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OUTLINE OF LECTURES

I the wreath product construction;
II the imprimitive action of a wreath product;

III the primitive action of a wreath product;
IV groups that preserve cartesian decompositions;
V twisted wreath products.



THE WREATH PRODUCT CONSTRUCTION
Input:

1. A group G;
2. a permutation group H 6 S`.

Set B = G`. An element h ∈ H induces an αh ∈ Aut(B):

(g1, . . . , g`)αh = (g1h−1 , . . . , g`h−1) for all gi ∈ G, h ∈ H.

The map
ϕ : H→ Aut(B), h 7→ αh

is a homomorphism.

Example
Let ` = 4, h = (1, 2, 3) ∈ S4:

(g1, g2, g3, g4)α(1,2,3) = (g1, g2, g3, g4)(1,2,3) = (g3, g1, g2, g4).



THE WREATH PRODUCT

Define
W = G oH = B oϕ H = G` oϕ H.

A generic element of W can be written as

(g1, . . . , g`)h with gi ∈ G, h ∈ H.

The multiplication in W:

[(g1, . . . , g`)h][(g′1, . . . , g
′
`)h′] = (g1, . . . , g`)(g′1, . . . , g

′
`)

h−1
hh′ =

(g1, . . . , g`)(g′1h, . . . , g
′
`h)hh′ = (g1g′1h, . . . , g`g

′
`h)hh′.

Terminology:
1. B is the base group of W and B E W.
2. H is the top group of W.



THE IMPRIMITIVE ACTION
Suppose from now on that G is also a permutation group:
G 6 Sym Γ.
Then W = G oH is a permutation group:

1. on Γ× ` where ` = {1, . . . , `} (imprimitive action)
2. on Γ` (product action).

Set Ω = Γ× `. For (g1, . . . , g`)h ∈W, and (γ, i) ∈ Ω, define

(γ, i)(g1, . . . , g`)h = (γgi, ih). (1)

Example
Let g = (a, b, c, d), G = 〈g〉 6 Sym{a, b, c, d} and H = S3.
Then W = G oH acts on Ω = {a, b, c, d} × {1, 2, 3}.
For example

(c, 2)[(g, g2, 1)(1, 2, 3)] = (cg2, 2(1, 2, 3)) = (a, 3).



LEMMA

Observe the following W-invariant partition:

{(a, 1), (b, 1), (c, 1), (d, 1)} ∪ {(a, 2), (b, 2), (c, 2), (d, 2)}∪
{(a, 3), (b, 3), (c, 3), (d, 3)}

Lemma
Eq. (1) defines a W-action on Γ× ` such that:

1. (g1, . . . , g`)h ∈W(γ,i) iff gi ∈ Gγ and h ∈ Hi;
2. The W-action on Γ× ` is faithful.
3. W 6 Sym (Γ× `) is transitive iff G 6 Sym Γ is transitive and

H 6 S` is transitive.
4. The partition P = {Γ× {i} | i ∈ `} is W-invariant.



PERMUTATIONAL ISOMORPHISMS AND EMBEDDINGS

Let G1 6 Sym Ω1 and G2 6 Sym Ω2.
A pair (ϑ, α) is said to be a permutational embedding if

1. ϑ : Ω1 → Ω2 is a bijection;
2. α : G1 → G2 is an injective homomorphism;
3. (ωg)ϑ = (ωϑ)(gα) for all ω ∈ Ω1 and g ∈ G1.

We say: G1 is permutationally isomorphic to a subgroup of G2.
We denote this by G1 . G2.

The pair (ϑ, α) is a permutational isomorphism if α is an
isomorphism.



INCLUSIONS INTO IMPRIMITIVE WREATH PRODUCTS

Suppose that Γ is a set and ` > 2. Let Ω = Γ× `.
Let

P = {Γ× {i} | i ∈ `}

be the “natural” partition of Ω.

Theorem
The full stabiliser of P in Sym (Γ× `) is Sym Γ o S`.
Consequence: Given a permutation group G 6 Sym Ω, the
following are equivalent:

1. a homogeneous partition P = {∆1, . . . ,∆`} of Ω is
G-invariant (homogeneous: |∆i| = |∆j|).

2. G . Sym Γ o S` with some set Γ.



DECOMPOSING AN IMPRIMITIVE PERMUTATION

GROUP
Suppose that G 6 Sym Ω is a transitive group and let
P = {∆1, . . . ,∆`} be a G-invariant partition.
Then we decompose G:

1. G∆i = (G∆i)
∆i : the group induced by G∆i on ∆i. We have

G∆i ∼= G∆j for all i, j.
2. GP 6 S`: the permutation group induced on P .

