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Abstract. It is proved that the quotient G/{tor(G)) of a virtually projective pro-
finite group G modulo its normal subgroup generated by all torsion of G is projective.

0. Introduction

Let G be a virtually free group. Then by results of Karras, Magnus, Solitar, Cohen
and Scott G = 7;(%, ') is the fundamental group of a graph of finite groups (%4,T"). By the
central result of Bass-Serre’s theory of groups acting on trees this is equivalent to the fact
that G acts on a tree S with finite vertex stabilizers such that S/G = I'. Let tor(G) be the set
of all nontrivial torsion elements of G. Since every torsion element must fix a vertex of .S, it
follows that the group {tor(G)) is generated by the stabilizers of vertices of S and therefore
S/{tor(G)) is a tree on which G/<tor(G)) acts freely. Thus G/<{tor(G)) = m;(I") is the
fundamental group of the graph I' and hence is free.

It was proved recently in [HZ] that a finitely generated virtually free pro-p group is
the fundamental pro-p group of a finite graph of finite p-groups. Unfortunately, this result
does not hold in the infinitely generated case. However, there is still hope that a virtually
free pro-p group acts on a pro-p tree with finite vertex stabilizers, because in the pro-p case
this is a weaker property than to be the fundamental group of a graph of finite p-groups.
Moreover, it is shown in [HZ] that G/<tor(G)) is free pro-p, when G is second countable
that would be the consequence of this conjecture if proved in this case.

The situation in the profinite case is more complicated. A virtually free profinite
group does not act in general on a profinite tree and so does not have a structure similar to
a discrete virtually free group. An example is the semidirect product Z < C,, where C, in-
verts elements of the 2 component Z, of Z and fixes the elements of p components Z, for all
other primes p.

*) Supported by CNPq.
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The objective of the present paper is to show that nevertheless one can obtain quite
reasonable information on G/<tor(G)) of the virtually free profinite group G. In fact, our
result is even more general.

Theorem. Let G be a virtually projective profinite group. Then G/{tor(G)) is projec-
tive.

In the case (tor(G))» =1 (i.e. when G is torsion free) the result is due to Serre
[S]. Note that free groups, free pro-p groups and projective groups are exactly groups
of cohomological dimension 1 in the categories of groups, pro-p groups and profinite
groups, respectively. Therefore one could ask as a possible generalization of the theo-
rem above whether for a group G of finite virtual cohomological dimension n one has
cd(G / <t0r(G)>) < n. In Section 3 we give an example of a group of virtual cohomological
dimension 2 whose quotient G/{tor(G)) is even not torsion free, and so has infinite coho-
mological dimension. This shows that the situation with groups of (virtual) cohomological
dimension 1 is rather special.

The structure of the paper is as follows. In Section 1 the ideas of [RHZ] and [HZ] are
used to complete the result in the pro-p case. The main result is proved in Section 2.

In Section 3 besides the example mentioned above we also give an example of a
semidirect product F > C, of a free pro-2 group F of uncountable rank and a group of
order 2 that does not satisfy the Dyer-Scott type decomposition

G=[] (H.x )11 H,
xeX

where H, and H are free pro-2 groups. When F' is of countable rank the Dyer-Scott de-
composition holds (see Theorem 1.2 below).

The necessary material on profinite groups (like a notion of a free profinite group on
a topological space) can be found in [RZ] and [W]. The definition of a free pro-p product
which is used in the paper can be found in [NSW], Chapter IV, S3, or in [M]. We shall use
frequently Serre’s result from [S] that states that a virtually projective torsion free profinite
group is projective.

Notation. All groups in the paper are profinite, homomorphisms are continuous and
subgroups are closed. By p will be denoted usually a prime number. For a pro-p group G
we denote the Frattini subgroup of G by ®(G). tor(G) means the subset of torsion elements
of G and x7 stands for x~!'gx. For a profinite space X = lim X;, |X;| < oo and a profinite
ring R we denote by [RX] = liin [RX;] a free profinite module over the space X'

1. The pro-p case

Denote by n(G) the index of maximal free pro-p normal subgroup of G. The proof of
the result in this case uses induction on n(G). We first formulate a theorem that gives the
base of induction.
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Let G be a pro-p group having an open free pro-p subgroup F. Then the set .7 of all
subgroups of order p is a profinite space, since it is a projective limit of corresponding finite
discrete spaces of quotients G/ U, where U runs through the all open normal subgroups of
G which are contained in F. Moreover, G acts continuously on .7 by conjugation.

