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Resumo

Neste trabalho, consideramos a equação de Schödinger não-autônoma e não periódica
com crescimento assintótico no RN

 −div(ξ(x)∇u)+V (x)u= f(x,u), em RN ,

u(x) → 0, quando |x|→ ∞,
(P)

com N ≥ 3, ξ :RN →R+ e V :RN →R satisfazendo algumas condições e a não linearidade
f assintoticamente linear no infinito e assumimos ser de classe C1(RN ×R,R). Na primeira
parte mostramos a existência de solução positiva com V (x) ≡ 1 no primeiro capítulo e
V (x) positiva no segundo capítulo.

Em seguida, estamos em busca de solução nodal. Para tanto, assumimos algum tipo
de simetria para o problema. Mais especificamente, consideramos o problema


−div(ξ(x)∇u)+V (x)u= f(x,u), em RN ,

u(τx) = −u(x),
u(x) → 0, quando |x|→ ∞,

(Pτ )

com N ≥ 3 e τ : RN → RN uma involução ortogonal não trivial que é uma tranformação
ortogonal em RN tal que τ ̸= Id e τ2 = Id, sendo Id o operador identidade em RN . Uma
solução u do problema (Pτ ) é chama τ− antissimétrica. Assim como na primeira parte,
consideramos V (x) ≡ 1 no primeiro capítulo e V (x) positiva no segundo capítulo.

Finalmente, buscamos a existência de uma solução não trivial para o problema (P )
com o potencial V mudando de sinal. Estabelemos que V possui um limite positivo no
infinito e que o espectro do operador Lu= −div(ξ(x)∇u)+V (x)u tem ínfimo negativo.
Com isso, e com base nas interações entre soluções transladadas do problema no infinito
associado, é possível mostrar que tal problema satisfaz a geometria do Teorema de Linking
e garantir a existência de uma solução fraca não trivial.



Abstract

In this work, we consider the nonautonomous and non periodic Schördinger equation
with asymptotic growth in RN

 −div(ξ(x)∇u)+V (x)u= f(x,u), in RN ,

u(x) → 0, as |x|→ ∞,
(P)

whereN ≥ 3, ξ :RN →R+ and V :RN →R satisfying some conditions and the nonlinearity
f being asymptotically linear at infinity and is assumed to be a C1(RN ×R,R). In the
first part, we show the existence of a positive solution with V (x) ≡ 1 in the first chapter
and V (x) positive in the second chapter.

In the second part, we look for a nodal solution. In this case, we assume some type
of symmetric for the problem. More specifically, we consider the problem


−div(ξ(x)∇u)+V (x)u= f(x,u), em RN ,

u(τx) = −u(x),
u(x) → 0, quando |x|→ ∞,

(Pτ )

where N ≥ 3 and τ : RN → RN is a nontrivial orthogonal involution, in other words, it
is a linear orthogonal in RN such that τ ̸= Id and τ2 = Id, with Id being the identity
operator in RN . As in the first part, we consider V (x) ≡ 1 in the first chapter and V (x)
positive in the second chapter.

Finally, we look the existence of a nontrivial solution to problem (P ) with the
potential V changing sign. We establish that V has a positive limit at infinity and that
the spectrum of the operator Lu= −div(ξ(x)∇u)+V (x)u has a negative infimum. With
this, and based on interactions between translated solutions of the associated infinite
problem, it is possible to show that such problem satisfies the geometry of the Linking
Theorem and ensure the existence of a nontrivial solutions.



Notation

BR(x) open ball of radius R centered in x;
un → u strong convergence (in norm);
un ⇀u weak convergence;
un → u, a.e. in Ω convergence almost everywhere in Ω;

∇u=
(
∂u

∂x1
, · · · , ∂u

∂xN

)
gradiente of u;

∆u=
N∑

i=1

∂2u

∂x2
i

Laplacian of u;

A⊂⊂B A is compact and it is a subset of Ω;
|Ω| measure of Ω;
Ω closure of Ω;
∂Ω boundary of f ;
suppf support of f ;
C(X;Y ) continuous functions from X to Y ;
C1(X;Y ) continuously differentiable functions from X to Y ;
X∗ dual space of X;
Lp := Lp(RN ) Lebesgue functions p− integrable;
Lp

loc(Ω) Lp
loc(Ω) = {u ∈ Lp(Ω∗), ∀ Ω∗ ⊂⊂ Ω};

W k,p(RN ) W k,p(RN ) = {u ∈ Lp;Dαu ∈ Lp, ∀ |α|≤ k};
H1(RN ) Sobolev space W 1,2(RN )
H−1(RN ) dual space of H1(RN );
H2(RN ) Sobolev space W 2,2(RN );

∥u∥H1(RN )=
(
∥∇u∥2

L2+∥u∥2
L2

)1/2
usual norm of H1(RN );

∥u∥Lp=
(∫

RN
|u|pdx

)1/p

usual norm of Lp;

∥u∥L∞= sup
x∈RN

ess|u(x)| usual norm of L∞.
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Introduction

This thesis is divided into three chapters that deal with the Schrödinger equation
 −div(ξ(x)∇u)+V (x)u= f(x,u), in RN ,

u(x) → 0, as |x|→ ∞,
(P)

whereN ≥ 3, ξ :RN →R+ and V :RN →R satisfying some conditions and the nonlinearity
f is asymptotically linear at infinity and is assumed to be a C(RN ×R,R).

About the function ξ we have that the operator −div(ξ(x)∇u) is known as the
divergence operator of a tensor field u(x). This operator appears in various areas of
physics and engineering, especially in problems involving diffusion and transport of
physical quantities such as heat, mass, and electric charge.

If −div(ξ(x)∇u) is a symmetric and positive definite matrix, the operator represents
anisotropic diffusion, where the diffusion rate varies according to the direction of the flow.
This is crucial in physical phenomena where conductivity is not uniform in all directions,
such as in porous media or anisotropic materials. The physical motivation for considering
this operator can be found in diffusive processes in heterogeneous media, such as the
transport of substances in non-homogeneous soil or the diffusion of heat in materials
with variable thermal properties. Additionally, in fluid mechanics, this operator appears
in the Navier-Stokes equation to model fluid viscosity.

Understanding this operator is fundamental for solving a variety of physical and
engineering problems, allowing the analysis and prediction of how physical quantities
diffuse and distribute in complex systems. Studying its properties and behaviors is
essential for understanding a wide range of natural and industrial phenomena.

For more information about the operator −div(ξ(x)∇u) and its applications in physics
and engineering, you can refer to [15]. This book provides a comprehensive introduction
to partial differential equations, including a detailed discussion on differential operators,
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such as the divergence operator, and their applications in various physical contexts.
Another reference is [18], this book is a classic reference in the study of elliptic partial
differential equations, addressing in detail the theory and applications of these equations,
including the divergence operator. We also have the book [22] which is an excellent source
for learning about numerical methods to solve partial differential equations, including
approaches for dealing with differential operators like the divergence operator in physical
problems. These references provide a solid foundation for understanding the theory and
applications of the operator −div(ξ(x)∇u) in physical and engineering problems.

In [26], Maia and Ruviaro worked with the equation

−∆u+V (x)u= f(x,u), x ∈ RN

where V is bounded and invariant under an orthogonal and converges to a positive
constant as |x|→ +∞, and f is asymptotic linear at infinity. The structure of the first
two chapters were based to obtain the positive and nodal solutions.

In [9], Chabrowski studied the problem

−div(a(x)∇u)+λu=K(x)|u|q−2u, in RN (0.0.1)

with N ≥ 3, λ > 0, 2 < q < 2N/(N − 2) and a ∈ C(RN ) ∩ L∞(RN ) satisfying
0 ≤ a(x) ≤ lim

|x|→∞
a(x), supposing additionally that a is positive in some exterior ball

BR(0). The author showed an existence result using the minimization method, assuming
an integrability condition for a and requiring that K ∈ L∞(RN ) verifies either a is
periodic or K(x) ≥ lim

|x|→∞
K(x). Furthermore, weighted Sobolev’s space is used with the

following assumptions: {x : a(x) = 0} ⊂BR0(0) and 1/a ∈ Lq(BR0(0)).
Another paper in this class of problems was treated by Lazzo in [21]. She studied the

problem (0.0.1) with K ≡ 1, and the function a satisfying

0< a0 := inf
x∈RN

a(x)< a∞ := liminf
|x|→∞

a(x). (0.0.2)

Using the minimization method, it was proved that there exists λ∗ > 0 such that the
problem (0.0.1) has a positive solution for λ> λ∗. It was also proved that for λ sufficiently
large, the number of solutions of (0.0.1) is bounded below by the Ljusternick-Schrinelmann
category. Furthermore, she studied the asymptotic behavior of such minimizers as λ goes
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to infinity and proved that they concentrate around the global minimum point of a using
techniques based on [34].

In [10], Cingolani and Lazzo studied the multiplicity of solutions to the problem
ε2∆u+V (x)u= |u|p−2u, x ∈ RN , where V (x) = u(x) +λ. The main result proved the
existence and multiplicity of solutions to the problem under the hypothesis liminf

|x|→∞
V (x)>

V0 > 0.
The next papers we will cite here were written by Figueiredo and Furtado, whose

results also guided this thesis. In [16], they studied the problem

−εpdiv(a(x)|∇u|p−2∇u)+up−1 = f(u), in RN (0.0.3)

with f being a superlinear function and a satisfying (0.0.2). They showed the existence of
a ground state solution using minimax theorems and a result of the existence of multiple
solutions.

In [17], they obtained the multiplicity of positive solutions to quasilinear equation
(0.0.3) with ε > 0 as a small parameter, f being supercritical linearity, and a a positive
potential, considering a weaker condition than (0.0.2), namely 0 < a0 = inf

x∈Λ
a(x) <

inf
x∈∂Λ

a(x) where Λ is a bounded domain in RN . The main result is proved using the
Lusternik–Schnirelmann theory. To show the existence of a solution, they considered
a penalized problem, and the solution will belong to the Nehari manifold, using the
minimization theory. In this type of problem, we can not apply the Maximum Principle,
and because of that, it is necessary to use a different technique based on the work of [23]
to show that u ∈ L∞(RN )∩C1,α

loc (RN ), a technique that will also be used by us.
In the first chapter, we study the problem (P) with V ≡ 1 with the functions

ξ ∈ C(RN ,R+) and f ∈ C(RN ×R,R) satisfying:

(ξ1) there exists ξ0 > 0 such that ξ(x) ≥ ξ0;

(ξ2) lim
|x|→∞

ξ(x) = ξ∞;

(ξ3) ξ(x) ≨ ξ∞;

(f1) lim
s→0+

f(x,s)
s

= 0, uniformly for x ∈ RN ;

(f2) there exist a ∈ C(RN ,R+) and h ∈ C(R,R+) an even function satisfying
h(s)> 0 for all s > 0, h(0) = 0 and
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lim
s→∞

f(x,s)
s

= a(x), lim
|x|→∞

f(x,s)
s

= h(s),

lim
|x|→∞, s→∞

f(x,s)
s

= lim
s→∞h(s) = lim

|x|→∞
a(x) = a∞ ;

(f3) f(x,s)
s

≥ h(s), for all x ∈ RN and all s ∈ R+ and f(x,s)
s

> h(s) for all x in subset
Ω of positive Lebesgue measure and all s ∈ R+;

(f4) 1< a∞ ≨ a(x), for all x ∈ RN ;

(f5) if we set F (x,s) =
∫ s

0
f(x,t)dt and Q(x,s) = 1

2f(x,s)s−F (x,s), then

lim
s→+∞

Q(x,s) = +∞

and there exists D ≥ 1 such that

Q(x,s)<DQ(x,t), for all x ∈ RN and 0 ≤ s < t.

The first result of this chapter can be stated as follows.

Theorem 0.0.1. Suppose f satisfies (f1)− (f5) and ξ satisfies (ξ1)− (ξ3). Then problem
(P ) has a positive solution u ∈H1(RN ).

In the second part of this chapter, we look for a nodal solution. In this case, we
assume some type of symmetry for the problem. More specifically, we consider the
problem


−div(ξ(x)∇u)+u= f(x,u), in RN ,

u(τx) = −u(x),
u(x) → 0, as |x|→ ∞,

(Pτ )

where N ≥ 3 and τ : RN → RN is a nontrivial orthogonal involution, in other words, it is
a linear orthogonal transformation in RN such that τ ̸= Id and τ2 = Id with Id being
the identity operator in RN . A solution u of (Pτ ) is called a τ -antisymmetric solution.
Let x= (x1,x2), an example of function τ is given by τ(x1,x2) = (−x1,−x2).

In this new setting, we need some technical assumptions. So we shall suppose that ξ
and f satisfies:
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(ξ4) ξ(τx) = ξ(x), for all x ∈ RN ;

(f6) f(τx,s) = −f(x,−s), for all x ∈ RN , s ∈ R;

(f7) there exists C1 > 1 such that f(x,s) ≤ C1f(x,t) with 0 ≤ s≤ t, for all x ∈ RN .

Our result concerning nodal solution is stated next.

Theorem 0.0.2. Assume that ξ satisfy the hypotheses (ξ1)− (ξ4) and f satisfies (f1)−
(f7). Then problem (Pτ ) has a sign-changing solution provided one of the following
conditions holds:

ξ(x) ≤ ξ∞ −Ce−β1|x|, for all x ∈ RN (0.0.4)

or
F (x,s) ≥H(s)+Ce−β2|x||s|2, for all x ∈ RN , s ∈ R, (0.0.5)

for constants C > 0 and 0< β1,β2 < β.

In the second chapter we have results similar to those in the first chapter, but with the
potential V being positive. Thus, we have another norm associated with H1(RN ), which
is equivalent to the first one found. For the main results, we will have the conditions on
V which are:

(V1) there exists V0 > 0 such that V (x) ≥ V0;

(V2) lim
|x|→∞

V (x) = V∞;

(V3) V (x) ≨ V∞;

(ξ4) ξ(τx) = ξ(x), for all x ∈ RN ;

and the hypothesis (f4) is adapted to

(f ′
4) V∞ < a∞ ≨ a(x), for all x ∈ RN .

The first result of this chapter can be stated as follows.

Theorem 0.0.3. Suppose f satisfy (f1)− (f3),(f ′
4),(f5) and ξ satisfies (ξ1)− (ξ3). Then

problem (P ) has a positive solution u ∈H1(RN ).
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In the second part of this chapter, we look for a nodal solution to the problem (Pτ )
with V positive is given by


−div(ξ(x)∇u)+V (x)u= f(x,u), in RN ,

u(τx) = −u(x),
u(x) → 0, as |x|→ ∞,

(P ′
τ )

In this new setting, in addition to the hypotheses (ξ4),(f6),(f7) we shall suppose that
V satisfies:

(V4) V (τx) = V (x), for all x ∈ RN .

Our result concerning the nodal solution in the second chapter is stated next.

Theorem 0.0.4. Assume that ξ and V satisfy the hypotheses (ξ1)− (ξ4) and (V1)− (V4),
respectively, and f satisfy (f1) − (f3),(f ′

4),(f5) − (f7). Then problem (P ′
τ ) has a sign-

changing solution provided one of the following conditions holds:

ξ(x) ≤ ξ∞ −Ce−β1|x|, for all x ∈ RN (0.0.6)

or
V (x) ≤ V∞ −Ce−β2|x|, for all x ∈ RN (0.0.7)

or
F (x,s) ≥H(s)+Ce−β3|x||s|2, for all x ∈ RN , s ∈ R, (0.0.8)

for constants C > 0 and 0< βi < β, with i= 1,2,3.

To prove the results from this chapter, since f is not homogeneous and f(x,s)/s for
s > 0 is not necessarily, the appropriate minimization process is to use the Pohozaev
manifold. We work with the difference of two solutions u ground state zy = u(x−y)−
u(x− τx) without making any truncation.

The fact that the functions ξ and V are bounded allows us to define a norm in
H1(RN ) and consider the appropriate space of function to obtain solutions of (P), in the
first chapter only with ξ and in the second chapter with ξ and V . Since the embedded of
H1(RN ) in Lp(RN ), 2 ≤ p < 2∗ is not compact, the main problem consists of the fact
that the associated functional does not satisfy a compactness condition. To overcome
this difficulty, we will present and prove a version of the concentration compactness
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theorem of P.L. Lions [24], as presented by M. Struwe in [30] so-called the Splitting
Lemma. Therefore, we can describe for which energy levels our associated functional,
restricted to the manifold considered, satisfies the compactness condition.

It is important to highlight that our operator does not admit Maximum Principle. To
prove the Theorems 0.0.1 and 0.0.3, we need to adjust a result from Li and Wang [23],
which ensures that the solutions we discover belong to L∞(RN )∩C1,α

loc (RN ). Additionally,
we utilize the Harnack inequality to ensure the positivity of the solution obtained the
Mountain Pass Theorem.

The third chapter was inspired on the work of Junior, Maia and Ruviaro in [25]. They
worked on the problem

−∆u+V (x)u= f(x,u)

in RN under the condition of non-periodicity in V e f , where the potential V changes sign.
In this framework, it is not possible to apply the Mountain Pass Theorem. Therefore,
the authors employed spectral theory. As a consequence, a new norm was introduced,
allowing the application of the Linking Theorem of Rabinowitz [29] with Cerami condition
to obtain a positive solution.

In [33], Stuart and Zhou proved the existence of a radial and positive solution of
the asymptotically linear problem with radially symmetric V . By leveraging the radial
symmetric of the working set, they managed to recover the compactness of the problem
in an unbounded domain.

Another important paper was addressed by Kryszew and Szulkin [20] and Pankov
[27], who demonstrated the existence of a nontrivial solution to the nonautonomous
problem. They considered superquadratic nonlinearity in s, incorporating the periodicity
hypotheses of Jeanjean and Tanaka in [19]. This study established the existence of a
positive solution under the specified condition: V (x) ≥ α > 0 and f asymptotically linear
at infinity, with f(s)/s → a > 0 as s → ∞ where a > inf σ(−∆ +V ). Here, σ(−∆ +V )
denotes the spectrum of operator −∆+V .

In Chapter 3 we consider ξ positive and the potential V with a negative part, on the
other hand, it can change sign and satisfy the following hypotheses:

(ξ1) there exists ξ0 > 0 such that ξ(x) ≥ ξ0;

(ξ2) lim
|x|→∞

ξ(x) = ξ∞;

(ξ3) ξ(x) ≨ ξ∞;
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(V1) there exists V0 > 0 such that V (x) ≥ −V0;

(V2) lim
|x|→∞

V (x) = V∞;

(V3) V (x) ≤ V∞;

(V4) 0 ̸∈ σ(L) and inf σ(L) < 0, where σ(L) is the spectrum of the operator
L(·) = −div(ξ(x)∇(·))+V (x)(·).

Under the nonlinear function f ∈ C(RN ×R,R) we have the following hypotheses:

(f1) lim
s→0+

f(x,s)
s

= 0, uniformly in x ∈ RN ;

(f2) there exist a ∈C(RN ,R+) and h ∈C(R,R+) a even function satisfying h(s)> 0 for
all s > 0, h(0) = 0 and such that

lim
s→∞

f(x,s)
s

= a(x), lim
|x|→∞

f(x,s)
s

= h(s),

lim
|x|→∞, s→∞

f(x,s)
s

= lim
s→∞h(s) = lim

|x|→∞
a(x) = a∞ ,

uniformly in x ∈ RN . Moreover, |f(x,s)|
|s|

≤ a(x) and a(x) ≥ a0 > V∞, for all s ̸= 0

and all x ∈ RN ;

(f3) h(s)< a∞, for all s ∈ R;

(f4) if F (x,s) :=
∫ s

0
f(x,t)dt, H(s) :=

∫ s

0
h(t)tdt, G(s) := 1

2h(s)s2 −H(s) and

Q(x,s) := 1
2f(x,s)s−F (x,s), then, for all s ∈ R\{0} and all x ∈ RN ,

G(s)> 0, F (x,s) ≥ 0, Q(x,s)> 0 and lim
s→+∞

Q(x,s) = +∞;

(f5) the function s 7→ f(x,s)/s is increasing in s ∈ (0,+∞) for all x ∈ RN .

And the main result of this chapter is the following:
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Theorem 0.0.5. Assume that ξ and V satisfy the hypotheses (ξ1)− (ξ3) and (V1)− (V4),
respectively, and the function f satisfies (f1)− (f6). Then problem (P2) has a nontrivial
weak solution u ∈H1(RN ) provided one of the followings conditions holds:

ξ(x) ≤ ξ∞ −C1e
−γ1|x|, for all x ∈ RN (0.0.9)

or
V (x) ≤ V∞ −C2e

−γ2|x|, for all x ∈ RN (0.0.10)

for constants C1, C2 > 0 and 0< γ1, γ2 <
√
V∞/ξ∞.

One difficulty encountered in this type of problem is that the associated functional
is strongly undefined. To overcome this challenge, the space H1(RN ) is decomposed
into a direct sum of two subspaces E+ and E−, one of which has finite dimension, and
assumes the condition of non-quadraticity in F , the primitive of f . In this context, it
is not possible to apply the Mountain Pass Theorem. Hence, we employ the Linking
Theorem under the Cerami condition to obtain a non-trivial solution to the problem.

An additional challenge arose with the operator spectral theory L(u) = −∇(ξu) +
V (x)u. Since the function ξ is not constant, we do not immediately have the operator
being self-adjoint to apply the spectral theory. Therefore, we use the Fourier Transform
on the function ξ to circumvent this obstacle and ensure self-adjointness of the operator.

As previously mentioned, we also cannot apply the Maximum Principle to guarantee
the non-triviality and positivity of the solution found. To address this, we adapt, once
again, the results of Li and Wang [23]. Together with the Harnack inequality, these
results assure us that our solution is non-trivial and positive.



Chapter 1

Problem with ξ positive and V ≡ 1

1.1 Variational Setting

We consider the following problem
 −div(ξ(x)∇u)+u= f(x,u), in RN ,

u(x) → 0, as |x|→ ∞,
(P1)

with N ≥ 3, under the following assumptions on ξ ∈ C(RN ,R+):

(ξ1) there exists ξ0 > 0 such that ξ(x) ≥ ξ0;

(ξ2) lim
|x|→∞

ξ(x) = ξ∞;

(ξ3) ξ(x) ≨ ξ∞.

The hypotheses on the nonlinearity f ∈ C(RN ×R,R) are the following:

(f1) lim
s→0+

f(x,s)
s

= 0, uniformly for x ∈ RN ;

(f2) there exist a ∈ C(RN ,R+) and h ∈ C(R,R+) an even function satisfying
h(s)> 0 for all s > 0, h(0) = 0 and

lim
s→∞

f(x,s)
s

= a(x), lim
|x|→∞

f(x,s)
s

= h(s),

lim
|x|→∞, s→∞

f(x,s)
s

= lim
s→∞h(s) = lim

|x|→∞
a(x) = a∞ ;
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(f3) f(x,s)
s

≥ h(s), for all x ∈ RN and all s ∈ R+ and f(x,s)
s

> h(s) for all x ∈ Ω, where
Ω is a subset of positive Lebesgue measure and for all s ∈ R+;

(f4) 1< a∞ ≨ a(x), for all x ∈ RN ;

(f5) if we set F (x,s) =
∫ s

0
f(x,t)dt and Q(x,s) = 1

2f(x,s)s−F (x,s), then

lim
s→+∞

Q(x,s) = +∞

and there exists D ≥ 1 such that

Q(x,s)<DQ(x,t), for all x ∈ RN and 0 ≤ s < t.

An example that f(s)/s that is non-increasing and satisfies assumptions (f1)− (f5):

f(s) = s7 −1,5s5 +2s3

1+ s6 .

The first result of this chapter can be stated as follows.

Theorem 1.1.1. Suppose f satisfies (f1)− (f5) and ξ satisfies (ξ1)− (ξ3). Then problem
(P1) has a positive solution u ∈H1(RN ).

Remark 1.1.1. Hypothesis (f2) implies that there exists a constant a0 > 0 such that

a(x) ≤ a0, for all x ∈ RN . (1.1.1)

Remark 1.1.2. Note that conditions (f1), (f2) and (1.1.1) imply that for a given ε > 0
and 2 ≤ p≤ 2∗, there exists 0< C = C(ε,p) such that

|f(x,s)|≤ εs+C|s|p−1 (1.1.2)

and
|F (x,s)|≤ ε

2s
2 +C|s|p. (1.1.3)

Indeed, using (f1), there exists 0< r < 1 such that |s|< r. Thus, we obtain

lim
s→0+

f(x,s)
s

= 0 ⇒
∣∣∣∣∣f(x,s)

s

∣∣∣∣∣≤ ε⇒ |f(x,s)|≤ ε|s|.
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For |s|> r, applying (f2) and Remark 1.1.1 we have
∣∣∣∣∣f(x,s)

s

∣∣∣∣∣≤ a0.

Therefore,
|f(x,s)|≤ a0|s|.

Note that
|s|= 1

|s|p−2 |s|p−1≤ C|s|p−1,

where C = C(ε,p) = max
r≤s≤1

{
1

|s|p−2

}
. Hence, we obtain

|f(x,s)| ≤ ε|s|+a0|s|≤ ε|s|+a0C|s|p−1= ε|s|+C|s|p−1.

It follows from the definition of F (x, ·) that

|F (x,s)| ≤
∫ s

0
|f(x,t)|dt≤

∫ s

0
(ε|t|+C|t|p−1)dt= ε

2 |s|2+C|s|p.

Remark 1.1.3. By (f1) and (f5) we obtain that Q(x,s) > 0 for s > 0 and x ∈ RN .
Moreover, by (f2) and (f5) it follows that 0 ≤ 1

2h(s)s2 −H(s) ≤D
(1

2h(t)t2 −H(t)
)

for

0 ≤ s ≤ t, if H(s) =
∫ s

0
h(ζ)ζdζ and by assumptions (f1) and (f3) we have

1
2h(s)s2 −H(s)> 0 for s > 0.

Let us show the second statement. Using the definition of Q(x, ·) and the hypothesis
(f5), we have

Q(x,s) ≤ DQ(x,t)
1
2f(x,s)s−F (x,s) ≤ D

(1
2f(x,t)t−F (x,t)

)
1
2
f(x,s)
s

s2 −
∫ s

0

f(x,ζ)
ζ

ζdζ ≤ D

(
1
2
f(x,t)
t

t2 −
∫ t

0

f(x,ζ)
ζ

ζdζ

)
.
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Applying the limit when |x| goes to infinity on both sides and using Lebesgue’s
dominated convergence theorem, we obtain

1
2h(s)s2 −

∫ s

0
h(ζ)ζdζ ≤ D

(
1
2h(t)t2 −

∫ t

0
h(ζ)ζdζ

)
1
2h(s)s2 −H(s) ≤ D

(1
2h(t)t2 −H(t)

)

for 0 ≤ s≤ t as claimed.
In the second part of this chapter, we look for a nodal solution. In this case, we

assume some type of symmetry for the problem. More specifically, we consider the
problem


−div(ξ(x)∇u)+u= f(x,u), in RN ,

u(τx) = −u(x),
u(x) → 0, as |x|→ ∞,

(Pτ )

where N ≥ 3 and τ : RN → RN is a nontrivial orthogonal involution, in other words, it is
a linear orthogonal transformation in RN such that τ ̸= Id and τ2 = Id, with Id being
the identity operator in RN . A solution u of (Pτ ) is called a τ -antisymmetric solution.

In this new setting, we need some technical assumptions. So we shall suppose that ξ
and f satisfies:

(ξ4) ξ(τx) = ξ(x), for all x ∈ RN ;

(f6) f(τx,s) = −f(x,−s), for all x ∈ RN , s ∈ R;

(f7) there exists C1 > 1 such that f(x,s) ≤ C1f(x,t) with 0 ≤ s≤ t, for all x ∈ RN .

Remark 1.1.4. We do not assume that f(x,s)/s for s > 0 is increasing in s.

Consider H1(RN ) = {u ∈ L2(RN ) : ∇u ∈ (L2(RN ))N } equipped with the norm
∥u∥2=

∫
RN

(ξ∞|∇u|2+u2)dx and the limit problem

−div(ξ∞∇u)+u= h(u)u, in RN . (1.1.4)

The functional associated with the equation (1.1.4) is given by

I∞(u) = 1
2

∫
RN

(ξ∞|∇u|2+u2)dx−
∫
RN

H(u)dx. (1.1.5)
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It is well defined and in C1(H1(RN ),R) with

I ′
∞(u)φ=

∫
RN

(ξ∞∇u∇φ+uφ)dx−
∫
RN

h(u)uφdx, for all u, φ ∈H1(RN ).

Critical points of the functional I∞ are weak solutions of problem (1.1.4). The
functional I∞ is continuous, I∞(0) = 0 and if ω is the positive solution of (1.1.4), the
maximum of I∞

(
ω
( ·
t

))
> 0 holds on t= 1. Furthermore, there exists a real number

L> 0, large sufficiently such that I∞

(
ω
( ·
t

))
< 0 for all t≥ L. Thus, there exists L0 > 1

such that

I∞

(
ω
( ·
L0

))
= 0 (1.1.6)

and
I∞

(
ω
( ·
t

))
< 0, if t≥ L0. (1.1.7)

Therefore, consider

β ∈
(

0,
√

1
ξ∞

)
. (1.1.8)

Our result concerning nodal solution is stated next.

Theorem 1.1.2. Assume that ξ satisfies the hypotheses (ξ1) − (ξ4) and f satisfies
(f1)− (f7). Then problem (Pτ ) has a sign-changing solution provided one of the following
conditions holds:

ξ(x) ≤ ξ∞ −Ce−β1|x|, for all x ∈ RN (1.1.9)

or
F (x,s) ≥H(s)+Ce−β2|x||s|2, for all x ∈ RN , s ∈ R, (1.1.10)

for constants C > 0 and 0< β1,β2 < β.

We will state and prove some preliminary results essential for the development of this
chapter and for the proof of the main results.

Any solution u of the limit problem (1.1.4) satisfies Pohozaev identity (see [28])

N −2
2

∫
RN

|∇u|2dx=N
∫
RN

G∞(u)dx, (1.1.11)

where G∞(u) = 1
ξ∞

(
H(u)− 1

2u
2
)

. We define the Pohozaev manifold as
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P =
{
u ∈H1(RN )\{0} : J(u) = 0

}
, (1.1.12)

where
J(u) := N −2

2

∫
RN

|∇u|2dx−N
∫
RN

G∞(u)dx (1.1.13)

and denote
m∞ := inf

u∈P
I∞(u). (1.1.14)

Remark 1.1.5. Note that

G∞(ζ) = 1
ξ∞

∫ ζ

0
(h(s)s− s)ds > 0 (1.1.15)

implies P ̸= ∅.

Lemma 1.1.1. Let J :H1(RN ) → R be the functional (1.1.13). Then

(i) P = {u ∈H1(RN )\{0} : J(u) = 0} is closed;

(ii) P is a manifold of class C1;

(iii) there exists σ > 0 such that ∥u∥H1(RN )> σ for all u ∈ P.

Proof. We first verify items (i) and (ii). By definition of J , we have

J(u) = N −2
2

∫
RN

|∇u|2dx−N
∫
RN

G∞(u)dx,

which is a functional of class C1(H1(RN ),R). Thus

P ∪{0} = J−1({0}).

Then, it follows that P is a closed set since {0} is an isolated point. Furthermore, using
the Remark 1.1.4 and g∞(u) := 1

ξ∞
(h(u)u−u), we obtain

J ′(u)u = 2N
∫
RN

G∞(u)dx−N
∫
RN

g∞(u)udx

= 2N
∫
RN

(
H(u)− 1

2u
2 − 1

2h(u)u2 + 1
2u

2
)
dx

= 2N
∫
RN

(
H(u)− 1

2h(u)u2
)
dx < 0,
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which implies J ′(u) ̸= 0 and hence P is a C1 manifold. Finally, for the proof of item (iii),
let u ∈ P and 2∗ = 2N/(N −2), then we have

N −2
2

∫
RN

|∇u|2dx − N
∫
RN

G∞(u)dx= 0∫
RN

ξ∞|∇u|2dx = 2N
N −2

∫
RN

H(u)dx− N

N −2

∫
RN

u2dx∫
RN

(
ξ∞|∇u|2 + N

N −2u
2
)
dx= 2∗

∫
RN

H(u)dx.

Then, taking M := min
{

1, N

N −2

}
and using (f3), we obtain

M∥u∥2
H1(RN )≤ 2∗

∫
RN

H(u)dx≤ 2∗
∫
RN

F (x,u)dx.

From (1.1.3) and using Sobolev’s embedding with 2 ≤ p≤ 2∗ it follows

M∥u∥2
H1(RN )≤ 2∗

∫
RN

(
ε

2 |u|2+C|u|p
)
dx≤ 2∗ε

2 ∥u∥2
H1(RN )+2∗C∥u∥p

H1(RN ).

Now, taking ε small sufficiently we obtain M

2 ∥u∥2
H1(RN )≤ 2∗C∥u∥p

H1(RN ) and hence
there exists σ > 0, such that σ ≤ ∥u∥p−2

H1(RN ).

Lemma 1.1.2. If f satisfies (f1) − (f3), (un) is a bounded sequence and un ⇀ u0 in
H1(RN ), then

f(x,un)−f(x,un −u0) → f(x,u0), in H−1(RN ) (1.1.16)

and ∫
RN

|F (x,un)−F (x,un −u0)−F (x,u0)|dx→ 0. (1.1.17)

Furthermore,

h(un)un −h(un −u0)(un −u0) → h(u0)u0, in H−1(RN ) (1.1.18)

and ∫
RN

|H(un)−H(un −u0)−H(u0)|dx→ 0. (1.1.19)

To demonstrate (1.1.17), we will use the following result.

Lemma 1.1.3 (Brezis-Lieb [8]). Consider a continuous function, j : C → C with j(0) = 0.
Furthermore, consider the following hypotheses: for each small enough, ε > 0 there exists
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two continuous and non-negative functions φε and ψε such that

|j(a+ b)− j(a)|≤ εφε(a)+ψε(b) (1.1.20)

for all a,b ∈ C. Consider fn = f + gn a sequence of measurable function from Ω in C
such that:

(i) gn → 0 a.e.;

(ii) j(f) ∈ L1;

(iii)
∫
φε(gn(x))dµ(x) ≤ C <∞ for some constant C independent of ε and n;

(iv)
∫
ψε(f(x))dµ(x)<∞ for all ε > 0.

Then, if n→ ∞, ∫
|j(f +gn)− j(gn)− j(f)|dµ→ 0. (1.1.21)

Proof of Lemma 1.1.2: By the mean value theorem, there exists 0< θ < 1 such that

|f(x,un)−f(x,un −u0)|= |f ′(x,un −u0 + θu0)u0|= |f ′(x,un − (1− θ)u0)||u0|.

Thus, fixed R > 0 and ω ∈ H1(RN ), we obtain by Hölder inequality and Sobolev’s
embedding, that

∣∣∣∣∣
∫

|x|>R
|f(x,un) − f(x,un −u0)|ωdx

∣∣∣∣∣
≤
∫

|x|>R
|f ′(x,un − (1− θ)u0)||u0||ω|dx

≤ ∥f ′(x,un − (1− θ)u0)∥L2∥ω∥H1(RN )

[∫
|x|>R

|u0|2dx
]1/2

.

Again by Hölder inequality, by Sobolev’s embedding, and using (1.1.3),
∣∣∣∣∣
∫

|x|>R
f(x,u0)ωdx

∣∣∣∣∣≤
∫

|x|>R
|f(x,u0)||ω|dx

≤ ε
∫

|x|>R
|u0||ω|dx+C

∫
|x|>R

|u0|p−1|ω|dx

≤ ε∥ω∥L2

(∫
|x|>R

|u0|2dx
)1/2

+C∥ω∥L2−p

(∫
|x|>R

(|u0|p−1)
p−2
p−1dx

)p−1
p−2
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≤ ε∥ω∥H1(RN )

(∫
|x|>R

|u0|2dx
)1/2

+C∥ω∥H1(RN )

(∫
|x|>R

|u0|p−2dx

)p−1
p−2

.

Since for every ε > 0 there exists R > 0 such that
∫

|x|>R
|u0|2dx,

∫
|x|>R

|u0|p−2dx < ε.

Then, for all ω ∈H1(RN ), using the above inequalities, we obtain
∣∣∣∣∣
∫

|x|>R
(f(x,un)−f(x,un −u0)−f(x,u0))wdx

∣∣∣∣∣
≤
∫

|x|>R
|f(x,un)−f(x,un −u0)||w|dx+

∫
|x|>R

|f(x,u0)||w|dx

≤ C∥w∥H1(RN )

[∫
|x|>R

|u0|2dx
]1/2

+ ε∥w∥H1(RN )

[∫
|x|>R

|u0|2dx
]1/2

+C∥w∥H1(RN )

[∫
|x|>R

|u0|p−1dx

]p−1
p−2

≤ Cε∥w∥H1(RN ).

We claim that

f(x,un)−f(x,un −u0) → f(x,u0), in Lr(BR(0)) := Lr(B), (1.1.22)

with r := p

p−1 . Assuming our statement above, we obtain that

∣∣∣∣∣
∫

|x|<R
(f(x,un)−f(x,un −u0)−f(x,u0))wdx

∣∣∣∣∣
≤ ∥w∥Lp+1∥f(x,un)−f(x,un −u0)−f(x,u0)∥Lr

≤ Cε∥w∥H1(RN ).

It remains to check (1.1.22). In fact, we have that un ⇀ u0 in H1(RN ), thus
un → u0 in Lq

loc(R
N ), for 1 ≤ q < 2∗. Therefore,

un −u0 → 0, in Lq(B) and un(x) → u0(x), a.e. x ∈BR(0).



1.1 Variational Setting 19

It follows that

un(x)− (un −u0)(x) → u0(x), a.e. x ∈BR(0). (1.1.23)

Also,
|un(x)|, |u0(x)|≤ g(x), g ∈ Lq

loc(R
N )

and
|(un −u0)(x)|≤ h(x), h ∈ Lq

loc(R
N ).

Thus,

∣∣∣f(x,un) − f(x,un −u0)−f(x,u0)|
p

p−1 ≤
[
ε|un(x)|+C|un(x)

∣∣∣p−1

+ε|(un −u0)(x)|+C|(un −u0)(x)|p−1+ε|u0(x)|+C|u0(x)|p−1
] p

p−1

≤ 2
p

p−1
(
ε|un(x)|

p
p−1 +C|un(x)|p+ε|(un −u0)(x)|

p
p−1

+C|(un −u0)(x)|p+ε|u0(x)|
p

p−1 +C|u0(x)|p
)

≤ 2
p

p−1
(
εg(x)

p
p−1 +Cg(x)p + εh(x)

p
p−1 +Ch(x)p + εg(x)

p
p−1 +Cg(x)p

)
.

If 1< p< 2∗ −1, then g,h ∈ Lp(B). Therefore g
p

p−1 ,gp,h
p

p−1 ,hp ∈ L1(B). Combining this
conclusion with (1.1.23) and the Lebesgue’s Dominated Convergence Theorem, it follows
that

f(x,un)−f(x,un −u0) → f(x,u0), in Lr(B),

where r = p

p−1 and the proof of (1.1.16) is complete.
Next, the main object is to apply the Brezis-Lieb Lemma with j(s) = F (x,s). Since

F is continuous and F (0) = 0, we will show that given ε > 0, there exist φε and ψε such
that, φε(a) =C(|a|2+|a|p) and ψε(b) = (Cε +1)(|b|2+|b|p). In fact 0 ≤ t≤ 1, using (1.1.3)
we have

|F (x,a− b)−F (x,a)| =
∣∣∣∣∣
∫ 1

0

d

dt
F (x,a− tb)dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0
f(x,a− tb)(−b)dt

∣∣∣∣∣
≤

∫ 1

0
|f(x,a− tb)||b|dt

≤ ε
∫ 1

0
|a− tb||b|dt+C

∫ 1

0
|a− tb|p−1|b|dt
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≤ ε
∫ 1

0
|a||b|dt+ ε

∫ 1

0
t|b|2dt+C

∫ 1

0
|a|p−1|b|dt+C

∫ 1

0
tp−1|b|pdt

≤ ε|a||b|+ε|b|2+C|a|p−1|b|+C|b|p

≤ εC(|a|2+|a|p)+(Cε +1)(|b|2+|b|p).

