by looking at generators of  $F_0$ . We show first by induction on k that

$$\alpha_0^k(z_T) = c_0^{-k} c_T^k z_T$$

for all  $T \in (\mathcal{T}, T_0)$  and  $1 \leq k \leq p$ . The formula follows from the definition of  $\alpha_0$  for k = 1. Assuming that the formula holds for k - 1, one has

$$\begin{aligned} \alpha_0^k(z_T) &= \alpha_0^{k-1} \alpha_0(z_T) = \alpha_0^{k-1} (c_0^{-1} c_T z_T) = c_0^{-k+1} c_0^{-1} c_T c_0^{k-1} \alpha_0^{k-1} (z_T) \\ &= c_0^{-k} c_T c_0^{k-1} c_0^{-k+1} c_T^{k-1} z_T = c_0^{-k} c_T^k z_T \end{aligned}$$

as required.

Hence 
$$\alpha_0^p(z_T) = z_T$$
 and certainly,  $\alpha_0^p(f) = f^{c_0^p} = f$  for any  $f \in F$ .

There is a natural embedding of G into  $G_0 := F_0 \rtimes \langle \alpha_0 \rangle$  where F is sent to a copy of F in  $G_0$  and  $c_0$  is sent to  $\alpha_0$ . We shall identify  $\alpha_0$  and  $c_0$  henceforth.

By construction, the torsion of  $G_0$  coincides with the torsion of G, and since, as a simple consequence of Equation (4) and the identification  $\alpha_0 = c_0$ 

holds for  $T \in \mathcal{T}$ ,  $G_0$  has only one conjugacy class of subgroups of order p. An application of Theorem 1.2 then yields a decomposition

(6) 
$$G_0 = (C_p \times H) \amalg H_0$$

with  $H, H_0$  suitable free pro-*p* groups of  $F_0$ .  $\Box$ 

**Corollary 1.4.** Let G be a pro-p group having a free pro-p subgroup F of index p. Then:

(i)  $G/\langle \operatorname{tor}(G) \rangle$  is free pro-p.

(ii)  $C_F(c)$  is a free factor of F for any torsion element c of G.

(iii) If G is generated by torsion, then there exists a continuous section  $\sigma : \mathcal{T}/G \to \mathcal{T}$ and one has

$$G = \left( \coprod_{T \in \operatorname{im}(\sigma)} T \right).$$

*Proof.* (i) By the preceding theorem G embeds into a free pro-p product

(6) 
$$G_0 = (C_p \times H) \amalg H_0$$

where  $H, H_0$  are free pro-*p* groups. Let *X* and  $X_0$  be closed bases of *H* and  $H_0$  respectively. Hence  $G_0$  can be viewed as an HNN-group  $\langle C_p, X, X_0 | xcx^{-1} = c$  for  $c \in C_p, x \in X \rangle$ . It follows that  $G_0$  acts on a pro-*p* tree *S* whose vertex stabilizers are conjugates of  $C_p$  (see [ZM], Proposition 3.8). Then *G* acts on *S* as well and  $\langle tor(G) \rangle$  is exactly the subgroup of *G* generated by the vertex stabilizers. So by [RZ1], Corollary 3.6, G/tor(G) is free pro-*p* as required.

(ii) Since every torsion element is conjugate in  $G_0$  to some element of  $C_p$ , using conjugation if necessary, we may assume that  $C_p = \langle c \rangle$ . Let  $f : G_0 \to H$  be the epimorphism that sends  $C_p$  and  $H_0$  to 1 and H identically onto H. The restriction of f to  $C_F(c)$  is injective, because  $C_{G_0}(C_p) = C_p \times H$  (see [RZ1], Corollary 4). Hence F splits as a semidirect product  $F = M \rtimes C_F(c)$ . It follows that  $\Phi(F) \cap C_F(c) = \Phi(C_F(c))$ . Then by [RZ], Lemma 9.1.18,  $C_F(c)$  is a free factor of F.

(iii) Let T be a subgroup of G of order p. Conjugating it if necessary we may assume that  $T = C_p$ . Let  $\varphi : G_0 \to H \amalg H_0$  be the epimorphism that sends  $C_p$  to 1 and  $H, H_0$ identically to their copies in  $H \amalg H_0$ . As  $C_{G_0}(C_p) = C_p \times H$  (see [RZ1], Corollary 4), the restriction of  $\varphi$  to  $C_F(T)$  is injective. Since G is generated by torsion and every torsion element is conjugate in  $G_0$  to some element of  $C_p$  (cf. [RZ1], Theorem 4.2 (a)), one has  $\varphi(G) = 1$ . Hence  $C_F(T) = 1$  for any subgroup T of G of order p. It follows that F acts freely on  $\mathcal{T}$  and so there exists a section  $\sigma : \mathcal{T}/F \to \mathcal{T}$  ([RZ], Lemma 5.6.5). But  $\mathcal{T}/G = \mathcal{T}/F$ , so the result follows from Theorem 1.2.  $\Box$ 

A finitely generated version of the next theorem is due to Scheiderer [Sch1].

**Theorem 1.5.** Suppose *F* is a free pro-*p* group and *P* is a finite *p*-group of automorphisms of *F*. Then the set of fixed points  $C_F(P)$  is a free factor of *F*. In particular, if the rank of *F* is finite, so is rank of  $C_F(P)$ .