The stabilizer Gy of T €. with respect to this action is just the centralizer
Gr = Cg(T). We denote by ¢, : 7 — 7 /G the natural map. Then for t € 7 /G the pre-
image ¢! (7) is the G-orbit. The next lemma is just a homological version of the result of
Scheiderer from [Sch], Theorem 12.13.

Lemma 1.1 (HRZ], Lemma 5). For any n = 2 the canonical homomorphism

¢, D Hn(Gv [[[Fp(/’al(t)]) — H,(G,T))

teT |G
is a topological isomorphism.

Now we state a pro-p version of the Dyer-Scott theorem [DS] that was proved in
[Sch1] for finitely generated case and in [HRZ] in the form below. Note that the result holds
upon the condition of the existence of a continuous section 7 /G — 7. Proposition 3.3
shows that this condition is essential.

Theorem 1.2 ((HRZ], Proposition 9). Let G be a pro-p group having free subgroup F

of index p. Suppose there exists a continuous section o : 7 /G — 7. Put T = a(t) regarding
as a subgroup of G. Then

G=( II

(T x Ce(T) ) L A,
T eim(o)
is a free pro-p product over the profinite space 7 |G, where H is a free pro-p subgroup of F.

We note that a section ¢ always exists if the action is free or if 7 is second countable
(see [RZ], Lemmas 5.6.5 and 5.6.7).

The next proposition is extracted from the proof of Proposition 13 in [HRZ].

Proposition 1.3. Let G be a pro-p group having a free pro-p subgroup F of index p.
Then G embeds into a free pro-p product

(6) G():(CPXH)HHQ
where H, Hy are free pro-p groups and C, is a group of order p.

Proof. If G is free pro-p, there is nothing to prove. So assume that G is not free pro-
p; then by Serre’s result the torsion tor(G) # 0. Let ¢ : G — G/F be the natural epimor-
phism. Choose a generator ¢ of G/F = C, and put C = tor(G) n ¢ !(c). For T € 7 denote

by cr the unique element of C N T.

For the rest of the proof fix an arbitrary T, € 7 and write ¢y = cr,. The set
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2) G'CeF
is naturally homeomorphic to the pointed boolean space (7, Ty). This way, in the sequel,
(7, Ty) will appear as an indexing profinite space. Let F (7, Ty) be a free pro-p group over

the pointed space (7, Tp). We shall denote by z7 the image of a point 7 € . under the
natural injection 4 — F(7, T)). Form the free pro-p product

(3) Fo=F(7,T) I F.
Observe that ¢, 'cr € F for every T € 7. Define an automorphism o € Aut(F) by putting

4) ao(zr) = calcTzT, TeT,
wl(f) = ;' feo, feF.

We check that o has order p by looking at generators of Fy. We show first by induction on
k that

o0k (z7) = cykckzr

forall T e (7,Ty) and 1 < k < p. The formula follows from the definition of o for k = 1.
Assuming that the formula holds for £ — 1, one has

k _ k-l _ k=1 1 okl 1 k=1 k-1

o0 (zr) = g oo(zr) =g (¢q erzr) = ¢ ¢y ercy oy (Zr)
_ ko k=1 kel k=1_  _ —k k
=cyierey ¢y Cp ZT =y CpIT

as required.
Hence of (zr) = z7 and certainly, of (f) = f% = f for any f € F.

There is a natural embedding of G into Gy := Fy > {ap ) where F is sent to a copy of
F in Gy and ¢ is sent to ag. We shall identify oy and ¢y henceforth.