Then ∫
RN

(
F (x,f +gn)−F (x,gn)−F (x,f)

)
dx= on(1), (1.1.24)

where gn = fn − f → 0 a.e., with F,gn and f is satisfying the items (i),(iii) and (iv).
Thus, we can rewrite (1.1.24) as

∫
RN

(
F (x,fn)−F (x,f)−F (x,fn −f)

)
dx= on(1).

Now considering gn = un −u0, with fn = un and f = u0, we have
∫
RN

(
F (x,un)−F (x,un −u0)−F (x,u0)

)
dx→ 0.

The results (1.1.18) and (1.1.19) follow as an immediate consequence of (1.1.16) and
(1.1.17).

Let E be the Hilbert space H1(RN ) with the inner product ⟨·, ·⟩ given by the expression

⟨u,v⟩ =
∫
RN

(ξ(x)∇u∇v+uv)dx

and the norm by
∥u∥2=

∫
RN

(ξ(x)|∇u|2+u2)dx, (1.1.25)

which is equivalent to the usual norm because of (ξ1) and (ξ3). The functional
I : E → R associated with (P1) is given by

I(u) = 1
2

∫
RN

(ξ(x)|∇u|2+u2)dx−
∫
RN

F (x,u)dx (1.1.26)

is well defined, belongs to C1(E,R) and

I ′(u)φ=
∫
RN

(ξ(x)∇u∇φ+uφ)dx−
∫
RN

f(x,u)φdx, for all u,φ ∈ E.
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Hypotheses (ξ3) and (f3) imply

I(u) ≤ I∞(u), for all u ∈ E. (1.1.27)

Indeed,

I(u) = 1
2

∫
RN

(ξ(x)|∇u|2+u2)dx−
∫
RN

F (x,u)dx

≤ 1
2

∫
RN

(ξ∞|∇u|2+u2)dx−
∫
RN

(∫ u

0

f(x,s)
s

sds

)
dx

≤ 1
2

∫
RN

(ξ∞|∇u|2+u2)dx−
∫
RN

(∫ u

0
h(s)sds

)
dx

= 1
2

∫
RN

(ξ∞|∇u|2+u2)dx−
∫
RN

H(u)dx

= I∞(u), for all u ∈ E.

Now, let z0 = 0 and fix L > L0 such that z1 := w
( ·
L

)
and I∞(z1)< 0. Define also

c := inf
γ∈Γ

max
0≤t≤1

I(γ(t)), (1.1.28)

where Γ = {γ ∈ C([0,1],E), γ(0) = z0 and γ(1) = z1}.

Definition 1.1.1. A functional I ∈ C1(E,R) in a Hilbert space E satisfies the Palais-
Smale condition, denoted (PS) condition, if given any sequence (un) ⊂E such that I(un)
is bounded and I ′(un) → 0, has a convergent subsequence. We say that (un) is a Cerami
sequence at level c, denoted by (Ce)c, if

I(un) → c and (1+∥un∥)∥I ′(un)∥→ 0. (1.1.29)

Moreover, I satisfies the Cerami sequence condition at level c, shortly (Ce)c, if any
Cerami sequence (un) ⊂ E at level c has a convergent subsequence.

Lemma 1.1.4. If (un) is a (Ce)c sequence of the functional I∞, then (un) is bounded.

Proof. This proof will be postponed to Lemma 1.3.1.

Remark 1.1.6. If (un) is a Cerami sequence (Ce)c and is a bounded, then (un) is
bounded (PS) sequence.
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Lemma 1.1.5 (Splitting). Let (un) ⊂ E be a sequence such that I(un) → c and
I ′(un) → 0 in E∗. Then there exists u0 ∈ E such that un ⇀ u0, I ′(u0) = 0 and ei-
ther
(a) un → u0 strongly in E, or
(b) there exist k ∈ N, (yj

n) ∈ RN with |yj
n|→ ∞ and |yj

n −yj′
n |→ ∞, for j ̸= j′, j = 1, ...,k,

and nontrivial solutions u1, ....,uk of problem (1.1.4), such that

I(un) → I(u0)+
k∑

j=1
I∞(uj) and

∥∥∥∥∥∥un −u0 −
k∑

j=1
uj(·−yj

n)
∥∥∥∥∥∥→ 0. (1.1.30)

Proof. Step 1) Since (un) is bounded, then there exists u0 ∈ E such that un ⇀u0. Let
us prove that I ′(u0) = 0. In fact, E ↪→ Lp

loc(R
N ) is compactly embedded if 1 ≤ p < 2∗ −1.

Using the continuity of f , the weak convergence un ⇀u0 in E and the Lebesgue dominated
convergence theorem, it follows that lim

n→∞I ′(un)φ = I ′(u0)φ, for any
φ ∈ C∞

0 (RN ). The hypothesis that lim
n→∞I ′(un)φ= 0, for all φ ∈ C∞

0 (RN ) and due to the
uniqueness of the limit, we have I ′(u0)φ= 0, for all φ ∈ C∞

0 (RN ).
Step 2) Define now u1

n := un −u0 ∈H1(RN ). If n→ ∞, then:

(i) ∥u1
n∥2= ∥un∥2−∥u0∥2+on(1);

(ii) I∞(u1
n) → c− I(u0);

(iii) I ′
∞(u1

n) → 0.

To prove (i), note that u1
n +u0 = (un −u0)+u0 = un. Therefore,

∥u1
n +u0∥2= ⟨u1

n +u0,u
1
n +u0⟩ = ∥un∥2+∥u0∥2+2⟨u1

n,u0⟩.

Since u1
n ⇀ 0 and using the Riez Representation theorem [7], it follows that

⟨u1
n,u0⟩ = g(u1

n) → 0 for all g ∈H−1(RN ). Hence

∥u1
n∥2= ∥un∥2−∥u0∥2+2g(un)

implies that
∥u1

n∥2= ∥un∥2−∥u0∥2+on(1).
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To prove item (ii), note that the weak convergence of (un) for u0 implies u1
n ⇀ 0,

∫
RN

(
ξ∞|∇(un −u0)|2−ξ(x)|∇un|2+ξ(x)|∇u0|2

)
dx

=
∫
RN

(ξ∞ − ξ(x))(|∇un|2−|∇u0|2)dx+on(1) (1.1.31)

and ∫
RN

(
(un −u0)2 −u2

n +u2
0
)
dx= on(1). (1.1.32)

From (1.1.31) and (1.1.32), it follows that

I∞(u1
n) − I(un)+ I(u0) = 1

2

∫
RN

ξ∞|∇u1
n|2dx+ 1

2

∫
RN

(u1
n)2dx−

∫
RN

H(u1
n)dx

−1
2

∫
RN

ξ(x)|∇un|2dx− 1
2

∫
RN

u2
ndx+

∫
RN

F (x,un)dx

+1
2

∫
RN

ξ(x)|∇u0|2dx+ 1
2

∫
RN

u2
0dx−

∫
RN

F (x,u0)dx

= 1
2

∫
RN

(
ξ∞|∇un −∇u0|2−ξ(x)|∇un|2+ξ(x)|∇u0|2

)
dx

+1
2

∫
RN

(
(un −u0)2 −u2

n +u2
0
)
dx+

∫
RN

(
F (x,un)−F (x,u0)−H(u1

n)
)
dx

=
∫
RN

(
F (x,u1

n)−H(u1
n)
)
dx+on(1). (1.1.33)

Since (un) is bounded, using the hypothesis (f2) we have
∫
RN

(
H(u1

n)−F (x,u1
n)
)
dx= on(1).

Replacing in (1.1.33) we obtain

I∞(u1
n)− I(un)+ I(u0) = on(1). (1.1.34)

To verify (iii), consider φ ∈ C∞
0 (RN ). Applying (f1), (f2), (1.1.16) and the Cauchy-

Schwarz inequality, it follows that

on(1) =
〈
I ′(un),φ

〉
=
〈
I ′(u0 +u1

n),φ
〉

=
∫
RN

(ξ(x)∇(u0 +u1
n)∇φ+(u0 +u1

n)φ)dx−
∫
RN
f(x,u0 +u1

n)(u0 +u1
n)φdx

=
∫
RN

(ξ(x)∇u0∇φ+u0φ)dx−
∫
RN

f(x,u0)u0φdx+
∫
RN

(ξ(x)∇u1
n∇φ
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−u1
nφ)dx−

∫
RN

h(u1
n)u1

nφdx+
∫
RN

f(x,u0)u0φdx+
∫
RN

h(u1
n)u1

nφdx

−
∫
RN

f(x,u0 +u1
n)(u0 +u1

n)φdx

= ⟨I ′(u0),φ⟩+
∫
RN

(ξ∞∇u1
n∇φ+u1

nφ)dx−
∫
RN

h(u1
n)u1

ndx

= ⟨I ′
∞(u1

n),φ⟩−
∫
RN

f(x,u1
n)φdx+on(1)+

∫
RN

h(u1
n)u1

nφdx

= ⟨I ′
∞(u1

n),φ⟩+
[∫

RN

(
h(u1

n)u1
nφ−f(x,u1

n)φ
)
dx
]

+on(1),

since φ has compact support, u1
n → 0 in the support and then I ′

∞(u1
n) → 0 in E∗ when

n→ ∞. And then, (u1
n) is a (PS)c sequence of I∞.

Step 3) Consider
δ := limsup

n→∞
sup

y∈RN

∫
B1(y)

|u1
n(x)|2dx.

If δ = 0, it follows from Lions’ Lemma [24] that

u1
n → 0, in Lp(RN ), for any 2< p < 2∗. (1.1.35)

On the other hand, since (u1
n) is bounded, item (iii) implies that

I ′
∞(u1

n)u1
n =

∫
RN

(
ξ∞|∇u1

n|2+(u1
n)2 −h(u1

n)(u1
n)2
)
dx→ 0, if n→ ∞. (1.1.36)

From (1.1.35) and (1.1.3), we obtain
∫
RN

(
ξ∞|∇u1

n|2+(u1
n)2
)
dx =

∫
RN

h(u1
n)(u1

n)2dx+on(1)

≤ ε
∫
RN

|u1
n|2dx+C

∫
RN

|u1
n|pdx. (1.1.37)

Therefore, (1.1.35) and (1.1.37) give us that
∥∥∥u1

n

∥∥∥ → 0. In other words, un → u0

strongly in E, and this proof the item (a).
Step 4) Now, if δ > 0, there is a sequence (yn) ⊂ RN such that

∫
B1(yn)

|u1
n(x)|2dx > δ

2 . (1.1.38)

Define a new sequence (v1
n) ⊂ E by v1

n := u1
n(·+y1

n). Since (u1
n) is bounded, then (v1

n)
is also bounded u1 ∈ E such that v1

n ⇀u1 in E and v1
n(x) → u1(x) at almost every point
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in x ∈ RN . Making a change of variable, we obtain

δ

2 <
∫

B1(y1
n)

|u1
n(x)|2dx=

∫
B1(0)

|u1
n(x+y1

n)|2dx=
∫

B1(0)
|v1

n(x)|2dx. (1.1.39)

Applying Fatou’s Lemma [5],

δ

2 ≤
∫

B1(0)
liminf
n→∞ |v1

n(x)|2dx=
∫

B1(0)
|u1(x)|2dx.

Thus, u1 ̸= 0. Moreover, since u1
n ⇀ 0 in E, it follows that up to a subsequence, we can

assume that |y1
n|→ ∞. Now, we will show that I ′

∞(u1) = 0. In fact, take ϕ ∈ C∞
0 (RN ).

Since |y1
n|→ ∞, then we can find n0 such that ϕn := ϕ(x−y1

n) in C∞
0 (RN ) for all n≥ n0.

Besides that, ∥ϕn∥= ∥ϕ∥. As a consequence of item (iii),

sup
∥ϕ∥≤1

∣∣∣〈I ′
∞(v1

n),ϕ
〉∣∣∣ = sup

∥ϕ∥≤1

∣∣∣〈I ′
∞(u1

n(x+y1
n),ϕ

〉∣∣∣
= sup

∥ϕ∥≤1

∣∣∣〈I ′
∞(u1

n(x)),ϕ(x−y1
n)
〉∣∣∣

≤ sup
∥ϕ∥≤1

∣∣∣〈I ′
∞(u1

n),ϕ
〉∣∣∣= on(1).

Therefore, using the fact that u1
n(·+y1

n)⇀u1, for all ϕ ∈ C∞
0 (RN ),

on(1) = I ′
∞(u1

n(·+y1
n))ϕ= I ′

∞(u1)ϕ+on(1) . (1.1.40)

Define u2
n(x) := u1

n(x) − u1(x− y1
n), and u2

n(· + y2
n) = v1

n + u1, then (u2
n) is a (PS)

sequence of I∞. Indeed, making a change of variables,

I∞(u2
n) = 1

2

∫
RN

[
ξ∞|∇u2

n|2+(u2
n)2
]
dx−

∫
RN

H(u2
n)dx

= 1
2

∫
RN

[
ξ∞|∇(u1

n(x)−u1(x−y1
n))|2+|u1

n(x)−u1(x−y1
n)|2

]
dx

−
∫
RN

H(u1
n(x)−u1(x−y1

n))dx

= 1
2

∫
RN

[
ξ∞|∇(u1

n(x+y1
n)−u1(x))|2+|u1

n(x+y1
n)−u1(x)|2

]
dx

−
∫
RN

H(u1
n(x+y1

n)−u1(x))dx.
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On the other hand,

∥u1
n(·+y1

n)−u1∥2= ∥u1
n(·+y1

n)∥2−2⟨u1
n(·+y1

n),u1⟩+∥u1∥2. (1.1.41)

Since u1
n(·+y1

n)⇀u1 in E, ⟨u1
n(·+y1

n),φ⟩ → ⟨u1,φ⟩, for all φ∈E. In particular, if φ=u1,

we have ⟨u1
n(·+y1

n),u1⟩ → ⟨u1,u1⟩, which it follows that ⟨u1
n(·+y1

n),u1⟩ = ∥u1∥2+on(1).
Replacing in (1.1.41), we obtain

∥u1
n(·+y1

n)−u1∥2= ∥u1
n(·+y1

n)∥2−2∥u1∥2+on(1)+∥u1∥2= ∥u1
n∥2−∥u1∥2+on(1).

(1.1.42)

Therefore,

I∞(u1
n)− I∞(u2

n)− I∞(u1) = 1
2

(∥∥∥u1
n

∥∥∥2
−
∥∥∥u1

n −u1
∥∥∥2

−
∥∥∥u1

∥∥∥2)
−
∫
RN

(
H(u1

n)−H(u2
n)−H(u1)

)
dx,

and using (f3), (1.1.42) and Lemma 1.1.2, it follows

I∞(u2
n) = I∞(u1

n)− I∞(u1)+on(1). (1.1.43)

By (ii) and (iii), (u1
n) is a (PS) sequence of I∞, hence I∞(u2

n) converges to a constant.
Finally, using (f2), (f3) and Lemma 1.1.2, from (iii) and (1.1.40), we obtain

|I ′
∞(u2

n)φ| =
∣∣∣∣∣
∫
RN

(ξ∞∇u1
n∇φ+u1

nφ)dx−
∫
RN

(ξ∞∇u1∇φ+u1φ)dx

−
∫
RN

h(u1)u1
nφdx+

∫
RN

h(u1)u1φdx−
∫
RN

h(u1
n −u1)(u1

n −u1)φdx

+
∫
RN

h(u1
n)u1

nφdx+
∫
RN

h(u1)u1φdx

∣∣∣∣∣
= on(1)+

∫
RN

|h(u1
n)u1

n −h(u1
n −u1)(u1

n −u1)−h(u1)u1||φ|dx

= on(1), (1.1.44)

for all φ ∈ C∞
0 (RN ). Therefore (u2

n) is a (PS) sequence of I∞.
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Step 5) Now we proceed by iteration. Note that if u is a nontrivial critical point of
I∞ and ω is the solution (1.1.4), then

I∞(u) ≥ I∞(ω)> 0. (1.1.45)

Furthermore, by (1.1.34) and (1.1.43),

I∞(u2
n) = c− I(u0)− I∞(u1)+on(1). (1.1.46)

Applying (1.1.45) and (1.1.46) the iteration must be terminated at some index k ∈ N.
Therefore, there exist k solutions to the problem (1.1.4), thus satisfying the second part
of the lemma.

1.2 Existence of a positive solution

Lemma 1.2.1. The functional I satisfies (Ce)c for all 0 ≤ c < m∞.

Proof. Consider (un) ⊂ E and 0 ≤ c < m∞ such that

I(un) → c and (1+∥un∥)
∥∥∥I ′(un)

∥∥∥→ 0.

By Lemma 1.1.4, (un) is bounded in E and taking a subsequence if necessary, un ⇀u0

in E. Lemma 1.1.5 gives I ′(u0) = 0 and by condition (f5)

I(u0) = 1
2

∫
RN

(ξ(x)|∇u0|2+u2
0)dx−

∫
RN

F (x,u0)dx

=
∫
RN

(1
2f(x,u0)u0 −F (x,u0)

)
dx

=
∫
RN

Q(x,u0)dx≥ 0. (1.2.1)

If un does not converge to u0 in E, applying Lemma 1.1.5 we find k ∈N and nontrivial
solutions u1, ...,uk of (1.1.4) satisfying

c= lim
n→∞I(un) = I(u0)+

k∑
j=1

I∞(uj) ≥ km∞ ≥m∞,

thus contradicting the assumption. Therefore un → u0 in E.
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Remark 1.2.1. For each u ∈ E\{0} such that
∫
RN

G∞(u)dx > 0, there exists a unique

real number t > 0 such that u
( ·
t

)
∈ P and I∞

(
u
( ·
t

))
is the maximum of the function

t 7→ I∞

(
u
(
.

t

))
, t > 0.

In fact, consider the function g defined by

g(t) := I∞

(
u
(
.

t

))
= 1

2

∫
RN

(
ξ∞

∣∣∣∣∇u( .t
)∣∣∣∣2 +

(
u
(
.

t

))2)
dx−

∫
RN

H
(
u
(
.

t

))
dx

making changes of variable

f :RN → RN

x 7→ tx,

the determinant of the Jacobian of this change of variable is |J(x1, · · · ,xN )|= tN . Thus,
by the change of variable theorem

∫
RN

∣∣∣∣∇u(xt
)∣∣∣∣2 dx =

∫
RN

∣∣∣∣1t∇u(x)
∣∣∣∣2 tNdx=

∫
RN

1
t2
tN |∇u(x)|2dx

= tN−2
∫
RN

|∇u(x)|2dx,∫
RN

∣∣∣∣u(xt
)∣∣∣∣2 dx =

∫
RN

|u(x)|2tNdx= tN
∫
RN

|u(x)|2dx,∫
RN

H
(
u
(
x

t

))
dx =

∫
RN

H(u(x))tNdx= tN
∫
RN

H(u(x))dx.

It follows from this that the function g can be rewritten as

g(t) = tN−2

2

∫
RN

ξ∞|∇u|2dx+ tN

2

∫
RN

|u|2dx− tN
∫
RN

H(u)dx.

Then g′(t) = 0 if and only if, t= 0 or

0 = g′(t) = N −2
2 tN−3

∫
RN
ξ∞|∇u|2dx + N

2 t
N−1

∫
RN

|u|2dx−NtN−1
∫
RN
H(u)dx

tN−1N
∫
RN

(
H(u)− 1

2 |u|2
)
dx = N −2

2 tN−3
∫
RN

ξ∞|∇u|2dx
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t2 =
N −2

∫
RN

ξ∞|∇u|2dx

2N
∫
RN

G∞(u)dx
.

Let ω ∈ P be a positive, radial, ground state solution of equation (1.1.4) and

ωy(x) := ω(x−y), (1.2.2)

for some y ∈ RN fixed.

Remark 1.2.2. The inequality
∫
RN

G∞(ωy)dx > 0, (1.2.3)

if |y|> 0 is big enough. Indeed,
∫
RN

G∞(ωy(x))dx=
∫
RN

G∞(ω(x−y))dx=
∫
RN

G∞(ω(x))dx > 0,

where we have used the translation invariance of the integrals and that the solution ω of
(1.1.4) satisfies Pohozaev identity and so

∫
RN

G∞(ω(x))dx > 0.

Lemma 1.2.2. Suppose (ξ3) and (f3), then c defined as in (1.1.28) satisfies

0< c <m∞.

Proof. From Remark 1.2.2,
∫
RN

G∞(ωy)dx > 0, follows from Remark 1.2.1, (1.1.6) and
(1.1.1) that there exists 0 ≤ ty ≤ L0 such that

max
0≤t≤L0

I
(
ωy

( ·
t

))
= I

(
ωy

(
·
ty

))
= I

(
ω

(
·
ty

−y

))
.

Furthermore, using (ξ3), (f3), (1.1.27) and the translation invariance of the integral

I

(
ωy

(
·
ty

))
< I∞

(
ωy

(
·
ty

))
= I∞

(
ω

(
·
ty

−y

))

= 1
2

∫
RN

ξ∞

∣∣∣∣∣∇ω
(

·
ty

−y

)∣∣∣∣∣
2

+
∣∣∣∣∣ω
(

·
ty

−y

)∣∣∣∣∣
2dx

−
∫
RN

H

(
ω

(
·
ty

−y

))
dx
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= 1
2

∫
RN

ξ∞

∣∣∣∣∣∇ω
(

·
ty

)∣∣∣∣∣
2

+
∣∣∣∣∣ω
(

·
ty

)∣∣∣∣∣
2dx−

∫
RN

H

(
ω

(
·
ty

))
dx

= I∞

(
ω

(
·
ty

))
≤ I∞(ω) =m∞.

In order to conclude, we construct a path γ ∈ Γ such that

max
0≤t≤L0

I(γ(t)) = I

(
ωy

(
·
ty

))
<m∞,

for Γ defined in (1.1.28). Since we assumed that L > L0, then we have

I
(
ωy

( ·
L

))
< I∞

(
ωy

( ·
L

))
= I∞

(
ω
( ·
L

))
= I∞(z1)< 0.

Consider
κ(t) := ω

( ·
L
t+(1− t)

( ·
L

−y
))

.

Then κ(0) = ωy

( ·
L

)
and κ(1) = ω

( ·
L

)
= z1 and hence κ(t) is a path which connects

ωy

( ·
L

)
to z1. Furthermore, using (ξ3), (f3) and the translation invariance of I∞, we

obtain

I(κ(t)) = I
(
ω
( ·
L
t+(1− t)

( ·
L

−y
)))

= I
(
ω
( ·
L

+y(t−1)
))

< I∞

(
ω
( ·
L

+y(t−1)
))

= I∞

(
ω
( ·
L

))
= I∞(z1)< 0.

Thus, the functional I is negative along the path κ(t). Consider ϕ̄ the path given by

ϕ̄(t) :=


z0 = 0, if t= 0 ,
ωy

( ·
t

)
, if 0< t≤ L,

then ϕ̄ is a path connecting z0 = 0 to ωy

( ·
L

)
, trough ωy

(
·
ty

)
, because 0< ty ≤ L0 < L.

Take γ(t) the succession of the paths ϕ̄(t) and κ(t), then γ(t) ∈ Γ and by (ξ3) and (f3) it
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follows
max

0≤t≤L0
I(γ(t)) = I

(
ωy

(
·
ty

))
< I∞

(
ωy

(
·
ty

))
≤ I∞(ω) =m∞,

which yields
c < m∞.

Lemma 1.2.3. If F satisfies (1.1.3), then there exists ρ > 0 and α > 0 such that
I(u) ≥ α > 0, for all u ∈ E with ∥u∥ = ρ.

Proof. From (1.1.3), Sobolev’s embedding for 2< p < 2∗, we have

I(u) = 1
2

∫
RN

(ξ(x)|∇u|2+|u|2)dx−
∫
RN

F (x,u)dx

≥ 1
2∥u∥2−ε

2

∫
RN

|u|2dx−C
∫
RN

|u|pdx

≥
(1

2 − ε

2

)
∥u∥2−C∥u∥p.

For ∥u∥= ρ we obtain
I(u) ≥

(1
2 − ε

2

)
ρ2 −Cρp = α > 0,

for ρ= ∥u∥ small enough.

Remark 1.2.3. Since I(u) ≤ I∞(u) for all u ∈ E, then there exists z1 ∈ E \Bρ(0) such
that I(z1) ≤ I∞(z1)< 0.

Lemma 1.2.4. Let vn be a solution of the following problem


−div(ξ(x)∇vn)+vn = f(x,vn), in RN ,

vn ∈H1(RN ), with N ≥ 3,
vn(x) ≥ 0, for all x ∈ RN .

Assuming that (ξ1) − (ξ4), (f1) − (f5) holds and that vn → v in H1(RN ) with v ̸≡ 0, then
vn ∈ L∞(RN ) and there exists C > 0 such that ∥vn∥L∞≤ C for all n ∈ N. Furthermore,

lim
|x|→∞

vn(x) = 0, uniformly in n.

Proof. For any R > 0, 0< r ≤ R/2, let η ∈ C∞(RN ), 0 ≤ η ≤ 1 with η(x) = 1 if |x|≥ R

and η(x) = 0 if |x|≤R− r and |∇η|≤ 2/r. Note that, by Remark 1.1.2 and by Sobolev’s
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embedding for 2 ≤ p≤ 2∗, we obtain the following growth condition for f :

f(x,s) ≤ ε|s|+Cε|s|p−1≤ ε|s|+Cε|s|2
∗−1. (1.2.4)

For each n ∈ N and for L > 0, let

vL,n(x) =
 vn(x), vn(x) ≤ L,

L, vn(x) ≥ L,

zL,n = η2v
2(β−1)
L,n vn and wL,n = ηvnv

β−1
L,n with β > 1 to be determinated later. Taking zL,n

as a test function, we obtain
∫
RN

ξ(x)η2v
2(β−1)
L,n |∇vn|2dx = −2(β−1)

∫
RN

ξ(x)v2β−3
L,n η2vn∇vn∇vL,ndx

+
∫
RN

f(x,vn)η2vnv
2(β−1)
L,n dx−

∫
RN

v2
nη

2v
2(β−1)
L,n dx

−2
∫
RN

ξ(x)ηv2(β−1)
L,n vn∇vn∇ηdx.

Note that, −2(β−1)
∫
RN

ξ(x)v2β−3
L,n η2vn∇vn∇vL,ndx≤ 0, then

∫
RN

ξ(x)η2v
2(β−1)
L,n |∇vn|2dx ≤ −2

∫
RN

ξ(x)ηv2(β−1)
L,n vn∇vn∇ηdx−

∫
RN

η2v
2(β−1)
L,n v2

ndx

+
∫
RN

f(x,vn)η2vnv
2(β−1)
L,n dx.

By (1.2.4) and for ε sufficiently small, we have the following inequality
∫
RN

ξ(x)η2v
2(β−1)
L,n |∇vn|2dx ≤ −2

∫
RN

ξ(x)ηv2(β−1)
L,n vn∇vn∇ηdx−

∫
RN

η2v
2(β−1)
L,n v2

ndx

+ε
∫
RN

η2v
2(β−1)
L,n v2

ndx+Cε

∫
RN

η2v
2(β−1)
L,n v2∗

n dx

≤ −2
∫
RN
ξ(x)ηv2(β−1)

L,n vn∇vn∇ηdx+Cε

∫
RN
η2v

2(β−1)
L,n v2∗

n dx

≤ Cε

∫
RN
η2v

2(β−1)
L,n v2∗

n dx+2
∫
RN
ξ(x)ηv2(β−1)

L,n vn∇vn∇ηdx.

For each ε > 0, using the Young’s inequality we get
∫
RN

ξ(x)ηv2(β−1)
L,n |∇vn|2dx ≤ Cε

∫
RN
η2v

2(β−1)
L,n v2∗

n dx+2ε
∫
RN
ξ(x)η2v

2(β−1)
L,n |∇vn|2dx

+2Cε

∫
RN

ξ(x)v2
nv

2(β−1)
L,n |∇η|2dx.
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Choosing ε > 0 sufficiently small,
∫
RN
ξ(x)η2v

2(β−1)
L,n |∇vn|2dx≤C

∫
RN
η2v

2(β−1)
L,n v2∗

n dx+C
∫
RN
ξ(x)v2

nv
2(β−1)
L,n |∇η|2dx.(1.2.5)

Now, from Sobolev’s embedding, by (1.2.5) and by (ξ1) we have

ξ0∥wL,n∥2
L2∗ ≤

∫
RN

ξ(x)η2v2
nv

2(β−1)
L,n dx≤

∫
RN

ξ(x)η2v
2(β−1)
L,n |∇vn|2dx

≤ C
[∫

RN
η2v

2(β−1)
L,n v2∗

n dx+
∫
RN

ξ(x)v2
nv

2(β−1)
L,n |∇η|2dx

]
. (1.2.6)

We claim that vn ∈ L
2∗2

2 (|x|≥ R) for R large enough and uniformly in n. In fact,
β = 2∗/2, from (1.2.6), we have

ξ0∥wL,n∥2
L2∗ ≤ C

[∫
RN

η2v
(2∗−2)
L,n v2∗

n dx+
∫
RN

ξ(x)v2
nv

(2∗−2)
L,n |∇η|2dx

]
(1.2.7)

or equivalently, using (ξ3) we obtain

ξ0∥wL,n∥2
L2∗ ≤ C

[∫
RN

ξ(x)v2
nv

(2∗−2)
L,n |∇η|2dx+

∫
RN

η2v2
nv

(2∗−2)
L,n v(2∗−2)

n dx
]
.

Using the Hölder inequality with exponent 2∗/2 and 2∗/(2∗ −2)

ξ0∥wL,n∥2
L2∗ ≤ C

∫
RN

v2
nv

(2∗−2)
L,n |∇η|2dx

+C
(∫

RN

[
vnηv

(2∗−2)
2

L,n

]
2∗
dx
)

2/2∗
(∫

|x|≥R/2
v2∗

n dx
)

(2∗−2)/2∗
.

By definition of wL,n, we have

(∫
RN

[
vnηv

(2∗−2)
2

L,n

]
2∗
dx

)2/2∗

≤ Cβ2
∫
RN

v2
nv

(2∗−2)
L,n |∇η|2dx

+Cβ2
(∫

RN

[
vnηv

(2∗−2)
2

L,n

]
2∗
dx
)

2/2∗
(∫

|x|≥R/2
v2∗

n dx
)

(2∗−2)/2∗
.

Since vn → v in H1(RN ), for R sufficiently large, we conclude
∫

|x|≥R/2
v2∗

n dx≤ ε, uniformly in n.
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Hence
(∫

|x|≥R

[
vnv

(2∗−2)
2

L,n

]
2∗
dx
)

2/2∗
≤ Cβ2

∫
RN

v2
nv

(2∗−2)
L,n dx

or equivalently

(∫
|x|≥R

[
vnv

(2∗−2)
2

L,n

]
2∗
dx
)

2/2∗
≤ Cβ2

∫
RN

v2∗
n dx≤K <∞.

Using the Fatou’s Lemma in the variable L, we have

∫
|x|≥R

v
2∗2

2
n dx <∞

and therefore the claim holds.

Next, we note that if β = 2∗(t−1)
2t , with t = 2∗2

2(2∗ −2) , then β > 1, 2t
t−1 < 2∗ and

vn ∈ L(β2t)/t−1(|x|≥ R− r). Returning to inequality (1.2.6), using the hypothesis (ξ3),
we obtain

∥wL,n∥2
L2∗ ≤ Cβ2

[∫
R≥|x|≥R−r

v2
nv

2(β−1)
L,n dx+

∫
|x|≥R−r

v2∗
n v

2(β−1)
L,n dx

]

or equivalently

∥wL,n∥2
L2∗ ≤ Cβ2

[∫
R≥|x|≥R−r

v2β
n dx+

∫
|x|≥R−r

v2∗−2
n v2β

n dx
]
.

Using the Hölder’s inequality with exponent t/(t−1) and t, we get

∥wL,n∥2
L2∗ ≤ Cβ2

{[∫
R≥|x|≥R−r

v2βt/(t−1)
n dx

]
(t−1)/t

[∫
R≥|x|≥R−r

1dx
]

1/t

+
[∫

|x|≥R−r
v(2∗−2)t

n dx
]

1/t
[∫

|x|≥R−r
v2βt/(t−1)

n dx
]

t/(t−1)
}
.

Since that (2∗ −2)t= 2∗2
, we conclude

∥wL,n∥2
L2∗ ≤ C

(∫
|x|≥R−r

v2βt/(t−1)
n dx

)
(t−1)/t.
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Note that

∥vL,n∥2β
L2∗β(|x|≥R) ≤

(∫
|x|≥R−r

v2∗β
L,ndx

)
2/2∗

≤
(∫

RN
η2∗

v2∗
n v

2∗(β−1)
L,n dx

)
2/2∗

= ∥wL,n∥2
L2∗ ≤ Cβ2

(∫
|x|≥R−r

v2βt/(t−1)
n dx

)
(t−1)/t

= C∥vn∥2β

L2βt/(t−1)(|x|≥R−r).

Applying Fatou’s Lemma

∥vn∥2β
L2∗β(|x|≥R)≤ C∥vn∥2β

L2βt/(t−1)(|x|≥R−r).

Considering χ= 2∗(t−1)
2t , s= 2t

t−1 and the last inequality, we can prove

∥vn∥Lβχs(|x|≥R)≤ C1/2β∥vn∥Lβs(|x|≥R−r)≤ C1/β∥vn∥L2∗(|x|≥R−r).

Let β = χm, (m= 1,2, · · ·), then we get

∥vn∥
Lχm+1s(|x|≥R)≤ Cχ−m

∥vn∥L2∗(|x|≥R−r)≤ C
∑m

i=1 χ−i

∥vn∥L2∗(|x|≥R−r).

Letting m→ +∞ in the last inequality, we obtain

∥vn∥L∞(|x|≥R)≤ C∥vn∥L2∗(|x|≥R−r).

Using again the convergence of (vn) to v in H1(RN ), for ε > 0 fixed there exists R> 0
such that

∥vn∥L∞(|x|≥R)< ε, for all n ∈ N. (1.2.8)

Thus,
lim

|x|→∞
vn(x) = 0, uniformly in n

and the proof of lemma is finish.

Proof of Theorem 1.1.1. By Lemma 1.2.3 and Remark 1.2.3, the functional I
satisfies the geometry of the Mountain Pass Theorem [4], then by Ekeland Variational
Principle [13] and considering c defined by (1.1.28) there exists a sequence (un) ⊂ E
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satisfying
I(un) → c and (1+∥un∥)

∥∥∥I ′(un)
∥∥∥→ 0.

Using the Lemma 1.2.2, we obtain that c satisfies 0< c<m∞ and, up to a subsequence,
(un) converges strongly to u ∈ E, by Lemma 1.2.1. Moreover, since I ∈ C1(E,R), then
I(u) = c and I ′(u) = 0. It follows that u is a solution of problem (P1).

To show that u is nonnegative we can assume in the beginning that f(x,s) = 0 for all
s≤ 0. Thus, I ′(u)u− = 0, and so

0 = I ′(u)u− =
∫
RN

(ξ(x)∇u∇u− +uu−)dx−
∫
RN

f(x,u)u−dx

=
∫

{x: u(x)<0}
(ξ(x)|∇u−|2+|u−|2)dx

= ∥u−∥2, (1.2.9)

implies that u− ≡ 0. Hence, u ≥ 0 in RN . Since u is solution of the problem (P1) and
nonnegative, by Lemma 1.2.4 we have that u ∈ L∞(RN )∩C1,α

loc (RN ) for some 0< α < 1.
Then, by Harnack’s inequality [2] we obtain

sup
u∈BR

I(u) ≤ C inf
u∈BR

I(u). (1.2.10)

Suppose that there exists a point x0 ∈ RN such that u(x0) = 0 in BR(x0), thus
inf

u∈BR(x0)
I(u) = 0. On other hand, sup

u∈BR

I(u) ≥ 0. We conclude that u ≡ 0 in BR(x0).

However, since RN is path-connected we have u≡ 0 in RN , which is absurd. Therefore,
u(x)> 0 for all x ∈ RN . In other words, u is a nontrivial and positive solution of (P1).

1.3 Nodal Solution

A nontrivial orthogonal involution τ : RN → RN induces an involution Tτ :E →E defined
by

Tτ (u(x)) := −u(τx). (1.3.1)

Consider
Eτ := {u ∈ E : Tτ (u(x)) = u(x)} (1.3.2)
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the subspace of τ−invariant in E and consider the following τ− invariant Pohozaev
manifold

Pτ := {u ∈ P : Tτ (u(x)) = u(x)} = P ∩Eτ . (1.3.3)

Lemma 1.3.1. If c > 0 and (un) is a (Ce)c sequence of the functional I restricted to
Eτ , then (un) is a bounded sequence.

Proof. Suppose by contradiction that ∥un∥→ ∞. Define ũn = 2
√
cun

∥un∥
, then (ũn) is a

bounded sequence with ∥ũn∥= 2
√
c and consequently ũn ⇀ ũ in E. One of the two

following cases occurs:
Case 1) limsup

n→∞
sup

y∈RN

∫
B1(y)

|ũn|2dx > 0;

Case 2) limsup
n→∞

sup
y∈RN

∫
B1(y)

|ũn|2dx= 0.

Consider that Case 2 occurs. Without loss of generality, suppose L > 1 and

I

(
L

∥un∥
2
√
cun

)
= 1

2

(
L24c
∥un∥2

)∫
RN

(ξ(x)|∇un|2+u2
n)dx−

∫
RN

F

(
x,

L

∥un∥
2
√
cun

)
dx

= 2L2c−
∫
RN

F

(
x,

L

∥un∥
2
√
cun

)
dx.

Given ε > 0 and 2< p < 2∗, from (1.1.4) we have

∫
RN

∣∣∣∣∣F
(
x,

L

∥un∥
2
√
cun

)∣∣∣∣∣dx ≤ ε

2

∫
RN

∣∣∣∣∣ L

∥un∥
2
√
cun

∣∣∣∣∣
2
dx+C

∫
RN

∣∣∣∣∣ L

∥un∥
2
√
cun

∣∣∣∣∣
p

dx

= 2εcL2

∥un∥2

∫
RN

|un|2dx+ cLp
∫
RN

|ũn|pdx.

By Lions’ Lemma [24], we obtain
∫
RN

|ũn|pdx→ 0, for 2< p < 2∗

thus, ∫
RN

∣∣∣∣∣F
(
x,

L

∥un∥
2
√
cun

)∣∣∣∣∣dx < 2εcL2 +on(1).

Taking ε= 1/2 we obtain

I

(
L

∥un∥
2
√
cun

)
> 2L2c− (cL2 +on(1)) = L2c−on(1).
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Since ∥un∥→ ∞, then 2L
√
c

∥un∥
∈ (0,1) for n > 0 sufficiently large, so

max
t∈[0,1]

I(tun) ≥ I

(
L

∥un∥
2
√
cun

)
> L2c−on(1).

Consider tn ∈ (0,1) such that I(tnun) = max
t∈[0,1]

I(tun). Then

I(tnun)> L2c−on(1). (1.3.4)

On other hand, tn < 1 because I(un) = c+on(1), I ′(tnun)un = 0 and by (f5)

I(tnun) = 1
2

∫
RN

(ξ(x)|∇(tnun)|2+|tnun|2)dx−
∫
RN

F (x,tnun)dx

= 1
2

∫
RN

f(x,tnun)(tnun)dx−
∫
RN

F (x,tnun)dx

=
∫
RN

(1
2f(x,tnun)(tnun)−F (x,tnun)

)
dx (1.3.5)

< D
∫
RN

(1
2f(x,un)un −F (x,un)

)
dx

= D
[1
2

∫
RN

(ξ(x)|∇un|2+u2
n)dx−

∫
RN

F (x,un)dx
]

= DI(un) =Dc+on(1). (1.3.6)

From (1.3.4) and (1.3.6) it follows that

c−on(1)< I∞(tnun)<Dc+on(1)

and making L > 0 sufficiently large we arrive at a contradiction.
In Case 1, if (yn) is such that |yn|→ ∞ and

∫
B1(yn)

|ũn|2dx > δ

2 ,

then ∫
B1(0)

|ũn(x+yn)|2dx > δ

2 ,

and knowing that ũn(·+yn)⇀ ṽ, we have

∫
B1(0)

|ṽ(x)|2dx > δ

2
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thus obtaining that ṽ ̸≡ 0. Therefore there exists Ω ⊂B1(0) subset of positive Lebesgue
measure such that

0< ṽ(x) = lim
n→∞ ũn(x+yn) = lim

n→∞
un(x+yn)2

√
c

∥un∥
, for all x ∈ Ω.