Example
Let G = D8 = 〈(1, 2, 3, 4), (1, 2)(3, 4)〉. Then

P = {∆1 = {1, 3},∆2 = {2, 4}}

is G-invariant. Further,

G∆1 = 〈(1, 3), (2, 4)〉{1,3} = 〈(1, 3)〉 ∼= C2 and GP ∼= C2.



IMPRIMITIVE EMBEDDING THEOREM

Theorem
Let G 6 Sym Ω be transitive and let P = {∆1, . . . ,∆`} be a
G-invariant partition of Ω. Then

G . G∆1 o GP 6 Sym (∆1 × `).

Example
In the previous example, we have that D8 . C2 o C2. In fact,
D8 ∼= C2 o C2.



THE PROOF: I
Let’s define a permutational embedding (ϑ, α) where

ϑ : Ω→ ∆1 × ` and α : G→ G∆1 o GP .

Step 1. For all i ∈ ` fix gi ∈ G such that ∆igi = ∆1.

The definition of ϑ: Let ω ∈ Ω. There is a unique ∆i ∈ P such
that ω ∈ ∆i. Define

ϑ : Ω→ ∆1 × `, ωϑ = (ωgi, i)

The definition of α: Let x ∈ G. Define

α : G→ G∆1 o GP , x 7→ (x1, . . . , x`)πx

where πx is the permutation induced by x on ` and

xi ∈ G∆1 such that xi = (g−1
i |∆1)(x|∆i)(giπx |∆iπx

).



THE PROOF: II

Now let’s compute for ω ∈ ∆i ⊆ Ω and x ∈ G such that
∆ix = ∆j that

ωxϑ = (ωxgj, j)

while

(ωϑ)(xα) = (ωgi, i)(xα) = (ωgi(g−1
i |∆1)(x|∆i)(gj|∆j), j) = (ωxgj, j).

Hence (ϑ, α) is a permutational embedding as claimed.



APPLICATION I: A KALUZHNIN-KRASNER THEOREM

Suppose that G is a group and H 6 G such that |G : H| <∞.
Then G acts on G faithfully by right multiplication and
[G : H] = {Hg | g ∈ G} is a G-invariant partition.

1. The stabiliser of H ⊆ G is H. Hence GH = H.
2. The group induced by G on [G : H] is G[G:H] (right coset

action).

Corollary
G is isomorphic to a subgroup of H o G[G:H]. If H E G, then G is
isomorphic to a subgroup of H o (G/H).



APPLICATIONS II: ` COPIES OF A COMPLETE GRAPH

For n > 2, let Kn be the complete graph on the vertex set n. For
` > 1, let `Kn is ` copies of the complete graph. For example 2K5
is the graph

The graph G = `Kn has ` connected components. These
connected components form an Aut(G)-invariant partition of G.
Hence Aut(G) 6 Sn o S`. In fact, Aut(G) = Sn o S`.



APPLICATION III: COMPLETE BIPARTITE GRAPHS

Let G = Km,m be the complete bipartite graph on the vertex set
∆1 ∪∆2 where

∆1 = {(1, 1), . . . , (m, 1)} and ∆2 = {(1, 2), . . . , (m, 2)}.

That is, (i1, j1) and (i2, j2) are adjacent if and only if j1 6= j2.

∆1 and ∆2 are the maximal independent sets of G and hence
the partition ∆1 ∪∆2 is preserved by Aut(G).

Hence Aut(G) 6 Sm o S2. In fact Aut(G) = Sm o S2.



MAXIMAL SUBGROUPS OF ALTERNATING AND

SYMMETRIC GROUPS

Theorem
Let Γ be a finite set of size at least 2 and let ` > 2. Then

1. Sym Γ o S` is a maximal subgroup of Sym (Γ× `);
2. (Sym Γ o S`) ∩ Alt (Γ× `) is a maximal subgroup of Alt (Γ× `)

unless |Γ| = 2 and ` = 4.

These maximal subgroups of Sym Ω give rise to primitive
actions of Sym Ω.
Notes:

1. Maximal subgroups of Sym Ω for finite Ω were described
by Jordan (1870), O’Nan & Scott (1979),
Liebeck–Praeger–Saxl (1987).

2. For Ω infinite, maximal subgroups related to partitions
were constructed by Richman (1967) and Brazil et al.
(1994).



THE BASE GROUP IS USUALLY CHARACTERISTIC

Theorem (Neumann (1964), Bodnarchuk (1984), Gross
(1992), Wilcox (2010), Brewster et al. (2011))
Let G be a group, let H 6 S` be a permutation group, set W = G oH,
and let B be the base group of W.

