Regularity results for a class of obstacle problems

Antonia Passarelli di Napoli^{*} Department of Mathematics "R. Caccioppoli" University of Naples "Federico II" Naples, Italy

Abstract

We present some higher differentiability results of integer and fractional order of the gradient of solutions to variational obstacle problems of the form

$$\min\left\{\int_{\Omega} F(x, u, Du) dx: \ u \in u_0 + \mathcal{K}_{\psi}(\Omega)\right\},\$$

where $\Omega \subset \mathbb{R}^n$ is a bounded set, $n \geq 2$. The boundary datum u_0 and the obstacle ψ belong to the Sobolev class $W^{1,p}(\Omega)$ and the admissible class $\mathcal{K}_{\psi}(\Omega)$ is defined as follows

$$\mathcal{K}_{\psi}(\Omega) = \{ v \in u_0 + W^{1,p}(\Omega) : v \ge \psi \}.$$

The energy density F is assumed to be convex and of class C^2 and satisfies pgrowth condition, $p \ge 2$, with respect to the gradient variable.

We show that a Besov regularity assumption on the gradient of the obstacle ψ transfer to the gradient of the solution.

The results are contained in joint works with Michela Eleuteri ([1], [2]).

References

- M. Eleuteri; A.Passarelli di Napoli, Higher differentiability for solutions to a class of obstacle problems, *Calc. Var. and PDE's*, 2018, 57:115.
- [2] M. Eleuteri; A.Passarelli di Napoli, Regularity results for a class of nondifferentiable obstacle problems, *Nonlinear Anal.* 194, (2020), 111434.

^{*}e-mail: antpassa@unina.it