Recalling the assumption that ∥un∥→ ∞, then necessarily

un(x+yn) → ∞, for all x ∈ Ω ⊂B1(0)

and so from (f5) and Fatou’s Lemma, we obtain

liminf
n→∞

∫
RN

(1
2f(x,un)un −F (x,un)

)
dx

= liminf
n→∞

∫
Ω

(1
2f(x+yn,un(x+yn))un(x+yn)−F (x+yn,un(x+yn))

)
dx

≥
∫

Ω
liminf
n→∞

(1
2f(x+yn,un(x+yn))un(x+yn)−F (x+yn,un(x+yn))

)
dx

= +∞. (1.3.7)

On other hand, by (1.1.29) we have that

|I ′|Eτ (un)un|≤ ∥I ′|Eτ (un)∥∥un∥→ 0,

and so
∫
RN

(1
2f(x,un)un −F (x,un)

)
dx = 1

2

∫
RN

(ξ(x)|∇un|2+u2
n)dx−

∫
RN

F (x,un)dx

−1
2

∫
RN

(ξ(x)|∇un|2+u2
n)dx− 1

2

∫
RN

f(x,un)undx

= I|Eτ (un)− 1
2I

′|Eτ (un)un

≤ c+on(1). (1.3.8)

From (1.3.7) and (1.3.8) we obtain a contradiction in Case 1, under the assumption
that |yn|→ +∞.

Now, if we have |yn|≤R with R > 1, then

δ

2 ≤
∫

B1(0)
|ũn(x+yn)|2dx≤

∫
B2R(0)

|ũn(x+yn)|2dx
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and since ũn(·+yn) → ṽ strongly in L2(B2R(0)), it follows that

δ

2 ≤
∫

B1(0)
|ṽ(x)|2dx.

Hence, as in the previous case, there exists a Ω ⊂B1(0) such that |Ω|> 0 and

lim
n→∞

un(x+yn)2
√
c

∥un∥
= lim

n→∞ ũn(x+yn) = ṽ(x) ̸= 0, for all x ∈ Ω.

Following the previous arguments, by (1.3.7) and (1.3.8) again a contradiction follows.
We conclude that (un) is a bounded sequence.

Remark 1.3.1. The proof of Lemma 1.1.4 is analogous to that just presented for I,
using Lions’ Lemma, hypothesis (f3), as well Fatou’s Lemma and (f5) for the function h.

Remark 1.3.2. If (un) a Cerami (Ce)c sequence restricted to Eτ , then (un) is bounded
(PS) sequence of I restricted to Eτ .

Lemma 1.3.2. If u,∇u ∈ L2(RN ), |y|→ ∞ and |y− τy|→ ∞, then
∫
RN

u(x−y)u(τx−y)dx= oy(1) (1.3.9)

and ∫
RN

∇u(x−y).∇u(τx−y)dx= oy(1). (1.3.10)

Proof. Indeed, making a change of variable, we obtain
∫
RN

u(x−y)u(τx−y)dx=
∫
RN

u(z)u(τz + τy−y)dz.

Since u ∈ L2(RN ), given ε > 0 there exists R > 0 independent of y such that
∫
RN \BR(0)

|u(z)|2dz < ε

2 .

Thus, using Hölder’s inequality

∫
RN \BR(0)

u(z)u(τz+ τu−y)dz ≤
(∫

RN \BR(0)
|u(z)|2dz

)1/2(∫
RN

|u(τz+ τy−y)|2dz
)1/2

≤ ε

2∥u∥L2 .
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For ε > 0 and R > 0 fixed as previously, |y− τy|→ ∞ and u ∈ L2(RN ), we obtain

∫
BR(0)

u(z)u(τz+ τu−y)dz ≤
(∫

BR(0)
|u(z)|2dz

)1/2(∫
RN

|u(τz+ τy−y)|2dz
)1/2

≤ ε

2∥u∥L2 .

We conclude that ∫
RN

u(x−y)u(τx−y)dx= oy(1),

as |y|→ ∞ and |y− τy|→ ∞.
Using the same arguments,

∫
RN

∇u(x−y).∇u(τx−y)dx=
∫
RN

∇u(z).∇u(τz + τy−y)dz.

Since ∇u ∈ L2(RN ), given ε > 0 there exists R1 > 0 independent of y such that
∫
RN \BR1(0)

|∇u(z)|2dz < ε

2 .

Thus, using Hölder’s inequality
∫
RN \BR1(0)

∇u(z)∇u(τz + τy−y)dz

≤
(∫

RN \BR1(0)
|∇u(z)|2dz

)1/2(∫
RN

|∇u(τz+τy−y)|2dz
)1/2

≤ ε

2∥∇u∥L2 .

For ε > 0 and R1 > 0 fixed as before, |y− τy|→ ∞ and u ∈ L2(RN ), we obtain
∫

BR1(0)
∇u(z)∇u(τz + τy−y)dz

≤
(∫

BR1(0)
|∇u(z)|2dz

)1/2(∫
RN

|∇u(τz+ τy−y)|2dz
)1/2

≤ ε

2∥∇u∥L2 .

Therefore, ∫
RN

∇u(x−y)∇u(τx−y)dx= oy(1),
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when |y|→ ∞ and |y− τy|→ ∞. And we conclude the proof of the lemma.

Now, we define G(x,u) for u ∈ Eτ by

G(x,u) := 1
ξ(x)

(
F (x,u)− 1

2u
2
)
.

Consider ω the ground state radial positive solution of equation (1.1.4) and define

zy(x) := ω(x−y)−ω(x− τy) ∈ Eτ . (1.3.11)

Remark 1.3.3. If we fix y ∈ RN , |y|> 0 sufficiently large, from (ξ3) and (f3) it follows
∫
RN

G(x,zy)dx≥
∫
RN

G∞(zy)dx > 0. (1.3.12)

Therefore, there exists t > 0 such that u
( ·
t

)
∈ P. Moreover, there exists tzy such that

I

(
zy

(
·
tzy

))
= max

t>0
I
(
zy

( ·
t

))
. (1.3.13)

Indeed,
∫
RN

G(x,zy)dx≥
∫
RN

1
ξ∞

(
H(zy)− 1

2z
2
y

)
dx=

∫
RN

G∞(zy)dx.

In what follows consider z0 = 0, and

z1 := ω
( ·
L

−y
)

−ω
( ·
L

− τy
)
, in Eτ

for a fixed L > L0, |y|> 0 and |y− τy| large enough, such that I∞(z1) < 0. This is
possible by (1.1.6), (1.1.7) and by Lemma 1.3.2. Now define

cτ := inf
γ∈Γτ

max
0≤t≤1

I(γ(t)), (1.3.14)

where Γτ = {γ ∈ C([0,1],Eτ ) : γ(0) = z0 and γ(1) = z1}.

Remark 1.3.4. P ∩Eτ ̸= ∅.
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Lemma 1.3.3. There exists a sequence (un) ⊂ Eτ satisfying

I(un) → cτ and (1+∥un∥)
∥∥∥I ′|Eτ (un)

∥∥∥→ 0.

Proof. The existence of (Ce)cτ sequence will be guaranteed if we can apply the Ghoussoub-
Preiss Theorem. To show the existence of a Cerami sequence converging to cτ as defined
in (1.3.14) we need to show that F ∩ Icτ separates z0 = 0 and z1 where

Icτ = {u ∈ Eτ : I(u) ≥ cτ }

is a closed subset of Eτ .
Given the definition of zy in (1.3.11), define also

zy

(
x

t

)
=


0, t= 0,
ω
(
x

t
−y

)
−ω

(
x

t
− τy

)
, t > 0.

Since I(u) ≤ I∞(u) for u ∈ Eτ we have

I
(
zy

( ·
t

))
< I∞

(
zy

( ·
t

))
, if t > 0. (1.3.15)

Consider
F = {u ∈ Eτ : I∞(u) ≥ 0}

which is a closed subset of Eτ . Since I satisfies the Mountain Pass geometry, by Lemma
1.2.3 and Remark 1.2.3, then there exists ρ > 0 such that

0< I(u), if 0< ∥u∥< ρ. (1.3.16)

Therefore, from (1.1.27) and (1.3.16), if u ∈Bρ(0) then u ∈ F , but u /∈ Icτ . Moreover,
we will check that if u ∈Bρ(0), then

0 ≤ I(u)< cτ . (1.3.17)

In fact, by Mountain Pass geometry, we have that

I(u) = 1
2∥u∥2−o(∥u∥2)< 3

2∥u∥2, if ∥u∥< ρ.
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Therefore, if we consider 3ρ2/2<cτ we have (1.3.17). This way, if ∥u∥<ρ, then u /∈F∩Icτ ,
such that z0 ∈Bρ(0) ̸⊂ F ∩ Icτ . Furthermore, by (1.3.14) and (1.3.15) we have that

I(z1)< I∞(z1)< 0

implying that z1 /∈ F ∩ Icτ .

We conclude that the closed subset F ∩ Icτ separates z0 and z1, and thus we can
apply the Ghoussoub-Preis Theorem with X = Eτ , ϕ= I|Eτ and F = F ∩ Icτ such that
I(un) → cτ and (1+∥un∥)

∥∥∥I ′|Eτ (un)
∥∥∥→ 0.

Lemma 1.3.4. If (un) ⊂ Eτ is a (PS) sequence of the functional I restricted to Eτ ,
then (un) is a (PS) sequence of I.

Proof. Using that the action Tτ is isometric, we will prove that

TτI
′(un) = I ′(un). (1.3.18)

It follows from the (f6) hypothesis that F is even and that F (τx,s) =F (x,−s) =F (x,s)
and using the hypothesis (ξ4) we have

I(Tτ (un)) = I(−un(τx))

= 1
2

∫
RN

(ξ(τx)|∇(−un(τx))|2+|−un(τx)|2)dx−
∫
RN

F (τx,−un(τx))dx

= 1
2

∫
RN

(ξ(x)|∇un(x)|2+|un(x)|2)dx−
∫
RN

F (x,un(x))dx

= I(un). (1.3.19)

In addition, using the hypothesis (f6) and making change of variables, we obtain

I ′(Tτun(x))v(x) = I ′(−un(τ(x)))v(x)

=
∫
RN

(
ξ(τx)∇(−un(τx))∇v(x)+(−un(τx))v(x)

)
dx

−
∫
RN

f(τx,−un(τx))v(x)dx

=
∫
RN

(
ξ(y)∇un(y)∇(−v(τy))+un(y)(−v(τy))

)
dy

−
∫
RN

f(y,un(y))(−v(τy))dy

=
∫
RN

(
ξ(y)∇un∇(Tτ (v))+un(Tτ (v))

)
dy
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−
∫
RN

f(y,un)(Tτ (v))dy

= I ′(un)(Tτ (v)), for all v ∈ E. (1.3.20)

Since Tτ is isometric, then

〈
I ′(un),Tτ (v)

〉
=
〈
Tτ (I ′(un)),Tτ (Tτ (v))

〉
=
〈
Tτ (I ′(un)),v

〉
. (1.3.21)

It follows from (1.3.20) and (1.3.21) that

I ′(Tτ (un)) = Tτ (I ′(un)). (1.3.22)

Since (un) ⊂ Eτ , then by (1.3.22) we obtain

Tτ (I ′(un)) = I ′(Tτ (un)) = I ′(un) (1.3.23)

and hence I ′(un) ∈ Eτ , implying that I ′(un)v = 0 for all v ∈ (Eτ )⊥. On ther hand,
since (un) is a (PS) sequence of the functional I restricted to Eτ , then I ′(un)v1 → 0
for all v1 ∈ Eτ . Denoting v = v1 + v2 with v1 ∈ Eτ and v2 ∈ (Eτ )⊥, it follows that
I ′(un)v = I ′(un)v1 → 0. Therefore I ′(un)v → 0 for all v ∈ E.

Next we present a version of the Concentration Compactness Lemma of Lions for I
restricted to Eτ .

Lemma 1.3.5. Let (un) ⊂ Eτ be a bounded sequence, such that

I(un) → c and I ′(un) → 0.

Then, there exists u0 ∈ Eτ such that, up to a subsequence, un ⇀ u0, I
′(u0) = 0 and

there exist two integers k1, k2 ≥ 0, k1 +k2 sequences (yj
n), a τ−antisymmetric solution

u0 of problem (Pτ ), k1 solutions uj , j = 1, · · · ,k1 and k2 τ−antisymmetric solutions
uj , j = k1 + 1, · · · ,k1 +k2 of the equation (1.1.4), that is, −div(ξ∞∇uj) +uj = h(uj)uj

in RN and uj(τx) = −uj(x), uj(x) → 0 as |x|→ ∞ such that, either:

1. un → u0 strongly in E, or the following statement holds;

2. if j = 1, ...,k1, then τyj
n ̸= yj

n, and |yj
n|→ ∞ when n→ ∞;

3. if j = k1 +1, ...,k1 +k2, then τyj
n = yj

n, and |yj
n|→ ∞ when n→ ∞;
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4. un(x) = u0(x)+
k1∑

j=1
[uj(x−yj

n)+Tτu
j(x−yj

n)]+
k1+k2∑

j=k1+1
uj(x−yj

n)+on(1);

5. I(un) → I(u0)+2
k1∑

j=1
I∞(uj)+

k1+k2∑
j=k1+1

I∞(uj).

Proof. Step 1) By Lemma 1.3.3, if (un) ⊂ Eτ is a (PS) sequence of the functional I
restricted to Eτ , I|Eτ , then (un) is a (PS) sequence of I.

Step 2) From the hypothesis that (un) is bounded, then un ⇀ u0 in E. We show
now that I ′(u0) = 0. Using the compact embedding E ↪→ Lp

loc(R
N ) for 1 ≤ p < 2∗, then

un → u0 in Lp
loc(R

N ), for 1 ≤ p < 2∗. The continuity of f , the weak convergence un ⇀u0

in E and Lebesgue dominated convergence theorem imply

lim
n→∞I ′(un)φ= I ′(u0)φ, for all φ ∈ C∞

0 (RN ).

Moreover, since (un) is a (PS) sequence of I, then

I ′(u0)φ= 0, for all φ ∈ C∞
0 (RN ). (1.3.24)

Step 3) Now we verify that u0 ∈ Eτ . Since un(x) → u0(x) a.e. x ∈ RN . Furthermore,
un ∈ Eτ , implies that Tτ (un(x)) = un(x), thus

Tτ (u0(x)) := −u0(τx) = − lim
n→∞un(τx) = lim

n→∞−un(τx)

= lim
n→∞Tτ (un(x)) = lim

n→∞un(x) = u0(x).

Therefore, u0 ∈ Eτ .
Step 4) Let u1

n := un −u0. Then, if n→ ∞, we have:

(i) ∥u1
n∥2= ∥un∥2−∥u0∥2+on(1);

(ii) I∞(u1
n) → c− I(u0);

(iii) I ′
∞(u1

n) → 0.

Indeed, since un ⇀u0 in H1(RN ), then

⟨un,u0⟩ → ⟨u0,u0⟩ = ∥u0∥2.
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Thus,

∥u1
n∥ = ∥un −u0∥2= ∥un∥2−2⟨un,u0⟩+∥u0∥2= ∥un∥2−∥u0∥2+on(1),

as claimed. The proof of (ii) and (iii) is similar to Step 2 in Lemma 1.1.5. By (ii) and
(iii), (u1

n) is a (PS) sequence of I∞ and

〈
I ′

∞(u1
n),φ

〉
=
〈
I ′(un),φ

〉
−
〈
I ′(u0),φ

〉
= on(1).

Furthermore, since un, u0 ∈ Eτ and Tτ is linear, it follows that
Tτ (u1

n)(x) = Tτ (un −u0)(x) = Tτ (un)(x)−Tτ (u0)(x) = un(x)−u0(x) = u1
n(x) and u1

n ⇀ 0
in H1(RN ).

Consider
δ := limsup

n→∞
sup

y∈RN

∫
B1(y)

|u1
n(x)|2dx.

Step 5) If δ = 0, it follows from Lions’ lemma that

u1
n → 0, in Lp(RN ), for all 2< p < 2∗. (1.3.25)

On the other hand, since (u1
n) is a bounded sequence and (iii) holds, then

I ′
∞(u1

n)u1
n =

∫
RN

(
ξ∞|∇u1

n|2+(u1
n)2 −h(u1

n)(u1
n)2
)
dx→ 0. (1.3.26)

Using the estimate (1.1.3) we obtain
∫
RN

(ξ∞|∇u1
n|2+(u1

n)2)dx=
∫
RN

h(u1
n)(u1

n)2dx+on(1)

< ε
∫
RN

(u1
n)2dx+C

∫
RN

|u1
n|pdx. (1.3.27)

Thus, by (1.3.25) and (1.3.27) we have ∥u1
n∥→ 0, that is, un → u0 and u0 is a

τ -antisymmetric solution of problem (1.1.4) which completes the proof of the item 1.
Step 6) Now, if δ > 0, there exists a sequence (yn) ⊂ RN such that

∫
B1(yn)

|u1
n(x)|2dx > δ

2 . (1.3.28)
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Define a new sequence of functions (v1
n) ⊂E by v1

n := u1
n(·+yn). Since (u1

n) is bounded
then (v1

n) is also bounded, and thus we can assume that v1
n ⇀u1, in E and v1

n(x) → u1(x)
a.e. x ∈ RN . From (1.3.28) we have

∫
B1(0)

|v1
n(x)|2dx > δ

2 . (1.3.29)

The weak convergence implies that v1
n → u1 strongly in L2(B1(0)) and hence

∫
B1(0)

|u1(x)|2dx≥ δ

2 ,

from which u1 ̸≡ 0. Since u1
n ⇀ 0 in E, we have that |yn| is a unbounded sequence.

Therefore, up to a subsequence, we can assume that |yn|→ ∞. Finally, we obtain as in
(1.1.40) that I ′

∞(u1) = 0. Consider now RN = Γ ⊕ Γ⊥, where Γ := {x ∈ RN : τ(x) = x},
and consider PΓ the projection on the subspace Γ. We can distinguish two cases:

Case I : If |yn − τyn| is bounded, we define y1
n := PΓ(yn);

Case II : If |yn − τyn| is unbounded, we define y1
n := yn.

Let us study each of these cases. In Case I, first note that |y1
n|→ ∞. In fact, the

orthogonal linear transformation τ : RN → RN is diagonalizable and without loss of
generality, we may assume that

τ(x1, ...,xk,xk+1, ...,xN ) = (x1, ...,xk,−xk+1, ...,−xN ). (1.3.30)

Denoting yn by
yn = PΓ(yn)+wn = y1

n +wn,

then y1
n := PΓ(yn) implies τ(y1

n) = y1
n. Let yn = (xn

1 , ...,x
n
k ,x

n
k+1, ...,x

n
N ), where

y1
n = (xn

1 , ...,x
n
k ,0, ...,0) and wn = (0, ...,0,xn

k+1, ...,x
n
N ). We have

τ(yn) = (xn
1 , ...,x

n
k ,−xn

k+1, ...,−xn
N ),

and
|yn − τyn|= |(0, ...,0,2xn

k+1, ...,2xn
N )|= 2|wn|.

Thus, in the new basis we have that |yn − τyn| is bounded, that is, there exists
M > 0 such that |yn − τyn|≤ 2M , which gives |wn|≤ M . Since yn = y1

n +wn, |yn|→ ∞
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when n→ ∞ and |wn|≤M , then |y1
n|→ ∞ when n→ ∞. Furthermore, we consider the

sequence (u1
n(·+y1

n)), which is bounded, so up to a subsequence, u1
n(·+y1

n)⇀u1 in E,
and u1 ̸≡ 0 is a solution of the limit problem (1.1.4). Moreover, since τ(y1

n) = y1
n then

Tτ (u1(x)) := −u1(τx) = − lim
n→∞u1

n(τx+y1
n)

= lim
n→∞−u1

n(τ(x+y1
n))

= lim
n→∞u1

n(x+y1
n) = u1(x). (1.3.31)

We continue by considering

u2
n(x) := u1

n(x)−u1(x−y1
n)

and verify that (u2
n) is a (PS) sequence of I∞. In fact, we have that

I∞(u2
n) = 1

2

∫
RN

(
ξ∞|∇u2

n|2+(u2
n)2
)
dx−

∫
RN

H(u2
n)dx

= 1
2

∫
RN

(
ξ∞|∇(u1

n(x)−u1(x−y1
n))|2+|u1

n(x)−u1(x−y1
n)|2

)
dx

−
∫
RN

H(u1
n(x)−u1(x−y1

n))dx.

If z = x−y1
n, then x= z+y1

n and dx= dz. Renaming z by x when changing variables,
we obtain

I∞(u2
n) = 1

2

∫
RN

(
ξ∞|∇(u1

n(x+y1
n)−u1(x))|2+|u1

n(x+y1
n)−u1(x)|2

)
dx

−
∫
RN

H(u1
n(x+y1

n)−u1(x))dx.

Hence we have that

∥u1
n(·+y1

n)−u1∥2= ∥u1
n(·+y1

n)∥2−2⟨u1
n(·+y1

n),u1⟩+∥u1∥2. (1.3.32)

Since u1
n(·+y1

n)⇀u1 in E, by weak convergence and Riez Representation Theorem,
we obtain

⟨u1
n(·+y1

n),φ⟩ → ⟨u1,φ⟩, for all φ ∈ E.



1.3 Nodal Solution 50

In particular, if φ= u1, then

⟨u1
n(·+y1

n),u1⟩ → ⟨u1,u1⟩,

it follows that
⟨u1

n(·+y1
n),u1⟩ = ∥u1∥2+on(1).

Replacing in (1.3.32) we obtain

∥u1
n(·+y1

n)−u1∥2 = ∥u1
n(·+y1

n)∥2−2∥u1∥2+on(1)+∥u1∥2

= ∥u1
n∥2−∥u1∥2+on(1). (1.3.33)

On the other hand, we note that

I∞(u1
n)− I∞(u2

n)− I∞(u1) = 1
2
(
∥u1

n∥2−∥u1
n −u1∥2−∥u1∥2

)
−
∫
RN

(
H(u1

n)−H(u2
n)−H(u1)

)
dx.

Now, using (1.3.33) and (1.1.19), we have that

I∞(u2
n) = I∞(u1

n)− I∞(u1)+on(1).

Since (u1
n) is a (PS) sequence for I∞, we know that I∞(u1

n) converges to a constant,
and thus I∞(u2

n) also converge. Finally, we show that

I ′
∞(u2

n)φ→ 0, for all φ ∈ C∞
0 (RN ). (1.3.34)

We know that (u1
n) is a (PS) sequence for I∞, then

I ′
∞(u1

n)φ= on(1), for all φ ∈ C∞
0 (RN ). (1.3.35)

Furthermore, u1 is a solution of equation (1.1.4) we have

I ′
∞(u1)φ= 0, for all φ ∈ C∞

0 (RN ). (1.3.36)
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Thus, with a change of variable, by (1.3.35) and (1.3.36) and by Lemma 1.1.4, we obtain
that

|I ′
∞(u2

n)φ| =
∣∣∣∣∫RN

(
ξ∞∇(u1

n −u1)∇φ+(u1
n −u1)φ

)
dx−

∫
RN
h(u1

n −u1)(un −u1)φdx
∣∣∣∣

=
∣∣∣∣I ′

∞(u1
n)φ−I ′

∞(u1)φ+
∫
RN

[h(u1
n)(u1

n)−h(u1
n−u1)(un−u1)−h(u1)(u1)]φdx

∣∣∣∣
≤ on(1)+

∫
RN

|h(u1
n)(u1

n)−h(u1
n −u1)(un −u1)−h(u1)(u1)||φ|dx

≤ Cε∥φ∥H1(RN ).

Thus (1.3.34) holds. Therefore, (u2
n) is a (PS) sequence for I∞ and Case I is complete.

Case II : Here we have that |yn − τyn| is unbounded and we define y1
n = yn. Moreover,

we know that u1 ̸≡ 0 is a weak solution of the equation (1.1.4). Let u2
n := u1

n −γn, where

γn(x) := u1(x−y1
n)−u1(τx−y1

n). (1.3.37)

Note that since Tτ is an orthogonal linear transformation, it follows that

Tτ (γn(x)) := −γn(τx) = −u1(τx−y1
n)+u1(x−y1

n)

= u1(x−y1
n)−u1(τx−y1

n) = γn(x).

Thus, u2
n ∈ Eτ because

Tτ (u2
n(x)) = Tτ (u1

n(x)−γn(x)) = Tτ (u1
n(x))−Tτ (γn(x))

= u1
n(x)−γn(x) = u2

n(x).

In this case we must show that (u2
n) is a (PS) sequence of I∞. We will show that

I∞(u2
n) = I∞(u1

n)−2I∞(u1)+on(1) (1.3.38)

using the fact that (u1
n) is a (PS) sequence of I∞. We have that

∥u2
n∥2= ∥u1

n −γn∥2= ∥u1
n∥2−2⟨u1

n,γn⟩+∥γn∥2, (1.3.39)
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such that

⟨u1
n,γn⟩ =

∫
RN

(ξ∞∇u1
n∇γn +u1

nγn)dx

=
∫
RN

(ξ∞∇u1
n∇{u1(x−y1

n)−u1(τx−y1
n)})dx

+
∫
RN

(u1
n{u1(x−y1

n)−u1(τx−y1
n)})dx

=
∫
RN

ξ∞∇u1
n∇u1(x−y1

n)dx+
∫
RN

ξ∞∇u1
n∇u1(τx−y1

n)dx

+
∫
RN

u1
nu

1(x−y1
n)dx+

∫
RN

u1
nu

1(τx−y1
n)dx.

Firstly, we claim that
⟨u1

n,γn⟩ = 2∥u1∥2+on(1). (1.3.40)

Indeed, let
A1

n =
∫
RN

(ξ∞∇u1
n∇u1(x−y1

n)+u1
nu

1(x−y1
n))dx

and
A2

n =
∫
RN

(ξ∞∇u1
n∇u1(τx−y1

n)+u1
nu

1(τx−y1
n))dx.

We show that

A1
n →

{∫
RN

(ξ∞|∇u1|2+(u1)2)dx
}
, when n→ ∞,

and
A2

n → −
{∫

RN
(ξ∞|∇u1|2+(u1)2)dx

}
, when n→ ∞. (1.3.41)

Let z = x− y1
n, thus x = z + y1

n and dx = dz. Combining this with the fact
u1

n(·+y1
n)⇀u1(·), we have

∫
RN

(ξ∞∇u1
n(z+y1

n)∇u1(z)+u1
n(z+y1

n)u1(z))dz →
∫
RN

(ξ∞|∇u1|2+(u1)2)dz.

To evaluate A2
n, let us consider the following change of variables τx−y1

n = z, then
x= τ(z+y1

n) and dx= dz. Thus,

A2
n =

∫
RN

(ξ∞∇u1
n(τ(z+y1

n))∇u1(z)+u1
n(τ(z+y1

n))u1(z)dz.
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Since u1
n is τ -antisymmetric, we have

A2
n = −

{∫
RN

(
ξ∞∇u1

n(z+y1
n)∇u1(z)+u1

n(z+y1
n)u1(z)

)
dz
}
.

Therefore, in a similar way to A1
n, we obtain (1.3.41) and thus prove (1.3.40). Now,

we claim
∥γn∥2= 2∥u1∥2+on(1). (1.3.42)

In fact, from (1.3.9) and (1.3.10) we have that

∥γn∥2 =
∫
RN

(ξ∞|∇γn|2+γ2
n)dx

=
∫
RN

ξ∞|∇(u1(x−y1
n)−u1(τx−y1

n))|2dx+
∫
RN

|u1(x−y1
n)−u1(τx−y1

n)|2dx

=
∫
RN

ξ∞|∇u1(x−y1
n)|2dx−2

∫
RN

ξ∞∇u1(x−y1
n)∇u1(τx−y1

n)dx

+
∫
RN

ξ∞|∇u1(τx−y1
n)|2dx+

∫
RN

|u1(x−y1
n)|2dx

−2
∫
RN

u1(x−y1
n)u1(τx−y1

n)dx+
∫
RN

|u1(τx−y1
n)|2dx

= 2∥u1∥2−2
∫
RN
ξ∞∇u1(x−y1

n)∇u1(τx−y1
n)dx−2

∫
RN
u1(x−y1

n)u1(τx−y1
n)dx

= 2∥u1∥2+on(1).

Thus obtaining (1.3.42).
Finally, replacing (1.3.39) and (1.3.40) in (1.3.38)

∥u2
n∥2= ∥u1

n∥2−2∥u1∥2+on(1). (1.3.43)

To conclude (1.3.38) we need to verify the following equality
∫
RN

H(u2
n)dx=

∫
RN

H(u1
n)dx−2

∫
RN

H(u1)dx+on(1). (1.3.44)

Define ρ := |y1
n − τy1

n|
2 , Sn = RN \Bρn(0) ∪Bρn(τy1

n − y1
n) and using the fact that

u1(τx−y1
n) = u1(τ(x− τy1

n)) = −u1(x− τy1
n), we have

∫
RN
H(u2

n)dx=
∫
RN

H(u1
n −γn)dx=

∫
RN

H(u1
n(x)−u1(x−y1

n)−u1(τx−y1
n))dx

=
∫

Bρn(0)
H(u1

n(z+y1
n)−u1(z)−u1(z+y1

n − τy1
n))dz
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+
∫

Bρn(τy1
n−y1

n)
H(u1

n(z+y1
n)−u1(z)−u1(z+y1

n − τy1
n))dz

+
∫

Sn

H(u1
n(z+y1

n)−u1(z)−u1(z+y1
n − τy1

n))dz

=
∫

Bρn(0)
H(u1

n(z+y1
n)−u1(z+y1

n − τy1
n))dz−

∫
Bρn(0)

H(u1(z))dz

+
∫

Bρn(τy1
n−y1

n)
H(u1

n(z+y1
n)−u1(z))dz−

∫
Bρn(τy1

n−y1
n)
H(u1(z+y1

n − τy1
n))dz

+
∫

Sn

H(u1
n(z+y1

n)−u1(z+y1
n − τy1

n))dz−
∫

Sn

H(u1(z))dz+on(1).

Under the assumptions that u1
n(z+ y1

n) −u1(z) → 0 if |y1
n|→ ∞ a.e. z ∈ RN and that

u1(z+y1
n + τy1

n) → 0 a.e. z ∈ RN , together with the Brezis-Lieb Lemma, we verify the
following statements:

(A)
∫

Bρn(0)
H(u1

n(z+y1
n)−u1(z+y1

n − τy1
n))dz−

∫
Bρn(0)

H(u1(z))dz = on(1);

(B)
∫

Bρn(τy1
n−y1

n)
H(u1

n(z+y1
n)−u1(z))dz−

∫
Bρn(τy1

n−y1
n)
H(u1(z+y1

n − τy1
n))dz = on(1);

(C)
∫

Sn

H(u1
n(z+y1

n)−u1(z+y1
n − τy1

n))dz−
∫

Sn

H(u1(z))dz = on(1);

(D)
∫

Bρn(0)
H(u1(z))dz =

∫
RN

H(u1(z))dz+on(1);

(E)
∫

Bρn(τy1
n−y1

n)
H(u1(z+y1

n − τy1
n))dz =

∫
RN

H(u1(z))dz+on(1);

(F)
∫

Sn

H(u1(z))dz = on(1).

First, we will verify that condition (A) is true. By (1.1.3) with 0 ≤ p≤ 2∗ − 2 and by
mean value theorem, there exists 0 ≤ θ ≤ 1, such that
∫

Bρn(0)

(
H(u1

n(z+y1
n)−u1(z+y1

n − τy1
n))−H(u1

n(z+y1
n))
)
dz

≤
∫

Bρn(0)
h(u1

n(z+y1
n)+ θ(z)u1(z+y1

n − τy1
n))(u1

n(z+y1
n)

+ θ(z)u1(z+y1
n − τy1

n)).u1(z+y1
n − τy1

n)dz

≤ ε
∫

Bρn(0)
(u1

n(z+y1
n)+ θ(z)u1(z+y1

n − τy1
n))u1(z+y1

n − τy1
n)dz

+C
∫

Bρn(0)
|u1

n(z+y1
n)+ θ(z)u1(z+y1

n − τy1
n)|p−1u1(z+y1

n − τy1
n)dz

≤ ε∥u1
n∥2

H1(RN )

(∫
Bρn(0)

|u1(z+y1
n−τy1

n)|2dz
)1/2

+ ε
∫

Bρn(0)
|u1(z+y1

n−τy1
n)|2dz
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+C∥u1
n∥2

H1(RN )

(∫
Bρn(0)

|u1(z+y1
n−τy1

n)|p−2dz

)p−1
p−2

+C
∫

Bρn(0)
|u1(z+y1

n−τy1
n)|pdz.

Consider the following change of variables x= z+y1
n − τy1

n. Thus, if |z|< ρ= |y1
n − τy1

n|
2 ,

we have |z+ y1
n − τy1

n|> |y1
n − τy1

n|−|z|> |y1
n − τy1

n|
2 = ρn → ∞. Therefore, given ε > 0,

there exists n0 ∈ N such that, for all n≥ n0, we have
∫

Bρn(0)
|u1(z+y1

n − τy1
n)|2dz ≤

∫
RN \Bρn(0)

|u1(z)|2dz < ε∫
Bρn(0)

|u1(z+y1
n − τy1

n)|pdz ≤
∫
RN \Bρn(0)

|u1(z)|pdz < ε.

Therefore, we show (A) and in an entirely analogous way we show (B), because using
the mean value theorem again, there exists 0 ≤ θ ≤ 1, such that
∫

Bρn(τy1
n−y1

n)

(
H(u1

n(z+y1
n)−u1(z))−H(u1

n(z+y1
n))
)
dz

≤
∫

Bρn(τy1
n−y1

n)
h(u1

n(z+y1
n)+ θu1(z))(u1

n(z+y1
n)+ θu1(z)).u1(z)dz

≤ ε
∫

Bρn(τy1
n−y1

n)
|u1

n(z+y1
n)+ θu1(z)||u1(z)|dz

+C
∫

Bρn(τy1
n−y1

n)
|u1

n(z+y1
n)+ θu1(z)|p−1|u1(z)|dz

≤ ε∥u1
n∥2

H1(RN )

(∫
Bρn(τy1

n−y1
n)

|u1(z+y1
n − τy1

n)|2dz
)1/2

+ ε
∫

Bρn(τy1
n−y1

n)
|u1(z+y1

n − τy1
n)|2dz

+C∥u1
n∥2

H1(RN )

(∫
Bρn(τy1

n−y1
n)

|u1(z+y1
n−τy1

n)|p−2dz

)p−1
p−2

+C
∫

Bρn(τy1
n−y1

n)
|u1(z+y1

n−τy1
n)|pdz,

and the result (B) follows as made in (A). Next, we will check (C). In fact, we first
consider w1(z) = u1(z+y1

n − τy1
n). So, we have to

∫
Sn

(
H(u1

n(z+y1
n)−u1(z+y1

n − τy1
n))−H(u1(z))

)
dz

≤
∫

Sn

h(u1
n(z+y1

n)+ θ(z)w1(z))(u1
n(z+y1

n)+ θ(z)w1(z))w1(z)dz

≤ ε∥u1
n∥2

H1(RN )

(∫
Sn

|w1(z)|2dz
)1/2

+ ε
∫

Sn

|w1(z)|2dz

+C∥u1
n∥p−1

H1(RN )

(∫
Sn

|w1(z)|p−2dz
)p−2

p−1
+C

∫
Sn

|w1(z)|pdz.
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We claim that ∫
Sn

|w1(z)|2dz,
∫

Sn

|w1(z)|pdz = on(1).

Indeed, making a change of variable x = z− (τy1
n − y1

n) together with |z+ y1
n − τy1

n|>

|y1
n − τy1

n|−|z|> |y1
n − τy1

n|
2 = ρn → ∞ when n → ∞ and that u1 ∈ Lp(RN ), 2 ≤ p < 2∗,

we have
∫

Sn

|w1(z)|2dz =
∫

Sn

|w1(z+y1
n − τy1

n)|2dz

≤
∫
RN \Bρn(τy1

n−y1
n)

|w1(z+y1
n − τy1

n)|2dz

=
∫
RN \Bρn(0)

|w1(z)|2dz < ε

and
∫

Sn

|w1(z)|pdz =
∫

Sn

|w1(z+y1
n − τy1

n)|pdz

≤
∫
RN \Bρn(τy1

n−y1
n)

|w1(z+y1
n − τy1

n)|pdz

≤
∫
RN \Bρn(0)

|w1(z)|pdz < ε.

We check item (C). In an entirely analogous way as done in item (C) and using
the growth of H from (1.1.4), we show (F ). Next we will verify (D). In fact, using
u1 ∈ Lp(RN ), 2 ≤ p < 2∗, we have

∫
RN \Bρn(0)

H(u1(z))dz =
∫

0<|z|<ρn

H(u1(z))dz+
∫

|z|>ρn

H(u1(z))dz

−
∫

0<|z|<ρn

H(u1(z))dz = on(1).

Similarly, (E) also holds. Therefore, the proof of all six statements are complete and
(1.3.44) is holds.

From (1.3.43) and (1.3.44) we obtain that I∞(u2
n) = I∞(u1

n) − 2I∞(u1) +on(1) which
complete the proof of (1.3.38).

Since (u1
n) is a (PS) sequence of I∞, then I∞(u2

n) converges to a constant. To
complete the prove we will show that if n→ ∞, then (1.3.34) is hold. Indeed,

|I ′
∞(u2

n)φ| =
∣∣∣∣∫RN

(ξ∞∇(u1
n −γn)∇φ+(u1

n −γn)φ)dx−
∫
RN

h(u1
n −γn)(u1

n −γ)φdx
∣∣∣∣
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≤
∣∣∣∣∫RN

(ξ∞∇u1
n∇φ+u1

nφ)dx−
∫
RN
h(u1

n)u1
nφdx+

∫
RN

(ξ∞∇γn∇φ+γnφ)dx

−
∫
RN
h(γn)γnφdx−

∫
RN
h(u1

n −γn)(u1
n −γ)φdx

+
∫
RN
h(u1

n)u1
nφdx+

∫
RN
h(γn)γnφdx

∣∣∣∣ .
And since (u1

n) is a (PS) sequence of I∞ we have that
∫
RN

(ξ∞∇u1
n∇φ+u1

nφ)dx−
∫
RN

h(u1
n)u1

nφdx= on(1). (1.3.45)

From (1.3.45), using the definition of γn and from the triangular inequality we obtain
that

|I ′
∞(u2

n)φ|≤K1
n +K2

n +on(1), (1.3.46)

where

K1
n :=

∫
RN

(ξ∞∇γn∇φ+γnφ)dx

=
∫
RN

(ξ∞∇(u1(x−y1
n)−u1(τx−y1

n))∇φ+(u1(x−y1
n)−u1(τx−y1

n))φ)dx

and

K2
n :=

∫
RN

|h(γn)||γn||φ|dx

=
∫
RN

|h(u1(x−y1
n)−u1(τx−y1

n))||u1(x−y1
n)−u1(τx−y1

n)||φ|dx.