1. If H is regular on `, then the following are equivalent:
1.1 B is not a characteristic subgroup of W;
1.2 H ∼= C2 and G is a special dihedral group.

2. If G is finite and H acts faithfully on its orbits in `, then the
following are equivalent:
2.1 B is not a characteristic subgroup of W;
2.2 G is a finite special dihedral group, ` is even, and H is

permutationally isomorphic to S2 o Y where Y 6 Sn/2 and S2 o Y
is considered as a permutation group on 2× `/2 in imprimitive
action.



THE PRODUCT ACTION

We define the product action of W = G oH = G` o H on Γ`:

(γ1, . . . , γ`)[(g1, . . . , g`)h] = (γ1g1, . . . , γ`g`)h =

(γ1h−1g1h−1 , . . . , γ`h−1g`h−1).

Example
Let Γ = {a, b, c, d} and ` = 3. Then

(a, c, b)[((a, b, c), (a, c), (a, d))(2, 3)] =

(a(a, b, c), c(a, c), b(a, d))(2, 3) = (b, a, b)(2, 3) = (b, b, a).

Lemma
The product action is a faithful (G oH)-action on Γ`.
(G oH)(γ,...,γ) = Gγ oH.



CARTESIAN STRUCTURES
Let ∆1, . . . ,∆` be sets and set

Ω = ∆1 × · · · ×∆`.

For i ∈ ` and δ ∈ ∆i, let

Bi,δ = {(δ1, . . . , δ`) ∈ Ω | δi = δ}.

Then clearly Bi,δ ⊆ Ω. Let

Γi = {Bi,δ | δ ∈ ∆i}.

Clearly Γi is a partition of Ω. Finally set

E = {Γ1, . . . ,Γ`}.

E is a collection of partitions of Ω.
Observe: If B1,δ1 ∈ Γ1, . . . ,B`,δ` ∈ Γ`, then

|B1,δ1 ∩ · · · ∩ B`,δ` | = 1.



EXAMPLE

Let ∆1 = {a, b} and ∆2 = {1, 2, 3} ∆3 = {α, β}. Then

B1,a = {(a, 1, α), (a, 2, α), (a, 3, α), (a, 1, β), (a, 2, β), (a, 3, β)}.

Further,

Γ1 = {{(a, 1, α), (a, 2, α), (a, 3, α), (a, 1, β), (a, 2, β), (a, 3, β)},
{(b, 1, α), (b, 2, α), (b, 3, α), (b, 1, β), (b, 2, β), (b, 3, β)}};

Γ2 = {{(a, 1, α), (a, 1, β), (b, 1, α), (b, 1, β)},
{(a, 2, α), (a, 2, β), (b, 2, α), (b, 2, β)},
{(a, 3, α), (a, 3, β), (b, 3, α), (b, 3, β)}};

Γ3 = {{(a, 1, α), (a, 2, α), (a, 3, α), (b, 1, α), (b, 2, α), (b, 3, α)},
{(a, 1, β), (a, 2, β), (a, 3, β), (b, 1, β), (b, 2, β), (b, 3, β)}}.

Notice: If B1 ∈ Γ1, B2 ∈ Γ2, and B3 ∈ Γ3, then |B1 ∩ B2 ∩ B3| = 1.



CARTESIAN DECOMPOSITIONS

Suppose that Ω is a set. A cartesian decomposition of Ω is a set
E = {Γ1, . . . ,Γ`} of partitions of Ω such that

|B1 ∩ · · · ∩ B`| = 1 whenever B1 ∈ Γ1, . . . ,B` ∈ Γ`.

E is homogeneous of |Γi| = |Γj| for all i, j.
E is non-trivial if |E| > 2.
We will assume that cartesian decompositions are non-trivial.
The cartesian decomposition E = {Γ1, . . . ,Γ`} defined before is
the natural cartesian decomposition of ∆1 × · · · ×∆`.

If Ω is a set with cartesian decomposition {Γ1, . . . ,Γ`}, then
there is a bijection

ϑ : Ω→ Γ1 × · · · × Γ`, ω 7→ (B1, . . . ,B`) where ω ∈ Bi ∈ Γi.



THE INVARIANT CARTESIAN DECOMPOSITION

Theorem
Let Γ be a set with |Γ| > 2 and let ` > 2.