By construction, the torsion of Gy coincides with the torsion of G, and since, as a
simple consequence of Equation (4) and the identification oy = ¢

(5) ZTCOZ}1 =cr

holds for T € 7, Gy has only one conjugacy class of subgroups of order p. An application
of Theorem 1.2 then yields a decomposition

(6) G():(CPXH>HH()
with H, H, suitable free pro-p groups of Fy. [

Corollary 1.4. Let G be a pro-p group having a free pro-p subgroup F of index p.
Then:



Zalesskii, On virtually projective groups 101

(i) G/<tor(@G)) is free pro-p.
(i) Cr(c) is a free factor of F for any torsion element ¢ of G.

(iii) If G is generated by torsion, then there exists a continuous section o : 7 |G — T
and one has

G:( 11 T).

T eim(o)
Proof. (i) By the preceding theorem G embeds into a free pro-p product
(6) GQZ(CPXH>HH()

where H, H, are free pro-p groups. Let X and Xj be closed bases of H and H, respectively.
Hence Gy can be viewed as an HNN-group {C,, X, Xy |xcx™! = ¢ for ce Cp,xe X). It
follows that Gy acts on a pro-p tree S whose vertex stabilizers are conjugates of C, (see
[ZM], Proposition 3.8). Then G acts on S as well and <{tor(G)) is exactly the subgroup of G
generated by the vertex stabilizers. So by [RZ1], Corollary 3.6, G/tor(G) is free pro-p as
required.

(ii) Since every torsion element is conjugate in Gy to some element of C,, using
conjugation if necessary, we may assume that C, = {c). Let f: Gy — H be the epi-
morphism that sends C, and Hj to 1 and H identically onto H. The restriction of f to
Cr(c) is injective, because Cg,(C,) = C, x H (see [RZ1], Corollary 4). Hence F splits as a
semidirect product F = M > Cg(c). It follows that ®(F) N Cp(c) = ®(Cr(c)). Then by
[RZ], Lemma 9.1.18, Cr(c) is a free factor of F.

(iii) Let T be a subgroup of G of order p. Conjugating it if necessary we may assume
that 7= C,. Let ¢ : Gy — H Il Hy be the epimorphism that sends C, to 1 and H, Hy
identically to their copies in H II Hy. As Cg,(C,) = C, x H (see [RZ1], Corollary 4), the
restriction of ¢ to Cp(T) is injective. Since G is generated by torsion and every torsion
element is conjugate in Gy to some element of C, (cf. [RZ1], Theorem 4.2 (a)), one has
¢(G) = 1. Hence Cp(T) =1 for any subgroup 7 of G of order p. It follows that F acts
freely on 7 and so there exists a section ¢:.7 /F — 7 ([RZ], Lemma 5.6.5). But
7 /G = I /F, so the result follows from Theorem 1.2. [J

A finitely generated version of the next theorem is due to Scheiderer [Schl].

Theorem 1.5. Suppose F is a free pro-p group and P is a finite p-group of automor-
phisms of F. Then the set of fixed points Cp(P) is a free factor of F. In particular, if the rank
of F is finite, so is rank of Cr(P).

Proof- Let P be a nontrivial finite p-group of automorphisms of F of minimal order
such that the theorem fails. Consider the holomorph G = F < P. By Corollary 1.4 (ii),
|P| > p. Pick an element c in the center of P with ¢” = 1. By the above case Cr(c) is a free
factor of F. Therefore P/{c) acts on Cr(c), and from the minimality assumption we con-
clude the result. []
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Remark 1.6. If o is an automorphism of order p® of a finitely generated free pro-p
group F, then it is not known whether the subgroup of fixed point Cr(«) is finitely gen-
erated.

Proposition 1.7. Let G be any virtually free pro-p group and N <1 G a normal sub-
group of G generated by torsion elements. Then the following statements hold.

(i) tor(G/N) = tor(G)N/N (torsion from G/N can be lifted).
(i) G/<tor(G)) is free pro-p.

Proof.

Claim 1. (i) and (ii) are equivalent.