We will first show that K1
n = on(1). In fact, let us consider φ ∈ C∞

0 (RN ), with
Ω = supp(φ), |y1

n|→ ∞, |∇u1|∈ L2(RN ) and using Hölder’s inequality we have
∫
RN

|∇u1(x−y1
n)||∇φ|dx=

∫
Ω

|∇u1(x−y1
n)||∇φ|dx

≤
(∫

Ω
|∇u1(x−y1

n)|2dx
)1/2

∥φ∥H1(RN )< ε,

when n→ ∞. Similarly
∫
RN

|∇u1(τx−y1
n)||∇φ|dx < ε and

∫
Ω

|u1(τx−y1
n)||φ|dx < ε,
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thus implying that K1
n = on(1). The next step is to also show that K2

n = on(1). Using
the growth of h from (1.1.3) and an argument analogous to the previous one we have
∫
RN

|h(u1(x−y1
n)−u1(τx−y1

n))(u1(x−y1
n)−u1(τx−y1

n))φ|dx

≤ ε
∫
RN

|u1(x−y1
n)−u1(τx−y1

n)||φ|dx+C
∫
RN

|u1(x−y1
n)−u1(τx−y1

n)|p−1|φ|dx

≤ C1

∫
RN

|u1(x−y1
n)||φ|dx+C1

∫
RN

|u1(τx−y1
n)||φ|dx

+C2

∫
RN

|u1(x−y1
n)|p−1|φ|dx+C2

∫
RN

|u1(τx−y1
n)|p−1|φ|dx

< ε.

Therefore we conclude that K2
n = on(1). In this way, (1.3.34) holds, and thus we

verify that (u2
n) is a (PS) sequence of I∞, also in Case II.

Now proceeding by iteration, we note that if u is a non-trivial critical point of I∞ and
ω is a minimum energy solution of the equation (1.1.4) given by Berestycki and Lions,
then we have that

I∞(u) ≥ I∞(ω)> 0. (1.3.47)

On the other hand, from (1.3.38) and item (ii) we obtain

I∞(u2
n) = I∞(u1

n)−2I∞(u1)+on(1)

= I(un)− I(u0)−2I∞(u1)+on(1)

= c− I(u0)−2I∞(u1)+on(1). (1.3.48)

From (1.3.45) and (1.3.46) the iteration must end at some index k ∈ N and the proof of
lemma is complete.

In the next result, we verify that the functional I restricted to Eτ , associated with
the problem (1.1.4), satisfying (Ce)c for c below the level 2m∞.

Lemma 1.3.6. The functional I restricted to Eτ satisfies (Ce)c for any c < 2m∞.

Proof. Let (un) ⊂ Eτ such that

I(un) → c < 2m∞ and (1+∥un∥)
∥∥∥I ′|Eτ (un)

∥∥∥→ 0.
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This imply that I ′|Eτ (un) → 0 and by Lemma 1.3.4 we have I ′(un) → 0. Moreover,
by Lemma 1.3.1, (un) is a bounded sequence, up to a subsequence, un ⇀u0 in E and
I ′(u0)φ= 0, for all φ ∈ E. In particular,

I ′(u0)u0 =
∫
RN

(
ξ(x)|∇u0|2+u2

0
)
dx−

∫
RN

f(x,u0)u0dx= 0. (1.3.49)

It follows from the hypothesis (f5) and (1.3.49) that

I(u0) = 1
2∥u0∥2−

∫
RN

F (x,u0)dx

=
∫
RN

(1
2f(x,u0)u0 −F (x,u0)

)
dx≥ 0. (1.3.50)

If (un) does not converge strongly to u0 in the norm of E then, by Lemma 1.3.5 there
exists two integers k1 ≥ 1 or k2 ≥ 1, k1 solutions uj , j = 1, ...,k1 and k2 τ -antisymmetric
solutions uj , j = k1 +1, ...,k1 +k2 of equation (1.1.4), satisfying

c= lim
n→∞I(un) = I(u0)+2

k1∑
j=1

I∞(uj)+
k1+k2∑

j=k1+1
I∞(uj) (1.3.51)

≥ I(u0)+2k1m∞ +
k1+k2∑

j=k1+1
I∞(uj) ≥ 2m∞,

since I∞(uj) ≥ 2m∞ for all nontrivial τ -antisymmetric solution uj of (1.1.4), which
contradicts our assumption. Therefore, up to a subsequence, un → u0 ∈ Eτ and the
lemma is proved.

Lemma 1.3.7. Let mτ
∞ := inf

u∈P
I∞(u), then

2m∞ ≤mτ
∞.

Proof. Let us show first that if u ∈ P , then u+, u− ∈ P . Using a change of variables and
that G(s) is an even fuction and defining Aτ := {x : −u(τx) ≥ 0}, we obtain

J(u+) =
∫

{x:u(x)≥0}
|∇u|2dx−2∗

∫
{x:u(x)≥0}

G∞(u)dx

=
∫

Aτ
|∇(−u(τx))|2dx−2∗

∫
Aτ
G∞(−u(τx))dx

=
∫

{z:u(z)≤0}
|∇u|2dz−2∗

∫
{z:u(z)<0}

G∞(−u(z))dz
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=
∫
RN

|∇u−|2dz−2∗
∫
RN

G∞(u−)dz

= J(u−).

On the other hand,

0 = J(u) =
∫

{x:u(x)≥0}
|∇u|2dx−2∗

∫
{x:u(x)≥0}

G∞(u)dx

+
∫

{x:u(x)<0}
|∇u|2dx−2∗

∫
{x:u(x)<0}

G∞(u)dx

=
∫
RN

|∇u+|2dx−2∗
∫
RN

G∞(u+)dx

+
∫
RN

|∇u−|2dx−2∗
∫
RN

G∞(u−)dx

= J(u+)+J(u−) = 2J(u+) = 2J(u−).

Therefore u+, u− ∈ P . Now, since H is even we have

I∞(u+) =
∫

{x:u(x)≥0}
(ξ∞|∇u|2+u2)dx−

∫
{x:u(x)≥0}

H(u)dx

=
∫

Aτ
(ξ∞|∇(−u(τx))|2+|−u(τx)|2)dx−

∫
Aτ
H(−u(τx))dx

=
∫

{z:u(z)≤0}
(ξ∞|∇u|2+u2)dz−

∫
{z:u(z)≤0}

H(−u)dz

=
∫
RN

(ξ∞|∇u−|2+(u−)2)dz−
∫
RN

H(u−)dz

= I∞(u−).

Finally,

I∞(u) =
∫

{x:u(x)≥0}
(ξ∞|∇u|2+u2)dx−

∫
{x:u(x)≥0}

H(u)dx

+
∫

{x:u(x)<0}
(ξ∞|∇u|2+u2)dx−

∫
{x:u(x)<0}

H(u)dx

=
∫
RN

(ξ∞|∇u+|2+|u+|2)dx−
∫
RN

H(u+)dx

+
∫
RN

(ξ∞|∇u−|2+|u−|2)dx−
∫
RN

H(u−)dx

= I∞(u+)+ I∞(u−).
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Therefore, for all u ∈ P we have

I∞(u) = I∞(u+)+ I∞(u−) = 2I∞(u+) ≥ 2m∞,

thus,
mτ

∞ = inf
u∈P

I∞(u) ≥ 2m∞.

Remark 1.3.5. If zy(x) = ω(x−y)−ω(x− τy), then tzy as in (1.3.13) is bounded when
|y|→ ∞ and |y− τy|→ ∞.

Lemma 1.3.8. Suppose ξ satisfies (ξ1)− (ξ4) and either (1.1.9) or (1.1.10). Then

cτ < 2m∞.

Proof. Denote t= tzy , for simplicity of notation. Since I∞ is translation invariance we
obtain

I
(
zy

(
.

t

))
= tN−2

2

∫
RN

ξ(tx)|∇ω(x−y)|2dx+ tN−2

2

∫
RN

ξ(tx)|∇ω(x− τy)|2dx

−2t
N−2

2

∫
RN

ξ(tx)∇ω(x−y)∇ω(x− τy)dx+ tN

2

∫
RN

ω2(x−y)dx

+t
N

2

∫
RN

ω2(x− τy)dx−2t
N

2

∫
RN

ω(x−y)ω(x− τy)dx

−tN
∫
RN

F (tx,ω(x−y)−ω(x− τy))dx

= I∞

(
ω
(
.

t
−y

))
+ I∞

(
ω
(
.

t
− τy

))
+t

N−2

2

∫
RN

(ξ(tx)− ξ∞)|∇ω(x−y)|2dx

+t
N−2

2

∫
RN

(ξ(tx)− ξ∞)|∇ω(x− τy)|2dx

−tN−2
∫
RN

ξ(tx)∇ω(x−y)∇ω(x− τy)dx

−tN
∫
RN

ω(x−y)ω(x− τy)dx

+tN
∫
RN

(
H(ω(x−y))−F (tx,ω(x−y))

)
dx

+tN
∫
RN

(
H(ω(x− τy))−F (tx,ω(x− τy))

)
dx

−tN
∫
RN

F (tx,ω(x−y)−ω(x− τy))dx+ tN
∫
RN

F (tx,ω(x−y))dx
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+tN
∫
RN

F (tx,ω(x− τy))dx

= I∞

(
ω
(
.

t

))
+ I∞

(
ω
(
.

t

))
+R(ξ,ξ∞, |y|, |y− τy|), (1.3.52)

where

R(ξ,ξ∞, |y|, |y− τy|) = tN−2

2

∫
RN

(ξ(tx)− ξ∞)|∇ω(x−y)|2dx

+ tN−2

2

∫
RN

(ξ(tx)− ξ∞)|∇ω(x− τy)|2dx− tN−2
∫
RN

ξ(tx)∇ω(x−y)∇ω(x− τy)dx

− tN
∫
RN

ω(x−y)ω(x− τy)dx+ tN
∫
RN

(
H(ω(x−y))−F (tx,ω(x−y))

)
dx

+ tN
∫
RN

(
H(ω(x− τy))−F (tx,ω(x− τy))

)
dx− tN

∫
RN
F (tx,ω(x−y)−ω(x− τy))dx

+ tN
∫
RN

F (tx,ω(x−y))dx+ tN
∫
RN

F (tx,ω(x− τy))dx. (1.3.53)

In order to evaluate the sum
∫
RN

F (tx,ω(x−y)−ω(x− τy))dx−
∫
RN

F (tx,ω(x−y))dx−
∫
RN

F (tx,ω(x− τy))dx,

we use hypothesis (f7). The Theorem A, (1.1.3) with ε > 0 and 2< p < 2∗, give us

∣∣∣F (tx,ω(x−y) − ω(x− τy))−F (tx,ω(x−y))−F (tx,ω(x− τy))
∣∣∣

≤ 2
[
|f(tx,ω(x−y))| |ω(x− τy)|+ |f(tx,ω(x− τy))| |ω(x−y)|

]
≤ 2ε |ω(x−y)| |ω(x− τy))|+C |ω(x−y)|p−1 |ω(x− τy)|

+2ε |ω(x− τy)| |ω(x−y)|+C |ω(x− τy)|p−1 |ω(x−y)| .

It follows from the above estimate and the invariance of translation of the integral
that

∫
RN

∣∣∣F (tx,ω(x−y)−ω(x− τy))−F (tx,ω(x−y))−F (tx,ω(x− τy))
∣∣∣dx

≤ 4ε
∫
RN

∣∣∣ω(x−y)
∣∣∣∣∣∣ω(x− τy)

∣∣∣dx+C
∫
RN

∣∣∣ω(x−y)
∣∣∣p−1∣∣∣ω(x− τy)

∣∣∣dx
+C

∫
RN

∣∣∣ω(x− τy)
∣∣∣p−1∣∣∣ω(x−y)

∣∣∣dx
= 4ε

∫
RN

∣∣∣ω(z)
∣∣∣∣∣∣ω(z+y− τy)

∣∣∣dz+C
∫
RN

∣∣∣ω(z)
∣∣∣p−1∣∣∣ω(z+y− τy)

∣∣∣dz
+C

∫
RN

∣∣∣ω(ẑ)
∣∣∣p−1∣∣∣ω(ẑ− (y− τy)

∣∣∣dẑ
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= 4ε
∫
RN

∣∣∣ω(z)
∣∣∣∣∣∣ω(z+y− τy)

∣∣∣dz+2C
∫
RN

∣∣∣ω(z)
∣∣∣p−1∣∣∣ω(z+y− τy)

∣∣∣dz.
Now we estimate the integrals above. Let 0 < δ < 1/2 to be chosen later, define

Ay :=B |y−τy|
p (1−δ)(0) ⊂ RN and Ry := |y− τy|

p
(1− δ). Since ω is solution of (1.1.4), we

have |ω(x)|≤ Ce−β|x| for all β ∈
(

0,
√

1/ξ∞

)
and

∫
Ay

|ω(x− y)|p−1|ω(x− τy)|dx=
∫

Ay

|ω(z)|p−1|ω(z+y− τy)|dz

≤
(∫

RN
(|ω(z)|p−1)

p
p−1dz

)p−1
p

(∫
Ay

|ω(z+y− τy)|pdz
)1/p

=
(∫

RN
|ω(z)|pdz

)p−1
p

(∫
Ay

|ω(z+y− τy)|pdz
)1/p

= ∥ω∥p−1
Lp

(∫
Ay

|ω(z+y− τy)|pdz
)1/p

≤ C∥ω∥p−1
Lp

(∫
Ay

e−βp|z+y−τy|dz

)1/p

≤ C

(
e−βp|y−τy|

∫
Ay

e−βp|z|dz

)1/p

= Ce−β|y−τy|
(∫

Ay

e−βp|z|dz

)1/p

, (1.3.54)

making change of variable f̃ : RN → RN , z 7→ −r with determinant of the Jacobian given
by det(J(z1, · · · , zN )) = rN−1, and by change of variable theorem , we have that

∫
Ay

e−βp|z|dz =
∫ |y−τy|

p (1−δ)

0
eβprdet(J(z1, · · · , zN ))dr

=
∫ |y−τy|

p (1−δ)

0
eβprrN−1dr.

Replacing in (1.3.54)

∫
Ay

|ω(x − y)|p−1|ω(x− τy)|dx≤ Ce−β|y−τy|

∫ |y−τy|
p (1−δ)

0
eβprrN−1dr

1/p
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≤ Ce−β|y−τy|

eβp
|y−τy|

p (1−δ)
∫ |y−τy|

p (1−δ)

0
rN−1dr

1/p

= Ce−β|y−τy| p
p eβ

|y−τy|
p (1−δ)

(
|y− τy|

p
(1− δ)

)N/p

≤ C(δ)e−β|y−τy| p−1
p e−β|y−τy| δ

p |y− τy|N/p

≤ C(δ)e−β|y−τy| p−1
p , (1.3.55)

since 1< p−1 and 0< δ < 1/2. Moreover,
∫
RN \Ay

|ω(x − y)|p−1|ω(x− τy)|dx=
∫
RN \Ay

|ω(z)|p−1|ω(z+y− τy)|dz

≤
(∫

RN \Ay

(|w(z)|p−1)
p

p−1dz

)p−1
p (∫

RN
|w(z+y− τy)|pdz

)1/p

=
(∫

RN \Ay

|w(z)|pdz
)p−1

p (∫
RN

|w(z)|pdz
)1/p

≤ C ∥ω∥Lp

(∫
RN \Ay

e−βp|z|dz

)p−1
p

= C ∥ω∥p−1
Lp

(∫ ∞
|y−τy|

p (1−δ)
e−βprrN−1dr

)p−1
p

.

Now, using integration by parts, for any k > 0 we have
∫
e−krrN−1dr = e−krP (r),

where

P (r) := rN−1

k
− (N −1)

k2 rN−2 + (N −1)(N −2)
k3 rN−3 + . . .+(−1)N+1 (N −1)!

kN
.

Thus, ∫ ∞

Ry

e−krrN−1dr = e−krP (r)
∣∣∣∞
Ry

= e−kRyP (Ry). (1.3.56)

Therefore, taking k := βp, we obtain that
∫
RN \Ay

|ω(x − y)|p−1|ω(x− τy)|dx
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≤ C ∥ω∥Lp

[
e−βp|y−τy| 1−δ

p P

(
|y− τy|1− δ

p

)]p−1
p

= C∥w∥Lpe−βp|y−τy|(1−δ) p−1
p P

(
|y− τy|1− δ

p

)p−1
p

= C∥w∥Lpe−βp|y−τy|(1−2δ) p−1
p

[
eβp|y−τy|δP

(
|y− τy|1− δ

p

)]p−1
p

≤ C(δ)∥ω∥Lp e
−β|y−τy| p−1

p (1−2δ).

Hence, taking δ sufficiently small such that 0< (1−2δ)< 1, we obtain
∫
RN \Ay

|ω(x−y)|p−1|ω(x− τy)|dx≤ C(δ)e−β|y−τy| p−1
p (1−2δ). (1.3.57)

Thus, from (1.3.55) and (1.3.57) we have
∫
RN

|ω(x−y)|p−1|ω(x− τy)|dx≤ Ce−β|y−τy| p−1
p (1−2δ). (1.3.58)

For p = 2 we argue similarly and define Ay = B |y−τy|
2 (1−δ)(0) ⊂ RN . Choosing

Ry := |y− τy|
2 (1− δ) and using Hölder’s inequality we obtain

∫
Ay

ω(z)ω(z+y− τy)dz =
∫

Ay

ω(z)ω(z+y− τy)dz

≤
(∫

RN
|ω(z)|2dz

)1/2(∫
Ay

|ω(z+y− τy)|2dz
)1/2

≤ C∥ω∥L2

(∫
Ay

e−β2|z+y−τy|dz

)1/2

≤ Ce−β|y−τy|

∫ |y−τy|
2 (1−δ)

0
eβ2rrN−1dr

1/2

≤ Ce−β|y−τy|

e2β
|y−τy|

2 (1−δ)
∫ |y−τy|

2 (1−δ)

0
rN−1dr

1/2

= Ce−β|y−τy|eβ
|y−τy|

2 (1−δ)
(

|y− τy|
2 (1− δ)

)N/2

≤ C(δ)e−β
|y−τy|

2 . (1.3.59)
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On the other hand, using Hölder’s inequality and (1.3.56), it follows
∫
RN \Ay

ω(x−y)ω(x− τy)dx=
∫
RN \Ay

ω(z)ω(z+y− τy)dz

≤
(∫

RN \Ay

|ω(z)|2dz
)1/2(∫

RN
|ω(z+y− τy)|2dz

)1/2

≤ C

(∫
RN \Ay

|ω(z)|2dz
)1/2(∫

RN
e−2β|z|dz

)1/2

≤ C∥ω∥L2

(∫ ∞

|y−τy| 1−δ
2
e−2βrrN−1dr

)1/2

≤ C∥ω∥L2e−β|y−τy| 1−2δ
2

(
eβ|y−τy|δP

(
|y− τy|1− δ

2

))1/2

≤ C(δ)e−β|y−τy| 1−2δ
2 . (1.3.60)

By (1.3.59), (1.3.60) and 0< (1−2δ)< 1 it holds that
∫
RN

ω(x−y)ω(x− τy)dx =
∫
RN

ω(z)ω(z+y− τy)dz

=
∫

Ay

ω(z)ω(z+y− τy)dz

+
∫
RN \Ay

ω(z)ω(z+y− τy)dz

≤ C(δ)e−β
|y−τy|

2 +C(δ)e−β|y−τy| (1−2δ)
2

≤ C(δ)e−β|y−τy|1/2(1−2δ). (1.3.61)

Arguing as in the proof of inequality (1.3.61), we obtain
∫
RN

∇ω(x−y)∇ω(x− τy)dx≤ Ce−β|y−τy| 1
2 (1−2δ). (1.3.62)

We consider β1 <β <
√

1/ξ∞ or β2 <β <
√

1/ξ∞. By (1.1.9) and a change of variable,
there exists a positive constant C such that

∫
RN

(ξ(x)− ξ∞)|∇ω(x−y)|2dx <−C
∫
RN

e−β1|x||∇ω(x−y)|2dx

= −C
∫
RN

e−β1|z+y||∇ω(z)|2dz

≤ −Ce−β1|y|
∫
RN

e−β1|z||∇ω(z)|2dz
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≤ −Ce−β1|y|. (1.3.63)

Similarly, we obtain
∫
RN

(ξ(x)− ξ∞)|∇ω(x− τy)|2dx≤ −Ce−β1|τy| = −Ce−β1|y|. (1.3.64)

Or else by (1.1.10), there exists a positive constant C such that
∫
RN

|H(ω(x−y))−F (tx,ω(x−y))|dx≤ −C
∫
RN

e−β2|x||ω(x−y)|2dx

= −C
∫
RN

e−β2|z+y||ω(z)|2dz

≤ −Ce−β2|y|
∫
RN

e−β2|z||ω(z)|2dz

≤ −Ce−β2|y|. (1.3.65)

In an analogous way, we have
∫
RN

|H(ω(x− τy))−F (tx,ω(x− τy))|dx≤ −Ce−β2|τy| = −Ce−β2|y|. (1.3.66)

Now we study the sign of R(ξ,ξ∞, |y|, |y− τy|). If we consider the inequalities from
(1.3.54) to (1.3.66) in the definition of R(ξ,ξ∞, |y|, |y− τy|) in (1.3.53), then

R(ξ,ξ∞, |y|, |y− τy|) ≤ −Ce−β1|y| −Ce−β1|y| +C(δ)e−β|y−τy| (1−2δ)
2

+C(δ)e−β|y−τy| (1−2δ)
2 −Ce−β2|y| −Ce−β2|y| +C(δ)e−β|y−τy| p−1

p (1−2δ)

−Ce−β2|y| +Ce−β|y−τy|(1−2δ) +Ce−β|y−τy| 1
2 (1−2δ).

Let ỹ = (y1, . . . ,yk, . . . ,yn), τ ỹ = (y1, . . . ,yk,−yk+1, . . . ,−yn), the projection Pkỹ =
(y1, . . . ,yk,0, . . . ,0) and |ỹ− τ ỹ|= |(0, . . . ,0,2yk+1, . . . ,2yn)|= 2|(0, . . . ,0,yk+1, . . . ,yn)| be
such that |(0, . . . ,0,yk+1, . . . ,yn)|→ ∞. If we choose
y := P⊥

Γ ỹ = (0, . . . ,0,yk+1, . . . ,yn), such that 2|y|= |y− τy|, since t = tzy is bounded
and 1

2 <
p−1
p

, we obtain for |y| sufficiently large

R(ξ,ξ∞, |y|, |y− τy|) ≤ −Ce−β1|y| −Ce−β2|y| +Ce−β(1−2δ)|y| < 0. (1.3.67)
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Replacing (1.3.67) in (1.3.52) we obtain that I
(
zy

(
·
tzy

))
< 2m∞.

To finish the proof of the lemma, let us fix any y ∈ RN , |y|> 0 sufficiently large and
consider n ∈ N, n > 1 and ny, such that

I

(
zny

(
.

tny

))
= max

t>0
I
(
zny

(
.

t

))
.

Thus 0< tny < L0 and for n sufficiently large, by (1.3.52) and (1.3.67)

I

(
zny

(
.

tny

))
< 2m∞. (1.3.68)

On the other hand, by Remark 1.3.3, tny is such that

zny

(
·
tny

)
∈ P (1.3.69)

and there exists Lny > 0 such that

I∞

(
zny

(
.

Lny

))
< 0. (1.3.70)

Now fix n ∈ N, n > 1, let L= max{Lny,Ly} and for s ∈ [0,1] define the path

γn(s) = ω
(
.

L
− (sy+(1− s)ny)

)
−ω

(
.

L
− τ(sy+(1− s)ny)

)
,

γn(s) belongs to Eτ ,

γn(0) = ω
(
.

L
−ny

)
−ω

(
.

L
− τ(ny)

)
= zny

(
.

L

)
,

and
γn(1) = ω

(
.

L
−y

)
−ω

(
.

L
− τy

)
= zy

(
.

L

)
.

If we denote Xs(n) := sy+(1− s)ny, 0 ≤ s≤ 1, use the translation invariance of I∞,
then we obtain

I∞(γn(s)) = I∞
(
ω
(
.

L
−Xs(n)

)
−ω

(
.

L
− τXs(n)

))
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= I∞

(
ω
(
.

L
−Xs(n)

))
+ I∞

(
ω
(
.

L
− τXs(n)

))
+on(1)

= I∞

(
ω
(
.

L

))
+ I∞

(
ω
(
.

L

))
+on(1)< 0, (1.3.71)

for 0 ≤ s≤ 1 and all n > 1

|Xs(n)|= |sy+(1− s)ny|= |(s− sn+n)y|≥ |y|,

and

|τXs(n)−Xs(n)| = |sy+(1− s)ny− τ(sy+(1− s)ny)|

= |s(y− τy)+(1− s)n(y− τy)|

≥ |y− τy|.

For each n > 1 we consider the paths

γ0(t) :=


z0 = 0, if t= 0,
zny

(
.

t

)
, if 0< t≤ L,

and γn(s), which respectively link the pairs of vectors
{
z0, zny

( .
L

)}
and

{
zny

( .
L

)
, zy

( .
L

)}
,

and denote by γ1 the path connects the pair
{
zy( .

L
), zy

( .

Ly

)}
given by

γ1(t) := zy

(
.

tLy +(1− t)L

)
·

The succession of these paths γ1 ◦ γn ◦ γ0, belongs to set Γ and connects z0 to
z1 = zy( .

Ly
). Furthermore, I(γ1(t)) ≤ I∞(γ1(t))< 0, and I(γn(s)) ≤ I∞(γn(s))< 0, thus

max
0≤t≤1

I(γ1 ◦γn ◦γ0(t)) = I

(
znȳ

(
.

tnȳ

))
. (1.3.72)

Finally, if we take n > 1 sufficiently large, from (1.3.68), (1.3.72) and the definition
of cτ , we obtain

cτ ≤ I

(
znȳ

(
.

tnȳ

))
< 2m∞,
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and the proof of Lemma 1.3.8 is complete.

Proof of Theorem 1.1.2. Let (un) ⊂ Eτ be the sequence given by Ghoussoub-Priess
Theorem in Lemma 1.3.3. By Lemma 1.3.1 this sequence is bounded, by Remark 1.3.2

I(un) → cτ and I ′(un) → 0 in (Eτ )∗.

Up to a subsequence, un ⇀ u0 weakly in E and I ′(u0) = 0. By Lemma 1.3.5 we have
that either un → u0 strongly in E or there exists two integers k1,k2 ≥ 0, k1 solutions
uj , j = 1, ...,k1 and k2 τ -antisymmetric solutions uj , j = k1 + 1, ...,k1 + k2 of equation
(1.1.4), satisfying the conclusions of Lemma 1.3.5. Suppose the second case is holds. It
follows from Lemma 1.3.8 that cτ < 2m∞ and hence in Lemma 1.3.5 item 5 we must have
k1,k2 = 0. Otherwise, without loss of generality, if k1 ≥ 1 then by Lemma 1.3.7 we get

cτ = I(u0)+2
k1∑

j=1
I∞(uj)+

k1+k2∑
j=k1+1

I∞(uj)

≥ 2k1m∞ +(k1 +k2)mτ
∞

≥ 2k1m∞ +2(k1 +k2)m∞ ≥ 2m∞,

contrary our assumption that cτ < 2m∞. Therefore, k1 = k2 = 0, un → u0 strongly in E

and cτ = I(u0).Moreover, since I(u0) = cτ > 0, it follows that u0 ̸≡ 0, u0 is τ -antisymmetric
and hence it is a sing-changing solution of (Pτ ).



Chapter 2

Problem with ξ and V positive

In this chapter, we will deal with the problem (P) considering ξ and V as positive
functions, where V will assume some conditions and hypotheses that will be detailed
below. Additionally, within this chapter, our focus will extend to investigating the
nonautonomous and non-periodic Shrödinger equation exhibiting asymptotic growth in
RN .

2.1 Variational Setting

We consider the following problem
 −div(ξ(x)∇u)+V (x)u= f(x,u), in RN ,

u(x) → 0, as |x|→ ∞,
(P2)

with N ≥ 3, under the following assumptions on ξ, V ∈ C(RN ,R+):

(ξ1) there exists ξ0 > 0 such that ξ(x) ≥ ξ0;

(ξ2) lim
|x|→∞

ξ(x) = ξ∞;

(ξ3) ξ(x) ≨ ξ∞;

(V1) there exists V0 > 0 such that V (x) ≥ V0;

(V2) lim
|x|→∞

V (x) = V∞;

(V3) V (x) ≨ V∞.
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The hypotheses on the nonlinearity f ∈ C(RN ×R,R) are the following:

(f1) lim
s→0+

f(x,s)
s

= 0, uniformly in x ∈ RN ;

(f2) there exist a ∈ C(RN ,R+) and h ∈ C(R,R+) an even function satisfying h(s)> 0
for all s > 0, h(0) = 0 and

lim
s→∞

f(x,s)
s

= a(x), lim
|x|→∞

f(x,s)
s

= h(s),

lim
|x|→∞, s→∞

f(x,s)
s

= lim
s→∞h(s) = lim

|x|→∞
a(x) = a∞ ;

(f3) f(x,s)
s

≥ h(s), for all x ∈ RN and all s ∈ R+ and f(x,s)
s

> h(s) for all x ∈ Ω, where
Ω is a subset of positive Lebesgue measure and for all s ∈ R+;

(f4) V∞ < a∞ ≨ a(x), for all x ∈ RN ;

(f5) if we set F (x,s) =
∫ s

0
f(x,t)dt and Q(x,s) = 1

2f(x,s)s−F (x,s), then

lim
s→+∞

Q(x,s) = +∞

and there exists D ≥ 1 such that

Q(x,s)<DQ(x,t), for all x ∈ RN and 0 ≤ s < t.

The first result of this chapter can be stated as follows:

Theorem 2.1.1. Suppose f satisfies (f1)−(f5), ξ and V satisfy (ξ1)−(ξ3) and (V1)−(V3),
respectively. Then problem (P2) has a positive solution u ∈H1(RN ).

The next remarks are the same as those of the first chapter here repeat for completeness,
and their proofs will be omitted.

Remark 2.1.1. Hypothesis (f2) implies that there exists a constant a0 > 0 such that

a(x) ≤ a0, for all x ∈ RN . (2.1.1)
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Remark 2.1.2. Note that conditions (f1), (f2) and (2.1.1) imply that for a given ε > 0
and 2 ≤ p≤ 2∗, there exists 0< C = C(ε,p) such that

|f(x,s)|≤ εs+C|s|p−1 (2.1.2)

and
|F (x,s)|≤ ε

2s
2 +C|s|p. (2.1.3)

Remark 2.1.3. By (f1) and (f5) we obtain that Q(x,s)> 0 for s > 0 and x ∈ RN . More-
over, by (f2) and (f5) it follows that 0 ≤ 1

2h(s)s2 −H(s) ≤D
(1

2h(t)t2 −H(t)
)

for 0 ≤

s≤ t, if H(s) =
∫ s

0
h(ζ)ζdζ and by assumptions (f1) and (f5) we have 1

2f(x,s)s2 −H(s)> 0
for s > 0.

In the second part of this chapter, we look for a nodal solution. In this case, we
assume some type of symmetry for the problem. More specifically, we consider the
problem 

−div(ξ(x)∇u)+V (x)u= f(x,u), in RN ,

u(τx) = −u(x),
u(x) → 0, as |x|→ ∞,

(P ′
τ )

where N ≥ 3 and τ : RN → RN is a nontrivial orthogonal involution, in other words, it is
a linear orthogonal transformation in RN such that τ ̸= Id and τ2 = Id, with Id being
the identity operator in RN . A solution u of (P ′

τ ) is called a τ -antisymmetric solution.
In this new setting, we need some technical assumptions. So we shall suppose that

ξ, V and f satisfies:

(ξ4) ξ(τx) = ξ(x), for all x ∈ RN ;

(V4) V (τx) = V (x), for all x ∈ RN ;

(f6) f(τx,s) = −f(x,−s), for all x ∈ RN , s ∈ R;

(f7) there exists C > 1, such that f(x,s) ≤ Cf(x,t), with 0 ≤ s≤ t, for all x ∈ RN .

Remark 2.1.4. We do not assume that f(x,s)/s for s > 0 is increasing in s.

Consider the space H1(RN ) = {u ∈ L2(RN ) : ∇u ∈ (L2(RN ))N } equipped with the
norm ∥u∥2=

∫
RN

(ξ∞|∇u|2+V∞u
2)dx and the limit problem

−div(ξ∞∇u)+V∞u= h(u)u, in RN . (2.1.4)
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The functional associated with the equation (2.1.4) is given by

I∞(u) = 1
2

∫
RN

(ξ∞|∇u|2+V∞u
2)dx−

∫
RN

H(u)dx. (2.1.5)

It is well defined and in C1(H1(RN ),R) with

I ′
∞(u)φ=

∫
RN

(ξ∞∇u∇φ+V∞uφ)dx−
∫
RN

h(u)uφdx, for all u, φ ∈H1(RN ).

Hence, critical points of the functional I∞ are weak solutions of problem (2.1.4). The
functional I∞ is continuous, I∞(0) = 0 and if ω is a positive solutions of (2.1.4), the
maximum of I∞

(
ω
( ·
t

))
> 0 holds on t= 1. Furthermore, there exists a real number

L > 0, large enough such that I∞

(
ω
( ·
t

))
< 0 for all t ≥ L. Thus, there exists L0 > 1

such that
I∞

(
ω
( ·
L0

))
= 0 (2.1.6)

and
I∞

(
ω
( ·
t

))
< 0, if t≥ L0. (2.1.7)

Therefore, consider

β ∈
(

0,
√
V∞
ξ∞

)
. (2.1.8)

Our result concerning nodal solution is stated next.

Theorem 2.1.2. Assume that ξ and V satisfy the hypotheses (ξ1)− (ξ4) and (V1)− (V4),
respectively, and f satisfies (f1)− (f7). Then3 problem (P ′

τ ) has a sign-changing solution
provided one of the following conditions holds:

ξ(x) ≤ ξ∞ −Ce−β1|x|, for all x ∈ RN (2.1.9)

or
V (x) ≤ V∞ −Ce−β2|x|, for all x ∈ RN (2.1.10)

or
F (x,s) ≥H(s)+Ce−β3|x||s|2, for all x ∈ RN , s ∈ R, (2.1.11)

for constants C > 0 and 0< βi < β, with i= 1,2,3.
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Less than from equivalences and similarities in Chapter 1 we will use the same
notations. Any solution u of the limit problem (2.1.4) satisfies Pohozaev identity

N −2
2

∫
RN

|∇u|2dx=N
∫
RN

G∞(u)dx, (2.1.12)

where G∞(u) = 1
ξ∞

(
H(u)− V∞

2 u2
)

. We define the Pohozaev manifold as

P =
{
u ∈H1(RN )\{0} : J(u) = 0

}
, (2.1.13)

where
J(u) := N −2

2

∫
RN

|∇u|2dx−N
∫
RN

G∞(u)dx, (2.1.14)

and denote
m∞ := inf

u∈P
I∞(u). (2.1.15)

Remark 2.1.5. Note that

G∞(ζ) = 1
ξ∞

∫ ζ

0
(h(s)s−V∞s)ds > 0, (2.1.16)

implies P ̸= ∅.

Lemma 2.1.1. Let J :H1(RN ) → R be the functional (2.1.14). Then

(i) P = {u ∈H1(RN )\{0} : J(u) = 0} is closed;

(ii) P is a manifold of class C1;

(iii) there exists σ > 0 such that ∥u∥> σ for all u ∈ P.

Proof. Although the proof follows the same way as the previous chapter, we will show
the necessary adaptations. The first follows exactly as the proof of item (i) of Lemma
1.1.1. Using the Remark 2.1.3 and g∞(u) := 1

ξ∞
(h(u)u−V∞u), we obtain

J ′(u)u= 2N
∫
RN

(
H(u)− h(u)u2

2

)
dx < 0,
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which implies J ′(u) ̸= 0 and hence P is a C1 manifold, and we prove item (ii). Finally,
for the proof of item (iii), let u ∈ P and 2∗ = 2N/(N −2), then we have

N −2
2

∫
RN

|∇u|2dx−N
∫
RN

G∞(u)dx= 0∫
RN

(
ξ∞|∇u|2+ N

N −2V∞u
2
)
dx= 2∗

∫
RN

H(u)dx.

Then, taking M := min
{
ξ∞,

V∞N

N −2

}
and using (f3), we obtain

M∥u∥2≤ 2∗
∫
RN

H(u)dx≤ 2∗
∫
RN

F (x,u)dx.

And we finish the proof the same way as the proof of Lemma 1.1.1.

The next result is the same as Lemma 1.1.2 which will be stated for completeness.

Lemma 2.1.2. If f satisfies (f1) − (f3), (un) is a bounded sequence and un ⇀ u0 in
H1(RN ), then

f(x,un)−f(x,un −u0) → f(x,u0), in H−1(RN ) (2.1.17)

and ∫
RN

|F (x,un)−F (x,un −u0)−F (x,u0)|dx→ 0. (2.1.18)

Furthermore,

h(un)un −h(un −u0)(un −u0) → h(u0)u0, in H−1(RN ) (2.1.19)

and ∫
RN

|H(un)−H(un −u0)−H(u0)|dx→ 0. (2.1.20)

Let E be the Hilbert space H1(RN ) with the inner product ⟨·, ·⟩ given by the expression

⟨u,v⟩ =
∫
RN

(ξ(x)∇u∇v+V (x)uv)dx

and the norm by
∥u∥2=

∫
RN

(ξ(x)|∇u|2+V (x)u2)dx, (2.1.21)
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which is equivalent to the usual norm and the norm (1.1.25) because of (ξ1), (ξ3), (V1)
and (V3). The functional I : E → R associated with (P2) is given by

I(u) = 1
2

∫
RN

(ξ(x)|∇u|2+V (x)u2)dx−
∫
RN

F (x,u)dx, (2.1.22)

is well defined, belongs to C1(E,R) and

I ′(u)φ=
∫
RN

(ξ(x)∇u∇φ+V (x)uφ)dx−
∫
RN

f(x,u)φdx, for all u,φ ∈ E.

The hypotheses (ξ3), (V3) and (f3) implies

I(u) ≤ I∞(u), for all u ∈ E. (2.1.23)

Indeed,

I(u) = 1
2

∫
RN

(ξ(x)|∇u|2+V (x)u2)dx−
∫
RN

F (x,u)dx

≤ 1
2

∫
RN

(ξ∞|∇u|2+V∞u
2)dx−

∫
RN

H(u)dx

= I∞(u), for all u ∈ E.

Let z0 = 0 and fix L > L0 such that z1 := w
( ·
L

)
and I∞(z1)< 0. Define also

c := inf
γ∈Γ

max
0≤t≤1

I(γ(t)), (2.1.24)

where Γ = {γ ∈ C([0,1],E),γ(0) = z0 and γ(1) = z1}.

Lemma 2.1.3. If (un) is a (Ce)c sequence of the functional I∞ then (un) is bounded.

Proof. This proof will be postponed to Lemma 2.3.1.

Lemma 2.1.4 (Splitting). Let (un) ⊂ E be a sequence such that I(un) → c and
I ′(un) → 0 in E∗. Then there exists u0 ∈ E such that un ⇀ u0, I ′(u0) = 0 and ei-
ther
(a) un → u0 strongly in E, or
(b) there exist k ∈ N, (yj

n) ∈ RN with |yj
n|→ ∞ and |yj

n −yj′
n |→ ∞, for j ̸= j′, j = 1, ...,k,
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and nontrivial solutions u1, ....,uk of problem (2.1.4), such that

I(un) → I(u0)+
k∑

j=1
I∞(uj) and

∥∥∥∥∥∥un −u0 −
k∑

j=1
uj(·−yj

n)
∥∥∥∥∥∥→ 0. (2.1.25)

Proof. Step 1) Since (un) is bounded, it follows the same way as step 1 of Lemma 1.1.5.
Step 2) Define now u1

n := un −u0 ∈H1(RN ). If n→ ∞, then:

(i) ∥u1
n∥2= ∥un∥2−∥u0∥2+on(1);

(ii) I∞(u1
n) → c− I(u0);

(iii) I ′
∞(u1

n) → 0.

