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Abstract. It is proved that the quotient G=htorðGÞi of a virtually projective pro-
finite group G modulo its normal subgroup generated by all torsion of G is projective.

0. Introduction

Let G be a virtually free group. Then by results of Karras, Magnus, Solitar, Cohen
and Scott G ¼ p1ðG;GÞ is the fundamental group of a graph of finite groups ðG;GÞ. By the
central result of Bass-Serre’s theory of groups acting on trees this is equivalent to the fact
that G acts on a tree S with finite vertex stabilizers such that S=G ¼ G. Let torðGÞ be the set
of all nontrivial torsion elements of G. Since every torsion element must fix a vertex of S, it
follows that the group htorðGÞi is generated by the stabilizers of vertices of S and therefore
S=htorðGÞi is a tree on which G=htorðGÞi acts freely. Thus G=htorðGÞi ¼ p1ðGÞ is the
fundamental group of the graph G and hence is free.

It was proved recently in [HZ] that a finitely generated virtually free pro-p group is
the fundamental pro-p group of a finite graph of finite p-groups. Unfortunately, this result
does not hold in the infinitely generated case. However, there is still hope that a virtually
free pro-p group acts on a pro-p tree with finite vertex stabilizers, because in the pro-p case
this is a weaker property than to be the fundamental group of a graph of finite p-groups.
Moreover, it is shown in [HZ] that G=htorðGÞi is free pro-p, when G is second countable
that would be the consequence of this conjecture if proved in this case.

The situation in the profinite case is more complicated. A virtually free profinite
group does not act in general on a profinite tree and so does not have a structure similar to
a discrete virtually free group. An example is the semidirect product ẐZzC2, where C2 in-

verts elements of the 2 component Z2 of ẐZ and fixes the elements of p components Zp for all
other primes p.

*) Supported by CNPq.



The objective of the present paper is to show that nevertheless one can obtain quite
reasonable information on G=htorðGÞi of the virtually free profinite group G. In fact, our
result is even more general.

Theorem. Let G be a virtually projective profinite group. Then G=htorðGÞi is projec-

tive.

In the case htorðGÞi ¼ 1 (i.e. when G is torsion free) the result is due to Serre
[S]. Note that free groups, free pro-p groups and projective groups are exactly groups
of cohomological dimension 1 in the categories of groups, pro-p groups and profinite
groups, respectively. Therefore one could ask as a possible generalization of the theo-
rem above whether for a group G of finite virtual cohomological dimension n one has
cd
�
G=htorðGÞi

�
e n. In Section 3 we give an example of a group of virtual cohomological

dimension 2 whose quotient G=htorðGÞi is even not torsion free, and so has infinite coho-
mological dimension. This shows that the situation with groups of (virtual) cohomological
dimension 1 is rather special.

The structure of the paper is as follows. In Section 1 the ideas of [RHZ] and [HZ] are
used to complete the result in the pro-p case. The main result is proved in Section 2.

In Section 3 besides the example mentioned above we also give an example of a
semidirect product F zC2 of a free pro-2 group F of uncountable rank and a group of
order 2 that does not satisfy the Dyer-Scott type decomposition

G ¼
‘
x AX
ðHx � C2Þ qH;

where Hx and H are free pro-2 groups. When F is of countable rank the Dyer-Scott de-
composition holds (see Theorem 1.2 below).

The necessary material on profinite groups (like a notion of a free profinite group on
a topological space) can be found in [RZ] and [W]. The definition of a free pro-p product
which is used in the paper can be found in [NSW], Chapter IV, S3, or in [M]. We shall use
frequently Serre’s result from [S] that states that a virtually projective torsion free profinite
group is projective.

Notation. All groups in the paper are profinite, homomorphisms are continuous and
subgroups are closed. By p will be denoted usually a prime number. For a pro-p group G

we denote the Frattini subgroup of G by FðGÞ. torðGÞ means the subset of torsion elements
of G and xg stands for x�1gx. For a profinite space X ¼ lim

 �
Xi, jXij < y and a profinite

ring R we denote by 7RX8 ¼ lim
 �
½RXi� a free profinite module over the space X .

1. The pro-p case

Denote by nðGÞ the index of maximal free pro-p normal subgroup of G. The proof of
the result in this case uses induction on nðGÞ. We first formulate a theorem that gives the
base of induction.
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Let G be a pro-p group having an open free pro-p subgroup F . Then the set T of all
subgroups of order p is a profinite space, since it is a projective limit of corresponding finite
discrete spaces of quotients G=U , where U runs through the all open normal subgroups of
G which are contained in F . Moreover, G acts continuously on T by conjugation.