*Proof.* Let *P* be a nontrivial finite *p*-group of automorphisms of *F* of minimal order such that the theorem fails. Consider the holomorph  $G = F \rtimes P$ . By Corollary 1.4 (ii), |P| > p. Pick an element *c* in the center of *P* with  $c^p = 1$ . By the above case  $C_F(c)$  is a free factor of *F*. Therefore  $P/\langle c \rangle$  acts on  $C_F(c)$ , and from the minimality assumption we conclude the result.  $\Box$ 

**Remark 1.6.** If  $\alpha$  is an automorphism of order  $p^{\infty}$  of a finitely generated free pro-*p* group *F*, then it is not known whether the subgroup of fixed point  $C_F(\alpha)$  is finitely generated.

**Proposition 1.7.** Let G be any virtually free pro-p group and  $N \triangleleft G$  a normal subgroup of G generated by torsion elements. Then the following statements hold:

(i) tor(G/N) = tor(G)N/N (torsion from G/N can be lifted).

(ii)  $G/\langle \operatorname{tor}(G) \rangle$  is free pro-p.

Proof.

Claim 1. (i) and (ii) are equivalent.

For showing (i)  $\Rightarrow$  (ii) pick  $\bar{g} \in G/\langle \operatorname{tor}(G) \rangle$  with  $\bar{g}^p = 1$ . Apply (i) with  $N := \langle \operatorname{tor}(G) \rangle$ , in order to find  $x \in \operatorname{tor}(G)$  with  $x \langle \operatorname{tor}(G) \rangle / \langle \operatorname{tor}(G) \rangle = \bar{g}$ . Since  $x \in \langle \operatorname{tor}(G) \rangle$  conclude  $\bar{g} = 1$ . So  $G/\langle \operatorname{tor}(G) \rangle$  is torsion free. To show that it is free pro-*p* we use induction on  $\mathbf{n}(G)$ . Let *c* be a central element of G/F of order *p*. Then the preimage  $G_1$  of  $\langle c \rangle$  in *G* satisfies the assumption of Corollary 1.4 and so  $G_1/\langle \operatorname{tor}(G_1) \rangle$  is free pro-*p*. Now from (i)  $\operatorname{tor}(G)\langle \operatorname{tor}(G_1) \rangle / \langle \operatorname{tor}(G_1) \rangle = \operatorname{tor}(G/G_1)$  and  $\mathbf{n}(G/G_1) < \mathbf{n}(G)$ . So from the induction hypothesis we deduce that  $G/\langle \operatorname{tor}(G) \rangle = (G/G_1)/\langle \operatorname{tor}(G/G_1) \rangle$  is free pro-*p* as needed.

Suppose "(ii)  $\Rightarrow$  (i)" is false. Then there exists a virtually free pro-*p* group *G* having a normal subgroup *N* generated by torsion and an element  $g \in G$  such that  $gN/N \in \text{tor}(G/N)$  and  $gN \cap \text{tor}(G) = \emptyset$ . Then *G* replaced by  $\langle g, N \rangle$  is still a counter example, so we may assume that  $G = \langle g, N \rangle$  and denote such a counter example by (g, N). Among the all such counter examples choose one with [G : N] minimal. We prove first that [G : N] = p.

Suppose not. Put  $M := \langle g^p, N \rangle$  then  $g^p \notin N$  and [M:N] < [G:N] so that  $(g^p, N)$  cannot be a counter example. Hence  $M = \langle \operatorname{tor}(M) \rangle$ . On the other hand, [G:M] < [G:N], so that (g, M) is not a counter example either, hence exists  $g_0 \in \operatorname{tor}(G)$  with  $g_0M/M = gM/M$ . Then  $\langle g_0, N \rangle = \langle g, N \rangle$ , i.e.,  $g_0 \in gN \cap \operatorname{tor}(G) = \emptyset$ , a contradiction. Thus [G:N] = p.

For finishing the proof of Claim 1, note that (ii) implies  $G = \langle \text{tor}(G) \rangle$ . Therefore, there exists a torsion element  $g_0 \in G \setminus N$  and, for suitable  $1 \leq k \leq p-1$ , one must have  $g_0^k \in gN \cap \text{tor}(G) = \emptyset$ , a contradiction. Therefore Claim 1 is established.

We continue the proof of the proposition. Suppose it is false. Then there exists G with  $G/\langle \operatorname{tor}(G) \rangle$  not free pro-p. Choose one with  $\mathbf{n}(G)$  minimal and let  $F \lhd G$  be a free pro-p group with  $[G:F] = \mathbf{n}(G)$ . Then, in light of Claim 1, there exists  $g \in G$  such that  $g\langle \operatorname{tor}(G) \rangle / \langle \operatorname{tor}(G) \rangle$  of order p and  $g\langle \operatorname{tor}(G) \rangle \cap \operatorname{tor}(G) = \emptyset$ . It follows that  $\langle g, \operatorname{tor}(G) \rangle$  is still a counter example and since  $[\langle g, \operatorname{tor}(G) \rangle : (\langle g, \operatorname{tor}(G) \rangle \cap F)] \leq \mathbf{n}(G)$  it follows that  $\mathbf{n}(\langle g, \operatorname{tor}(G) \rangle) = \mathbf{n}(G)$ . So from now on we may assume that  $G = \langle g, \operatorname{tor}(G) \rangle$ .

