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Abstract

We present a topological proof of Abel’s Theorem that establishes the impossi-
bility of quintic equations through of radicals. Usually the demonstration this
theorem is done through of Galois’ classic theory via field extensions and Ga-
lois groups. However, this work we follow the proof effectued by the Professor
V.I. Arnold [1], that show topological character of Abel’s Theorem. We study
the connection between groups theory and complex functions theory, mainly
exploring Riemann surfaces, algebraic functions and monodromy.
Monodromy are a topological concept. Given a polynomial

pz(w) = wn + an−1w
n−1 + · · ·+ a1w + z

in C[w], we consider the algebraic function f : C → C defined by f(z) = {w ∈
C; pz(w) = 0}. This function is multivalued and determines a Riemann surface.
Closed paths around their branch points induce permutations in their sheets,
generating what we call of monodromy groups.

Theorem 0.1 If a complex functions h(z) is representable by radicals, its mon-
odromy group is soluble.

The solubility this groups determines when the function f(z) and, consequently
the roots of pz(w), are expressed by radicals.

Theorem 0.2 (Abel’s Theorem) For n ≥ 5 the general algebraic equation
of degree n

wn + an−1w
n−1 + · · ·+ a1w + z = 0

is not solvable by radicals.

The work is the result of a scientific initiation project carried out at PIVIC-
UFV.
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