The stabilizer GT of T A T with respect to this action is just the centralizer
GT ¼ CGðTÞ. We denote by jG : T!T=G the natural map. Then for t A T=G the pre-
image j�1

G ðtÞ is the G-orbit. The next lemma is just a homological version of the result of
Scheiderer from [Sch], Theorem 12.13.

Lemma 1.1 ([HRZ], Lemma 5). For any nf 2 the canonical homomorphism

jn :
L

t AT=G

Hn

�
G; 7Fpj

�1
G ðtÞ8

�
! HnðG; FpÞ

is a topological isomorphism.

Now we state a pro-p version of the Dyer-Scott theorem [DS] that was proved in
[Sch1] for finitely generated case and in [HRZ] in the form below. Note that the result holds
upon the condition of the existence of a continuous section T=G !T. Proposition 3.3
shows that this condition is essential.

Theorem 1.2 ([HRZ], Proposition 9). Let G be a pro-p group having free subgroup F

of index p. Suppose there exists a continuous section s : T=G !T. Put T ¼ sðtÞ regarding
as a subgroup of G. Then

G ¼
� ‘
T A imðsÞ

�
T � CF ðTÞ

��
qH;

is a free pro-p product over the profinite space T=G, where H is a free pro-p subgroup of F.

We note that a section s always exists if the action is free or if T is second countable
(see [RZ], Lemmas 5.6.5 and 5.6.7).

The next proposition is extracted from the proof of Proposition 13 in [HRZ].

Proposition 1.3. Let G be a pro-p group having a free pro-p subgroup F of index p.
Then G embeds into a free pro-p product

G0 ¼ ðCp �HÞ qH0ð6Þ

where H;H0 are free pro-p groups and Cp is a group of order p.

Proof. If G is free pro-p, there is nothing to prove. So assume that G is not free pro-
p; then by Serre’s result the torsion torðGÞ3j. Let j : G ! G=F be the natural epimor-
phism. Choose a generator c of G=F GCp and put C ¼ torðGÞX j�1ðcÞ. For T A T denote
by cT the unique element of CXT .

For the rest of the proof fix an arbitrary T0 A T and write c0 ¼ cT0
. The set
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c�1
0 CHFð2Þ

is naturally homeomorphic to the pointed boolean space ðT;T0Þ. This way, in the sequel,
ðT;T0Þ will appear as an indexing profinite space. Let FðT;T0Þ be a free pro-p group over
the pointed space ðT;T0Þ. We shall denote by zT the image of a point T A T under the
natural injection T! FðT;T0Þ. Form the free pro-p product

F0 ¼ FðT;T0Þ q F :ð3Þ

Observe that c�1
0 cT A F for every T A T. Define an automorphism a0 A AutðF0Þ by putting

a0ðzTÞ ¼ c�1
0 cTzT ; T A T;ð4Þ

a0ð f Þ ¼ c�1
0 fc0; f A F :

We check that a0 has order p by looking at generators of F0. We show first by induction on
k that

ak
0 ðzTÞ ¼ c�k0 ckTzT

for all T A ðT;T0Þ and 1e ke p. The formula follows from the definition of a0 for k ¼ 1.
Assuming that the formula holds for k � 1, one has

ak
0 ðzTÞ ¼ ak�1

0 a0ðzTÞ ¼ ak�1
0 ðc�1

0 cTzTÞ ¼ c�kþ1
0 c�1

0 cTc
k�1
0 ak�1

0 ðzTÞ

¼ c�k0 cTc
k�1
0 c�kþ1

0 ck�1
T zT ¼ c�k0 ckTzT

as required.

Hence a
p
0ðzTÞ ¼ zT and certainly, ap

0ð f Þ ¼ f c
p

0 ¼ f for any f A F .

There is a natural embedding of G into G0 :¼ F0 z ha0i where F is sent to a copy of
F in G0 and c0 is sent to a0. We shall identify a0 and c0 henceforth.

By construction, the torsion of G0 coincides with the torsion of G, and since, as a
simple consequence of Equation (4) and the identification a0 ¼ c0

zTc0z
�1
T ¼ cTð5Þ

holds for T A T, G0 has only one conjugacy class of subgroups of order p. An application
of Theorem 1.2 then yields a decomposition

G0 ¼ ðCp �HÞ qH0ð6Þ

with H;H0 suitable free pro-p groups of F0. r

Corollary 1.4. Let G be a pro-p group having a free pro-p subgroup F of index p.
Then:
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(i) G=htorðGÞi is free pro-p.

(ii) CF ðcÞ is a free factor of F for any torsion element c of G.