1. The stabiliser in Sym (Γ`) of the natural cartesian
decomposition E of Γ` is W = Sym Γ o S`.

2. If 5 6 |Γ| <∞ and ` > 2, then Sym Γ o S` is a maximal
subgroup of Sym (Γ`) or of Alt (Γ`).

Exercise: Give a necessary and sufficient condition for the
containment Sym Γ o S` 6 Alt (Γ`).

Problem: Find maximal subgroups in infinite symmetric groups
that correspond to cartesian decompositions. Covington,
Macpherson & Mekler (1996) solve this when Ω is countable.



THE COMPONENT OF G

Suppose that G 6 Sym Ω is a permutation group and
E = {Γ1, . . . ,Γ`} is a G-invariant cartesian decomposition of Ω.

Decomposing G:
1. for Γi ∈ E , the stabiliser GΓi induces a permutation group

GΓi = (GΓi)
Γi on Γi; GΓi is the Γi-component of G;

2. G induces a subgroup GE 6 S`.



EXAMPLE

Consider the cube with vertex set V = {a, b, c, d, e, f , g, h}. Let G
be its automorphism group.
If

Γ1 = {{a, b, c, d}, {e, f , g, h}};
Γ2 = {{b, f , c, g}, {a, e, d, h}};
Γ2 = {{a, b, e, f}, {d, c, h, g}},

then E = {Γ1,Γ2,Γ3} is a G-invariant cartesian decomposition
of V. It is easy to see that

1. GΓi = C2 and
2. GE = S3.



WREATH EMBEDDING THEOREM

Theorem
Let G 6 Sym Ω and assume that E = {Γ1, . . . ,Γ`} is a G-invariant
cartesian decomposition of Ω.
(1) If G is transitive on E , then G . GΓ1 o GE acting in product

action on Γ`1.
(2) If G is transitive on Ω then GΓ1 is transitive.

Consequence: The automorphism group of the cube . C2 o S3.
In fact it is equal to C2 o S3.

Proof of (1): see the imprimitive embedding theorem.
Proof of (2): Assume wlog that G is transitive on E and
G 6 W = GΓ1 oS`. If GΓ1 is intransitive, then so is W and so is G.



PRIMITIVE AND QUASIPRIMITIVE GROUPS

Let G 6 Sym Ω be transitive.
G is said to be primitive if {{ω} | ω ∈ Ω} and {Ω} are the only
G-invariant partitions of Ω.
G is said to be quasiprimitive if all non-trivial normal
subgroups of G are transitive.

Lemma
(1) If G is primitive, then it is quasiprimitive.
(2) A finite permutation group is quasiprimitive iff all minimal
normal subgroups are transitive.
Praeger (1993) proved an O’Nan–Scott Theorem for finite
quasiprimitive permutation groups.



PRIMITIVE AND QUASIPRIMITIVE WREATH PRODUCTS

Assume that 2 6 |Γ| 6∞ and ` > 2. Let G 6 Sym Γ and H 6 S`
and set Ω = Γ`, W = G oH.

Theorem
The following are equivalent.

1. W is (quasi)primitive on Ω;
2. 2.1 G is (quasi)primitive Γ;

2.2 G is not cyclic of prime order;
2.3 H is transitive on `.



SKETCH OF PROOF FOR QUASIPRIMITIVITY

Suppose that W is quasiprimitive.

Claim 1.: G = WΓ = G is transitive.
By Theorem above, since W is transitive.

Claim 2.: H is transitive on `.
Let {1, . . . , s} be an H-orbit with s < ` and set X = Gs. Then
X 6 (G`) o H = W and X is an intransitive normal subgroup of
W: a contradiction.

Claim 4.: G is not cyclic of prime order.
If yes, then set X = {(g, . . . , g) | g ∈ G} 6 (G`) o H. Then X is
an intransitive normal subgroup of W: a contradiction.

Claim 3.: G is quasiprimitive on Γ.
If not, then let 1 < N < G be an intransitive normal subgroup.
Then X = N` 6 G` is an intransitive normal subgroup of W: a
contradiction.



SKETCH OF PROOF FOR PRIMITIVITY

Assume now that W is primitive. We only need to show that G
is primitive on Γ. Let ω = (γ, . . . , γ) ∈ Ω.

Claim 1.: Wω = Gγ oH is a maximal subgroup of W.

Claim 2.: Gγ is a maximal subgroup of G.
Suppose not and let Gγ < Y < G. Set X = Y oH = Y` o H. Then
Wω < Y < W: a contradiction.

Corollary
Suppose that G 6 Ω such that G preserves a homogeneous cartesian
decomposition E = {Γ1, . . . ,Γ`} of Ω. If G is primitive on Ω, then
GΓ1 is primitive on Γ1, it is not Cp, and GE is transitive.