**Claim 2.** G/F is not cyclic.

Suppose it is. Let  $G_i$  be the preimage in G of the cyclic subgroup of order  $p^i$  in G/F. Choose *i* maximal such that  $G_i = F \rtimes C_{p^i}$ . Then  $tor(G) \subseteq G_i$ ; indeed, if  $g \in tor(G) \setminus G_i$  then since G/F is cyclic, g has order at least  $p^{i+1}$  and  $G_{i+1} = F \rtimes \langle g \rangle$  contradicting the choice of *i*. Put  $n = \mathbf{n}(G)$ . Then it follows from the minimality assumption on n that i = n - 1 and  $G_{n-1} = \langle tor(G) \rangle$ . Let U be a normal subgroup generated by all  $p^{n-2}$  powers of elements of order  $p^{n-1}$ . Then by the minimality assumption on n and Claim 1 one has  $tor(G_{n-1}/U) = tor(G_{n-1})U/U = tor(G)U/U$ . Consequently as it was shown above  $G_{n-1}/U = F_0 \rtimes C_{p^{n-2}}$  for some free pro-p group  $F_0$  and so  $\mathbf{n}(G_{n-1}/U) = n - 2$ . Therefore it follows from Claim 1 that to use the minimality assumption on n we have to prove the equality  $G/\langle tor(G) \rangle = (G/U)/\langle tor(G/U) \rangle$ .

Suppose not and  $k \in G \setminus (\operatorname{tor}(G))$  such that kU/U is of finite order. Put  $K = \langle k, U \rangle$ and let M be a subgroup of G generated by all elements of order  $p^{n-1}$ . Since any element of order  $p^{n-1}$  centralizes its  $p^{n-2}$ -power,  $\mathcal{T}_U/M = \mathcal{T}_U/U = \mathcal{T}_U/(F \cap U)$ . Since U is generated by its torsion Corollary 1.4 (iii) implies that there exists a continuous section  $\sigma_1 : \mathcal{T}_U/U \to \mathcal{T}_U$  with

$$U = \coprod_{T \in \operatorname{im}(\sigma_1)} T.$$

Note that the action of K/M on  $\mathcal{T}_U/M = \mathcal{T}_U/U = \mathcal{T}_U/(F \cap U)$  is free. Indeed, if not then there exists  $A \in \mathcal{T}_U$  and  $f \in F \cap U$  with  $A^k = A^f$ , because  $\mathcal{T}_U/M = T_U/F \cap K$ ; but then kf centralizes A and, since  $C_U(A) = A$  (a free factor is self-centralized, cf. [RZ1], Corollary 4.4), the element kf has to be of finite order; but  $F \cap U \leq \langle \operatorname{tor}(G) \rangle$ , so  $k \in \langle \operatorname{tor}(G) \rangle$ , a contradiction with the choice of k. Therefore there exists a continuous section  $\sigma : \mathcal{T}/K \to \mathcal{T}/U = \mathcal{T}/M$  (cf. [RZ], Lemma 5.6.5).

Let *c* be a generator of K/M. Then the  $\mathscr{T}_i := \operatorname{Im}(\sigma)c^i$  (i = 0, ..., p-1) form a partition of  $\mathscr{T}/M = \mathscr{T}/U$  into *p* clopen subsets. Define  $K_i := \coprod_{t \in \sigma_1(\mathscr{T}_i)} T$  and write  $\widetilde{F} = (F \cap K_i | i = 1, ..., p-1)_K$  to be the normal closure of  $F \cap K_i$ 's. Then  $U = \coprod_{i=0}^{p-1} K_i$ ,

$$(*) U/\tilde{F} = \coprod_{i=0}^{p-1} C_p$$

is a free pro-*p* product of groups of order *p* and the conjugacy classes of the free factors are permuted by the action of K/M. It follows that the abelianization  $(K/\tilde{F})/(K/\tilde{F})'$  is of order  $p^n$  and since  $F \cap K$  contains the commutator subgroup K', the commutator subgroup  $(K/\tilde{F})'$  coincides with  $F \cap K/\tilde{F}$  showing that  $(K/\tilde{F})/(K/\tilde{F})'$  is cyclic of order  $p^n$ . But then  $K/\tilde{F}$  has to be procyclic, a contradiction to (\*).

Thus  $G/\langle \operatorname{tor}(G) \rangle = (G/U)/\langle \operatorname{tor}(G/U) \rangle$  and by the minimality assumption on *n* we deduce that Claim 2 holds.

**Claim 3.**  $G/F \cong C_p \times C_p$  is the direct product of groups of order p.

Since G/F is not cyclic, there exists a normal subgroup M of G containing F such that  $G/M \cong C_p \times C_p$ . For any  $A \subseteq G$  write  $\overline{A} := A \langle \operatorname{tor}(M) \rangle / \langle \operatorname{tor}(M) \rangle$ . Let K be an arbitrary normal subgroup of index p in G containing M. Then  $\mathbf{n}(K) < \mathbf{n}(G)$ 

and therefore, by the minimality of  $\mathbf{n}(G)$  and Claim 1,  $\operatorname{tor}(\overline{K}) = \overline{\operatorname{tor}(K)}$ . But every torsion element of G belongs to some K of this sort, showing  $\operatorname{tor}(\overline{G}) = \overline{\operatorname{tor}(G)}$  and hence  $\overline{G}/\langle \operatorname{tor}(\overline{G}) \rangle = \overline{G}/\overline{\langle \operatorname{tor}(G) \rangle}$ . If M is non-trivial, then  $\mathbf{n}(\overline{G}) < \mathbf{n}(G)$  implying that  $G/\langle \operatorname{tor}(G) \rangle \cong \langle \overline{G}/\operatorname{tor}(\overline{G}) \rangle$  is free pro-p, a contradiction. Hence M = 1 and Claim 3 holds.