(iii) If G is generated by torsion, then there exists a continuous section s : T=G !T
and one has

G ¼
� ‘
T A imðsÞ

T
�
:

Proof. (i) By the preceding theorem G embeds into a free pro-p product

G0 ¼ ðCp �HÞ qH0ð6Þ

where H;H0 are free pro-p groups. Let X and X0 be closed bases of H and H0 respectively.
Hence G0 can be viewed as an HNN-group hCp;X ;X0 j xcx�1 ¼ c for c A Cp; x A Xi. It
follows that G0 acts on a pro-p tree S whose vertex stabilizers are conjugates of Cp (see
[ZM], Proposition 3.8). Then G acts on S as well and htorðGÞi is exactly the subgroup of G
generated by the vertex stabilizers. So by [RZ1], Corollary 3.6, G=torðGÞ is free pro-p as
required.

(ii) Since every torsion element is conjugate in G0 to some element of Cp, using
conjugation if necessary, we may assume that Cp ¼ hci. Let f : G0 ! H be the epi-
morphism that sends Cp and H0 to 1 and H identically onto H. The restriction of f to
CF ðcÞ is injective, because CG0

ðCpÞ ¼ Cp �H (see [RZ1], Corollary 4). Hence F splits as a
semidirect product F ¼MzCF ðcÞ. It follows that FðFÞXCF ðcÞ ¼ F

�
CF ðcÞ

�
. Then by

[RZ], Lemma 9.1.18, CF ðcÞ is a free factor of F .

(iii) Let T be a subgroup of G of order p. Conjugating it if necessary we may assume
that T ¼ Cp. Let j : G0 ! H qH0 be the epimorphism that sends Cp to 1 and H;H0

identically to their copies in H qH0. As CG0
ðCpÞ ¼ Cp �H (see [RZ1], Corollary 4), the

restriction of j to CF ðTÞ is injective. Since G is generated by torsion and every torsion
element is conjugate in G0 to some element of Cp (cf. [RZ1], Theorem 4.2 (a)), one has
jðGÞ ¼ 1. Hence CF ðTÞ ¼ 1 for any subgroup T of G of order p. It follows that F acts
freely on T and so there exists a section s : T=F !T ([RZ], Lemma 5.6.5). But
T=G ¼T=F , so the result follows from Theorem 1.2. r

A finitely generated version of the next theorem is due to Scheiderer [Sch1].

Theorem 1.5. Suppose F is a free pro-p group and P is a finite p-group of automor-

phisms of F. Then the set of fixed points CF ðPÞ is a free factor of F. In particular, if the rank
of F is finite, so is rank of CF ðPÞ.

Proof. Let P be a nontrivial finite p-group of automorphisms of F of minimal order
such that the theorem fails. Consider the holomorph G ¼ F zP. By Corollary 1.4 (ii),
jPj > p. Pick an element c in the center of P with cp ¼ 1. By the above case CF ðcÞ is a free
factor of F . Therefore P=hci acts on CF ðcÞ, and from the minimality assumption we con-
clude the result. r
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Remark 1.6. If a is an automorphism of order py of a finitely generated free pro-p
group F , then it is not known whether the subgroup of fixed point CF ðaÞ is finitely gen-
erated.

Proposition 1.7. Let G be any virtually free pro-p group and NpG a normal sub-

group of G generated by torsion elements. Then the following statements hold:

(i) torðG=NÞ ¼ torðGÞN=N (torsion from G=N can be lifted ).

(ii) G=htorðGÞi is free pro-p.

Proof.

Claim 1. (i) and (ii) are equivalent.

For showing (i)) (ii) pick g A G=htorðGÞi with gp ¼ 1. Apply (i) with N :¼ htorðGÞi,
in order to find x A torðGÞ with xhtorðGÞi=htorðGÞi ¼ g. Since x A htorðGÞi conclude
g ¼ 1. So G=htorðGÞi is torsion free. To show that it is free pro-p we use induction on
nðGÞ. Let c be a central element of G=F of order p. Then the preimage G1 of hci in G

satisfies the assumption of Corollary 1.4 and so G1=htorðG1Þi is free pro-p. Now from (i)
torðGÞhtorðG1Þi=htorðG1Þi ¼ torðG=G1Þ and nðG=G1Þ < nðGÞ. So from the induction hy-
pothesis we deduce that G=htorðGÞi ¼ ðG=G1Þ=htorðG=G1Þi is free pro-p as needed.