The proof of item (i) can be done using the steps of the proof of item (i) of Lemma
1.1.5. To prove item (ii), note that the weak convergence of (un) for u0 implies u1

n ⇀ 0,
with the same calculation to obtain (1.1.31)

∫
RN

(
ξ∞|∇(un −u0)|2−ξ(x)|∇un|2+ξ(x)|∇u0|2

)
dx

=
∫
RN

(ξ∞ − ξ(x))(|∇un|2−|∇u0|2)dx+on(1) (2.1.26)

and
∫
RN

(
V∞|un −u0|2−V (x)u2

n +V (x)u2
0
)
dx

=
∫
RN

(
(V∞ −V (x))(u2

n −u2
0)dx+on(1). (2.1.27)

From (2.1.26) and (2.1.27), it follows that

I∞(u1
n) − I(un)+ I(u0) = 1

2

∫
RN

ξ∞|∇u1
n|2dx+ 1

2

∫
RN

V∞(u1
n)2dx−

∫
RN

H(u1
n)dx

−1
2

∫
RN

ξ(x)|∇un|2dx− 1
2

∫
RN

V (x)u2
ndx+

∫
RN

F (x,un)dx

+1
2

∫
RN

ξ(x)|∇u0|2dx+ 1
2

∫
RN

V (x)u2
0dx−

∫
RN

F (x,u0)dx

= 1
2

∫
RN

(
ξ∞|∇un −∇u0|2−ξ(x)|∇un|2+ξ(x)|∇u0|2

)
dx

+1
2

∫
RN

(
V∞|un −u0|2−V (x)u2

n +V (x)u2
0
)
dx

+
∫
RN

(
F (x,un)−F (x,u0)−H(u1

n)
)
dx
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=
∫
RN

(
F (x,u1

n)−H(u1
n)
)
dx+on(1). (2.1.28)

Since (un) is bounded, using the hypothesis (f2) we have
∫
RN

(
H(u1

n)−F (x,u1
n)
)
dx=

on(1). Replacing in (2.1.28) we obtain

I∞(u1
n)− I(un)+ I(u0) = on(1). (2.1.29)

To verify (iii), consider φ ∈ C∞
0 (RN ). Applying (f1), (f2), (2.1.17), (2.1.19) and the

Cauchy-Schwarz inequality, it follows that

on(1) =
〈
I ′(un),φ

〉
=
〈
I ′(u0 +u1

n),φ
〉

=
∫
RN

(ξ(x)∇(u0 +u1
n)∇φ+V (x)(u0 +u1

n)φ)dx−
∫
RN
f(x,u0 +u1

n)(u0 +u1
n)φdx

=
∫
RN

(ξ(x)∇u0∇φ+V (x)u0φ)dx−
∫
RN

f(x,u0)u0φdx

+
∫
RN

(ξ(x)∇u1
n∇φ−V (x)u1

nφ)dx−
∫
RN

h(u1
n)u1

nφdx+
∫
RN

f(x,u0)u0φdx

+
∫
RN

h(u1
n)u1

nφdx−
∫
RN

f(x,u0 +u1
n)(u0 +u1

n)φdx

= ⟨I ′(u0),φ⟩+
∫
RN

(ξ∞∇u1
n∇φ+V∞u

1
nφ)dx−

∫
RN

h(u1
n)u1

nφdx

= ⟨I ′
∞(u1

n),φ⟩−
∫
RN

f(x,u1
n)u1

nφdx+on(1)+
∫
RN

h(u1
n)u1

nφdx

= ⟨I ′
∞(u1

n),φ⟩+
[∫

RN

(
h(u1

n)u1
nφ−f(x,u1

n)u1
nφ
)
dx
]

+on(1),

since φ has compact support, u1
n → 0 in the support and then I ′

∞(u1
n) → 0 in E∗ when

n→ ∞. Therefore, (u1
n) is a (PS)c sequence of I∞.

Consider
δ := limsup

n→∞
sup

y∈RN

∫
B1(y)

|u1
n(x)|2dx.

Step 3) If δ = 0, it follows from Lions’ Lemma [24] that

u1
n → 0 in Lp(RN ), for any 2< p < 2∗. (2.1.30)

On the other hand, since (u1
n) is bounded, item (iii) implies that

I ′
∞(u1

n)u1
n =

∫
RN

(
ξ∞|∇u1

n|2+V∞(u1
n)2 −h(u1

n)(u1
n)2
)
dx→ 0, if n→ ∞. (2.1.31)
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From (2.1.14) and (2.1.30), we obtain
∫
RN

(
ξ∞|∇u1

n|2+V∞(u1
n)2
)
dx =

∫
RN

h(u1
n)(u1

n)2dx+on(1)

≤ ε
∫
RN

(u1
n)2dx+C

∫
RN

|u1
n|pdx. (2.1.32)

Therefore, (2.1.30) and (2.1.32) give us that
∥∥∥u1

n

∥∥∥→ 0, that is, un → u0 strongly in
E, and this proof the item (a).

Step 4) If δ > 0, we follow the calculations made in Step 4 of Lemma 1.1.5 of the
previous chapter and using the fact that u1

n(·+y1
n)⇀u1, for all ϕ ∈ C∞

0 (RN ), we obtain

on(1) = I ′
∞(u1

n(·+y1
n))ϕ= I ′

∞(u1)ϕ+on(1) . (2.1.33)

Step 5) Define u2
n(x) := u1

n(x) −u1(x−y1
n), and u2

n(· +y2
n) = v1

n +u1, then (u2
n) is a

(PS)c sequence of I∞. Indeed, making a change of variables,

I∞(u2
n) = 1

2

∫
RN

(
ξ∞|∇u2

n|2+V∞(u2
n)2
)
dx−

∫
RN

H(u2
n)dx

= 1
2

∫
RN

(
ξ∞|∇(u1

n(x)−u1(x−y1
n))|2+V∞|u1

n(x)−u1(x−y1
n)|2

)
dx

−
∫
RN

H(u1
n(x)−u1(x−y1

n))dx

= 1
2

∫
RN

(
ξ∞|∇(u1

n(x+y1
n)−u1(x))|2+V∞|u1

n(x+y1
n)−u1(x)|2

)
dx

−
∫
RN

H(u1
n(x+y1

n)−u1(x))dx.

On the other hand,

∥u1
n(·+y1

n)−u1∥2= ∥u1
n(·+y1

n)∥2−2⟨u1
n(·+y1

n),u1⟩+∥u1∥2. (2.1.34)

Since u1
n(·+y1

n)⇀u1 in E, ⟨u1
n(·+y1

n),φ⟩ → ⟨u1,φ⟩, for all φ∈E. In particular, if φ=u1,

we have ⟨u1
n(·+y1

n),u1⟩ → ⟨u1,u1⟩, which it follows that ⟨u1
n(·+y1

n),u1⟩ = ∥u1∥2+on(1).
Replacing in (2.1.34), we obtain

∥u1
n(·+y1

n)−u1∥2= ∥u1
n∥2−∥u1∥2+on(1). (2.1.35)
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Therefore,

I∞(u1
n)− I∞(u2

n)− I∞(u1) = 1
2

(∥∥∥u1
n

∥∥∥2
−
∥∥∥u1

n −u1
∥∥∥2

−
∥∥∥u1

∥∥∥2)
−
∫
RN

(
H(u1

n)−H(u2
n)−H(u1)

)
dx ,

and using (f3), (2.1.35) and Lemma 2.1.2, it follows

I∞(u2
n) = I∞(u1

n)− I∞(u1)+on(1). (2.1.36)

By (ii) and (iii), (u1
n) is a (PS)c sequence of I∞, hence I∞(u2

n) converges to a constant.
Finally, using (f2), (f3) and Lemma 2.1.2, from (iii) and (2.1.33), we obtain

|I ′
∞(u2

n)φ| =
∣∣∣∣∣
∫
RN

(ξ∞∇u1
n∇φ+V∞u

1
nφ)dx−

∫
RN

(ξ∞∇u1∇φ+V∞u
1φ)dx

−
∫
RN
h(u1

n)u1
nφdx+

∫
RN
h(u1)u1φdx−

∫
RN
h(u1

n −u1)(u1
n −u1)φdx

+
∫
RN

h(u1
n)u1

nφdx−
∫
RN

h(u1)u1φdx

∣∣∣∣∣
= on(1)+

∫
RN

|h(u1
n)u1

n −h(u1
n −u1)(u1

n −u1)−h(u1)u1||φ|dx

= on(1), (2.1.37)

for all φ ∈ C∞
0 (RN ). Therefore (u2

n) is a (PS)c sequence of I∞.
Step 6) Now we proceed by iteration. Note that if u is a nontrivial critical point of

I∞ and ω is the solution of (2.1.15), then

I∞(u) ≥ I∞(ω)> 0. (2.1.38)

Therefore, by (2.1.29) and (2.1.36),

I∞(u2
n) = c− I(u0)− I∞(u1)+on(1). (2.1.39)

Applying (2.1.38) and (2.1.39) the iteration must be terminated at some index k ∈ N.
Therefore, there exist k solutions to the problem (2.1.4), thus satisfying the second part
of the lemma.
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2.2 Existence of a positive solution

Lemma 2.2.1. The functional I satisfies (Ce)c for all 0 ≤ c < m∞.

Proof. Consider (un) ⊂ E and 0 ≤ c < m∞ such that

I(un) → c and (1+∥un∥)
∥∥∥I ′(un)

∥∥∥→ 0.

By Lemma 2.1.3, (un) is a bounded sequence in E and taking a subsequence if necessary,
un ⇀u0 in E. Lemma 2.1.4 give us I ′(u0) = 0 and by condition (f5)

I(u0) = 1
2

∫
RN

(ξ(x)|∇u0|2+V (x)u2
0)dx−

∫
RN

F (x,u0)dx

=
∫
RN

(1
2f(x,u0)u0 −F (x,u0)

)
dx

=
∫
RN

Q(x,u0)dx≥ 0. (2.2.1)

If un does not converge to u0 in E, applying the Lemma 2.1.4 we find k ∈ N and
nontrivial solutions u1, ...,uk of (2.1.4) satisfying

c= lim
n→∞I(un) = I(u0)+

k∑
j=1

I∞(uj) ≥ km∞ ≥m∞,

which contradicting the assumption. Therefore, un → u0 in E.

Remark 2.2.1. For each u ∈ E\{0} such that
∫
RN

G∞(u)dx > 0, there exists a unique

real number t > 0 such that u
( ·
t

)
∈ P and I∞

(
u
( ·
t

))
in the maximum of the function

t 7→ I∞

(
u
(
.

t

))
, t > 0.

In fact, consider the function g defined by

g(t) := I∞

(
u
(
.

t

))
= 1

2

∫
RN

(
ξ∞

∣∣∣∣∇u( .t
)∣∣∣∣2 +V∞

(
u
(
.

t

))2)
−
∫
RN

H
(
u
(
.

t

))
dx



2.2 Existence of a positive solution 83

making changes of variable, the function g can be rewritten as

g(t) = tN−2

2

∫
RN

ξ∞|∇u|2dx+ tN

2

∫
RN

V∞u
2dx− tN

∫
RN

H(u)dx.

Then g′(t) = 0 if and only if t= 0 or

0 = g′(t) = N −2
2 tN−3

∫
RN

ξ∞|∇u|2dx + N

2 t
N−1

∫
RN

V∞u
2dx−NtN−1

∫
RN

H(u)dx

tN−1N
∫
RN

(
H(u)− V∞

2 u2
)
dx = N −2

2 tN−3
∫
RN

ξ∞|∇u|2dx

t2 =
N −2

∫
RN

ξ∞|∇u|2dx

2N
∫
RN

G∞(u)dx
.

Let ω ∈ P be a positive, radial, ground state solution of equation (2.1.4) and

ωy(x) := ω(x−y), (2.2.2)

for some y ∈ RN fixed.

Remark 2.2.2. The inequality
∫
RN

G∞(ωy)dx > 0, (2.2.3)

if |y|> 0 is large enough. This follows from the translation invariance of the integral and
by Pohozaev identity.

Lemma 2.2.2. Suppose (ξ3), (V3) and (f3), then c defined as in (2.1.24) satisfies

0< c <m∞.

Proof. From Remark 2.2.2,
∫
RN

G∞(ωy)dx > 0, follows from Remark 2.2.1, from (2.1.6)
and (2.1.1) that there exists 0 ≤ ty ≤ L0 such that

max
0<t≤L0

I
(
ωy

( ·
t

))
= I

(
ωy

(
·
ty

))
= I

(
ω

(
·
ty

−y

))
.
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Furthermore, using (ξ3), (V3), (f3), (2.1.23) and the translation invariance of the
integral

I

(
ωy

(
·
ty

))
< I∞

(
ωy

(
·
ty

))
= I∞

(
ω

(
·
ty

−y

))

= 1
2

∫
RN

ξ∞

∣∣∣∣∣∇ω
(

·
ty

)∣∣∣∣∣
2

+V∞

∣∣∣∣∣ω
(

·
ty

)∣∣∣∣∣
2dx−

∫
RN
H

(
ω

(
·
ty

))
dx

= I∞

(
ω

(
·
ty

))
≤ I∞(ω) =m∞.

The conclusion of the lemma follows the steps of the proof of Lemma 1.2.2.

Lemma 2.2.3. If F satisfies (2.1.3), then there exists ρ > 0 and α > 0 such that
I(u) ≥ α > 0, for all u ∈ E with ∥u∥ = ρ.

Proof. Using the norm of space, by (2.1.3), Sobolev’s embedding for 2< p < 2∗, we have

I(u) = 1
2

∫
RN

(ξ(x)|∇u|2+V (x)u2)dx−
∫
RN

F (x,u)dx

≥ 1
2∥u∥2−ε

2

∫
RN

u2dx−C
∫
RN

|u|pdx

≥
(1

2 − ε

2

)
∥u∥2−C∥u∥p.

For ∥u∥= ρ we obtain
I(u) ≥

(1
2 − ε

2

)
ρ2 −Cρp = α > 0,

for ρ= ∥u∥ small enough.

Remark 2.2.3. Since I(u) ≤ I∞(u) for all u ∈ E, then there exists z1 ∈ E \Bρ(0) such
that I(z1) ≤ I∞(z1)< 0.

The next lemma will be stated by the completeness of the work and the proof is
analogous to the proof of Lemma 1.2.4 using the hypothesis (V1).

Lemma 2.2.4. Let vn be a solution of the following problem


−div(ξ(x)∇vn)+V (x)vn = f(x,vn), in RN ,

vn ∈H1(RN ), with N ≥ 3,
vn(x) ≥ 0, for all x ∈ RN .
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Assuming that (ξ1)− (ξ3), (V1)− (V4), (f1)− (f5) holds and that vn → v in H1(RN ) with
v ̸≡ 0, then vn ∈ L∞(RN ) and there exists C > 0 such that ∥vn∥L∞≤ C for all n ∈ N.
Furthermore,

lim
|x|→∞

vn(x) = 0, uniformly in n.

Proof. For any R > 0, 0< r ≤ R/2, let η ∈ C∞(RN ), 0 ≤ η ≤ 1 with η(x) = 1 if |x|≥ R

and η(x) = 0 if |x|≤R− r and |∇η|≤ 2/r. Note that, by Remark 2.1.2 and by Sobolev’s
embedding for 2 ≤ p≤ 2∗, we obtain the following growth condition for f :

f(x,s) ≤ ε|s|+Cε|s|p−1≤ ε|s|+Cε|s|2
∗−1. (2.2.4)

For each n ∈ N and for L > 0, let

vL,n(x) =
 vn(x), vn(x) ≤ L,

L, vn(x) ≥ L,

zL,n = η2v
2(β−1)
L,n vn and wL,n = ηvnv

β−1
L,n with β > 1 to be determinated later. Taking zL,n

as a test function, we obtain
∫
RN

ξ(x)η2v
2(β−1)
L,n |∇vn|2dx = −2(β−1)

∫
RN

ξ(x)v2β−3
L,n η2vn∇vn∇vL,ndx

+
∫
RN
f(x,vn)η2vnv

2(β−1)
L,n dx−

∫
RN
V (x)v2

nη
2v

2(β−1)
L,n dx

−2
∫
RN
ξ(x)ηv2(β−1)

L,n vn∇vn∇ηdx.

Note that, −2(β−1)
∫
RN

ξ(x)v2β−3
L,n η2vn∇vn∇vL,ndx≤ 0, then

∫
RN
ξ(x)η2v

2(β−1)
L,n |∇vn|2dx ≤ −2

∫
RN
ξ(x)ηv2(β−1)

L,n vn∇vn∇ηdx−
∫
RN
V (x)η2v

2(β−1)
L,n v2

ndx

+
∫
RN

f(x,vn)η2vnv
2(β−1)
L,n dx.

By (2.2.4), hypothesis (V1) and for ε sufficiently small, we have the following inequality
∫
RN

ξ(x)η2v
2(β−1)
L,n |∇vn|2dx ≤ −2

∫
RN

ξ(x)ηv2(β−1)
L,n vn∇vn∇ηdx−V0

∫
RN

η2v
2(β−1)
L,n v2

ndx

+ε
∫
RN
η2v

2(β−1)
L,n v2

ndx+Cε

∫
RN
η2v

2(β−1)
L,n v2∗

n dx

≤ −2
∫
RN
ξ(x)ηv2(β−1)

L,n vn∇vn∇ηdx+Cε

∫
RN
η2v

2(β−1)
L,n v2∗

n dx
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≤ Cε

∫
RN
η2v

2(β−1)
L,n v2∗

n dx+2
∫
RN
ξ(x)ηv2(β−1)

L,n vn∇vn∇ηdx.

For each ε > 0, using the Young’s inequality we get
∫
RN

ξ(x)ηv2(β−1)
L,n |∇vn|2dx ≤ Cε

∫
RN

η2v
2(β−1)
L,n v2∗

n dx+2ε
∫
RN

ξ(x)η2v
2(β−1)
L,n |∇vn|2dx

+2Cε

∫
RN

ξ(x)v2
nv

2(β−1)
L,n |∇η|2dx.

Choosing ε > 0 sufficiently small,
∫
RN
ξ(x)η2v

2(β−1)
L,n |∇vn|2dx≤C

∫
RN
η2v

2(β−1)
L,n v2∗

n dx+C
∫
RN
ξ(x)v2

nv
2(β−1)
L,n |∇η|2dx.(2.2.5)

Now, from Sobolev’s embedding, by (2.2.5) and by (ξ1) we have

ξ0∥wL,n∥2
L2∗ ≤

∫
RN

ξ(x)η2v2
nv

2(β−1)
L,n dx≤

∫
RN

ξ(x)η2v
2(β−1)
L,n |∇vn|2dx

≤ C
[∫

RN
η2v

2(β−1)
L,n v2∗

n dx+
∫
RN

ξ(x)v2
nv

2(β−1)
L,n |∇η|2dx

]
. (2.2.6)

To complete the proof, follow the same steps from (1.2.7) to (1.2.8) as in proof in the
proof of Lemma 1.2.4.

Proof of Theorem 2.1.1. By Lemma 2.2.3 and Remark 2.2.3, the functional I satisfies
of the Mountain Pass Theorem, then by Ekeland Variational and consider c defined by
(2.1.24) there exists a sequence (un) ⊂ E satisfies

I(un) → c and (1+∥un∥)
∥∥∥I ′(un)

∥∥∥→ 0.

Using the Lemma 2.2.2, we obtain that c satisfies 0< c <m∞ and, up to a subsequence,
(un) converge strongly to u ∈ E, by Lemma 2.2.1. Moreover, since I ∈ C1(E,R), then
I(u) = c and I ′(u) = 0. It follows that u is a solution of problem (P2).

Consider f(x,s) = 0 for all s ≤ 0 in the beginning, then I ′(u)u− = 0 and with the
same calculations done in (1.2.9) we obtain u− ≡ 0. Hence u≥ 0 in RN . By Lemma 2.2.4
we have that u ∈ L∞(RN )∩C1,α

loc (RN ) for some 0< α < 1. Then, Harnarck’s inequality
[2] guarantees that u > 0 for all u(x)> 0 for all x ∈ RN . Therefore, u is a nontrivial and
positive solution of (P2).
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2.3 Nodal Solution

A nontrivial orthogonal τ : RN → RN induce an involution Tτ : E → E defined by

Tτ (u(x)) := −u(τ(x)). (2.3.1)

Consider
Eτ := {u ∈ E : Tτ (u(x)) = u(x)} (2.3.2)

the subspace of τ−invariant in E and consider the following τ− invariant Pohozaev
manifold

Pτ := {u ∈ P : Tτ (u(x)) = u(x)} = P ∩Eτ . (2.3.3)

Lemma 2.3.1. If c > 0 and (un) is a (Ce)c sequence of the functional I restricted to
Eτ , then (un) is a bounded sequence.

Proof. Suppose by contradiction that ∥un∥→ ∞. Define a new sequence ũn = 2
√
cun

∥un∥
,

then (ũn) is a bounded sequence with ∥ũn∥= 2
√
c and consequently ũn ⇀ ũ in E. One

of the two following cases occurs:
Case 1) limsup

n→∞
sup

y∈RN

∫
B1(y)

|ũn|2dx > 0,

Case 2) limsup
n→∞

sup
y∈RN

∫
B1(y)

|ũn|2dx= 0.

Consider the Case 2 occurs. Without loss of generality, suppose L > 1 and

I

(
L

∥un∥
2
√
cun

)
= 1

2

(
L24c
∥un∥2

)∫
RN

(
ξ(x)|∇un|2+V (x)u2

n

)
dx

−
∫
RN

F

(
x,

L

∥un∥
2
√
cun

)
dx

= 2L2c−
∫
RN

F

(
x,

L

∥un∥
2
√
cun

)
dx.

Given ε > 0 and 2< p < 2∗, from (2.1.4) we have

∫
RN

∣∣∣∣∣F
(
x,

L

∥un∥
2
√
cun

)∣∣∣∣∣dx≤ 2εcL2

∥un∥2

∫
RN

u2
ndx+ cLp

∫
RN

|ũn|pdx.

Now, by Lions’ Lemma, we obtain
∫
RN

|ũn|pdx→ 0, for 2< p < 2∗
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thus, ∫
RN

∣∣∣∣∣F
(
x,

L

∥un∥
2
√
cun

)∣∣∣∣∣dx < 2εcL2 +on(1).

Taking ε= 1/2 we obtain

I

(
L

∥un∥
2
√
cun

)
> 2L2c− (cL2 +on(1)) = L2c−on(1).

Since ∥un∥→ ∞, then 2L
√
c

∥un∥
∈ (0,1) for n > 0 sufficiently large, so

max
t∈[0,1]

I(tun) ≥ I

(
L

∥un∥
2
√
cun

)
> L2c−on(1).

Consider tn ∈ (0,1) such that I(tnun) = max
t∈[0,1]

I(tun). Then

I(tnun)> L2c−on(1). (2.3.4)

On the other hand, tn < 1 because I(un) = c+on(1), I ′(tnun)un = 0 and by hypothesis
(f5), we obtain

I(tnun) < D
∫
RN

(1
2f(x,un)un −F (x,un)

)
dx

= D
[1
2

∫
RN

(
ξ(x)|∇un|2+V (x)u2

n

)
dx−

∫
RN

F (x,un)dx
]

= DI(un) =Dc+on(1). (2.3.5)

From (2.3.4) and (2.3.5) it follows that

c−on(1)< I∞(tnun)<Dc+on(1)

and making L > 0 sufficiently large we arrive at the contradiction in Case 2.
In Case 1, if (yn) is such that |yn|→ ∞, and

∫
B1(yn)

|ũn|2dx > δ/2, then we get∫
B1(yn)

|ũn(x+yn)|2dx > δ/2, and knowing that ũn(·+yn)⇀ ṽ, we have

∫
B1(0)

|ṽ(x)|2dx > δ

2
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thus obtaining that ṽ ̸≡ 0. Therefore there exists Ω ⊂B1(0) subset of positive Lebesgue
measure such that

0< ṽ(x) = lim
n→∞ ũn(x+yn) = lim

n→∞
un(x+yn)2

√
c

∥un∥
, for all x ∈ Ω.

Recalling the assumption that ∥un∥→ ∞, then necessarily

un(x+yn) → ∞, for all x ∈ Ω ⊂B1(0)

and so from (f5) and Fatou’s Lemma [5], we obtain

liminf
n→∞

∫
RN

(1
2f(x,un)un −F (x,un)

)
dx

≥
∫

Ω
liminf
n→∞

(1
2f(x+yn,un(x+yn))un(x+yn)−F (x+yn,un(x+yn))

)
dx

= +∞. (2.3.6)

On other hand, by (1.1.29) we have that

|I ′|Eτ (un)un|≤ ∥I ′|Eτ (un)∥∥un∥→ 0,

and so,

∫
RN

(
1
2f(x,un)un − F (x,un)

)
dx= 1

2

∫
RN

(ξ(x)|∇un|2+V (x)u2
n)dx−

∫
RN

F (x,un)dx

−
(1

2

∫
RN

(ξ(x)|∇un|2+V (x)u2
n)dx− 1

2

∫
RN

f(x,un)undx
)

= I|Eτ (un)− 1
2I

′|Eτ (un)un

≤ c+on(1). (2.3.7)

From (2.3.6) and (2.3.7) we obtain a contradiction in Case 1, under the assumption
that |yn|→ +∞.

Now, if we have |yn|≤R with R > 1, then

δ

2 ≤
∫

B1(0)
|ũn(x+yn)|2dx≤

∫
B2R(0)

|ũn(x+yn)|2dx
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and since ũn(·+yn) → ṽ strongly in L2(B2R(0)), it follows that

δ

2 ≤
∫

B1(0)
|ṽ(x)|2dx.

Hence, as in the previous case there exists a Ω ⊂B1(0) such that |Ω|> 0 and

lim
n→∞

un(x+yn)2
√
c

∥un∥
= lim

n→∞ ũn(x+yn) = ṽ(x) ̸= 0, for all x ∈ Ω.

Following the previous arguments by (2.3.6) and (2.3.7) again a contradiction follows.
We conclude that (un) is a bounded sequence.

Lemma 2.3.2. If u, |∇u|∈ L2(RN ), |y|→ ∞ and |y− τy|→ ∞, then
∫
RN

u(x−y)u(τx−y)dx= oy(1) (2.3.8)

and ∫
RN

∇u(x−y).∇u(τx−y)dx= oy(1). (2.3.9)

Proof. See proof of Lemma 1.3.2.

Now, we define G(x,u) for u ∈ Eτ by

G(x,u) := 1
ξ(x)

(
F (x,u)− V (x)

2 u2
)
.

Consider ω the ground state radial positive solution of equation (2.1.4) and define

zy(x) := ω(x−y)−ω(x− τy) ∈ Eτ . (2.3.10)

Remark 2.3.1. If we fix y ∈ RN , |y|> 0 sufficiently large, from (ξ3), (V3) and (f3) it
follows ∫

RN
G(x,zy)dx≥

∫
RN

G∞(zy)dx > 0. (2.3.11)

Therefore, there exists t > 0 such that u
( ·
t

)
∈ P. Moreover, there exists tzy such that

I

(
zy

(
·
tzy

))
= max

t>0
I
(
zy

( ·
t

))
. (2.3.12)
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Indeed,

∫
RN

G(x,zy)dx =
∫
RN

1
ξ(x)

(
F (x,zy)− V (x)

2 z2
y

)
dx

≥
∫
RN

1
ξ∞

((∫ zy

0

f(x,s)
s

sds

)
− V∞

2 z2
y

)
dx

≥
∫
RN

G∞(zy)dx.

In what follows consider z0 = 0, and

z1 := ω
( ·
L

−y
)

−ω
( ·
L

− τy
)

in Eτ

for a fixed L > L0, |y|> 0 and |y− τy| sufficiently large, such that I∞(z1)< 0. This is
possible by (2.1.6), (2.1.7) and by Lemma 2.3.2. Now, define

cτ := inf
γ∈Γτ

max
0≤t≤1

I(γ(t)), (2.3.13)

where Γτ = {γ ∈ C([0,1],Eτ ) : γ(0) = z0 and γ(1) = z1}.

Remark 2.3.2. P ∩Eτ ̸= ∅.

Lemma 2.3.3. There exists a sequence (un) ⊂ Eτ satisfying

I(un) → cτ and (1+∥un∥)
∥∥∥I ′|Eτ (un)

∥∥∥→ 0.

Proof. See proof of Lemma 1.3.3.

Lemma 2.3.4. If (un) ⊂ Eτ is a (PS) sequence of the functional I restricted to Eτ ,
then (un) is a (PS) sequence of I.

Proof. Using the fact that the action Tτ is isometric, we will prove that

TτI
′(un) = I ′(un). (2.3.14)

It follows from the (f6) and hypothesis that F is even and that F (τx,s) = F (x,−s) =
F (x,s) and using the hypotheses (ξ4) and (V4), we have

I(Tτun) = I(−un(τx))
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= 1
2

∫
RN

(
ξ(τx)|∇(−un(τx))|2+V (τx)(−un(τx))2

)
dx−

∫
RN
F (τx,−un(τx))dx

= 1
2

∫
RN

(
ξ(x)|∇un(x)|2+V (x)u2

n(x)
)
dx−

∫
RN

F (x,un(x))dx

= I(un). (2.3.15)

In addition, using the hypothesis (f6) and making change of variables, we obtain

I ′(Tτun(x))v(x) = I ′(−un(τx))v(x)

=
∫
RN

(
ξ(τx)∇un(τx)∇(−v(x))+V (τx)un(τx)(−v(x))

)
dx

−
∫
RN

f(τx,un(τx))(−v(x))dx

=
∫
RN

(
ξ(y)∇un(y)∇(−v(τy))+V (y)un(y)(−v(τy))

)
dy

−
∫
RN

f(y,un(y))(−v(τy))dy

= I ′(un)(Tτ (v)), for all v ∈ E.

Then we finish as the proof of Lemma 1.3.4.

Next, we present a version of the concentration compactness I restricted to Eτ .

Lemma 2.3.5. Let (un) ⊂ Eτ be a bounded sequence such that

I(un) → c and I ′(un) → 0.

Then, there exists u0 ∈ Eτ such that, up to a subsequence, un ⇀ u0, I
′(u0) = 0 and

there exist two integers k1, k2 ≥ 0, k1 +k2 sequences (yj
n), a τ−antisymmetric solution

u0 of problem (P ′
τ ), k1 solutions uj , j = 1, · · · ,k1 and k2 τ− antisymmetric solutions

uj , j = k1 +1, · · · ,k1 +k2 of the equation (2.1.4), that is, −div(ξ∞∇uj)+V∞u
j = h(uj)uj

in RN and uj(τx) = −uj(x), uj(x) → 0 as |x|→ ∞ such that, either

1. un → u0 strongly in E, or the following statements are hold;

2. if j = 1, ...,k1, then τyj
n ̸= yj

n, and |yj
n|→ ∞ when n→ ∞;

3. if j = k1 +1, ...,k1 +k2, then τyj
n = yj

n, and |yj
n|→ ∞ when n→ ∞;

4. un(x) = u0(x)+
k1∑

j=1
[uj(x−yj

n)+Tτu
j(x−yj

n)]+
k1+k2∑

j=k1+1
uj(x−yj

n)+on(1);
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5. I(un) → I(u0)+2
k1∑

j=1
I∞(uj)+

k1+k2∑
j=k1+1

I∞(uj).

Proof. Step 1) By Lemma 2.3.3, if (un) ⊂ Eτ is a (PS) sequence of the functional I
restricted to Eτ , I|Eτ , then (un) is a (PS) sequence of I.

Step 2) It follows exactly the same way as Step 2 of Lemma 1.3.5. As (un) is bounded,
then un ⇀u0 in E and I ′(u0) = 0.

Step 3) Now we verify that u0 ∈ Eτ . Since un(x) → u0(x) a.e. x ∈ RN . Furthermore,
un ∈ Eτ , implies that Tτ (un(x)) = un(x), thus

Tτ (u0(x)) := −u0(τx) = − lim
n→∞un(τx) = lim

n→∞−un(τx)

= lim
n→∞Tτ (un(x)) = lim

n→∞un(x) = u0(x).

Therefore, u0 ∈ Eτ .
Step 4) Let u1

n := un −u0. Then, if n→ ∞, we have:

(i) ∥u1
n∥2= ∥un∥2−∥u0∥2+on(1);

(ii) I∞(u1
n) → c− I(u0);

(iii) I ′
∞(u1

n) → 0.

The proof of (i),(ii) and (iii) is similar to Step 2 in Lemma 1.1.5. By (ii) and (iii), (u1
n)

is a (PS) sequence of I∞ and

〈
I ′

∞(u1
n),φ

〉
=
〈
I ′(un),φ

〉
−
〈
I ′(u0),φ

〉
= on(1).

Furthermore, since un,u0 ∈ Eτ and the operator Tτ is linear, it follows that
Tτ (u1

n)(x) = Tτ (un −u0)(x) = Tτ (un)(x)−Tτ (u0)(x) = un(x)−u0(x) = u1
n(x) and u1

n ⇀ 0
in H1(RN ).

Consider
δ := limsup

n→∞
sup

y∈RN

∫
B1(y)

|u1
n(x)|2dx.

Step 5) If δ = 0, it follows from Lions’ Lemma that

u1
n → 0 in Lp(RN ), for all 2< p < 2∗. (2.3.16)
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On the other hand, since (u1
n) is a bounded sequence and (iii) holds, then

I ′
∞(u1

n)u1
n =

∫
RN

(
ξ∞|∇u1

n|2+V∞(u1
n)2 −h(u1

n)(u1
n)2
)
dx→ 0. (2.3.17)

Using the estimate (2.1.3) we obtain
∫
RN

(ξ∞|∇u1
n|2+V∞(u1

n)2)dx =
∫
RN

h(u1
n)(u1

n)2dx+on(1)

< ε
∫
RN

(u1
n)2dx+C

∫
RN

|u1
n|pdx (2.3.18)

Thus, by (2.3.16) and (2.3.18) we have ∥u1
n∥→ 0, that is, un → u0 and u0 is a τ -

antisymmetric solution of problem (2.1.4) which completes the proof of item 1.
Step 6) Just as in Step 6 of proof of Lemma 1.3.5 of Chapter 1, if δ > 0, define a new

sequence v1
n := u1

n(·+yn) bounded because (u1
n) is bounded, we have the same result in

a previous chapter. Consider now RN = Γ ⊕ Γ⊥, where Γ := {x ∈ RN : τ(x) = x}, and
consider PΓ the projection on the subspace Γ. We can distinguish two cases:

Case I : If |yn − τyn| is bounded, we define y1
n := PΓ(yn);

Case II : If |yn − τyn| is unbounded, we define y1
n := yn.

Let us study each of these cases. In Case I, first note that |y1
n|→ ∞. In fact, the

orthogonal linear transformation τ : RN → RN is diagonalizable and without loss of
generality, we may assume that

τ(x1, ...,xk,xk+1, ...,xN ) = (x1, ...,xk,−xk+1, ...,−xN ). (2.3.19)

Denoting by yn by yn = PΓ(yn)+wn = y1
n +wn, then y1

n := PΓ(yn) implies τ(y1
n) = y1

n. Let
yn = (xn

1 , ...,x
n
k ,x

n
k+1, ...,x

n
N ), where y1

n = (xn
1 , ...,x

n
k ,0, ...,0) and wn = (0, ...,0,xn

k+1, ...,x
n
N ).

We have
τ(yn) = (xn

1 , ...,x
n
k ,−xn

k+1, ...,−xn
N ),

and
|yn − τyn|= |(0, ...,0,2xn

k+1, ...,2xn
N )|= 2|wn|.

Thus, is the new basis we have that |yn − τyn| is bounded, that is, there exists M > 0
such that |yn − τyn|≤ 2M , which gives |wn|≤ M . Since yn = y1

n +wn, |yn|→ ∞ when
n→ ∞ and |wn|≤M , then |y1

n|→ ∞ when n→ ∞. Futhermore, we consider the sequence
{u1

n(·+y1
n)}, which is bounded, so up to a subsequence, u1

n(·+y1
n)⇀u1 in E, and u1 ̸≡ 0
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is a solution of the limit problem (2.1.4). Moreover, since τ(y1
n) = y1

n then

Tτ (u1(x)) := −u1(τx) = − lim
n→∞u1

n(τx+y1
n) = lim

n→∞−u1
n(τ(x+y1

n))

= lim
n→∞u1

n(x+y1
n) = u1(x). (2.3.20)

We continue by considering

u2
n(x) := u1

n(x)−u1(x−y1
n)

and verify that (u2
n) is a (PS) sequence of I∞. In fact, we have that

I∞(u2
n) = 1

2

∫
RN

(
ξ∞|∇u2

n|2+V∞(u2
n)2
)
dx−

∫
RN

H(u2
n)dx

= 1
2

∫
RN

(
ξ∞|∇(u1

n(x)−u1(x−y1
n))|2+V∞|u1

n(x)−u1(x−y1
n)|2

)
dx

−
∫
RN

H(u1
n(x)−u1(x−y1

n))dx.

If z = x−y1
n then x= z+y1

n and dx= dz. Renaming z by x when changing variables,
we obtain

I∞(u2
n) = 1

2

∫
RN

(
ξ∞|∇(u1

n(x+y1
n)−u1(x))|2+V∞|u1

n(x+y1
n)−u1(x)|2

)
dx

−
∫
RN

H(u1
n(x+y1

n)−u1(x))dx.

Hence we have that

∥u1
n(·+y1

n)−u1∥2= ∥u1
n(·+y1

n)∥2−2⟨u1
n(·+y1

n),u1⟩+∥u1∥2. (2.3.21)

Since u1
n(·+y1

n)⇀u1 in E, by weak convergence and Riez Representation, we obtain

⟨u1
n(·+y1

n),φ⟩ → ⟨u1,φ⟩, for all φ ∈ E.

In particular, if φ= u1, then ⟨u1
n(·+y1

n),u1⟩ → ⟨u1,u1⟩, it follows that ⟨u1
n(·+y1

n),u1⟩ =
∥u1∥2+on(1). Replacing in (2.3.21) we obtain

∥u1
n(·+y1

n)−u1∥2= ∥u1
n∥2−∥u1∥2+on(1). (2.3.22)
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On the other hand, we observe that

I∞(u1
n)− I∞(u2

n)− I∞(u1) = 1
2
(
∥u1

n∥2−∥u1
n −u1∥2−∥u1∥2

)
−
∫
RN

(
H(u1

n)−H(u2
n)−H(u1)

)
dx.

Now, using (2.3.22) and (2.1.20), we have that

I∞(u2
n) = I∞(u1

n)− I∞(u1)+on(1).

Since (u1
n) is a (PS) sequence for I∞, we know that I∞(u1

n) converges to a constant,
and thus I∞(u2

n) also converge. Finally, we will show that

I ′
∞(u2

n)φ→ 0, for all φ ∈ C∞
0 (RN ); (2.3.23)

We know that (u1
n) is a (PS) sequence for I∞, then

I ′
∞(u1

n)φ= on(1), for all φ ∈ C∞
0 (RN ). (2.3.24)

Furthermore, u1 is a solution of equation (2.1.4) we have

I ′
∞(u1)φ= 0, for all φ ∈ C∞

0 (RN ). (2.3.25)

Thus, with a change of variable, by (2.3.24), (2.3.25) and by Lemma 2.1.3, we obtain
that

|I ′
∞(u2

n)φ| =
∣∣∣∣I ′

∞(u1
n)φ− I ′

∞(u1)φ+
∫
RN

(
h(u1

n)u1
n −h(u1

n −u1)(u1
n −u1)−h(u1)u1

)
φdx

∣∣∣∣
≤ on(1)+

∫
RN

∣∣∣h(u1
n)u1

n −h(u1
n −u1)(u1

n −u1)−h(u1)u1
∣∣∣|φ|dx

≤ Cε∥φ∥H1(RN ).

Thus (2.3.23) holds. Therefore, (u2
n) is a (PS) sequence for I∞ and Case I is complete.

Case II : Here we have that |yn − τyn| is unbounded and we define y1
n = yn. Moreover,

we know that u1 ̸≡ 0 is a weak solution of the equation (2.1.4). Let u2
n := u1

n −γn, where

γn(x) := u1(x−y1
n)−u1(τx−y1

n). (2.3.26)
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Note that, since Tτ is an orthogonal linear transformation, it follows that

Tτ (γn(x)) := −γn(τx) = −u1(τx−y1
n)+u1(x−y1

n)

= u1(x−y1
n)−u1(τx−y1

n) = γn(x).

Thus, u2
n ∈ Eτ , because

Tτ (u2
n(x)) = Tτ (u1

n(x)−γn(x)) = Tτ (u1
n(x))−Tτγn(x))

= u1
n(x)−γn(x) = u2

n(x).