Proof.
By primitivity, GE is transitive. By Embedding Theorem,
G 6 GΓ1 o GE . Now apply previous theorem.



APPLICATION I: COMPLETE BIPARTITE GRAPH

Let Km,m be a complete bipartite graph as above with
bipartition ∆1 = {11, . . . ,m1} and ∆2 = {12, . . . ,m2}.
Set ∆ = {1, . . . ,m}.
Then the edge set of Km,m is

E = {{i1, j2} | 1 6 i, j 6 m} ∼= ∆1 ×∆2 ≡ ∆2.

The group Aut(Km,m) = Sm o S2 acts in product action on E.

Corollary
Let G 6 Aut(Km,m) = Sm o S2 and let G0 = G ∩ (Sm)2.

1. If G is transitive on E, then G0 is transitive on ∆1 and on ∆2.
2. If G is primitive on E, G projects onto S2 and G0 is primitive on

∆1 and on ∆2.



APPLICATION II: HAMMING GRAPHS

Let Γ be a set and Ω = Γ`.
The Hamming graph H(`,Γ):

1. vertex set Γ`;
2. (γ1, . . . , γ`) and (δ1, . . . , δ`) are adjacent iff |{i | γi 6= δi}| = 1.

The following follows from more general results of Sabidussi
(1960) and Vizing (1963).

Theorem
Aut(H(`,Γ)) coincides with the stabiliser Sym Γ o S` of the natural
cartesian decomposition of Γ`.



ARC-TRANSITIVE GROUPS ON HAMMING GRAPHS

Theorem
Let G 6 Sym Γ o S` act arc-transitively on G = H(`,Γ). Then

1. G projects onto a transitive subgroup of S`;
2. GΓ is a 2-transitive permutation group on Γ.

Proof.
Let ω = (γ, . . . , γ) be a vertex. If G is arc-transitive, then G is
vertex transitive and Gω is transitive on the neighbourhood

G(ω) = {(γ′ 6= γ, γ, . . . , γ)} ∪ {(γ, γ′ 6= γ, γ, . . . , γ)} ∪ · · · ∪
{(γ, γ, . . . , γ, γ′ 6= γ)} = Σ1 ∪ · · · ∪ Σ`.

Hence Gω is transitive but imprimitive on G(ω) = Σ1 ∪ · · · ∪ Σ`.
This forces

1. Gω to project onto a transitive subgroup of S`;
2. (Gω)Σ1 to be transitive on Γ \ {γ}; i.e. GΓ to be 2-transitive

on Γ.



ARC-TRANSITIVE SUBGROUPS OF FINITE HAMMING

GRAPHS

Theorem (CFSG)
Let G 6 Aut(H(`,Γ)) be arc-transitive as above. If GΓ is a finite
almost simple 2-transitive group with socle T, then either
(a) T` 6 G; or
(b) T ∈ {A6,M12}, ` is even, and T`/2 6 G.

Using the terminology of Kovács (1989), in case (a), G is a
blow-up of GΓ.



BASIC OR NON-BASIC?

Definition (Cameron)
A (quasi)primitive permutation group on Ω is basic if it does
not preserve a non-trivial cartesian decomposition of Ω.
The following are equivalent for G 6 Sym Ω:

1. G is non-basic;
2. G preserves a non-trivial cartesian decomposition of Ω;
3. G . Sym Γ o S` with some set Γ and ` > 2.

Question 1: Given G 6 Sym Ω. How do we decide if G is basic?

Question 2: Once we know that G is non-basic, construct all
embeddings G . Sym Γ o S`.



EXAMPLE

Let T E G 6 Aut(T) be a primitive group of type AS on Γ and let
H 6 S` be transitive.

Then W = G oH 6 Sym Γ o S` is primitive and non-basic.

Question: How is this visible by looking at W?

We have
M = T` = T1 × · · · × T`

is a transitive minimal normal subgroup of W such that
1. Mω = (T1)ω × · · · × (T`)ω;
2. the set {T1, . . . ,T`} is invariant under conjugation.

Hence we may identify

Γ` ≡ [M : Mω] = [T1 : (T1)ω]× · · · × [T` : (T`)ω] ≡ [T1 : (T1)ω]`.

For example, primitive groups of type PA and CD are not basic.



NORMAL CARTESIAN DECOMPOSITIONS AND

NORMAL EMBEDDINGS

Suppose that N is a transitive normal subgroup of G 6 Sym Ω
such that

1. N = N1 × · · · ×N`;
2. Nω = (Nω ∩N1)× · · · × (Nω ∩N`);
3. the set {N1, . . . ,N`} is invariant under conjugation by Gω.