Suppose ‘‘(ii)) (i)’’ is false. Then there exists a virtually free pro-p group G

having a normal subgroup N generated by torsion and an element g A G such that
gN=N A torðG=NÞ and gNX torðGÞ ¼ j. Then G replaced by hg;Ni is still a counter ex-
ample, so we may assume that G ¼ hg;Ni and denote such a counter example by ðg;NÞ.
Among the all such counter examples choose one with ½G : N� minimal. We prove first that
½G : N� ¼ p.

Suppose not. Put M :¼ hgp;Ni then gp cN and ½M : N� < ½G : N� so that
ðgp;NÞ cannot be a counter example. Hence M ¼ htorðMÞi. On the other hand,
½G : M� < ½G : N�, so that ðg;MÞ is not a counter example either, hence exists g0 A torðGÞ
with g0M=M ¼ gM=M. Then hg0;Ni ¼ hg;Ni, i.e., g0 A gNX torðGÞ ¼ j, a contradic-
tion. Thus ½G : N� ¼ p.

For finishing the proof of Claim 1, note that (ii) implies G ¼ htorðGÞi. Therefore,
there exists a torsion element g0 A GnN and, for suitable 1e ke p� 1, one must have
gk

0 A gNX torðGÞ ¼ j, a contradiction. Therefore Claim 1 is established.

We continue the proof of the proposition. Suppose it is false. Then there exists G

with G=htorðGÞi not free pro-p. Choose one with nðGÞ minimal and let F pG be a free
pro-p group with ½G : F � ¼ nðGÞ. Then, in light of Claim 1, there exists g A G such that
ghtorðGÞi=htorðGÞi of order p and ghtorðGÞiX torðGÞ ¼ j. It follows that hg; torðGÞi is
still a counter example and since

�
hg; torðGÞi :

�
hg; torðGÞiXF

��
e nðGÞ it follows that

n
�
hg; torðGÞi

�
¼ nðGÞ. So from now on we may assume that G ¼ hg; torðGÞi.

Claim 2. G=F is not cyclic.

Zalesskii, On virtually projective groups102



Suppose it is. Let Gi be the preimage in G of the cyclic subgroup of order pi in G=F .
Choose i maximal such that Gi ¼ F zCpi . Then torðGÞOGi; indeed, if g A torðGÞnGi

then since G=F is cyclic, g has order at least piþ1 and Giþ1 ¼ F z hgi contradicting the
choice of i. Put n ¼ nðGÞ. Then it follows from the minimality assumption on n that
i ¼ n� 1 and Gn�1 ¼ htorðGÞi. Let U be a normal subgroup generated by all pn�2 powers
of elements of order pn�1. Then by the minimality assumption on n and Claim 1 one
has torðGn�1=UÞ ¼ torðGn�1ÞU=U ¼ torðGÞU=U . Consequently as it was shown above
Gn�1=U ¼ F0 zCpn�2 for some free pro-p group F0 and so nðGn�1=UÞ ¼ n� 2. Therefore
it follows from Claim 1 that to use the minimality assumption on n we have to prove the
equality G=htorðGÞi ¼ ðG=UÞ=htorðG=UÞi.

Suppose not and k A GnhtorðGÞi such that kU=U is of finite order. Put K ¼ hk;Ui
and let M be a subgroup of G generated by all elements of order pn�1. Since any element
of order pn�1 centralizes its pn�2-power, TU=M ¼TU=U ¼TU=ðF XUÞ. Since U is gen-
erated by its torsion Corollary 1.4 (iii) implies that there exists a continuous section
s1 : TU=U !TU with

U ¼
‘

T A imðs1Þ
T :

Note that the action of K=M on TU=M ¼TU=U ¼TU=ðF XUÞ is free. Indeed, if
not then there exists A A TU and f A F XU with Ak ¼ A f , because TU=M ¼ TU=F XK;
but then kf centralizes A and, since CUðAÞ ¼ A (a free factor is self-centralized, cf. [RZ1],
Corollary 4.4), the element kf has to be of finite order; but F XU e htorðGÞi, so
k A htorðGÞi, a contradiction with the choice of k. Therefore there exists a continuous
section s : T=K !T=U ¼T=M (cf. [RZ], Lemma 5.6.5).