In this case we must show that (u2
n) is a (PS) sequence of I∞. We will show that

I∞(u2
n) = I∞(u1

n)−2I∞(u1)+on(1) (2.3.27)

using the fact that (u1
n) is a (PS) sequence of I∞. We have that

∥u2
n∥2= ∥u1

n −γn∥2= ∥u1
n∥2−2⟨u1

n,γn⟩+∥γn∥2, (2.3.28)

such that

⟨u1
n,γn⟩ =

∫
RN

ξ∞∇u1
n∇u1(x−y1

n)dx+
∫
RN

ξ∞∇u1
n∇u1(τx−y1

n)dx

+
∫
RN

V∞u
1
nu

1(x−y1
n)dx+

∫
RN

V∞u
1
nu

1(τx−y1
n)dx.

Firstly, we claim that
⟨u1

n,γn⟩ = 2∥u1∥2+on(1). (2.3.29)

Indeed, let
A1

n =
∫
RN

(
ξ∞∇u1

n∇u1(x−y1
n)+V∞u

1
nu

1(x−y1
n)
)
dx

and
A2

n =
∫
RN

(
ξ∞∇u1

n∇u1(τx−y1
n)+V∞u

1
nu

1(τx−y1
n)
)
dx.

We will show that

A1
n →

{∫
RN

(
ξ∞|∇u1|2+V∞(u1)2

)
dx
}
, when n→ ∞,
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and
A2

n → −
{∫

RN

(
ξ∞|∇u1|2+V∞(u1)2

)
dx
}
, when n→ ∞. (2.3.30)

Let z = x−y1
n, thus x= z+y1

n and dx= dz, combining this with u1
n(·+y1

n)⇀u1(·),
we have
∫
RN

(
ξ∞∇u1

n(z+y1
n)∇u1(z)+V∞u

1
n(z+y1

n)u1(z)
)
dx→

∫
RN

(
ξ∞|∇u1|2+V∞(u1)2

)
dx

To evaluate A2
n, let us consider the following change of variables τx−y1

n = z, then
x= τ(z+y1

n) and dx= dz. Thus,

A2
n =

∫
RN

(
ξ∞∇u1

n(τ(z+y1
n))∇u1(z)+V∞u

1
n(τ(z+y1

n))u1(z)
)
dx.

Since u1
n is τ -antisymmetric, we have

A2
n = −

{∫
RN

(
ξ∞∇u1

n(τ(z+y1
n))∇u1(z)+V∞u

1
n(τ(z+y1

n))u1(z)
)
dx
}
.

Therefore, in a similar way to A1
n, we obtain (2.3.30) and thus prove (2.3.29). Now, we

claim
∥γn∥2= 2∥u1∥2+on(1). (2.3.31)

In fact, from (2.3.8) and (2.3.9) we have that

∥γn∥2 =
∫
RN

(ξ∞|∇γn|2+V∞γ
2
n)dx

= 2∥u1∥2−2
∫
RN
ξ∞|∇u1(x−y1

n)∇u1(τx−y1
n)dx−2

∫
RN
V∞u

1(x−y1
n)u1(τx−y1

n)dx

= 2∥u1∥2+on(1).

Thus, obtaining (2.3.31).
Finally, replacing (2.3.29) and (2.3.31) in (2.3.27), then

∥u2
n∥2= ∥u1

n∥2−2∥u1∥+on(1). (2.3.32)

To conclude (2.3.27) we need to verify the following equality
∫
RN

H(u2
n)dx=

∫
RN

H(u1
n)dx−2

∫
RN

H(u1)dx+on(1). (2.3.33)
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Define ρ := |y1
n − τy1

n|
2 , Sn = RN \Bρn(0) ∪Bρn(τy1

n − y1
n) and using the fact that

u1(τx−y1
n) = u1(τ(x− τy1

n)) = −u1(x− τy1
n), we have

∫
RN

H(u2
n)dx =

∫
RN

H(u1
n −γn)dx=

∫
RN

H(u1
n(x)−u1(x−y1

n)−u1(τx−y1
n))dx

=
∫

Bρn(0)
H(u1

n(z+y1
n)−u1(z)−u1(z+y1

n − τy1
n))dz

+
∫

Bρn(τy1
n−y1

n)
H(u1

n(z+y1
n)−u1(z)−u1(z+y1

n − τy1
n))dz

+
∫

Sn

H(u1
n(z+y1

n)−u1(z)−u1(z+y1
n − τy1

n))dz

=
∫

Bρn(0)
H(u1

n(z+y1
n)−u1(z+y1

n − τy1
n))dz−

∫
Bρn(0)

H(u1(z))dz

+
∫

Bρn(τy1
n−y1

n)
H(u1

n(z+y1
n)−u1(z))dz−

∫
Bρn(τy1

n−y1
n)
H(u1(z+y1

n−τy1
n))dz

+
∫

Sn

H(u1
n(z+y1

n)−u1(z+y1
n − τy1

n))dz−
∫

Sn

H(u1(z))dz+on(1).

Under the assumptions that u1
n(z+ y1

n) −u1(z) → 0 if |y1
n|→ ∞ a.e. z ∈ RN and that

u1(z+ y1
n + τy1

n) → 0 a.e. z ∈ RN , together with the Brezis-Lieb Lemma, we have the
(A)− (F ) statements of proof of Lemma 1.3.5. Then using (2.3.32) and (2.3.33) we have

I∞(u2
n) = I∞(u1

n)−2I∞(u1)+on(1).

which completes the proof of (2.3.27).
Since (u1

n) is a (PS) sequence of I∞, then I∞(u2
n) converges to a constant. To

complete the proof we will show that if n→ ∞, then (2.3.23) holds. Indeed

|I ′
∞(u2

n)φ| =
∣∣∣∣∫RN

(
ξ∞∇(u1

n−γn)∇φ+V∞(u1
n −γn)φ

)
dx−

∫
RN
h(u1

n −γn)(u1
n −γ)φdx

∣∣∣∣
≤

∣∣∣∣∫RN

(
ξ∞∇u1

n∇φ+V∞u
1
nφ
)
dx−

∫
RN
h(u1

n)u1
nφdx+

∫
RN

(
ξ∞∇γn∇φ+V∞γnφ

)
dx

−
∫
RN

h(γn)γnφdx−
∫
RN

h(u1
n −γn)(u1

n −γ)φdx

+
∫
RN

h(u1
n)u1

nφdx+
∫
RN

h(γn)γnφdx

∣∣∣∣ .
And since (u1

n) is a (PS) sequence of I∞ we have that
∫
RN

(
ξ∞∇u1

n∇φ+V∞u
1
nφ
)
dx−

∫
RN

h(u1
n)u1

nφdx= on(1). (2.3.34)



2.3 Nodal Solution 100

From (2.3.34), using the definition of γn and from the triangular inequality we obtain
that

|I ′
∞(u2

n)φ|≤K1
n +K2

n +on(1), (2.3.35)

where

K1
n :=

∫
RN

(
ξ∞∇γn∇φ+V∞γnφ

)
dx

=
∫
RN

(
ξ∞∇(u1(x−y1

n)−u1(τx−y1
n))∇φ+V∞(u1(x−y1

n)−u1(τx−y1
n))φ

)
dx

and

K2
n :=

∫
RN

|h(γn)||γn||φ|dx

=
∫
RN

|h(u1(x−y1
n)−u1(τx−y1

n))||u1(x−y1
n)−u1(τx−y1

n)||φ|dx.

we have that k1
n = on(1) and k2

n = on(1). The proof once again follows as in Lemma 1.3.5
using Hölder’s inequality and the growth of h, this completes the proof of (2.3.34) and
thus we verify that {u2

n} is a (PS) sequence of I∞, also in Case II.
Now proceeding by iteration, we note that if u is a non-trivial critical point of I∞ and

ω is a minimum energy solution of the equation (2.1.4) given by Berestycki and Lions,
then we have that

I∞(u) ≥ I∞(ω)> 0. (2.3.36)

On the other hand, from (2.3.27) and item (ii) we obtain

I∞(u2
n) = c− I(u0)−2I∞(u1)+on(1). (2.3.37)

From (2.3.34) and (2.3.35) the iteration must end at some index k ∈ N and the proof of
the lemma is complete.

In the next result, we verify that the functional I restricted to Eτ , associated with
the problem (2.1.4), satisfying (Ce)c for c below the level 2m∞.

Lemma 2.3.6. The functional I restricted to Eτ satisfies (Ce)c condition for any
c < 2m∞.
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Proof. Let (un) be a sequence in Eτ such that

I(un) → c < 2m∞ and (1+∥un∥)
∥∥∥I ′|Eτ (un)

∥∥∥→ 0.

This imply that I ′|Eτ (un) → 0, namely, (un) is a (PS) sequence of I restricted to Eτ

and by Lemma 2.3.4 we have I ′(un) → 0. Moreover, by Lemma 2.3.1, (un) is bounded
sequence, up to a subsequence, un ⇀u0 in E and I ′(u0)φ= 0, for all φ∈E. In particular,

I ′(u0)u0 =
∫
RN

(
ξ(x)|∇u0|2+V (x)u2

0
)
dx−

∫
RN

f(x,u0)u0dx= 0. (2.3.38)

It follows from the hypothesis (f5), the definition of norm in E and (2.3.38) that

I(u0) = 1
2∥u0∥2−

∫
RN

F (x,u0)dx=
∫
RN

(1
2f(x,u0)u0 −F (x,u0)

)
dx≥ 0. (2.3.39)

If (un) does not converge strongly to u0 in the norm of E then, by Lemma 2.3.5 there
exists two integers k1 ≥ 1 or k2 ≥ 1, k1 solutions uj , j = 1, ...,k1 and k2 τ -antisymmetric
solutions uj , j = k1 +1, ...,k1 +k2 of equation (2.1.4), satisfying

c= lim
n→∞I(un) ≥ I(u0)+2k1m∞ +

k1+k2∑
j=k1+1

I∞(uj) ≥ 2m∞, (2.3.40)

since I∞(uj) ≥ 2m∞ for all nontrivial τ -antisymmetric solution uj of (2.1.4), which
contradicts our assumption. Therefore, up to a subsequence, un → u0 ∈ Eτ and the
lemma is proved.

Lemma 2.3.7. Let mτ
∞ := inf

u∈P
I∞(u), then

2m∞ ≤mτ
∞.

Proof. Let us show first that if u ∈ P then u+, u− ∈ P . Using a change of variable and
that G(s) is an even function and defining Aτ := {x : −u(τx) ≥ 0}, we obtain

J(u+) =
∫
RN

|∇u−|2dz−2∗
∫
RN

G∞(u−)dz = J(u−).

On the other hand,

0 = J(u) = J(u+)+J(u−) = 2J(u+) = 2J(u−).
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Therefore u+, u− ∈ P . Now, taking into account that H is even we have

I∞(u+) =
∫
RN

(ξ∞|∇u−|2+V∞(u−)2)dz−
∫
RN

H(u−)dz = I∞(u−).

Finally,

I∞(u) = I∞(u+)+ I∞(u−).

Therefore, for all u ∈ P we have

I∞(u) = I∞(u+)+ I∞(u−) = 2I∞(u+) ≥ 2m∞,

thus,
mτ

∞ = inf
u∈P

I∞(u) ≥ 2m∞.

Remark 2.3.3. If zy(x) = ω(x−y)−ω(x− τy), then tzy as in (2.3.12) is bounded when
|y|→ ∞ and |y− τy|→ ∞.

Lemma 2.3.8. Suppose ξ, V satisfies (ξ1) − (ξ4), (V1) − (V4), respectively and either
(2.1.9) or (2.1.10) or (2.1.11). Then

cτ < 2m∞.

Proof. Denote t= tzy , for simplicity of notation. Since I∞ is translation invariance we
obtain

I
(
zy

( .
t

))
= tN−2

2

∫
RN

ξ(tx)|∇ω(x−y)|2dx+ tN−2

2

∫
RN

ξ(tx)|∇ω(x− τy)|2dx

−2t
N−2

2

∫
RN
ξ(tx)∇ω(x−y)∇ω(x− τy)dx+ tN

2

∫
RN

V (tx)(ω(x−y))2dx

+t
N

2

∫
RN

V (tx)(ω(x− τy))2dx−2t
N

2

∫
RN

V (tx)ω(x−y)ω(x− τy)dx

−tN
∫
RN

F (tx,ω(x−y)−ω(x− τy))dx

= I∞

(
ω
(
.

t
−y

))
+ I∞

(
ω
(
.

t
− τy

))
+ tN−2

2

∫
RN

(ξ(tx)−ξ∞)|∇ω(x−y)|2dx

+t
N−2

2

∫
RN

(ξ(tx)−ξ∞)|∇ω(x−τy)|2dx−tN−2
∫
RN
ξ(tx)∇ω(x−y)∇ω(x−τy)dx
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+t
N

2

∫
RN

(V (tx)−V∞)(ω(x−y))2dx+ tN

2

∫
RN

(V (tx)−V∞)(ω(x− τy))2dx

−tN
∫
RN
V (tx)ω(x−y)ω(x−τy)dx+ tN

∫
RN
H(ω(x−y))−F (tx,ω(x−y))dx

+tN
∫
RN
H(ω(x−τy))−F (tx,ω(x−τy))dx−tN

∫
RN
F (tx,ω(x−y)−ω(x−τy))dx

+tN
∫
RN

F (tx,ω(x−y))dx+ tN
∫
RN

F (tx,ω(x− τy))dx

= I∞

(
ω
(
.

t

))
+ I∞

(
ω
(
.

t

))
+R(ξ,ξ∞,V,V∞, |y|, |y− τy|), (2.3.41)

where

R(ξ,ξ∞,V,V∞, |y|, |y− τy|) = tN−2

2

∫
RN

(ξ(tx)− ξ∞)|∇ω(x−y)|2dx

+ tN−2

2

∫
RN

(ξ(tx)− ξ∞)|∇ω(x− τy)|2dx− tN−2
∫
RN

ξ(tx)∇ω(x−y)∇ω(x− τy)dx

+ tN

2

∫
RN

(V (tx)−V∞)(ω(x−y))2dx+ tN

2

∫
RN

(V (tx)−V∞)(ω(x− τy))2dx

− tN
∫
RN

ω(x−y)ω(x− τy)dx+ tN
∫
RN

H(ω(x−y))−F (tx,ω(x−y))dx

+ tN
∫
RN

H(ω(x− τy))−F (tx,ω(x− τy))dx− tN
∫
RN

F (tx,ω(x−y)−ω(x− τy))dx

+ tN
∫
RN

F (tx,ω(x−y))dx+ tN
∫
RN

F (tx,ω(x− τy))dx. (2.3.42)

To evaluate the sum
∫
RN

F (tx,ω(x−y)−ω(x− τy))dx−
∫
RN

F (tx,ω(x−y))dx−
∫
RN

F (tx,ω(x− τy))dx,

we use hypothesis (f7). The Lemma A.2, (2.1.3) with ε > 0 and 2< p < 2∗, give us

∣∣∣F (tx,ω(x−y)−ω(x− τy))−F (tx,ω(x−y))−F (tx,ω(x− τy))
∣∣∣

≤ ε
∣∣∣ω(x−y)

∣∣∣∣∣∣ω(x− τy))
∣∣∣+C

∣∣∣ω(x−y)
∣∣∣p−1∣∣∣ω(x− τy)

∣∣∣
+ ε

∣∣∣ω(x− τy)
∣∣∣∣∣∣ω(x−y)

∣∣∣+C
∣∣∣ω(x− τy)

∣∣∣p−1∣∣∣ω(x−y)
∣∣∣.

It follows from the above estimate and the invariance of translation of the integral
that

∫
RN

∣∣∣F (tx,ω(x−y)−ω(x− τy))−F (tx,ω(x−y))−F (tx,ω(x− τy))
∣∣∣dx
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≤ 4ε
∫
RN

∣∣∣ω(z)
∣∣∣∣∣∣ω(z+y− τy)

∣∣∣dz+2C
∫
RN

∣∣∣ω(z)
∣∣∣p−1∣∣∣ω(z+y− τy)

∣∣∣dz.
Now we estimate the integrals above. Let 0 < δ < 1/2 to be chosen later, define

Ay :=B |y−τy|
p (1−δ)(0) ⊂ RN and Ry := |y− τy|

p
(1− δ). Since ω is solution of (2.1.4), we

have |ω(x)|≤ Ce−β|x| for all β ∈
(
0,
√
V∞/ξ∞

)
and

∫
Ay

|ω(x − y)|p−1|ω(x− τy)|dx=
∫

Ay

|ω(z)|p−1|ω(z+y− τy)|dx

≤
(∫

RN
(|ω(z)|p−1)

p
p−1dz

)(p−1)/p
(∫

Ay

|ω(z+y− τy)|pdz
)1/p

≤ C∥ω∥p−1
Lp

(∫
Ay

e−βp|z+y−τy|dz

)1/p

≤ C

(
e−βp|y−τy|

∫
Ay

e−βp|z|dz

)1/p

= Ce−β|y−τy|
(∫

Ay

e−βp|z|dz

)1/p

, (2.3.43)

making change of variable f̃ : RN → RN , z 7→ −r with determinant of the Jacobian given
by det(J(z1, · · · , zN )) = rN−1, and by change of variable theorem, we have that

∫
Ay

e−βp|z|dz =
∫ |y−τy|

p (1−δ)

0
eβprdet(J(z1, · · · , zN ))dr =

∫ |y−τy|
p (1−δ)

0
eβprrN−1dr.

Replacing in (2.3.43)

∫
Ay

|ω(x − y)|p−1|ω(x− τy)|dx≤ Ce−β|y−τy|

∫ |y−τy|
p (1−δ)

0
eβprrN−1dr

1/p

≤ C(δ)e−β|y−τy| p−1
p e−β|y−τy| δ

p |y− τy|N/p

≤ C(δ)e−β|y−τy| p−1
p , (2.3.44)

since 1< p−1 and 0< δ < 1/2. Moreover
∫
RN \Ay

|ω(x−y)|p−1|ω(x− τy)|dx=
∫
RN \Ay

|ω(z)|p−1|ω(z+y− τy)|dx

≤ C ∥ω∥p−1
Lp

(∫
RN \Ay

e−βp|z|dz

)p−1
p
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= C ∥ω∥p−1
Lp

(∫ ∞
|y−τy|

p (1−δ)
e−βprrN−1dr

)p−1
p

.

Now, using integration by parts, for any k > 0 we have
∫
e−krrN−1dr = e−krP (r),

where

P (r) := rN−1

k
− (N −1)

k2 rN−2 + (N −1)(N −2)
k3 rN−3 + . . .+(−1)N+1 (N −1)!

kN
.

Thus, ∫ ∞

Ry

e−krrN−1dr = e−krP (r)
∣∣∣∞
Ry

= e−kRyP (Ry). (2.3.45)

Therefore, taking k := βp, we obtain
∫
RN \Ay

|ω(x − y)|p−1|ω(x− τy)|dx

≤ C∥w∥Lpe−βp|y−τy|(1−2δ) p−1
p

[
eβp|y−τy|δP

(
|y− τy|1− δ

p

)]p−1
p

≤ C(δ)∥ω∥Lp e
−β|y−τy| p−1

p (1−2δ).

Hence, taking δ sufficiently small such that 0< (1−2δ)< 1, we obtain
∫
RN \Ay

|ω(x−y)|p−1|ω(x− τy)|dx≤ C(δ)e−β|y−τy| p−1
p (1−2δ). (2.3.46)

Thus, from (2.3.44) and (2.3.46) we have
∫
RN

|ω(x−y)|p−1|ω(x− τy)|dx≤ Ce−β|y−τy| p−1
p (1−2δ). (2.3.47)

For p = 2 we argue similarly and define Ay =B |y−τy|
2 (1−δ)(0) ⊂ RN . Choosing

Ry := |y− τy|
2 (1− δ) and using Hölder’s inequality we obtain

∫
Ay

ω(z)ω(z+y− τy)dz ≤ Ce−β|y−τy|eβ
|y−τy|

2 (1−δ)
(

|y− τy|
2 (1− δ)

)N/2
≤ C(δ)e−β

|y−τy|
2 .

(2.3.48)
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On the other hand, using Hölder’s inequality and (2.3.45), it follows

∫
RN \Ay

ω(x−y)ω(x− τy)dz ≤ C∥ω∥L2e−β|y−τy| 1−2δ
2

(
eβ|y−τy|δP

(
|y− τy|1− δ

2

))1/2

≤ C(δ)e−β|y−τy| 1−2δ
2 . (2.3.49)

By (2.3.48), (2.3.49) and 0< (1−2δ)< 1 it holds that
∫
RN

ω(x−y)ω(x− τy)dx ≤ C(δ)e−β
|y−τy|

2 +C(δ)e−β|y−τy| (1−2δ)
2

≤ C(δ)e−β|y−τy| 1
2 (1−2δ). (2.3.50)

Arguing as in the proof of inequality (2.3.50), we obtain
∫
RN

∇ω(x−y)∇ω(x− τy)dx≤ Ce−β|y−τy| 1
2 (1−2δ). (2.3.51)

We consider β1 < β <
√
V∞/ξ∞ or β2 < β <

√
V∞/ξ∞ or β3 < β <

√
V∞/ξ∞. By

(2.1.9) and a change of variable, there exists a positive constant C such that
∫
RN

(ξ(x)− ξ∞)|∇ω(x−y)|2dx≤ −Ce−β1|y|. (2.3.52)

We also have ∫
RN

(ξ(x)− ξ∞)|∇ω(x− τy)|2dx≤ −Ce−β1|y|. (2.3.53)

Or else by (2.1.10), there exists a positive constant C such that
∫
RN

(V (x)−V∞)|ω(x−y)|2dx <−Ce−β2|y|
∫
RN

e−β2|z||ω(z)|2dz ≤ −Ce−β2|y|. (2.3.54)

Similarly, we obtain
∫
RN

(V (x)−V∞)|∇ω(x− τy)|2dx≤ −Ce−β2|τy| = −Ce−β2|y|. (2.3.55)

Or else by (2.1.11), as well as in (4.0.63) from the previous chapter, there exists a positive
constant C > 0 such that

∫
RN

|H(ω(x−y))−F (tx,ω(x−y))|dx≤ −Ce−β3|y|. (2.3.56)
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Analogously, we have
∫
RN

|H(ω(x− τy))−F (tx,ω(x− τy))|dx≤ −Ce−β3|y|. (2.3.57)

Now we study the sign of R(ξ,ξ∞,V,V∞, |y|, |y− τy|). If we consider the inequalities
from (2.3.43) to (2.3.57) in the definition of R(ξ,ξ∞,V,V∞, |y|, |y− τy|) in (2.3.42), then

R(ξ,ξ∞,V,V∞, |y|, |y− τy|) ≤ −Ce−β1|y| −Ce−β1|y| −C(δ)e−β|y−τy| (1−2δ)
2

−Ce−β2|y| −Ce−β2|y| −C(δ)e−β|y−τy| (1−2δ)
2 −Ce−β3|y| −Ce−β3|y|

+C(δ)e−β|y−τy| p−1
p (1−2δ) −Ce−β3|y| +Ce−β|y−τy|(1−2δ) +Ce−β|y−τy| 1

2 (1−2δ).

Let ỹ = (y1, . . . ,yk, . . . ,yn), τ ỹ = (y1, . . . ,yk,−yk+1, . . . ,−yn), the projection Pkỹ =
(y1, . . . ,yk,0, . . . ,0) and |ỹ− τ ỹ|= |(0, . . . ,0,2yk+1, . . . ,2yn)|= 2|(0, . . . ,0,yk+1, . . . ,yn)| be
such that |(0, . . . ,0,yk+1, . . . ,yn)|→ ∞. If we choose
y := P⊥

Γ ỹ = (0, . . . ,0,yk+1, . . . ,yn), such that 2|y|= |y− τy|, since t = tzy is bounded
and 1

2 <
p−1
p

, we obtain for |y| sufficiently large

R(ξ,ξ∞,V,V∞, |y|, |y− τy|) ≤ −Ce−β1|y| −Ce−β2|y| −Ce−β3|y| +Ce−β(1−2δ)|y| < 0.
(2.3.58)

Replacing (2.3.58) in (2.3.41) we obtain that I
(
zy

(
·
tzy

))
< 2m∞.

To finish the proof of the lemma, see Lemma 1.3.8.

Proof of Theorem 2.1.2. Let (un) ⊂ Eτ be the sequence given by Ghoussou-Priess
Theorem in Lemma 2.3.3. By Lemma 2.3.1 this sequence is bounded, and

I(un) → cτ and I ′(un) → 0 in (E∗)τ .

Up to a subsequence, un ⇀u0 weakly in E and I ′(u0) = 0. By Lemma 2.3.5 we have either
un → u0 strongly in E or there exists two integers k1,k2 ≥ 0, k1 solutions uj , j = 1, ...,k1

and k2 τ -antisymmetric solution uj , j = k1 +1, ...,k1 +k2 of equation (2.1.4), satisfying
the conclusion of Lemma 2.3.5. Suppose that the second case is holds. It follows from
Lemma 2.3.8 that cτ < 2m∞ and hence by Lemma 2.3.5 item 5 we must have k1,k2 = 0.
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Otherwise, without loss of generality, if k1 ≥ 1 then by Lemma 2.3.7, we get

cτ ≥ 2k1m∞ +2(k1 +k2)m∞ ≥ 2m∞,

contrary the assumption that cτ < 2m∞. Therefore, k1 = k2 = 0, un → u0 strongly in E

and cτ = I(u0).Moreover, since I(u0) = cτ > 0, it follows that u0 ̸≡ 0, u0 is τ -antisymmetric
and hence it is a sing-changing solution u0 of (Pτ ).



Chapter 3

Problem with ξ positive and V

sign-change

3.1 Spectral Theory

In this section, we present some definitions and results on spectral theory, the proof will
be omitted and can be found in [12] and [31].

Definition 3.1.1. Let H be a Hilbert space and let A :D(A) ⊂H →H be a linear operator
whose domain D(A) is a dense subspace of H. Its adjoint operator A∗ :D(A∗) ⊂H →H

is defined by

v ∈D(A∗) ⇐⇒

 v ∈H and there exists an element w ∈H,

such that, ⟨Au,v⟩ = ⟨u,w⟩, for all u ∈D(A),

and
Av = w, for all v ∈D(A∗)

so that, by the density of D(A) in H, w is the only element associated with v by definition
of D(A∗).

The operator A is said symmetric when ⟨Au,v⟩ = ⟨u,Av⟩, for all u,v ∈D(A), and if,
in addition, D(A) =D(A∗), the operator is called self-adjoint.

Definition 3.1.2. An operator B is an extension of the operator A when D(A) ⊂D(B)
and A=B in D(A). When the extension is unique, the operator is said to be essentially
self-adjoint.
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Lemma 3.1.1. Let A : D(A) ⊂ H → H be a self-adjoint in a real Hilbert space. For
λ ∈ R, we have that A−λI :D(A) ⊂H →H is an isomorphism if only if there exists a
positive constant c > 0 such that ∥(A−λI)u∥≥ c∥u∥, for all u ∈D(A).

Definition 3.1.3. Let A : D(A) ⊂ H → H be a self-adjoint operator. A resolvent set
ρ(A) of an operator A is a set

ρ(A) =
{
λ ∈ R : A−λI :D(A) →H is an isomorphism

}
and the spectrum of A is the set

σ(A) = R\ρ(A).

The elements of ρ(A) are called regular values for A. The point spectrum is given by the
set

σp(A) =
{
λ ∈ R : ker(A−λI) ̸= {0}

}
and its elements are called eigenvalues of A. The discrete spectrum is the set

σd(A) =
{
λ ∈ R : dimker(A−λI)<∞ and λ is an isolated point of σp(A)

}
and its complement in σ(A) is called the essential spectrum

σe(A) = σ(A)\σd(A),

and it consists of λ ∈ σ(A) that not isolate eigenvalues of a finite multiplicity.

3.1.1 The Schrödinger operator

Definition 3.1.4. Given the functions ξ,V ∈L∞(RN ), we define the Schrödinger operator
L :D(L) ⊂ L2(RN ) → L2(RN ) generated by the potential V and by ξ given by

D(L) =H2(RN ) and Lu= −div(ξ(x)∇u)+V (x)u, for all u ∈H2(RN ).

To show that the operator L is self-adjoint, we will use the Fourier transform. For this
purpose, it will be necessary to hypothesize that the Fourier transformation of the function
ξ is ξ itself. Furthermore, we must use a complex-value function. The corresponding
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function spaces will be distinguished from the use of italics. Thus, Lp = Lp(RN ,C) and
Lp = Lp(RN ,R), etc. The Schwartz space of smooth rapidly decreasing functions will be
denoted by

S = S(RN ,C)

= {v ∈ C∞ : |x|jDαv(x) ∈ L∞, for all j ∈ N and multi-indices α ∈ NN }.

For v ∈ S (or more generally v ∈ L1), its Fourier transform v̂ is defined by

v̂(ζ) = (2π)N/2
∫
v(x)e−iζ.xdx, for all x ∈ RN .

We have the following properties

• v̂ ∈ S, for all v ∈ S, it holds the Parseval’s identity
∫
vwdx=

∫
v̂ŵdx, for all v,w ∈ S.

• For v ∈ S, ∂jv ∈ S for all j = 1, · · · ,N and

∂̂jv(ζ) = iζiv̂(ζ), for all ζ ∈ RN .

More generally,
D̂αv(ζ) = (iζ)αv̂(ζ), for all ζ ∈ RN . (3.1.1)

Lemma 3.1.2. Let v,w ∈ L2(RN ) and ξ ∈ C(RN ,R+) with ξ̂(x) = ξ(x), such that
∫
RN

vdiv(ξ(x)∇z)dx=
∫
RN

wzdx, for all z ∈ C∞
0 (RN ). (3.1.2)

Then v ∈H2(RN ), iζ(ξ(x)iζv̂(ζ)) = ŵ(ζ), for almost all ζ ∈ RN and div(ξ(x)∇v) = w.

Proof. Since C∞
0 (RN ) is dense in H2(RN ) and using the Riesz Representation Theorem

and Divergence Theorem, we have
∫
RN

vdiv(ξ(x)∇z)dx=
∫
RN

ξ(x)∇v∇zdx=
∫
RN

wzdx, for all z ∈H2(RN ). (3.1.3)
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For φ ∈ S, the real and imaginary part of φ belong to H2(RN ) and so
∫
RN

vdiv(ξ(x)∇φ)dx=
∫
RN

wφdx, for all φ ∈ S. (3.1.4)

Furthermore, using ξ(x) = ξ(x), since ξ(x) ≥ 0 for all x ∈ RN , from equality (3.1.1) and
from Parseval’s identity, we obtain

∫
RN

vdiv(ξ(x)∇φ)dx=
∫
RN

v̂ ̂div(ξ(x)∇φ)dx

=
∫
RN

v̂iζ(ξ̂(x)iζφ̂)dζ =
∫
RN

v̂iζ(ξ(x)iζφ̂)dζ (3.1.5)

and ∫
RN

wφdx=
∫
RN

ŵφ̂dζ. (3.1.6)

Replacing (3.1.5) and (3.1.6) in (3.1.4) we have
∫
RN

v̂iζ(ξ(x)iζφ̂)dζ =
∫
RN

ŵφ̂dζ, for all φ ∈ S.

Since Ŝ = S, this means that
∫
RN

v̂iζ(ξ(x)iζη)dζ =
∫
RN

iζ(ξ(x)iζv̂)ηdζ =
∫
RN

ŵηdζ, for all η ∈ S. (3.1.7)

In particular, ∣∣∣∣∫RN
iζ(ξ(x)iζv̂)ηdζ

∣∣∣∣≤ ∥ŵ∥L2∥η∥L2 , for all η ∈ S,

and since S is dense in L2, it follows that iζ(ξ(x)iζv̂(ζ)) ∈ L2 and

iζ(ξ(x)iζv̂(ζ)) = ŵ(ζ), for almost all ζ ∈ RN . (3.1.8)

Thus v ∈ {v ∈ L2 : |η|2v̂(η) ∈ L2} = H2. Then, by (3.1.8) and (3.1.7) we obtain
∫
RN

v̂iζ(ξ(x)iζη)dζ =
∫
RN

iζ(ξ(x)iζv̂)ηdζ. (3.1.9)

Using again the equality (3.1.1) we have from (3.1.9) and (3.1.2) that
∫
RN

vdiv(ξ(x)∇z)dx=
∫
RN

div(ξ(x)∇v)zdx,
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for all z ∈ C∞
0 , which it follows that div(ξ(x)∇v) = w and we finish the proof.

An example of a bounded function that the Fourier transformation is the identity of is

ξ(x) = exp

(
−|x|2

2

)
+V0, with V0 > 0.

Theorem 3.1.1. For ξ,V ∈ L∞(RN ) with ξ̂(x) = ξ(x), for all x ∈ RN , the Schrödinger
operator L :D(L) ⊂ L2(RN ) → L2(RN ) generated by ξ and by the potential V is self-
adjoint.

Proof. Note that H2(RN ) is dense in L2(RN ) so the adjoint Schrödinger operator
L∗ : D(L∗) ⊂ L2(RN ) → L2(RN ) is well defined. Furthermore, for all u,v ∈ H2(RN )
and by Lemma 3.1.2

∫
RN

(Lu)vdx =
∫
RN

(
−div(ξ(x)∇u)+V (x)u

)
vdx

= −
∫
RN

div(ξ(x)∇u)vdx+
∫
RN

V (x)uvdx

= −
∫
RN

div(ξ(x)∇v)udx+
∫
RN

V (x)vudx

=
∫
RN

(
−div(ξ(x)∇v)+V (x)v

)
udx

where −div(ξ(x)∇v) +V (x)v ∈ L2(RN ). This shows that H2(RN ) ⊂ D(L∗) and that
L∗v = −div(ξ(x)∇v)+V (x)v = Lv for all v ∈H2(RN ).

On the other hand, if v ∈ D(L∗), then v ∈ L2(RN ) and there exists an element
w ∈ L2(RN ) such that

∫
RN

(Lu)vdx=
∫
RN

uwdx, for all u ∈D(L) =H2(RN ).

Thus,
∫
RN

(
−div(ξ(x)∇u)+V (x)u

)
vdx=

∫
RN

uwdx, for all u ∈ C∞
0 (RN )

and so
∫
RN

(w−V (x)v)udx= −
∫
RN

div(ξ(x)∇u)vdx, for all u ∈ C∞
0 (RN )

where v and (V (x)v−w) ∈ L2(RN ). By Lemma 3.1.2, div(ξ(x)∇v) = w−V (x)v and
v ∈H2(RN ). This shows that D(L∗) ⊂H2(RN ), completing the proof.
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Now, we define the number Λ that characterizes the smallest value in the spectrum
of L. For any ξ,V ∈ L∞(RN ), consider

Λ = inf
{∫

RN

(
ξ(x)|∇u|2+V (x)u2

)
dx : u ∈H1(RN ) and

∫
RN

u2dx= 1
}
.

The next result shows that the spectrum of the operator L is never empty and
characterizes its infinity related to the number Λ.

Theorem 3.1.2. Let ξ,V ∈ L∞(RN ). Then,

(i) σ(L) ⊂ [Λ,+∞);

(ii) Λ ∈ σ(L).

In particular Λ = inf σ(L).

The following results will be needed to prove the theorem:

Lemma 3.1.3. Let L :H →H be a self-adjoint and let

m= inf{⟨Lu,u⟩ : u ∈H and ∥u∥= 1},

M = sup{⟨Lu,u⟩ : u ∈H and ∥u∥= 1}.

Then,

(i) σ(L) ⊂ [m,M ];

(ii) ∥L∥= sup{|λ|: λ ∈ σ(L)} = max{|m|, |M |};

(iii) m,M ∈ σ(L).

Lemma 3.1.4. Let ξ,V ∈ L∞(RN ). Then,

(1) Λ ≥ −∥V ∥∞>−∞;

(2) Λ = inf
{∫

RN
(ξ(x)|∇u|2+V (x)u2)dx : u ∈ C∞

0 (RN ) and
∫
RN

u2dx= 1
}

and so we also have,

Λ = inf
{∫

RN
(Lu)udx : u ∈H2(RN ) and

∫
RN

u2dx= 1
}

;
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(3) If u ∈ H1(RN ) with
∫
RN

u2dx= 1 and
∫
RN

(ξ(x)|∇u|2+V (x)u2)dx= Λ, then u ∈

H2(RN ), u ∈ ker(L−ΛI) and Λ ∈ σp(L).

Proof of Theorem 3.1.2. (i) By item (2) of Lemma 3.1.4 we have for all u ∈H1(RN )

Λ
∫
RN

u2dx≤
∫
RN

(Lu)udx

and so, for all λ ∈ R,

(Λ−λ)∥u∥2
L2≤

∫
RN

[(L−λI)u]udx≤ ∥(L−λI)u∥L2∥u∥L2 .

Thus,
∥(L−λI)u∥L2≥ (Λ−λ)∥u∥L2 , for all u ∈ C∞

0 (RN )

and follows from the Lemma 3.1.1 that λ ∈ ρ(L) if Λ−λ > 0.
(ii) From part (i) we know that σ(L) ⊂ [Λ,∞). Let m≥ Λ be such that σ(L) ⊂ [m,∞).

To complete the proof we have to show that m≤ Λ. We choose any η ∈ (−∞,m). Since
η ∈ ρ(L), we set

A= (L−ηI)−1

and we have that A : L2(RN ) → L2(RN ) is linear, bounded and selfadjoint operator.
Furthermore, 0 ∈ σ(A) since R(A) =D(L) =H2(RN ) ̸= L2(RN ). For λ ̸= 0,

A−λI = λ
{1
λ
I− (L−ηI)

}
A= λ

{(1
λ

−η
)
I−L

}
A

and so

A−λI : L2(RN ) → L2(RN ) is an isomorphism

⇐⇒ L−
(1
λ

+η
)

:H2(RN ) → L2(RN )

⇐⇒
(1
λ

+η
)

∈ ρ(L).

Therefore, we see that

σ(A) = {0}∪
{

1
µ−η

: µ ∈ σ(A)
}
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and hence σ(A) ⊂
[
0, 1
m−η

]
. By Lemma 3.1.1 implies that

∫
RN

(Av)vdx≥ 0, for all v ∈ L2(RN ).

For any u ∈H2(RN ), we consider v = (L−ηI)u and we obtain that
∫
RN

[(L−ηI)u]udx=
∫
RN

(Av)vdx≥ 0

this shows that
∫
RN

(Lu)udx≥ η
∫
RN

u2dx for all u ∈ H2(RN ) and it follows from this
item (ii) of Lemma 3.1.4 that η ≤ Λ. But η is an arbitrary number smaller than m. We
can conclude that m≤ Λ, completing the proof.

Lemma 3.1.5. Let ξ,V ∈ L∞(RN ). For ε > 0, let X be a closed subspace of H1(RN )
such that

∫
RN

(ξ(x)|∇u|2+V (x)u2)dx≤ (l− ε)
∫
RN

u2dx, for all u ∈X, (3.1.10)

with l = liminf
|x|→∞

V (x). Then, dimX <∞.

Proof. Observe that
∫
RN

(ξ(x)|∇u|2+V (x)u2)dx and
∫
RN

u2dx are both continuous func-
tions of u in H1(RN ). And so from (3.1.10) it holds for all u in the closure of X.
Therefore, we can assume X that is a closed subspace of H1(RN ). Consider a sequence
(un) ⊂ X such that ∥un∥H1(RN )= 1 for all n ∈ N. We need only show that (un) has
a subsequence that converges strongly in H1(RN ). Passing to a subsequence we can
assume that un ⇀u weakly in H1(RN ) for some element of H1(RN ). If Pu denotes the
orthogonal projection of u onto X in H1(RN ) then

∥u−Pu∥2
H1(RN )= ⟨(I−P )u,u⟩H1(RN ) = ⟨(I−P )u,u−un⟩ → 0,

thus Pu= u ∈X. For definition of l, there exists R > 0 such that

V (x) ≥ l− ε

2 , for almost all |x|≥R. (3.1.11)
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Then by compact embedding of H1(BR(0)) in L2(BR(0)), it follows that
∫

|x|≤R
(un −u)2dx→ 0. (3.1.12)

From (3.1.12) we have that
∫
RN

ξ(x)|∇u|2dx≤ (l− ε)
∫
RN

u2dx−
∫
RN

V (x)u2dx and using
(3.1.11) we obtain that

ε

2

∫
|x|≤R

(un −u)2dx+
∫
RN

ξ(x)|∇(un −u)|2dx

≤ ε

2

∫
|x|≤R

(un −u)2dx+(l− ε)
∫
RN

(un −u)2dx−
∫
RN

V (x)(un −u)2dx

=
∫

|x|≤R

(
ε

2 + l− ε−V (x)
)

(un −u)2dx+
∫

|x|≥R
(l− ε−V (x))(un −u)2dx

=
∫

|x|≤R

(
l− ε

2 −V (x)
)

(un −u)2dx+
∫

|x|≥R
(l− ε−V (x))(un −u)2dx

≤ (l+∥V ∥L∞)
∫

|x|≥R
(un −u)2dx→ 0.