Then

Ω ≡ [N : Nω] ≡ [N1 : (N1 ∩Nω)]× · · · × [N` : (N` ∩Nω)] =

∆1 × · · · ×∆`.

The natural cartesian decomposition of ∆1 × · · · ×∆` is a
G-invariant cartesian decomposition.
If |∆i| = |∆j| then G . Sym ∆1 o S`.



NORMAL CARTESIAN DECOMPOSITIONS AND

NORMAL EMBEDDINGS

Definition
A G-invariant cartesian decomposition that arises this way is
said to be normal. The corresponding embedding
G . Sym ∆1 o S` is a normal embedding.
Example: Suppose that k > 2 and M = T1 × · · · × Tk is a
non-abelian regular minimal normal subgroup of a group G
with the Ti simple. Then conditions (1)–(3) are satisfied for M
and so G is non-basic.
In particular primitive groups of type HC, TW are non-basic
and they admit a normal embedding G . Sym Γ o S`.



NON-BASIC AFFINE GROUPS

Let G = V o Gω be a primitive affine group such that V = (Fp)d

and Gω 6 GLd(p) is an irreducible subgroup.
Suppose that V = V1 ⊕ · · · ⊕ V` is a Gω-invariant
decomposition of V with ` > 2.
In this case we say that Gω is an imprimitive linear group.
Then

1. V = V1 × · · · × V`;
2. 1 = Vω = (V1 ∩ Vω)× · · · × (V` ∩ Vω);
3. the set {V1, . . . ,V`} is a Gω-conjugacy class.

Hence G is non-basic.

Theorem
A finite primitive group G of type HA (affine) is non-basic iff Gω is
an irreducible, but imprimitive linear group. In this case the
embedding G . Sym Γ o S` is normal.



OTHER INCLUSIONS

Let T = A6, G = Aut(T) = PΓL2(9), and let H 6 G be a maximal
subgroup with index 36. Then G is primitive on Ω = [G : H].
The following hold:

1. T has two non-conjugate subgroups A, B ∼= A5;
2. {A,B} is H-invariant;
3. AB = T;
4. A ∩ B = H ∩ T = Tω.

These properties imply that there is a bijection

Ω ≡ [T : A ∩ B]→ [T : A]× [T : B], (A ∩ B)t 7→ (At,Bt).

Hence
G 6 S6 o S2

and G is a non-basic primitive group of type AS.



LET’S GENERELISE

Suppose that G 6 Sym Ω has a transitive normal subgroup T
such that

1. there are A, B 6 T such that |T : A| = |T : B|;
2. AB = T;
3. A ∩ B = Tω;
4. the set {A,B} is invariant under conjugation by Gω.

Then
Ω ≡ [T : A ∩ B] ≡ [T : A]× [T : B] ≡ [T : A]2

and
G 6 Sym ∆ o S2 where ∆ = [T : A].

Such a G is non-basic.



APPLY THIS TO ALMOST SIMPLE GROUPS

Let’s find non-basic finite primitive groups with AS type that
admit an embedding G . Sym Γ o S2.
We need to understand factorisations T = AB of finite simple
groups with |A| = |B|.

Lemma (CFSG)
Suppose that T is a finite simple group and A, B < T such that
AB = T and |A| = |B|. Then one of the following is valid:

1. T ∼= A6 and A, B ∼= A5;
2. T ∼= M12 and A, B ∼= M11;
3. T ∼= Sp(4, 2a) with a > 2 and A, B ∼= Sp(2, 22a) · 2.
4. T ∼= PΩ+

8 (q) and A, B ∼= PΩ+
7 (q).



G 6 Sym∆ o S` WITH G ALMOST SIMPLE

Corollary
Let G be a finite non-basic primitive group of type AS with socle T
such that G . Sym Γ o S2. Then T ∈ {A6,M12,Sp(4, 2a)}.

Proof.
Step 1: T 6 (Sym Γ)2.

Step 2. Let γ ∈ Γ and ω = (γ, γ) ∈ Γ2. Set

∆1 = {(γ, γ′) | γ′ ∈ Γ} and ∆2 = {(γ′, γ) | γ′ ∈ Γ}.

Then ∆1, ∆2 ⊆ Ω are blocks of imprimitivity for T.

Step 3. Let A = T∆1 and B = T∆2 be the block stabilisers. Then
A and B satisfy the conditions of the factorisation lemma.
Step 4. Prove that T 6= PΩ+

8 (q).



LET’S GENERALISE FURTHER

Question: How to detect if G . Sym Γ o S` for ` > 2?