Let c be a generator of K=M. Then the Ti :¼ ImðsÞci ði ¼ 0; . . . ; p� 1Þ form
a partition of T=M ¼T=U into p clopen subsets. Define Ki :¼

‘
t As1ðTi Þ

T and write

~FF ¼ ðF XKi j i ¼ 1; . . . ; p� 1ÞK to be the normal closure of F XKi’s. Then U ¼
‘p�1

i¼0

Ki,

U= ~FF ¼
‘p�1

i¼0

Cp(*)

is a free pro-p product of groups of order p and the conjugacy classes of the free factors
are permuted by the action of K=M. It follows that the abelianization ðK= ~FFÞ=ðK= ~FFÞ0 is
of order pn and since F XK contains the commutator subgroup K 0, the commutator sub-
group ðK= ~FFÞ0 coincides with F XK= ~FF showing that ðK= ~FFÞ=ðK= ~FFÞ0 is cyclic of order pn.
But then K= ~FF has to be procyclic, a contradiction to (*).

Thus G=htorðGÞi ¼ ðG=UÞ=htorðG=UÞi and by the minimality assumption on n we
deduce that Claim 2 holds.

Claim 3. G=F GCp � Cp is the direct product of groups of order p.

Since G=F is not cyclic, there exists a normal subgroup M of G containing F

such that G=MGCp � Cp. For any AOG write A :¼ AhtorðMÞi=htorðMÞi. Let K

be an arbitrary normal subgroup of index p in G containing M. Then nðKÞ < nðGÞ
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and therefore, by the minimality of nðGÞ and Claim 1, torðKÞ ¼ torðKÞ. But every
torsion element of G belongs to some K of this sort, showing torðGÞ ¼ torðGÞ and
hence G=htorðGÞi ¼ G=htorðGÞi. If M is non-trivial, then nðGÞ < nðGÞ implying that
G=htorðGÞiG hG=torðGÞi is free pro-p, a contradiction. Hence M ¼ 1 and Claim 3 holds.

Returning to proving the proposition, put L :¼ hg;Fi. Then, as G=F GCp � Cp

deduce ½G : L� ¼ ½G : htorðGÞi� ¼ p and LXhtorðGÞi ¼ F . On the other hand, L can-
not be torsion free, else, by Serre’s result [S], it is free pro-p, and, being of index p

in G, the group G would be free pro-p by cyclic, contradicting Claim 2. Then
13htorðLÞieLXhtorðGÞi ¼ F follows, a clear contradiction. r

2. The profinite case

Lemma 2.1. Let G be a virtually free pro-p group and f : G ! H a homomor-

phism to a profinite group H that sends every torsion element to 1. Let A be a dis-

crete p-primary ẐZ½½H��-module viewed as a ẐZ½½G��-module via f . Then the induced map

H 2ðH;AÞ ! H 2ðG;AÞ is the 0-map.

Proof. Clearly f factors through G=htorðGÞi and so one has the commutative dia-
gram

G ���! G=htorðGÞi???y
H

���������!

inducing the commutative diagram

H 2ðG;AÞ  ��� H 2
�
G=htorðGÞi;A

�

j

x???
H 2ðH;AÞ:

�����
����!

By Proposition 1.7, G=htorðGÞi is free pro-p and so H 2
�
G=htorðGÞi;A

�
¼ 0. It follows

that j is the 0-map. r

Lemma 2.2. Let G be a virtually projective group and M a normal subgroup of

G generated by elements of order coprime to p and containing all elements of G of p-power
order. Then the quotient group SpM=M is free pro-p for any Sylow p-subgroup Sp of G.

Proof. It su‰ces to show that H 2ðG=M;AÞ ¼ 0 for any simple p-primary ẐZ½½G=M ��-
module A (cf. [RZ], Proposition 7.1.4 and Theorem 7.3.1). Define the action of G on A via
G=M. Consider the 5-term Hochschild-Serre sequence

0 ��! H 1ðG=M;AÞ ��!Inf
H 1ðG;AÞ

��!Res
H 1ðM;AÞG=M ��!tr H 2ðG=M;AÞ ��!Inf

H 2ðG;AÞ:
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Since M is generated by elements of order coprime to p one has

H 1ðM;AÞG=M ¼ HomðM;AÞðG=MÞ ¼ 0:

So it remains to prove that H 2ðG=M;AÞ �!Inf
H 2ðG;AÞ is the 0-map.

First note that H 2ðG;AÞ ! H 2ðSp;AÞ is an injection (cf. [W], Lemma 10.2.1).
Moreover, the commutative diagram

Sp ���! G???y
G=M

�����!

induces the commutative diagram

H 2ðSp;AÞ  ��� H 2ðG;AÞ

j

x???
H 2ðG=M;AÞ

����
���!

and it su‰ces to show that j is the 0-map. However, this is the subject of Lemma 2.1. r

Corollary 2.3. Let G be a virtually projective group and M be the normal subgroup

generated by all elements of order coprime to p. Then torðGÞM=M ¼ torðG=MÞ.