For showing (i) = (ii) pick g € G/<tor(G)) with g = 1. Apply (i) with N := {tor(G)),
in order to find x € tor(G) with x<tor(G))/{tor(G)) = g. Since x € {tor(G))» conclude
g=1. So G/<tor(G)) is torsion free. To show that it is free pro-p we use induction on
n(G). Let ¢ be a central element of G/F of order p. Then the preimage G, of {c¢) in G
satisfies the assumption of Corollary 1.4 and so G,/<tor(G,)) is free pro-p. Now from (i)
tor(G)<tor(Gy))/<tor(Gy)) = tor(G/Gp) and n(G/G1) < n(G). So from the induction hy-
pothesis we deduce that G/<tor(G))> = (G/G,)/<tor(G/G,)) is free pro-p as needed.

Suppose “(ii) = (1) is false. Then there exists a virtually free pro-p group G
having a normal subgroup N generated by torsion and an element g € G such that
gN/N e tor(G/N) and gN ntor(G) = 0. Then G replaced by {g, N is still a counter ex-
ample, so we may assume that G = (g, N) and denote such a counter example by (g, N).
Among the all such counter examples choose one with [G : N] minimal. We prove first that
(G : N]=p.

Suppose not. Put M :={¢g”,N) then ¢g’¢N and [M:N]<|[G:N] so that
(9?,N) cannot be a counter example. Hence M = (tor(M)). On the other hand,
[G: M] < [G: N], so that (g, M) is not a counter example either, hence exists go € tor(G)
with goM /M = gM /M. Then {gy, N> = {g,N), i.e., go € gN ntor(G) =0, a contradic-
tion. Thus [G : N] = p.

For finishing the proof of Claim 1, note that (ii) implies G = {tor(G)). Therefore,
there exists a torsion element go € G\N and, for suitable 1 <k < p — 1, one must have
g& € gN ntor(G) = 0, a contradiction. Therefore Claim 1 is established.

We continue the proof of the proposition. Suppose it is false. Then there exists G
with G/{tor(G)) not free pro-p. Choose one with n(G) minimal and let F < G be a free
pro-p group with [G : F] = n(G). Then, in light of Claim 1, there exists g € G such that
g<{tor(G))/<tor(G)) of order p and g<{tor(G)) ntor(G) = 0. It follows that <{g, tor(G)) is
still a counter example and since [{g,tor(G)) : ({g,tor(G)> N F)| <n(G) it follows that
n(<g, tor(G)») = n(G). So from now on we may assume that G = (g, tor(G)).

Claim 2. G/F is not cyclic.
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Suppose it is. Let G; be the preimage in G of the cyclic subgroup of order p’ in G/F.
Choose i maximal such that G; = F > C,i. Then tor(G) € G;; indeed, if g € tor(G)\G;
then since G/F is cyclic, g has order at least p'*! and G;,| = F > {g) contradicting the
choice of i. Put n =n(G). Then it follows from the minimality assumption on » that
i=n—1and G, | = <{tor(G)). Let U be a normal subgroup generated by all p"~2> powers
of elements of order p"~!. Then by the minimality assumption on n and Claim 1 one
has tor(G,—1/U) = tor(G,_;)U/U = tor(G)U/U. Consequently as it was shown above
Gy-1/U = Fy X C,n2 for some free pro-p group Fy and so n(G,_1/U) = n — 2. Therefore
it follows from Claim 1 that to use the minimality assumption on n we have to prove the
equality G/<tor(G)) = (G/U)/{tor(G/U)).

Suppose not and k € G\ <tor(G)) such that kU/U is of finite order. Put K = <k, U)
and let M be a subgroup of G generated by all elements of order p”~!. Since any element
of order p"~! centralizes its p"~2-power, Ty /M = Ty /U = Ty /(F n U). Since U is gen-
erated by its torsion Corollary 1.4 (iii) implies that there exists a continuous section
o1 : e9’[//[] — Jy with

U= 11 T.

T eim(oy)

Note that the action of K/M on 7y /M = Ty /U = Ty /(F n U) is free. Indeed, if
not then there exists 4 € 7y and f € F n U with A¥ = 4/, because Ju/M =Ty /FnK,
but then kf centralizes 4 and, since Cy(A4) = A (a free factor is self-centralized, cf. [RZ1],
Corollary 4.4), the element kf has to be of finite order; but Fn U < <tor(G)), so
k € {tor(G)), a contradiction with the choice of k. Therefore there exists a continuous
sectiono : 7 /K — 7 /U =7 /M (cf. [RZ], Lemma 5.6.5).