It follows that
∫

|x|≤R
(un −u)2dx→ 0 and

∫
RN

ξ(x)|∇(un −u)|2dx→ 0 when n→ ∞

that combining with (3.1.12) give us ∥un −u∥H1(RN )→ 0, which completes the proof.

Theorem 3.1.3. Let ξ,V ∈ L∞(RN ) and consider η < l where l = lim
R→∞

ess inf
|x|≥R

V (x).

For each µ ∈ (0,
√
l−η), there exists a constant C, depending on η and µ, such that

|u(x)|≤ C∥u∥L∞e−µ|x|

for all x ∈ RN since u ∈ ker(L−λI) for some λ≤ η.

Proof. Consider r = |x| we obtain

∆e−µr = (e−µr)
′′

+ N −1
r

(e−µr)′ =
{
µ2 − N −1

N
µ
}
e−µr, for x ̸= 0.

Since 0< µ2 < l−η, there exists R =R(η,µ)> 0 such that

V (x) ≥ η+µ2, for |x|≥R,
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and then, for all λ≤ η, we also have

V (x)> λ

and λ−V (x)+µ2 − N −1
N

< 0, for all |x|≥R.

Now, consider C = eµR and, for any u ∈ ker(L−λI) \ {0} with λ ≤ η, consider the
function w defined by

w(x) = u(x)−C∥u∥L∞e−µ|x|, for all x ∈ RN .

By [Theorem 3.18, [31]] we have that

w ∈ C0(RN )∩H1(RN ) and lim
|x|→∞

w(x) = 0.

The definition of C0(RN ) guarantees us that

w ≤ 0, for all |x|≤R.

Therefore, by [Lemma 7.6, [18]], w+ ∈ C0(RN )∩H1(RN ), lim
|x|→∞

w+(x) = 0 and w+ ≡ 0

for |x|≤R. Let
Ω = {x ∈ RN : w+ > 0}.

The set Ω is open and Ω ⊂ RN \BR(0) ≡E(R). Suppose that Ω ̸= ∅, w ∈H2(E(R)) and
w+ = 0 on ∂E(R). Then

∫
RN

ξ(x)|∇w+|2dx=
∫

E(R)
ξ(x)∇w∇w+dx

≤−ξ∞

∫
E(R)

(∆w)w+dx

= −ξ∞

∫
E(R)

(∆w)wdx

= ξ∞

∫
Ω

{(λ−V (x))u+C∥u∥L∞∆(e−µ|x|)}wdx

≤ ξ∞

∫
Ω

{
λ−V (x)+µ2 − N −1

r
µ
}
C∥u∥L∞e−µ|x|wdx
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since λ−V (x) ≤ 0 and u(x)>C∥u∥L∞e−µ|x| onto Ω. But w > 0 in Ω ⊂E(R) and R was
chosen so that λ−V (x)+µ2 − N −1

r
µ < 0 in E(R). Thus, we saw

0 ≤
∫
RN

|∇(w+)|2dx < 0

if Ω ̸= ∅. Therefore, we must have Ω = ∅ and w ≤ 0 in RN . Hence u(x) ≤ C∥u∥L∞e−µ|x|

for all x ∈ RN . Replacing u by −u we complete the proof.

Theorem 3.1.4. If a mensurable locally bounded functions V, ξ such that
liminf
|x|→∞

V (x) ≥ l and liminf
|x|→∞

ξ(x) ≥ δ, then the operator L= −div(ξ(x)∇ )+V (x) is semi-

bounded from below and has a discrete spectrum on (−∞, l), so that for any ε > 0
the spectrum of L in (−∞, l− ε) consists of a finite number of eigenvalues of finite
multiplicities..

To prove this theorem it is necessary to state the following lemma:

Lemma 3.1.6. If liminf
|x|→∞

V (x) ≥ a, liminf
|x|→∞

ξ(x) ≥ b and u ∈D(L), then

⟨Lu,u⟩ =
∫
RN

(ξ(x)|∇u|2+V (x)u2)dx <∞.

Proof. Since V (x) ≥ C and ξ(x) ≥D, we can substitute L by L− (C−1)I and assume
the following estimates V (x) ≥ 1 and ξ(x) ≥ 1 such that

∫
RN

V (x)u2dx≥
∫
RN

u2(x)dx and∫
RN

ξ(x)|∇u|2dx≥
∫
RN

|∇u(x)|2dx. Let us introduce in D(L) the following norm

∥u∥Γ=
(∫

RN
(u2 + |Lu|2)dx

)1/2
. If u ∈ C∞

0 (RN ), then

⟨Lu,u⟩ =
∫
RN

(ξ(x)|∇u|2+V (x)u2)dx.

The convergence of the sequence (uk) is the graph norm ∥·∥Γ implies its convergence
in H1(RN ) and in the space L2(RN ) with the weight function V and the function ξ.
Therefore, for the limit function u the integral

∫
RN

(ξ(x)|∇u|2+V (x)u2)dx has a finite
value and is equal to ⟨Lu,u⟩.

Proof of Theorem 3.1.4. We will prove that, for ε > 0, the dimension of the subspace

S :=
{
u ∈D(L); ⟨Lu,u⟩ ≤ (l− ε)∥u∥2

}
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is finite. By Lemma 3.1.6, this inequality is equivalent to the following one
∫
RN

(ξ(x)|∇u|2+V (x)u2)dx≤ (l− ε)
∫
RN

u2dx∫
RN

(ξ(x)|∇u|2+V (x)u2)dx− (l− ε)
∫
RN

u2dx≤ 0∫
RN

(ξ(x)|∇u|2+(V (x)− l+ ε)u2)dx≤ 0, u ∈ S.

Let R > 0 be such that V (x) ≥ l− ε/2 for |x|≥ R and V (X) ≥ m for all x ∈ RN .
Then,

0 ≥
∫

|x|≤R
(ξ(x)|∇u|2+(V (x)− l+ ε)u2)dx+

∫
|x|>R

(ξ(x)|∇u|2+(V (x)− l+ ε)u2)dx

≥
∫

|x|≤R
(ξ(x)|∇u|2+(m− l+ ε)u2)dx+

∫
|x|>R

(
ξ(x)|∇u|2+

(
l− ε

2 − l+ ε
)
u2
)
dx

=
∫

|x|≤R
(ξ(x)|∇u|2+(m− l+ ε)u2)dx+

∫
|x|>R

(
ξ(x)|∇u|2+ε

2u
2
)
dx.

Therefore,
∫

|x|≤R
ξ(x)|∇u|2dx+

∫
|x|>R

(
ξ(x)|∇u|2+ε

2u
2
)
dx≤ C

∫
|x|≤R

u2dx, u ∈ S,

if C ≥ l−m+ε≥ 0. Let B be the operator of restriction of functions from S on the ball
KR := {x : |x|≤R}, that is, B : S ⊂ L2(RN ) → L2(KR). This operator is continuous in
L2(RN ) and injective in virtue of the latter estimate. To prove that S has finite dimension
we will show that the subset BS, which is the operator B applied to the set S, has finite
dimension. However, by the same estimate we have ∥u∥H1(KR)≤ C∥u∥L2(KR), u ∈ BS.
Furthermore, H1(KR) ⊂⊂ L2(KR). Therefore, the unit ball in the space BS∩L2(KR)
is compact. And so, BS has finite-dimensional and, since B is injective, we can conclude
that S is finite-dimensional.

3.2 Variational Setting

In this chapter, we consider the following problem
 −div(ξ(x)∇u)+V (x)u= f(x,u), in RN ,

u(x) → 0, as |x|→ ∞,
(P3)
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with N ≥ 3, under the following assumptions in ξ ∈ C(RN ,R+) and V ∈ C(RN ,R):

(ξ1) there exists ξ0 > 0 such that ξ(x) ≥ ξ0;

(ξ2) lim
|x|→∞

ξ(x) = ξ∞;

(ξ3) ξ(x) ≨ ξ∞;

(V1) there exists V0 > 0 such that V (x) ≥ −V0;

(V2) lim
|x|→∞

V (x) = V∞;

(V3) V (x) ≤ V∞;

(V4) 0 ̸∈ σ(L) and inf σ(L) < 0, where σ(L) is the spectrum of the operator
L(·) = −div(ξ(x)∇(·))+V (x)(·).

The conditions that we consider on the nonlinearity f ∈ C(RN ×R,R) are the follow-
ing:

(f1) lim
s→0+

f(x,s)
s

= 0, uniformly in x ∈ RN ;

(f2) there exist a ∈C(RN ,R+) and h ∈C(R,R+) a even function satisfying h(s)> 0 for
all s > 0, h(0) = 0 and such that

lim
s→∞

f(x,s)
s

= a(x), lim
|x|→∞

f(x,s)
s

= h(s),

lim
|x|→∞, s→∞

f(x,s)
s

= lim
s→∞h(s) = lim

|x|→∞
a(x) = a∞,

uniformly in x ∈ RN . Moreover, |f(x,s)|
|s|

≤ a(x) and a(x) ≥ a0 > V∞, for all s ̸= 0

and all x ∈ RN ;

(f3) h(s)< a∞ for all s ∈ R;

(f4) if F (x,s) :=
∫ s

0
f(x,t)dt, H(s) :=

∫ s

0
h(t)tdt, G(s) := 1

2h(s)s2 −H(s) and

Q(x,s) := 1
2f(x,s)s−F (x,s), then, for all s ∈ R\{0} and all x ∈ RN ,

G(s)> 0, F (x,s) ≥ 0, Q(x,s)> 0 and lim
s→+∞

Q(x,s) = +∞;
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(f5) there exist C2 > 0 and 1< p1 ≤ p2 such that p1,p2 < 2∗ −1 and

|f (k)(x,s)|≤ C2
(
|s|p1−k+|s|p2−k

)
for k ∈ {0,1}, s ∈ R and x ∈ RN ;

(f6) the function s 7→ f(x,s)/s is increasing in s ∈ (0,+∞) for all x ∈ RN .

Consider the function f(x,s) = |s|3

1+ c(x)s2 for x∈RN , where c∈C(RN ,R) is a positive

function, c(x) → c∞ > 0 when |x|→ ∞ and 0< c0 ≤ c(x)< c∞, is an example of a function

that satisfies the assumptions (f1)− (f6), with a(x) = 1
c(x) and h(s) = s2

1+ c∞s2 .
The main result of this chapter is the following theorem.

Theorem 3.2.1. Assume that ξ and V satisfy the hypotheses (ξ1)− (ξ3) and (V1)− (V4),
respectively, and the function f satisfies (f1)− (f6). Then problem (P3) has a nontrivial
weak solution u ∈H1(RN ) provided one of the followings conditions holds:

ξ(x) ≤ ξ∞ −C1e
−γ1|x|, for all x ∈ RN (3.2.1)

or
V (x) ≤ V∞ −C2e

−γ2|x|, for all x ∈ RN (3.2.2)

for constants C1, C2 > 0 and 0< γ1, γ2 <
√
V∞/ξ∞.

Remark 3.2.1. The condition (f2) implies that h(s) ≤ a∞ for all s ∈ R. However, we
will need the strict inequality (f3) forward.

Consider the space H1(RN ) equipped with the norm

∥u∥2
∞=

∫
RN

(
ξ∞|∇u|2+V∞u

2
)
dx (3.2.3)

and the limit problem

−div(ξ∞∇u)+V∞u= h(u)u, in RN . (3.2.4)

The functional associated with the equation (3.2.4) is given by

I∞(u) = 1
2

∫
RN

(ξ∞|∇u|2+V∞u
2)dx−

∫
RN

H(u)dx, (3.2.5)
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for u ∈H1(RN ). Since V∞ < a∞, is proved by Berestick-Lions in [6] that the problem
(3.2.4) has a symmetric and positive classical solution u ∈H1(RN ).

Let E := H1(RN ) be the space equipped with the norm established later. The
functional I : E → R associated with the problem (P3) is given by

I(u) = 1
2

∫
RN

(ξ(x)|∇u|2+V (x)u2)dx−
∫
RN

F (x,u)dx,

with u ∈ E. From hypotheses (ξ2),(V2) and (V3), the eigenvalue problem

−div(ξ(x)∇u)+V (x)u= λu, u ∈ L2(RN ) (3.2.6)

has a sequence of eigenvalues λ1 < λ2 ≤ λ3 ≤ ·· · ≤ λk ≤ ·· ·. Making ε = V∞ > 0 in
Theorem 3.1.4 we have the spectrum of −div(ξ(x)∇(·))+V (x)(·) in (−∞,0) has a finite
number of eigenvalues. In other words, the eigenvalue problem (3.2.6) has a finite
sequence of eigenvalues λ1 < λ2 ≤ λ3 ≤ ·· · ≤ λk < 0, with finite multiplicity.

Denote by ϕi the eigenfunction corresponding to λi, i = {1,2, · · · ,k}, in H1(RN ).
Setting

E− := span{ϕi, i= 1,2, · · · ,k} and E+ = (E−)⊥,

we see that E =E+ ⊕E−. By Theorem 3.1.4 the essential spectrum of −div(ξ(x)∇(·))+
V (x)(·) is the interval [V∞,+∞) and this implies that dimE− < ∞, because for each
λi < 0 it has a finite multiplicity. Having made theses considerations, every function u∈E
may be written as u = u+ +u− uniquely, where u+ ∈ E+ and u− ∈ E−. By condition
(V3) we have that 0 /∈ σ(−div(ξ(x)∇(·)) +V (x)(·)), thus, using the arguments in Lemma
1.2 of Costa-Tehrani [11], we can introduce the new inner product ⟨·, ·⟩ in E, namely

⟨u,v⟩ =



∫
RN

(ξ(x)∇u∇v+V (x)uv)dx, if u,v ∈ E+,

−
∫
RN

(ξ(x)∇u∇v+V (x)uv)dx, if u,v ∈ E−,

0, if u ∈ E+ and v ∈ E−,

such that corresponding norm ∥·∥ is equivalent the usual norm in standard space H1(RN )
by hypotheses (ξ3) and (V1). In addition, the functional I may be written as

I(u) = 1
2∥u+∥2−1

2∥u−∥2−
∫
RN

F (x,u)dx (3.2.7)
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for every function u = u+ +u− ∈ E. We call attention to the fact, since λi ̸= 0 for all
i= {1,2, · · · ,k} it follows from (3.2.6) and by definition of ϕi that

∫
RN

u+(x)v−(x)dx= 0

for every function u+ ∈E+ and v− ∈E−. Indeed, for all u+ ∈E+ and v− ∈E− we have
∫
RN

(∇u+∇u− +u+u−)dx= 0

because E+ = (E−)⊥. If u+ ∈ E+ and v− ∈ E− we get

∥u+∥2−∥v−∥2=
∫
RN

(ξ(x)|∇(u+ +v−)|2+V (x)|u+ +v−|2)dx.

Developing the right side of this equality, we obtain

∥u+∥2−∥v−∥2 =
∫
RN

(ξ(x)|∇u+|2+V (x)(u+)2)dx+2
∫
RN

(ξ(x)∇u+∇v− +V (x)u+v−)dx

−
∫
RN

(ξ(x)|∇v−|2+V (x)(v−)2)dx

and this implies that
∫
RN

(ξ(x)∇u+∇v− +V (x)u+v−)dx= 0. (3.2.8)

From equation (3.2.6) we have that

−div(ξ(x)∇ϕi)+V (x)ϕi = λiϕi

if and only if
∫
RN

(ξ(x)∇ϕi∇u+ +V (x)ϕiu
+)dx= λi

∫
RN

ϕiu
+dx, for all u+ ∈ E+.

From equality (3.2.8), for λi ̸= 0 we have
∫
RN

ϕiu
+dx= 0 and thus, by linearity,

∫
RN

u+v−dx=
∫
RN

V (x)u+v−dx=
∫
RN

ξ(x)∇u+∇v−dx= 0,

and this completes our claim.
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3.3 Boundedness of a Cerami Sequence

Lemma 3.3.1. Under the assumptions (f1) and (f2), given ε > 0, there exists Cε > 0
such that, for 2 ≤ p≤ 2∗,

|f(x,s)|≤ ε|s|+Cε|s|p−1

and
|F (x,s)|≤ ε

2 |s|2+Cε|s|p

for all s ∈ R and all x ∈ RN .

Proof. From hypotheses (f1) and (f2), given ε > 0, there exist R,δ > 0 such that R > δ

with
|f(x,t)|≤ ε|t|, whenever |t|< δ, and for all x ∈ RN (3.3.1)

and
|f(x,t)−a(x)t|≤ ε|t|, whenever |t|>R, and for all x ∈ RN . (3.3.2)

The inequality (3.3.1) and the hypothesis (f2) imply that

|f(x,t)|≤ ε|t|+a0|t|, whenever |t|>R, and for all x ∈ RN (3.3.3)

where a0 = sup
RN

|a(x)|. For values of t such that |t|> R holds |t|< |t|p−1

Rp−2 . Thus (3.3.3)

becomes

|f(x,t)|≤ ε|t|+ a0
Rp−2 |t|p−1, whenever |t|>R and for all x ∈ RN . (3.3.4)

By hypothesis (f2), we have

|f(x,t)|≤ |a(x)t|≤ a0|t|, whenever δ ≤ |t|≤R, and for all x ∈ RN .

Therefore, for values of t so that δ ≤ |t|≤R, we obtain

|f(x,t)|≤ a0
δp−2 |t|p−1, whenever δ ≤ |t|≤R, and for all x ∈ RN . (3.3.5)

It follows from (3.3.1), (3.3.4) and (3.3.5) that

|f(x,t)|≤ ε|t|+
(

a0
Rp−2 + a0

δp−1

)
|t|p−1, for all t ∈ R, and all x ∈ RN . (3.3.6)
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Taking Cε :=
(

a0
Rp−2 + a0

δp−1

)
and replacing in (3.3.6) we obtain |f(x,t)|≤ ε|t|+Cε|t|p−1,

next integrating this inequality of 0 to s, we obtain

|F (x,s)|≤ ε

2 |s|2+Cε|s|p, for all x ∈ RN ,

and we conclude the proof of lemma.

We note that, if (vn) is a bounded sequence in E, then (vn) satisfies one the following
cases:

(i) vanishing: for all r > 0,

limsup
n→+∞

sup
y∈RN

∫
Br(y)

|vn|2dx= 0.

(ii) or nonvanishing: there exist r, η > 0 and a sequence (yn) ⊂ RN such that

limsup
n→+∞

∫
Br(yn)

|vn|2dx > η.

Lemma 3.3.2. Let (un) ⊂ E be a sequence such that

I(un) → c > 0 and ∥I ′(un)∥E∗(1+∥un∥) → 0 as n→ ∞.

Then, (un) has a bounded subsequence.

Proof. Let us assume ∥un∥→ +∞ and obtain a contradiction. To this end, we consider
vn = un

∥un∥
and observe that ∥vn∥= 1. The sequence (vn) is bounded, however, we will

show that neither (i) or (ii) is true. First, suppose that (ii) holds for the sequence (vn).
Write f(x,s) = a(x)s+(f(x,s)−a(x)s) = a(x)s+f∞(x,s) and consider φ ∈ C∞

0 (RN ).
By equivalence of the norms in E and the standard in H1(RN ), there exist constant
C1, C2 > 0 such that

∥w∥≤ C1∥w∥E≤ C2∥w∥, for all w ∈ E. (3.3.7)
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Let (yn) ⊂ RN be the sequence given by hypothesis (ii). Since the sequence (un) is a
Cerami sequence, and considering φn(x) = φ(x−yn) we have from (3.3.7)

|I ′(un)φn| ≤ ∥I ′(un)∥E∗∥φn∥≤ C1∥I ′(un)∥E∗∥φn∥E= C1∥I ′(un)∥E∗∥φ∥E→ 0.

Therefore,

on(1) = 1
∥un∥

I ′(un)φn

= 1
∥un∥

(
⟨u+

n −u−
n ,φn⟩−

∫
RN

f(x,un)φndx
)

= ⟨v+
n −v−

n ,φn⟩−
∫
RN

f(x,un)
∥un∥

φndx

= ⟨v+
n −v−

n ,φn⟩−
∫
RN

a(x)un +f∞(x,un)
∥un∥

φndx

= ⟨v+
n −v−

n ,φn⟩−
∫
RN

a(x)vnφndx−
∫
RN

f∞(x,un)
∥un∥

φndx (3.3.8)

= ⟨v+
n −v−

n ,φn⟩−
∫
RN

a(x)vnφndx−
∫
RN

f∞(x,un)
un

vnφndx.

Consider ṽn(x) = vn(x+yn) and ũn(x) = un(x+yn). Note that (ṽn) is bounded in E.
Thus, up to a subsequence,


ṽn ⇀ ṽ, in E,

ṽn → ṽ, in L2
loc(RN ),

|ṽn(x)|≤ h0(x), a.e. in K,

(3.3.9)

for some function h0 ∈ L1(K), where K = supp(φ). By hypotheses (f1) and (f2) we
remember that f∞(x,s) = f(x,s)−a(x)s, we have

∣∣∣∣∣f∞(x+yn, ũn)
ũn

ṽnφ

∣∣∣∣∣≤ Ch0(x)φ ∈ L1(K). (3.3.10)

Note that ṽ ̸= 0, from item (ii) and estimates in (3.3.9) we get
∫

Br(0)
ṽ2dx = lim

n→∞

∫
Br(0)

ṽ2
ndx= limsup

n→∞

∫
Br(0)

v2
n(x+yn)dx

= limsup
n→∞

∫
Br(yn)

v2
ndx > η > 0.
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By hypothesis (f2), (3.3.10) and the Lebesgue Dominated Convergence Theorem, it
follow that ∫

RN

f∞(x, ũn)
ũn

ṽnφndx→ 0 as n→ ∞. (3.3.11)

Thus, from (3.3.8), (3.3.11) and the change of variables theorem we get

on(1) =
∫
RN

(ξ(x+yn)∇ṽ+
n ∇φ+V (x+yn)ṽ+

n φ)dx

−
∫
RN

(ξ(x+yn)∇ṽ−
n ∇φ+V (x+yn)ṽ−

n φ)dx−
∫
RN
a(x+yn)ṽnφdx.(3.3.12)

Case 1: |yn|→ ∞. In this case, hypotheses (ξ2), (V2) and (f2) ensures that ξ(x+ yn)
converges to ξ∞, V (x+ yn) converges to V∞ and a(x+ yn) converges to a∞ almost
everywhere in RN , when n→ ∞. Thus,

on(1) =
∫

K

[
(ξ∞ +on(1))∇ṽ+

n ∇φ+(V∞ +on(1))ṽ+
n φ

]
dx+

∫
K

[
(ξ∞ +on(1))∇ṽ−

n ∇φ

+(V∞ +on(1))ṽ−
n φ

]
dx−

∫
K

(a∞ +on(1))ṽnφdx. (3.3.13)

Therefore, for every function φ ∈ C∞
0 (RN ), taking n→ +∞ in (3.3.12), we obtain

∫
RN

(
ξ∞∇(ṽ+ + ṽ−)∇φ+V∞(ṽ+ + ṽ−)φ

)
dx−

∫
RN

a∞ṽφdx= 0,

that is, ṽ ̸= 0 is weak solution of problem

−div(ξ∞∇ṽ)+V∞ṽ = a∞ṽ, in RN .

Since V∞ < a∞ and there is no Laplacian eigenvalue in RN , this is absurd. Therefore,
(ii) is not valid when |yn|→ +∞.

Case 2: (yn) is a bounded sequence. From estimate (3.3.7) and translation invariance
of integration we have

∥ũn∥≥ C1
C2

∥ũn∥E= C1
C2

∥un∥E≥ 1
C2

∥un∥,

which goes to infinite as n→ ∞. It follows from (3.3.9) that

0 ̸= |ṽ(x)|= lim
n→∞|ṽn(x)|= lim

n→∞
|ũn(x)|
∥ũn∥

, a.e in Ω
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for some Ω ⊂ B1(0), with µ(Ω) > 0. Since ∥ũn∥→ ∞, we have ũn(x) → ∞ a.e. in Ω.
Thus, Fatou’s lemma and hypothesis (f4) yield

liminf
n→+∞

∫
RN

(1
2f(x,un)un −F (x,un)

)
dx

≥
∫
RN

liminf
n→+∞

(1
2f(x+yn, ũn)ũn −F (x+yn, ũn)

)
dx= +∞.

However, this contradicts the fact
∫
RN

(1
2f(x,un)un −F (x,un)

)
dx= I(un)− 1

2I
′(un)un = c+on(1).

Hence, Case 2 is not valid when the sequence (yn) is bounded. This shows that hypothesis
(ii) does not hold for the sequence (vn).

Now, suppose that the hypothesis (i) holds for the sequence (vn). Since (un) is a
Cerami sequence, we have I ′(un)u−

n → 0 and I ′(un)u+
n → 0. Thus

on(1) = I ′(un) u+
n

∥un∥2 = ∥v+
n ∥2−

∫
RN

(f(x,un)
un

vnv
+
n

)
dx (3.3.14)

and, similarly,

on(1) = I ′(un) u−
n

∥un∥2 = 1
∥un∥

I ′(un)v−
n = −∥v−

n ∥2−
∫
RN

(
f(x,un)
un

vnv
−
n

)
dx. (3.3.15)

Subtracting the equation (3.3.14) from (3.3.15), we have

on(1) = ∥v+
n ∥2−

∫
RN

(
f(x,un)
un

vnv
+
n

)
dx+∥v−

n ∥2+
∫
RN

(
f(x,un)
un

vnv
−
n

)
dx

= ∥vn∥2−
∫
RN

(
f(x,un)
un

vn(v+
n −v−

n )
)
dx

= 1−
∫
RN

(
f(x,un)
un

vn(v+
n −v−

n )
)
dx.

Thus, necessarily, when n→ +∞

∫
RN

(
f(x,un)
un

vn(v+
n −v−

n )
)
dx→ 1. (3.3.16)
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By Sobolev’s embedding, there exists a constant µ0 > 0 such that

∥w∥2≥ µ0∥w∥2
L2 (3.3.17)

for any w ∈ E. Given 0< ε < µ0/2, by hypothesis (f1), there exists δ > 0 satisfying

|f(x,s)|
|s|

< ε, for 0 ̸= |s|< δ and for all x ∈ RN .

For each n ∈ N, consider the set

Ω̃n = {x ∈ RN ; |un(x)|< δ}.

Thus, from (3.3.17) and by Hölder’s inequality

∫
Ω̃n

(
f(x,un)
un

vn(v+
n −v−

n )
)
dx ≤ ε

∫
Ω̃n

|vn||v+
n −v−

n |dx

≤ ε
(
∥vn∥L2∥v+

n ∥L2+∥vn∥L2∥v−
n ∥L2

)
≤ 2ε∥vn∥2

L2≤ 2ε
µ0

∥vn∥2= 2ε
µ0

< 1.

From the convergence given in (3.3.16) we conclude that

liminf
n→∞

∫
RN \Ω̃n

(
f(x,un)
un

vn(v+
n −v−

n )
)
dx > 0. (3.3.18)

Since |f(·, ·)|
| · |

is bounded, by Hölder’s inequality with exponent p > 2, we obtain a
constant C > 0 such that

∫
RN \Ω̃n

(
f(x,un)
un

vn(v+
n −v−

n )
)
dx ≤

∫
RN \Ω̃n

∣∣∣∣∣f(x,un)
un

vn(v+
n −v−

n )
∣∣∣∣∣dx

≤ C
∫
RN \Ω̃n

|vn||v+
n −v−

n |dx

≤ C
∫
RN \Ω̃n

|vn|2dx

≤ Cµ(RN \ Ω̃n)(p−2)/p∥vn∥2/p
Lp . (3.3.19)
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Assumption (i) and Lion’s Lemma ensure that ∥vn∥Lp→ 0. Therefore, up to a subsequence,
it follows from (3.3.18) that

µ(RN \ Ω̃n) → ∞, as n→ ∞. (3.3.20)

Now, we consider two disjoint subsets of RN/Ω̃n. Hypothesis (f3) implies there exists
R > 0 such that, if |s|>R, for all x ∈ RN ,

1
2f(x,s)s−F (x,s)> 1.

Without loss of generality, we assume 0 < δ < R. For each n ∈ N, consider the set
An := {x ∈ RN : |un(x)|>R}. Thus, by hypothesis (f4)

c+on(1) = I(un)− 1
2I

′(un)un

=
∫
RN

(
1
2f(x,un)un −F (x,un)

)
dx

≥
∫

An

(
1
2f(x,un)un −F (x,un)

)
dx

> µ(An),

which implies that the sequence (µ(An)) is bounded. Also consider the set
Bn := {x ∈ RN : δ ≤ |un(x)|≤R}. Since Bn = (RN \ Ω̃n)\An, we have

µ(RN \ Ω̃) = µ(An)+µ(Bn).

It follows from (3.3.20) and the boundedness of the sequence (µ(An)) that

µ(Bn) → +∞. (3.3.21)

We claim that δ := inf
s∈[δ,R], x∈RN

(1
2f(x,un)un −F (x,un)

)
> 0. In fact, let (xn, sn) ∈

RN × [δ,R] be a sequence satisfying

lim
n→∞

(
1
2f(x,un)un −F (x,un)

)
= δ.



3.4 A nontrivial solution 132

Since the interval [δ,R] is compact, we can assume that sn → s0 ∈ [δ,R]. If xn → x0,
from the continuity of functions f and F , we have by assumption (f4) that δ > 0. On
the other hand, if |xn|→ ∞, writing

1
2f(xn, sn)sn −F (xn, sn) = 1

2

(
f(xn, sn)

sn
−h(sn)

)
s2

n −
(
F (xn, sn)−H(sn)

)
+G(sn)

where G(sn) = 1
2h(sn)s2

n −H(sn), it follows from the uniform limits in (f2) and (f4) that

δ = lim
n→∞

(1
2f(xn, sn)sn −F (xn, sn)

)
=G(s0)> 0,

as claimed. Thus, from (3.3.21) and hypothesis (f4)
∫
RN

(1
2f(xn,un)un −F (xn,un)

)
dx ≥

∫
Bn

(1
2f(xn,un)un −F (xn,un)

)
dx

≥ δµ(Bn) → +∞.

We have again a contradiction in the fact that
∫
RN

(1
2f(xn,un)un −F (xn,un)

)
dx= I(un)− 1

2I
′(un) = c+on(1).

Therefore, (i) does not hold either for the sequence (vn). We conclude that, up to a
subsequence, (un) is bounded.

3.4 A nontrivial solution

In this section we will prove our main result, however, first, let us verify that the functional
I satisfies the geometry of the classical linking theorem in [29] and proved in [23] under
the Cerami condition.

Theorem 3.4.1 (Linking Theorem under the (Ce)c condition). Let E = E+ ⊕E− be a
Banach space with dimE− <∞. Let R > ρ > 0 and let u ∈ E+ be a fixed element such
that ∥u∥= ρ. Define

M :={w = tu+v− : ∥w∥≤R, t≥ 0, v− ∈ E−},

M0 :={w = tu+v− : v− ∈ E−,∥w∥=R, t≥ 0 or ∥w∥≤R, t= 0},
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Nρ :={w ∈ E+ : ∥w∥= ρ}.

Let I ∈ C1(E,R) be such that

b := inf
Nρ

I > a := max
M0

I.

Then, c≥ b and there exists a Cerami sequence at level c for the functional I, where

c := inf
γ∈Γ

max
w∈M

I(γ(w))

with Γ := {γ ∈ C(M,E) : γ|M0= Id}.

To simplify the notation, given w ∈ E and y ∈ RN , we write w+(·−y) (or w−(·−y))
referring to the projection in E+ (respectively, in E−) of the translated function w(·−y).

Remark 3.4.1. If w and v are function in L2(RN ), it holds
∫
RN

w(x−y)v(x)dx→ 0, if |y|→ ∞.

Indeed, given ε > 0 and v, w functions in L2(RN ) there exist C, k > 0 such that
∥v∥L2< C, ∥w∥L2< ∞ which imply

∫
Bk(0)c

w(x)dx < ε/2C. We can rewrite the above
integral as

∫
RN

w(x−y)v(x)dx=
∫

Bk(0)c
w(x−y)v(x)dx+

∫
Bk(0)

w(x−y)v(x)dx.

Analyzing each integral, using the estimates above and Hölder’s inequality, we have
∫

Bk(0)c
w(x−y)v(x)dx ≤ ∥w(x−y)∥L2(Bk(0)c)∥v∥L2(Bk(0)c)

= ∥w∥L2(Bk(0)c)∥v∥L2(Bk(0)c)

<
ε

2

and ∫
Bk(0)

w(x−y)v(x)dx≤ ∥w(x−y)∥L2(Bk(0))∥v∥L2(Bk(0)).
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Note that, for y big enough, we obtain ∥w(x−y)∥L2(Bk(0))<
ε

2C . In fact, for y sufficiently
large we have that Bk(y) ⊂Bk(0)c. It follows that

∥w(x−y)∥2
L2(Bk(0)) =

∫
Bk(0)

w2(x−y)dx=
∫

Bk(y)
w2(x)dx

≤
∫

Bk(0)c
w2(x)dx < ε

2C .

Hence,
∫

Bk(0)
w(x−y)v(x)dx < ε/2. Thus,

∫
RN

w(x−y)v(x)dx < ε for |y| big enough
and this proof of remark.

For R > 0 and y ∈ RN , consider

M = {w = tu+
0 (·−y)+v− : ∥w∥≤R, t≥ 0, v− ∈ E−}

and

M0 = {w = tu+
0 (·−y)+v− : v− ∈ E−, ∥w∥=R, t≥ 0 or ∥w∥≤R, t= 0}.

Lemma 3.4.1. There exist R > 0 and y ∈ RN , with R and |y| sufficiently large, such
that

I|M0≤ 0.

Proof. The subset M0 is equal to a disjoint union of M1 and M2, where

M1 = {w = tu+
0 (·−y)+v−; v− ∈ E−, ∥w∥≤R, t= 0},

M2 = {w = tu+
0 (·−y)+v−; v− ∈ E−, ∥w∥=R, t > 0}.

Since M1 ⊂E−, we have that I(w) ≤ 0 for each w ∈M1. Indeed, since w ∈E−, it follows
that

I(w) = −1
2

∫
RN

(ξ(x)|∇v−|2+V (x)(v−)2)dx−
∫
RN

F (x,w)dx

= −1
2∥v−∥2−

∫
RN

F (x,w)dx≤ 0.

Now, let us show that given R > 0 and w ∈M2 with ∥w∥=R we have that I(w) ≤ 0.
Writing

w = ∥w∥ w

∥w∥
= ∥w∥u(w) = ∥w∥(λ(w)u+

0 (·−y)+v−(w)).
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So, we obtain

I(w) = ∥w∥2
[

1
2λ

2(w)∥u+
0 (·−y)∥2−1

2∥v−(w)∥2
]

−
∫
RN

F (x,∥w∥u(w))
u(w)2 u(w)2dx

= 1
2∥w∥2

{
λ2(w)∥u+

0 (·−y)∥2−∥v−(w)∥2 −2
∫
RN

F (x,Ru(w))
(Ru(w))2 u(w)2dx

}
.

To simplify the notation, we write λ, u and v− instead of λ(w), u(w) and v−(w),
respectively.

Claim 3.4.1.
lim

s→∞
F (x,s)
s2 = 1

2a(x) and F (x,s)
s2 ≤ 1

2a(x)

for all s ̸= 0 and all x ∈ RN .

Indeed, by the L’Hopital rule and the hypothesis (f2) we have

lim
s→∞

F (x,s)
s2 = lim

s→∞
F ′(x,s)

(s2)′ = lim
s→∞

f(x,s)
2s = 1

2 lim
s→∞

f(x,s)
s

= 1
2a(x).

Also from hypothesis (f2) we have that |f(x,s)|/|s|≤ a(x) and hence |f(x,s)|≤ a(x)|s|.
Thus,

∣∣∣∣∣F (x,s)
s2

∣∣∣∣∣ =
∣∣∣∣∣ 1
s2

∫ s

0
f(x,t)dt

∣∣∣∣∣≤ 1
|s|2

∫ s

0
|f(x,t)|dt

<
1

|s|2
∫ s

0
a(x)|t|dt= 1

|s|2
a(x) |s|2

2

= 1
2a(x).

which concludes our claim.
From Claim 3.4.1 and (f2) the following inequality

∣∣∣∣∣F (x,Ru)
(Ru)2 u2

∣∣∣∣∣≤ 1
2a(x)|u|2≤ a∞

2 |u|2 ∈ L1(RN )

and by Lebesgue Dominated Convergence Theorem

lim
R→∞

∫
RN

(
F (x,Ru)

(Ru)2 − a(x)
2

)
dx= 0 (3.4.1)
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for all u ∈E such that ∥u∥= 1. Since M2 is contained in a finite dimensional subspace of
E, w = ∥w∥Ru ∈M2 with ∥u∥= 1, then the limit (3.4.1) is uniform in u, see Lemma A.3
in Appendix A. It follows from the fact a(x) ≤ a∞ and

∫
RN

u+
0 (x−y)v−(x)dx= 0, that

I(w) ≤ 1
2∥w∥2

{
λ2∥u+

0 (·−y)∥2−∥v−∥2−a∞

∫
RN

(λu+
0 (x−y)+v−)2dx+oR(1)

}

= 1
2∥w∥2

{
λ2∥u+

0 (·−y)∥2−∥v−∥2−a∞

∫
RN

λ(u+
0 )2(x−y)dx

−a∞

∫
RN

(v−)2dx+oR(1)
}

≤ 1
2∥w∥2

{
λ2∥u+

0 (·−y)∥2−a∞

∫
RN

λ(u+
0 )2(x−y)dx+oR(1)

}
. (3.4.2)

By hypotheses (ξ1), ξ(x) ≤ ξ∞ and (V1), V (x) ≤ V∞, for all x ∈ RN , and it follows
that

∥u+
0 (·−y)∥2 =

∫
RN

(ξ(x)|∇u+
0 (x−y)|2+V (x)(u+

0 )2(x−y))dx

≤
∫
RN

(ξ∞|∇u+
0 (x−y)|2+V∞(u+

0 )2(x−y))dx

= ∥u+
0 (·−y)∥2

∞≤ ∥u0(·−y)∥2
∞. (3.4.3)

Since I∞ is translation invariant, then u0 and u0(· − y) are critical points of the
functional I∞. Therefore, I ′

∞(u0(·−y))u0(·−y) = 0, that is,

∥u0(·−y)∥2
∞=

∫
RN

h(u0(x−y))u2
0(x−y)dx. (3.4.4)

From (3.4.3) and (3.4.4),

∥u0(·−y)∥2≤
∫
RN

h(u0(x−y))u2
0(x−y)dx. (3.4.5)

Replacing (3.4.5) in (3.4.2) and, after, using the term a∞

∫
RN

u2
0(x−y)dx, we obtain

I(w) ≤ 1
2∥w∥2

{
λ2
[∫

RN
h(u0(x−y))u2

0(x−y)dx−a∞

∫
RN

(u+
0 )2(x−y)dx

]
+oR(1)

}

= 1
2∥w∥2

{
λ2
[∫

RN
h(u0(x−y))u2

0(x−y)dx−a∞

∫
RN

u2
0(x−y)dx



3.4 A nontrivial solution 137

+a∞

∫
RN

[u2
0(x−y)− (u+

0 )2(x−y)]dx
]

+oR(1)
}

= 1
2∥w∥2

{
λ2
[∫

RN
h(u0(z))u2

0(z)dz−a∞

∫
RN

u2
0(z)dz

+a∞

∫
RN

[u2
0(x−y)− (u+

0 )2(x−y)]dx
]

+oR(1)
}
. (3.4.6)

We estimate the following integrals
∫
RN

(
h(u0(z))−a∞

)
u2

0(z)dz (3.4.7)

and ∫
RN

a∞
[
u2

0(x−y)+(u+
0 )2(x−y)

]
dx. (3.4.8)

Since u0 is radial and continuous, the function h(u0(·)) assumes its maximum at x0 ∈ RN .
It follows by hypothesis (f3) we have h(s)< a∞ for all s ∈ RN , that

∫
RN

(
h(u0(z))−a∞

)
u2

0(z)dz ≤
∫
RN

(
h(u0(x0))−a∞

)
u2

0(z)dz

=
(
h(u0(x0))−a∞

)∫
RN

u2
0(z)dz

=
(
h(u0(x0))−a∞

)
∥u0∥2

L2(RN )<−γ,

where, 1
2
(
a∞ −h(u0(x0))

)
∥u0∥2

L2> 0. In other words, there exists γ > 0 such that

∫
RN

(
h(u0(z))−a∞

)
u2

0(z)dz <−γ. (3.4.9)

To estimate the integral (3.4.8) some statements will be necessary. Before that, since∫
RN

u+
0 (x−y)u−

0 (x−y)dx= 0 and u0 = u+
0 +u−

0 , we have that

∫
RN

(
u2

0(x−y)− (u+
0 )2(x−y)

)
dx=

∫
RN

[(
u+

0 (x−y)+u−
0 (x−y)

)2
− (u+

0 )2(x−y)
]
dx

=
∫
RN

[
(u+

0 )2(x−y)+(u−
0 )2(x−y)− (u+

0 )2(x−y)
]
dx

=
∫
RN

(u−
0 )2(x−y)dx. (3.4.10)

Claim 3.4.2. The integral
∫
RN

(u−
0 )2(x−y)dx→ 0 as |y|→ ∞.
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Indeed, since {ϕ1, · · · ,ϕk} is a basis of eigenfuctions for the subspace E−, Remark
3.4.1 and hypotheses (V1) and (ξ3) ensure that, given ε > 0, for each i ∈ {1, · · · ,k} there
exists Mi > 0, then

⟨u0(x−y),ϕi⟩ =
∫
RN

(ξ(x)∇u0(x−y)∇ϕi(x)+V (x)u0(x−y))ϕi(x)dx < ε.