Proof. For g A G with gM=M of order p Lemma 2.2 implies that hg;Mi must have
torsion outside of M as needed. r

Lemma 2.4. Let G be a virtually projective group and G=htorðGÞi is a pro-p group.
Then G=htorðGÞi is free pro-p.

Proof. Let F be a maximal open normal projective subgroup of G. Denote by
OpðFÞ the kernel of F on its maximal pro-p quotient. Note that OpðGÞe htorðGÞi. We
show that htorðGÞi=OpðFÞ ¼

�
tor

�
G=OpðFÞ

�	
.

Indeed, let s be an element of G=OpðFÞ of prime order q. Denote by S the preimage of
hsi in G. We need to show that Se htorðGÞi. If not then S is torsion free and therefore is
projective by Serre’s result ([S]). Then q3 p because otherwise OpðFÞ ¼ OpðSÞ and so the
maximal pro-p quotient S=OpðSÞ ¼ hsi has to be projective (cf. [RZ], Proposition 7.6.7).
So q3 p and therefore the maximal pro-p quotient of S is trivial. Hence Se htorðGÞi.

Thus by factoring out the kernel of the epimorphism of F to its maximal pro-p
quotient we may assume that F is free pro-p. Let M be the normal subgroup of G generated
by all elements of order coprime to p. For a subset B of G write B :¼ BM=M and put
L :¼ FM.

Claim. L=htorðLÞi is free pro-p.
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Consider the 5-term Hochschild-Serre sequence

0 �! H 1
�
L=htorðLÞi; Fp

� �!Inf
H 1ðL; FpÞ

�! H 1
�
htorðLÞi; Fp

�L=htorðLÞi �!tr H 2
�
L=htorðLÞi; Fp

� �!Inf
H 2ðL; FpÞ:

By Corollary 2.3, torðLÞ ¼ torðLÞ. So it su‰ces to show that H 2
�
L=htorðLÞi; Fp

�
¼ 0.

We first show that

H 2
�
L=htorðLÞi; Fp

� �!Inf
H 2ðL; FpÞ

is 0-map. Denote by Sp a Sylow subgroup of L and consider the following commutative
diagram:

H 2
�
L=htorðLÞi; Fp

� ���!Inf
H 2ðL; FpÞ???y

???y
H 2

�
Sp=htorðSpÞi; Fp

� ���!Inf
H 2ðSp; FpÞ

where the vertical maps are induced by the natural homomorphisms Sp ! L and

Sp=htorðSpÞi! L=htorðLÞi ¼ L=htorðLÞi:

By Theorem 1.7 the lower horizontal map is 0-map. Since M is generated by elements of
order coprime to p one has

H 1ðM; FpÞL=M ¼ HomðM; FpÞðL=MÞ ¼ 0:

So the 5-term Hochschild-Serre sequence relating cohomology of L and L implies that

Inf : H 2ðL; FpÞ ! H 2ðL; FpÞ

is injective. On the other hand

Res : H 2ðL; FpÞ ! H 2ðSp; FpÞ

is injective as well (cf. [W], Lemma 10.2.1). Hence the right vertical map is injective. So the
commutativity of the diagram implies that

H 2
�
L=htorðLÞi; Fp

� �!Inf
H 2ðL; FpÞ

is 0-map.

Now it su‰ces to show that

H 1ðL; FpÞ ! H 1
�
htorðLÞi; Fp

�L=htorðLÞi
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is surjective. We show that the dual map

H1

�
htorðLÞi; Fp

�
L=htorðLÞi ! H1ðL; FpÞ

is injective. Note that the map in question coincides with the natural homomorphism
htorðLÞi=

�
F
�
htorðLÞi

�
½htorðLÞi;L�

�
! L=FðLÞ. Pick g A htorðLÞiXFðLÞ. We need to

show that g A F
�
htorðLÞi

�
½htorðLÞi;L�.

As was observed above every torsion element of L lifts to some torsion element of L
and since M is generated by all elements of p 0-order, it also lifts to an element of p-power
order. Since all the Sylow subgroups of L are conjugate this implies that torðLÞ ¼ torðSpÞ;
indeed if s A L is element of p-power order, then sk A Sp for some k A L and so sk ¼ sl for
some l A L and one can choose an element l A Sp such that skl

�1 ¼ s. It follows that g

has a preimage in htorðSpÞi (i.e. lifts to an element g A htorðSpÞi). Since g A FðLÞ,
g A Lp½L;L�M. As L is pro-p, one has FðSpÞM ¼ Lp½L;L�M and so g A FðSpÞM. Write
g ¼ sm for some s A FðSpÞ, m A MXSp.