Let ¢ be a generator of K/M. Then the 7;:=1Im(s)c’ (i=0,...,p—1) form

a partition of 7 /M =7 /U into p clopen subsets. Define K;:= [] 7 and write

- teai(J;) p—1

F=(FnK;li=1,...,p— 1) to be the normal closure of F N K;’s. Then U = [[ K;,
i=0

. prl
() U/F = ]:locp

is a free pro-p product of groups of order p and the conjugacy classes of the free factors
are permuted by the action of K/M. It follows that the abelianization (K/F)/(K/F)" is
of order p" and since F n K contains the commutator subgroup K’, the commutator sub-
group (K/F)' coincides with F n K /F showing that (K/F)/(K/F)" is cyclic of order p”.
But then K/F has to be procyclic, a contradiction to (x).

Thus G/<{tor(G)) = (G/U)/<tor(G/U)) and by the minimality assumption on n we
deduce that Claim 2 holds.

Claim 3. G/F = C, x G, is the direct product of groups of order p.

Since G/F is not cyclic, there exists a normal subgroup M of G containing F

such that G/M = C, x C,. For any 4 < G write 4 := A<tor(M))/<{tor(M)). Let K
be an arbitrary normal subgroup of index p in G containing M. Then n(K) < n(G)
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and therefore, by the minimality of n(G) and Claim 1, tor(K) = tor(K). But every

torsion element of G belongs to some K of this sort, showing tor(G) = tor(G) and

hence G/{tor(G)) = G/{tor(G))>. If M is non-trivial, then n(G) < n(G) implying that
G/<tor(G)) = {(G/tor(G)) is free pro-p, a contradiction. Hence M = 1 and Claim 3 holds.

Returning to proving the proposition, put L := {g,F). Then, as G/F = C, x C,
deduce [G: L] =[G : <tor(G))] = p and L <tor(G)) = F. On the other hand, L can-
not be torsion free, else, by Serre’s result [S], it is free pro-p, and, being of index p
in G, the group G would be free pro-p by cyclic, contradicting Claim 2. Then
1 & {tor(L)) < L n<tor(G)) = F follows, a clear contradiction. []

2. The profinite case

Lemma 2.1. Let G be a virtually free pro-p group and f : G — H a homomor-
phism to a profinite group H that sends every torsion element to 1. Let A be a dis-
crete p-primary Z[[H]|-module viewed as a Z[[G)|-module via f. Then the induced map
H?*(H,A) — H*(G, A) is the 0-map.

Proof. Clearly f factors through G/{tor(G)) and so one has the commutative dia-
gram

G —— G/<tor(G))

~

H
inducing the commutative diagram

H*(G,A) «—— H?*(G/<tor(G)), A)

S

H>(H, A).

By Proposition 1.7, G/<tor(G)) is free pro-p and so H?(G/{tor(G)), A) = 0. It follows
that ¢ is the 0-map. [

Lemma 2.2. Let G be a virtually projective group and M a normal subgroup of
G generated by elements of order coprime to p and containing all elements of G of p-power
order. Then the quotient group S,M /M is free pro-p for any Sylow p-subgroup S, of G.

Proof. It suffices to show that H2(G/M, A) = 0 for any simple p-primary Z[[G/M]]-
module A4 (cf. [RZ], Proposition 7.1.4 and Theorem 7.3.1). Define the action of G on A4 via
G/M. Consider the 5-term Hochschild-Serre sequence

0— H'(G/M, A) % H'(G, 4)

tr

RS HU(M, )™M 5 q2(G/M, A) 2 H2(G, A).
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Since M is generated by elements of order coprime to p one has

H' (M, 4)%™ = Hom(M, 4)\“/™) = .

So it remains to prove that H>(G/M, A) Lof, H?(G, A) is the 0-map.