Returning to proving the proposition, put  $L := \langle g, F \rangle$ . Then, as  $G/F \cong C_p \times C_p$ deduce  $[G:L] = [G: \langle \operatorname{tor}(G) \rangle] = p$  and  $L \cap \langle \operatorname{tor}(G) \rangle = F$ . On the other hand, L cannot be torsion free, else, by Serre's result [S], it is free pro-p, and, being of index pin G, the group G would be free pro-p by cyclic, contradicting Claim 2. Then  $1 \neq \langle \operatorname{tor}(L) \rangle \leq L \cap \langle \operatorname{tor}(G) \rangle = F$  follows, a clear contradiction.  $\Box$ 

#### 2. The profinite case

**Lemma 2.1.** Let G be a virtually free pro-p group and  $f: G \to H$  a homomorphism to a profinite group H that sends every torsion element to 1. Let A be a discrete p-primary  $\hat{\mathbb{Z}}[[H]]$ -module viewed as a  $\hat{\mathbb{Z}}[[G]]$ -module via f. Then the induced map  $H^2(H, A) \to H^2(G, A)$  is the 0-map.

*Proof.* Clearly f factors through  $G/\langle tor(G) \rangle$  and so one has the commutative diagram



inducing the commutative diagram



By Proposition 1.7,  $G/\langle tor(G) \rangle$  is free pro-*p* and so  $H^2(G/\langle tor(G) \rangle, A) = 0$ . It follows that  $\varphi$  is the 0-map.  $\Box$ 

**Lemma 2.2.** Let G be a virtually projective group and M a normal subgroup of G generated by elements of order coprime to p and containing all elements of G of p-power order. Then the quotient group  $S_pM/M$  is free pro-p for any Sylow p-subgroup  $S_p$  of G.

*Proof.* It suffices to show that  $H^2(G/M, A) = 0$  for any simple *p*-primary  $\hat{\mathbb{Z}}[[G/M]]$ -module A (cf. [RZ], Proposition 7.1.4 and Theorem 7.3.1). Define the action of G on A via G/M. Consider the 5-term Hochschild-Serre sequence

$$\begin{array}{ccc} 0 \longrightarrow H^1(G/M, A) \xrightarrow{\operatorname{Inf}} H^1(G, A) \\ & \xrightarrow{\operatorname{Res}} H^1(M, A)^{G/M} \xrightarrow{\operatorname{tr}} H^2(G/M, A) \xrightarrow{\operatorname{Inf}} H^2(G, A). \end{array}$$

Since M is generated by elements of order coprime to p one has

$$H^{1}(M, A)^{G/M} = \text{Hom}(M, A)^{(G/M)} = 0.$$

So it remains to prove that  $H^2(G/M, A) \xrightarrow{\text{Inf}} H^2(G, A)$  is the 0-map.

First note that  $H^2(G, A) \to H^2(S_p, A)$  is an injection (cf. [W], Lemma 10.2.1). Moreover, the commutative diagram



induces the commutative diagram



and it suffices to show that  $\varphi$  is the 0-map. However, this is the subject of Lemma 2.1.

**Corollary 2.3.** Let G be a virtually projective group and M be the normal subgroup generated by all elements of order coprime to p. Then tor(G)M/M = tor(G/M).

*Proof.* For  $g \in G$  with gM/M of order p Lemma 2.2 implies that  $\langle g, M \rangle$  must have torsion outside of M as needed.  $\Box$ 

**Lemma 2.4.** Let G be a virtually projective group and  $G/\langle tor(G) \rangle$  is a pro-p group. Then  $G/\langle tor(G) \rangle$  is free pro-p.

*Proof.* Let F be a maximal open normal projective subgroup of G. Denote by  $O_p(F)$  the kernel of F on its maximal pro-p quotient. Note that  $O_p(G) \leq \langle \operatorname{tor}(G) \rangle$ . We show that  $\langle \operatorname{tor}(G) \rangle / O_p(F) = \langle \operatorname{tor}(G/O_p(F)) \rangle$ .

Indeed, let *s* be an element of  $G/O_p(F)$  of prime order *q*. Denote by *S* the preimage of  $\langle s \rangle$  in *G*. We need to show that  $S \leq \langle \text{tor}(G) \rangle$ . If not then *S* is torsion free and therefore is projective by Serre's result ([S]). Then  $q \neq p$  because otherwise  $O_p(F) = O_p(S)$  and so the maximal pro-*p* quotient  $S/O_p(S) = \langle s \rangle$  has to be projective (cf. [RZ], Proposition 7.6.7). So  $q \neq p$  and therefore the maximal pro-*p* quotient of *S* is trivial. Hence  $S \leq \langle \text{tor}(G) \rangle$ .