Put ~LL :¼ L=
�
FðFÞXM

�
and for AOL write ~AA for the image of A in ~LL. Observe

that Fð ~FFÞ ¼ gFðFÞFðFÞ. Then ~FF X ~MM is an elementary abelian pro-p normal subgroup of ~FF .
Moreover, it is central in ~FF since ~MMXFð ~FFÞ ¼ 1. Then ~FF ¼ B� ð ~FF X ~MMÞ, where B is the
preimage in ~FF of the direct complement of ð ~FF X ~MMÞFð ~FFÞ=Fð ~FFÞ in ~FF=Fð ~FFÞ. It follows

that ~LL ¼ ~FF ~MM ¼ B� ~MM, so ~SSp ¼ B� ð ~MMX ~SSpÞ. Then Fð ~SSpÞ ¼ FðBÞ �Fð ~MMX ~SSpÞ and so

we can write ~ss ¼ ~ss0 ~mm0, where ~ss0 A FðBÞ, ~mm0 A Fð ~MMX ~SSpÞ. Then ~gg ¼ ~ss0 ~mm0 ~mm. Note that
htorð ~SSpÞi ¼ ð ~MMX ~SSpÞ � htorðBÞi, so ~ss0 A htorðBÞi. Since FðFÞXMeFðSpÞ, using

again the equality torðLÞ ¼ torðSpÞ one infers that there exist s0 A FðSpÞXhtorðSpÞi,
m 0 A M such that g ¼ s0m

0. But Sp is virtually free pro-p by Theorem 1.7, so
H2

�
Sp=htorðSpÞ; Fpi

�
¼ 0. Hence from 5-term Hochschild-Serre exact sequence relating Sp

and Sp=htorðSpÞi one concludes that

H1

�
htorðSpÞi; Fp

�
Sp=htorðSpÞi ! H1ðSp; FpÞ

is injective or equivalently

htorðSpÞi=F
�
htorðSpÞi

�
½htorðSpÞi;Sp� ! Sp=FðSpÞ

is injective. This means that

FðSpÞXhtorðSpÞi ¼ F
�
htorðSpÞi

�
½htorðSpÞi;Sp�

and so

s0 A F
�
htorðSpÞi

�
½htorðSpÞi;Sp�:

Therefore g A F
�
htorðLÞi

�
½htorðFÞi;L� and the claim is proved.

Now, the preceding claim shows that G ¼ G=M is virtually free pro-p, and since, by
Corollary 2.3, G=htorðGÞi ¼ G=htorðGÞi, the result follows from Theorem 1.7. r
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Theorem 2.5. Let G be a virtually projective group. Then G=htorðGÞi is projective.

Proof. It su‰ces to show that for a Sylow subgroup Sp of G one has
SphtorðGÞi=htorðGÞi is free pro-p for every p. However, this follows from Lemma 2.4 since
SphtorðGÞi=htorðGÞi is a pro-p group. r

3. Examples

We conclude this section with two examples: an example of a pro-2 group G with
vcdðGÞ ¼ 2 such that G=htorðGÞi contains torsion and an example of a pro-2 group H

containing a free pro-2 subgroup F of index 2 that does not satisfy the conclusion of The-
orem 1.2.

The first example shows that groups of virtual cohomological dimension 1 are exep-
tional with respect to the property studied in the paper.

The second example shows that the existence of a section T=G ! G is essential for
Theorem 1.2.

Example. Let G ¼ Z2 qH Dy, where Dy is the infinite dihedral pro-2 group and H

is the subgroup of order 2 in both factors (note that Dy contains a unique subgroup of
index 2 isomorphic to Z2). Then the normal closure N of the first factor is of index 2 in G

and isomorphic to the generalized dihedral group Z2 zZ2 where the action is by invertion.
Hence cdðNÞ ¼ 2. However, the group htorðGÞi is the normal closure of the second factor
and G=htorðGÞi has order 2 and so is not torsion free.

Before constructing the second example we need the following

Lemma 3.1. Let ZGZ2. There exists a profinite Z-space X with one point fixed,
all other points having trivial stabilizers and the natural surjection pZ : X ! X=Z does not

admit a continuous section.