First note that H*(G,A) — H*(S,,A4) is an injection (cf. [W], Lemma 10.2.1).
Moreover, the commutative diagram

induces the commutative diagram

H*(S,,4) «—— H?*(G,A)

N

H*(G/M., 4)
and it suffices to show that ¢ is the 0-map. However, this is the subject of Lemma 2.1. []

Corollary 2.3. Let G be a virtually projective group and M be the normal subgroup
generated by all elements of order coprime to p. Then tor(G)M /M = tor(G/M).

Proof. For g e G with gM /M of order p Lemma 2.2 implies that {g, M ) must have
torsion outside of M as needed. []

Lemma 2.4. Let G be a virtually projective group and G/<{tor(G)) is a pro-p group.
Then G/{tor(G)) is free pro-p.

Proof. Let F be a maximal open normal projective subgroup of G. Denote by
O,(F) the kernel of F on its maximal pro-p quotient. Note that O,(G) < {tor(G)). We
show that <tor(G)»/0,(F) = (tor(G/0,(F))).

Indeed, let s be an element of G/O,(F) of prime order g. Denote by S the preimage of
{s) in G. We need to show that S < (tor(G)). If not then S is torsion free and therefore is
projective by Serre’s result ([S]). Then g + p because otherwise O,(F) = O,(S) and so the
maximal pro-p quotient S/0,(S) = {s) has to be projective (cf. [RZ], Proposition 7.6.7).
So g =+ p and therefore the maximal pro-p quotient of S is trivial. Hence S < (tor(G)).

Thus by factoring out the kernel of the epimorphism of F to its maximal pro-p
quotient we may assume that F is free pro-p. Let M be the normal subgroup of G generated
by all elements of order coprime to p. For a subset B of G write B:= BM /M and put
L:=FM.

Claim. L/<tor(L)) is free pro-p.



106 Zalesskii, On virtually projective groups

Consider the 5-term Hochschild-Serre sequence

Inf

0 — H'(L/<tor(L)>,F,) — H'(L,F,)

Inf HZ(L Ep)

. H' (Ctor(D)y, F,) B Y g2 (L ¢tor(D)y, Fy)
By Corollary 2.3, tor(L) = tor(L). So it suffices to show that H*(L/<tor(L)),F,) =0

We first show that

Inf

H?(L/<tor(L)),F,) — H*(L,F,)

is 0-map. Denote by S, a Sylow subgroup of L and consider the following commutative
diagram:

H>(L/<tor(L)y, F,) — H*(L,F,)

l |

H2(S,/<tor(S,)), F,) —s H2(S,, F,)
where the vertical maps are induced by the natural homomorphisms S, — L and

8, /<t0r(8,)> — L/<tor(L)> = L/<tor(L)>.

By Theorem 1.7 the lower horizontal map is 0-map. Since M is generated by elements of
order coprime to p one has

H'(M,F,)™ = Hom(M, F,)*™) = 0.
So the 5-term Hochschild-Serre sequence relating cohomology of L and L implies that
Inf : H*(L,F,) — H*(L,F,)
is injective. On the other hand
Res: H*(L,F,) — H*(S),F,)

is injective as well (cf. [W], Lemma 10.2.1). Hence the right vertical map is injective. So the
commutativity of the diagram implies that

Inf HZ(L Fp)

H?*(L/<tor(L)),F,) —
is 0-map.

Now it suffices to show that

HY(L,F,) — H' (<tor(L), F,) X )
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is surjective. We show that the dual map
H,; (<tOI'(Z)>, FI’)Z/(tor(Z)} — H; (Z, [Fp)

is injective. Note that the map in question coincides with the natural homomorphism
tor(L)y/(P(<tor(L))[<tor(L)y, L]) — L/®(L). Pick ge {tor(L)y n®(L). We need to
show that g € ®(<tor(L)))[tor(L)>, L].

As was observed above every torsion element of L lifts to some torsion element of L
and since M is generated by all elements of p’-order, it also lifts to an element of p-power

order. Since all the Sylow subgroups of L are conjugate this implies that tor(L) = tor(S,);

indeed if s € L is element of p-power order, then s* € S, for some k € L and so §¢ = § for
some / € L and one can choose an element / € S, such that sk = 3. It follows that g
has a preimage in (tor(S,))> (i.e. lifts to an element g e (tor(S,)>). Since ge ®(L),
ge LP[L,LIM. As L is pro-p, one has ®(S,)M = LP[L,L|M and so g € ®(S,) M. Write

g = sm for some s € O(S,), me M N S,.