Thus by factoring out the kernel of the epimorphism of F to its maximal pro-p quotient we may assume that F is free pro-p. Let M be the normal subgroup of G generated by all elements of order coprime to p. For a subset B of G write  $\overline{B} := BM/M$  and put L := FM.

**Claim.**  $L/\langle tor(L) \rangle$  is free pro-*p*.

Consider the 5-term Hochschild-Serre sequence

$$0 \longrightarrow H^{1}(\overline{L}/\langle \operatorname{tor}(\overline{L}) \rangle, \mathbb{F}_{p}) \xrightarrow{\operatorname{Inf}} H^{1}(\overline{L}, \mathbb{F}_{p})$$
$$\longrightarrow H^{1}(\langle \operatorname{tor}(\overline{L}) \rangle, \mathbb{F}_{p})^{\overline{L}/\langle \operatorname{tor}(\overline{L}) \rangle} \xrightarrow{\operatorname{tr}} H^{2}(\overline{L}/\langle \operatorname{tor}(\overline{L}) \rangle, \mathbb{F}_{p}) \xrightarrow{\operatorname{Inf}} H^{2}(\overline{L}, \mathbb{F}_{p}).$$

By Corollary 2.3,  $\operatorname{tor}(\overline{L}) = \overline{\operatorname{tor}(L)}$ . So it suffices to show that  $H^2(\overline{L}/\langle \operatorname{tor}(\overline{L}) \rangle, \mathbb{F}_p) = 0$ .

We first show that

$$H^2(\overline{L}/\langle \operatorname{tor}(\overline{L}) \rangle, \mathbb{F}_p) \xrightarrow{\operatorname{Inf}} H^2(\overline{L}, \mathbb{F}_p)$$

is 0-map. Denote by  $S_p$  a Sylow subgroup of L and consider the following commutative diagram:

$$\begin{array}{ccc} H^2\big(\overline{L}/\langle \mathrm{tor}(\overline{L})\rangle, \mathbb{F}_p\big) & \stackrel{\mathrm{Inf}}{\longrightarrow} & H^2(\overline{L}, \mathbb{F}_p) \\ & & & \downarrow \\ & & & \downarrow \\ H^2\big(S_p/\langle \mathrm{tor}(S_p)\rangle, \mathbb{F}_p\big) & \stackrel{\mathrm{Inf}}{\longrightarrow} & H^2(S_p, \mathbb{F}_p) \end{array}$$

where the vertical maps are induced by the natural homomorphisms  $S_p \to \overline{L}$  and

$$S_p/\langle \operatorname{tor}(S_p) \rangle \to L/\langle \operatorname{tor}(L) \rangle = \overline{L}/\langle \operatorname{tor}(\overline{L}) \rangle.$$

By Theorem 1.7 the lower horizontal map is 0-map. Since M is generated by elements of order coprime to p one has

$$H^1(M, \mathbb{F}_p)^{L/M} = \operatorname{Hom}(M, \mathbb{F}_p)^{(L/M)} = 0.$$

So the 5-term Hochschild-Serre sequence relating cohomology of L and  $\overline{L}$  implies that

Inf : 
$$H^2(\overline{L}, \mathbb{F}_p) \to H^2(L, \mathbb{F}_p)$$

is injective. On the other hand

$$\operatorname{Res}: H^2(L, \mathbb{F}_p) \to H^2(S_p, \mathbb{F}_p)$$

is injective as well (cf. [W], Lemma 10.2.1). Hence the right vertical map is injective. So the commutativity of the diagram implies that

$$H^2(\overline{L}/\langle \operatorname{tor}(\overline{L}) \rangle, \mathbb{F}_p) \xrightarrow{\operatorname{Inf}} H^2(\overline{L}, \mathbb{F}_p)$$

is 0-map.

Now it suffices to show that

$$H^1(\overline{L}, \mathbb{F}_p) \to H^1(\langle \operatorname{tor}(\overline{L}) \rangle, \mathbb{F}_p)^{\overline{L}/\langle \operatorname{tor}(\overline{L}) \rangle}$$

is surjective. We show that the dual map

$$H_1(\langle \operatorname{tor}(\overline{L}) \rangle, \mathbb{F}_p)_{\overline{L}/\langle \operatorname{tor}(\overline{L}) \rangle} \to H_1(\overline{L}, \mathbb{F}_p)$$

is injective. Note that the map in question coincides with the natural homomorphism  $\langle \operatorname{tor}(\overline{L}) \rangle / (\Phi(\langle \operatorname{tor}(\overline{L}) \rangle) [\langle \operatorname{tor}(\overline{L}) \rangle, \overline{L}]) \to \overline{L} / \Phi(\overline{L})$ . Pick  $\overline{g} \in \langle \operatorname{tor}(\overline{L}) \rangle \cap \Phi(\overline{L})$ . We need to show that  $\overline{g} \in \Phi(\langle \operatorname{tor}(\overline{L}) \rangle) [\langle \operatorname{tor}(\overline{L}) \rangle, \overline{L}]$ .

