The Allen-Cahn equation in the sphere: geometric and variational properties

Rayssa Caju*
Department of Mathematics
UFPB/ University of Chicago
João Pessoa, Brazil/ Chicago, USA

Abstract

The Allen-Cahn equation establishes an important connection between the theory of minimal surfaces and PDEs. In particular, the characterization of solutions of this equation has been a subject of intense interest in the past few decades. One of the most well known problems related to this subject is the De Giorgi's conjecture which states that the only bounded monotone solutions to Allen-Cahn equation in \mathbb{R}^{n} are one-dimensional. Our main purpose in this talk is to characterize unstable solutions of least energy of the Allen-Cahn equation in the entire sphere \mathbb{S}^{n}. We prove that the ground state solutions are radially symmetric. Moreover they are unique up to rotations and correspond to the equator as a minimal hypersurface. Such information is useful in the study of the first critical values of a min-max sequence for the associated energy and a bifurcation problem.

Joint work with Pedro Gaspar, Marco Guaraco and Henrik Matthiesen.

References

[1] Gaspar, P., and Guaraco, M. A. M., The Allen-Cahn equation on closed manifolds, Calc. Var. Partial Differential Equations 57, 4 (2018), 101.
[2] Van Schaftingen, J., and Willem, M. Symmetry of solutions of semilinear elliptic problems. J. Eur. Math. Soc. (JEMS) 10, 2 (2008), 439?456.
[3] Guaraco, M. A. M., Marques, F. C., and Neves, A. Multiplicity one and strictly stable allen-cahn minimal hypersurfaces, arXiv:1912.08997 [math.DG], 2019.

[^0]
[^0]: *e-mail: rayssacaju@gmail.com