Put L:=L/(®(F) n M) and for A < L write A for the image of 4 in L. Observe

that ®(F) = ®(F). Then F n M is an elementary abelian pro-p normal subgroup of F.
Moreover, it is central in F since M n ®(F) = 1. Then F = B x (F n M), where B is the
preimage in F of the direct complement of (F n M)®(F)/®(F) in F/®(F). It follows
that L=FM = Bx M, s0 S, = Bx (M n S,). Then ®(S,) = ®(B) x ®(M n S,) and so
we can write § = §ymy, where §) € ®(B), my € (D(M A S’p). Then § = Sorgm. Note that
tor(S,)> = (M 1 S,) x {tor(B)», so 5 e <tor(B)). Since ®(F)n M < ®(S,), using
again the equality tor(L) = tor(S,) one infers that there exist sp € ®(S,) N {tor(S,)>,
m'e M such that g=sym’. But S, is virtually free pro-p by Theorem 1.7, so
H,(S,/<tor(S,), F,>) = 0. Hence from 5-term Hochschild-Serre exact sequence relating S,

and S,/{tor(S,)) one concludes that

Hy (<tor($p)2, o) s, on(s,ys — H1(Sps Fp)
is injective or equivalently
Ctor(S),)>/@(<tor(S,) ) [Ktor(S,) ), Syl — S,/ D(S))
is injective. This means that
D(S)) N <tor(S,) ) = D(<tor(S,))) [{tor(Sy) >, 5]
and so
so € @ (<tor(S,)>)[Ktor(S,), Sp).
Therefore g € ®({tor(L)))[{tor(F)>, L] and the claim is proved.

Now, the preceding claim shows that G = G/M is virtually free pro-p, and since, by
Corollary 2.3, G/<tor(G)) = G/<tor(G)), the result follows from Theorem 1.7. []
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Theorem 2.5. Let G be a virtually projective group. Then G/<{tor(G)) is projective.

Proof. 1t suffices to show that for a Sylow subgroup S, of G one has
S,<tor(G))/{tor(G)) is free pro-p for every p. However, this follows from Lemma 2.4 since
S,<tor(G))/<tor(G)) is a pro-p group. []

3. Examples

We conclude this section with two examples: an example of a pro-2 group G with
ved(G) = 2 such that G/<tor(G)) contains torsion and an example of a pro-2 group H
containing a free pro-2 subgroup F of index 2 that does not satisfy the conclusion of The-
orem 1.2.

The first example shows that groups of virtual cohomological dimension 1 are exep-
tional with respect to the property studied in the paper.

The second example shows that the existence of a section .7 /G — G is essential for
Theorem 1.2.

Example. Let G = Z, 11y D, where D, is the infinite dihedral pro-2 group and H
is the subgroup of order 2 in both factors (note that D, contains a unique subgroup of
index 2 isomorphic to Z5). Then the normal closure N of the first factor is of index 2 in G
and isomorphic to the generalized dihedral group Z, > Z, where the action is by invertion.
Hence cd(N) = 2. However, the group {tor(G)) is the normal closure of the second factor
and G/{tor(G)) has order 2 and so is not torsion free.

Before constructing the second example we need the following

Lemma 3.1. Let Z =~ 7,. There exists a profinite Z-space X with one point fixed,
all other points having trivial stabilizers and the natural surjection nz : X — X /Z does not
admit a continuous section.