As was observed above every torsion element of  $\overline{L}$  lifts to some torsion element of Land since M is generated by all elements of p'-order, it also lifts to an element of  $\underline{p}$ -power order. Since all the Sylow subgroups of L are conjugate this implies that  $\operatorname{tor}(\overline{L}) = \operatorname{tor}(S_p)$ ; indeed if  $s \in L$  is element of p-power order, then  $s^k \in S_p$  for some  $k \in L$  and so  $\overline{s^k} = \overline{s^l}$  for some  $\overline{l} \in L$  and one can choose an element  $l \in S_p$  such that  $\overline{s^{kl^{-1}}} = \overline{s}$ . It follows that  $\overline{g}$ has a preimage in  $\langle \operatorname{tor}(S_p) \rangle$  (i.e. lifts to an element  $g \in \langle \operatorname{tor}(S_p) \rangle$ ). Since  $\overline{g} \in \Phi(\overline{L})$ ,  $g \in L^p[L, L]M$ . As  $\overline{L}$  is pro-p, one has  $\Phi(S_p)M = L^p[L, L]M$  and so  $g \in \Phi(S_p)M$ . Write g = sm for some  $s \in \Phi(S_p)$ ,  $m \in M \cap S_p$ .

Put  $\tilde{L} := L/(\Phi(F) \cap M)$  and for  $A \subseteq L$  write  $\tilde{A}$  for the image of A in  $\tilde{L}$ . Observe that  $\Phi(\tilde{F}) = \Phi(\tilde{F})$ . Then  $\tilde{F} \cap \tilde{M}$  is an elementary abelian pro-p normal subgroup of  $\tilde{F}$ . Moreover, it is central in  $\tilde{F}$  since  $\tilde{M} \cap \Phi(\tilde{F}) = 1$ . Then  $\tilde{F} = B \times (\tilde{F} \cap \tilde{M})$ , where B is the preimage in  $\tilde{F}$  of the direct complement of  $(\tilde{F} \cap \tilde{M})\Phi(\tilde{F})/\Phi(\tilde{F})$  in  $\tilde{F}/\Phi(\tilde{F})$ . It follows that  $\tilde{L} = \tilde{F}\tilde{M} = B \times \tilde{M}$ , so  $\tilde{S}_p = B \times (\tilde{M} \cap \tilde{S}_p)$ . Then  $\Phi(\tilde{S}_p) = \Phi(B) \times \Phi(\tilde{M} \cap \tilde{S}_p)$  and so we can write  $\tilde{s} = \tilde{s}_0 \tilde{m}_0$ , where  $\tilde{s}_0 \in \Phi(B)$ ,  $\tilde{m}_0 \in \Phi(\tilde{M} \cap \tilde{S}_p)$ . Then  $\tilde{g} = \tilde{s}_0 \tilde{m}_0 \tilde{m}$ . Note that  $\langle \operatorname{tor}(\tilde{S}_p) \rangle = (\tilde{M} \cap \tilde{S}_p) \times \langle \operatorname{tor}(B) \rangle$ , so  $\tilde{s}_0 \in \langle \operatorname{tor}(B) \rangle$ . Since  $\Phi(F) \cap M \leq \Phi(S_p)$ , using again the equality  $\operatorname{tor}(\tilde{L}) = \operatorname{tor}(S_p)$  one infers that there exist  $s_0 \in \Phi(S_p) \cap \langle \operatorname{tor}(S_p) \rangle$ ,  $m' \in M$  such that  $g = s_0 m'$ . But  $S_p$  is virtually free pro-p by Theorem 1.7, so  $H_2(S_p/\langle \operatorname{tor}(S_p), \mathbb{F}_p \rangle) = 0$ . Hence from 5-term Hochschild-Serre exact sequence relating  $S_p$ and  $S_p/\langle \operatorname{tor}(S_p) \rangle$  one concludes that

$$H_1(\langle \operatorname{tor}(S_p) \rangle, \mathbb{F}_p)_{S_p/\langle \operatorname{tor}(S_p) \rangle} \to H_1(S_p, \mathbb{F}_p)$$

is injective or equivalently

$$\langle \operatorname{tor}(S_p) \rangle / \Phi(\langle \operatorname{tor}(S_p) \rangle) [\langle \operatorname{tor}(S_p) \rangle, S_p] \to S_p / \Phi(S_p)$$

is injective. This means that

$$\Phi(S_p) \cap \langle \operatorname{tor}(S_p) \rangle = \Phi(\langle \operatorname{tor}(S_p) \rangle)[\langle \operatorname{tor}(S_p) \rangle, S_p]$$

and so

$$s_0 \in \Phi(\langle \operatorname{tor}(S_p) \rangle)[\langle \operatorname{tor}(S_p) \rangle, S_p].$$

Therefore  $\overline{g} \in \Phi(\langle \operatorname{tor}(\overline{L}) \rangle)[\langle \operatorname{tor}(\overline{F}) \rangle, \overline{L}]$  and the claim is proved.