Taking M = max{M1, · · · ,Mk} it follows that, for all i ∈ {1, · · · ,k}

⟨u0(x−y),ϕi⟩< ε if |y|≥M. (3.4.11)

Since u−
0 (·−y) ∈ E− is a linear combination of the vectors ϕ1, · · · ,ϕk, we get

u−
0 (x−y) =

k∑
i=1

ηi(y)ϕi(x),

it follows from (3.4.11) that there exists M̃ > 0 such that if |y|≥ M̃, then

∥u−
0 (·−y)∥2= ⟨u0(·−y),

k∑
i=1

ηi(y)ϕi(x)⟩< εk
(

max{|η1(y), · · · , |ηk(y)|}
)
. (3.4.12)

Claim 3.4.3. There exists a constant C > 0, which does not depend on y such that

max{|η1(y)|, · · · , |ηk(y)|}< C, for all y ∈ RN . (3.4.13)

To show the claim, we remember that dimE− <∞, by the equivalence of the norms
in a finite dimensional space, there exists D > 0, which does not depend on y such that

∥∥∥∥∥
k∑

i=1
ηi(y)ϕi(x)

∥∥∥∥∥
2

∞
≥D

(
max{|η1(y)|, · · · , |ηk(y)|}

)2
.

Therefore,

∥u0∥2
∞≥ ∥u−

0 (·−y)∥2
∞=

∥∥∥∥∥
k∑

i=1
ηi(y)ϕi(x)

∥∥∥∥∥
2

∞
≥D

(
max{|η1(y)|, · · · , |ηk(y)|}

)2
. (3.4.14)

This proves Claim 3.4.3, choosing C = ∥u0∥2
∞/

√
D > 0.
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Now, replacing (3.4.13) in (3.4.12), we obtain

∥u−
0 (·−y)∥2< εkC, for |y|≥ M̃.

Since the norm ∥·∥∞ and ∥·∥ are equivalent in E, it follows that ∥u−
0 (· − y)∥∞→ 0 as

|y|→ ∞. Thus,
∫
RN

(u−
0 )2(x−y)dx≤ C∥u−

0 (·−y)∥2
∞→ 0, as |y|→ ∞. (3.4.15)

concluding the proof of Claim 3.4.2.
Substituting (3.4.9), (3.4.10) and (3.4.15) in (3.4.6), we obtain

I(w) ≤1
2∥w∥2

{
λ2
[∫

RN
h(u0(z))u2

0(z)dz−a∞

∫
RN

u2
0(z)dz

+a∞

∫
RN

[u2
0(x−y)− (u+

0 )2(x−y)]dx
]
+oR(1)

}

≤1
2∥w∥2

{
λ2[−γ+o|y|(1)]+oR(1)

}
(3.4.16)

for |y| and R sufficiently large.
To conclude the proof of this lemma, we will analyze the following cases for values λ:
Case 1: Consider λ2 < 1/(C∥u0∥2

∞), where C > 0 is a constant that does not depend
on y. Since w = ∥w∥(λu+

0 (· − y) + v−) and F is a nonnegative function, by hypothesis
(f4), we have

I(w) = 1
2∥w∥2

(
λ2∥u+

0 (·−y)∥2−∥v−∥2
)

−
∫
RN

F (w)dx

≤ 1
2∥w∥2

(
λ2∥u+

0 (·−y)∥2−∥v−∥2
)
. (3.4.17)

It follows from the fact ∥λu+
0 (·−y)+v−∥2= 1 that λ2∥u+

0 (·−y)∥2+∥v−∥2= 1. The
the equation (3.4.17) becomes

I(w) ≤ 1
2∥w∥2

(
λ2∥u+

0 (·−y)∥2+λ2∥u+
0 (·−y)∥2−λ2∥u+

0 (·−y)∥2−∥v−∥2
)

= 1
2∥w∥2

(
2λ2∥u+

0 (·−y)∥2−1
)
.
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By the equivalence of the norm and the translation invariance of the norm ∥·∥∞, there
exists C > 0, which does not depend on y, such that

2∥u+
0 (·−y)∥2≤ C∥u0(·−y)∥2

∞= C∥u0∥2
∞.

Thus, for
λ2 <

1
C∥u0∥2

∞
<

1
2∥u+

0 (·−y)∥2 ,

we have I(w)< 0 and the lemma is proved for such values of λ.
Case 2: λ2 ≥ 1/(C∥u0∥2

∞).
Denote by λ2 ≥ 1/(C∥u0∥2

∞) =:K0 > 0. We choose y ∈ RN with |y| sufficiently large
such that

−γ+o|y|(1)<−γ/2.

Then, we can rewrite the inequality (3.4.16) as

I(w) ≤ 1
2∥w∥2

[
−λ2γ

2 +oR(1)
]

≤ 1
2∥w∥2

[
−K0

γ

2 +oR(1)
]

≤ 0

thus the lemma is proved for the values λ such that λ2 ≥ K0 and R sufficiently large.
This concludes the proof of the lemma.

Lemma 3.4.2. Suppose ξ, V satisfies (ξ1)− (ξ3) and (V1)− (V4) respectively, and either
(3.2.1) or (3.2.2). Then, it holds that

c < c∞ := inf
{
I∞(w) : w ∈H1(RN )\{0}, I ′

∞(w) = 0
}
.

To prove these results, we will need some auxiliary lemmas. The first two may be
found in [1] and [25]. For the sake of completeness, we will present the proof of each of
them.

Lemma 3.4.3. There exists µ ∈ (1,2] with the following property: for any ρ > 0 there
exists a constant Cρ > 0 such that the inequality

F (x,u+v)−F (x,u)−F (x,v)−f(x,u)v−f(x,v)u≥ −Cρ|uv|µ

is true for all x ∈ RN and u, v ∈ R with |u|, |v|≤ ρ.
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Proof. Let p = p1 and µ := min
{
p+1

2 ,2
}

. By hypothesis (f6), f is increasing, which
yields

F (x,u+v)−F (x,u) =
∫ u+v

u
f(x,w)dw ≥ f(x,u)v.

Moreover, by hypothesis (f5), for every 1 < µ ≤ 2 we have f(x,s) = o(|s|µ), as |s|→ 0

and then C̃ρ := sup
0<u≤ρ

f(x,u)
uµ

<∞. Now, for 0< v ≤ u≤ ρ, we deduce

F (x,u+v) − F (x,u)−F (x,v)−f(x,u)v−f(x,v)u≥ −F (x,v)−f(x,v)u

=
∫ v

0
−f(x,w)

wµ
wµdw− f(x,v)

vµ
uvµ

≥ −C̃ρ
vµ+1

µ+1 − C̃ρuv
µ

≥ −
[((

u

v

)µ+1
+ u

v

)]
C̃ρ(uv)µ

≥ −Cρ(uv)µ.

By the symmetry in u and v, the same estimate holds for 0< u≤ v and the proof is
complete.

Lemma 3.4.4. If µ2 > µ1 ≥ 0 then, there exists C > 0 such that, for all x1, x2 ∈ RN ,
∫
RN

e−µ1|x−x1|e−µ2|x−x2|dx≤ Ce−µ1|x1−x2|.

Proof. Observe that

µ1|x1 −x2|+(µ2 −µ1)|x−x2|≤ µ1|x−x1|+µ2|x−x2|.

Therefore,
∫
RN

e−µ1|x−x1|e−µ2|x−x2|dx ≤
∫
RN

e−µ1|x1−x2|e−(µ2−µ1)|x−x2|dx

≤
∫
RN

e−µ1|x1−x2| 1
e(µ2−µ1)|x−x2|dx

≤ e−µ1|x1−x2|

and the lemma follows.

We note that the set M defined in the Theorem 3.4.1 is closed, bounded and it is con-
tained in a finite-dimensional space, namely, in the space Ru+

0 (·−y)⊕E−. Therefore, M is
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a compact set, which implies that for all y ∈ RN , there exists
wy = v−

y + tyu
+
0 (·−y) ∈M satisfying

max
w∈M

I(w) = I(v−
y + tyu

+
0 (·−y))

since I is a continuous functional.
The following results show that the values ty are uniformly bounded on y by positive

constants if |y| is sufficiently large.

Lemma 3.4.5. There exist A, B ∈R which do not depend on y, such that 0<A≤ ty ≤B

for |y| big enough.

Proof. Since wy = v−
y + tyu

+
0 (· − y) ∈ M and the number R given by Lemma 3.4.1 is

positive and does not depend on y, one has

R2 ≥ ∥wy∥2= ∥v−
y ∥2+t2y∥u+

0 (·−y)∥2

≥ t2y
(
∥u0(·−y)∥2−∥u−

0 (·−y)∥2
)
.

As proven previously, in Claim 3.4.2, we can take |y| large enough to ensure that

∥u−
0 (·−u)∥2≤ C

2 ∥u0∥2
∞

where C > 0 does not depend on y and satisfies ∥u0(·−y)∥2≥ C∥u0∥2
∞. Thus,

R2 ≥ t2y
(
∥u0(·−y)∥2−∥u−

0 (·−y)∥2
)

≥ t2y
(
C∥u0∥2

∞−C

2 ∥u0∥2
∞
)

=
t2y
2 ∥u0∥2

∞,

that is, t2y ≤ 2R/(∥u0∥2
∞) :=B2.

On the other hand, from estimates given by Lemma 3.3.1 with 2< p < 2∗, for ε > 0,
there exists Cε > 0 such that, if u ∈ E+ with ∥u∥= ρ > 0 then

I(u) = 1
2∥u∥2−

∫
RN

F (x,u)dx≥ 1
2ρ

2 − ε∥u∥2
L2−Cε∥u∥p

Lp . (3.4.18)

By Sobolev embedding and the equivalence of the norms there exist constants C5, C6 > 0
which make (3.4.18) in

I(u) ≥ 1
2∥u∥2−εC5∥u∥2−C6∥u∥p≥ 1

2ρ
2 − εC5ρ

2 −C6ρ
p =

(
1
2 − εC5

)
ρ2 −C6ρ

p.



3.4 A nontrivial solution 143

Let ε > 0 be such that Dε := 1
2 − εC5 > 0. Choosing ρ > 0 sufficiently small so that

Dερ
2 −C6ρ

p > 0, that is, 0< ρ < (Dε/C6)1/(p−2), we obtain that

I(u) ≥Dερ
2 −C6ρ

p := ρ0 > 0, (3.4.19)

for all u ∈ E+ with ∥u∥= ρ where ρ0 does not depend on y. Thus, we take t0 > 0, which
does not depend on y so that ∥t0u+

0 (·−y)∥≤ ρ<R to conclude that I(t0u+
0 (·−y)) ≥ ρ0 > 0.

Consequently,

I(v−
y + tyu

+
0 (·−y)) = max

w∈M
I(w) ≥ I(t0u+

0 (·−y)) ≥ ρ0,

that is,

t2y
2 ∥u+

0 (·−y)∥2 − 1
2∥v−

y ∥2−
∫
RN

F (x−y,v−
y + tyu

+
0 (x−y))dx= I(v−

y + tyu
+
0 (·−y)) ≥ ρ0.

Therefore, since F is nonnegative,

t2y
2 ∥u+

0 (·−y)∥2≥ ρ0.

This shows that
t2y ≥ 2ρ0

C∥u0∥2
∞

=: A2

where C > 0 does not depend on |y| and satisfies ∥u+
0 (·−y)∥2≤ C∥u0∥2

∞. The lemma is
proved.

Now let us present the proof of the Lemma 3.4.2.

Proof of Lemma 3.4.2. To simplicity, we will denote u0,y(x) = u0(x−y) and C will de-
note a positive constant, not necessarily the same one. By the definition of the functional
I and I∞ and of the norms ∥·∥ and ∥·∥∞, we have

I(v−
y + tyu

+
0,y) =

t2y
2 ∥u+

0,y∥2−1
2∥v−

y ∥2−
∫
RN

F (x−y,v−
y + tyu

+
0,y)dx

≤
t2y
2 ∥u+

0,y∥2−
∫
RN

F (x−y,v−
y + tyu

+
0,y)dx+

∫
RN

F (x−y, tyu0,y)dx

−
∫
RN

H(tyu0,y)dx+
∫
RN

[
H(tyu0,y)−F (x−y, tyu0,y)

]
dx
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=
t2y
2

∫
RN

(ξ(x)|∇u+
0,y|2+V (x)(u+

0,y)2)dx+
t2y
2

∫
RN

(ξ∞|∇u+
0,y|2+V∞(u+

0,y)2)dx

−
t2y
2

∫
RN

(ξ∞|∇u+
0,y|2+V∞(u+

0,y)2)dx−
∫
RN

H(tyu0,y)dx+
∫
RN

(H(tyu0,y)

−F (x−y, tyu0,y))dx+
∫
RN

(F (x−y, tyu0,y)−F (x−y,v−
y + tyu

+
0,y))dx

since F is nonnegative. By hypotheses (f2) and (f4) we have that the term satisfies∫
RN

[H(tyu0,y)−F (x−y, tyu0,y)]dx≤ 0 and thus

I(v−
y + tyu

+
0,y) ≤

t2y
2 ∥u+

0,y∥2
∞−

∫
RN

H(tyu0,y)dx+
t2y
2

∫
RN

(ξ(x)− ξ∞)|∇u+
0,y|2dx

+
t2y
2

∫
RN

(V (x)−V∞)(u+
0,y)2dx+

∫
RN

(F (x−y, tyu0,y)−F (x−y,v−
y + tyu

+
0,y))dx

≤ I∞(tyu0,y)+
t2y
2

∫
RN

(ξ(x)− ξ∞)|∇u+
0,y|2dx+

t2y
2

∫
RN

(V (x)−V∞)(u+
0,y)2dx

+
∫
RN

(F (x−y, tyu0,y)+F (x−y,v−
y − tyu

−
0,y)−F (x−y,v−

y + tyu
+
0,y))dx. (3.4.20)

Now, let us estimate the last integral in the above inequality. Taking w−
y = v−

y − tyu
−
0,y,

we want to estimate Iy defined by
∫
RN

[
F (x−y,v−

y − tyu
−
0,y)+F (x−y, tyu0,y)−F (x−y,v−

y + tyu
+
0,y)

]
dx

=
∫
RN

[
F (x−y,v−

y − tyu
−
0,y)+F (x−y, tyu0,y)−F (x−y,v−

y − tyu
−
0,y + tyu

−
0,y + tyu

−
0,y)

]
dx

=
∫
RN

[
F (x−y,w−

y )+F (x−y, tyu0,y)−F (x−y,w−
y + tyu0,y)

]
dx=: Iy.

Note that

Iy =
∫
RN

−
[
F (x−y,w−

y + tyu0,y)−F (x−y,w−
y )−F (x−y, tyu0,y)

]
dx

=
∫
RN

[
F (x−y,w−

y + tyu0,y)−F (x−y,w−
y )−F (x−y, tyu0,y)

−f(x−y,w−
y )tyu0,y −f(x−y, tyu0,y)w−

y

]
dx−

∫
RN

f(x−y,w−
y )(tyu0,y)dx

−
∫
RN

f(x−y, tyu0,y)(w−
y )dx

≤ Cρ|w−
y (tyu0,y)|µ+

∫
RN

|f(x−y,w−
y )||tyu0,y|dx+

∫
RN

|f(x−y, tyu0,y||w−
y |dx.
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Since w−
y = v−

y − tyu
−
0,y ∈ M and, hence ∥w−

y ∥2≤ R2, we can rewrite w−
y as a linear

combination of the eigenfuctions ϕ1, · · · ,ϕk because v−
y , u

−
0,y ∈ E−. Due to dimE− <∞,

we may repeat the estimates in (3.4.14) with w−
y in the place of u−

0,y and using the Lemma
3.4.5 to show that there exists a constant C > 0 which does not depend on y, such that

|w−
y (x)| = |v−

y (x)− tyu
−
0,y(x)|=

∣∣∣∣∣
k∑

i=1
ηi(y)ϕi(x)− ty

k∑
i=1

ζi(y)ϕi(x)
∣∣∣∣∣

=
∣∣∣∣∣

k∑
i=1

(ηi(y)−Cζi(y))ϕi(x)
∣∣∣∣∣≤

k∑
i=1

∣∣∣ηi(y)−Cζi(y)
∣∣∣∣∣∣ϕi(x)

∣∣∣
≤

k∑
i=1

(|ηi(y)|+C|ζi(y)|)|ϕi(x)|

≤
k∑

i=1

(
max{ηi(y)}+Cmax{ζi(y)}

)
|ϕi(x)|

≤ C
k∑

i=1
|ϕi(x)|≤ C

k∑
i=1

sup
RN

|ϕi(x)|=:D, (3.4.21)

for all x ∈ RN . Without loss of generality, we may suppose that D > 1, also satisfies
|u0,y(x)|≤D for all x ∈ RN since u0,y ∈ L∞(RN ). Now, we can apply Lemma 3.4.3 and
the hypothesis (f2) to obtain a constant C > 0, such that

Iy ≤
∫
RN

C|w−
y |µ|tyu0,y|µdx+ ty

∫
RN

a(x)|w−
y ||u0,y|dx+

∫
RN

a(x)|tyu0,y||w−
y |dx

≤ Ctµy

∫
RN

|w−
y |µ|u0,y|µdx+2tya∞

∫
RN

|w−
y ||u0,y|dx (3.4.22)

where µ > 1 is given by Lemma 3.4.3. Now, taking η = λ1 < 0 < V∞ in the Theorem
3.1.3, it holds that any eigenfunctions ϕi, i= 1, · · · ,k satisfies

|ϕi(x)|≤ Ce−δ|x|,

for all x ∈ RN and some
√
V∞/ξ∞ < δ <

√
V∞ −η. Therefore, from the first inequality

of (3.4.21), for |y| sufficiently large, we have

|w−
y (x)|≤ Ce−δ|x|, for all x ∈ RN .
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Since u0 is a solution of equation (3.2.4) given by Berestick and Lions in [6] we have
that |u0(x)|≤ Ce−

√
V∞/ξ∞|x|, for all x ∈ RN . It follows from Lemma 3.4.4 that

∫
RN

|w−
y ||u0,y|dx≤

∫
RN

Ce−δ|x|Ce−
√

V∞/ξ∞|x−y|dx≤ Ce−
√

V∞/ξ∞|y|. (3.4.23)

Analogously, by Lemma 3.4.4 we have
∫
RN

|w−
y |µ|u0,y|µdx≤

∫
RN

Ce−δµ|x|Ce−µ
√

V∞/ξ∞|x−y|dx≤ Ce−µ
√

V∞/ξ∞|y|, (3.4.24)

because µ > 1. Estimates (3.4.23) and (3.4.24) applied in (3.4.22) yield

Iy ≤ Ctµye
−µ

√
V∞/ξ∞|y| +2tyCa∞e

−
√

V∞/ξ∞|y| ≤ Ce−
√

V∞/ξ∞|y|, (3.4.25)

where the constant C > 0 does not depend on y since ty is uniformly bounded by Lemma
3.4.5.

By (3.2.1) and a change of variable, there exists a positive constant C1 such that

t2y
2

∫
RN

(ξ(x)− ξ∞)|∇u0,y|2dx≤ −C1

∫
RN

e−γ1|x||∇u0,y|2dx

= −C1

∫
RN

e−γ1|z+y||∇u0(z)|2dz

≤ −C1e
−γ1|y|

∫
RN

e−γ1|z||∇u0(z)|2dz

≤ −C1e
−γ1|y|. (3.4.26)

Or else by (3.2.2) and a change of variables, there exists a positive constant C2 such
that

t2y
2

∫
RN

(V (x)−V∞)(u0,y)2dx≤ −C2

∫
RN

e−γ2|x|u2
0,ydx

= −C2

∫
RN

e−γ2|z+y|u2
0(z)dz

≤ −C2e
−γ2|y|

∫
RN

e−γ2|z|u2
0(z)dz

≤ −C2e
−γ2|y|, (3.4.27)
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for |y| sufficiently large. Thus, it follows from (3.4.25), (3.4.26) and (3.4.27) that (3.4.20)
can be rewrite

I(v−
y + tyu

+
0,y) ≤ I∞(tyu0,y)−C1e

−γ1|y| −C2e
−γ2|y| +Ce−

√
V∞/ξ∞|y|.

Since 0< γ1 <
√
V∞/ξ∞ by (3.2.1) or 0< γ2 <

√
V∞/ξ∞ by (3.2.2), we get

−C1e
−γ1|y| −C2e

−γ2|y| +Ce−
√

V∞/ξ∞|y| < 0.

And thus,
I(v−

y + tyu
+
0,y)<max

t≥0
I∞(tu0)

for |y| sufficiently large.

Claim 3.4.4. The maximum max
t≥0

I∞(tu0) is attained at t= 1.

Indeed, since u0 is a positive, radial and symmetric solution given by Berestick and
Lions in [6], then

d

dt
I∞(tu) = d

dt

[
∥tu∥2

∞
2 −

∫
RN

H(tu)dx
]

= t∥u∥2
∞−

∫
RN

h(tu)(tu)udx

= t
∫
RN

h(u)u2dx− t
∫
RN

h(tu)u2dx.

By hypotheses (f2),(f4) and (f6) if, t > 1 we have that d

dt
I∞(tu)< 0 and if, 0< t < 1,

then d

dt
I∞(tu)> 0, which give us that the maximum may be attained exactly at t= 1.

It follows this claim that I∞(u) = max
t>0

I∞(tu). And from the definition of the value
c > 0 we get

c≤ max
w∈M

I(w) = I(v−
y + tyu

+
0,y)<max

t>0
I∞(tu) = I∞(u) ≤ c∞,

and the lemma is proved.

The next lemma has the same proof of Lemma 2.1.4 and we will be stated for
completeness.
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Lemma 3.4.6. Let (un) be a bounded sequence in H1(RN ) such that

I(un) → c and ∥I ′(un)∥(1+∥un∥) → 0.

Then, up to a subsequence, there exists a solution of (P3), a number m ∈ N, m func-
tions u1, . . . ,um and m sequences (yj

k) ⊂ RN 1 ≤ j ≤m, satisfying one of the following
alternatives:

(1) uk → u0 in H1(RN ); or

(2) uj are nontrivial solutions of problem (3.2.4), such that:

(a) |yj
k|→ ∞ and |yi

k −yj
k|→ ∞, i ̸= j;

(b) uk −
k∑

j=1
uj(·−yj

k) → u0 in H1(RN );

(c) c= I(u0)+
k∑

j=1
I∞(uj).

Lemma 3.4.7. Let vn be a solution of the following problem


−div(ξ(x)∇vn)+V (x)vn = f(x,vn), in RN ,

vn ∈H1(RN ), with N ≥ 3,
vn(x) ≥ 0, for all x ∈ RN .

Assuming that (ξ1)− (ξ3), (V1)− (V4), (f1)− (f5) holds and that vn → v in H1(RN ) with
v ̸≡ 0, then vn ∈ L∞(RN ) and there exists C > 0 such that ∥vn∥L∞≤ C for all n ∈ N.
Furthermore,

lim
|x|→∞

vn(x) = 0, uniformly in n.

Proof. For any R > 0, 0< r ≤ R/2, let η ∈ C∞(RN ), 0 ≤ η ≤ 1 with η(x) = 1 if |x|≥ R

and η(x) = 0 if |x|≤R− r and |∇η|≤ 2/r. Note that, by Lemma 3.3.1 and by Sobolev’s
embedding for 2 ≤ p≤ 2∗, we obtain the following growth condition for f :

f(x,s) ≤ ε|s|+Cε|s|p−1≤ ε|s|+Cε|s|2
∗−1. (3.4.28)
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For each n ∈ N and for L > 0, let

vL,n(x) =
 vn(x), vn(x) ≤ L,

L, vn(x) ≥ L,

zL,n = η2v
2(β−1)
L,n vn and wL,n = ηvnv

β−1
L,n with β > 1 to be determinated later. Taking zL,n

as a test function, we obtain
∫
RN

ξ(x)η2v
2(β−1)
L,n |∇vn|2dx = −2(β−1)

∫
RN

ξ(x)v2β−3
L,n η2vn∇vn∇vL,ndx

+
∫
RN

f(x,vn)η2vnv
2(β−1)
L,n dx−

∫
RN

V (x)v2
nη

2v
2(β−1)
L,n dx

−2
∫
RN

ξ(x)ηv2(β−1)
L,n vn∇vn∇ηdx.

Note that, −2(β−1)
∫
RN

ξ(x)v2β−3
L,n η2vn∇vn∇vL,ndx≤ 0, then

∫
RN

ξ(x)η2v
2(β−1)
L,n |∇vn|2dx≤−2

∫
RN

ξ(x)ηv2(β−1)
L,n vn∇vn∇ηdx−

∫
RN

V (x)η2v
2(β−1)
L,n v2

ndx

+
∫
RN

f(x,vn)η2vnv
2(β−1)
L,n dx.

Using the estimate in (3.4.28) we obtain
∫
RN

ξ(x)η2v
2(β−1)
L,n |∇vn|2dx ≤ −2

∫
RN

ξ(x)ηv2(β−1)
L,n vn∇vn∇ηdx−V0

∫
RN

η2v
2(β−1)
L,n v2

ndx

+ε
∫
RN

η2v
2(β−1)
L,n v2

ndx+Cε

∫
RN

η2v
2(β−1)
L,n v2∗

n dx.

Now, by hypothesis (V1) we have
∫
RN

ξ(x)η2v
2(β−1)
L,n |∇vn|2dx≤ −2

∫
RN

ξ(x)ηv2(β−1)
L,n vn∇vn∇ηdx

+(V0 + ε)
∫
RN

v2
nη

2v
2(β−1)
L,n dx+Cε

∫
RN

η2v2∗
n v

2(β−1)
L,n dx

≤Cε

∫
RN

η2v2∗
n v

2(β−1)
L,n dx+(V0 + ε)

∫
RN

v2
nη

2v
2(β−1)
L,n dx

+2
∫
RN

ξ(x)ηv2(β−1)
L,n vn∇vn∇ηdx.

For each ε > 0, using the Young’s inequality we get
∫
RN

ξ(x)ηv2(β−1)
L,n |∇vn|2dx≤ Cε

∫
RN

η2v
2(β−1)
L,n v2∗

n dx+(V0 + ε)
∫
RN

v2
nη

2v
2(β−1)
L,n dx
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+2ε
∫
RN

ξ(x)η2v
2(β−1)
L,n |∇vn|2dx+2Cε

∫
RN

ξ(x)v2
nv

2(β−1)
L,n |∇η|2dx.

Using the immersion of L2∗
(RN ) ↪→ L2(RN ), we obtain

∫
RN

ξ(x)ηv2(β−1)
L,n |∇vn|2dx≤ Cε

∫
RN

η2v
2(β−1)
L,n v2∗

n dx+C(V0 + ε)
∫
RN

v2∗
n η

2v
2(β−1)
L,n dx

+2ε
∫
RN

ξ(x)η2v
2(β−1)
L,n |∇vn|2dx+2Cε

∫
RN

ξ(x)v2
nv

2(β−1)
L,n |∇η|2dx

= ≤ C̃ε

∫
RN

η2v
2(β−1)
L,n v2∗

n dx+2ε
∫
RN

ξ(x)η2v
2(β−1)
L,n |∇vn|2dx

+2Cε

∫
RN

ξ(x)v2
nv

2(β−1)
L,n |∇η|2dx.

Choosing ε > 0 sufficiently small,
∫
RN
ξ(x)η2v

2(β−1)
L,n |∇vn|2dx≤C

∫
RN
η2v

2(β−1)
L,n v2∗

n dx+C
∫
RN
ξ(x)v2

nv
2(β−1)
L,n |∇η|2dx.(3.4.29)

Now, from Sobolev’s embedding, by (3.4.29) and by (ξ1) we have

ξ0∥wL,n∥2
L2∗ ≤

∫
RN

ξ(x)η2v2
nv

2(β−1)
L,n dx≤

∫
RN

ξ(x)η2v
2(β−1)
L,n |∇vn|2dx

≤ C
[∫

RN
η2v

2(β−1)
L,n v2∗

n dx+
∫
RN

ξ(x)v2
nv

2(β−1)
L,n |∇η|2dx

]
. (3.4.30)

To complete the proof, follow the same steps from (1.2.7) to (1.2.8) as in the proof of
Lemma 1.2.4 in Chapter 1.

Proof of Theorem 3.2.1. As previously mentioned, for R > 0 and y ∈ RN the following
sets were considered:

M =
{
w = tyu

+
0 (·−y)+v− : ∥w∥≤R, t≥ 0, v− ∈ E−

}
,

M0 =
{
w = tyu

+
0 (·−y)+v− : v− ∈ E−, ∥w∥=R, t≥ 0 or ∥w∥≤R, t= 0

}
.

Moreover, consider the set

Nρ =
{
w ∈ E+ : ∥w∥= ρ > 0

}
.
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Let us show that inf
Nρ

I >max
M0

I. By Lemma 3.4.1, we have I|M0≤ 0 and so max
M0

I ≤ 0.
Therefore, it is enough to verify that inf

Nρ

I.

From (3.4.19) we have I(w) > 0, since w ∈ E+ with ∥w∥= ρ > 0. It follows that
inf

w∈Nρ

I(w)> 0 and thus inf
Nρ

I >max
M0

I.

By Linking Theorem 3.4.1 there exists a Cerami sequence (un) to the functional I at
level c > 0. By Lemma 3.3.2, up to a subsequence, (un) is bounded. Therefore, un ⇀u

for some u ∈ H1(RN ). By Lemma 3.4.2 c < c∞, and by item (i) of Lemma 3.4.6, up
to a subsequence, un → u strongly in H1(RN ). Indeed, we have that I(u) > 0, from
hypothesis (f4) and due to the fact that u is a solution of (P3), we have that

I(u) = I(u)− 1
2I

′(u)u=
∫
RN

(1
2f(x,u)u−F (x,u)

)
dx > 0.

Therefore, if item (2) is valid for item (c) we would have

c= I(u)+
m∑

j=1
I∞(uj) ≥ c∞

which is a contradiction by Lemma 3.4.2.
Thus, un → u and I(u) = c > 0 with I ′(u) = 0 since I is a functional C1. Hence,

u ∈H1(RN ) is a weak solution of problem (P3).
To show that u is nonnegative we can assume in the beginning f(x,s) = 0 for all

s≤ 0, then I ′(u)u− = 0 and with the same calculations done in (1.2.9) we obtain u− ≡ 0.
Hence u ≥ 0 in RN . By Lemma 3.4.7 we have that u ∈ L∞(RN ) ∩C1,α

loc (RN ) for some
0< α < 1. Then, Harnarck’s inequality [2], as in (1.2.10), guarantees that u > 0 for all
u(x)> 0 for all x ∈ RN . Therefore, u is a nontrivial and positive solution of (P3).



Appendix A

Auxiliary Results

The following lemma, as seen in Stuart [32], deals with the behavior of any solution of
problem (1.1.4).

Lemma A.1. Consider q ∈C(RN ) such that lim
|x|→∞

q(x) = 0. If u ∈C2(RN ) is a solution

of the problem 
−∆u−λu= q(x)u, in RN ,

lim
|x|→∞

u(x) = 0, (A.0.1)

with λ < 0, then
lim

|x|→∞
u(x)eα|x| = 0, (A.0.2)

for all α ∈ (0,
√

|λ|).

Proof. Consider α ∈ (0,
√

|λ|) fixed and δ = |δ|−α2. Since lim
|x|→∞

q(x) = 0, then there

exists R > 0 such that |q(x)|≤ δ for all |x|≥R. Now, for x ̸= 0, consider the function

w(x) =Meα(|x|−R),

where M = max{|u(x)|; |x|=R} and for L > R, let

Ω(L) = {x ∈ RN : R < |x|< L and u(x)> w(x)}.
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Then, Ω(L) is open. Coupled with the fact that u(x)> 0 in Ω(L) and x ∈ Ω(L), we have
that

∆(w−u)(x) =
(
α2 − α(N −1)

|x|

)
w(x)+(λ+ q(x))u(x)

≤ α2w(x)+(−|λ|+δ)u(x)

= α2(w(x)−u(x))< 0.

By maximum principle, for all x ∈ Ω, we have

w(x)−u(x) ≥ min{(w−u)(x) : x ∈ ∂Ω(L)} = min{0, min
|x|=L

(w−u)(x)}.

Since lim
|x|→∞

u(x) = lim
|x|→∞

w(x) = 0, as L→ ∞, we obtain that

w(x)−u(x) ≥ 0, (A.0.3)

for all |x|≥R. In the same way, taking for −u, we obtain

u(x)−w(x) ≥ 0, (A.0.4)

thus, from (A.0.3) and (A.0.4), we have that |u(x)|≤ w(x), for all |x|≥R and the result
follows.

Remark A.1. For our case, in Chapter 1, we consider λ= −
√

1/ξ∞, and in Chapter 2

λ= −
√
V∞/ξ∞. And in both chaters we have q(x) = f(x,s)

s
.

The following definition and theorem are due to Ghoussoub-Preiss. It can be found
in [14], Chapter IV, Definition 5, and Theorem 6.

Definition A.1. A closed subspace F separates two points z0 and z1 in X if z0 and z1

belong to disjoint connected components in X/F .

Theorem A.1 (Ghoussoub-Preiss). Let X be a Banach space and Φ :X →R a continuous,
Gâteaux-differentiable function, such that Φ′ :X →X is continuous from the norm topology
of X to weak* topology of X∗. Take we two points (z0, z1) in X and consider the set Γ
for all continuous paths from z0 to z1:

Γ :=
{
c ∈ C0([0,1],X) : c(0) = z0, c(1) = z1

}
.
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Define a number γ by:
γ := inf

c∈Γ
max
0≤t≤1

Φ(c(t)).

Assume there is a closed subset F of X such that:

F ∩Φγ separates z0 and z1

with Φγ := {x ∈X : Φ(x) ≥ γ}. Then, there is a sequence xn in X such that

δ(xn,F ) → 0, Φ(xn) → γ and (1+∥xn∥)∥F ′(xn)∥∗−→ 0.

Remark A.2. In Chapters 1 and 2, we consider X =Eτ , Φ = I∞
∣∣∣
Eτ
, γ = cτ and F = P.

The next lemma presents an important inequality given by Alves, Carriõ and Medeiros
in [3].

Lemma A.2. Let F ∈ C2(R,R+) be a convex function and even such that F (0) = 0 and
f(s) = F ′(s) ≥ 0 for all s ∈ [0,∞). Then, for all u,v ≥ 0,

∣∣∣F (u−v)−F (u)−F (v)
∣∣∣≤ 2

(
f(u)v+f(v)u

)
. (A.0.5)

Let ∂B1 be the boundary of B1, where B1 is the open ball of radius 1 in a finite
dimensional space spanned by the functions u+

0 (·−y), ϕ1, · · · ,ϕk.
The lemma to be proved next contributes to the proof of Lemma 3.4.1, which

guarantees us the first geometry of the Linking Theorem.

Lemma A.3. The limit

lim
R→∞

∫
RN

(
a(x)

2 − F (x,Ru)
(Ru)2

)
u2dx= 0,

is uniformly for u ∈ ∂B1.

Proof. For each R = n ∈ R, consider Jn : ∂B1 → R the function given by

Jn(u) =
∫
RN

(
a(x)

2 − F (x,nu)
(nu)2

)
u2dx. The continuity of the function F shows that Jn is

a continuous functional for each fixed n. Hypothesis (f4) and equivalence of the norms
∥·∥ and ∥·∥E show that there exists a constant C > 0 such that

0 ≤ Jn(u) =
∫
RN

(
a(x)

2 − F (x,nu)
(nu)2

)
u2dx≤ a0∥u∥2

E≤ C
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for all u ∈ ∂B1, where a0 = sup
RN

a(x). Hence the continuity of the functional Jn in the

compact set ∂B1 ensures that, for each fixed n, the functional Jn assumes its maximum
at un ∈ ∂B1. Consider (un) the sequence of these maxima. Since ∥un∥= 1 for each n

and the space spanned by the functions u+
0 (·−y), ϕ1, · · · ,ϕk is finite dimensional, there

exists u ∈ ∂B1 such that, up to a subsequence,

un → u as n→ ∞ (A.0.6)

strongly in the norm ∥·∥. For all u ∈ ∂B1 and for each n 0 ≤ Jn(u) ≤ J)n(un), that is,

0 ≤
∫
RN

(
a(x)

2
F (x,nun)

(nun)2

)
u2

ndx (A.0.7)

for all u and for each n. Taking the limit n→ ∞, firstly, note that

un(x) → u(x) a. e. in RN .

Thus, if, u(x) ̸= 0, it follows that |nu(x)|→ ∞ if n→ ∞. Hence hypothesis (f4) yields
(
a(x)

2 − F (x,nun(x))
(nun(x))2

)
u2

n(x) → 0 (A.0.8)

if n → ∞. If u(x) = 0, que also have (A.0.8). By the strongly convergence in (A.0.6),
there exist a function h ∈ L1(RN ) such that, up to a subsequence,

0 ≤
(
a(x)

2 − F (x,nun(x))
(nun(x))2

)
u2

n(x) ≤ a0|u2
n(x)|≤ a0h(x) ∈ L1(RN ). (A.0.9)

Finally, by (A.0.8) and (A.0.9), Lebesgue dominated convergence theorem ensures
that

lim
n→∞

∫
RN

(
a(x)

2 − F (x,nun(x))
(nun(x))2

)
u2

n(x)dx= 0.

Therefore, taking n→ ∞ in (A.0.7), we have

lim
n→∞

∫
RN

(
a(x)

2 − F (x,nu)
(nu)2

)
u2(x)dx= 0.

uniformly for u ∈ ∂B1.
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