Suppose that M 6 Sym Ω is a transitive group and
K = {K1, . . . ,K`} is a set of proper subgroups of M such that

1. K1 ∩ · · · ∩ K` = Mω;
2. Ki(

⋂
j 6=i Kj) = M for all i;

Then K is said to be a cartesian factorisation of M.

Theorem
Let G 6 Sym Ω, let M be a transitive minimal normal subgroup of G,
and let ω ∈ Ω. The following are equivalent:

1. G is non-basic, and so G . Sym Γ o S` with ` > 2;
2. M admits a Gω-invariant cartesian factorisation with `

subgroups such that |M : Ki| = |M : Kj| for all i, j.



PROOF

⇐: If K = {K1, . . . ,K`} is a Gω-invariant cartesian factorisation, then

Ω ≡ [M : Mω] ≡ [M : K1]× · · · × [M : K`] ≡ [M : K1]`.

Hence we obtain an embedding G . Sym Γ o S` with Γ = [M : K1].

⇒: Suppose that G . Sym Γ o S`.
Step 1. M 6 (Sym Γ)`.
If not, then M . S` and so |M| | `!. As M is transitive on Γ`, Γ` | |M|.
Therefore |Γ|` | `!: a contradiction (easy fact from number theory).

Step 2. Fix γ ∈ Γ, set ω = (γ, . . . , γ) ∈ Γ` and define

∆1 = {(γ, γ2, . . . , γ`) | γi ∈ Γ} . . . ∆` = {(γ1, . . . , γ`−1, γ) | γi ∈ Γ}.

The ∆i are blocks of imprimitivity for M. Now let Ki = M∆i .

Step 3. Then K = {Ki}i is a Gω-invariant cartesian factorisation of M.



NON-BASIC FINITE PRIMITIVE GROUPS I

Let’s see how finite primitive groups can be non-basic:

HA: Non-basic if and only if Gω is an imprimitive irreducible
subgroup of GLd(p). Further, every embedding G . Sym Γ o S`
is normal.

HS: Always basic.

HC: Always non-basic and every embedding G . Sym Γ o S` is
normal.

SD: Always basic.



NON-BASIC FINITE PRIMITIVE GROUPS II

CD: Always non-basic and every embedding G . Sym Γ o S` is
normal.

TW: Always non-basic and every embedding G . Sym Γ o S` is
normal.

PA: Always non-basic. Assume that G admits a non-normal
embedding G . Sym Γ o S` and let T be the simple direct factor
of Soc G. Then T ∈ {A6,M12,Sp4(2a)}.

AS: If non-basic, then Soc G ∈ {A6,M12,Sp4(2a)} and admits a
non-normal embedding
G . Sym Γ o S2.

This was proved by Cheryl Praeger (1990).



PRIMITIVE PERMUTATION GROUPS WITH A

NON-ABELIAN REGULAR SOCLE

Question: Is there such a thing?
The original theorem by Scott claims:



PRIMITIVE PERMUTATION GROUPS WITH

NON-ABELIAN REGULAR SOCLE

Let’s look at the proof:

If N is a regular non-abelian minimal normal subgroup of a
finite primitive group G then

G = N o Gω = (T1 × · · · × Tk) o Gω

where the Ti are non-abelian finite simple groups.
Further, Gω is a maximal subgroup of G.
Pablo showed that Gω is non-solvable. Combining this with
Schreier’s Conjecture, we obtain that k > 1.



RECOGNISING TWISTED WREATH PRODUCTS

Lemma (Bercov 1967, Lafuente 1987)
Let G be a group such that

1. N = N1 × · · · ×Nk E G;
2. G = N o H;
3. {N1, . . . ,Nk} is a G-conjugacy class.

Then G ∼= N1 twr H (twisted wreath product).
Hence our hypothetical group G would be a twisted wreath
product.

Twisted wreath products were introduced by B. H. Neumann
(1963).

The observation that these permutation groups are twisted
wreath products was made by Gross & Kovács (1984).



THE TWISTED WREATH PRODUCT

Input:
1. a group T;
2. a group P;
3. a subgroup Q < P with |P : Q| <∞;
4. and a homomorphism ϕ : Q→ Aut(T).

Consider Func(P,T) ∼= T|P| and set

B = {f ∈ Func(P,T) | (pq)f = (pf )(qϕ) for all p ∈ P, q ∈ Q}.

It is easy to see that B 6 Func(P,T).



THE BASE GROUP
Let T be a left transversal of Q in P, such that 1 ∈ T .
Then

P = {rq | r ∈ T and q ∈ Q} (unique representation).