Now, the preceding claim shows that  $\overline{G} = G/M$  is virtually free pro-*p*, and since, by Corollary 2.3,  $G/\langle \operatorname{tor}(G) \rangle = \overline{G}/\langle \operatorname{tor}(\overline{G}) \rangle$ , the result follows from Theorem 1.7.  $\Box$ 

**Theorem 2.5.** Let G be a virtually projective group. Then  $G/\langle tor(G) \rangle$  is projective.

*Proof.* It suffices to show that for a Sylow subgroup  $S_p$  of G one has  $S_p\langle \operatorname{tor}(G) \rangle / \langle \operatorname{tor}(G) \rangle$  is free pro-p for every p. However, this follows from Lemma 2.4 since  $S_p\langle \operatorname{tor}(G) \rangle / \langle \operatorname{tor}(G) \rangle$  is a pro-p group.  $\Box$ 

#### 3. Examples

We conclude this section with two examples: an example of a pro-2 group G with vcd(G) = 2 such that  $G/\langle tor(G) \rangle$  contains torsion and an example of a pro-2 group H containing a free pro-2 subgroup F of index 2 that does not satisfy the conclusion of Theorem 1.2.

The first example shows that groups of virtual cohomological dimension 1 are exeptional with respect to the property studied in the paper.

The second example shows that the existence of a section  $\mathcal{T}/G \to G$  is essential for Theorem 1.2.

**Example.** Let  $G = \mathbb{Z}_2 \amalg_H D_\infty$ , where  $D_\infty$  is the infinite dihedral pro-2 group and H is the subgroup of order 2 in both factors (note that  $D_\infty$  contains a unique subgroup of index 2 isomorphic to  $\mathbb{Z}_2$ ). Then the normal closure N of the first factor is of index 2 in G and isomorphic to the generalized dihedral group  $\mathbb{Z}_2 \rtimes \mathbb{Z}_2$  where the action is by invertion. Hence  $\operatorname{cd}(N) = 2$ . However, the group  $\langle \operatorname{tor}(G) \rangle$  is the normal closure of the second factor and  $G/\langle \operatorname{tor}(G) \rangle$  has order 2 and so is not torsion free.

Before constructing the second example we need the following

**Lemma 3.1.** Let  $Z \cong \mathbb{Z}_2$ . There exists a profinite Z-space X with one point fixed, all other points having trivial stabilizers and the natural surjection  $\pi_Z : X \to X/Z$  does not admit a continuous section.

*Proof.* Let X be a direct product of uncountably many copies of  $\mathbb{Z}_2$ . Define an action of Z on X by coordinatewise multiplication. Then the trivial element of X is the unique fixed point and the stabilizers of all other points of X are trivial. By [CP], Lemma,  $\pi$  does not admit a continuous section.  $\Box$ 

Now we start to construct the group *H*. Let (X, Z) be as in Lemma 3.1 and  $\mathscr{H}_0 = X \times C$ , where  $C \cong C_2$ . We are going to use the definition of a free pro-2 product in sense of [M] (see also [NSW], Chapter IV, §3). Denote by  $(\mathscr{H}_0, pr_X, X)$  the associated constant sheaf. Put  $H_0 = \coprod_X \mathscr{H}_0$ . Define an action of *Z* on  $\mathscr{H}_0$  by setting  $(x, c)z = (xz, c), x \in X$ ,  $c \in C$ . Then the universal property of the free pro-2 product allows one to extend this action canonically to a continuous action of *Z* on  $H_0$ . Put  $H = H_0 \rtimes Z$ . Using the canonical morphism  $\omega : \mathscr{H}_0 \to H$ , define  $C_x = \omega(\mathscr{H}_0(x)) \cong C_2$ , and regard  $H_0$  as the internal free pro-2 product  $H_0 = \coprod_{x \in X} C_x$  (see [M], (1.16) and (1.17), or [NSW], Chapter IV, §3). Denote by  $x_0$  a point which is fixed by *Z*. Let  $F_0$  be the free subgroup of index 2 in  $H_0$ . The subset  $W = \{c_{x_0}^{-1}c_x \mid x \in X\}$  is clearly a closed subset of  $F_0$  and, in fact, is a pointed

basis of  $F_0$ . Indeed,  $H_0/\Phi(F_0) = F_0/\Phi(F_0) \times C_{x_0}\Phi(F_0)/\Phi(F_0)$  from where it follows that W generates  $F_0$ . On the other hand, if Y is a proper closed subset of  $\{c_{x_0}^{-1}c_x \mid x \in X\}$ , then  $\overline{\langle Y, C_{x_0} \rangle} = \coprod_{\substack{y \in Y \\ |y \in Y}} \langle c_{x_0}y \rangle \neq H_0$ , so Y can not generate  $F_0$ . Observe that Z acts on W as follows:  $(c_{x_0}^{-1}c_x)^z = c_{x_0}^{-1}(c_x)^z = c_{x_0}^{-1}c_{x_2}$ .

**Lemma 3.2.** (a) For  $x_1, x_2 \in X$  one has that  $C_{x_1}$  is conjugate in H to  $C_{x_2}$  if and only if  $x_1z = x_2$  for some  $z \in Z$ .

(b) *H* contains a free pro-2 subgroup *F* of index 2.

*Proof.* (a) Suppose  $C_{x_1}^h = C_{x_2}$  for some  $h \in H$ . Let  $h_0 \in H_0$ ,  $z \in Z$  be such that  $h = zh_0$ . Then  $C_{x_1}^{zh_0} = (C_{x_1z})^{h_0} = C_{x_2}$ , whence we have  $x_1z = x_2$ , as required. Conversely, if  $x_1z = x_2$  then there exists  $h_0 \in H_0$  such that  $c_{x_1} = c_{x_1z}^{h_0} = c_{x_1}^{zh_0}$  as needed.