Proof. Let X be a direct product of uncountably many copies of Z2. Define an
action of Z on X by coordinatewise multiplication. Then the trivial element of X is the
unique fixed point and the stabilizers of all other points of X are trivial. By [CP], Lemma, p
does not admit a continuous section. r

Now we start to construct the group H. Let ðX ;ZÞ be as in Lemma 3.1 and
H0 ¼ X � C, where CGC2. We are going to use the definition of a free pro-2 product in
sense of [M] (see also [NSW], Chapter IV, §3). Denote by ðH0; prX ;XÞ the associated con-
stant sheaf. Put H0 ¼

‘
X

H0. Define an action of Z on H0 by setting ðx; cÞz ¼ ðxz; cÞ, x A X ,

c A C. Then the universal property of the free pro-2 product allows one to extend this
action canonically to a continuous action of Z on H0. Put H ¼ H0 zZ. Using the canon-
ical morphism o : H0 ! H, define Cx ¼ o

�
H0ðxÞ

�
GC2, and regard H0 as the internal

free pro-2 product H0 ¼
‘
x AX

Cx (see [M], (1.16) and (1.17), or [NSW], Chapter IV, §3).

Denote by x0 a point which is fixed by Z. Let F0 be the free subgroup of index 2 in H0.
The subset W ¼ fc�1

x0
cx j x A Xg is clearly a closed subset of F0 and, in fact, is a pointed
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basis of F0. Indeed, H0=FðF0Þ ¼ F0=FðF0Þ � Cx0
FðF0Þ=FðF0Þ from where it follows that

W generates F0. On the other hand, if Y is a proper closed subset of fc�1
x0
cx j x A Xg, then

hY ;Cx0
i ¼

‘
y AY

hcx0
yi3H0, so Y can not generate F0. Observe that Z acts on W as fol-

lows: ðc�1
x0
cxÞz ¼ c�1

x0
ðcxÞz ¼ c�1

x0
cxz.

Lemma 3.2. (a) For x1; x2 A X one has that Cx1
is conjugate in H to Cx2

if and only if

x1z ¼ x2 for some z A Z.

(b) H contains a free pro-2 subgroup F of index 2.

Proof. (a) Suppose Ch
x1
¼ Cx2

for some h A H. Let h0 A H0, z A Z be such that
h ¼ zh0. Then Czh0

x1
¼ ðCx1zÞ

h0 ¼ Cx2
, whence we have x1z ¼ x2, as required. Conversly, if

x1z ¼ x2 then there exists h0 A H0 such that cx1
¼ ch0

x1z
¼ czh0

x1
as needed.

(b) Put F ¼ F0 zZ. Let f : F0 ! FðW=ZÞ be the natural epimorphism induced
by the natural surjection W !W=Z. Since FðW=ZÞ is free, f splits, i.e., there exists
a monomorphism j : FðW=ZÞ ! F0 with f j ¼ id. It su‰ces to show that the natural
homomorphism FðW=ZÞ q Z ! F induced by j and by the monomorphism sending Z

to its copy in F is an isomorphism. But this is clear since this homomorphism induces an
isomorphism on the Frattini quotients (cf. [RZ], Theorem 7.2.7). r

Proposition 3.3. H cannot be isomorphic to a free product of centralizers of finite

groups and a free pro-2 group.

Proof. Suppose there exists a boolean space T , and a continuous family
SH :¼ fCt j t A Tg of groups of order 2 such that H ¼

‘
t AT

CHðCtÞ q L for some free pro-2

group L. Note that
‘
t AT

Ct is a subgroup of H0. For t A T denote by ct the generator of

Ct and put ST ¼ fct j t A Tg. Similarly for x A X denote by cx the generator of Cx and put
SX ¼ fcx j x A Xg. Let ST and SX be the homeomorphic images of ST and SX in H=FðH0Þ
respectively. By [M], Proposition 4.9, every finite subgroup of H is conjugate to one of
its factor Cx. Therefore, ST O SX . Let f : H0=FðH0Þ ! H=FðHÞ be the natural homo-
morphism. Since all Ct are subgroups of free factors CHðCtÞ of H, the restriction fjST

is an
injection. It is also a surjection because any finite subgroup is conjugate to a subgroup of a
free factor (see [M], Proposition 4.9). Now observe that the Z-set SX is isomorphic to the
Z-set SX , where abusing notation we use the same letter for the image of Z in H=FðH0Þ
and, by Lemma 3.2 (a), it is isomorphic to the Z-set X as well. Also note that the re-
stricition fjSX

coincides with the natural quotient map SX ! SX=Z. On the other hand

fjST
: ST ! SX=Z is also a surjection by Lemma 3.2 (a) taking into account that every Cx

is conjugate to some Ct in H (see [M], Proposition 4.9). Thus fjST
: ST ! SX=Z is a ho-

meomorphism. Since, as was mentioned above, Z-set SX is isomorphic to the Z-set X , we
obtain a contradiction with the fact established in Lemma 3.1 that a continuous section
X=Z ! X does not exist. r
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