For each c ∈ T and t ∈ T, define fc,t ∈ Func(P,T) by

fc,t : rq 7→
{

1 if r 6= c (that is, rq 6∈ cQ)
t(qϕ) if r = c (that is, rq ∈ cQ)

(2)

and set
Tc = {fc,t | t ∈ T}.

Lemma

1. Tc ∼= T under the isom t 7→ fc,t;
2. B =

∏
c∈T Tc, and so B ∼= T|P:Q|.



THE P-ACTION ON B
For p ∈ P, define p̂ : B→ B by

x(f p̂) = (px)f for all x ∈ P and f ∈ B. (3)

Lemma
The map ϑ : p 7→ p̂ is a homomorphism ϑ : P→ Aut(B) with
kerϑ = CoreP(kerϕ).
The group

T twr P = T twrϕ P = B oϑ P

is the twisted wreath product of T by P.
Terminology:

1. B: base group;
2. P: top group;
3. Q: twisting subgroup;
4. ϕ: twisting homomorphism.



TWISTED WREATH PRODUCTS AS PERMUTATION

GROUPS

Let W = T twr P = B o P as above. We define an action of W on
B (the base group action):

1. if f ∈ B, then f acts on B by right multiplication:

f : g 7→ gf ;

2. if p ∈ P, then p acts on B via the automorphism p̂:

p : g 7→ gp̂.

Lemma

1. The rule above gives a W-action on B with kernel CoreP(kerϕ).
2. B is a regular normal subgroup of W.



PRIMITIVE TWISTED WREATH PRODUCTS

Lemma
Assume that CoreP(kerϕ) = 1 and set W = T twrϕ P. The group W
is primitive iff no proper, non-trivial subgroup of B is normalised by
P.

Proof.

Step 1. Let 1 ∈ ∆ ⊆ B be a block of imprimitivity for W.
Step 2. B is regular⇒ ∆ 6 B.
Step 3. P acts via automorphisms: ∆ is P-invariant.

Hence a 1 ∈ ∆ ⊆ B is a W-block of imprimitivity iff ∆ is a
P-invariant subgroup of B.



A CRITERION FOR PRIMITIVITY

Theorem (Aschbacher–Scott 1985, Kovács 1986)
Suppose that T, P, Q, and ϕ are as above and let W = T twrϕ P.

1. If W is primitive in its base group action then
1.1 no proper and non-trivial subgroup of T is invariant under Qϕ;

and
1.2 ϕ cannot be extended to a strictly larger subgroup of P.

2. If T is a non-abelian simple group (not necessarily finite),
then (1.1) and (1.2) imply that W is primitive.



PROOF

W is primitive⇒ 1.1:
Assume that 1 < L < T is invariant under Qϕ. Then
1 < L|P:Q| < T|P:Q| = B is normalised by P: W is not primitive by
previous lemma.

W is primitive⇒ 1.2:
Assume that Q < Q 6 P is such that ϕ : Q→ Aut(T) can be
extended to ϕ : Q→ Aut(T).
Set

B = {f ∈ Func(P,T) | (pq)f = (pf )(qϕ) for all p ∈ P, q ∈ Q}.

Then B < B and P < B o P < B o P. Hence P is not a maximal
subgroup of W and W is not primitive.



CRITERION FOR PRIMITIVITY

Lemma
Let T be a non-abelian finite simple group and X 6 Aut(T). Then no
proper non-trivial subgroup of T is invariant under X iff Inn(T) 6 X.

Corollary
Suppose that T is a non-abelian finite simple group. Then
W = T twrϕ P is primitive in its base group action if and only if both

1. Inn(T) 6 Qϕ; and
2. ϕ cannot be extended to a strictly larger subgroup of P.



EXAMPLE

Smallest example, T = A5, P = A6, Q = A5, and ϕ : Q→ Aut(T)
is conjugation.
Then

W = T twr P = T6 o P

is primitive on T6.
Then |W| = 606 · 360 = 16796160000000 and
|Ω| = 606 = 46656000000.



THEOREM OF FÖRSTER–KOVÁCS

The following was proved in an Australian National University
Research Report (1989).

Theorem
Let T, P, Q, and ϕ be as in the input such that CoreP(kerϕ) = 1 and
W is primitive. Then P contains a unique minimal normal subgroup
that is non-abelian. In particular P cannot contain a solvable normal
subgroup.

Corollary
Let T, P, Q, and ϕ be as in the input such that CoreP(kerϕ) = 1 and
W is primitive. Then the P-action on the simple direct factors of
B = T|P:Q| is faithful.