(b) Put  $F = F_0 \rtimes Z$ . Let  $f: F_0 \to F(W/Z)$  be the natural epimorphism induced by the natural surjection  $W \to W/Z$ . Since F(W/Z) is free, f splits, i.e., there exists a monomorphism  $\varphi: F(W/Z) \to F_0$  with  $f\varphi = id$ . It suffices to show that the natural homomorphism  $F(W/Z) \amalg Z \to F$  induced by  $\varphi$  and by the monomorphism sending Zto its copy in F is an isomorphism. But this is clear since this homomorphism induces an isomorphism on the Frattini quotients (cf. [RZ], Theorem 7.2.7).  $\Box$ 

**Proposition 3.3.** *H* cannot be isomorphic to a free product of centralizers of finite groups and a free pro-2 group.

*Proof.* Suppose there exists a boolean space T, and a continuous family  $\Sigma_H := \{C_t \mid t \in T\}$  of groups of order 2 such that  $H = \coprod C_H(C_t) \amalg L$  for some free pro-2 group L. Note that  $\coprod_{t \in T} C_t$  is a subgroup of  $H_0$ . For  $t \in T$  denote by  $c_t$  the generator of  $C_t$  and put  $S_T = \{c_t \mid t \in T\}$ . Similarly for  $x \in X$  denote by  $c_x$  the generator of  $C_x$  and put  $S_X = \{c_x \mid x \in X\}$ . Let  $\overline{S}_T$  and  $\overline{S}_X$  be the homeomorphic images of  $S_T$  and  $S_X$  in  $H/\Phi(H_0)$ respectively. By [M], Proposition 4.9, every finite subgroup of H is conjugate to one of its factor  $C_x$ . Therefore,  $\overline{S}_T \subseteq \overline{S}_X$ . Let  $f: H_0/\Phi(H_0) \to H/\Phi(H)$  be the natural homomorphism. Since all  $C_t$  are subgroups of free factors  $C_H(C_t)$  of H, the restriction  $f_{|\bar{S}_m}$  is an injection. It is also a surjection because any finite subgroup is conjugate to a subgroup of a free factor (see [M], Proposition 4.9). Now observe that the Z-set  $S_X$  is isomorphic to the Z-set  $\overline{S}_{\chi}$ , where abusing notation we use the same letter for the image of Z in  $H/\Phi(H_0)$ and, by Lemma 3.2 (a), it is isomorphic to the Z-set X as well. Also note that the restricition  $f_{|\overline{S}_X}$  coincides with the natural quotient map  $\overline{S}_X \to \overline{S}_X/Z$ . On the other hand  $f_{|\overline{S}_T}: \overline{S}_T \to \overline{S}_X/Z$  is also a surjection by Lemma 3.2 (a) taking into account that every  $C_X$  is conjugate to some  $C_t$  in H (see [M], Proposition 4.9). Thus  $f_{|\overline{S}_T}: \overline{S}_T \to \overline{S}_X/Z$  is a homeomorphism. Since, as was mentioned above, Z-set  $\overline{S}_X$  is isomorphic to the Z-set X, we obtain a contradiction with the fact established in Lemma 3.1 that a continuous section  $X/Z \rightarrow X$  does not exist. 

#### References

<sup>[</sup>CP] Z. A. Chatzidakis and P. Pappas, Von Neumann regular rings not representable as rings of continuous functions, Alg. Univ. 29 (1992), 332–337.

- [DS] J. L. Dyer and G. P. Scott, Periodic automorphisms of free groups, Comm. Alg. 3 (1975), 195-201.
- [HRZ] W. N. Herfort, L. Ribes and P. A. Zalesskii, p-Extensions of Free Pro-p Groups, Forum Math. 11 (1998), 49–61.
- [HZ] W. N. Herfort and P. A. Zalesskii, Virtually Free pro-p Groups, preprint 2002.
- [M] O. V. Melnikov, Subgroups and Homology of Free Products of Profinite Groups, Math. USSR Izvest. 34, 1 (1990), 97–119.
- [NSW] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of Number Fields, Springer, 2000.
- [RZ] L. Ribes and P. A. Zalesskii, Profinite Groups, Springer, 2000.
- [RZ1] L. Ribes and P. A. Zalesskii, Pro-p Trees, Chapter 3, M. du Sautoy, A. Shalev, D. Segal, eds., Progr. Math., Birkhäuser, Boston 2000.
- [Sch] C. Scheiderer, Real and Étale Cohomology, Lect. Notes Math. 1588, Springer, Berlin 1994.
- [Sch1] C. Scheiderer, The structure of some virtually free pro-p groups, Proc. Amer. Math. Soc. 127 (1999), 695–700.
- [S] J.-P. Serre, Sur la dimension cohomologique des groupes profinis, Topology 3 (1965), 413–420.
- [W] J. S. Wilson, Profinite Groups, London Math. Soc. Monogr., Clarendon Press, Oxford 1998.
- [ZM] P. A. Zalesskii and O. V. Melnikov, Fundamental Groups of Graphs of Profinite Groups, Algebra i Analiz 1 (1989); translated in: Leningrad Math. J. 1 (1990), 921–940.

Departamento de Matemática, Universidade de Brasília, 70910-900 Brasília-DF, Brasil

Eingegangen 20. Februar 2003