Proof. Let X be a direct product of uncountably many copies of Z,. Define an
action of Z on X by coordinatewise multiplication. Then the trivial element of X is the
unique fixed point and the stabilizers of all other points of X are trivial. By [CP], Lemma, 7
does not admit a continuous section. []

Now we start to construct the group H. Let (X,Z) be as in Lemma 3.1 and

Ho =X x C, where C =~ C,. We are going to use the definition of a free pro-2 product in

sense of [M] (see also [NSW], Chapter 1V, §3). Denote by (#, pry, X) the associated con-

stant sheaf. Put Hy = [ [ #. Define an action of Z on # by setting (x,¢)z = (xz,¢), x € X,
X

¢ € C. Then the universal property of the free pro-2 product allows one to extend this

action canonically to a continuous action of Z on Hy. Put H = Hy x< Z. Using the canon-

ical morphism w : #y — H, define C, = a)(%’o(x)) ~ (,, and regard H, as the internal

free pro-2 product Hy = [] C, (see [M], (1.16) and (1.17), or [NSW], Chapter 1V, §3).
xeX

Denote by xy a point which is fixed by Z. Let Fy be the free subgroup of index 2 in H,.
The subset W = {c;o1 ¢ |x € X} is clearly a closed subset of Fyy and, in fact, is a pointed
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basis of Fy. Indeed, Hy/®(Fy) = FO/(I)(FO) x Cy, D(Fy)/D(Fp) from where it follows that
W generates Fy. On the other hand, if Y is a proper closed subset of {c ¢y | x € X'}, then

{Y,Cy» = II <cx,»> * Ho, so Y can not generate Fy. Observe that Z acts on W as fol-
yeY
lows: (¢, cx) = (o) = e
Lemma 3.2. (a) For x1,x2 € X one has that Cy, is conjugate in H to Cy, if and only if
X1z = X, for some z € Z.

(b) H contains a free pro-2 subgroup F of index 2.

Proof. (a) Suppose C”’ = C,, for some he H. Let hye Hy, ze Z be such that
h = zhy. Then C‘h0 = (Cy,2)" = Cy,, whence we have x;z = x», as required. Conversly, if
X1z = x, then there exists ho € Hy such that ¢, = ¢, = ¢ as needed.

(b) Put F=Fy><Z. Let f:Fy— F(W/Z) be the natural epimorphism induced
by the natural surjection W — W /Z. Since F(W/Z) is free, f splits, i.e., there exists
a monomorphism ¢ : F(W/Z) — Fy with fp =id. It suffices to show that the natural
homomorphism F(W/Z)11 Z — F induced by ¢ and by the monomorphism sending Z
to its copy in F is an isomorphism. But this is clear since this homomorphism induces an
isomorphism on the Frattini quotients (cf. [RZ], Theorem 7.2.7). [

Proposition 3.3. H cannot be isomorphic to a free product of centralizers of finite
groups and a free pro-2 group.

Proof- Suppose there exists a boolean space 7, and a continuous family

Xy = {C/|te T} of groups of order 2 such that H = [[ Cy(C,) II L for some free pro-2
teT

group L. Note that [] C, is a subgroup of Hy. For € T denote by ¢, the generator of
teT

C, and put Sy = {¢,|t € T}. Similarly for x € X denote by ¢, the generator of C, and put
Sy = {cy|x e X}. Let Sy and Sy be the homeomorphic images of S and Sy in H/®(H,)
respectively. By [M], Proposition 4.9, every finite subgroup of H is conjugate to one of
its factor C,. Therefore, Sy = Sy. Let f : Hy/®(Hy) — H/®(H) be the natural homo-
morphism. Since all C; are subgroups of free factors Cy(C;) of H, the restriction f 5, 1S an
injection. It is also a surjection because any finite subgroup is conjugate to a subgroup of a
free factor (see [M], Proposition 4.9). Now observe that the Z-set Sy is isomorphic to the
Z-set Sy, where abusing notation we use the same letter for the image of Z in H/®(H,)
and, by Lemma 3.2 (a), it is isomorphic to the Z-set X as well. Also note that the re-
stricition f| 5, coincides with the natural quotient map Sy — Sy/Z. On the other hand
f| 5, S7 — Sx/Z is also a surjection by Lemma 3.2 (a) taking into account that every C,
is conjugate to some C; in H (see [M], Proposition 4.9). Thus Ji5, St — Sx /Z is a ho-
meomorphism. Since, as was mentioned above, Z-set Sy is 1somorphlc to the Z-set X, we
obtain a contradiction with the fact established in Lemma 3.1 that a continuous section
X/Z — X does not exist. []
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